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Abstract 
 

 

 

 

A novel method of vibration modelling is proposed in this thesis. This method 

involves estimating the mode shapes of a general structure and describing these 

shapes in terms of fuzzy membership functions.  These estimations or initial guesses 

are based on engineering judgment or physical insight into natural mode shapes 

assisted by end and boundary conditions and some rules.  The guessed mode shapes 

were referred to as Mode Shape Forms (MSFs).  MSFs are approximate mode shapes, 

therefore there are uncertainties involve with their values where this uncertainty is 

expressed by fuzzy sets. The deflection or displacement magnitude of the mode shape 

forms are described with Zero, Medium, and Large fuzzy linguistic terms and 

constructed using fuzzy membership functions and rules. Fuzzy rules are introduced 

for each MSF. In that respect fuzzy membership functions provides a means of 

dealing with uncertainty in measured data, it gives access to a large repertoire of tools 

available in fuzzy reasoning field. The second stage of the process addresses the 

issues of updating these curves by experimental data.  This involves performing 

experimental modal analysis.  The mode shapes derived from experimental FRFs 

collect a limited number of sampling points.   When the fuzzy data is updated by 

experimental data, the method proposes that the points of the fuzzy data correspond to 

the sampling points of FRF are to be replaced by the experimental data.  Doing this 

creates a new fuzzy curve which is the same as the previous one, except at those 

points.  In another word a “spiked” version of the original fuzzy curve is obtained.  In 

the last stage of this process, neural network is used to “learn” the spiked curve. By 

controlling the learning process (by preventing it from overtraining), an updated fuzzy 

curve is generated that is the final version of the mode shape. Examples are presented 

to demonstrate the application of the proposed method in modelling of beams, a plate 

and a structure (a three beams frame).   

 

The method is extended to evaluate the error where a wrong MSF is assumed for the 

mode shape. In this case the method finds the correct MSF among available guessed 

MSFs. A further extension of the method is proposed for cases where there is no 

guess available for a particular mode shape.  In this situation the “closest” MSF is 



selected among available MSFs. This MSF is modified by correcting the fuzzy rules 

that is used in constructing of the fuzzy MSF.    

 

Using engineering experience (judgment), heuristic knowledge and the developed 

MSF rules in this method are the capabilities that cannot be provided with any 

artificial intelligent system. This provides additional advantage relative to vibration 

modelling approaches that have been developed until now. Therefore this method 

includes all aspects of an effective analysis such as mixed artificial intelligence and 

experimental validation, plus human interface/intelligence. Another advantage is, 

MSF rules provide a novel approach in vibration modelling where enables the method 

to start and operate with unknown input parameters such as unknown material 

properties and imprecise structure dimensions. Hence the classical computational 

procedures of obtaining the vibration behaviour of the system, from these inputs, are 

not used in this approach. As a result, this method avoids the time consuming 

computational procedure that exhibit in existing vibration modelling methods. 

However, the validation procedure, using experimental tests (modal testing) is the 

same acceptable procedure that is used in any other available methods which proves 

the accuracy of the method. 

 



NOTATION 

 

 

A Area 

A(x) Fuzzy membership function of A 

)(xB  Fuzzy membership function of B 

c Damping factor 

c
c  Critical damping 

[ ]
q

C  Modal damping matrix 

[ ]
x

C  Damping matrix 

D Operator 

e Average error 

E  Module of elasticity  

i
E  Error  

f Shape function 

F Force 

h Transfer matrix 

I Inertia 

K Stiffness 

L Length  

m Mass 

[ ]
q

M  Modal mass matrix 

[ ]
x

M  Mass matrix 

t
M  Translational inertia matrix 

q

i
o  Neural network output 

{ }P  Mode shape or eigenvector matrix 

q Modal displacement 

r Frequency ratio 

[ ]
k

R  Modal constant 

S  Stiffness matrix  

t time 

{ }
k

u  Normalized mode shape 



V Volume 

ij
w  Learning weights  

( )yxW ,  Plate deflection  

q

k
x  Neural network input 

)(sX  Laplace transformation of )(tx  

q

i
y  Neural network target output 

q

i
z  Neural network input 

ζ  Damping ratio 

n
ω  Natural frequency or eigenvalue 

d
ω  Damped natural frequency 

ϕ  Phase angle 

λ  Amplitude ratio 

η  Learning rate 

φ  Plate aspect ratio 

jk
υ  Learning weights 

i
Φ  Mode shape or eigenvector 

N
λ  Wave length  

ρ  Density  

 

 

SUBSCRIPTS 

 

DOF Degree of freedom 

FFT Fast Fourier transform  

FRF Frequency response function 

L Large 

M Medium 

MDOF Multi degree of freedom 

MSF Mode shape form 

N Negative 

NL Negative large 



NLM Negative large medium  

NM Negative medium 

P Positive 

PL Positive large 

PLM Positive large medium 

PM Positive medium 

SDOF Single degree of freedom 

Z Zero 

ZNM Zero negative medium  

ZPM Zero positive medium 
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Chapter 1 

 

 

 

 

 

Introduction and structure of thesis 

 

 

 

 

 

1.1. Introduction 

 

 

The industrial revolution demanded an increase in production and required an 

advanced engineering technology. From early 1900 modelling of engineering systems 

became more and more important, and more effort was made to find more accurate 

and effective methods. Computers technology provided more powerful analysis tools 

for engineers.  Using computers enabled engineers to deal with large mathematical 

matrices and calculations in design, analysis and modelling of systems.  However as 

technology become more and more complex classical analysis tools (even with help 

of computers) becoming less effective in achieving effective and reliable solutions.  

For example modal analysis of a complex structure such as a whole vehicle or a 

helicopter may not provide reliable answer for more than first 10 modes.  Even this 

level of success will rely on modeller’s skills.  Over the last 50 years, engineers and 

scientist looked for alternative ways of dealing with complexity and high 

dimensionality.  As a result of this search an array of methods inspired from the 

nature or based on human heuristics were developed.  During this period Artificial 

intelligence and biologically inspired algorithm (especially in optimisation such as 

genetic algorithms) were developed.  Although success of these methods is varied, 

they will continue to be used as effective methods, when the alternative effective 
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classical methods (such as analytical approaches) are not available to deal with 

complexity.  The outcome of complexity was not only related to solution algorithms, 

but parallel to those, it exposed another major problem related to modelling 

engineering system.  This was uncertainty.  Engineers, from early days of modelling 

were aware of this problem, however error (or uncertainty) due to identifying accurate 

values for parameters were not major issue for a simple component design which 

involved several such parameters.  As dimensionality (complexity) increased 

uncertainty has become prominent as individual uncertainties interact with each other 

and propagate with analysis.  It is becoming more and more obvious that to deal with 

this problem, effective analysis tools are needed.  Classically such tools included 

stochastic analysis, which become the main tool in dealing with uncertainty.  The 

thesis, here, proposes an alternative way of dealing with uncertainty by using fuzzy 

set theory.  

 

Artificial intelligence methods such as neural networks were developed in 1950s. In 

these methods, a large volume of data can be modelled by the network.  The network 

learns the relation between inputs and outputs data. Neural network methods include 

the advantages of higher degree of robustness and capability of learning. 

Effectiveness of neural network is due to the fact that neither a complicated 

programming nor rigid algorithms are required.  

 

One of the most successful methods, in the case of vibration analysis, is modal 

analysis. In general this method may be classified as a system identification method.  

The main purpose of these methods is to obtain a mathematical description of system 

behaviour based on experimental observations.  Experimental modal analysis method 

has been developed for modelling of structural vibration, and found to be a very 

reliable. In this case, accurate experimental measurements have to be carried out in 

order to obtain good results. This method is also used in verifying other modelling 

approaches such as Finite Element (FE) models. Various techniques have been 

investigated by researchers for model updating using modal analysis. Model updating 

is a technique to validate the model that is derived from a modelling method. Modal 

analysis is not the only method in model updating, other techniques are also available 

in updating of dynamical systems [1].    
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The classical modelling methods require precise data, including responses or 

parameters data that is obtained from the system behaviour or parameter 

measurements. Modelling of engineering systems involve uncertainty in parameters 

values of the system and errors in measurements. There are limitations in obtaining 

accurate data of the systems. The sources of uncertainty in the modelling of 

mechanical systems can be referred to as: 

 

• Measurement error and instrumentation error involved in experiments. 

• Manufacturing error where manufacturing of all machine parts involves 

tolerance and the exact dimensions and material property can never be 

produced. 

• Error in operational conditions of the system such as high accelerations, 

resiliency, large sudden loads, severe operation and uneven heating cause 

changes in parameters of the system. 

• Error in modelling nonlinearity. Some times some terms in equations of the 

behaviour of the system are neglected for sake of simplification.  

• Error due to changing the characteristic of systems in their lifetime as a result 

of aging, creep, wear and corrosion.  

• Errors, as mechanical and industrial systems may be modified during their life 

of operation. Each modification changes the characteristics of the structure and 

makes the original model of the system invalid. 

• Errors, as it is difficult to measure material properties. 

 

During the last 50 years more and more engineers have investigated the implication of 

modelling engineering systems with uncertainty. Engineers realized that uncertainty 

analysis could be used in dealing with the imprecisely defined data.  In vibration 

problems, the response of most mechanical systems is highly sensitive to variations in 

the parameters of the system. Therefore, any realistic analysis requires considering the 

uncertainties.  

 

One of the common approaches in uncertainty analysis includes stochastic methods 

[1, 2] and parallel to that, fuzzy set theory [4]. Randomness in stochastic methods has 

been extensively studied in literature. Stochastic analysis deals with errors in 
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experiments due to measurement and instrumentation errors, and the random 

distribution of manufacturing errors. Fuzzy approaches have been used in control and 

especially complex control problems. Researchers have also investigated application 

of fuzzy sets in modelling of the systems, which includes uncertainties in the 

parameters. In this respect parameters of a system such as mass, stiffness, damping, 

material property and geometry are considered as uncertain parameters in the equation 

of the motion of the system. For instance, fuzzy finite element approaches for 

vibration analysis of imprecisely defined systems have been developed to deal with 

uncertain parameters in the systems.    

 

Therefore this thesis deals with uncertainty in the parameters and behaviour of the 

system where the sources of uncertainties are due to lack of information about the 

system, imprecise parameters, difficulties in mathematical modelling and limited 

number of measurements. The proposed method in this thesis deals with uncertainty 

in behaviour of the system directly, rather than trying to associate uncertainty of 

response with parameters. This approach is different from other available techniques 

for dealing with uncertainty proposed by other researchers.  Current methods starts 

with uncertain system parameters, then these parameters are used in the equation of 

motion of the system to evaluate the system behaviour.   This thesis offers a novel 

method and approach in dealing with uncertainty.  The main advantage of the 

proposed method is that, it avoids complicated mathematical computations that exist 

in other uncertainty based methods. 

 

1.2. Structure of the Thesis 

 

 

Chapter 1, presents an overview of the thesis consist of an introduction to the 

proposed method and structure of the thesis. In the first section, an introduction in 

artificial intelligent, uncertainty in modelling and modelling of vibration behaviour of 

mechanical systems are presented.    
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Chapter 2, presents a literature survey of vibration modelling methods based on 

uncertainty approaches such as fuzzy sets, experimental modal analysis in model 

updating and intelligent systems, such as neural networks.  

 

Chapter 3, includes background of the theories that are used in this thesis consist of 

modal analysis, fuzzy logic and neural networks theories.  

 

Chapter 4, consists of a mathematical background of heuristically guessing the mode 

shapes or obtaining Mode Shape Forms (MSFs). MSFs are determined for mass-

spring, one-dimensional bodies, two-dimensional bodies and two-dimensional 

structures.  

 

Chapter 5, presents the proposed method in this thesis. The procedure of the method 

including constructing the guessed mode shapes by fuzzy sets, updating the fuzzy 

mode shape forms by experimental modal analysis and obtaining the final version of 

the mode shape by neural networks is presented. In this chapter, methods of 

calculating and reducing the errors are also introduced. 

 

Chapter 6, presents the experimental set up in performing the procedure in the 

proposed method that consists of experimental modal analysis, fuzzy sets and neural 

networks. 

 

Chapter 7, presents four experimental examples regarding vibration modelling of 

beams, plates and structures based on the proposed method. An example of reducing 

error is presented for one of the beam examples.  

 

Chapter 8, presents the discussions about the proposed method, a description of the 

procedure of the method, the advantages and the application.    

 

Chapter 9, presents the conclusion and future work of the thesis. The conclusion 

provides and overview of the proposed method and the achievements in this research.  
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Chapter 2 

 

 

 

 

 

Literature Review 

 

 

 

 

 

The research in this thesis addresses the modelling of mechanical systems, in 

particular, modelling the vibratory behaviour of systems using the uncertainty 

approach. The literature relevant to this research is presented in this chapter. The 

research refers to recent developments in the use of artificial intelligence (neural 

networks) and fuzzy reasoning in the modelling of mechanical systems. However 

some other relevant methods are also discussed in this chapter.  

 

Uncertainty methods such as probabilistic methods can be used where there is a lack 

of information about the system [2, 3]. In vibration modelling this information can be 

referred to parameters such as mass, stiffness, damping, material properties, geometry 

or behaviour of the system.  

 

Fuzzy sets are proved to be very efficient in dealing with systems that consist of 

uncertainty. This uncertainty can exist because of imprecisely defined characteristics 

of the system, inaccurate data and lack of information. In the dynamic analysis of 

structures, fuzzy sets are used to generalize the model of space structures [5, 6].  In 

these papers fuzzy sets are used to enhance the transient response modelling of space 

structures. In that respect, the finite element model of a structure is built for different 

system parameters. The parameters of the structures consist of material properties, 

geometrical parameters, initial nodal positions, velocities, accelerations, externally 
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applied forces and constraint parameters. Inputs of the fuzzy sets are defined based on 

these parameters. The behaviour of the structure such as deflection of a point on the 

structure, natural frequency and the mode shapes of all nodes of the model defines the 

output of the fuzzy system. These responses of the structure are obtained from the 

finite element model. The behaviour of the structure for undefined parameters can be 

obtained from the fuzzy model. In this method the fuzzy input is a set of structure 

parameter that is introduced above and the corresponding responses are fuzzy outputs. 

This method has been applied to the dynamic simulation of the next generation space 

telescope [7] and a tethered satellite system [8] and uncertainty analysis of composite 

materials [9]. In this method the output of the system is derived from a range of 

inputs, where the range of inputs corresponds to variation of the input parameters.  

 

Another approach where parameters are considered as fuzzy is the fuzzy finite 

element static analysis of the structures where an optimization based scheme used for 

the numerical solution of the linear fuzzy equations [10]. Static analysis of foundation 

of the structures has been studied based on this method, where elastic modulus and 

Poisson’s ratio of the soil are considered as uncertain parameters and introduced by 

fuzzy sets [11].  In this method the equation of the system is obtained by finite 

element methods. The parameters of the equation are considered as fuzzy parameters. 

Therefore the behaviour of the system is obtained for a range of variation of input 

parameters. The fuzzy finite element method has also been investigated in dynamic 

analysis of structure for the systems with imprecisely defined parameters [12]. In this 

method the accuracy of the method depends on the initial value of step length, where 

the step length gives the length for changing the parameters of the system for each 

finite element model calculation. The finite element model is obtained for each 

variation of the length. In another word, the system behaviour is obtained by a FE 

model for each variation of the parameters of the system. The smaller step length 

provides more accuracy but more computational processing. Another limitation in this 

method is that some numerical manipulations cannot directly be extended to fuzzy 

equations. This is because some mathematical operations for real numbers cannot be 

extended to fuzzy numbers. For example, fuzzy numbers do not perform numerical 

subtraction and division.  
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Fuzzy parameters used in FE analysis can also be used in analysis of behaviour of 

mathematical equation of the motion of a system that the mathematical equation 

includes imprecisely defined parameters. In this case, fuzzy parameters have been 

employed in analysis of unbalanced nonlinear rotor systems [13]. In this research, 

effects of fuzzy stiffness, mass and damping on the behaviour of the rotor system are 

studied. It is shown that uncertainties in this system will not only affect the speed and 

amplitude, but also the periodic characteristics of the system.   

 

Uncertainty analysis is also used for system identification, such as identification of 

material properties. For instant dependency between material properties and natural 

frequencies of plates are modelled by fuzzy sets [14]. In this respect, the material 

properties are obtained correspond to the natural frequencies of plates.  

 

Uncertain excitations are also very important in analysis of structures. As an example, 

analysis of plates subjected to uncertain excitations is addressed [15]. Uncertain load 

and initial conditions has been applied to the plate, and the behaviour of the system is 

studied. Mode shapes and behaviour of a point in the middle of the plate are studied. 

Maximum error (uncertainty) of 50% can be found in different levels of uncertain 

excitations relative to the deterministic model. Here, the deterministic model is the 

model that is obtained by analytical approaches or can be referred to the mathematical 

equation of motion of the system. However, in uncertainty approaches, the level of 

confidence is evaluated rather than calculating the error. The error value is presented 

here for uncertainty approaches to demonstrate the approximate error available in 

uncertainty analysis.  

 

Existence of uncertainty in problems generates errors in the results, of course this is 

not error in normal sense, it only describes the level of uncertainty. 50% “error” can 

be found in literature in the problems that deals with uncertainty [15]. This error is 

obtained relative to deterministic models. Deterministic models are also not exact 

because they include unavoidable uncertain parameters. Deterministic models are 

referred to the models that are obtained by analytical approaches. This includes the 

mathematical equation of motion of the mechanical system. Therefore the error 

relative to a realistic model or the real behaviour of the system can be more or less 

than 50%. Uncertainty analysis offers a tool to deal with the modelling of mechanical 
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systems possessing levels of uncertainty and gives a trend, mean, range and 

distribution characteristics of results [3].    

 

The models that are derived from various available methods (i.e. mathematical or FE 

methods) may carry errors. These errors (including parameter, discretisation and 

configuration errors) occur due to inappropriate modelling assumptions, uncertainties 

in material properties, insufficient modelling details, and incorrect boundary 

conditions (such as joints modelling), etc [16].  

 

Modal analysis is a powerful experimental approach in obtaining the vibration 

behaviour of mechanical systems. This method is used for modelling and also 

updating the vibratory models that has been derived from other methods (i.e. FE 

model). Model updating reduces the modelling errors. The thesis presented here also 

deals with modal analysis for model updating.  Structural modification using 

experimental modal analysis can be applied to update both the spatial model matrices 

(described by mass, stiffness and damping parameters) and modal model matrices 

(including natural frequencies, the corresponding mode shapes and modal damping 

factors) [1]. Model updating is used to expand the modal and spatial parameter 

matrices using different techniques and updating methods. Mode shape or eigenvector 

expansion is known as mode expansion. One of the recent techniques in model 

expansion and reduction can be referred to System equivalent reduction expansion 

process (SEREP). This method can be used to both expand and reduce the degree of 

freedom of the model of the system. The method relies on the finite element or 

analytical model of the system. In these methods experimental measured data is called 

master or active degree of freedoms (DOFs) that represent the incomplete model. 

Incomplete models referred to models that the measurements have not been performed 

the whole geometry of the body, or where it is not possible to measure the behaviour 

of all the positions of a system.  The unmeasured data is called inactive, deleted or 

slave DOF. The full set of data is obtained from the FE model where the number of 

DOF is the number of active DOF plus deleted DOF [1, 18].  However the model 

updating calculation is very costly in terms of computer time for models with large 

degrees of freedom. An example of costly and time consumption computation can be 

referred to modelling of a bridge, a high rise or an offshore structure [1].   
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The use of artificial neural network (ANN) is another area that the thesis studies.  

Identification of structural dynamics is investigated by researchers using artificial 

neural networks [19-22]. In these papers displacement, velocity and acceleration of an 

arbitrary point on a structure is stored as the input training data of neural network 

model. Hysteric forces of the equation of motion are obtained from experimental tests 

(e.g. using force gauges) and used as ANN output training data. The mass matrix 

elements are assumed to be known. A single degree of freedom equation of motion is 

used as the model of the system. Neural network output (hysteric force) is placed in 

this equation. In this stage the single degree of freedom equation of motion including 

the hysteric force from the neural network output is the model of the system. To test 

the result, an excitation is applied to the equation of the motion and also to the 

physical system. The response from the equation of motion is calculated numerically. 

The response from the physical system is also measured experimentally. These two 

results are compared and proved the accuracy of the method. This method has been 

applied to obtain the vibration behaviour of structure including nonlinearity as well as 

linear behaviour [23, 24].  Over 40% error can be found in neural network system 

identification methods [19-24]. This error is caused by the network, where there is a 

lack of training data or the network is predicting the behaviour out of the training data 

region. Fuzzy neural network has also been employed in the above problem where 

this approach increases the training speed of the network [25]. 

 

Although the uncertainty analysis of vibration behaviour of mechanical systems is an 

important issue, there is still little research in this area as the application of 

uncertainty analysis is applied mostly in particular applications such as modelling of 

civil structures [26]. Nevertheless, as we see from the literature, the research in this 

area includes some general weaknesses and limitations. Some of these weaknesses 

can be addressed as, mathematical complexity, time consuming and costly 

computations, dependency of the method to other methods (such as FE and 

mathematical approaches), large number of experimental measurements and 

specificity of  applications (lack of generalisation). The research carried out in this 

thesis attempts to address some of these weaknesses and limitation.   

 

In this thesis, the uncertainty is considered in the behaviour of structure rather than 

parameters of the system. Considering the uncertainty in parameters of the system and 
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the effect of this uncertainty in the behaviour of the system is investigated by 

researchers as it was mentioned above. In the proposed method in this thesis a 

heuristic guessing and the developed rules for guessing the mode shapes of structures 

are considered as uncertain behaviour of structures. The guessed mode shapes are 

referred to Mode Shape Forms (MSFs).  Fuzzy sets are used to deal with uncertainty 

in guessing the mode shapes. Fuzzy sets are used to construct the guessed mode 

shapes or MSFs. Then experimental modal analysis is used to update the uncertain 

model.  The updating is achieved by updating MSFs with experimental data. To 

achieve the final model, neural networks are used to fit MSF to experimental data in 

the last step. Obtaining the vibration behaviour a clamped-clamped beam is presented 

using the proposed method in this thesis by the author [27] and is presented in 

Appendix E.    

 

2.1. Summery 
 

A literature review in vibration modelling using uncertainty approaches, modal 

analysis and artificial intelligent was presented in this chapter. In this review, 

application of fuzzy sets in modelling of vibratory behaviour of mechanical systems 

was presented.  In these applications fuzzy sets deal with the uncertainty in the 

modelling approach. Modal analysis is introduced as an effective modelling approach 

that also can be used in model updating. Application of artificial neural networks and 

fuzzy neural networks are also reviewed in modelling of vibration behaviour of 

structures. The proposed method in this thesis was introduced briefly as an effective 

method relative to available methods in vibration modelling.   
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Chapter 3 

 

 

 

 

 

Background Theories 

 

 

 

 

 

This thesis is based on a vibration modelling method that deals with uncertainty in 

modelling using fuzzy reasoning, modal analysis and neural networks. In this respect, 

fuzzy sets deal with the uncertainty in vibratory behaviour of structures. Modal 

analysis is used to update the fuzzy model and a neural network is used to obtain the 

final version of the mode shapes of the structures. Therefore in this chapter, the theory 

of fuzzy logic, modal analysis and neural networks are discussed.   

In this research several software and experimental tools are used to implement each 

theory. Fuzzy toolbox of MATLAB software [28] is used for the fuzzy operation. 

Agilent VEE [29] software is used to obtain FRF and in the modal analysis procedure. 

Neural network toolbox of MATLAB software is used to obtain the final version of 

the mode shapes. The experimental procedure and application of the toolboxes is 

presented in Chapter 6. 

 

3.1. Fuzzy logic theory 

 

 

Fuzzy logic can be used when the exact value of a phenomenon is not available. 

Statements such as ‘speed is fast’ and ‘distance is long’ are some examples when 

there are no boundaries or exact values available. In another word, the statements are 
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uncertain. Fuzzy theory is one of the mathematical approaches to deal with uncertain 

problems where the parameters of the system are imprecise.   

 

The idea of fuzzy reasoning originates form human decision making process. ‘If … 

Then …’ is a statement that is used in human decision making. These ‘If … Then …’ 

statements are called rules in fuzzy theory. A fuzzy system consists of inputs, outputs 

and fuzzy rules. A particular example is presented to understand inputs, outputs and 

fuzzy rules of a fuzzy system. To illustrate a fuzzy decision system let us consider a 

driver’s decisions in controlling his/her vehicle. To control the speed of the 

automobile, consider following rules. ‘IF the distance is LONG and the speed is 

LOW, THEN increase gas’. In this rule, the distance is the first input, the speed is the 

second input and the gas is the output. The statement ‘IF the distance is LONG and 

the speed is LOW, THEN increase gas’, is the fuzzy rule. Fuzzy rules relate the inputs 

to outputs. After introducing the inputs, outputs and rules of the fuzzy system, then 

these input, output and rules have to be introduced in a mathematical way. The 

following sections give the mathematical background to fuzzy systems. 

 

3.1.1 Fuzzy Sets 

 

 

Fuzzy sets are the inputs and outputs in a fuzzy system. The fuzzy sets are introduced 

below.  

 

For a set x, a Fuzzy Subset A, refers to an interval [0, 1] that for each set of x there is a 

corresponding function that varies between 0 and 1. A Fuzzy subset can simply be 

called a Fuzzy set. Function A(x) is called membership function of subset A. 

 

An example of a fuzzy membership function is illustrated in Figure 3-1 where the 

vertical axis shows the subset A and the horizontal axis the set x.   
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Figure 3-1. A fuzzy membership function (A triangle function). 

 

3.1.2. Membership Functions 

 

 

There are various representations of fuzzy membership functions. Triangles and 

trapezoids functions are the most popular membership functions in engineering 

applications. These functions are linear [30].  The triangle membership function can 

be presented by equation (3-1). 
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Where point ( )α,c  is the high point and points ( )0,a  and ( )0,b  are the end points of 

the triangle. 

 

The trapezoid membership function can be presented by equation (3-2). 

 















≤≤








−

−

≤≤

≤≤








−

−

=

otherwise

bxdif
bd

bx

dxcif

cxaif
ac

ax

xB

0

)(

α

α

α

      (3-2) 



Sec. 3.1 Fuzzy Logic Theory 15 

 

Where points ( )α,c  and ( )α,d  are the high point and points ( )0,a  and ( )0,b  are the 

end points of the trapezoid. 

Other membership functions are available such as Gaussian, Cauchy function, Cauchy 

and Sigmoidal functions [30].  

 

3.1.3. Fuzzy inputs-outputs and fuzzy rules 
 

 

 

Fuzzy membership functions are used to construct the fuzzy inputs and outputs. 

Figure 3-2 illustrates an example of input or output membership functions. Triangle 

membership functions are used in this example. 1A , 2A , 3A , 4A , 5A  and 6A  are 6 

membership functions in Figure 3-2. Fuzzy membership functions are used to 

introduce fuzzy linguistic terms such as low, high, medium, small, etc.  In this respect, 

each fuzzy linguistic term is introduced by a membership function. For example, in 

Figure 3-2, 2A  can be LOW or any other fuzzy linguistic term. Each membership 

function includes a region of an input or output. For example the region of 3A  in 

Figure 3-2, includes 2x  to 4x . x is the input or output value.   

 

 

Figure 3-2. Membership functions. 

 

Fuzzy rules are used to relate the fuzzy inputs to the fuzzy outputs. These rules are 

defined based on ‘If … Then …’ statements. In each statement the inputs and output 

membership functions are placed as below in the rule statements. 

 

‘If input 1 is 1A , input 2 is 1B , K , Then output is 1Y ’ 
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where 1A  is an input 1 membership function,  1B  is an input 2 membership function 

and so on. 1Y  is an output membership function. Other rules are introduced with the 

same format. The following section describes the method of obtaining the output 

value from inputs and fuzzy rules.  

 

3.1.4. Obtaining the output from inputs 

 

 

The following example is presented to understand the method of obtaining the output 

from inputs in fuzzy theory. Assume the fuzzy system consist of two inputs as in 

Figure 3-3. In this example, the output has to be obtained from these two inputs. The 

input values are X1 and F1.  

 

 

Figure 3-3. Two inputs.  

 

The corresponding values of each input (X1 and F1) on the vertical axis is illustrated 

in Figure 3-4.  

 

Figure 3-4. Corresponding value of each input on the vertical axis. 
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The method of obtaining the output from inputs is presented below. Mamdani method 

[28] is used here to obtain the output from inputs.  This method is one of the most 

popular methods in engineering application that is used in MATLAB software [28]. 

Following procedure is used to obtain the output based on this method.      

First, all combinations of the membership functions from one input with the 

membership functions from the other input are considered as in Figure 3-5. In this 

figure membership functions, 1 and 2 of each input is considered with membership 

functions, 1 and 2 of the other input.  

 

 

 

Figure 3-5. All combinations of input values. 
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In the second stage, for each combination, the minimum value of input on the vertical 

axis is considered. For example for combination 1 in Figure 3-7, the minimum value 

is the value from input 1. This is illustrated in Figure 3-6.  

 

 

Figure 3-6.  The minimum value between membership function 2 in input 1 and 

membership function 2 in input 2 

 

In the last stage, an area of output membership function is obtained. In this respect, 

the corresponding output membership function of each combination is obtained from 

the fuzzy rules and Mamdani method. In this specific example the fuzzy rules are as 

below. 

 

Rule 1: If input 1 is membership function 2 and input 2 is membership function 2, 

then the output is the membership function 1.  

 

Rule 2: If input 1 is membership function 2 and input 2 is membership function 1, 

then the output is the membership function 2.  

 

Rule 3: If input 1 is membership function 1 and input 2 is membership function 2, 

then the output is the membership function 3.  

 

Rule 4: If input 1 is membership function 1 and input 2 is membership function 1, 

then the output is the membership function 4.  

 

These rules are illustrated in Figure 3-7. The output area is obtained in each rule based 

on Mamdani method. 
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Figure 3-7. Obtaining the output from inputs using mamdani method 

 

Based on Mamdani method the output area is obtained by adding all four areas in 

Figure 3-7. The combination of output areas for the particular input is presented in 

Figure 3-8.  

 

Figure 3-8. Output areas from the particular inputs. 
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In this stage, by applying a defuzzification method, the output magnitude can be 

derived from the area shown in Figure 3-8. 

 

3.1.5.  Defuzzification 

 

 

Defuzzification gives the output values from output areas. The output areas was 

explained in the previous section (Figure 3-8). Different defuzzification methods are 

available in literature such as centre of area, high-centre of area, max criterion, first of 

maxima and middle of maxima methods. Centre of area method is the most popular 

method and is used in this thesis. There are other names that are used for this method 

such as centre of gravity or centroid method. In this method the centre of area under 

the Fuzzy output curve is the output value. The centre of area can be obtained by 

equation (3-3). 
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Where C is the Fuzzy set and a and b are the interval of C. The centre of area can be 

presented by equation (3-4) if the area is discrete. 
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3.2. Theory of modal analysis 

 

 

Modal analysis is used in the procedure of the proposed method in this thesis. Agilent 

VEE [29] software is used to drive the frequency response functions (FRFs). The 

theory of obtaining FRF is described in the following section. 
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3.2.1. Fundamental review of theory of vibration  

 

 

In modal analysis multi degree of freedom systems are considered as several SDOF 

systems. SDOF vibration fundamentals are presented here.  

 

a) Single degree of freedom forced vibration equation of motion  

 

 

Force excitation equation of motion can be presented as [31-33]. 

 

)sin(0 tFkxxcxm ω=++ &&&        (3-5) 

 

In force excitation situation the system oscillates at the same frequency ω of the 

external force, but with a time or phase delay. The solution of the equation can be 

presented as below. 

 

)sin()( φω += tXtx  

 

Where X (amplitude) and φ  (phase angle) has to be determined. 

 

Another expression of harmonic force with complex notation can be expressed as  

 

tjj
eeFtF

ωα
0)( =  

 

Then the corresponding harmonic response to the above force would be as below. 

 

)()( φω += tj
Xetx  

By substituting this solution in equation (3-5), the equation of motion will be as 

below. 
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( ) tjjtjj
eeFtFeXecjmk

ωαωφωω 0

2 )( ==+−     (3-6) 

 

b) Frequency response function and Phase of harmonic vibration 

 

 

Frequency response function (FRF) is defined by dividing X (amplitude) by excitation 

force. From equation (3-6), FRF would be as below. 
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Where phase of harmonic vibration is 
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r is called frequency ratio and defined as 
n

r
ω

ω= . 

 

Damping ratio is a parameter that is used in vibration analysis and is defined as 

c
c

c
=ζ  or 

km

c

2
=ζ . 

 

In most metal structures the damping ratio is 0.05ζ <  or even less. 

 

Natural frequency of the single degree of freedom system can be introduced as 

m

k

n
=ω  . 

 

Damped natural frequency is defined by the following equation 21 ζωω −=
nd

. 
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3.2.2. Analytical modal analysis  

 

 

In this section, the theoretical modal analysis is described. A multi degree of freedom 

(MDOF) mass spring and damper system is considered to derive uncoupled equations 

of motion. These equations are used in obtaining the parameters required for modal 

analysis. 

 

a) Multi degree of freedom equation of motion 

 

The equation of motions of the mass-spring-damper system is [17, 34] 

 

[ ]{ } [ ]{ } [ ]{ } { }FxKxCxM
xxx

=++ &&&       (3-8) 

 

The mass, stiffness, and damping matrixes would be  
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Displacement vector { }x  and force vector { }F  are { }
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b) Undamped free vibration 

 

 

The transfer function will be introduced in the next section based on undamped 

vibration. Undamped equation of motion of a system is introduced here that is used in 

developing the multi degree of freedom transfer function. The Undamped equation of 

motion is [17, 34]. 

 

[ ]{ } [ ]{ } { }0=+ xKxM
xx

&&        (3-9) 

 

The general solution is { } { } ( )ψω += tXtx sin)( . Where { }X  and ψ  are constants and 

ω  is the natural frequency of the system. Derivative of the above equation gives the 

acceleration as below. 

 

{ } { } ( )ψωω +−= tXx sin2
&&  

 

Then equation (3-9) becomes 

 

[ ] [ ]( ){ } { }0)(2 =− txMK
xx

ω        (3-10) 

 

Then first matrix must be zero. If the first matrix is equal to zero then its determinant 

has to be zero or [ ] [ ] { }02 =−
xx

MK ω . 

 

c) MDOF undamped equation of motion in modal coordinate (space) 

 

 

The general solution of a MDOF undamped vibration has the following form. 
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, where mi ,,2,1 L=  is the natural frequency number. Therefore we 

have the following relationship.  
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Therefore the general solution of a MDOF undamped vibration has can be expressed 

as the following form. 
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Where { } { }T

msssi
P 11211 λλλ L= is the th

i  mode shape. 1q  is the modal 

displacement contributed by the first mode. Equation (3-11) is called the equation of 

motion in modal coordinate. 

 

 

d) Orthogonality of the modes relative to mass, stiffness and damping 

matrixes 

 

The principal of orthogonality is used in the next section to obtain the transfer 

function.  The modes are orthogonal to each other (Appendix A) therefore the 

following relations can be expressed. 
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In this case, the modal mass [ ]( )
q

M  and modal stiffness [ ]( )
q

K  matrixes are diagonal. 

The system might have proportional damping as below. 
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Where 1α  and 2α  are constants from the experiment. In this condition, the following 

relation is valid.  
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e) Equation of motions in modal space (uncoupled equations) 

 

 

By multiplying the modal matrixes to equation (3-8) and using equation (3-12), then 

the equation of motion in modal space will be as below. 
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The equations of motion in modal space are uncoupled or each mass in the system 

behaves like single degree of freedom mass-spring-damper system. For example, from 

the above equation for 1q , the equation of motion would be as below. 

 

0111111 =++ qkqcqm
qqq

&&&  

 

This equation has the same solution of a single degree of freedom system as below. 
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f) Transferring the modal coordinate to local coordinate 

 

 

After uncoupling and solving the equations of motion, then it is required to transfer 

the displacement in modal coordinate ( q ) to the displacement in local coordinate ( x ). 

For an m DOF system, the relationship between q  and x  can be expressed as below. 
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By multiplying both sides of the equation (3-14) to [ ]T

P  and substituting )(tx  by the 

following equation,  

{ } [ ]{ }qPtx =)(          (3-13) 

The equation of motion will have the following form.  
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Where { } [ ] { }FPR
T

=         (3-14) 

 

For the m DOF system, the equations of motion for the th
i  mode will have the 

following form.  
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As mentioned before these equations are uncoupled differential equations as the 

equations are introduced in modal coordinate. These equations can be solved like the 

SDOF equation of motion.  

 

For each mode k, the absolute value of displacement divided by force will be 

(displacement and force are expressed in modal coordinate) 
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Therefore matrix form of the equation in modal space is expressed as below. 
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Or can be expressed as below. 
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From equations (3-13), (3-14) and (3-15), the displacement in the local coordinate can 

be derived as below.  
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The above equation in indices form, have the following form. 
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Where { }
k

P  is the k
th

 eigenvector (of mode k).   

 

If the force applies to mass number one with force function )sin(1 t
F ω  then the force 

matrix will be as below. 
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g) Transfer function  

 

 

Transfer function can be obtained by dividing the displacement (response) by the 

excitation force. In the following section, the transfer function of the single degree of 

freedom is introduced first and then the transfer function of the multi degree of 

freedom is obtained. The equation of motion for a single degree of freedom system 

(SDOF) can be expressed as below. 
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The above equation in frequency domain has the following form if )sin( ϕω += tXx  
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By applying Laplace transform to the MDOF equation of motion then the equation 

will be as below. 

 

[ ] [ ] [ ]( ) ( ){ } ( ){ }sFsXKsCsM =++2  

The equation can be presented in the following form.  
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Where ( )[ ] ( ){ } ( ){ }sFsXsB = . 

 

Then the transfer function that is the division of displacement by excitation force 

would be as below. 
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( )[ ]sB  is called the characteristic equation. The solution of ( )[ ] 0=sB  gives the 

eigenvalues of the system.  For a mDOF system, the transfer function would be as 

below. 
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The elements of the matrix are as below. 
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Or in indices form, the h parameter would be 
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The transfer function matrix can be introduced as the following equation . 
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In this equation [ ] [ ]
kk

sR βα += . 

 

h) Mode shape matrix of MDOF systems 

 

 

From section (f) the displacement in local coordinates can be expressed as [34] 
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Where { }
k

P  is the eigenvector. 

 

From section (f) for mode k we have 
kkqkkqkkqk

Rqkqcqm =++ &&&  and the following 

equation.  
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From  (3-20) and (3-21), two transfer functions can be equal to each other as below. 

 

[ ]
{ } { } [ ]

∑∑
== ++

=
++

=
n

k nknkk

k

nknkk

n

k qk

T

kk

ss

R

ssm

PP
sH

1
2222

1 22

1
)(

ωωζωωζ
 

Or from Equation (3-16) the equation will have the following form.  
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The modal mass, for mode k, from equation (3-12) is as bellow. 
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P  is the eigenvector (mode shape) and,  
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In this equation { }
k

u  is the normalized mode shape ({ } { }
qkkk

mPu = ) or the mode 

shapes normalized relative to mass.  
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Matrix [ ]
k

R for a particular mode k can be expressed in the following form. 
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Column l  from matrix R is equal to column l  from matrix u as below. 
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This matrix can also be expressed as below.  
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For 
nkn

ωω = , from Equations (3-22) and (3-24) the following relation is valid. 
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The modal matrix of the system consists of mode shapes of the system is stated as 

below. 
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3.3. Theory of Neural Networks 

 

 

The theory of neural networks is presented in this section. Artificial neural network is 

a mathematical model of biological neural networks.  

In this section the mathematical presentation of this method is described. In neural 

network, there is a set of inputs and outputs data. The task of neural network includes 

simulation of these input-output data. In another word neural network is a tool to find 

mathematical relationship between sets of input-outputs. In fact neural network is a 

multi dimensional interpolation method. The mathematical approach is presented 

below. The inputs and outputs of the neural network can be related to each other by 

the following equation [30]: 
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In this equation, 
i

y  is the output, for mi ,,1 K= , and 
j

x  is the input for nj ,,1K= . 

In this case the system is a multi-input-multi-output system that each set of input and 

output data consist of n inputs and m outputs. Neural network task includes obtaining 

the coefficient 
ij

w . 
ij

w  called weight.  Function 
i

f  can be selected arbitrary. The 

most popular function in engineering applications is referred to sigmoid function and 

is expressed as below. 
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Neural networks consist of an input layer (containing input data), an output layer 

(containing output data) and middle layers that consist of the mathematical relation of 

input and output layers. Middle layers are called hidden layers. If there is only one 

hidden layer in the network then the network is called single layer neural network or 

perceptron. Neural network uses the available input-output data to obtain 
ij

w . The 
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method for deriving 
ij

w  from available input-output data is called learning algorithm. 

Different learning algorithms are available for multi layer and single layer networks. 

In this section delta rule algorithm is introduced for single layer and 

backpropagation algorithm for multi layer algorithm as the most popular methods in 

engineering applications.   The data used in obtaining the neural network parameters 

(weights) is called training data. Training data are the input-output data sets as below. 
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Where mi ,,1 K=  is the input numbers of each set, nj ,,1K=  is the output numbers 

of each set of data and Nq ,,1 K=  is the number of input-output sets of available 

data. 

 

a) The delta rule  

 

Obtaining the weights is the aim of learning algorithm. At the first stage, arbitrary 

values are considered for weights. The difference between available output data ( q

i
y ), 

also known as target, and output of the neural network determines the error. 

Minimizing this error is the algorithm task. The weight values are obtained by 

minimizing the error. The summation of the errors is introduced as [30]. 
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In this equation, q
E  is as below. 
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Where q

i
o  is the output of the neural network that is calculated by the weights. q

i
y  is 

the available output data from the real system. q

i
y  is called target.  Network task is to 

derive 
q

i
o  as close as 

q

i
y  by changing the weights values. i  is the number of outputs 



36 Background Theories  Chap. 3 

 

and q  is the number of training data set. As mentioned before, q

i
o  value can be 

calculated by the network weights by the following equation. 
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Where
j

x is the input for nj ,,1 K=  and j  is the number of inputs in each training 

data set. From equations (3-26) and (3-27), it can be seen that the error is a function of 

ij
w . To investigate the variation of error respect to 

ij
w , the gradient of E has to be 

calculated. This leads to obtaining the optimised value of weights. The following 

equation can be used to update the weight values. 
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In this equation 0η >  is a constant value and can be chosen arbitrary. η  is called 

learning rate. The derivative of error respect to 
ij

w  can be calculated as bellow. 
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From the above equation and equation (3-26): 
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As y is a constant data, then 0=
∂

∂
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y
 and from (3-27) 
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(3-29) 
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 as 
ij

w  is a constant 

value. The same relation is valid for mi ,,2 K= .Then equation (3-29) will be as 

below. 
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To simplify this equation the following equation can be introduced. 

 

∑
=

=
n

j

jij
xwS

0

 

 

By chain derivative respect to S in equation (3-30) will be in the following form. 
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By changing indices the equation can be presented in the following forms  
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Where  
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Then equation (3-31) will be in the following form.  
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Equations (3-28) and (3-32) can be used to update the weights.  

 

b) The backpropagation algorithm 

 

 

This learning algorithm is designed for multi layer networks. The principal of this 

method is based on the delta rule algorithm. The relation for a two layer network 

consists of a hidden layer and an output layer is presented below. In this method the 

weights can be updated by the following relations [30]. 
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Where 
ji

υ  is the weight between outputs 
q

j
o  and 

q

i
z , and 

q

i
z  is the net input of the 

output layer (the behaves like inputs in delta rule). q

i
z  is also the output of the hidden 

layer. Weights can relate q

i
z  to the inputs, q

k
x , by the following equation. 
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q

j
δ  in equation (3-33) can be presented as below. 
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The same equation in delta rule can be used to update the weights between the inputs 

and the hidden layer as below. 
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It has been investigated that the following equation can be used to update these 

weights [30]. 
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Equations (3-33) and (3-34) can be used to update the weights in this algorithm. After 

minimizing the weights by the presented method then the network is trained and is 

ready to use. 

 

3.3.1. Neural fuzzy systems 

 

 

Combination of fuzzy and neural networks is possible in two ways. The first method 

is referred to as fuzzy-neural systems and the second one to neural-fuzzy. In this 

project the application of neural fuzzy method is used that is a combination of fuzzy 
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systems and neural networks. In this method, the training data of a real system is 

available. A fuzzy system consists of membership functions and the rules, are built 

based on this training data. Then this fuzzy system can be used as a network model. 

The most popular method in engineering application that is used in MATLAB 

software is called adaptive neural network fuzzy inference systems [30]. The training 

algorithm is known as neuro-fuzzy inference systems or adaptive network fuzzy 

inference systems (ANFIS). This method is presented below. The available training 

data set can be assumed as below. 
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For a single input and single output training data, fuzzy rules can be presented as 

below. 
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Where 
i

A  are fuzzy membership functions and 
i

z  are real numbers and both are 

desired. 
i

z is called consequent parameters. Fuzzy membership functions 
i

A  can be 

a sigmoid function as below. 
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i
a  and 

i
b  are the parameter of the membership function 

i
A . These parameters are 

called premise parameters and are desired. The fuzzy output can be presented by the 

centre of gravity defuzzification method that mentioned before as below. 
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The training set can be used to learn the premise parameter (
i

a  and 
i

b ) and 

consequent parameters (
i

z ). The error can be calculated by the following equation. 
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The algorithm that the parameters can be calculated based on the error function is as 

below. 
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0η >  is the learning rate.  

 

3.4. Conclusion 

 

 

The theory of fuzzy logic, modal analysis and neural networks are presented in this 

chapter. Some of these theories have been used in the proposed method in this thesis 

such as in modal analysis mode shape extraction. Although MATLAB software is 

used to perform fuzzy logic and neural network procedure, it is very important to 

understand the theory of these concepts as it helps for understanding the proposed 

method.  
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Chapter 4 

 

 

 

 

 

Estimating Mode Shapes 

 

 

 

 

 

In this chapter, vibration behaviour or mode shapes of mechanical systems are 

investigated. The aim is to obtain a general rule of estimating an approximate mode 

shape for structures. In this section, first, the mode shapes of mass spring systems are 

studied. In this study the mode shapes of two and multi mass-spring systems are 

investigated.  Then the problem of one-dimensional elastic bodies is explored and 

again, the mode shapes are studied. In the end, the study is expanded to mode shapes of 

structures.  

 

This section presents a background of guessing the mode shapes of different 

mechanical systems. It is argued that guessing is possible heuristically, that is based on 

the experiments and observations of vibration behaviour of structures. Some rules are 

also developed in this chapter in order to guess the mode shapes. However there is no 

claim that guessing is always possible. In this respect, two methods are introduced for 

two cases where the guessing is not possible or the guess is wrong (These methods are 

explained in Chapter 5). The Mode Shape Form (MSF) term is proposed here to 

describe an approximate mode shape. This chapter studies mode shapes of various 

mechanical systems and attempt to derive rules relating to mode shapes.  Guessed mode 

shape, approximate mode shape and the mode shape form (MSF) are used in this thesis 

where all represent the same meaning. 
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4.1. Two Degrees of freedom mass-spring systems 

 

 

In this section the mode shapes of two-degree of freedom (2DOF) mass and spring 

systems are investigated. The aim is to show that the approximate mode shape or MSF 

of a two degree of freedom mass and spring system always obeys a rule, regardless of 

magnitudes of masses and springs stiffness. This rule describes the direction of motion 

of the masses for the first and the second natural frequency. 

 

 

Figure 4-1. Two degree of freedom mass and spring system. 

 

Figure 4-1 demonstrates a two-degree of freedom mass-spring system. The free body 

diagram of the system is presented in Figure 4-2.  

 

 

Figure 4-2. Free body diagram. 

 

If 12 xx > , from Figure 4-2, the Newton equation of motion can be presented as below. 
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If tXx ωsin=  then tXx ωω sin2−=&&  and by substituting these equations in (4-1) then 

the equation will have the following form. 
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The above equations can be expressed as below. 
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The procedure proposed here is different than classical solution of eigenvalues and 

eigenvectors.    In the method developed here, approximate mode shapes (in terms of 

direction of motion of the masses) are assumed and feasible frequencies satisfying 

mode shape equations are investigated.   

 

The objective is to obtain the MSFs from Equations (4-2) and (4-3). MSFs give the 

direction of motion of the masses relative to each other. There is one MSF for each 

natural frequency of the system. In obtaining MSFs, it is not required to know the 

magnitude of natural frequencies. The only information required for MSFs is, if the 

MSF belongs to the first natural frequency or the second natural frequency for 2DOF 

systems. For a 2DOF system there are two natural frequencies and two mode shapes.  

In eigenvector problems, displacement of one of masses can be considered to have the 

value of one and then the displacement of the other masses are calculated relative to 

this mass. Therefore it is possible to assume 11 =X . However in the process of 

obtaining MSFs presented in this chapter, it is sufficient to have 01 〉X . The same MSF 

have to be obtained from both Equation (4-2) and Equation (4-3) for each natural 

frequency. If the MSF from Equation (4-2) is different from Equation (4-3) then the 

MSF is not acceptable. The reason is, each natural frequency can only exhibit one mode 

shape.  
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Two symbols, ⊕→  and ←  are used to show the displacement of a mass in the 

positive direction and the negative direction respectively. In another word ⊕→X  and 

←X  are equivalent to 0〉X  and 0〈X  respectively.  

For 01 〉X : 

 

i) To have 0
1

2 〉
X

X
, or ⊕→1X  and ⊕→2X  for consistency   

From Equation (4-2) the natural frequency must be smaller than 
2

2

m

k
 and from 

Equation (4-3) smaller than
1

21

m

kk +
. 

 

ii) To have 0
1

2 〈
X

X
, or ⊕→1X  and ←2X  

From Equation (4-2) the natural frequency must be larger than 
2

2

m

k
 and from 

Equation (4-3) the natural frequency must be larger than 
1

21

m

kk +
. 

 

Now it is required to know which MSF is the first and which one is the second. In this 

respect, the MSF for the smallest natural frequency is the first MSF and the MSF for the 

larger natural frequency is the second MSF. Therefore the results can be expressed as 

below. 

 

• From section (i), the first MSF is 

⊕→1X  and ⊕→2X  

• From section (ii), the second MSF is 

⊕→1X  and ←2X  

 

Therefore the conclusion of this section is the rule in obtaining the MSFs for the first 

and the second natural frequency of 2DOF (degree of freedom) mass-spring systems as 

below. 
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The MSF for the first natural frequency (The first MSF):   the motion of two masses 

follow the same direction of motion. 

 

The MSF for the second natural frequency (The second MSF):  the displacements of 

the masses are in the opposite directions relative to each other.  

 

4.2. Three Degrees of freedom mass-spring system 

 

 

The objective of this section is to obtain MSF rules for the 3DOF mass-spring systems. 

The same procedure that applied to 2DOF system is applied here. A 3DOF mass-spring 

system is presented in Figure 4-3.  

 

Figure 4-3.  3DOF mass-spring system 

If 123 xxx >>  then the free body diagram will be 

 

 

Figure 4-4. 3DOF free body diagram of the mass-spring system 

The equation of motions can be obtained as 

 

( )
( ) ( )

( )







=−−

=−−−

=−−

33233

22122233

1111122

xmxxk

xmxxkxxk

xmxkxxk

&&

&&

&&

      (4-4) 
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If tXx ωsin11 =  then tXx ωω sin2

11 −=&&  and by substituting these equations in (4-4) 

then the equations can be expressed as below. 

( ) 01

2

11222 =+−−+ XmkkXk ω       (4-5) 

( ) 0122

2

22333 =++−−+ XkXmkkXk ω      (4-6) 

( ) 03

2

3323 =+−+ XmkXk ω        (4-7) 

 

From equation (4-5): 

2

2

112

1

2

k

mkk

X

X ω−+
=         (4-8) 

 

From equation (4-7): 

3

2

33

3

2

k

mk

X

X ω−
=         (4-9) 

 

Where ω , k and m are positive parameters.  Again the same procedure as described 

above for 2 mass system is followed.  The procedure starts with assuming a mode 

shape.  

 

If 11 =X . 

i) To have ⊕→1X  ⊕→2X  ⊕→3X  

From Equation (4-8) the natural frequency must be smaller than 
1

12

m

kk +
 and 

from Equation (4-9) the natural frequency must be smaller than 
3

3

m

k
. 

 

ii) To have ⊕→1X  ⊕→2X  ←3X  

From Equation (4-8) the natural frequency must be smaller than 
1

12

m

kk +
 and 

from Equation (4-9) the natural frequency must be larger than 
3

3

m

k
. 
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iii) To have ←1X  ⊕→2X  ⊕→3X  

From Equation (4-8) the natural frequency must be larger than 
1

12

m

kk +
 and from 

Equation (4-9) the natural frequency must be smaller than 
3

3

m

k
. 

 

iv) To have ⊕→1X  ←2X  ⊕→3X  

From Equation (4-8) the natural frequency must be larger than 
1

12

m

kk +
 and from 

Equation (4-9) the natural frequency must be larger than 
3

3

m

k
. 

 

Now the MSFs from sections (i), (ii), (iii) and (iv) has to be investigated in an order to 

understand which MSF is the first, second or third. As this is a 3DOF system then we 

have three MSFs. Each MSF is exhibited in a natural frequency.  From sections (i), (ii), 

(iii) and (iv), for each MSF there is an indication of magnitude of a natural frequency 

which shows if the natural frequency is smaller or larger than certain values (
1

12

m

kk +
 

and 
3

3

m

k
). The objective is, to locate the natural frequencies corresponding to these 

MSFs.   

 

From section (i) the natural frequency must be smaller than 
1

12

m

kk +
 and 

3

3

m

k
. 

  

From section (ii) the natural frequency must be smaller than 
1

12

m

kk +
 and larger than 

3

3

m

k
. 
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From section (iii) the natural frequency must be larger than 
1

12

m

kk +
 and smaller than 

3

3

m

k
. 

From section (iv) the natural frequency must be larger than 
1

12

m

kk +
 and larger than 

3

3

m

k
. 

 

By comparing the above statements, (i) is the smallest natural frequency, (ii) or (iii) is 

the middle natural frequency and (iv) is the largest natural frequency. In a particular 

system, either section (ii) or section (iii) is true. This depend on either 
3

3

1

12

m

k

m

kk
〉

+
 

or 
3

3

1

12

m

k

m

kk
〈

+
. If 

3

3

1

12

m

k

m

kk
〉

+
, then section (ii) is true and if 

3

3

1

12

m

k

m

kk
〈

+
, 

then section (iii) is true.  

 

The outcomes of this section are some rules for guessing the MSFs for a 3DOF mass-

spring system. These rules are as below.  

 

The MSF for the first natural frequency (The first MSF): the motion of the three 

masses follow the same direction of motion. 

 

The MSF for the second natural frequency (The second MSF): the motion of the two 

neighbour masses (neighbours, 1-2 or 2-3)  follow the same direction of motion and 

the displacements of the third mass is in the opposite directions relative to the other 

two masses.  

 

The MSF for the third natural frequency (The third MSF): the motion of masses 1 and 

3 follow the same direction and the displacements of mass2 (the middle mass) is in 

the opposite directions relative to 1 and 3. 
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The following rule is proposed to guess the n
th

 MSF of a m degree of freedom mass-

spring system. 

 

 

Therefore the rule for the n
th

 MSF of a m degree of freedom mass-spring system is, 

there are n-1 places on the MSF where the direction of motion of the masses 

changes.  

Based on this rule mode shapes for a four mass system can be proposed as follow. 

 

The first MSF:  

⊕→1X  ⊕→2X  ⊕→3X  ⊕→4X  

 

The second MSF: 

⊕→1X  ⊕→2X  ⊕→3X  ←4X  

or 

⊕→1X  ⊕→2X  ←3X  ←4X  

or 

⊕→1X  ←2X  ←3X  ←4X  

 

The third MSF: 

⊕→1X  ←2X  ⊕→3X  ⊕→4X  

or  

⊕→1X  ⊕→2X  ←3X  ⊕→4X  

or 

⊕→1X  ←2X  ←3X  ⊕→4X  
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The forth MSF: 

⊕→1X  ←2X  ⊕→3X  ←4X  

 

In order to use rules obtained above, these need to be further generalised by exploring 

various combination or nodal (mass) neighbourhood.  The study will enable an 

understanding of 2 dimensional structures to be built.   

 

Another 3DOF mass spring system is illustrated in Figure 4-5. In this example, mass 1 

and mass 3 are connected.  This structure has some similarity to a triangular element in 

finite element modelling where three nodes are connected to each other. 

 

Figure 4-5. A 3DOF mass-spring system 

 

The equations of motion of this system are as below. 

 

( ) 03 321

2 =−−− kXkXXmk ω  

( ) 02 32

2

1 =−−+− kXXmkkX ω  

( ) 02 3

2

12 =−+−− XmkkXkX ω  

 

These equations can also be expressed as below. 

 

2

2

2

1

4

2

ω

ω

mk

mk

X

X

−

−
=        

2

2

3

1

4

3

ω

ω

mk

mk

X

X

−

−
=        

( )
22

222

3

1

3

2

ω

ω

mkk

mkk

X

X

−

−−−
=  
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The MSFs can be obtained using the same approach as above. The only difference is, 

the MSFs are presented with the same configuration of masses as in Figure 4-5. These 

MSFs are presented below. 

 

i) 
⊕→

⊕→
⊕→

3

2

1
X

X
X    then 

m

k
〈2ω  

 

ii) 
⊕→

←
=

3

2

1 0
X

X
X    then 

m

k32 =ω  

 

iii) 
←

←
⊕→

3

2

1
X

X
X     then 

m

k

m

k 43 2 〈〈ω  

 

 

In section (ii) equal sign is used. The reason is that, this is the only condition that 

satisfies all three equations of motion. The rules are as below. 

 

The first MSF is the same MSF rule for mDOF system that stated above (three masses 

follow the same direction of motion). For the second and third MSFs we have: 

For this mass-spring system, it is not possible to have 2 changes in the direction of 

motion of the masses relative to each other. This can be seen by looking at the above 

MSFs. Therefore in the second and third MSFs rule, direction of motion of two masses 

are the same, and the third mass direction is in the opposite direction. In this case 

another rule is introduced to obtain the second and third MSFs. In a smaller natural 

frequency, the mass with the smaller number of spring connection has the opposite 

direction of the motion to the other masses (the rule for case (ii)).   In a larger natural 

frequency, the mass with the larger number of spring connection has the opposite 

direction of the motion to the other masses (the rule for case (iii)).    

 

In the above example, in the second natural frequency, the direction of motion of 

masses 2 and 3 are in opposite direction relative to each other. In the third natural 

frequency, the direction of motion of mass 1 is in opposite direction relative to 2 and 3. 

The reason is that, there are 3 of spring connections for mass1 but mass 2 and 3 has two 

spring connection each. Therefore mass number 1 with 3 spring connection has the 

opposite direction of motion relative to the masses 2 and 3 in a higher natural 
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frequency mode (the third natural frequency). This rule can be applied for the 

systems where the number of spring connections for each mass is different with equal 

mass and stiffness values. 

 

4.3. 4DOF mass-spring system 
 

 

The objective in this section is to obtain the MSF for mass-spring systems with more 

than one spring connection for each mass. A 4DOF mass-spring system is illustrated in 

Figure 4-6. 

 

Figure 4-6. A 4DOF mass-spring system 

 

The MSFs are presented with the same configuration of masses as in Figure 4-6. Using 

the same approach for the 3DOF mass-spring system in Figure 4-5 then the MSFs can 

be expressed as below. 

 

i) 
⊕→⊕→

⊕→⊕→

43

21

XX

XX
    then 

m

k22 〈ω  

 

ii) 
←←

⊕→⊕→

43

21

XX

XX
   then 

m

k

m

k

2

52 2 〈〈ω  

 

iii) 
⊕→←

⊕→←

43

21

XX

XX
    then 

( )
m

k

m

k 32

2

5 2 +
〈〈ω  

 

iv) 
←⊕→

⊕→←

43

21

XX

XX
   then 

( )
m

k322 +
〉ω   
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Therefore the MSF rules for the above system can be expressed as below. The rule for 

the first MSF is the same rule as before where all the masses follow the same direction 

of motion. In order to understand the motion, the system is seen as collection of 2 mass 

systems. In this respect, the directions of motion of neighbour masses are the subject of 

interest, rather than motion of individual masses. For example, in the MSF in section 

(iii), the direction of motion of neighbour masses 1 and 3 is in opposite direction 

relative to neighbour masses 2 and 4. Therefore there is only one change in the 

direction of motion of the masses. The rule for this example is as below. There is less 

change in direction of motion of the neighbour masses in lower natural frequencies and 

more change in direction of motion of the masses in higher natural frequencies.  In this 

example, zero change in direction of motion of masses in the first natural frequency, 

one change in the second and third natural frequency and 4 changes in the forth natural 

frequency.  

 

For the mass arrangement in Figure 4-6, it is not possible to have 3 changes in the 

direction of motion of the masses. Therefore we do not have this option in the above 

MSFs. In this example the second and the third MSFs obey the same rule. In another 

word, no rule is obtained to identify the difference between the second and the third 

MSFs in this example.  

 

4.4. One-dimensional elastic bodies 

 

 

In this section the objective is to obtain a general rule for MSFs of one-dimensional 

elastic bodies in lateral vibration.  A clamped-free beam with two degrees of freedom 

(D1 and D2) is considered in lateral vibration. The following approach is used to obtain 

the first and second MSFs in this example. The beam is illustrated in Figure 4-7.  

 

The equation of motion of the beam is given by [35]. The elemental mass and stiffness 

matrices are presented in the Appendix C. 
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Figure 4-7. A 2DOF clamped-free beam.  

The structural stiffness matrix can be obtained by the following equation. 

 

21

1

KKKS

en

i

i
+==∑

=

 

 

Where S is the structural stiffness matrix, 
e

n  is the number of the elements and 
i

K  is 

the stiffness matrix of the elements of the structure. The stiffness matrix can be 

expressed by the following relation.  

 

















−

−=

















−

−+

















=

660

6120

000

660

660

000

000

060

000

aaaS  

 

In this relation 
3

2

L

EI
a = . The structural mass matrix can be obtained by the following 

equation. 

 

21

1

MMMM

e
n

i

i
+==∑

=

 

Where M is the structural mass matrix, 
e

n  is the number of the elements and 
i

M  is the 

mass matrix of the elements of the structure. This equation can be obtained as below. 
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















=

















+

















=

156540

543120

000

156540

541560

000

000

01560

000

bbbM  

 

In this relation 
420

LA
b

r
ρ

= .  

 

Free vibration equation of motion of the structure can be expressed as below. 

 

( ) 02 =Φ−
ii

MS ω  

 

Where ni ,,2,1 K= , and n is the number of degrees of freedom. 
i

Φ  is a vector of nodal 

amplitude or the mode shape for the th
i mode of vibration. 

i
ω  is the angular frequency 

of mode i. The equation of motion can be obtained by substituting the mass and 

stiffness matrices in this equation as below. 

 

















=
















Φ

Φ

Φ

































−

















−

−

0

0

0

156540

543120

000

660

6120

000

3

2

1

2

i
ba ω  

Then 

















=
















Φ

Φ

Φ

















−−−

−−−

0

0

0

15665460

546312120

000

3

2

1

22

22

ii

ii

baba

baba

ωω

ωω  

 

The equations of motion can be derived from the above matrix as below. 

 

( ) ( ) 054631212 3

2

2

2 =Φ+−Φ−
ii

baba ωω      (4-10) 

 

Then  

2

2

3

2

31212

546

i

i

ba

ba

ω

ω

−

+
=

Φ

Φ
        (4-11) 
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And 

( ) ( ) 01566546 3

2

2

2 =Φ−+Φ−−
ii

baba ωω  

Then 

2

2

3

2

546

1566

i

i

ba

ba

ω

ω

+

−
=

Φ

Φ
        (4-12) 

 

2

2

3

2

31212

546

i

i

ba

ba

ω

ω

−

+
=

Φ

Φ
 and if 12 +=Φ then: 

 

i) To have ⊕→Φ 2    ⊕→Φ3  then from Equations (4-11) and (4-12), 

b

a

b

a

i

26312

122 =〈ω . 

This is the first MSF of the beam. In this MSF all the points on beam (in this example, 2 

points on the beam) follow the same direction of motion. This is a general rule of MSF 

for beams as proved above. This MSF is valid for any value of the parameters of the 

system. These parameters consist of E, I, 
r

A , L and ρ . This result is illustrated in 

Figure 4-8.  

 

 

Figure 4-8. The first mode shape form. 

 

The conclusion of this section for the first MSF is as below. 

 

All the points on the body follow the same direction of motion in the first MSF.  

 

This rule for the first MSF is the same as the rule for mass spring systems.  
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ii) To have ⊕→Φ 2   ←Φ3   then from equations (4-11) and (4-12), 

b

a

b

a

i

26312

122 =〉ω .  

This is the second MSF of the beam. In this MSF, the direction of motion of point 2 on 

the beam is opposite of direction of motion of point 3 (Figure 4-9). This is a general 

rule of the second MSF for any value of the beam parameter such as a and b. This result 

is illustrated in Figure 4-9.  

 

 

Figure 4-9. The second mode shape form. 

 

 

The rule for the second MSF of a beam is as below. 

  

The displacement of the nodes on the beam is in the opposite direction of motion 

relative to each other. 

 

This rule for the second MSF is the similar to the rule for mass spring systems.  

 

In describing the mode shape of this continuous system its boundary conditions need to 

be stated.   In this case the beam is clamped and at this point, the deflection as well as 

its slope are zero.  

 

By looking at the similarity between the mass-spring and beam problems then the 

following rule is proposed to guess the n
th

 MSF of a m degree of freedom beam. 

 

There are n-1 places on the MSF where the direction of motion of the nodes on the 

beam changes.   
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4.5. Two-dimensional elastic bodies 

 

 

In this section the objective is to obtain a general rule for MSFs of two-dimensional 

elastic bodies in lateral vibration.  The equation of motion of the plate in Figure 4-10 is 

as below [38-40].   

( ) ( ) ( ) ( )
D

yxq

y

yxW

yx

yxW

x

yxW ,,,
2

,
4

4

22

4

4

4

=
∂

∂
+

∂∂

∂
+

∂

∂
 

 

Figure 4-10. A rectangular plate and an element of the plate 

 

Where ( )yxq ,  is the applied static force and W  is the displacement (deflection) of the 

plate. 

Free vibration equation of motion of the plate is as below. 

 

( ) ( ) ( ) ( )
0

,,,,,,
2

,,
2

4

4

4

22

4

4

4

=
∂

∂
+

∂

∂
+

∂∂

∂
+

∂

∂

t

tyxW

Dy

tyxW

yx

tyxW

x

tyxW ρ
  (4-13) 
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Where the last term is the inertial force. 

 

Free vibration of rectangular plates with simple support along all edges is given as 

below (Appendix B). 

 

( ) ( ) ( )πξπηηξ mnAW
nm

sinsin, ,=  

 

Where 
nm

A ,  is the amplitude coefficient and m and n are positive integers. In this 

equation for 1=m , 1=n , 10 ≤≤ ξ  and 10 ≤≤ η , then ( ) 0, ≥ηξW . Therefore in the 

first MSF, the displacement of all the points on the plate is in the positive direction. In 

another word all points follow the same direction of motion (same rule as the beam and 

mass-spring examples).  The first MSF of a rectangular plate with simple support along 

all edges is illustrated in Figure 4-11. 

 

 

 

Figure 4-11. MSFs of a simple support plate along all edges. 

 

m and n identify the number of waves in a particular mode shape. m and n can be 

obtained from the following equation [38].  

 

( ) ( )
2

2
22

Φ
+=

π
πλ

n
m  

 



Sec. 4.6 Structural Frame Vibrations 61 

 

where 
a

b
=Φ . λ  is obtained by giving various m and n values to the above equation. m 

and n represent the number of waves in x and y directions respectively. Smaller value of 

λ  for a particular m and n values corresponds to the lower natural frequency. Therefore 

value of λ  identifies that a mode shape with a particular m and n is a higher or lower 

mode.  

 

Therefore a rule is introduced for plate mode shapes as below. 

 

The rule for the n
th

 MSF is, there are n-1 places on the MSF where the direction of 

motion of the particles changes.   

 

However this rule may not be correct in all cases but still can be applied because the 

MSF will be corrected by the method of correcting fuzzy MSFs that is presented in 

chapter 5.  

 

In describing the mode shape of this continuous system its boundary conditions need to 

be stated.   In this case the plate is simply supported along all edges and the deflection 

is zero. 

 

4.6.  Structural Frame Vibrations  

 

 

In this section the objective is to obtain a general rule for MSFs of the structural lateral 

vibration.  The following approach is used to obtain the first and second MSFs of a 3-

beam structure (Figure 4-12) with 3 degrees of freedom (D1, D2 and D3). 

Then the system of equation can be expressed as below (Appendix C). 

 

( )[ ] ( )[ ] 034422 92

22

2

2

62

2

1

22

2

2

1

2 =Φ++Φ+−+ cLaLcLcLaLaL
ii

ωω  (4-14) 

( )[ ] ( )[ ] 02231566 93

2

37322

2

322 =Φ−+Φ+−+ LcLaccdaab
ii

ωω   (4-15) 



62 Estimating Mode Shapes Chap. 4 

 

( )[ ] ( )[ ] ( )[ ] 044222233 93

2

2

22

3

2

2

2

73

2

362

22

2

2 =Φ+−++Φ−+Φ+ cLcLaLaLLcLacLaL
iii

ωωω

Where 
3

2

L

EI
a = , 

420

LA
c

r
ρ

=  and 70

420

6 ==
AL

LA

d

r

ρ

ρ

. 

 

Figure 4-12. A 3-beam structure. 

 

From Equation (4-14), the following relation can be obtained. 
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From Equation (4-15), the following equation can be obtained. 

 

( )
( )322

2

322

3

2

3

9

7

1566

223

ccdaab

LcLa

i

i

+−+

+−
=

Φ

Φ

ω

ω
    (4-17) 

 

From Equations (4-16) and (4-17), the MSFs of the system can be obtained as below. 

If 19 −=Φ  then:  
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i) For ⊕→Φ 6    ⊕→Φ 7   ←Φ9  then from Equation (4-16), 
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It is important to be noted that parameters of the structure are all grater than zero or 

0,,,,, 321321 fcccaaa . The results are illustrated in Figure 4-13. 

 

Figure 4-13. The first MSF for the first natural frequency. 

 

Therefore the first MSF of the above system for the first natural frequency is as below. 

All the points of the structure follow the same direction (locally) of motion. This rule 

also can be expressed for each beam individually as below. 

 

In the first MSF all the points of each beam, follow the same direction of motion. 

 

In order to continue the procedure to find the second MSF, we need to know which one 

of 
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+
 is larger or smaller than the other ones. This 

gives the second region of frequency for the second mode shape. In this case the 
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objective is to obtain the MSF for the second region of 2

i
ω , where 2

i
ω  is greater than 

one of these three expressions (
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 and 
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+
) and smaller than 

the other two. These regions of 2

i
ω  is similar to the 3DOF mass-spring problem where 

we separated each frequency region.  

For example assume 
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, in this case the second 

MSF can be obtained as below.  

 

ii) For ⊕→Φ6    ←Φ7   ⊕→Φ9  then from Equation (4-16) 
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The results are illustrated in Figure 4-14. This is the second MSF of this system.   In 

this MSF we have: 

a) The elements of a beam follow the same direction of motion. For example 

beams 1 and 3 in Figure 4-14.  

Or  

b) The displacement of the points of a part of the beam is in the same direction of 

motion and the displacement of the other part of the body is in the opposite 

direction of motion. For example, beam 2 in Figure 4-14. 

 

The conclusion of this section is as below. In the first MSF all points of each beam 

follow the same direction of motion. This MSF for each beam is the same MSF for one-

dimensional elastic bodies the explained in section 4.3.   

The second natural frequency of a structure depends on the relative value of the 

parameters (such as E, I, 
r

A , L and ρ ) of the beams in the structure. In this example 

parameters are 
( )21

21

2 cc

aa

+

+
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+
. In the above example by 

knowing which one of the parameters are larger or smaller than the other, then the 

second MSF can be obtained. Sometimes these relative values can be found by looking 
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at the structure and observing it. For example the cross section area of a beam 1 ( 1r
A ) is 

larger than the cross section area of a beam 2 ( 2r
A ). This relative value can be found by 

looking at the structure. In the second MSF, displacement of the particles of each beam 

is either in the same direction of motion (beam 1 and 3 in this example), or is in two 

opposite direction of motion (beam 2). 

 

 

Figure 4-14. The second MSF of the structure. 

 

 

4.7.  Conclusion  
 

 

A general rule is introduced in guessing the MSFs of mechanical systems as below.   

 

The rule for the n
th

 MSF of a mechanical system is, there are n-1 places on the MSF 

where the directions of motion of the masses or the direction of deflections on an 

elastic body change. 

 

The mass-spring system rule in this thesis is not used in the following chapters in 

practical and experimental examples. However as we see it helps for better 

understanding of the mode shape rules for continuous systems. This is because each 

continuous system can be modelled as a discrete (mass-spring) system and therefore the 
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rules of mass-spring systems help in obtaining and understanding the rules for 

continuous systems.  

 

As discussed above there are additional rules for each particular system. These rules are 

summarized below. 

 

• Additional rule for 2 dimensional mass-spring with equal mass and stiffness 

distribution:  

A mass with less number of spring connections has the opposite direction of motion 

relative to other masses in the lower natural frequency (Figure 4-15). 

 

Figure 4-15. Two dimensional three DOF mass-spring system 

 

 

 

 

• Additional rule for Elastic bodies: 

Typical boundary conditions rules that is used for the mode shapes of elastic bodies can 

be used here for MSFs. 

 

• Additional rule for structures: 

For n
th

 MSF of 2 dimensional structures, there are maximum n-1 places for each beam 

where the direction of motion of the particles on the beam changes (Figure 4-16). 
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Figure 4-16. MSFs for 2 dimensional structures. 

 

• Additional rule for 2D mass-spring systems and 2D bodies: 

Sometimes it is not possible to have n-1 places where the direction of masses changes 

because of configuration of the system. In this case n-2 or n number is exhibited (Figure 

4-17) 

 

Figure 4-17. Two dimensional four degree of freedom mass-spring system. 

 

Note: 

The MSF rules may not be true for any situation. In this case the rule is still used. In 

this respect the MSF can be corrected by the method that will be discussed in Chapter 5.  

  

The Forth MSF 
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Chapter 5 

 

 

 

 

 

Modal Analysis Method Based on Fuzzy 

Sets 

 

 

 

 

 

In this section, the proposed method for describing modal shapes of a general 

vibrating system by using fuzzy linguistics will be described.  The details of the 

method will appear under different headings. The method attempts to identify the 

mode shapes of a general structure subjected to excitations. The main premise of the 

method is the assumptions that a number of modes, especially those at lower 

frequencies, could be guessed (in that respect the method resembles, early energy 

methods).  The rational of such proposition lies in the fact that these initial guessed 

shapes can be updated by observations.  The advantage of the method over the 

standard modal analysis is that it provides a “head start” in constructing the mode 

geometry and also provides a method which deals with limited sampling points and 

uncertainty, inherently present in experimental data. 

The main steps of the method are as follows: 

 

• Guessing the mode shapes of the system based on engineer experience, 

common sense and the mode shape rules in chapter 4 and constructing the 

guessed mode shapes using fuzzy membership functions. 

• Modification of the fuzzy mode shapes using experimental modal analysis 
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• Obtaining the mode shape curves from updated fuzzy mode shapes using 

fuzzy neural network. 

• Obtaining the error and creating a mode shape where, a) the guess mode shape 

is wrong, and where b) there is no guess available. 

 

5.1. Constructing the mode shape forms using fuzzy 

membership functions 

 

 

The guessed mode shape is called MSF (Mode Shape Form). Guessing the mode 

shapes was presented in chapter 4. These mode shapes are approximate mode shapes. 

Corresponding MSFs can be constructed using fuzzy linguistic terms such as Large, 

Medium and zero. The construction of MSFs based on fuzzy systems is introduced 

below. 

 

Fuzzy inputs are divided to geometry and a frequency inputs. Geometry inputs are 

used to define the geometry of the system. One membership function is introduced for 

each section of the system where a deflection has to be referred to it. In another word 

if n membership functions are defined for a one-dimensional elastic body then the 

body deflections can be introduced by n number of deflection along the length of the 

body. In some cases other inputs may be introduced. For example, if a structure 

consists of several beams, then an input is introduced to identify each beam in the 

structure. Then the geometry input describes the geometry of each beam. Frequency 

inputs identify the natural frequency of the system. The natural frequencies are 

determined experimentally from FRF signals.  

 

A sample of position membership functions is presented in Figure 5-1. In this figure 

each membership function belongs to a position on the body. For example the 

membership function between 0 and 0.05 (the first triangle) belongs to the 0 and 0.05 

length of the body or the first mass in a mass-spring system.  For two and three-

dimensional bodies two and three position membership functions are presented 

respectively. In this membership function the lengths of the bodies are normalized to 

one. 
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Figure 5-1. Geometry input fuzzy membership function. 

 

The other input is natural frequencies. The magnitudes of the natural frequencies are 

obtained by experimental modal analysis. The sample of natural frequency 

membership functions is presented in Figure 5-2. In this figure the natural frequencies 

of interest are up to 4
th

 natural frequency. The frequency magnitudes can be 

normalized to one as in this figure. 

 

 

Figure 5-2. Natural frequency membership functions. 

 

Fuzzy output membership function includes deflection of an elastic body or 

displacement of masses. A sample of output membership function is presented in 

Figure 5-3. In this figure, deflections of an elastic body or displacement of masses are 

presented by fuzzy linguistic terms. These terms include NL, NM, Z, PM, PL. In this 

respect, Z is Zero, PM is Positive Medium, PL is Positive Large, NM is Negative 

Medium and NL is Negative Large. 
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Figure 5-3. Output membership functions. 

 

Fuzzy rules introduce the relation between inputs and the output. For each natural 

frequency the fuzzy rules describe the deflection of the mechanical system for the 

geometry of the system. For instance, assume that the second MSF of a clamped-

clamped beam is guessed as in Figure 5-4. This MSF can be guessed based on the 

rules in chapter 4 or can be guessed by engineering experience.   

 

Figure 5-4. A MSF of a clamped-clamped beam. 

Then fuzzy rules have to be introduced to construct this MSF. The rules are 

introduced as below. The first input (X) is the position, the second input (F) is the 

natural frequency and the output (Y) is the deflection. 

 

Rule 1: If X=X1 and F=2, then Y=Zero (Z). 

Rule 2: If X=X2 and F=2, then Y=Positive Medium (PM). 

Rule 3: If X=X3 and F=2, then Y=Positive Large (PL). 

Rule 4: If X=X4 and F=2, then Y=Positive Medium (PM). 

Rule 5: If X=X5 and F=2, then Y=Zero (Z). 

Rule 6: If X=X6 and F=2, then Y=Negative Medium (NM). 

Rule 7: If X=X7 and F=2, then Y=Negative Large (NL). 
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Rule 8: If X=X8 and F=2, then Y=Negative Medium (NM). 

Rule 9: If X=X9 and F=2, then Y=Zero (Z). 

Figure 5-5 illustrates the fuzzy rules. 

 

Figure 5-5. Fuzzy rules to define a MSF. 

 

In this figure Z is Zero, PM is Positive Medium, PL is Positive Large, NM is Negative 

Medium and NL is Negative Large. Negative or positive appear if the deflection is 

less than or more than zero respectively.  

 

Introducing the deflection magnitudes by fuzzy linguistic terms is arbitrary. In this 

respect, any fuzzy term that demonstrates an approximate mode shape can be used. 

For example, other terms can be added to generate the MSF in Figure 5-5 such as NS 

and PS (negative small and positive small). In this case, these terms can introduce 

more information about the deflection between Medium (M) and zero (Z) magnitudes. 

Some of the membership functions can be deleted too. For example Medium (NM and 

PM) term can be cancelled in the output. The only difference that happens by 

introducing more or less membership functions is, to have more or less information 

about deflections. The most important membership functions are the PL and NL 

membership functions, which obtain the maximum and minimums of the mode 

shapes. It is necessary to have PL and NL membership functions. Also, the 

membership functions that represent the boundaries of the system are necessary. For 

example, in Figure 5-5, it is necessary to have two Z for the boundaries and PL and 

NL to illustrate the outline of the mode shape. The mode shape with only necessary 

deflection terms is illustrated in Figure 5-6.  
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Figure 5-6. Necessary fuzzy deflections. 

 

The membership functions presented above and the complete rules for the whole input 

and output, creates the Mode Shape Forms (MSFs) that are presented in Figure 5-7.  

 

 

Figure 5-7.  A sample of MSFs from the sample fuzzy membership functions and the 

corresponding rules. 

  

From Figure 5-7 the MSFs can be extracted by selecting the desired natural frequency 

from input 2 for all the point from input one (position).   For example, the second 

MSF of the above example is presented in Figure 5-8.  

 

 

NL 
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Figure 5-8. Fuzzy second MSF, obtained form fuzzy output membership functions. 

 

The fuzzy MSF depends on the number of the membership functions and the type of 

function that is used for membership. The fuzzy MSF in Figure 5-8 is the second MSF 

of a clamped-clamped beam. This MSF is obtained using various position 

membership functions. The result of these fuzzy MSFs is presented to be compared 

with the fuzzy MSF in Figure 5-8. The results are illustrated in Figure 5-9. 

 

Figure 5-9. Constructing a fuzzy MSF using various position membership functions. 

The vertical axis is the deflection and the horizontal axis is position on the beam. 



Sec. 5.1 Constructing the Mode Shape Forms  75 

 

 

The number of position membership functions of the fuzzy MSF in Figure 5-8 is 21 

membership functions and triangle membership functions are used in this example. 

 

The fuzzy MSFs obtained in this section have to be updated. This is because MSF 

represent an initial guess and need to be related to experimental results and updated 

accordingly.  Experimental modal analysis is used to update these MSFs that is 

explained in the next section. 

 

5.2.  Updating the fuzzy mode shape forms using experimental 

modal analysis   

 

 

The objective of updating, is to find an interpolated curve between the measured data, 

which is described only by few points, and fuzzy representation of the mode shape, 

which is described by a large number of points.  This updates the initial “guess” fuzzy 

mode profile or fuzzy MSFs. 

 

Experimental modal analysis is employed to model the system. The procedure of the 

modal analysis for a multi degree of freedom modelling requires the use of 

instrumented hammer, accelerometer, data acquisition card, and modal analysis 

software. The outcome of modal analysis is a discrete model. In this practice the 

degree of freedom of the model depends on the number of points at which vibration is 

measured. The experimental procedure is explained for a beam as an example (Figure 

5-10). For example, in order to find a four-degree of freedom model of the beam, the 

beam is divided to 5 equal segments (Figure 5-10).  An accelerometer is attached to 

the beam to receive the oscillation signals. An instrumented hammer is used to excite 

the beam. The accelerometer is placed in each of four selected positions. The 

instrumented hammer is used to excite the beam at each of the four selected points. 

Fast Fourier transforms of hammer excitation and accelerometer signals are obtained. 

FRF values are obtained by dividing the accelerometer signals by the corresponding 

signals from the hammer.  
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Figure 5-10. Experimental modal analysis using an instrumented hammer. 

 

An example of an element of a FRF matrix is illustrated in Figure 5-11. In this figure 

there are 6 peaks regarding 6 different natural frequencies. In this figure 
i

h  

6,,1 K=i , is the FRF magnitude corresponding to each natural frequency.  h  is the 

peak value on the vertical axis. In this example, 11h  shows that the hammer 

excitation at position 1 and the accelerometer is located at position 1.   

 

 

Figure 5-11. An element of a FRF matrix. 

 

Peak-picking method is used to extract the mode shapes from FRF results. Second 

mode shape of a four-degree of freedom clamped-clamped beam is obtained here to 

explain the procedure of extracting the mode shapes from FRFs. To determine this 

mode shape, 211h , 212h , 213h  and 214h  are obtained from 4 different FRF curves. 

In another word corresponding h  value for 2nn
ωω =  is obtained from 4 different 

FRF curves (each FRF curve is an element of FRF matrix). Eigenvectors can be 
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obtained using the following relation. The following equation is valid for 
nkn

ωω =  

and from Chapter 3, Equations (3-25). 
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Where 
nkn

ωω =  is the natural frequency, u is the deflection and 
k

ζ  can be obtained 

as below.  
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Figure 5-12 illustrates the method that is used to extract the modal parameters (u  and 

k
ζ ) from FRF peaks.  

 

Figure 5-12. Extracting modal parameters from FRF peaks. 

Figure 5-13 illustrates the method of extracting the modal parameters from the first 

peak of the FRF curve in Figure 5-11. 
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Figure 5-13. Extracting the modal parameters from FRF peak for k=1 and 11h . 

 

The parameters from Figure 5-13 can be substituted in the above equation as below. 
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By selecting the other peaks of the FRF result in Figure 5-11, 11u , 12u , 13u  and 14u  

can be obtained. By changing the location of the accelerometer and the hammer 

excitation to other possible positions, remaining of the modal parameters can be 

extracted. This mode shape consists of 4 elements. The corresponding eigenvector of 

this mode shape is as below. 
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In this relation, k is the mode number. In this example k=2 that indicates the second 

natural frequency ( 2n
ω ). 1u , 2u , 3u  and 4u  are the deflection of the corresponding 

points on the beam (Figure 5-10). This mode shape is illustrated in Figure 5-14. Other 

points of the mode shape are derived by linear interpolation of those four pints (Figure 

5-14). 

 

Figure 5-14. A mode shape example of a four-degree of freedom clamped-clamped 

beam. 

 

Four points in the fuzzy data set are simply replaced by the corresponding four points 

from the experimental set. In this example the deflection in the fuzzy MSF are simply 

replaced by the corresponding 1u , 2u , 3u  and 4u  values. By doing this, a “spiked” 

version of the fuzzy curve (fuzzy MSF) is created. The spike points are the 

experimental data points (in this example four points). Figure 5-15 is an example of a 

spiked version of the curve in Figure 5-8.    

 

Figure 5-15. Spiked version of the fuzzy MSF. 
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Both the fuzzy MSF and the spiked version are illustrated in Figure 5-16. This figure 

shows the spikes clearly.  

 

 

Figure 5-16.  The fuzzy MSF and the spiked version. 

 

The mode shapes obtained from the fuzzy model might not be the same scale as the 

experimental model. The mode shapes curve from fuzzy model can be matched to the 

experimental mode shapes with an appropriate scaling. This is valid because the mode 

shapes can be multiplied to any arbitrary scaling factor.  

 

The second stage of modification involves using a fuzzy neural network to “smooth” 

the spiked curve using neural networks. 

 

5.3. Obtaining the mode shapes using neural networks  

 

 

A fuzzy neural network used here. This network is a single-input-single-output fuzzy 

neural network. The input training data of the neural network is position on the body 

(for example the data on the X axis in Figure 5-15). The output training data of the 

neural network is the deflection of the body (for example the data on the Y axis in 

Figure 5-15). Therefore the input of the system is the position on the beam and the 

deflection of the body (Figure 5-15) is the output or the target of the network. This 

deflection is the deflections in the updated fuzzy MSF (for example the deflection 

values on the Y axis in Figure 5-15). Constructing the MSFs using fuzzy sets is 
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introduced in section 5.1 and the updating procedure in section 5.2. For each MSF, 

one neural network is introduced for each natural frequency (Figure 5-17). 

  

 

Figure 5-17. Input and output of the neural network 

 

As mentioned in section 5.2, updating the fuzzy MSF using experimental data create 

spikes in the MSF. The mode shape from the trained neural networks is different from 

the updated fuzzy MSFs. The neural network is trained by updated fuzzy MSFs. The 

trained neural network gives smooth version of updated fuzzy MSFs.  In this stage, 

running the trained neural network generates the final mode shapes. This is illustrated 

in Figure 5-18 where the position is the input of the network and the deflection is the 

output. The mode shape is obtained by giving the whole geometry or position of the 

structure as the input of the network. The corresponding deflection at each position 

gives the mode shape. There is one neural network for each natural frequency. 

Therefore each neural network provides only one mode shape for each natural 

frequency and there are m number of neural networks for m mode shapes and natural 

frequencies.    
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Figure 5-18. Obtaining the mode shape deflections from the neural network. 

 

Figure 5-19 illustrate the application of the method in obtaining the behaviour of the 

system. The equation in Figure 5-19 is the equation of motion of a mechanical system. 

In this equation the natural frequency (
n

ω ) is obtained from a single experimental 

FRF test.   Factors c, and constants ψ  can be obtained from velocity and 

displacement initial conditions when the model is to be used in time domain. 

 

 

Figure 5-19.  Obtaining the response of the system from neural network. 
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The eigenvectors of the equation of motion in Figure 5-19 are derived from the 

proposed method in this chapter. The eigenvectors or the mode shapes are derived 

from the output of the neural network.  An example of the output of the neural 

network is illustrated in Figure 5-20.    

 

Figure 5-20. Obtaining the th
j  eigenvector from the th

j  mode shapes. a) 
i

Y  is one of 

the elements of the matrix. 

 

The eigenvectors are obtained for each natural frequency. In this stage, the procedure 

is completed.  

The following section discusses the treatment of error in this method.    

  

5.4. Obtaining the error, creating a mode shape where the guess 

is wrong and/or where there is no guess available for the 

mode shape  

 

 

This section includes two parts. The first part introduces the method of calculating the 

error.  To calculate this error, no new experimental data is needed.  

 

The second part proposes a method of obtaining a mode shape where a) The MSF is 

guessed wrongly and the guess for the mode shape belongs to another natural 

frequency (but in this case the correct MSF is also guessed as an alternative and is 

available among MSF guesses and can be found), and where b) The MSF is not 

available the alternative guessed MSFs (if there is any) for a particular natural 
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frequency are wrong. If the available MSFs and the alternatives are wrong then an 

available MSF with the minimum error relative to the corresponding experimental 

model is selected. Then the fuzzy rules that used in constructing of this MSF are 

updated to determine a new MSF with less error. This procedure is repeated until the 

error is acceptable. The following section describes these two parts (a and b).  

 

5.4.1. Obtaining the error  
 

 

The error of the mode shapes in this method can be calculated relative to the 

experimental model. The following equation can be used in calculation of the error. 
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Where 
i

Z  is the experimental data, 
i

Y  is the data from the proposed mode shape and 

m is the number of points in the proposed model. If the number of points in the 

experimental data (for example 1u , 2u , 3u  and 4u  in Figure 5-14) is less than the 

points in the proposed model, then a linear interpolation of the experimental result is 

performed (
i

Z  for mi ,,2,1 K= ). Therefore any desired number of points can be 

selected from the linear interpolation of the experimental result. These points can be 

used for calculating the error between the proposed method and the experimental 

result. However, linear interpolation of the experimental data itself will have error. 

 

5.4.2. Obtaining a mode shape where a wrong mode shape is 

guessed and where there is no guess available for the 

mode shape 

 

Two methods are proposed in this section to deal with two problems, where a) the 

guess for the mode shape is wrong and where b) there is no guess available for the 

mode shape. 

 



Sec. 5.4 Obtaining the Error 85 

 

a) Treatment of error where the guess for the mode shape is wrong 

 

 

The flowchart in Figure 5-21 describes the treatment of error where the guess for the 

mode shape is wrong. In this flowchart, first availability of a MSF is queried, and if it 

is available (the answer YES) then the normal method (as described above) is applied 

to obtain the mode shape (including construction of the mode shape by fuzzy mode 

shapes, FRF updating the mode shape and applying neural networks to update the 

mode shape). After obtaining the mode shapes, the error between this mode shape and 

the experimental mode shape is calculated. If the error is acceptable (query about 

error level) then the procedure ends.  If the error is not acceptable then another MSF is 

selected and the procedure is repeated. This procedure is repeated until the “correct” 

MSF is found among available MSFs. 

 

b) Creating the mode shape where there is no guess available for the 

mode shape 

 

 

In this method a mode shape can be obtained when a heuristic guess is not available. 

In this case an available MSF from the other natural frequencies can be selected. The 

following flowchart demonstrates the procedure of the proposed method including 

correction of error in MSFs. The procedure in section (a), for the situation where the 

guess mode shape is wrong, is repeated.   The difference between this section and 

section (a) is that, no MSF with acceptable error is found among available MSFs.  

 

If none of the MSFs satisfy the acceptable error then the MSF with the minimum error 

is selected. Then the flowchart enters correction of fuzzy rules section of the 

flowchart. This section is an iterative closed loop section and continues until an 

acceptable rules combination is obtained.   The procedure of correction of the fuzzy 

rules is explained below where the correction is applied to the mode shape to reduce 

the error.  
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Figure 5-21. Treatment of error flowchart.  

 

To demonstrate the corrective updating of fuzzy rules following example is given 

with three fuzzy rules.  These rules are expressed as below. 

 

Rule 1: If geometry input (input 1) is 1−iMF  (Membership Function i-1) and 

11 −− ∈
ii

MFx , Frequency input is 
j

F  and the other input (if exist) is 3I  Then the 

output (Deflection) is 1−iy . 
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Rule 2: If geometry input (input 1) is 
i

MF  (Membership Function i) and 
ii

MFx ∈ , 

Frequency input is 
j

F  and the other input (if exist) is 3I  Then the output (Deflection) 

is 
i

y . 

 

Rule 3: If geometry input (input 1) is 1+iMF  (Membership Function i) and 

11 ++ ∈
ii

MFx , Frequency input is 
j

F  and the other input (if exist) is 3I  Then the 

output (Deflection) is 1+iy .  

 

These rules are demonstrated in Figure 5-22 and the mode shape is constructed based 

on these three rules.  Here, in order to carry out updating, the mode shape from 

experimental modal analysis results have to be interpolated in order to have consistent 

number of points as the fuzzy mode shape.  

 

 

Figure 5-22. Fuzzy representation of a part of a mode shape and the corresponding 

experimental result. 

 

Having done that, the fuzzy mode shape is ready to be updated using the method 

described in section 5.2.  After updating the fuzzy mode shape with experimental 

results and using neural network to obtain the final version of the mode shape, then 

the curve presented in Figure 5-23 is determined. In this figure, )1(Y  is the first mode 

shape result before any correction. The error between the updated fuzzy mode shapes 
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and the experimental results are calculated according to the scheme shown in Figure 

5-23. In this thesis, the vectors that are used to represent the difference between the 

points of experimental mode shapes and updated fuzzy mode shapes are called Error 

Vectors. 

 

Figure 5-23. Mode shapes after modification and the error between the experimental 

result and the result from the proposed method (error vectors). 

 

The error for each point is demonstrated in Figure 5-24. 

 

 

Figure 5-24.  Error of each point. 
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At this stage the following scheme in Figure 5-25 is used to change (correct) the fuzzy 

rules for each point. For instance, from rule 1, if geometry input (input 1) is 1−iMF  

and Frequency input is 
j

F , then the output (Deflection) is 1−iy . Where 1−iy  is a fuzzy 

linguistic term such as medium, large, etc. From Figure 5-24, the error can be 

calculated as below. 

 

111 )1( −−− −=
iii

YZE   

 

In this case the rule will be changed to the following rule. 

 

If geometry input (input 1) is 1−iMF  and Frequency input is 
j

F , then the output 

(Deflection) is 11 −− +
ii

Ey . 

 

An example of obtaining the relation between the error magnitudes and the fuzzy 

linguistic terms is demonstrated in Figure 5-25.  

 

Figure 5-25. An example of relation between error magnitudes and the fuzzy 

linguistic terms. 
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The relation between the fuzzy linguistic terms in Figure 5-25(c) and the magnitudes 

in Figure 5-25(d) can be found from output membership functions. In this case, an 

example output membership function is presented in Figure 5-26. In this figure, 

magnitude is given to each fuzzy linguistic term. 

 

Figure 5-26. Output membership functions. 

 

Assume the output consists of n membership functions (as in Figure 5-25 or Figure 5-

26 consist of 5 membership functions including NL, PM, Z, NM and NL) then the 

magnitude between each fuzzy rule is equal to 
1

2

−n
 where 2 is the range of output 

membership functions that is between –1 to 1. Therefore if 
1

2

−n
 is the distance 

magnitude between each fuzzy rule then 
( ) ( )12

)1(

12

111

−

−
=

−
−−−

n

yZ

n

E
iii  shows the number 

of fuzzy rules between the first fuzzy rule and fuzzy rule after correction.  

For example if the error is 111 )1( −−− −=
iii

yZE =0.4 and the output membership 

function consist of 5 membership functions (including NL, PM, Z, NM and NL from 

Figure 5-25) then 
( )

15

2

4.0

12

1

−

=
−

−

n

E
i =0.8. Rounding up 0.8 to the nearest real number 

gives 1, which means the method suggests one step correction of fuzzy rules from the 

initial fuzzy rule (that was used to construct the MSF). For example if the first fuzzy 

rule is NM then one step rule changing gives Z or for example if the error magnitude 

was a negative number the rule would change from NM to NL (Figure 5-25). The error 

is calculated again for the mode shape with new fuzzy rules. If the error is acceptable 

then the procedure will end. If the error is not acceptable the procedure is repeated 

and new fuzzy rules will be created until the error is acceptable.  
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5.5. Conclusion 
 

 

The procedure of the proposed method in this thesis is introduced in this chapter. In 

this method fuzzy sets are used to construct the MSFs (to obtain fuzzy MSFs), 

experimental modal analysis is used to update the fuzzy MSFs and neural network is 

used to obtain the final version of the mode shapes. Two methods are also introduced 

to reduce the error in the mode shapes. The methods are extended to deal with 

situations where, a) wrong MSF is guessed for the corresponding mode shape and 

natural frequency, and b) There is no MSF available for a corresponding natural 

frequency. 
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Chapter 6 

 

 

 

 

 

Experimental Setup  

 

 

 

 

 

This chapter presents the experimental set up for experimental modal analysis, fuzzy 

reasoning and neural networks. In modal analysis procedure, instrumented hammer, 

accelerometer, data acquisition card, PC and FRF analysis software are used. In fuzzy 

and neural networks procedures, MATLAB software [28] with fuzzy, neural network 

and SIMULINK toolboxes is used.  

 

6.1. Modal analysis  

 

 

In modal analysis procedure, an instrumented hammer, accelerometers, a charge 

amplifier, a data acquisition card, a PC and modal analysis software are used. The 

hammer applies impact forces to the bodies. By applying an impact force to a body, 

the hammer piezoelectric generates a corresponding voltage. The voltage is calibrated 

to force. An accelerometer consists of a frame, a mass and a piezoelectric element. 

Vibrating the mass in the accelerometer generates electrical current in the 

piezoelectric element. The corresponding voltage of the piezoelectric element is 

calibrated to acceleration, velocity and displacement.  The signals from 

accelerometers and the impact hammer are translated to a charge amplifier. The 

charge amplifier is connected to a data acquisition card and a PC. A Frequency 
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Response Function (FRF) analyser is installed on the PC that can be used for modal 

analysis.    

 

Modal analysis theory is presented in Chapter 3. The experimental procedure used in 

the proposed method is explained here. The first step in each experiment is 

calibration. Calibration for experimental modal analysis is presented below. 

 

6.1.1. Calibration  

 

 

Before measurement, the instruments have to be calibrated. Calibration provides a 

physical sense of the measured parameters. FRF is used to obtain the mode shapes. In 

this project, a suspended mass is used to calibrate FRF signals. The experimental 

equipment includes a mass with a known magnitude, instrumented hammer and a FRF 

analyser (here, PCI230 card, charge amplifier and Agilent VEE software [29]). The 

PCI230 card features are, 2-channel, 12 bit digital to analogue conversion with output 

voltage ranges of 0 to +10. A 28982ENDEVCO instrumented hammer (Figure 6-1) is 

used here.  

 

Figure 6-1. The instrumented hammer. 

 

An accelerometer (here model AQ40 accelerometer with frequency range of 0.5-

8000HZ, supplier Environmental Equipments LTD) is attached to the mass.  

 

Figure 6-2 illustrates the calibration setup with the suspended mass.  

 

The accelerometer and the hammer are connected to a charge amplifier (Figure 6-3). 

The charge amplifier is a DJB amplifier. The charge amplifier is connected to a data 
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acquisition card that is assembled in a PC.  An FRF analyser software is installed on 

the PC (here AgilentVEE version 5.01).   

 

 

Figure 6-2. FRF calibration using an impact hammer and a suspended mass. 

 

 

 

Figure 6-3. A charge amplifier 

 

The signal (in the time domain) from the hammer due to exciting the suspended mass 

is presented in Figure 6-4.  

 

Accelerometer response to the hammer excitation in time domain is presented in 

Figure 6-5.  

 

FRF can be derived by dividing the displacement by the force. When the hammer hits 

the mass, the response from the accelerometer is divided by the response of the 

hammer (in frequency domain). 
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Figure 6-4. Hammer response in time domain. 

 

 

Figure 6-5. Accelerometer response to the hammer excitation in time domain 

 

The software transforms the hammer and accelerometer signals to frequency domain 

by Fourier transform. Figure 6-6 shows the object (in AgilentVEE software) that is 

used for transforming time domain to frequency domain by Fourier transform. 

 

 

Figure 6-6. Fourier transform object in AgilentVEE software 
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The object presented in Figure 6-7 can obtain division of frequency response of 

accelerometer by the hammer (AgilentVEE software). 

 

 

Figure 6-7. Dividing object. 

 

FRF result is presented in Figure 6-8. The average FRF magnitude is 3.50. This 

average is obtained from various FRF tests using different impact excitations by the 

instrumented hammer.  

 

 

Figure 6-8. FRF signal. 

In this calibration FRF= 
mF

X 1
=

&&

 (Newton law). The mass magnitude is known and is 

equal to 0.5 kg. FRF magnitude has to be 2
5.0

1 =
kg

 but the FRF result is 3.50. The 

result magnitude of 3.50 is obtained by averaging various FRF results by repeating 

the calibration test with different levels of impact excitations. 3.50 unit of FRF is 

relative to 2 units of the calibration magnitude. Then the FRF calibration value is 

75.1
2

5.3 = . Therefore FRF results in modal analysis have to be divided 1.75. 

 



Sec. 6.1 Modal Analysis 97 

 

An experimental FRF measurement setup using AgilentVEE software is illustrated in 

Figure 6-9.  

 

 

Figure 6-9. AgilentVEE setup for experimental FRF measurements. 

 

In Figure 6-9 two Built Waveform objects consist of hammer and accelerometer 

signals. Fourier transform of these signals are obtained using fft(x). ‘A/B’ object gives 

the FRF results. ‘abs(x)’ gives the absolute value of FRFs as FRFs include imaginary 

and real numbers. ‘phase(x)’ gives the phase angles. meansmooth(x,nu) gives the 

average value of signal. These signals can be plotted using waveform (time) or 

spectrum (frequency) in time or frequency domain respectively. The result data can 

also be stored in a file using ‘To File’ object.  

 

6.2. Fuzzy logic and neural networks 

 

 

Fuzzy logic and neural networks are used in the proposed method. The methods were 

introduced in Chapter 5. In this section application of fuzzy logic and neural network 

toolboxes of MATLAB software are introduced regarding the proposed method. 
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6.2.1. Fuzzy logic  

 

 

The application of fuzzy logic toolbox of MATLAB software is introduced here. In 

the proposed method, the mode shapes are guessed. The guessed mode shapes are 

called mode shape forms (MSFs). MSF is introduced based on the approximate 

deflection values. Fuzzy logic is used to represent these approximate values. The 

fuzzy representative of MSFs consists of input fuzzy membership functions, output 

membership functions and the corresponding fuzzy rules. The input membership 

functions consist of dimension (or position) membership function and natural 

frequency membership function. The number of position membership functions 

depends on the dimension of the system.  For one-dimensional systems there is one 

position membership function. For two-dimensional structures there are two 

membership functions. For three-dimensional structures, three membership functions 

are required. An example of position membership functions, using fuzzy toolbox is 

illustrated in Figure 6-10. 

 

 

Figure 6-10. Position membership function. 

In this figure, numbers from 0 to 20 is assigned to each membership function. Each of 

these 21 functions corresponds to a position on the body. If the body is two or three-
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dimensional, then two or three position membership functions will be required. An 

example of frequency membership functions is illustrated in Figure 6-11.  

 

 

Figure 6-11. Frequency membership functions. 

Each function corresponds to a natural frequency. For example membership function 

number 1 (Figure 6-11) corresponds to the first natural frequency. In this figure the 

mode shapes of first 8 natural frequencies are of interest. For this reason, there are 8 

frequency membership functions.  

 

The output membership functions include deflection properties of the elastic body. An 

example of the output membership functions is illustrated in Figure 6-12. 

 

In this membership function example, the magnitudes of deflections are introduced by 

fuzzy terms, NL, NM, Z, PM and PL. N is negative, P is positive, Z is zero, M is 

medium and L is large. After introducing the fuzzy membership functions, the fuzzy 

rules are required to relate the inputs to the output. The fuzzy rules are constructed 

based on the MSFs. Obtaining the MSFs of a system are explained in Chapter 4. For 

example if a MSF is obtained as shown in Figure 6-13, then a set of fuzzy rules for 

this MSF can be expressed as shown in Figure 6-14.  
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Figure 6-12. Output membership functions (deflection). 

 

 

Figure 6-13. A MSF sample. 

However in this figure only 8 rules are illustrated. The complete number of the rules 

in this example is more that what is appeared in the following figure. A part of the 

rules is only shown here. 
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Figure 6-14. Fuzzy Rules. 

In the next stage SIMULINK toolbox is used to derive the output from the inputs. 

Figure 6-15 illustrates an example of SIMULINK setup to obtain the output.  

 

 

Figure 6-15. SIMULINK fuzzy controller in obtaining deflections (output) from the 

inputs. 

 

In two-dimensional bodies the SIMULINK model consist of two position inputs 

(Figure 6-16).  
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Figure 6-16.  SIMULINK setup in two-dimensional modelling. 

For three-dimensional modelling another position input is required (Figure 6-17). 

 

 

Figure 6-17. SIMULINK setup for three-dimensional modelling 

The following setup is used in obtaining the mode shapes using the SIMULINK 

toolbox. 
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6.2.2. Neural networks 

 

 

Application of neural network in the proposed method was introduced in Chapter 5. 

Both Fuzzy Neural Networks and Artificial Neural Networks are used in deriving the 

mode shapes. Fuzzy Neural Network obtains the results in a shorter time. MATLAB 

commands in application of Adaptive Neuro-fuzzy Inference System (ANFIS) are 

presented below. 

 

trnData = [m ;Ym']'; 

in_fismat = genfis1(trnData); 

out_fismat = anfis(trnData,in_fismat); 

 

Where trnData is the network training data, m is the input training data of the neural 

network that is the geometry of the body. Ym is the deflection output magnitude of 

MSFs from the SIMULINK toolbox that is updated by experimental modal analysis. 

Ym is the output training data of the neural network. mY ′ is the transpose of Ym 

matrix. genfis1 initialize the membership function parameters. anfis obtain the output 

of the neural network.  

 

evalfis(x,out_fismat)); 

 

evalfis derives output of the network for any input (here x is the input).  

 

Another command can be used to control the epochs. This command has not been 

discussed here as changing the epochs makes little difference (in the application of 

ANFIS in this thesis) in the results. 

 

For each mode shape one neural network has to be introduced. The input of the 

networks is the dimension and the output is the deflection. One network is introduced 

for each mode shape and the corresponding natural frequency.   



104 

Chapter 7 

 

 

 

 

 

Experimental Validation  

 

 

 

 

 

In this chapter, four examples are provided to validate the proposed method. Example 

1 includes the vibration modelling of a clamped-clamped beam. In this example also, 

the possibility of obtaining the mode shape is presented in two cases, where, a) The 

mode shapes is guessed wrong, and b) There is no MSF available. Example 2 

addresses the method to obtain the vibration behaviour of a clamped-free-clamped-

free plate. In example 3, the modelling procedure of a 3-beam structure is presented. 

Example 4 deals with the modelling problem of a clamped-free beam where the 

updating procedure is performed for only part of the length of the beam. Therefore 

there is only incomplete experimental data available for updating the fuzzy MSFs. 

 

The procedure of guessing mode shapes or obtaining MSFs is presented in Chapter 4. 

The proposed method is introduced in Chapter 5. Experimental setup is presented in 

Chapter 6.   

 

7.1. One-dimensional elastic bodies 

 

 

In this section, an example is provided in vibration modelling of a clamped-clamped 

beam. After the modelling procedure, another example is presented where; a) A 



Sec. 7.1 One-dimensional Elastic Bodies 105 

 

wrong mode shape is guessed for MSF, and b) The MSF of a particular mode is not 

available. The method that is presented in Chapter 5 (Method) is used to solve this 

problem.  

 

7.1.1. Example 1  

 

 

Vibration modelling of a clamped-clamped beam is considered in this example. The 

method was presented in Chapter 5.  The problem is to obtain the mode shapes of the 

system up to 4
th

 natural frequency (n=4). The first input of the fuzzy model is the 

beam length. Figure 7-1 illustrates the membership functions of the first input. The 

beam length is taken to be normalised to 1.  

 

 

Figure 7-1. Position membership functions (input 1). 

 

The second input of the fuzzy model is frequency. Figure 7-2 shows the membership 

function of the second input. The region of frequency input is designed for the first to 

the 4
th

 natural frequency. The magnitude of the natural frequencies are measured by 

experimental test or FRF. 

 

 

Figure 7-2. Natural frequency membership functions (input 2). 
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The output of the fuzzy system is deflection or the fuzzy MSFs. Figure 7-3 shows the 

membership function of the output based on the NL, NM, Z, PM, and PL. 

 

 

Figure 7-3. Deflection membership functions (output). 

 

Fuzzy rules are defined based on the boundary conditions of the beam and the 

approximate (guessed) mode shapes of each natural frequency. For example in second 

natural frequency, the mode shape of the beam is zero (Z) and will go up to positive 

large (PL) and this is followed by going down to negative large (NL) and again zero 

(Figure 7-4). 

 

Figure 7-4. Explaining the guessed mode shapes by fuzzy rules. 

 

As the beam is clamped-clamped, then the boundary conditions present zero 

deflections in both ends.  The zero slopes are defined by having two zeros at each end. 

Zeros at length positions 1 and 2 at the first end, and at length positions 18 and 19 at 

the other end are shown in Table 7-1. 
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Table 7-1. Fuzzy rules for the guessed mode shapes (MSFs) up to the forth natural 

frequency. 

Frequency 

Length 

(
n×

×
5

1 ) 

First natural 

frequency 

Second natural 

frequency 

Third natural 

frequency 

Forth natural 

frequency 

1 Z Z Z Z 

2 Z Z Z Z 

3 PM PM PM PM 

4 PM PM PL PL 

5 PM PL PL PM 

6 PM PL PM Z 

7 PM PL Z NM 

8 PM PM NM NL 

9 PL PM NM NM 

10 PL Z NL Z 

11 PL NM NM PM 

12 PM NM NM PL 

13 PM NL Z PM 

14 PM NL PM  Z 

15 PM NL PL NM 

16 PM NM PL NL 

17 PM NM PM NM 

18 Z Z Z Z 

19 Z Z Z Z 

 

The fuzzy MSFs that are created from membership functions in Figures 1-3 and fuzzy 

rules in Table 7-1 are illustrated in Figure 7-5. 
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Figure 7-5. The fuzzy MSFs from the fuzzy membership functions. 

 

Input 1 is the position on the beam and input 2 is the frequency. The SIMULINK 

toolbox of MATLAB software is used to generate the fuzzy beam deflections (fuzzy 

MSFs) from fuzzy beam length and fuzzy frequency (inputs). This is illustrated in 

Figure 7-6.  

 

 

Figure 7-6. SIMULINK fuzzy controller for obtaining the output from the inputs. 

 

To illustrate the output, if the position on the beam is varied between, x=0 to 1 (input 

1) and the frequency input is the 4
th

 natural frequency (or number 1 in input2 axis in 

Figure 7-5), then the output (or Y in Figure 7-6) will be the 4
th

 fuzzy MSF of the 

beam. This output is shown in Figure 7-7(d).  
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Figure 7-7.  Fuzzy MSFs from fuzzy model before modification.  

 

After obtaining the fuzzy MSFs, these MSFs are to be modified by experimental data 

from a real system. A four-degree of freedom model is derived by modal analysis. 

The experimental rig is shown in Figure 7-8.  

 

 

Figure 7-8. A clamped-clamped beam 

 

An accelerometer is attached to the beam to receive the oscillation signals. A charge 

amplifier is used to amplify and send the signals to the data acquisition card. The data 

acquisition card (PCI230) is assembled to a Pentium PC. AgilentVEE software is used 

to obtain the FRF curves. 

 

The beam dimension is 500 mm length, 10 mm thickness and 20mm width.  The 

material is steel. Boundary conditions are clamped-clamped.   

 



110 Experimental Validation Chap. 7 

 

Before obtaining the eigenvectors (mode shapes) of the beam from FRF signals, 

calibration of FRF is performed by using a suspended (488.50gr) mass. An 

accelerometer is attached to one side of the suspended mass and an instrumented 

hammer is used to apply an impulse. Fourier transform of both signals (accelerometer 

and hammer) are obtained by AgilentVEE software. Fourier transform of 

accelerometer signal from the suspended mass is divided to Fourier transform of 

hammer signal and the average value result of the division is equalled to one over 

mass value (1/488.50). The calibration procedure was explained in Chapter 6. 

 

After calibrating FRF values, the FRF from experimental modal analysis can be used 

to extract the eigenvectors of the model. The experimental procedure is described 

below. To find a four-degree of freedom model of the beam, the beam is divided to 5 

equal segments. Corresponding four positions to 5 segments are 100mm, 200mm, 

300mm, 400mm. An accelerometer is attached on the beam and the instrumented 

hammer is used to excite the beam. The accelerometer is placed in each of four 

selected positions. The instrumented hammer is used to excite the beam in each of the 

four selected points. Sixteen excitations with hammer are applied to the beam 

corresponding to different combinations of accelerometer and hammer excitation 

positions. Fast Fourier transform of hammer excitation and accelerometer signals are 

obtained from AgilentVEE software. Fourier transforms of accelerometer signals are 

divided by Fourier transform of the signals from the hammer in order to find FRF 

values (for each excitation). A four by four FRF matrix is obtained from Sixteen FRF 

data in this experiment. FRF curves are presented in Appendix D. Only four FRF 

curves ( 11h , 12h , 13h  and 14h ) of 16 FRFs are presented in Appendix D. However 

these four FRFs are sufficient to determine the 4DOF model of the beam. The peak-

amplitude (peak-picking) method is performed to extract the modal constants and 

eigenvectors from the FRF matrix.  This method is introduced in Chapter 5.   The 

following equation is valid based on this method. 
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The experimental results are demonstrated in Table 7-2. Table 7-2 includes first four 

mode shapes described by 4 positions on the beam (0.2, 0.4, 0.6, 0.8). The position on 

the beam is normalized, to have the length of the beam equal to 1. 

 

Table 7-2. Mode shapes from experimental modal analysis result. 

Position on the beam 

(normalise) 

Mode shape 1 Mode shape 2 Mode shape 3 Mode shape 4 

0.2 0.41  1.00     1.00    0.94    

0.4 0.98 0.80    -0.41 -1.00 

0.6 1.00  -0.85 -0.43 1.00    

0.8 0.43     -0.99  1.00     -0.93 

 

Now the experimental mode shapes from Table 7-2 are used to modify the fuzzy 

MSFs. Fuzzy MSFs are presented in Figure 7-7. Experimental mode shapes are 

presented in Figure 7-9.  

 

Figure 7-9.  Normalized mode shapes from Table 7-2, where the horizontal axis is the 

position on the beam length and the vertical axis is the deflection of the beam. 
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Corresponding data from the fuzzy MSFs is replaced by the data from experimental 

mode shapes (in this example, four points). The mode shapes are determined from the 

updated fuzzy MSFs. Experimental measurements were carried out at 4 positions. 

Updating the fuzzy MSFs is performed by simply replacing the points in the fuzzy 

data set with the corresponding points from the experimental set.  The inputs and 

output fuzzy membership functions are described by 51 points. Therefore each fuzzy 

MSF include 51 numbers of position points and the corresponding 51 numbers of 

deflection values. Both the fuzzy neural network and back-propagation neural 

network are used to generate the updated curves (MATLAB software is used).  It is 

found that the fuzzy neural network generates smoother curves compared to back-

propagation networks. The neural network is based on a single-input-single-output 

system. The input of the system is the position on the beam. The deflections from 

modified fuzzy data determine the output of the network. The following procedure is 

performed to train the network. The input training data includes the position on the 

beam for each mode shape (as here, 51 numbers of inputs).  Updated fuzzy MSFs 

deflections are the output training data of the network (as here, 51 numbers of 

outputs).  As four degree of freedom modelling is used here, then four neural 

networks are introduced for each mode shape individually. The same input output and 

training procedure that is described earlier is used for each neural network. The 

trained neural networks determine the mode shapes. By giving the position on the 

beam as the input of the networks, the mode shapes are generated. Figure 7-10 shows 

the mode shapes from the presented method and experimental data. 

 

 

a) The first mode shape. 
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b) The second mode shape. 

 

 

c) The third mode shape. 

 

 

d) The forth mode shape. 

Figure 7-10. Mode shape results that is obtained from the proposed method. a) 1
st
 

mode b) 2
nd

 mode d) 3
rd

 mode d) 4
th

 mode 
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The result of this example can be presented in time domain using the following 

equation. 
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Using the eigenvectors obtained from the proposed method and experimental natural 

frequency values then the equation can be express as below. 
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Where constants c and ψ can be obtained from displacement and velocity initial 

conditions. 

 

7.1.2. Comparison of error between the proposed method 

and the mathematical equation 

 

 

The mathematical equation of motion of the clamped-clamped beam is used to 

compare the result that is obtained in this section.   Although comparison of the model 

obtained against further experimental tests was another option.  This was declined as 
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no one specific experimental result can be taken as benchmark.  The mathematical 

equation of motion of a clamped-clamped beam is [41]. 
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λ  is a dimensionless parameter which is the function of the boundary conditions 

applied to the beam and its magnitudes are presented in Table 7-3 for different natural 

frequencies. 

 

                    Table 7-3. λ  for mode shape i. 

i 1 2 3 4 5, 6,  .. 

i
λ  0.982 1.0007 0.9999 1.0000014 1 

 

ω  gives very good accuracy for 5i > while for  5i <  is less accurate but still a good 

approximation [41]. 

 

The following equation used to calculate the error ( e ) between the mathematical 

equation and the proposed method in this example.  

 

( )
∑

=

′−
=

51

1i i

ii

x

xX
e  

 

Where 
i

x′  is the experimental data (deflection) and 
i

X  is the data (deflection) from 

the proposed method. 

 

The proposed method exhibits a maximum error of 15.57%, relative to the 

mathematical model in the 4
th

 mode in the mode shapes. Error in the first, second and 

third mode shapes are 14.3%, 11.2% and 9.8% respectively. 
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7.1.3.  Creating a mode shape where either there is no guess 

available for mode shape or guessed mode shape is 

wrong for the clamped-clamped beam 

 

 

In this method a mode shape can be obtained in two situations as below.  

 

a) A wrong guess is assumed for the mode shape. 

b) The heuristic guess is not available. 

 

The method of treating the error in conditions (a) and (b) are introduced in chapter 

5.4. The flowchart in Chapter 5, Figure 5-11, demonstrates the procedure of the 

proposed method. In this flowchart, first a MSF is selected, then the method is applied 

to obtain the mode shape. Obtaining the mode shapes includes construction of the 

fuzzy MSFs, FRF updating the mode shape and applying neural network to the 

updated fuzzy MSFs.  After obtaining the mode shapes, the error between these mode 

shapes and the corresponding experimental mode shapes are calculated. If the error is 

acceptable, then the procedure will end. If the error is not acceptable, then another 

MSF will be used and the procedure will be repeated. If none of the MSFs satisfy the 

acceptable error, then the MSF with the minimum error will be selected. In this case 

alternative guess of mode shapes are available. The alternative mode shapes may be 

guesses for the other natural frequencies, initially. Then the fuzzy rules of this MSF 

are corrected and the error is calculated. If the error is acceptable then the procedure 

will end. If the error is not acceptable the correction of fuzzy rules is repeated.  

 

The following example shows the treatment of error when the guess is wrong and 

when the correct MSF (guess) is not available.  
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a) An example of creating a mode shape when the guess is wrong 

 

 

Assume the 3
rd

 mode shape of the clamped-clamped beam (in example 1), to be 

guessed as Figure 7-11 (the wrong guess). However this mode shape is the 2
nd

 mode 

shape. 

 

Figure 7-11. Wrong guessed mode shape (MSF) for the 3
rd

 mode. 

 

This mode shape has to be modified after constructing the mode shape by fuzzy 

membership functions. In the modification stage, this mode shape has to be updated 

by the 3
rd

 experimental mode shape. A sample of experimental results is presented in 

Table 7-3.  

 

Table 7-3. Experimental modal analysis data. 

Position on the 

beam (normalise) 

Mode shape 1 Mode shape 2 Mode shape 3 Mode shape 4 

0.2 0.41  1.00     1.00     0.94 

0.4 0.98 0.80    -0.41 -1.00 

0.6 1.00  -0.85 -0.43 1.00    

0.8 0.43     -0.99  1.00     -0.93 

 

The experimental results for the 3
rd

 mode shape is illustrated in Figure 7-12. 
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Figure 7-12. Third mode shape from experimental results 

 

The curve in Figure 7-13 is derived after updating procedure (using experimental 

modal analysis) and after that using neural network for smoothing the mode shape. 

 

 

Figure 7-13. Mode shape result from the wrong guessed mode shape. 

 

In this stage the error between the result mode shape in Figure 7-13 is compared with 

the experimental result (Figure 7-12) that is used in updating the model. These two 

mode shapes are shown in Figure 7-14 including the difference between each two 

points in each mode shape using ( )
ii

Xx −  relation. Where 
i

x  is the experimental 



Sec. 7.1 One-dimensional Elastic Bodies 119 

 

data, 
i

X  is the data from the proposed method. 51 points are used for drawing of each 

curve. 

 

Figure 7-14. Experimental mode shape, the mode shape result from the proposed 

method (by the wrong guess) and the difference between each point of these two 

mode shapes (both mode shapes are normalized to 1). 

 

The error between these two mode shapes are calculated using the following equation. 

 

( )
∑

=

−
=

51

1i i

ii

x

xX
e  

 

Where 
i

x  is the experimental data, 
i

X  is the data from the proposed method and 51 is 

the number of points that are considered for calculating the error. The error is equal to 

65.67%. The flowchart suggests that the procedure has to be repeated using another 

guess of mode shape or MSF. 

 

In this example all the available heuristic guesses are presented in Figure 7-15 (up to 

the forth mode). In this stage the flowchart suggests using another MSF, for example 

the mode shape in Figure 7-15(c). This MSF used in example 1. 11.46% error 

obtained and with this level of error the iteration procedure ends. 
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Figure 7-15. The entire available heuristic mode shape guess (MSFs) (where X axis is 

the beam length and the Y axis is the deflection of the beam) 

 

b) An example of creating the mode shape when the guess is not 

available 

 

 

If the entire possible heuristic MSFs are considered as in Figure 7-16 then the desired 

MSF is not available for the third mode. In this stage the flowchart select the MSF 

with the minimum error relative to the corresponding experimental mode shape data. 

The error was calculated by the following equation. 

 

( )
∑

=

−
=

51

1i i

ii

x

xX
e  

 

The MSF by the minimum error (Error (j)) is selected as 
j

MSF . Where j indicates the 

corresponding MSF number. In this example the MSF in Figure 7-16(b) obtained the 

minimum error. Therefore this MSF is used to determine the 3
rd

 mode shape. 
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Figure 7-16. The entire available heuristic MSFs (where X axis is the beam length and 

the Y axis is the deflection of the beam) 

 

Figure 7-17. Fuzzy second mode shape with the corresponding fuzzy deflection terms 

(Z, PM, PL, …) and the difference between the second mode shape and the 

experimental third mode. 

 

Then the fuzzy rules of this MSF are corrected and the error is calculated. If the error 

is acceptable, then the procedure ends. If the error is not acceptable, the correction of 
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fuzzy rules is repeated. The procedure of the correction of the fuzzy rules is explained 

below, where the correction is applied to the mode shape to reduce the error. The 

difference between deflection in the mode shape obtained from the proposed method 

and the experimental result is illustrated in Figure 7-14. The difference is calculated 

by ( )
ii

Xx −  where 
i

x  is the experimental beam deflection and 
i

X  is the beam 

deflection from the proposed method. 51 points are used for this calculation. This 

difference and the fuzzy second mode shape are illustrated in Figure 7-17. 

 

The fuzzy rules to create this mode shape  (Figure 7-16b) is presented in Table 7-1, 

which is the fuzzy rules of the second mode shape.  

 

The curves in Figure 7-17 are repeated in Figure 7-18. Vectors are used to show the 

difference magnitudes between the points in the fuzzy MSF and the corresponding 

points in the third experimental mode shape. These are called the Error Vectors in this 

thesis.   

 

 

Figure 7-18. The second fuzzy MSF with the corresponding fuzzy deflection terms 

and the difference between the second mode and the experimental third mode the 

difference is shown with Error Vectors. 

 



Sec. 7.1 One-dimensional Elastic Bodies 123 

 

The Error Vectors in Figure 7-18 are shifted to the corresponding points on the fuzzy 

MSF (Figure 7-19). 

 

 

Figure 7-19. Each Error Vector is shifted to the corresponding point on the fuzzy 

MSF.  

                                                              

Now each fuzzy rule in Figure 7-19 has to be changed relative to the corresponding 

Error Vector. Changing the fuzzy rules is applied based on the process explained in 

Chapter 5 (Chapter 5, Figures 15 and 16). Each Error Vector magnitude is used to 

change the fuzzy rules of the fuzzy MSF. The relation between the Error Vectors 

magnitudes and changing the fuzzy rules are presented in Chapter 5. The fuzzy 

deflections terms are PL, PM, Z, NM and NL. P stands for plus and N for minus. The 

range of fuzzy deflections is between –1 to 1 as in fuzzy output membership functions 

in this example. The distance between each two fuzzy deflection term is obtained 

from 
1

2

−n
.  Where 2 is the range (-1 to 1) of output membership functions and n is 

the number of membership functions. There are 5 membership functions here as PL, 

PM, Z, NM and NL. Then 
15

2

−
=0.5 is the distance between each fuzzy deflection. 

The fuzzy deflection terms, PL, PM, Z, NM and NL can be represented by +1, +0.5, 0, 
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-0.5 (as shown in Chapter 5). Hence the Error Vector can be added to this magnitude. 

This addition is illustrated in (Figure 5-15, Chapter 5) where the 
ii

Xx −−  applies 

when Error Vector is negative and 
ii

Xx −  applies when the Error Vector is positive. 

For example if the fuzzy deflection is PM (+0.5) and the corresponding Error Vector 

is –1 this fuzzy deflection has to be changed to “+.05-1=-0.5”, where the result,  –0.5 

corresponds to NM. Therefore this fuzzy deflection has changed from PM to NM.  

 

If the magnitude of the result after adding the Error Vector to the fuzzy deflection is 

out of the fuzzy membership functions range, then the maximum range is applied.  

For example, if the fuzzy deflection is PM (+0.5) and the Error Vector is +1 the result 

will be “+.05+1=+1.5”. But as the maximum range is +1 or PL. Therefore this fuzzy 

deflection can be changed to maximum of +1 or PL.  

 

If the Error Vector is not an integer number, then the round-up magnitude is used. For 

example, if the error is 0.35, then it is considered as 0.5. but if the Error Vector is less 

than 0.25, it is possible to apply a one step change or rounding up any value between 

0 to 0.5, to 0.5. This option is applied here and can be seen in Figure 7-20.  

 

 

Figure 7-20. Changing fuzzy deflections relative to the corresponding Error Vectors. 
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Changing the fuzzy deflections in this example relative to Error Vectors is presented 

in Figure 7-20.  

 

Table 7-4 shows the initial fuzzy rules and the new corrected fuzzy rules that are 

corrected based on the above discussion.  

 

Table 7-4. Initial fuzzy rules and the new corrected fuzzy rules. 

Frequency Fuzzy rules 

Length  Second natural 

frequency 

New rules I 

1 Z Z 

2 Z Z 

3 PM PL 

4 PM Z 

5 PL PL 

6 PL PM 

7 PL PM 

8 PM Z 

9 PM Z 

10 Z NM 

11 NM NL 

12 NM Z 

13 NL Z 

14 NL Z 

15 NL Z 

16 NM PM 

17 NM PL 

18 Z PM 

19 Z Z 
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In this stage the procedure of obtaining the mode shape is repeated and the new fuzzy 

MSF (that is constructed based on the new rules in Table 7-4) is considered in this 

procedure. This MSF is illustrated in Figure 7-21. 

 

Figure 7-21. The new fuzzy MSF. 

 

Now experimental modal analysis is used to update this fuzzy MSF and neural 

network to determine the mode shape (Figure 7-22).  

 

 

Figure 7-22. The new mode shape constructed based on the new fuzzy rules. 
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In this stage the procedure is repeated and the difference between the new mode shape 

(Figure 7-22) and the experimental modal analysis is obtained. The Error Vectors are 

determined. The fuzzy mode shape and the Error Vectors are illustrated in Figure 7-

23.  

 

Figure 7-23. Error Vectors and the fuzzy mode shape. 

 

Figure 7-24. Error Vectors are shifted to the corresponding fuzzy rules. 
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The error vectors are shifted to the corresponding fuzzy deflection in Figure 7-24.  

 

Second new rules are determined based on the Error Vectors (Table 7-5). 

 

Table 7-5. Second new rules.  

Frequency Fuzzy rules 

Length  Second natural 

frequency 

New rules I New rules II 

1 Z Z Z 

2 Z Z Z 

3 PM PL PL 

4 PM Z PM 

5 PL PL PL 

6 PL PM PL 

7 PL PM PM 

8 PM Z NM 

9 PM Z NM 

10 Z NM NM 

11 NM NL NL 

12 NM Z NM 

13 NL Z NM 

14 NL Z NM 

15 NL Z Z 

16 NM PM PL 

17 NM PL PL 

18 Z PM PM 

19 Z Z Z 

 

The mode shape is determined after updating and using neural networks as in Figure 

7-25.  
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Figure 7-25. Mode shape based on the second new fuzzy rules. 

 

The difference between this mode shape and the experimental modal analysis results 

are obtained. The error vectors and the fuzzy mode shape are presented in Figure 7-

26. The Error vectors are presented for the region that the error is more than 0.25. In 

this stage if the Error Vector is less than 0.25, there would be no change in the rule.  

 

Figure 7-26. Second new fuzzy MSF and the difference between the mode shape and 

the experimental modal analysis, and the Error Vectors.  
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Third new rule is determined based on the Error Vectors in Figure 7-26. The Error 

Vectors for the most of the region is less than 0.25 and it is considerable only at the 

end of the mode shape.  Therefore the third new rule can be introduced as in Table 7-

6.  

Table 7-6. New fuzzy rules.  

Frequency Fuzzy rules 

Length 

(
n×

×
5

1 ) 

Second natural 

frequency 

New rules I New rules II New rules III 

1 Z Z Z Z 

2 Z Z Z Z 

3 PM PL PL PL 

4 PM Z PM PM 

5 PL PL PL PL 

6 PL PM PL PL 

7 PL PM PM PM 

8 PM Z NM NM 

9 PM Z NM NM 

10 Z NM NM NM 

11 NM NL NL NL 

12 NM Z NM NM 

13 NL Z NM NM 

14 NL Z NM NM 

15 NL Z Z Z 

16 NM PM PL PL 

17 NM PL PL PL 

18 Z PM PM PL 

19 Z Z Z PM 

 

After using modal analysis to update the third new fuzzy MSF and using neural 

network to drive the mode shape then the final mode shape can be determined as in 

Figure 7-27.  
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Figure 7-27. Third mode shape after the rule corrections. 

 

In this mode shape the error vectors are less than 0.25. Therefore there are no more 

changes or corrections in the fuzzy rules. In this stage the overall error between this 

mode shape and the experimental modal analysis mode shape is calculated. The error 

magnitude is 17.24%. As this error is less than 20% then this mode shape is 

considered as an acceptable mode shape for the third mode shape of a clamped-

clamped beam. In the above correction procedure the fuzzy rule correction is repeated 

3 times to achieve an acceptable mode shape. 

 

7.2. Two-dimensional elastic bodies 

 

 

An example of a plate is presented in this section. The procedure of the method is the 

same as the beam example. The differences are explained in the example. 
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7.2.1. Example 2 

 

 

A clamped-free-clamped-free plate is considered in this example (Figure 7-28).  

 

 

Figure 7-28. A Clamped-free-clamped-free beam. 

 

The differences in this example with one-dimensional bodies are stated below. 

 

1) There are two position inputs along two edges of the plate (X and Y in Figure 7-

29).  

 

Figure 7-29. X and Y as two position inputs. 
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Input fuzzy membership functions for X position, Y position and frequency are 

presented in Figure 7-30-33.  
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Figure 7-30.  Input 1 (X position) membership functions. 
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Figure 7-31. Input 2 (Y position) membership functions. 
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Figure 7-32. Input 3 (frequency) membership functions. 

 

Output or deflection membership function is presented in Figure 7-33. 
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Figure 7-33. Output (deflection) membership functions. 

 

The fuzzy rules to construct the mode shapes of the plate up to the 3
rd

 mode shape are 

presented in Table 7-7 and 8. 

 

Table 7-7. Fuzzy rules to construct the first fuzzy MSF of the plate. 

Y X 0 0.25 0.5 0.75 1 

0 Z PM PL PM Z 

0.25 Z PM PL PM Z 

0.5 Z PM PL PM Z 

0.75 Z PM PL PM Z 

1 Z PM PL PM Z 

 

Table 7-8. Fuzzy rules to construct the second fuzzy MSF of the plate. 

Y X 0 0.25 0.5 0.75 1 

0 Z PL Z NL Z 

0.25 Z PL Z NL Z 

0.5 Z PL Z NL Z 

0.75 Z PL Z NL Z 

1 Z PL Z NL Z 
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Table 7-9. Fuzzy rules to construct the third MSF of the plate. 

Y X 0 0.25 0.5 0.75 1 

0 Z PL NL PL Z 

0.25 Z PL NL PL Z 

0.5 Z PL NL PL Z 

0.75 Z PL NL PL Z 

1 Z PL NL PL Z 

 

The fuzzy MSFs from above membership functions and rules are presented in Figure 

7-34.  

 

Figure 7-34. Plate fuzzy MSFs that are obtained from the membership functions and 

the rules presented above. 

 

2) The SIMULINK fuzzy controller consist of three inputs. Two inputs are designed 

for position and one input for natural frequency (Figure 7-35). 
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Figure 7-35. SIMULINK fuzzy controller to obtain the output from the inputs. 

 

3) The experimental modal analysis is carried out in two dimensions. The plate is 

modelled by measuring 6 points on the plate (Figure 7-36). 

 

 

Figure 7-36. Experimental FRF measurement points on the plate. 

 

The mode shape can be obtained using the Peak-Picking method. This method is 

introduced in Chapter 5 and 6. The mode shapes are presented in Table 7-10 (FRF 

results are presented in Appendix D). 

 

The corresponding fuzzy MSFs for points 1 to 6 are replaced by the experimental 

deflection results in Table 7-10. Replacing or updating these data are performed for 

modes 1 to 3. Updated mode shapes are not smooth surfaces. After updating the fuzzy 



Sec. 7.2 Two-dimensional Elastic Bodies 137 

 

data by experimental data the mode shapes are smoothed by interpolating the mode 

shape surfaces using neural network.  

 

Table 7-10. Deflections of points 1 to 6. 

Mode Point 

Number  

1 2 3 4 5 6 

1 0.51 0.52 0.50 0.49 0.54 0.48 

2 -1.1 -1.3 -0.99 1.0 1.2 0.98 

3 0.99 1.1 1.3 1.2 0.98 1.0 

 

4) Neural networks consist of two inputs and one output where the two inputs 

include position inputs (Figure 7-37) 

 

 

 

Figure 7-37. Neural networks inputs and output. 

 

Mode shape results are presented in Figure 7-38. 

The error in this example is investigated using a corresponding FE model. ANSYS 

software [42] is used to obtain the vibration model of the clamped-free-clamped-free 

plate in order to compare the result in this research with FE results. In the FE 

modelling, the material property of the plate (Figure 7-28) is aluminium with module 

of elasticity of 71 N/mm² and specific weight of 2.7 Kg/m³. The width of the plate is 

100 mm, the length is 180 mm and the thickness is 2 mm.  Maximum error of 18.9% 

occurred in the third mode. Errors of 15.1% and 17.3% occurred in the second and 

first mode shapes respectively. 



138 Experimental Validation Chap. 7 

 

 

Figure 7-38. Plate Mode shapes, a) Mode 1, b) Mode 2, and c) Mode 3. 
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7.3. Structures  

 

 

A 3-beam structure is presented here as an example. The procedure of the method is 

the same as Examples 1 and 2. The differences are explained in the example. 

 

7.3.1. Example 3 

 

 

A 3-beam structure is considered here as an example (Figure 7-39). 

 

Figure 7-39. A 3-beam structure. 

The differences in this example with one-dimensional bodies are stated below. 

 

1) Mode shape forms of the structure for modes 1 and 2 are presented in Figure 7-40 

and Figure 7-41. The corresponding fuzzy deflections are presented on each 

figure. Each fuzzy deflection is introduced for each beam relative to the position 

of the beam before deflection. N, Z and P notations represent Negative, Zero and 

Positive fuzzy deflections. However introducing the fuzzy deflection is not a 

unique approach and any other linguistic terms such as Large, Small and etc. can 

be introduced. These fuzzy deflections can be introduced for any arbitrary 

position on the beam too. This is the flexibility of application of fuzzy reasoning 

in this method.  Another advantage of this method is that user described 
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deflection in local coordinates and question of coordinate transformation does not 

appear. 

   

Figure 7-40. Mode Shape Form 1 with the corresponding fuzzy deflections. 

 

 

Figure 7-41. Mode Shape Form 2 with the corresponding fuzzy deflections. 

 

Membership functions are presented in Figure 7-42.   
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Figure 7-42. Inputs and output membership functions a) Input 1 (Beam Number), b) 

Input 2 (Position on the beam), c) Input 3 (Natural frequency number), d) Output 

(Deflection). 

 

The corresponding fuzzy rules for these Mode Shape Forms are presented in Table 7-

11 and 12. 

 

Table 7-11. Fuzzy rules for the first MSF. 

Beam 

No. 

Position 0 0.333 0.666 1 

1 Z Z N N 

2 Z P P Z 

3 N N Z Z 
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Table 7-12. Fuzzy rules for the second MSF. 

Beam 

No. 

Position 0 0.333 0.666 1 

1 Z Z P P 

2 Z P N Z 

3 P P Z Z 

 

2) The SIMULINK fuzzy controller consists of three inputs. Input 1 is considered 

for the beam number. Input 2 gives the position on the beam. Input 3 is included 

the interested natural frequency (Figure 7-43). The output is the fuzzy MSFs. 

 

Figure 7-43. SIMULINK fuzzy controller for obtaining the output from inputs. In this 

figure, beam number 1 is considered for the first natural frequency where the output is 

the first MSF (X11).  

 

Fuzzy mode shape forms are presented in Figure 7-44. 

 

Figure 7-44.  Fuzzy Mode Shape Forms derived from SIMULINK. 
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3) The experimental modal analysis is carried out in two dimensions. Positions of 

accelerometers are demonstrated in Figure 7-45. Direction of motions of 

accelerometers is shown with arrows in each position. 

 

 

Figure 7-45. Position of accelerometers on the structure and the direction of motion of 

each accelerometer. 

 

Experimental mode shapes are presented in Table 7-13 (FRF results are presented in 

Appendix D). Positions 1, 2 and 3 are demonstrated in Figure 7-45.  

 

Table 7-13. Experimental mode shapes. 

Mode Position 1 2 3 

1 -1.1 0.86 -0.94 

2 0.97 0.04 1.2 

 

Now the fuzzy MSFs are updated by experimental mode shape results. This 

modification is performed by replacing the fuzzy MSFs data by the corresponding 

experimental data. In the next stage, updated fuzzy MSFs are smoothed using neural 

networks. 
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4) Neural networks consist of one input and one output (Figure 7-46).   

 

 

Figure 7-46. Neural networks input and output. 

 

After the neural networks procedure, 3 beams are assembled together. This assembly 

is performed by placing beams 1, 2 and 3 together in each mode as shown in Figure 

7-47.  

 

 

 

Figure 7-47. Mode shapes after neural network procedure (beam length is normalized 

to 1). 

 

A corresponding FE model is used to obtain the error in this example. ANSYS 

package [42] is used to obtain the vibration model of the frame in order to compare 

the result in this research with FE results. In the FE modelling, the material property 

of the frame (Figure 7-39) is steel with module of elasticity of 200 N/mm² and 

specific weight of 7.9 Kg/m³. The beams of the frame are built from 200 mm length, 

15 mm width and 2 mm thickness. An Error of 19.83% occurred in the first mode and 

16.41% in the second mode.   
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7.4. Mode Expansion: Example 4  

 

An example of a clamped-free beam is presented here. There are four differences 

between this example and example 1.  

 

1) Boundary conditions are different. 

2) Experimental FRF measurement is not preformed in equal distance positions. 

3) The mode shapes are obtained up to 8
th

 natural frequency. 

4) Other forms of fuzzy rules are presented to show the flexibility of the fuzzy 

systems. 

 

The rest of the procedure is the same. The procedure is presented below.  

 

The first input of the fuzzy model is the beam length. Figure 7-48 illustrates the 

membership functions of the first input. The beam length is taken to be normalised to 

1.  

 

The second input of the fuzzy model is frequency. Figure 7-49 shows the membership 

function of the second input. The region of frequency input is designed to demonstrate 

first to eighth natural frequency. The magnitude of the natural frequencies is measured 

by an experimental test or a FRF curve. In the frequency membership function the 

number that represent the first, second and third etc. natural frequency are used to 

identify the membership functions. For this purpose the natural frequency magnitudes 

are not used.  

 

The output of the fuzzy model is the deflections of the beam or the mode shapes. 

Figure 7-50 shows the membership function of the output that is based on the NL, 

NLM, NM, ZNM, Z, ZPM, PM, PLM and PL. 
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Figure 7-48. The first input (beam length) membership functions. 
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Figure 7-49.  The second input (frequency) membership functions up to 8
th

 natural 

frequency. 
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Figure 7-50.  Output (deflection) membership functions. 

 

Fuzzy rules are defined based on the boundary conditions of the beam and the 

approximate mode shapes of each natural frequency.  

For example in second natural frequency the mode shape of the beam is, zero (Z) and 

will go up to positive large (PL) and this is followed by going down to negative large 

(NL) and again zero (Figure 7-51). However medium regions can be introduced in the 

middle of large and zero regions (by ZM, M, and LM that can be either positive (P) or 

negative (N) too). 
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Figure 7-51.  A general view of the second mode shape of a Clamped-Free beam 

without exact deflection magnitudes. 

 

As the beam is Clamped-Free then the boundary conditions present zero deflections at 

one end.  The zero slope is defined by having two zero at the end (zero at length 

positions 0 and 1 at the first end as shown in Table 7-14). The fuzzy rules based on 

the approximate mode shapes are presented in Table 7-14. These rules are created for 

a clamped-free beam up to 8
th

 mode shape. 

 

Table 7-14. Fuzzy rules up to eighth-natural frequency 

Natural  

Frequency 

 

Beam Length 1
 

2 3 4 5 6 7 8 

0 Z Z Z Z Z Z Z Z 

1 Z Z Z Z Z Z PM Z 

2 Z Z ZPM PM PM PM PLM PM 

3 ZPM ZPM PM PL PLM PLM Z PLM 

4 ZPM ZPM PM PL PM PM NLM PM 

5 ZPM ZPM PLM PL Z Z NM Z 

6 ZPM ZPM PLM PM NM NM Z NM 

7 PM PM PLM Z NLM NLM ZPM NLM 

8 PM PM PM ZNM NM Z PM Z 

9 PM PM ZPM NLM Z PLM ZPM PLM 

10 PM PM Z NLM PM PM Z Z 

11 PM ZPM ZNM NLM PLM Z ZNM NLM 
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12 PM ZPM NM ZNM PM NM NM Z 

13 PLM Z NM Z Z NLM Z PLM 

14 PLM Z NLM PM NM NM PM Z 

15 PLM ZNM NM PM NLM Z PLM NLM 

16 PLM ZNM ZNM PLM NLM PM Z Z 

17 PLM NM Z PM NM PLM NM PLM 

18 PL NM ZPM Z Z PM NLM PM 

19 PL NL PM NM PM Z Z Z 

20 PL NL PL NL PL NM PM NM 

 

The mode shapes created from the membership functions in Figure 7-48 to 7-50 and 

fuzzy rules in  

 

Table 7-14 are illustrated in Figure 7-52. 

 

 

Figure 7-52.  The guessed mode shapes created by fuzzy membership functions and 

rules. 

 

As it is mentioned earlier, input 1 is the position on the beam and input 2 is the natural 

frequency. The SIMULINK toolbox of MATLAB software is used to generate fuzzy 

beam deflections (output) from the beam length and frequency (inputs). This is 

illustrated in Figure 7-53.  
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Figure 7-53.  MATLAB SIMULINK fuzzy controller for generating the output from 

inputs. 

 

To illustrate the generation of fuzzy function, if the position on the beam is varied 

between, x=0 to 1 and the frequency input is the 2
nd

 natural then the output (or Y in 

Figure 7-53) will be 2
nd

 mode shape of the beam. This output is shown in Figure 7-

54(a). By performing this procedure for other natural frequency inputs, deflection 

(output) for the other mode shapes are derived (Figure 7-54(b) shows the 5
th

 mode as 

another example). 
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a) Mode 2 

-1

0

1

2

0.00 0.14 0.27 0.41 0.55 0.69 0.82 0.96

Beam Length

D
e

fl
e

c
ti
o

n

 

b) Mode 5 

 

Figure 7-54.  Mode shapes from fuzzy model before modification, a) The second 

fuzzy MSF, b) The fifth fuzzy MSF. 
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After obtaining the approximate mode shapes (or fuzzy MSFs), these MSFs are to be 

modified using experimental data from a real system. Modification of the fuzzy model 

using experimental modal parameters is discussed below. 

In this section an incomplete four-degree of freedom model is derived by modal 

analysis. Here the complete model refers to a model that the experimental FRF 

measurements are carried out in 8 equal distances points on the beam where beam is 

divided to 8 points. In this case an incomplete four-degree of freedom model refers to 

a beam that is divided to 8 segments  (and 8 points) but only four points on the beam 

is measured experimentally in obtaining FRFs. These four points are selected from the 

first four points on the clamped end section of the beam. The experimental rig is 

shown in Figure 7-55. In this figure the accelerometer is placed in the third point on 

the beam from the clamped end or left end in the figure. 

 

 

Figure 7-55.  A clamped-Free beam. 

 

An accelerometer is attached to the beam to receive the oscillation signals. A charge 

amplifier is used to amplify and send the signals to the data acquisition card. The data 

acquisition card (PCI230) is assembled to a Pentium PC. AgilentVEE software is used 

to find the FRF curves. 

 

The beam dimensions are 500 mm length, 10 mm thickness and 20mm width.  The 

material is steel. The boundary condition is clamped-free.   

 

Before finding the eigenvectors (mode shapes) of the beam from FRF signals, 

calibration of FRF is performed by using a suspended (0.5kg) mass. In this calibration 

Fourier transform of accelerometer signal divided by Fourier transform of the hammer 

impulse and the peak value result of the division is equalled to one over mass value 

(1/488.50). Fourier transform of both signals (accelerometer and hammer) are found 

by AgilentVEE software. The calibration procedure is explained in Chapter 6, 

experimental setup.  
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After calibrating FRF values, the FRF from experimental modal analysis can be used 

to extract the eigenvectors of the model. The experimental procedure is described 

below. To obtain an incomplete four-degree of freedom model of the beam, the beam 

is divided to 8 equal segments, to have 8 points on the beam. Four points are selected 

to measure experimentally from these eight points (here, first four points from the 

clamped end). Corresponding four positions are, 62.5mm, 125mm, 187.5mm, 250mm 

from the clamped end (where the beam length is 500 mm). An accelerometer is 

attached to the beam and the instrumented hammer is used to excite the beam. The 

accelerometer is placed in each of four selected positions and the instrumented 

hammer is used to excite the beam in each four selected points. Sixteen excitations 

with hammer are applied to the beam corresponding to different combination of 

accelerometer and hammer excitation positions. Fast Fourier transform of hammer 

excitation and accelerometer signals are found by AgilentVEE software. Fourier 

transforms of accelerometer signals are divided by Fourier transform of the signals 

from hammer in order to obtain FRF values. Four by four FRF matrix is obtained 

from sixteen FRF data in this experiment. As one row of FRF matrix is usually 

enough to drive the mode shapes so the accelerometer can be placed to one position 

and hammer excitation can be applied to all four positions. A row of the FRF matrix 

can be constructed by 11h , 12h , 13h  and 14h . These results are obtained by placing the 

accelerometer on point 1 and hitting the beam by the hammer on points 1, 2, 3, and 4.  

Peak-picking method is performed to extract the modal constants and eigenvectors 

from the FRF matrix.  This method is presented in Chapter 5 and 6. The experimental 

results are demonstrated in Table 7-15 (FRF curves are presented in Appendix D). 

Table 7-15 is included first four mode shapes described by 4 measurement positions 

on the beam. The beam length is normalized to one so the positions on the beam 

regarding the experimental mode shape measurements include 0.1, 0.2, 0.3 and 0.4.  

From Chapter 3, equation (25), we have: 

2

nkkkillkik
huu ωζ=  

In this equation i  and l  are the accelerometer position and excitation position 

respectively. For example if the accelerometer is placed in 0.1 position and the 

excitation is applied to position 0.2 then the equation can be presented as below. 

2

1221 nkkkkk
huu ωζ=  
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Table 7-15. Normalized mode shapes from experimental modal testing 

Position on the beam (normalise) 

Mode shape 

 

0.1 

 

0.2 

 

0.3 

 

0.4 

1
st 

0.0259 0.0973 0.2048 0.3395 

2
nd 

0.1379 0.4173 0.6542 0.7137 

3
rd 

0.3254 0.7245 0.6177 0.0197 

4
th 

0.5193 0.6852 -0.1304 -0.7071 

5
th 

0.6733 0.2852 -0.691 0.0009 

6
th 

0.7512 -0.2639 -0.3921 0.7072 

7
th 

0.7325 -0.6502 0.3931 0 

8
th 

0 0.6142 -0.6519 0.6936 

 

The important note in this example is, k  that is the number of peaks in the FRF curve 

is not limited to the measurement points. The reason is, each FRF curve have any 

arbitrary number of peaks. More FRF peaks are appeared by simply expanding the 

frequency range of the FRF measurement. Therefore in this example, k  can be from 1 

to any arbitrary number depending on the frequency range of the FRF measurement. 

This frequency range can be adjusted experimentally in order to represent all the 

sufficient peaks.  Consequently, although i  and l  are limited to the number of FRF 

measurements, but k  is not limited. Therefore the experimental mode shapes (
ik

u  or 

lk
u ) that are obtained from above equation can be expanded to k  number of natural 

frequency as long as the FRF curve includes the th
k  natural frequency. This allows us 

to have experimental mode shape up to any arbitrary natural frequency regardless of 

the limitation of the measurement points. However this mode shape only exhibits in 

the measured points. This is shown in the following section.  

 

The experimental mode shapes from Table 7-15 are used to modify the fuzzy MSFs. 

Fuzzy MSFs are presented in Figure 7-54. Experimental mode shape is derived for an 

incomplete 4DOF model. Figure 7-56 shows examples of complete and incomplete 

mode shapes for second, forth and sixth modes. In the presented method, the 

incomplete set of mode shape data are used to update the models and the complete 
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8DOF model is presented in the figures for better understanding the difference 

between complete and incomplete experimental mode shapes.  

 

 

Figure 7-56. Normalized experimental measured mode shapes from table 7-2, a) 2
nd

 

Complete mode shape, b)  2
nd

 incomplete mode shape, c) 4
th

 
 
Complete mode shape, 

d) 4
th

 incomplete mode shape, e) 6
th

 
 
Complete mode shape, f) 6

th
 incomplete mode 

shape. 

 

A 4DOF experimental modal analysis is performed but the model is capable of having 

up to eighth mode shape. The reason is that each FRF from 4DOF modelling consists 

of all the natural frequency peaks (as well as eighth for example), so these peaks can 

be used to find the model up to any frequency range (as explained earlier in this 

example). The only limitation is that this model shows the mode shapes for four 

points on the beam or for the points that the experimental measurements are 

performed. The mode shape for the other points except these four points is not 

available.     
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Data from Table 7-15 are used to modify the fuzzy MSFs in Figure 7-54. In this stage 

the modification is performed simply be replacing the fuzzy MSFs data with the 

corresponding experimental data (in this example four points for each mode). Next 

stage of the modification is to drive smooth curves from these mode shapes, as there 

are some spikes in the curves generated due to the difference between the 

experimentally measured points and guessed mode shape. 

 

The mode shapes are derived from the updated fuzzy MSFs as explained before. 

Experimental measurements were carried out at 4 positions by simply replacing the 

points in the fuzzy MSF data with the corresponding points from the experimental set.   

The inputs and output fuzzy membership functions are described by 51 points.  Both 

fuzzy neural network and back propagation neural network are used to generate the 

updated curves (MATLAB software is used).  As before, it is found that the fuzzy 

neural network generates smoother curves compared to back propagation networks. 

The fuzzy neural network is based on a single input-single output system. The input of 

the system is the position on the beam. The deflections of the mode shapes are the 

output of the network. The following procedure is performed to train the network. The 

input training data include, the position on the beam for each mode shape (here, 51 

data).  Updated fuzzy MSFs are included the output training data of the network (here, 

51 data).  As eight mode shapes are derived then eight neural networks are introduced 

for each mode shape individually. The same training procedure is used for each neural 

network. The trained neural networks determine the mode shapes. By giving the 

position on the beam as the input of the networks, the deflection of the mode shapes 

are obtained. Figure 7-57 shows the mode shapes from the presented method and the 

incomplete and complete experimental models. 

 



Sec. 7.4 Mode Expansion 155 

 

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

Beam Length

D
e

fl
e

c
ti
o

n

Series1 Series2 Series3

 

a) The second mode shape. 
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b) The third mode shape. 
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c) The fifth mode shape. 
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d) The seventh mode shape. 

Figure 7-57.  The mode shapes, Series1: Incomplete experimental model, Series2: 

Complete experimental model, Series3: the mode shapes obtained from the proposed 

method. a) 2
nd

 mode b) 3
rd

 mode d) 5
th

 mode d) 7
th

 mode. 

 

Maximum errors in this example are presented as below. Maximum error of 50% is 

occurred in seventh mode shape (on position, 0.392, on the beam length) the error is 

presented in Figure 7-58.  
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Figure 7-58.  The maximum error, Series1: Experimental model, Series 2: proposed 

model (seventh mode shape) 

 

This error although appears to be rather serious and severe, it is caused between two 

models with different degrees of freedom.  Here a “continuous” model (that is 

obtained here) is compared with a model with less degree of freedom (incomplete 
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4DOF modal model) that is only described by linear interpolation with adverse effect 

on accuracy. The error between continuous model and discrete model must be zero in 

the positions that the measurement is performed. Then in the proposed model, the 

maximum error is 41.8% and in most of the other positions it is relatively accurate. 

This error is demonstrated in Figure 7-59 illustrates the behaviour in the second mode 

shape between the proposed and experimental models. 
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Figure 7-59.  Maximum error of the proposed model and experimental model (second 

mode shape), Series 1: Incomplete experimental model, Series 2: Complete 

experimental model, Series3: The proposed model. 

 

Here again, the error exists between the proposed model and the complete 

experimental model where there has been no data to modify the proposed model. In 

this region the proposed fuzzy model is extrapolated or expanded. Figure 7-60 

demonstrates the maximum value of this error that has occurred in second mode shape 

in position 0.6 along the beam length where no data available to modify the model. 

This error is 82.8%. However the model is still following the right mode shape 

trajectory. 
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Figure 7-60. The maximum error of the proposed model and experimental model 

(second mode shape), Series 1: Incomplete experimental model, Series 2: Complete 

experimental model, Series3: proposed model 

 

As before the result of this example can be presented in time domain using the 

following equation. 
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Where constants c and ψ can be obtained from displacement and velocity initial 

conditions. 

 

7.5. Discussion 

 

 

Example 1 includes a modelling procedure of a clamped-clamped beam. In order to 

construct the guessed mode shapes (MSFs) a fuzzy input is introduced for position on 

the beam and another input for number of natural frequency. In this example 21 

number of membership functions are introduced for position input. Each membership 

function belongs to a region of the beam. 4 fuzzy membership functions are 

introduced for natural frequency input to demonstrate the mode shapes up to forth 

mode. Output membership functions are designed to demonstrate the deflection of 
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mode shapes. This output consists of 5 memberships including NL, NM, Z, PM and 

PL. 76 fuzzy rules introduced to relate the inputs to the output. Alternatively, other 

kinds of position input and deflection output membership functions can be introduced 

too. Different number of membership functions and fuzzy rules are used in the other 

examples to demonstrate the effect of membership functions and rules in the mode 

shape curves. 

 

Both fuzzy neural network and back-propagation neural network are used to generate 

the updated curves (MATLAB software used). It is found that the fuzzy neural 

network generates smoother curves compared to back-propagation networks. 

In order to evaluate the error in the proposed method, eigenvectors from the fuzzy 

model are compared with mathematical mode shape. The proposed method exhibits 

an error of 15.57%, relative to the mathematical model in the 4
th

 mode. Error in the 

first, second and third mode shapes are 14.3%, 11.2% and 9.8% respectively.  

 

A discussion is presented in Chapter 7 for the clamped-clamped beam example 

(example 1) for the situation where a) The guess for the mode shape is wrong and b) 

There is no guess available for the mode shape. In the first case where the guess for 

the mode shape is wrong, an initial error of 65.67% is observed.  This error is not 

acceptable. Then the method suggests selecting another mode shape.  The error 

(11.46%) found to be acceptable only when a correct MSF is selected. In the second 

case there is no guess available for the mode shape. Here, fuzzy rules that are used in 

constructing of fuzzy MSF are corrected iteratively to obtain an acceptable version of 

the MSF. First, an available MSF with minimum error relative to other available MSFs 

is selected. In this case it was assumed that some guesses are available that correspond 

to the other natural frequencies and is not the correct mode shape. The method 

developed describes how fuzzy rules are corrected relative to the experimental modal 

analysis model. The experimental modal analysis model is the same model that was 

used for updating procedure. This modal analysis model is a linear interpolation 

version of the previous modal analysis model. The final version of the MSF after 

correction exhibits a 17.24% error.  As this error is less than 20% then this mode 

shape is considered to be acceptable for the third mode shape of a clamped-clamped 

beam.  
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These examples demonstrate the reliability and effectiveness of the methods as they 

show how wrong MSFs can be corrected and new MSF can be obtained in the absence 

of MSFs. 

 

Although it was demonstrated that error can be reduced, the methods presented are 

with certain limitations. The method presented relies on correct guesses of boundary 

conditions. Therefore the method depends on the possibility to observe of the 

structure and boundary conditions. Also the method has to be applied with a great care 

and learning rate has to be controlled to prevent the updated curve from being 

excessively pulled to the sampling points in the vicinity of sampling points.   This is 

important, especially if the errors between fuzzy curve and measured points are high.  

This problem somewhat compromises the robustness of the proposed method, 

however the problem is surmountable and apart from neural network solution other 

numerical methods for curve smoothing may be devised (although no attempt was 

made to do this). 

 

Example 2 involves modelling of a two dimensional body. A clamped-free-clamped-

free plate was considered in this example. This example, compared to example 1 has 

another input. This is an extra position input (or geometry input) as the system is of 

two dimensions. The rest of the procedure is the same as example 1. In this example, 

different than example 1, 5 membership functions were used in each input. The 

proposed method result was compared with a FE model. The maximum error of 

18.9% occurred in the third mode shape. Errors of 15.1% and 17.3% occurred in the 

second and first mode shapes respectively.  

 

Example 3 demonstrates the application of the method regarding structural modelling. 

In this example a 3-beam structure was considered for modelling. Here, compared to 

example 1, three beams, rather than one beam was used. The position input, frequency 

input and the deflection output were constructed with the same procedure as the other 

examples. However, here different membership functions were used. For instant, only 

4 membership functions are used for the position input and 2 membership functions 

for frequency input. Here one more input was required to identify beams. In this 

example obtained MSFs are compared with the corresponding FE model. The 
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maximum error of 19.83% occurred in the first mode shape and error of 16.41% in the 

second mode shape.  

 

Example 4 demonstrates a clamped-free beam modelling problem. In this example the 

experimental updating procedure is applied to only a part of the beam. In this case the 

proposed method is still applicable. In this example higher errors are exhibited. The 

reason is, the experimental updating procedure is applied to only a part of the beam 

and there is not enough experimental data to update the entire fuzzy MSFs. However 

the method still works and presents a trajectory of the mode shapes even in not 

updated sections.  
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Chapter 8 

 

 

 

 

 

Discussion 

 

 

 

 

 

Deterministic vibration modelling approaches have become very complicated and 

involve extensive mathematical efforts and the use or development of computational 

techniques and optimization methods.  Further more limitations of deterministic 

approach have becoming more obvious as dimensionality and complexity of 

engineering systems continue to grow.  Therefore modelling of uncertainty in 

dynamical behaviour of systems has become an important tool during the last 25 

years.  This resulted in the development of stochastic methods and provided additional 

analysis tools to designers.  Uncertainty methods enabled engineer to study structures 

under imprecisely defined excitations such as force and initial conditions, or with 

other imprecise parameters such as unknown geometry and material properties.  

 

This thesis deals with vibration analysis of mechanical systems with imprecise 

parameters. Most of structures are imprecisely defined due to lack of information 

about the parameters of the system, or inaccurate measurements. Parameters of the 

system are mass, stiffness, damping, geometry and material properties. Lack of 

information about the system and inaccurate measurements cause uncertainty in the 

analysis. Some of the sources of inaccuracies in parameters that lead to uncertainties 

in the analysis are measurement, manufacturing tolerances and time variation of 

systems properties that are described in Chapter 1 (introduction). 



Chap. 8 Discussion  163 

 

Therefore it is very important to consider these unavoidable uncertainties in order to 

obtain a realistic model of the structure.  

 

Regarding the literature survey in this thesis, it is found that uncertainty methods 

developed by previous researchers studied the effect of uncertainty on parameters of 

systems or uncertain excitations on the system response. However the proposed 

method in this thesis deals with uncertainty in the behaviour (mode shape) of 

structures without considering the parameters of the system. This is a novel approach 

in modelling of vibratory behaviour of structures and has not been done before. This 

method is significant as it provides an alternative perspective of uncertainty.  It 

proposes that the final behaviour of modes can be described without any reference to 

system parameters or equations (although the equations of motion are extensively 

used for comparison purpose).  This approach ensures that fuzzy methods can be used.  

Otherwise it is not possible to start with fuzzy system variables and proceed forward 

to obtain fuzzy response as many mathematical operations do not have their fuzzy 

counterparts.  However this is a normal procedure in uncertainty analysis using 

stochastic or statistical methods. 

 

Thus the proposed method in this thesis offers an advantage over other uncertainty 

analysis methods. Available methods in uncertainty analysis involve solving 

complicated mathematical equations where the equations consist of imprecise 

parameters. Solving mathematical equations consisting imprecise parameters provides 

imprecise and approximate solutions.  The proposed method is different from this 

conventional approach in the sense that the process start with a solution.  In other 

word a solution is guessed and described in terms of fuzzy functions (or fuzzy mode 

shapes). This initial imprecise and approximate solution of vibratory behaviour of 

structures is used to start the modelling procedure. As mentioned before, the 

imprecise and approximate solutions refer to approximate mode shape of structures 

where the approximate mode shapes of structures are guessed heuristically (Guessing 

the approximate mode shapes is explained in Chapter 4). Therefore this method 

avoids complicated and time consuming mathematical computations where other 

uncertainty methods rely on. 
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Also the proposed method provides a basis for dealing uncertainty inherently present 

in all experimental measurements and ensures that the future extension of the method 

is based on well tested fuzzy formulism.  

 

The method presented in this thesis involves estimating the mode shapes of a structure 

and describing these shapes in terms of fuzzy membership functions.  These initial 

guesses are based on engineer’s experience assisted by end and boundary conditions 

and the rules introduced in Chapter 4.  The second stage of the process is, updating 

these guessed mode shapes by experimental data.  This involves performing 

experimental modal analysis.  The curve updating is not a simple process and poses 

complications.  The main source of complication is related to the fact that, a mode 

shape derived from experimental FRFs collects only a limited number of sampling 

points.   Therefore the main difficulty to be addressed, is, how to update the fuzzy 

curve with only few sampling points.  The method proposes to use neural networks to 

achieve this.  When the fuzzy data is updated by experimental data, the method 

proposes that the points of the fuzzy data correspond to the sampling points of FRF 

are to be replaced by the experimental data.  Doing this creates a new fuzzy curve 

which is the same as the previous one, except at those points.  In another word a 

“spiked” version of the original fuzzy curve is obtained.  In the next stage of this 

process, neural network is used to “learn” the spiked curve. By controlling the 

learning process (by preventing it from overtraining) an updated fuzzy curve is 

generated.  The method is similar to ones routinely used in neural network, where 

noise is added to target curve to enhance network generalisation. 

 

The proposed method relies on informed guess, probably based on experience of 

operator.  In this thesis, it was proposed that to minimise operator dependence a 

modal shape repertoire may be assembled or mode shapes of analytical solution of 

some standard structures can be made available to the operator of the proposed 

method.  Never the less the proposed method still heavily rely on the operator.  

However a method can not be effective and robust unless it is independent of 

operator.  In addressing these two problems relating to concept of guessing, it has to 

be addressed, what happens if, a) the guessed mode shape is wrong, and b) there is no 

guess available.   In addressing the first problem, mode shape forms are considered 

for a uniform or regular structure (such as a beam, or simple multi spring mass 
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system) for the purpose of assisting the guess of the structure under consideration. 

These MSFs may relate to the first, second or other mode shape of the structure. The 

procedure of fuzzy construction of MSF, modal testing for model updating, and neural 

network learning of data is applied to obtain the mode. The error between this mode 

shape and modal analysis model is obtained. The modal analysis model is the same 

model that is used for model updating. If the error is not acceptable then another 

available MSF is considered and the procedure repeated until the correct MSF is 

found. The second obstacle to overcome in order to improve the effectiveness is to 

deal with the situation where there is no MSF available.  Either not available in 

existing repertoire or operator decide not to choose one. In this situation all the 

method scans all available mode shapes and consider them one by one. The error for 

each MSF is calculated with comparing with the modal test results. The MSF with the 

minimum error is selected. The difference between the deflection points in the 

experimental modal analysis mode shape and the MSF is obtained. The magnitude of 

this difference is converted to fuzzy deflection terms. Then this new fuzzy deflection 

that is obtained from the difference between the experimental modal analysis and the 

proposed model is replaced by the previous fuzzy deflections. This replacement is 

applied by changing the fuzzy rule for the particular geometry of the structure, where 

the difference is found. By doing this for the whole geometry and correcting all the 

fuzzy rules, then the overall error is calculated. If the overall error is acceptable then 

the procedure will end. If the error is not acceptable then the procedure is repeated by 

changing the fuzzy rules until the error becomes acceptable. 

 

These two techniques are presented in Chapter 5 and are applied to example 4 in 

Chapter 7. These techniques found to improve the reliability and robustness of the 

proposed method.   

 

In Chapter 7, four examples were provided to demonstrate and illustrate the proposed 

method. The examples were included vibration modelling of a clamped-clamped 

beam, a clamped-free beam, a clamped-free-clamped-free plate and a 3-beam 

structure.  

 

As mentioned before, uncertainty in modelling and analysis of structures usually exist 

due to imprecise excitations such as forces and initial conditions or imprecise 
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parameters such as masses, material properties, stiffness of the system. In many 

situations of uncertainty analysis, the error cannot be described in conventional terms. 

The reasons include; a) It is not possible to find exact solution (for example for 

complex structures), and b) The deterministic model parameters inevitably contains 

error. In other word, error of the method of analysis and uncertainty can not be 

decoupled.  Uncertainty modelling methods provide a range of solution for range of 

uncertain parameters. In this case deterministic methods do not provide information 

about the solution for a range of parameters, especially if more than one parameter is 

interested for analysis of the solution. Uncertainty analysis is also used where there is 

a high error in deterministic methods due to uncertainty in parameters and provides an 

indication of decreasing or increasing in the solution.   Classical uncertainty analysis 

is described in terms of statistical variables and provides results which inform the 

level of probability of expecting a certain solution in a given range.  Therefore 

variability of results is neither an error in classical sense or reflection of the 

effectiveness of the method. The variation of results predicted by the method 

proposed in this thesis can be interpreted in exactly the same way as the statistical 

method.  The “variation” between the analytical value and fuzzy results, simply 

reflects the level of uncertainty rather than an error in classical sense.  The maximum 

20% difference was estimated in the proposed method in comparison against the other 

results.  However this error is calculated relative to experimental modal analysis 

model that only exists in few points and other points are linearly interpolated and 

consist of error. In another word the modal analysis model that is used for comparing 

with the proposed model is not an exact solution. Although the local error in updated 

positions is found to be around  5%.    

 

Having developed this method, the question is, how these results can be used in an 

industrial situation.  The answer is simple, exactly the same way as how modal 

analysis used currently.  Of course the method proposed here provides additional 

advantage of uncertainty.  

 

In mathematical terms, fuzzy vector can be used to express the system response 

function.   Just to clarify, fuzzy mode shape forms are equivalent to eigenvectors in 

classical sense and eigenvalues are the natural frequencies which are crisp and 

measured during the experiment. 
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Where in this equation the mode shape matrixes or { }T

im
XXX L21  for 

mi ,,2,1 L=  are obtained from the proposed method in this thesis and natural 

frequencies (
ni

ω , mi ,,2,1 L= ) can be obtained from a single FRF result. One of the 

available FRF results that was used in modal analysis model updating procedure can 

be used in this case. Constants 
i

c and phase angles 
i

ψ , mi ,,2,1 L=  can be obtained 

form the displacement and velocity initial conditions.  
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Chapter 9 
 

 

 

 

 

Conclusion and future work 
 

 

 

 

 

9.1. Conclusion 
 

 

A novel method of dealing with uncertainty in vibration modelling was proposed in 

this thesis. In this respect fuzzy sets were used to deal with the uncertainty in 

modelling, modal analysis was used for model updating and neural networks 

simulated the dynamical behaviour of the structure. The procedure of obtaining a 

vibration model of a structure using the proposed method is listed below.  

 

• Heuristically guessing an approximate version of mode shape functions (MSF) 

and constructing MSFs using fuzzy sets (fuzzy MSFs) as a tool to deal with the 

uncertainties.  

• Updating the fuzzy MSFs using experimental modal analysis.  

• Obtaining the mode shapes from fuzzy MSFs using neural networks. 

 

Fuzzy membership function found to be a very flexible tool to deal with the 

uncertainties in the MSFs (approximate mode shapes).  Experimental modal analysis 

is an accurate modelling method and found to be suitable for updating of vibratory 

behaviour of mechanical systems. Neural networks also used successfully in obtaining 

the final (or mathematical) version of the mode shapes from updated fuzzy MSFs.  
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Therefore this thesis proposes the use of fuzzy sets to describe mode shapes of 

structures.  The method describes a procedure to achieve this.  The procedure starts 

with rough guess of mode shapes (mode shape forms or MSFs) and fuzzy membership 

functions are used to construct the guessed mode shapes.  These curves are updated by 

using experimental FRF measurements, obtained at limited number of sampling 

points.  In the last stage of the procedure the updated fuzzy MSFs are modified by 

experimental values at sampling points.  This creates a new curve with “spikes”.   

Using fuzzy neural networks to ‘learn’ the spikes curve produces a smooth and 

mathematical version of the curve.  This method proved to be very effective in 

generating mode shapes with limited number of sampling points.      

 

The method was demonstrated using a beam, plate and a simple structure (3 beam 

structure). Fuzzy mode shape forms which were updated and refined by experimental 

results and neural network using the proposed method are compared against the 

analytical results.  

 

Achievements in this thesis in modelling of vibration behaviour of structures are listed 

below. 

• MSFs (mode shape forms) are introduced and some general rules are obtained 

for MSFs where MSFs are approximate mode shapes. 

• Guessed mode shapes can be used as the uncertain model of the structure (that 

can be updated by experimental modal analysis) 

• Fuzzy sets found to be a flexible tool in introducing the uncertain vibration 

model. 

• The error observed in models developed by the proposed method is found to 

be less than 20%, well within levels of uncertainty reported by other 

researchers [15, 19]. 

• The proposed method tested and proved to be applicable by four experimental 

examples for one dimensional and two-dimensional elastic bodies and a three-

beam structure. 

• In all examples, the levels of uncertainty had not exceeded 20%. 

• The method found to be reliable even with cases where initial modal shape has 

not been guessed accurately. 
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• The method proposed in this thesis is a novel method and has not been done 

before. 

 

9.2. Future work 
 

 

• It is possible to extend the method to study equation of motion where the 

parameters of the system (such as mass, stiffness, damping dimensions and 

material properties) can be considered as fuzzy parameters. The effect of 

changing fuzzy parameters on MSFs can be studied. Therefore the MSFs can 

be determined for a range of parameters and can be stored in a library of 

MSFs. This library offers a reference of MSFs for a range of structure 

parameters.   

• The second possible further work relates to developing mathematical 

formalism to support the method proposed in this thesis.  One way of 

achieving this is to study sources of uncertainty and compare it with stochastic 

methods.   

• Developing a package compatible with existing modal testing software and 

using the proposed method as a new tool. 

• Drive a library of MSFs with more reliable and general rules based on the 

method introduced in Chapter 4 in developing MSF rules. 

• Using the fuzzy presentation of the mode shapes as a fuzzy feedback 

controller in reducing the error when the MSFs are wrong or not available 

(figure 9-1).  

 

Figure 9-1. Controlling of error. 
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Orthogonality of modes relative to mass and stiffness 

matrixes 

 

 

 

 

 

The vibration behavior of an undamped system can be expressed as below [17, 34]. 
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Where the response can be expressed with the following equation. 

 

{ } [ ]{ } [ ]
( )
( )







+

+
==

222

111

sin

sin
)()(

ψω

ψω

n

n

Q

Q
PtqPtx      (A-2) 

To have non zero solutions, 1Q , 2Q , ( )11sin ψω +
n

 and ( )22sin ψω +
n

 can not be zero or  

{ } 0)( ≠tq . Then from (A-1) and (A-2): 
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For a particular mode 
r

ωω =  we have: 

 

[ ] [ ]( ){ } { }0
2 =−

rxrx
PMK ω  

 

By Pre multiplying the above equation by { }T

S
P  then: 
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S
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For a particular mode 
S

ωω =  we have: 
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Transpose of the above equation is as below. 
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By post multiplying the above equation by { }
r

P , then: 
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As mass and stiffness matrices are symmetric, then we have: 
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Equation (A-4) minus equation (A-3) gives: 
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And for 
Sr

ωω ≠  : 
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That shows orthogonality of the modes relative to the mass matrix. 

 

From (A-5) and (A-3), we have: 
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That shows orthogonality of the modes relative to the stiffness matrix. 

 

From (A-6) 
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The above relations can be expressed with another notation for all the modes as below. 

 

[ ] [ ][ ] [ ]
qx

T

KPKP =  

And 
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Where [ ]
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K  and [ ]
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M  are diagonal matrixes and [ ] { } { } { }[ ]LL
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PPPP 21= . 
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Plate Vibration  

 

 

 

 

 

The governing equation of bending vibration of a rectangular plate (Figure B-1) can 

be written as [38-40]. 
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Figure B-1. A rectangular plate and an element of the plate. 
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Where ( )yxq ,  is the applied static force and W  is the displacement (deflection) of the 

plate. 

For the free vibration of the plate the equation in term of geometry and time will be 
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It is possible to express the solution of the equation as 
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By substituting equation (B-2) to (B-1) then 
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As the left hand side of the above equation is a function of x  and y  and the right 

hand side is a function of t  then the equation is valid when both sides are equal to a 

constant (here 2ω ). The right hand side of the above equation can be obtained as 
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Then 

 

( ) ( )αω += tAtT sin  

 

Where A  and α  can be obtained from initial conditions. 
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It is useful to express the above equation in terms of dimensionless variables ξ  and 

η . Where 
a

x
=ξ  and 

b

y
=η  and a  and b are the dimensions of the plate. 
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Substituting ξ  and η  then in the equation of motion, we have: 
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Where 
D

a
ρ

ωλ 22 =  and 
a

b
=φ  (plate aspect ratio). 

 

By multiplying the above equation by 4φ  then we have: 

 

( ) ( ) ( ) ( ) 0,
,,

2
, 44

4

4
4

22

4
2

4

4

=−
∂

∂
+

∂∂

∂
+

∂

∂
ηξλφ

ξ

ηξ
φ

ηξ

ηξ
φ

η

ηξ
W

WWW
  (B-3) 

 

To solve the above equation the following assumption is made (Levy-Type solution 

for free vibration of rectangular plates) 
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By substituting Equation (B-4) into (B-3) then we have: 
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From above equation: 
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The solution of the above equation for ( ) 44
λπ pf orm can be obtained as: 
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m
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The coefficients A  and B  can be obtained from boundary conditions where the 

boundary conditions can be expressed as below 
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b) Clamped edges 
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Or in terms of dimensionless coordinates 
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c) Free edges 
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And in dimensionless coordinates 
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Structural vibration by finite elements 

 

 

 

 

 

Figure C-1 shows a 3-beam structure with 3 degrees of freedom (D1, D2 and D3). 

 

 

Figure C-1. A three beam structure.  

 

The elements of the structure can be axial element (element number 2 with D2 degree 

of freedom). An axial element is presented in Figure C-2. 
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Figure C-2. An axial element 

The stiffness (K) and mass (M) matrixes of this element can be obtained as below. 

If the shape functions can be considered as [35-37] 
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The element stiffness matrix can be expressed as: 
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And the mass matrix can be obtained as: 

 

[ ]∫ ∫ ∫ 







=−







 −
==

V

L

A

T
AL

dxdAxxL
x

xL

L
dVffM

02 21

12

6

ρρ
ρ  

 

The elements of the structure can be flexural element (element number 1 and 3 with 

D1 and D3 degrees of freedom). An axial element is presented in Figure C-3. 
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Figure C-3. A flexural element. 

The stiffness (K) and mass (M) matrixes of this element can be obtained as below. 

If the shape functions can be considered as [35-37]. 
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Therefore the differentiation of f relative to x will be: 
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Where operator d, here is: 
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The element stiffness matrix can be expressed as: 
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Then 
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And the mass matrix can be obtained as: 
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The mass matrix includes two parts. The translational inertia term that is presented 

above is much more important. Only this part is usually considered in calculations. 

 

A 6-degrees of freedom element can be obtained by combining the flexural and axial 

element that is illustrated in Figure C-4. 
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Figure C-4. 6 degree of freedom element. 

 

The stiffness and mass matrix of this element can be presented as below: 
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Where 
420
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c

ρ
=  and 70
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d
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ρ

. 

Based on the element introduced in Figure C-4, the elements of the structure in Figure 

C-1 can be obtained as in Figure C-5. All degrees of freedom are considered for the 

elements. However the elements only consist of the degrees of the freedom that is 

shown in Figure C-1 (D1, D2 and D3). Also there is no degree of freedom in nodes 1 

and 4 as these nodes are fixed. 

 

 

 

Figure C-5. Elements of the structure with all degrees of freedom. 

The elements with the valid degrees of freedom are illustrated in Figure C-6. 
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Figure C-6. Elements of the structure. 

 

The structural mass and stiffness matrixes can be obtained as: 
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Where s
S and s

M are the structural stiffness and mass matrixes, 
e

n  is the number of 

the elements and 
i

K  and 
i

M  are the stiffness and mass matrixes of the elements of 

the structure. Then the structural matrixes can be expressed as: 
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Then based on the matrixes introduced earlier, the stiffness for the elements in Figure 

C-6 can be presented as  
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And 321 MMMM
s

++= . 

Using the same calculation as above for stiffness matrix then the mass matrix will be: 
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Free vibration equation of motion of the structure can be expressed as: 

 

0=+ DSDM &&  

 

Displacement vector, D  can be presented as: 
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Where ni ,,2,1 K= , and n is the number of degrees of freedom. 
i

Φ  is a vector of 

nodal amplitude or the mode shape for the th
i mode of vibration. 

i
ω  is the angular 

frequency of mode i. 
i

α  is the phase angle. 

 

( )
iiiii
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By substituting D  and D&&  in the equation of motion then the equation will be: 
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By substituting stiffness and mass matrixes into the above equation then (zeros in the 

mass and stiffness matrixes are not entered in the matrix as they have no effect on the 

equation).  
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Then the system of equation can be expressed as 
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Appendix D 

 

 

 

 

 

Experimental FRF results 

 

 

 

 

 

FRFs of the clamped-clamped beam (example 1, Chapter 7) are presented in Figure 

D-1 when the accelerometer is in point 1 and the excitation force from the hammer is 

applied to points 1, 2, 3 and 4.  
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Figure D-1. Clamped-clamped FRF graphs; a) 11h , b) 12h , c) 13h , d) 14h . 

 

FRFs of the plate (example 2, Chapter 7) are presented in Figure D-2 when the 

accelerometer is in point 1 and the excitation force from the hammer is applied to 

points 1, 2, 3, 4, 5 and 6.  
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Figure D-2. Experimental FRF results by placing the accelerometer on point 1 and 

exciting the plate on points 1 to 6. 

 

 

FRFs of the structure (example 3, Chapter 7) are presented in Figure D-3 when the 

accelerometer is in point 2 and the excitation force from the hammer is applied to 

points 1, 2 and 3.  
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Figure D-3. Experimental FRF results of the structure. 

 

 

FRFs of the clamped-free beam (example 4, Chapter 7) are presented in Figure D-4 

when the accelerometer is in point 1 and the excitation force from the hammer is 

applied to points 1, 2, 3 and 4.  
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Figure D-4. FRF results for incomplete (4DOF) clamped-free beam model; a) 11h , b) 

12h , c) 13h , d) 14h  
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