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Abstract

A novel method of vibration modelling is proposed in this thesis. This method
involves estimating the mode shapes of a general structure and describing these
shapes in terms of fuzzy membership functions. These estimations or initial guesses
are based on engineering judgment or physical insight into natural mode shapes
assisted by end and boundary conditions and some rules. The guessed mode shapes
were referred to as Mode Shape Forms (MSFs). MSFs are approximate mode shapes,
therefore there are uncertainties involve with their values where this uncertainty is
expressed by fuzzy sets. The deflection or displacement magnitude of the mode shape
forms are described with Zero, Medium, and Large fuzzy linguistic terms and
constructed using fuzzy membership functions and rules. Fuzzy rules are introduced
for each MSF. In that respect fuzzy membership functions provides a means of
dealing with uncertainty in measured data, it gives access to a large repertoire of tools
available in fuzzy reasoning field. The second stage of the process addresses the
issues of updating these curves by experimental data. This involves performing
experimental modal analysis. The mode shapes derived from experimental FRFs
collect a limited number of sampling points. When the fuzzy data is updated by
experimental data, the method proposes that the points of the fuzzy data correspond to
the sampling points of FRF are to be replaced by the experimental data. Doing this
creates a new fuzzy curve which is the same as the previous one, except at those
points. In another word a “spiked” version of the original fuzzy curve is obtained. In
the last stage of this process, neural network is used to “learn” the spiked curve. By
controlling the learning process (by preventing it from overtraining), an updated fuzzy
curve is generated that is the final version of the mode shape. Examples are presented
to demonstrate the application of the proposed method in modelling of beams, a plate

and a structure (a three beams frame).

The method is extended to evaluate the error where a wrong MSF is assumed for the
mode shape. In this case the method finds the correct MSF among available guessed
MSFs. A further extension of the method is proposed for cases where there is no

guess available for a particular mode shape. In this situation the “closest” MSF is



selected among available MSFs. This MSF is modified by correcting the fuzzy rules

that is used in constructing of the fuzzy MSF.

Using engineering experience (judgment), heuristic knowledge and the developed
MSF rules in this method are the capabilities that cannot be provided with any
artificial intelligent system. This provides additional advantage relative to vibration
modelling approaches that have been developed until now. Therefore this method
includes all aspects of an effective analysis such as mixed artificial intelligence and
experimental validation, plus human interface/intelligence. Another advantage is,
MSF rules provide a novel approach in vibration modelling where enables the method
to start and operate with unknown input parameters such as unknown material
properties and imprecise structure dimensions. Hence the classical computational
procedures of obtaining the vibration behaviour of the system, from these inputs, are
not used in this approach. As a result, this method avoids the time consuming
computational procedure that exhibit in existing vibration modelling methods.
However, the validation procedure, using experimental tests (modal testing) is the
same acceptable procedure that is used in any other available methods which proves

the accuracy of the method.
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Fuzzy membership function of A
Fuzzy membership function of B
Damping factor

Critical damping

Modal damping matrix
Damping matrix

Operator

Average error

Module of elasticity

Error

Shape function
Force

Transfer matrix
Inertia
Stiffness
Length

Mass

Modal mass matrix

Mass matrix

Translational inertia matrix
Neural network output

Mode shape or eigenvector matrix

Modal displacement
Frequency ratio
Modal constant
Stiffness matrix
time

Normalized mode shape
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DOF

FFT
FRF

MDOF
MSF

NL

Volume
Learning weights
Plate deflection

Neural network input

Laplace transformation of x(t)

Neural network target output
Neural network input

Damping ratio

Natural frequency or eigenvalue
Damped natural frequency

Phase angle
Amplitude ratio
Learning rate

Plate aspect ratio

Learning weights
Mode shape or eigenvector
Wave length

Density

Degree of freedom

Fast Fourier transform
Frequency response function
Large

Medium

Multi degree of freedom
Mode shape form

Negative

Negative large



NLM Negative large medium

NM Negative medium

P Positive

PL Positive large

PLM Positive large medium
PM Positive medium

SDOF Single degree of freedom
Z Zero

ZNM Zero negative medium

ZPM Zero positive medium
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Chapter 1

Introduction and structure of thesis

1.1. Introduction

The industrial revolution demanded an increase in production and required an
advanced engineering technology. From early 1900 modelling of engineering systems
became more and more important, and more effort was made to find more accurate
and effective methods. Computers technology provided more powerful analysis tools
for engineers. Using computers enabled engineers to deal with large mathematical
matrices and calculations in design, analysis and modelling of systems. However as
technology become more and more complex classical analysis tools (even with help
of computers) becoming less effective in achieving effective and reliable solutions.
For example modal analysis of a complex structure such as a whole vehicle or a
helicopter may not provide reliable answer for more than first 10 modes. Even this
level of success will rely on modeller’s skills. Over the last 50 years, engineers and
scientist looked for alternative ways of dealing with complexity and high
dimensionality. As a result of this search an array of methods inspired from the
nature or based on human heuristics were developed. During this period Artificial
intelligence and biologically inspired algorithm (especially in optimisation such as
genetic algorithms) were developed. Although success of these methods is varied,

they will continue to be used as effective methods, when the alternative effective



2 Introduction and Structure of Thesis Chap. 1

classical methods (such as analytical approaches) are not available to deal with
complexity. The outcome of complexity was not only related to solution algorithms,
but parallel to those, it exposed another major problem related to modelling
engineering system. This was uncertainty. Engineers, from early days of modelling
were aware of this problem, however error (or uncertainty) due to identifying accurate
values for parameters were not major issue for a simple component design which
involved several such parameters. As dimensionality (complexity) increased
uncertainty has become prominent as individual uncertainties interact with each other
and propagate with analysis. It is becoming more and more obvious that to deal with
this problem, effective analysis tools are needed. Classically such tools included
stochastic analysis, which become the main tool in dealing with uncertainty. The
thesis, here, proposes an alternative way of dealing with uncertainty by using fuzzy

set theory.

Artificial intelligence methods such as neural networks were developed in 1950s. In
these methods, a large volume of data can be modelled by the network. The network
learns the relation between inputs and outputs data. Neural network methods include
the advantages of higher degree of robustness and capability of learning.
Effectiveness of neural network is due to the fact that neither a complicated

programming nor rigid algorithms are required.

One of the most successful methods, in the case of vibration analysis, is modal
analysis. In general this method may be classified as a system identification method.
The main purpose of these methods is to obtain a mathematical description of system
behaviour based on experimental observations. Experimental modal analysis method
has been developed for modelling of structural vibration, and found to be a very
reliable. In this case, accurate experimental measurements have to be carried out in
order to obtain good results. This method is also used in verifying other modelling
approaches such as Finite Element (FE) models. Various techniques have been
investigated by researchers for model updating using modal analysis. Model updating
is a technique to validate the model that is derived from a modelling method. Modal
analysis is not the only method in model updating, other techniques are also available

in updating of dynamical systems [1].
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The classical modelling methods require precise data, including responses or
parameters data that is obtained from the system behaviour or parameter
measurements. Modelling of engineering systems involve uncertainty in parameters
values of the system and errors in measurements. There are limitations in obtaining
accurate data of the systems. The sources of uncertainty in the modelling of

mechanical systems can be referred to as:

e Measurement error and instrumentation error involved in experiments.

e Manufacturing error where manufacturing of all machine parts involves
tolerance and the exact dimensions and material property can never be
produced.

¢ Error in operational conditions of the system such as high accelerations,
resiliency, large sudden loads, severe operation and uneven heating cause
changes in parameters of the system.

¢ Error in modelling nonlinearity. Some times some terms in equations of the
behaviour of the system are neglected for sake of simplification.

¢ Error due to changing the characteristic of systems in their lifetime as a result
of aging, creep, wear and corrosion.

e Errors, as mechanical and industrial systems may be modified during their life
of operation. Each modification changes the characteristics of the structure and
makes the original model of the system invalid.

e Errors, as it is difficult to measure material properties.

During the last 50 years more and more engineers have investigated the implication of
modelling engineering systems with uncertainty. Engineers realized that uncertainty
analysis could be used in dealing with the imprecisely defined data. In vibration
problems, the response of most mechanical systems is highly sensitive to variations in
the parameters of the system. Therefore, any realistic analysis requires considering the

uncertainties.

One of the common approaches in uncertainty analysis includes stochastic methods
[1, 2] and parallel to that, fuzzy set theory [4]. Randomness in stochastic methods has

been extensively studied in literature. Stochastic analysis deals with errors in
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experiments due to measurement and instrumentation errors, and the random
distribution of manufacturing errors. Fuzzy approaches have been used in control and
especially complex control problems. Researchers have also investigated application
of fuzzy sets in modelling of the systems, which includes uncertainties in the
parameters. In this respect parameters of a system such as mass, stiffness, damping,
material property and geometry are considered as uncertain parameters in the equation
of the motion of the system. For instance, fuzzy finite element approaches for
vibration analysis of imprecisely defined systems have been developed to deal with

uncertain parameters in the systems.

Therefore this thesis deals with uncertainty in the parameters and behaviour of the
system where the sources of uncertainties are due to lack of information about the
system, imprecise parameters, difficulties in mathematical modelling and limited
number of measurements. The proposed method in this thesis deals with uncertainty
in behaviour of the system directly, rather than trying to associate uncertainty of
response with parameters. This approach is different from other available techniques
for dealing with uncertainty proposed by other researchers. Current methods starts
with uncertain system parameters, then these parameters are used in the equation of
motion of the system to evaluate the system behaviour. This thesis offers a novel
method and approach in dealing with uncertainty. The main advantage of the
proposed method is that, it avoids complicated mathematical computations that exist

in other uncertainty based methods.

1.2. Structure of the Thesis

Chapter 1, presents an overview of the thesis consist of an introduction to the
proposed method and structure of the thesis. In the first section, an introduction in
artificial intelligent, uncertainty in modelling and modelling of vibration behaviour of

mechanical systems are presented.
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Chapter 2, presents a literature survey of vibration modelling methods based on
uncertainty approaches such as fuzzy sets, experimental modal analysis in model

updating and intelligent systems, such as neural networks.

Chapter 3, includes background of the theories that are used in this thesis consist of

modal analysis, fuzzy logic and neural networks theories.

Chapter 4, consists of a mathematical background of heuristically guessing the mode
shapes or obtaining Mode Shape Forms (MSFs). MSFs are determined for mass-
spring, one-dimensional bodies, two-dimensional bodies and two-dimensional

structures.

Chapter 5, presents the proposed method in this thesis. The procedure of the method
including constructing the guessed mode shapes by fuzzy sets, updating the fuzzy
mode shape forms by experimental modal analysis and obtaining the final version of
the mode shape by neural networks is presented. In this chapter, methods of

calculating and reducing the errors are also introduced.

Chapter 6, presents the experimental set up in performing the procedure in the
proposed method that consists of experimental modal analysis, fuzzy sets and neural

networks.

Chapter 7, presents four experimental examples regarding vibration modelling of
beams, plates and structures based on the proposed method. An example of reducing

error is presented for one of the beam examples.

Chapter 8, presents the discussions about the proposed method, a description of the

procedure of the method, the advantages and the application.

Chapter 9, presents the conclusion and future work of the thesis. The conclusion

provides and overview of the proposed method and the achievements in this research.



Chapter 2

Literature Review

The research in this thesis addresses the modelling of mechanical systems, in
particular, modelling the vibratory behaviour of systems using the uncertainty
approach. The literature relevant to this research is presented in this chapter. The
research refers to recent developments in the use of artificial intelligence (neural
networks) and fuzzy reasoning in the modelling of mechanical systems. However

some other relevant methods are also discussed in this chapter.

Uncertainty methods such as probabilistic methods can be used where there is a lack
of information about the system [2, 3]. In vibration modelling this information can be
referred to parameters such as mass, stiffness, damping, material properties, geometry

or behaviour of the system.

Fuzzy sets are proved to be very efficient in dealing with systems that consist of
uncertainty. This uncertainty can exist because of imprecisely defined characteristics
of the system, inaccurate data and lack of information. In the dynamic analysis of
structures, fuzzy sets are used to generalize the model of space structures [5, 6]. In
these papers fuzzy sets are used to enhance the transient response modelling of space
structures. In that respect, the finite element model of a structure is built for different
system parameters. The parameters of the structures consist of material properties,

geometrical parameters, initial nodal positions, velocities, accelerations, externally
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applied forces and constraint parameters. Inputs of the fuzzy sets are defined based on
these parameters. The behaviour of the structure such as deflection of a point on the
structure, natural frequency and the mode shapes of all nodes of the model defines the
output of the fuzzy system. These responses of the structure are obtained from the
finite element model. The behaviour of the structure for undefined parameters can be
obtained from the fuzzy model. In this method the fuzzy input is a set of structure
parameter that is introduced above and the corresponding responses are fuzzy outputs.
This method has been applied to the dynamic simulation of the next generation space
telescope [7] and a tethered satellite system [8] and uncertainty analysis of composite
materials [9]. In this method the output of the system is derived from a range of

inputs, where the range of inputs corresponds to variation of the input parameters.

Another approach where parameters are considered as fuzzy is the fuzzy finite
element static analysis of the structures where an optimization based scheme used for
the numerical solution of the linear fuzzy equations [10]. Static analysis of foundation
of the structures has been studied based on this method, where elastic modulus and
Poisson’s ratio of the soil are considered as uncertain parameters and introduced by
fuzzy sets [11]. In this method the equation of the system is obtained by finite
element methods. The parameters of the equation are considered as fuzzy parameters.
Therefore the behaviour of the system is obtained for a range of variation of input
parameters. The fuzzy finite element method has also been investigated in dynamic
analysis of structure for the systems with imprecisely defined parameters [12]. In this
method the accuracy of the method depends on the initial value of step length, where
the step length gives the length for changing the parameters of the system for each
finite element model calculation. The finite element model is obtained for each
variation of the length. In another word, the system behaviour is obtained by a FE
model for each variation of the parameters of the system. The smaller step length
provides more accuracy but more computational processing. Another limitation in this
method is that some numerical manipulations cannot directly be extended to fuzzy
equations. This is because some mathematical operations for real numbers cannot be
extended to fuzzy numbers. For example, fuzzy numbers do not perform numerical

subtraction and division.
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Fuzzy parameters used in FE analysis can also be used in analysis of behaviour of
mathematical equation of the motion of a system that the mathematical equation
includes imprecisely defined parameters. In this case, fuzzy parameters have been
employed in analysis of unbalanced nonlinear rotor systems [13]. In this research,
effects of fuzzy stiffness, mass and damping on the behaviour of the rotor system are
studied. It is shown that uncertainties in this system will not only affect the speed and

amplitude, but also the periodic characteristics of the system.

Uncertainty analysis is also used for system identification, such as identification of
material properties. For instant dependency between material properties and natural
frequencies of plates are modelled by fuzzy sets [14]. In this respect, the material

properties are obtained correspond to the natural frequencies of plates.

Uncertain excitations are also very important in analysis of structures. As an example,
analysis of plates subjected to uncertain excitations is addressed [15]. Uncertain load
and initial conditions has been applied to the plate, and the behaviour of the system is
studied. Mode shapes and behaviour of a point in the middle of the plate are studied.
Maximum error (uncertainty) of 50% can be found in different levels of uncertain
excitations relative to the deterministic model. Here, the deterministic model is the
model that is obtained by analytical approaches or can be referred to the mathematical
equation of motion of the system. However, in uncertainty approaches, the level of
confidence is evaluated rather than calculating the error. The error value is presented
here for uncertainty approaches to demonstrate the approximate error available in

uncertainty analysis.

Existence of uncertainty in problems generates errors in the results, of course this is
not error in normal sense, it only describes the level of uncertainty. 50% “error” can
be found in literature in the problems that deals with uncertainty [15]. This error is
obtained relative to deterministic models. Deterministic models are also not exact
because they include unavoidable uncertain parameters. Deterministic models are
referred to the models that are obtained by analytical approaches. This includes the
mathematical equation of motion of the mechanical system. Therefore the error
relative to a realistic model or the real behaviour of the system can be more or less

than 50%. Uncertainty analysis offers a tool to deal with the modelling of mechanical



Chap. 2 Literature Review 9

systems possessing levels of uncertainty and gives a trend, mean, range and

distribution characteristics of results [3].

The models that are derived from various available methods (i.e. mathematical or FE
methods) may carry errors. These errors (including parameter, discretisation and
configuration errors) occur due to inappropriate modelling assumptions, uncertainties
in material properties, insufficient modelling details, and incorrect boundary

conditions (such as joints modelling), etc [16].

Modal analysis is a powerful experimental approach in obtaining the vibration
behaviour of mechanical systems. This method is used for modelling and also
updating the vibratory models that has been derived from other methods (i.e. FE
model). Model updating reduces the modelling errors. The thesis presented here also
deals with modal analysis for model updating. Structural modification using
experimental modal analysis can be applied to update both the spatial model matrices
(described by mass, stiffness and damping parameters) and modal model matrices
(including natural frequencies, the corresponding mode shapes and modal damping
factors) [1]. Model updating is used to expand the modal and spatial parameter
matrices using different techniques and updating methods. Mode shape or eigenvector
expansion is known as mode expansion. One of the recent techniques in model
expansion and reduction can be referred to System equivalent reduction expansion
process (SEREP). This method can be used to both expand and reduce the degree of
freedom of the model of the system. The method relies on the finite element or
analytical model of the system. In these methods experimental measured data is called
master or active degree of freedoms (DOFs) that represent the incomplete model.
Incomplete models referred to models that the measurements have not been performed
the whole geometry of the body, or where it is not possible to measure the behaviour
of all the positions of a system. The unmeasured data is called inactive, deleted or
slave DOF. The full set of data is obtained from the FE model where the number of
DOF is the number of active DOF plus deleted DOF [1, 18]. However the model
updating calculation is very costly in terms of computer time for models with large
degrees of freedom. An example of costly and time consumption computation can be

referred to modelling of a bridge, a high rise or an offshore structure [1].
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The use of artificial neural network (ANN) is another area that the thesis studies.
Identification of structural dynamics is investigated by researchers using artificial
neural networks [19-22]. In these papers displacement, velocity and acceleration of an
arbitrary point on a structure is stored as the input training data of neural network
model. Hysteric forces of the equation of motion are obtained from experimental tests
(e.g. using force gauges) and used as ANN output training data. The mass matrix
elements are assumed to be known. A single degree of freedom equation of motion is
used as the model of the system. Neural network output (hysteric force) is placed in
this equation. In this stage the single degree of freedom equation of motion including
the hysteric force from the neural network output is the model of the system. To test
the result, an excitation is applied to the equation of the motion and also to the
physical system. The response from the equation of motion is calculated numerically.
The response from the physical system is also measured experimentally. These two
results are compared and proved the accuracy of the method. This method has been
applied to obtain the vibration behaviour of structure including nonlinearity as well as
linear behaviour [23, 24]. Over 40% error can be found in neural network system
identification methods [19-24]. This error is caused by the network, where there is a
lack of training data or the network is predicting the behaviour out of the training data
region. Fuzzy neural network has also been employed in the above problem where

this approach increases the training speed of the network [25].

Although the uncertainty analysis of vibration behaviour of mechanical systems is an
important issue, there is still little research in this area as the application of
uncertainty analysis is applied mostly in particular applications such as modelling of
civil structures [26]. Nevertheless, as we see from the literature, the research in this
area includes some general weaknesses and limitations. Some of these weaknesses
can be addressed as, mathematical complexity, time consuming and costly
computations, dependency of the method to other methods (such as FE and
mathematical approaches), large number of experimental measurements and
specificity of applications (lack of generalisation). The research carried out in this

thesis attempts to address some of these weaknesses and limitation.

In this thesis, the uncertainty is considered in the behaviour of structure rather than

parameters of the system. Considering the uncertainty in parameters of the system and
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the effect of this uncertainty in the behaviour of the system is investigated by
researchers as it was mentioned above. In the proposed method in this thesis a
heuristic guessing and the developed rules for guessing the mode shapes of structures
are considered as uncertain behaviour of structures. The guessed mode shapes are
referred to Mode Shape Forms (MSFs). Fuzzy sets are used to deal with uncertainty
in guessing the mode shapes. Fuzzy sets are used to construct the guessed mode
shapes or MSFs. Then experimental modal analysis is used to update the uncertain
model. The updating is achieved by updating MSFs with experimental data. To
achieve the final model, neural networks are used to fit MSF to experimental data in
the last step. Obtaining the vibration behaviour a clamped-clamped beam is presented
using the proposed method in this thesis by the author [27] and is presented in

Appendix E.

2.1. Summery

A literature review in vibration modelling using uncertainty approaches, modal
analysis and artificial intelligent was presented in this chapter. In this review,
application of fuzzy sets in modelling of vibratory behaviour of mechanical systems
was presented. In these applications fuzzy sets deal with the uncertainty in the
modelling approach. Modal analysis is introduced as an effective modelling approach
that also can be used in model updating. Application of artificial neural networks and
fuzzy neural networks are also reviewed in modelling of vibration behaviour of
structures. The proposed method in this thesis was introduced briefly as an effective

method relative to available methods in vibration modelling.



Chapter 3

Background Theories

This thesis is based on a vibration modelling method that deals with uncertainty in
modelling using fuzzy reasoning, modal analysis and neural networks. In this respect,
fuzzy sets deal with the uncertainty in vibratory behaviour of structures. Modal
analysis is used to update the fuzzy model and a neural network is used to obtain the
final version of the mode shapes of the structures. Therefore in this chapter, the theory
of fuzzy logic, modal analysis and neural networks are discussed.

In this research several software and experimental tools are used to implement each
theory. Fuzzy toolbox of MATLAB software [28] is used for the fuzzy operation.
Agilent VEE [29] software is used to obtain FRF and in the modal analysis procedure.
Neural network toolbox of MATLAB software is used to obtain the final version of
the mode shapes. The experimental procedure and application of the toolboxes is

presented in Chapter 6.

3.1. Fuzzy logic theory

Fuzzy logic can be used when the exact value of a phenomenon is not available.
Statements such as ‘speed is fast’ and ‘distance is long’ are some examples when

there are no boundaries or exact values available. In another word, the statements are

12
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uncertain. Fuzzy theory is one of the mathematical approaches to deal with uncertain

problems where the parameters of the system are imprecise.

The idea of fuzzy reasoning originates form human decision making process. ‘If ...
Then ...” is a statement that is used in human decision making. These ‘If ... Then ...’
statements are called rules in fuzzy theory. A fuzzy system consists of inputs, outputs
and fuzzy rules. A particular example is presented to understand inputs, outputs and
fuzzy rules of a fuzzy system. To illustrate a fuzzy decision system let us consider a
driver’s decisions in controlling his/her vehicle. To control the speed of the
automobile, consider following rules. ‘IF the distance is LONG and the speed is
LOW, THEN increase gas’. In this rule, the distance is the first input, the speed is the
second input and the gas is the output. The statement ‘IF the distance is LONG and
the speed is LOW, THEN increase gas’, is the fuzzy rule. Fuzzy rules relate the inputs
to outputs. After introducing the inputs, outputs and rules of the fuzzy system, then
these input, output and rules have to be introduced in a mathematical way. The

following sections give the mathematical background to fuzzy systems.

3.1.1 Fuzzy Sets

Fuzzy sets are the inputs and outputs in a fuzzy system. The fuzzy sets are introduced

below.

For a set x, a Fuzzy Subset A, refers to an interval [0, 1] that for each set of x there is a
corresponding function that varies between 0 and 1. A Fuzzy subset can simply be

called a Fuzzy set. Function A(x) is called membership function of subset A.

An example of a fuzzy membership function is illustrated in Figure 3-1 where the

vertical axis shows the subset A and the horizontal axis the set x.
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3.1.2. Membership Functions
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Figure 3-1. A fuzzy membership function (A triangle function).

There are various representations of fuzzy membership functions. Triangles and

trapezoids functions are the most popular membership functions in engineering

applications. These functions are linear [30]. The triangle membership function can

be presented by equation (3-1).

A(x) =

x—a) .
if a<x<c
c—a
x—b) .
if c<x<b
c—b
otherwise

(-1

Where point (c,a) is the high point and points (a,0) and (b,0) are the end points of

the triangle.

The trapezoid membership function can be presented by equation (3-2).

B(x) =

=
|
IS}

j if a<x<c
if c<x<d

J if d<x<b

)
|
Q

-b

=

otherwise

(3-2)
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Where points (c,a) and (d,a) are the high point and points (a,0) and (»,0) are the
end points of the trapezoid.
Other membership functions are available such as Gaussian, Cauchy function, Cauchy

and Sigmoidal functions [30].

3.1.3. Fuzzy inputs-outputs and fuzzy rules

Fuzzy membership functions are used to construct the fuzzy inputs and outputs.
Figure 3-2 illustrates an example of input or output membership functions. Triangle

membership functions are used in this example. A,, A,, A;, A,, A; and A, are 6

membership functions in Figure 3-2. Fuzzy membership functions are used to
introduce fuzzy linguistic terms such as low, high, medium, small, etc. In this respect,
each fuzzy linguistic term is introduced by a membership function. For example, in

Figure 3-2, A, can be LOW or any other fuzzy linguistic term. Each membership
function includes a region of an input or output. For example the region of A, in

Figure 3-2, includes x, to x,.x is the input or output value.

A A A4, A, A A,

¥

x X, X X, X X

Figure 3-2. Membership functions.

Fuzzy rules are used to relate the fuzzy inputs to the fuzzy outputs. These rules are
defined based on ‘If ... Then ...’ statements. In each statement the inputs and output

membership functions are placed as below in the rule statements.

‘If input 1 is A, input 2is B,, ..., Then outputis Y,’
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where A, is an input 1 membership function, B, is an input 2 membership function
and so on. Y, is an output membership function. Other rules are introduced with the

same format. The following section describes the method of obtaining the output

value from inputs and fuzzy rules.

3.1.4. Obtaining the output from inputs

The following example is presented to understand the method of obtaining the output
from inputs in fuzzy theory. Assume the fuzzy system consist of two inputs as in
Figure 3-3. In this example, the output has to be obtained from these two inputs. The

input values are X1 and F1.

Membership ) :
function 1 Mem?:}ersmp }’Iem?::ersmp
function 2 fanciioe:| Membership
function 1
1.0 1.0
|
X1 = 2

Figure 3-3. Two inputs.

The corresponding values of each input (X1 and F1) on the vertical axis is illustrated

in Figure 3-4.

1.0 1.0

|
|
v [ = = F

Figure 3-4. Corresponding value of each input on the vertical axis.



Sec. 3.1 Fuzzy Logic Theory 17

The method of obtaining the output from inputs is presented below. Mamdani method
[28] is used here to obtain the output from inputs. This method is one of the most
popular methods in engineering application that is used in MATLAB software [28].
Following procedure is used to obtain the output based on this method.

First, all combinations of the membership functions from one input with the
membership functions from the other input are considered as in Figure 3-5. In this
figure membership functions, 1 and 2 of each input is considered with membership

functions, 1 and 2 of the other input.

Membership :
function 2 Mﬂtﬂbﬂ ship
function 2
i ,—l/ 14 f
X  F
Membership
function 1
Membership R l— 14
function 2 B
B > F
Membership
function 2
14 14
Membership
function 1 e S
|
Membership
i function 1
14 140
Membership \| /
function 1
s=h B F
X1 Fl

Figure 3-5. All combinations of input values.



18 Background Theories Chap. 3

In the second stage, for each combination, the minimum value of input on the vertical
axis is considered. For example for combination 1 in Figure 3-7, the minimum value

is the value from input 1. This is illustrated in Figure 3-6.

0 104 Maximum

A e f] o E Minimum

X1 Fl

Figure 3-6. The minimum value between membership function 2 in input 1 and
membership function 2 in input 2

In the last stage, an area of output membership function is obtained. In this respect,
the corresponding output membership function of each combination is obtained from
the fuzzy rules and Mamdani method. In this specific example the fuzzy rules are as

below.

Rule 1: If input 1 is membership function 2 and input 2 is membership function 2,

then the output is the membership function 1.

Rule 2: If input 1 is membership function 2 and input 2 is membership function 1,

then the output is the membership function 2.

Rule 3: If input 1 is membership function 1 and input 2 is membership function 2,

then the output is the membership function 3.

Rule 4: If input 1 is membership function 1 and input 2 is membership function 1,

then the output is the membership function 4.

These rules are illustrated in Figure 3-7. The output area is obtained in each rule based

on Mamdani method.
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Rule 1:

Fuzzy Logic Theory

104

19

QOutput
membership
function 1

10

Fule Z:

= F

= d

Output
/ membership

function 2

= d

19

Rule 3: \

= F

14
Bule 4:

Output
membership
function 3

d

Output
membership
function 4

&= d

Figure 3-7. Obtaining the output from inputs using mamdani method

Based on Mamdani method the output area is obtained by adding all four areas in
Figure 3-7. The combination of output areas for the particular input is presented in

Figure 3-8.

Centroid

Figure 3-8. Output areas from the particular inputs.



20 Background Theories Chap. 3

In this stage, by applying a defuzzification method, the output magnitude can be

derived from the area shown in Figure 3-8.

3.1.5. Defuzzification

Defuzzification gives the output values from output areas. The output areas was
explained in the previous section (Figure 3-8). Different defuzzification methods are
available in literature such as centre of area, high-centre of area, max criterion, first of
maxima and middle of maxima methods. Centre of area method is the most popular
method and is used in this thesis. There are other names that are used for this method
such as centre of gravity or centroid method. In this method the centre of area under
the Fuzzy output curve is the output value. The centre of area can be obtained by

equation (3-3).

Ib zC(z)dz
7y = (3-3)
[ cxydz

Where C is the Fuzzy set and a and b are the interval of C. The centre of area can be

presented by equation (3-4) if the area is discrete.

Z',llzjc%)

== (3-4)
CG)

2

3.2. Theory of modal analysis

Modal analysis is used in the procedure of the proposed method in this thesis. Agilent
VEE [29] software is used to drive the frequency response functions (FRFs). The

theory of obtaining FRF is described in the following section.
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3.2.1. Fundamental review of theory of vibration

In modal analysis multi degree of freedom systems are considered as several SDOF

systems. SDOF vibration fundamentals are presented here.

a) Single degree of freedom forced vibration equation of motion

Force excitation equation of motion can be presented as [31-33].

mX +cx+kx = F,sin(@t) (3-5)

In force excitation situation the system oscillates at the same frequency @ of the

external force, but with a time or phase delay. The solution of the equation can be

presented as below.

x(t) = X sin(wt + @)

Where X (amplitude) and ¢ (phase angle) has to be determined.

Another expression of harmonic force with complex notation can be expressed as

F(t)=F,e’*e’™

Then the corresponding harmonic response to the above force would be as below.

x(1) = Xe

By substituting this solution in equation (3-5), the equation of motion will be as

below.
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(k- @*m+ joc)Xe e’ = F(t) = Fye'® e’ (3-6)

b) Frequency response function and Phase of harmonic vibration

Frequency response function (FRF) is defined by dividing X (amplitude) by excitation

force. From equation (3-6), FRF would be as below.

X

F,

0

l 1
CJ0-rF +gry

b0} -

Where phase of harmonic vibration is

¢ =tan" — 24; ta (3-7)

1-r

r is called frequency ratio and defined as r = % .

Damping ratio is a parameter that is used in vibration analysis and is defined as

c c
=—org¢= .
¢ c. ¢ 2+/km

In most metal structures the damping ratio is { <0.05 or even less.

Natural frequency of the single degree of freedom system can be introduced as

|k
a, = .
m

Damped natural frequency is defined by the following equation @, = @, /1-¢{7 .
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3.2.2. Analytical modal analysis

In this section, the theoretical modal analysis is described. A multi degree of freedom
(MDOF) mass spring and damper system is considered to derive uncoupled equations

of motion. These equations are used in obtaining the parameters required for modal

analysis.
a) Multi degree of freedom equation of motion
The equation of motions of the mass-spring-damper system is [17, 34]
v Kb+ [c Jid+ K Jad=1{F} (3-8)

The mass, stiffness, and damping matrixes would be

m, 0 ki ki,
M-l e
0 mn kﬂﬂ
¢, C,
C K
lc.]=|
C

x, (1) F (1)

x, (1) F, (1)

Displacement vector {x} and force vector {F } are {x}= and {F}=

x, (1) F, (1)
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b) Undamped free vibration

The transfer function will be introduced in the next section based on undamped
vibration. Undamped equation of motion of a system is introduced here that is used in
developing the multi degree of freedom transfer function. The Undamped equation of

motion is [17, 34].
[m s+ [k Ko} = {0} (3-9)

The general solution is {x(r)}={X }sin(ewr +w). Where {X} and y are constants and

@ is the natural frequency of the system. Derivative of the above equation gives the

acceleration as below.

{5}= -0*{x }sin(wr + w)

Then equation (3-9) becomes

(&,]- @M, )} = 0} (3-10)

Then first matrix must be zero. If the first matrix is equal to zero then its determinant

has to be zero or ‘[Kx]—a)2 [MX] = {0}

¢) MDOF undamped equation of motion in modal coordinate (space)

The general solution of a MDOF undamped vibration has the following form.

x,(1) X, X, X,
t X X X
xz:() = :2 sin(a)nlt)+ :2 sin(a)nzt)+---+ :2 sin(@, 1)

nm

x, (0], (X X

m) | m) o m) gy
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X

s

X
(—’J =A,, where i=1,2,---,m is the natural frequency number. Therefore we

have the following relationship.

X .
X, = 1 ~= Q,or X, = ﬂm‘ Qi -

tsi

Therefore the general solution of a MDOF undamped vibration has can be expressed

as the following form.

N

x, (1) Aa i o || Qial Sin(a)nlt + l//l)

x, (1) _ g A o A || Qo Sin(wnzt"'l//z)
'xm (t) ﬂ'msl /lmsZ e ﬂ’msm Qmsm Sin (wnZt + ')VZ )
Or
%(t)
q,(t)
or=lpy {ph, - {PLET =[PRe} (3-11)
q, ()
Where {P}, ={A4, A, - A, }is the i" mode shape. g, is the modal

displacement contributed by the first mode. Equation (3-11) is called the equation of

motion in modal coordinate.

d) Orthogonality of the modes relative to mass, stiffness and damping

matrixes

The principal of orthogonality is used in the next section to obtain the transfer
function. The modes are orthogonal to each other (Appendix A) therefore the

following relations can be expressed.
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{P} [M KP}, =0, {P} [M KP} =m,, and

{[M = [PY M, ][P]

&, ]=[P] [k, ][P] (3-12)

In this case, the modal mass (IM qJ) and modal stiffness ([K ’ J) matrixes are diagonal.

The system might have proportional damping as below.
[Cx] = al [Mx]+a2[Kx]

Where ¢, and «, are constants from the experiment. In this condition, the following

relation is valid.
lc,1=[PT[c.]i7]

e) Equation of motions in modal space (uncoupled equations)

By multiplying the modal matrixes to equation (3-8) and using equation (3-12), then

the equation of motion in modal space will be as below.

'm,, 0 1(G,®) [ea 0 (4,
mqZ ] qz'(t) + Cq2 ) Q2.(f) +
L 0 mqm é].m (t) O cqm q.2 (t)
'k, 0 (g, [0
qu q,(t) _ 0
L 0 kqm qm (t) 0
Or

v, l{at+[c, Hat+ [, Ja} =10}
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The equations of motion in modal space are uncoupled or each mass in the system
behaves like single degree of freedom mass-spring-damper system. For example, from

the above equation for ¢, , the equation of motion would be as below.
mqléjl +qu£11 +kq1% =0

This equation has the same solution of a single degree of freedom system as below.

q,(t)= Qle_g“’“’ sin(w”ﬂ/l -+ y/l)

c
Where ¢, = < and Q, can be obtained from initial conditions.
1 12,/kqlmq1 ) :

f) Transferring the modal coordinate to local coordinate

After uncoupling and solving the equations of motion, then it is required to transfer

the displacement in modal coordinate (g ) to the displacement in local coordinate ( x ).

For an m DOF system, the relationship between ¢ and x can be expressed as below.

q,(t)
oy=lr}, {P}, - {r},] qi(t) =[PRan}

q, (1)

By multiplying both sides of the equation (3-14) to [P]T and substituting x(¢) by the
following equation,
xn}=[Pla} (3-13)

The equation of motion will have the following form.

[, i+ e, fat+ [k, Jat =R}
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Where {R}= [P]T {F} (3-14)

For the m DOF system, the equations of motion for the i” mode will have the
following form.

m,q; +cqi51i +kqiqi =R,

As mentioned before these equations are uncoupled differential equations as the
equations are introduced in modal coordinate. These equations can be solved like the

SDOF equation of motion.

For each mode k, the absolute value of displacement divided by force will be

(displacement and force are expressed in modal coordinate)

RS 1
qu \/(1_rk2 )2 +(2§ka )2

%

‘q)lbk ((l))‘ = Rk

(0}
Where r, = —

nk

Therefore matrix form of the equation in modal space is expressed as below.

0| [Py 0 IR
5]2 (t) — q) q2 R2
qn (t) 0 q)qm Rm

Or can be expressed as below.

{at=l®, R} (3-15)
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From equations (3-13), (3-14) and (3-15), the displacement in the local coordinate can

be derived as below.
{=[rle P {F}

The above equation in indices form, have the following form.

{x}{g{zﬁ}k{za}:@q,k j{F}

Where {P}k is the k" eigenvector (of mode k).

If the force applies to mass number one with force function F|sin(e,) then the force

matrix will be as below.
{F}={Fsin@) 0 - 0}

g) Transfer function

Transfer function can be obtained by dividing the displacement (response) by the
excitation force. In the following section, the transfer function of the single degree of
freedom is introduced first and then the transfer function of the multi degree of
freedom is obtained. The equation of motion for a single degree of freedom system

(SDOF) can be expressed as below.
mx+cx+kx=F(t)
The above equation in frequency domain has the following form if x = X sin(@t + ¢)

k
and @’ =—.
m

@ -0’ +2jlw w)X =F/m (3-16)
(; @)X = Ff
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By applying Laplace transform to the MDOF equation of motion then the equation

will be as below.

([m]s> +[Cs + [KIKx ()} = {F (s)}

The equation can be presented in the following form.
(M1 +Icls +K])=[B(s)]

Where [B(s){X (s)}={F(s)}.

Then the transfer function that is the division of displacement by excitation force

would be as below.

X)) aglBb)]
=)™ 0]

|[B(s)] is called the characteristic equation. The solution of |[B(s)]| =0 gives the

eigenvalues of the system. For a mDOF system, the transfer function would be as

below.

By (s) - Ty ()

[rcsy]=| " 2

h_(s)

mm

The elements of the matrix are as below.

a,, + B, A, , + B,
hll(s):|: 11,1 11,1 } +|: 11,2 11,2 il Feeet
del mode?2

s +20,0, s+ @], . s’ +20,0,,5+ @],

ay, t ﬂll,ms
s2+20 o s+’
modem

m~n,m n,m

(3-17)
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Or in indices form, the & parameter would be

U a, +p0,.8
hil (S) — - il .k ﬁll,k ; (3'18)
o ST +20,0,, 5+ 0,,
The transfer function matrix can be introduced as the following equation .
n R
[H]=2 = k], (3-19)

k=1 sT+ 2§k a)n,ks + a)j,k
In this equation [R], =[a+ B s]k .

h) Mode shape matrix of MDOF systems

From section (f) the displacement in local coordinates can be expressed as [34]

{x}=[§{P}k{P}:¢q,k j{F}
Thus

_ {x} _ c T
[H(s)]—{T}—;{P}k {Pl®,, (3-20)

Where {P}k is the eigenvector.

From section (f) for mode k we have m,q, +c,q, +k,q, =R, and the following

equation.
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q 1 1
O  (w)=—F= —>><( J—%%:zgwn

R, my,s*+c,s+k, m, jm, (321)
1 1

=o  (0)=
q.k 2 2
m, s°+28w,s+w,

From (3-20) and (3-21), two transfer functions can be equal to each other as below.

2 2 = 2 2
m s+20 0, s+w, S +200,5+0,

=3 {Py Pl ! S ],

Or from Equation (3-16) the equation will have the following form.

[H]=S ! Z[R]k. (3-22)
k=1 Wy — @ +2J§kwwnk

The modal mass, for mode k, from equation (3-12) is as bellow.

m,, = 1P} [M KP},

{P}k is the eigenvector (mode shape) and,

Py APY, )i =l dul; =[], (3-23)

In this equation {u}k is the normalized mode shape ({u}k = {P}k / /M, ) or the mode

shapes normalized relative to mass.
uf M Ju, =1

Matrix [R]k for a particular mode k can be expressed in the following form.
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uu, Wi, ... WU, ... UU,
Uy, Uy, oo Uyl ... U U,
[R], =
k
wu,  uuy, ... WU, uU,
LUy WUy WU WU, |

Column / from matrix R is equal to column / from matrix u as below.

R, uu,
R,, uu;
R, uu,
Rnl k unul k

R
Iy _
k= = Uy =) Ry,
U
_ Ry,
=
U
Ry, (3-24)
Uy =
U
_ Rnl,k
unk -
Ui

For w, = @, , from Equations (3-22) and (3-24) the following relation is valid.

Uy Uy :|hil |k &y a)jk (3-25)

The modal matrix of the system consists of mode shapes of the system is stated as

below.

[U]:[{u}l {”}2 {u}n]
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3.3. Theory of Neural Networks

The theory of neural networks is presented in this section. Artificial neural network is
a mathematical model of biological neural networks.

In this section the mathematical presentation of this method is described. In neural
network, there is a set of inputs and outputs data. The task of neural network includes
simulation of these input-output data. In another word neural network is a tool to find
mathematical relationship between sets of input-outputs. In fact neural network is a
multi dimensional interpolation method. The mathematical approach is presented
below. The inputs and outputs of the neural network can be related to each other by

the following equation [30]:

In this equation, y, is the output, for i =1,...,m, and x; is the input for j=1,...,n.
In this case the system is a multi-input-multi-output system that each set of input and
output data consist of # inputs and m outputs. Neural network task includes obtaining

the coefficient w;. w;, called weight. Function f, can be selected arbitrary. The

most popular function in engineering applications is referred to sigmoid function and

is expressed as below.

1
1+e™

f)=

Neural networks consist of an input layer (containing input data), an output layer
(containing output data) and middle layers that consist of the mathematical relation of
input and output layers. Middle layers are called hidden layers. If there is only one
hidden layer in the network then the network is called single layer neural network or

perceptron. Neural network uses the available input-output data to obtain w; . The
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method for deriving w;, from available input-output data is called learning algorithm.

Different learning algorithms are available for multi layer and single layer networks.
In this section delta rule algorithm is introduced for single layer and
backpropagation algorithm for multi layer algorithm as the most popular methods in
engineering applications. The data used in obtaining the neural network parameters

(weights) is called training data. Training data are the input-output data sets as below.
7=(xt.y!)

Where i =1,...,m is the input numbers of each set, j=1,...,n is the output numbers
of each set of data and g =1,..., N is the number of input-output sets of available

data.
a) The delta rule

Obtaining the weights is the aim of learning algorithm. At the first stage, arbitrary
values are considered for weights. The difference between available output data ( y/),

also known as target, and output of the neural network determines the error.
Minimizing this error is the algorithm task. The weight values are obtained by

minimizing the error. The summation of the errors is introduced as [30].

£ =23 b ~orf (3-26)

Where o/ is the output of the neural network that is calculated by the weights. y! is
the available output data from the real system. y/ is called target. Network task is to

derive o/ as close as y; by changing the weights values. i is the number of outputs
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and ¢ is the number of training data set. As mentioned before, o value can be

calculated by the network weights by the following equation.

ol = fl[i wijij (3-27)

Where x; is the input for j=1,...,n and j is the number of inputs in each training

data set. From equations (3-26) and (3-27), it can be seen that the error is a function of

w; . To investigate the variation of error respect to w;;, the gradient of E has to be

calculated. This leads to obtaining the optimised value of weights. The following

equation can be used to update the weight values.

Wy Wy +Aij (3-28)
Where
oE
Aw, =—-n——m
Jk ﬂawy

In this equation 77 >0 is a constant value and can be chosen arbitrary. 7 is called

learning rate. The derivative of error respect to w;; can be calculated as bellow.

dE L OE!
=

ow;, 1 ow;,

From the above equation and equation (3-26):

E' D (L&, v
" —M(EZ()’? Of)j

ij i=1

= (=0 2 (5t =t )+ (v =0t 2 (52 =t o+ v =0 =23 o)

q

0
As y is a constant data, then BL =0 and from (3-27)

Wi
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ij j=0
(v =0 ) AN
ym m m mj j
Wi Jj=0

(3-29)

fl(ZWIjij #0 as w; is a constant

Jj=0

Where aifl(Zwljijzo if i #1, but
j=0

ij W,

J

value. The same relation is valid for i =2,...,m .Then equation (3-29) will be as

below.
oE“ s q) O <

=—{y? -0 )— f, 3-30
v, (v =o; )awgﬁ(;wyxj (3-30)

By chain derivative respect to S in equation (3-30) will be in the following form.

OE' _ (4_ 4)95 0
w v O)a asf(Z Wi* J

ij

By changing indices the equation can be presented in the following forms

OE' _ (4_,4)95 9
w. b )aw an(Z Wit j

Jji

E' ([, 35 9
=-bi=ll5, W, asf(z i j (3-31)

Where
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oS 0 <
= x.=0.0.x. =
aij aij ; lexl i klxl xk
And
a ’
gfj(s):fj

Then equation (3-31) will be in the following form.

Equations (3-28) and (3-32) can be used to update the weights.

b) The backpropagation algorithm

Chap. 3

(3-32)

This learning algorithm is designed for multi layer networks. The principal of this

method is based on the delta rule algorithm. The relation for a two layer network

consists of a hidden layer and an output layer is presented below. In this method the

weights can be updated by the following relations [30].

N aE!!
Av. =—
j U;avﬁ

= > (o)

=1

(3-33)

<
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Where v, is the weight between outputs o} and z/, and z/ is the net input of the
output layer (the behaves like inputs in delta rule). z! is also the output of the hidden

layer. Weights can relate z! to the inputs, x/, by the following equation.

o =f,-(iw,»kxzj

k=0

5;’ in equation (3-33) can be presented as below.

5;‘] :(0;‘] _y;‘])fk (ZvijZj
P

The same equation in delta rule can be used to update the weights between the inputs

and the hidden layer as below.

> OE*

3-34
T ow,, ( )

Aw, =-n

It has been investigated that the following equation can be used to update these

weights [30].

JdE! OE‘ 9z
owy 9z dw,

Equations (3-33) and (3-34) can be used to update the weights in this algorithm. After
minimizing the weights by the presented method then the network is trained and is

ready to use.

3.3.1. Neural fuzzy systems

Combination of fuzzy and neural networks is possible in two ways. The first method

is referred to as fuzzy-neural systems and the second one to neural-fuzzy. In this

project the application of neural fuzzy method is used that is a combination of fuzzy
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systems and neural networks. In this method, the training data of a real system is
available. A fuzzy system consists of membership functions and the rules, are built
based on this training data. Then this fuzzy system can be used as a network model.
The most popular method in engineering application that is used in MATLAB
software is called adaptive neural network fuzzy inference systems [30]. The training
algorithm is known as neuro-fuzzy inference systems or adaptive network fuzzy
inference systems (ANFIS). This method is presented below. The available training

data set can be assumed as below.

o) ey

For a single input and single output training data, fuzzy rules can be presented as

below.
R, :If xisA, theny =z,

Where A, are fuzzy membership functions and z, are real numbers and both are

desired. z;, is called consequent parameters. Fuzzy membership functions A, can be

a sigmoid function as below.

A(X)=——7—
1+ hta)

a; and b, are the parameter of the membership function A, . These parameters are

called premise parameters and are desired. The fuzzy output can be presented by the

centre of gravity defuzzification method that mentioned before as below.

The training set can be used to learn the premise parameter (a, and b,) and

consequent parameters ( z; ). The error can be calculated by the following equation.
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2

E" :Ek(ai’bi’zi):%(Ok(ai’bi’zi)_yk)

The algorithm that the parameters can be calculated based on the error function is as

below.
k
A.
z,(t+1)= z,-(t)—?]aaE = z,(1)-nlo* - yk)_n )
2 > Ax)
i=1
k
a,(t+1)=a,6)-nE
da,
oE*

bt +1)=b,(t)-7

ob,

1

n >0 is the learning rate.

3.4. Conclusion

The theory of fuzzy logic, modal analysis and neural networks are presented in this
chapter. Some of these theories have been used in the proposed method in this thesis
such as in modal analysis mode shape extraction. Although MATLAB software is
used to perform fuzzy logic and neural network procedure, it is very important to
understand the theory of these concepts as it helps for understanding the proposed

method.



Chapter 4

Estimating Mode Shapes

In this chapter, vibration behaviour or mode shapes of mechanical systems are
investigated. The aim is to obtain a general rule of estimating an approximate mode
shape for structures. In this section, first, the mode shapes of mass spring systems are
studied. In this study the mode shapes of two and multi mass-spring systems are
investigated. Then the problem of one-dimensional elastic bodies is explored and
again, the mode shapes are studied. In the end, the study is expanded to mode shapes of

structures.

This section presents a background of guessing the mode shapes of different
mechanical systems. It is argued that guessing is possible heuristically, that is based on
the experiments and observations of vibration behaviour of structures. Some rules are
also developed in this chapter in order to guess the mode shapes. However there is no
claim that guessing is always possible. In this respect, two methods are introduced for
two cases where the guessing is not possible or the guess is wrong (These methods are
explained in Chapter 5). The Mode Shape Form (MSF) term is proposed here to
describe an approximate mode shape. This chapter studies mode shapes of various
mechanical systems and attempt to derive rules relating to mode shapes. Guessed mode
shape, approximate mode shape and the mode shape form (MSF) are used in this thesis

where all represent the same meaning.

42
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4.1. Two Degrees of freedom mass-spring systems

In this section the mode shapes of two-degree of freedom (2DOF) mass and spring
systems are investigated. The aim is to show that the approximate mode shape or MSF
of a two degree of freedom mass and spring system always obeys a rule, regardless of
magnitudes of masses and springs stiffness. This rule describes the direction of motion

of the masses for the first and the second natural frequency.

—Ff +

o \_B, A5 \_L:)

X x;

Figure 4-1. Two degree of freedom mass and spring system.

Figure 4-1 demonstrates a two-degree of freedom mass-spring system. The free body

diagram of the system is presented in Figure 4-2.

g g m —I> Ky (3 — ) <— m

Figure 4-2. Free body diagram.

If x,> x,, from Figure 4-2, the Newton equation of motion can be presented as below.

{ —kz(xz—x1)=m25€2 (4-1)
k,

(xz —X )_ kyx, =mx,
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If x=Xsinw? then ¥ =—X®’ sin®t and by substituting these equations in (4-1) then

the equation will have the following form.

(_ k, "'mzw2 )Xz =—k, X,
kX, +(ky —k +m@*)X, =0

The above equations can be expressed as below.

&_—_kZ (4-2)
X, —k,+me’

And

&:—kz—kﬁmlw2 4-3)

The procedure proposed here is different than classical solution of eigenvalues and
eigenvectors. In the method developed here, approximate mode shapes (in terms of
direction of motion of the masses) are assumed and feasible frequencies satisfying

mode shape equations are investigated.

The objective is to obtain the MSFs from Equations (4-2) and (4-3). MSFs give the
direction of motion of the masses relative to each other. There is one MSF for each
natural frequency of the system. In obtaining MSFs, it is not required to know the
magnitude of natural frequencies. The only information required for MSFs is, if the
MSF belongs to the first natural frequency or the second natural frequency for 2DOF
systems. For a 2DOF system there are two natural frequencies and two mode shapes.

In eigenvector problems, displacement of one of masses can be considered to have the
value of one and then the displacement of the other masses are calculated relative to

this mass. Therefore it is possible to assume X, =1. However in the process of
obtaining MSFs presented in this chapter, it is sufficient to have X,)0. The same MSF

have to be obtained from both Equation (4-2) and Equation (4-3) for each natural
frequency. If the MSF from Equation (4-2) is different from Equation (4-3) then the
MSF is not acceptable. The reason is, each natural frequency can only exhibit one mode

shape.
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Two symbols, — @ and < are used to show the displacement of a mass in the
positive direction and the negative direction respectively. In another word X — @ and

X « are equivalentto X )0 and X (0 respectively.

For X,)0:

X
1) To have 72>0, or X, > ® and X, — @ for consistency
1

From Equation (4-2) the natural frequency must be smaller than k—2 and from

m,

k, +k,

m,

Equation (4-3) smaller than

X
ii) To have X—2<0,0r X,>® and X, «

1

k
From Equation (4-2) the natural frequency must be larger than |—* and from

m,

k, +k,

m

Equation (4-3) the natural frequency must be larger than

Now it is required to know which MSF is the first and which one is the second. In this
respect, the MSF for the smallest natural frequency is the first MSF and the MSF for the
larger natural frequency is the second MSF. Therefore the results can be expressed as

below.

¢ From section (i), the first MSF is
X, »>®and X, - ®
¢ From section (ii), the second MSF is

X, > ® and X, <

Therefore the conclusion of this section is the rule in obtaining the MSFs for the first
and the second natural frequency of 2DOF (degree of freedom) mass-spring systems as

below.
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The MSF for the first natural frequency (The first MSF): the motion of two masses

follow the same direction of motion.

The MSF for the second natural frequency (The second MSF): the displacements of

the masses are in the opposite directions relative to each other.

4.2. Three Degrees of freedom mass-spring system

The objective of this section is to obtain MSF rules for the 3DOF mass-spring systems.
The same procedure that applied to 2DOF system is applied here. A 3DOF mass-spring

system is presented in Figure 4-3.

S—p 51

PNVANAENAA
k, |_9 k; |_B L= \—9‘

Figure 4-3. 3DOF mass-spring system

If x; > x, > x, then the free body diagram will be

kixlg—mt —e k2231 ga—Im2l—e k30332 a—m3

Figure 4-4. 3DOF free body diagram of the mass-spring system

The equation of motions can be obtained as

k, (xz _x1)_k1x1 =m X,
ky (x3 _xz)_kz (xz _x1): m,Xx, (4-4)

_ka(xa —x2)= m, X,
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If x, = X,sinwt then ¥ =—X,@”sin®t and by substituting these equations in (4-4)

then the equations can be expressed as below.

kX, +(k, —k, +m@*)X, =0 (4-5)
kX, + (ks —ky +my@)X, +k,X, =0 (4-6)
k3X2 +(_k3 +m3(02)X3 =0 4-7)

From equation (4-5):

X, k,+k —mao’

4-8
X, ., (4-8)
From equation (4-7):
X, _k—mao® (4-9)

X ks

Where @, k and m are positive parameters. Again the same procedure as described
above for 2 mass system is followed. The procedure starts with assuming a mode

shape.

If X, =1.

1) Tohave X, -® X, 5@ X, >®

k, +k
From Equation (4-8) the natural frequency must be smaller than _|—>—" and
m
: ks
from Equation (4-9) the natural frequency must be smaller than |— .
n,
i) Tohave X, - ® X, 5@ X, «
. k, +k,
From Equation (4-8) the natural frequency must be smaller than and
m

from Equation (4-9) the natural frequency must be larger than |—-

BE
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ii) Tohave X, < X, - ® X, -5

+
From Equation (4-8) the natural frequency must be larger than ky +k, and from
nm,
, ks
Equation (4-9) the natural frequency must be smaller than _|— .
n;,
iv) Tohave X, - ® X, « X, —>®
. k 2 + k 1
From Equation (4-8) the natural frequency must be larger than and from
m

1

k
Equation (4-9) the natural frequency must be larger than _|—> .
n,

Now the MSF's from sections (i), (ii), (iii) and (iv) has to be investigated in an order to
understand which MSF is the first, second or third. As this is a 3DOF system then we
have three MSFs. Each MSF is exhibited in a natural frequency. From sections (i), (ii),

(ii1) and (iv), for each MSF there is an indication of magnitude of a natural frequency

k, +k
which shows if the natural frequency is smaller or larger than certain values ( /#
ml

/k D . :
and |—-). The objective is, to locate the natural frequencies corresponding to these
m3

MSFss.
o k, +k ks
From section (i) the natural frequency must be smaller than | —— and _|—.
ml m3
. .. k2 + kl
From section (ii) the natural frequency must be smaller than .| ——— and larger than
nm,
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k,+k
From section (iii) the natural frequency must be larger than _|——— and smaller than
ml
ks
m3
o k, +k,
From section (iv) the natural frequency must be larger than and larger than
m

k3

ms

By comparing the above statements, (i) is the smallest natural frequency, (ii) or (iii) is

the middle natural frequency and (iv) is the largest natural frequency. In a particular

k, +k k
system, either section (ii) or section (iii) is true. This depend on either |——") ’—3
m, my
+ k k, +k k k, +k k
or M( — If [-2—1) |— then section (ii) is true and if | —=>—21( |—-,
m, ms m, my m, my

then section (iii) is true.

The outcomes of this section are some rules for guessing the MSFs for a 3DOF mass-

spring system. These rules are as below.

The MSF for the first natural frequency (The first MSF): the motion of the three

masses follow the same direction of motion.

The MSF for the second natural frequency (The second MSF): the motion of the two
neighbour masses (neighbours, 1-2 or 2-3) follow the same direction of motion and
the displacements of the third mass is in the opposite directions relative to the other

two masses.

The MSF for the third natural frequency (The third MSF): the motion of masses 1 and
3 follow the same direction and the displacements of mass2 (the middle mass) is in

the opposite directions relative to 1 and 3.
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The following rule is proposed to guess the n™ MSF of am degree of freedom mass-

spring system.

The first
change in
direction of
motion of the
masses

The second
change in
direction of
motion of the
masses

l

l

fn-1)* change
in direction of
motion of the
masses

P SR LD (R T TR i I oD e L

X

-8

m

Therefore the rule for the n™ MSF of a m degree of freedom mass-spring system is,

there are n-1 places on the MSF where the direction of motion of the masses

changes.

Based on this rule mode shapes for a four mass system can be proposed as follow.

The first MSF:

X -0 X,-9 X,-50® X, >0

The second MSF:

X, 2@ X,-50 X, =50 X, «
or

X, 2@ X, =20 X, « X, <
or

X, =20 X, X, X, «

The third MSF:

X, -0 X,« X, 50 X, >0
or

X =290 X,-0 X, « X, -0
or

X, 2@ X, X;« X, 500
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The forth MSF:
X, 5@ X, X, 50 X, «

In order to use rules obtained above, these need to be further generalised by exploring
various combination or nodal (mass) neighbourhood. The study will enable an

understanding of 2 dimensional structures to be built.

Another 3DOF mass spring system is illustrated in Figure 4-5. In this example, mass 1
and mass 3 are connected. This structure has some similarity to a triangular element in

finite element modelling where three nodes are connected to each other.

L
o ANE
AT ANK
K.
A

Figure 4-5. A 3DOF mass-spring system

The equations of motion of this system are as below.

Bk —mw)X, - kX, —kX, =0
— kX, + 2k —mw*)X, —kX, =0
—kX, —kX, + 2k —ma® )X, =0

These equations can also be expressed as below.

X, 2k-mo’

X, 4k-ma’

X, 3k-mo’
X_3_4k—ma)2

X, -k*-Qk-mw*)
X, 3k -mka’
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The MSFs can be obtained using the same approach as above. The only difference is,
the MSFs are presented with the same configuration of masses as in Figure 4-5. These

MSFs are presented below.

. X,—>® , k
)X, —-® then @ (—
X ®

3—> m
X, «
i) X, =0 ° then @” =X
X, —>® m
X, «
i) X, >® " ° then%(a)z(ﬁ
X, < m m

In section (ii) equal sign is used. The reason is that, this is the only condition that

satisfies all three equations of motion. The rules are as below.

The first MSF is the same MSF rule for mDOF system that stated above (three masses
follow the same direction of motion). For the second and third MSFs we have:

For this mass-spring system, it is not possible to have 2 changes in the direction of
motion of the masses relative to each other. This can be seen by looking at the above
MSFs. Therefore in the second and third MSFs rule, direction of motion of two masses
are the same, and the third mass direction is in the opposite direction. In this case
another rule is introduced to obtain the second and third MSFs. In a smaller natural
frequency, the mass with the smaller number of spring connection has the opposite
direction of the motion to the other masses (the rule for case (ii)). In a larger natural
frequency, the mass with the larger number of spring connection has the opposite

direction of the motion to the other masses (the rule for case (iii)).

In the above example, in the second natural frequency, the direction of motion of
masses 2 and 3 are in opposite direction relative to each other. In the third natural
frequency, the direction of motion of mass 1 is in opposite direction relative to 2 and 3.
The reason is that, there are 3 of spring connections for mass1 but mass 2 and 3 has two
spring connection each. Therefore mass number 1 with 3 spring connection has the

opposite direction of motion relative to the masses 2 and 3 in a higher natural
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frequency mode (the third natural frequency). This rule can be applied for the
systems where the number of spring connections for each mass is different with equal

mass and stiffness values.

4.3. 4DOF mass-spring system

The objective in this section is to obtain the MSF for mass-spring systems with more
than one spring connection for each mass. A 4DOF mass-spring system is illustrated in

Figure 4-6.

—

¥ e

I—E—?I—E—J’

AN

i % f :Lf\_\K
AN
Lo Mo L e

X en

MK/\r
F/VK\r

Ll

Figure 4-6. A 4DOF mass-spring system

The MSFs are presented with the same configuration of masses as in Figure 4-6. Using
the same approach for the 3DOF mass-spring system in Figure 4-5 then the MSFs can

be expressed as below.

X, —->® X,—-® ., 2k

i then o” (—
X, —»® X,—->® m
X, -0 X,-®

i) ! § then %(wz(i
X, < X, < m 2m
X < X,-0

iif) ! : then ﬁmz(—(ﬁ”)k
X, X, > 2m m

iv) then (02)M
X, >® X, « m
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Therefore the MSF rules for the above system can be expressed as below. The rule for
the first MSF is the same rule as before where all the masses follow the same direction
of motion. In order to understand the motion, the system is seen as collection of 2 mass
systems. In this respect, the directions of motion of neighbour masses are the subject of
interest, rather than motion of individual masses. For example, in the MSF in section
(iii), the direction of motion of neighbour masses 1 and 3 is in opposite direction
relative to neighbour masses 2 and 4. Therefore there is only one change in the
direction of motion of the masses. The rule for this example is as below. There is less
change in direction of motion of the neighbour masses in lower natural frequencies and
more change in direction of motion of the masses in higher natural frequencies. In this
example, zero change in direction of motion of masses in the first natural frequency,
one change in the second and third natural frequency and 4 changes in the forth natural

frequency.

For the mass arrangement in Figure 4-6, it is not possible to have 3 changes in the
direction of motion of the masses. Therefore we do not have this option in the above
MSFs. In this example the second and the third MSFs obey the same rule. In another
word, no rule is obtained to identify the difference between the second and the third

MSFs in this example.

4.4. One-dimensional elastic bodies

In this section the objective is to obtain a general rule for MSFs of one-dimensional
elastic bodies in lateral vibration. A clamped-free beam with two degrees of freedom
(D1 and D2) is considered in lateral vibration. The following approach is used to obtain

the first and second MSFs in this example. The beam is illustrated in Figure 4-7.

The equation of motion of the beam is given by [35]. The elemental mass and stiffness

matrices are presented in the Appendix C.
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402

o | o | x

BN

Py
F

3

Figure 4-7. A 2DOF clamped-free beam.

The structural stiffness matrix can be obtained by the following equation.

SziKi=K1+K2

i=1

Where S is the structural stiffness matrix, n, is the number of the elements and K, is

the stiffness matrix of the elements of the structure. The stiffness matrix can be

expressed by the following relation.

0 0O 0 0 O 0 0 O
S=a/0 6 0|+a/0 6 —-6|=a/0 12 -6
0 0O 0 -6 6 0 -6 6

: : 2FEI : : .
In this relation a = N The structural mass matrix can be obtained by the following

equation.

M :iM,. =M, +M,

i=1
Where M is the structural mass matrix, »n, is the number of the elements and M, is the

mass matrix of the elements of the structure. This equation can be obtained as below.
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0 0 O 0 O 0 0 O 0
M =b{0 156 0|+b0 156 54 |=bH0 312 54
0 0 O 0 54 156 0 54 156

PA L
420

In this relation b =

Free vibration equation of motion of the structure can be expressed as below.
(S - wizM )q)i =0

Where i =1,2,...,n, and n is the number of degrees of freedom. &, is a vector of nodal

amplitude or the mode shape for the i” mode of vibration. w, is the angular frequency

of mode i. The equation of motion can be obtained by substituting the mass and

stiffness matrices in this equation as below.

0 O 0 0O O 0 P, 0
a0 12 -6 —ba),.2 0 312 54 P, =40
0 -6 ©6 0 54 156|)| P, 0
Then
0 0 0 P,

0
0 12a-312b&’ —6a-54b@’ @, =10
0 —6a-54bw’ 6a—156bw?’ ||®,| |0

The equations of motion can be derived from the above matrix as below.
(12a-312b@ )@, — (6a +54b0” J0, =0 (4-10)

Then

D,  6a+54ba; @-11)
@, 12a-312bw’
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And

(- 6a—54bw? ¥, +(6a—156b@? b, =0
Then

D, 6a-156bw;

D,  6a+54bw’

d 6a + 54b@?
j:ﬁ and if @, =+1then:
3 a-— ;

57

4-12)

1) Tohave ®, - @® &, - @ then from Equations (4-11) and (4-12),

0 12a _a
3120 26b°

This is the first MSF of the beam. In this MSF all the points on beam (in this example, 2

points on the beam) follow the same direction of motion. This is a general rule of MSF

for beams as proved above. This MSF is valid for any value of the parameters of the

system. These parameters consist of E, I, A,, L and p. This result is illustrated in

Figure 4-8.

I ol

@,

Figure 4-8. The first mode shape form.

The conclusion of this section for the first MSF is as below.

@,

All the points on the body follow the same direction of motion in the first MSF.

This rule for the first MSF is the same as the rule for mass spring systems.
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ii) To have ®, - ® &, < then from equations (4-11) and (4-12),

o) 12a _a
3120 26b°

This is the second MSF of the beam. In this MSF, the direction of motion of point 2 on

the beam is opposite of direction of motion of point 3 (Figure 4-9). This is a general
rule of the second MSF for any value of the beam parameter such as a and b. This result

is illustrated in Figure 4-9.

Figure 4-9. The second mode shape form.

The rule for the second MSF of a beam is as below.

The displacement of the nodes on the beam is in the opposite direction of motion

relative to each other.

This rule for the second MSF is the similar to the rule for mass spring systems.

In describing the mode shape of this continuous system its boundary conditions need to
be stated. In this case the beam is clamped and at this point, the deflection as well as

its slope are zero.

By looking at the similarity between the mass-spring and beam problems then the

following rule is proposed to guess the n™ MSF of am degree of freedom beam.

There are n-1 places on the MSF where the direction of motion of the nodes on the

beam changes.
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4.5. Two-dimensional elastic bodies

In this section the objective is to obtain a general rule for MSFs of two-dimensional
elastic bodies in lateral vibration. The equation of motion of the plate in Figure 4-10 is

as below [38-40].

4 4 4
O'Wxy), ,0'W(xy) I'Wlxy)_qlxy)

ox* ox’dy’ oy’ D

. &' (x. y.t)

ot

o
=

N
[T -

7

b v
H-'[x: ¥. r_]

Jyw

Figure 4-10. A rectangular plate and an element of the plate

Where ¢(x, y) is the applied static force and W is the displacement (deflection) of the

plate.

Free vibration equation of motion of the plate is as below.

84W(x, y,t)
or?

4 4 4
9*W(x, y,1) 42 9*W(x, y,1) N *W(x, y,1)

ox* ox’ay’ dy* =0 S

P
D
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Where the last term is the inertial force.

Free vibration of rectangular plates with simple support along all edges is given as

below (Appendix B).

W(&.n)= A, sin(nzm)sin (mzg)

Where A, , is the amplitude coefficient and m and n are positive integers. In this

equation for m=1, n=1, 0<&<1 and 0<7 <1, then W(&,7)>0. Therefore in the
first MSF, the displacement of all the points on the plate is in the positive direction. In
another word all points follow the same direction of motion (same rule as the beam and
mass-spring examples). The first MSF of a rectangular plate with simple support along

all edges is illustrated in Figure 4-11.

'I. 1 I

f-{*_}r J:r"ﬂ v.t iy ““ bt .
}l 1 11“\““"". 2

J?I f!&” “‘ 1.1““‘“{ AR

A
Iﬂq_f%; Aty b

Figure 4-11. MSF’s of a simple support plate along all edges.

m and n identify the number of waves in a particular mode shape. m and n can be

obtained from the following equation [38].

(nx)’

q)2

A =(mx) +
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b . . .. . :
where ® =—. A is obtained by giving various m and n values to the above equation. m
a

and n represent the number of waves in x and y directions respectively. Smaller value of
A for a particular m and n values corresponds to the lower natural frequency. Therefore
value of A identifies that a mode shape with a particular m and n is a higher or lower

mode.
Therefore a rule is introduced for plate mode shapes as below.

The rule for the n™ MSF is, there are n-1 places on the MSF where the direction of

motion of the particles changes.

However this rule may not be correct in all cases but still can be applied because the
MSF will be corrected by the method of correcting fuzzy MSFs that is presented in
chapter 5.

In describing the mode shape of this continuous system its boundary conditions need to
be stated. In this case the plate is simply supported along all edges and the deflection

18 zero.

4.6. Structural Frame Vibrations

In this section the objective is to obtain a general rule for MSF's of the structural lateral
vibration. The following approach is used to obtain the first and second MSFs of a 3-
beam structure (Figure 4-12) with 3 degrees of freedom (D1, D2 and D3).

Then the system of equation can be expressed as below (Appendix C).

bra, +212a, - 2 (412¢, +4L¢,)| @, +[La, + @ BLc, 0, =0 (4-14)

lb,a, +6a, - @ (d,c, +156¢,)] @, +BLa, - @ (22Le, )0, =0 (4-15)
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[a, + 02 BL¢,)| @, +BLa, - @2 (22Le, )0, +[202a, + 2020, - @? (4L2¢, +412¢, )}p, =0

PA L

Where a = 2€I , C= PA L and d:L:70.
L 420 PAL
420

é/ e [17
01 03

@ 3

Figure 4-12. A 3-beam structure.

From Equation (4-14), the following relation can be obtained.

@, La, + o} (3C¢,) 16
®, -2L%a,—2L%a, +w (4%, +4L%c,)

From Equation (4-15), the following equation can be obtained.

o, —3La, +w!(22Lc,) @-17)

CPTQ - b,a, +6a, — @’ (d,c, +156¢,)

From Equations (4-16) and (4-17), the MSF's of the system can be obtained as below.
If &, =~1 then:
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i) For ®, - ® &, ->® &, « then from Equation (4-16),

2L%a, +201° + 3L
? zal 2a2 =1 7%  and from Equation (4-17), wf(i
41%c, +4L%c, 2(c,+c,) 22Lc,
and (2292164
d,c, +156¢,

It is important to be noted that parameters of the structure are all grater than zero or

a,,a,,a,,c,,c,,c; = 0. The results are illustrated in Figure 4-13.

m%f
= %
D

_|_

T T

Figure 4-13. The first MSF for the first natural frequency.

Therefore the first MSF of the above system for the first natural frequency is as below.
All the points of the structure follow the same direction (locally) of motion. This rule

also can be expressed for each beam individually as below.
In the first MSF all the points of each beam, follow the same direction of motion.

In order to continue the procedure to find the second MSF, we need to know which one

a, +a, 3La, b,a, +6a,

of , or
2(c, +c,)” 22Le,  d,c, +156¢,

is larger or smaller than the other ones. This

gives the second region of frequency for the second mode shape. In this case the
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objective is to obtain the MSF for the second region of @;, where @, is greater than

a, +a, 3La, an b,a, +6a,
2(c, +¢,)” 22Le, d,c, +156¢,

one of these three expressions ( ) and smaller than

the other two. These regions of @, is similar to the 3DOF mass-spring problem where

we separated each frequency region.

a, +a, 3La, n b,a, +6a,

a , in this case the second
2(c, +c,)” 22Lc, d,c, +156c¢,

For example assume

MSF can be obtained as below.

ii) For ®, - ® &, « &, — @ then from Equation (4-16)

+ 3L
B 7% and from Equation (4-19), a)f(i

- and
2c, +c¢,) 22Lc,

@)

,, bya, +6a,
' dyc, +156¢;
The results are illustrated in Figure 4-14. This is the second MSF of this system. In
this MSF we have:
a) The elements of a beam follow the same direction of motion. For example
beams 1 and 3 in Figure 4-14.
Or
b) The displacement of the points of a part of the beam is in the same direction of
motion and the displacement of the other part of the body is in the opposite

direction of motion. For example, beam 2 in Figure 4-14.

The conclusion of this section is as below. In the first MSF all points of each beam
follow the same direction of motion. This MSF for each beam is the same MSF for one-
dimensional elastic bodies the explained in section 4.3.

The second natural frequency of a structure depends on the relative value of the
parameters (such as E, I, A,, L and p) of the beams in the structure. In this example

a, +a, 3La, an b,a, +6a,
2(c, +¢,)” 22Lc, d,c, +156¢,

parameters are . In the above example by

knowing which one of the parameters are larger or smaller than the other, then the

second MSF can be obtained. Sometimes these relative values can be found by looking
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at the structure and observing it. For example the cross section area of abeam 1 (A,,) is
larger than the cross section area of a beam 2 (A, , ). This relative value can be found by

looking at the structure. In the second MSF, displacement of the particles of each beam
is either in the same direction of motion (beam 1 and 3 in this example), or is in two

opposite direction of motion (beam 2).

=,

5w @ e

Figure 4-14. The second MSF of the structure.

4.7. Conclusion

A general rule is introduced in guessing the MSF's of mechanical systems as below.

The rule for the n” MSF of a mechanical system is, there are n-1 places on the MSF
where the directions of motion of the masses or the direction of deflections on an

elastic body change.

The mass-spring system rule in this thesis is not used in the following chapters in
practical and experimental examples. However as we see it helps for better
understanding of the mode shape rules for continuous systems. This is because each

continuous system can be modelled as a discrete (mass-spring) system and therefore the
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rules of mass-spring systems help in obtaining and understanding the rules for

continuous systems.

As discussed above there are additional rules for each particular system. These rules are

summarized below.

e Additional rule for 2 dimensional mass-spring with equal mass and stiffness
distribution:
A mass with less number of spring connections has the opposite direction of motion

relative to other masses in the lower natural frequency (Figure 4-15).

The Second MSF The Third MSF
X, =0 sz_i_@ X, »® ;:

Figure 4-15. Two dimensional three DOF mass-spring system

¢ Additional rule for Elastic bodies:
Typical boundary conditions rules that is used for the mode shapes of elastic bodies can

be used here for MSFs.

e Additional rule for structures:
For n™ MSF of 2 dimensional structures, there are maximum #»-1 places for each beam

where the direction of motion of the particles on the beam changes (Figure 4-16).
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TETTERL NN RNANNON
Figure 4-16. MSF's for 2 dimensional structures.

¢ Additional rule for 2D mass-spring systems and 2D bodies:
Sometimes it is not possible to have n-1 places where the direction of masses changes
because of configuration of the system. In this case n-2 or n number is exhibited (Figure

4-17)
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Figure 4-17. Two dimensional four degree of freedom mass-spring system.

Note:
The MSF rules may not be true for any situation. In this case the rule is still used. In

this respect the MSF can be corrected by the method that will be discussed in Chapter 5.



Chapter 5

Modal Analysis Method Based on Fuzzy
Sets

In this section, the proposed method for describing modal shapes of a general
vibrating system by using fuzzy linguistics will be described. The details of the
method will appear under different headings. The method attempts to identify the
mode shapes of a general structure subjected to excitations. The main premise of the
method is the assumptions that a number of modes, especially those at lower
frequencies, could be guessed (in that respect the method resembles, early energy
methods). The rational of such proposition lies in the fact that these initial guessed
shapes can be updated by observations. The advantage of the method over the
standard modal analysis is that it provides a “head start” in constructing the mode
geometry and also provides a method which deals with limited sampling points and
uncertainty, inherently present in experimental data.

The main steps of the method are as follows:

¢ Guessing the mode shapes of the system based on engineer experience,
common sense and the mode shape rules in chapter 4 and constructing the
guessed mode shapes using fuzzy membership functions.

¢ Modification of the fuzzy mode shapes using experimental modal analysis

68
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® Obtaining the mode shape curves from updated fuzzy mode shapes using
fuzzy neural network.
e Obtaining the error and creating a mode shape where, a) the guess mode shape

is wrong, and where b) there is no guess available.

5.1. Constructing the mode shape forms using fuzzy

membership functions

The guessed mode shape is called MSF (Mode Shape Form). Guessing the mode
shapes was presented in chapter 4. These mode shapes are approximate mode shapes.
Corresponding MSF's can be constructed using fuzzy linguistic terms such as Large,
Medium and zero. The construction of MSFs based on fuzzy systems is introduced

below.

Fuzzy inputs are divided to geometry and a frequency inputs. Geometry inputs are
used to define the geometry of the system. One membership function is introduced for
each section of the system where a deflection has to be referred to it. In another word
if n membership functions are defined for a one-dimensional elastic body then the
body deflections can be introduced by n number of deflection along the length of the
body. In some cases other inputs may be introduced. For example, if a structure
consists of several beams, then an input is introduced to identify each beam in the
structure. Then the geometry input describes the geometry of each beam. Frequency
inputs identify the natural frequency of the system. The natural frequencies are

determined experimentally from FRF signals.

A sample of position membership functions is presented in Figure 5-1. In this figure
each membership function belongs to a position on the body. For example the
membership function between 0 and 0.05 (the first triangle) belongs to the 0 and 0.05
length of the body or the first mass in a mass-spring system. For two and three-
dimensional bodies two and three position membership functions are presented
respectively. In this membership function the lengths of the bodies are normalized to

one.
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Figure 5-1. Geometry input fuzzy membership function.

Chap. 5

The other input is natural frequencies. The magnitudes of the natural frequencies are

obtained by experimental modal analysis. The sample of natural frequency

membership functions is presented in Figure 5-2. In this figure the natural frequencies

of interest are up to 4™ natural frequency. The frequency magnitudes can be

normalized to one as in this figure.
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Figure 5-2. Natural frequency membership functions.

Fuzzy output membership function includes deflection of an elastic body or

displacement of masses. A sample of output membership function is presented in

Figure 5-3. In this figure, deflections of an elastic body or displacement of masses are

presented by fuzzy linguistic terms. These terms include NL, NM, Z, PM, PL. In this

respect, Z is Zero, PM is Positive Medium, PL is Positive Large, NM is Negative

Medium and NL is Negative Large.
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Figure 5-3. Output membership functions.

Fuzzy rules introduce the relation between inputs and the output. For each natural
frequency the fuzzy rules describe the deflection of the mechanical system for the
geometry of the system. For instance, assume that the second MSF of a clamped-
clamped beam is guessed as in Figure 5-4. This MSF can be guessed based on the

rules in chapter 4 or can be guessed by engineering experience.
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Figure 5-4. A MSF of a clamped-clamped beam.

Then fuzzy rules have to be introduced to construct this MSF. The rules are
introduced as below. The first input (X) is the position, the second input (F) is the

natural frequency and the output (Y) is the deflection.

Rule 1: If X=X1 and F=2, then Y=Zero (Z).

Rule 2: If X=X2 and F=2, then Y=Positive Medium (PM).
Rule 3: If X=X3 and F=2, then Y=Positive Large (PL).
Rule 4: If X=X4 and F=2, then Y=Positive Medium (PM).
Rule 5: If X=X5 and F=2, then Y=Zero (Z).

Rule 6: If X=X6 and F=2, then Y=Negative Medium (NM).
Rule 7: If X=X7 and F=2, then Y=Negative Large (NL).
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Rule 8: If X=X8 and F=2, then Y=Negative Medium (NM).
Rule 9: If X=X9 and F=2, then Y=Zero (Z).

Figure 5-5 illustrates the fuzzy rules.
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Figure 5-5. Fuzzy rules to define a MSF.

In this figure Z is Zero, PM is Positive Medium, PL is Positive Large, NM is Negative
Medium and NL is Negative Large. Negative or positive appear if the deflection is

less than or more than zero respectively.

Introducing the deflection magnitudes by fuzzy linguistic terms is arbitrary. In this
respect, any fuzzy term that demonstrates an approximate mode shape can be used.
For example, other terms can be added to generate the MSF in Figure 5-5 such as NS
and PS (negative small and positive small). In this case, these terms can introduce
more information about the deflection between Medium (M) and zero (Z) magnitudes.
Some of the membership functions can be deleted too. For example Medium (NM and
PM) term can be cancelled in the output. The only difference that happens by
introducing more or less membership functions is, to have more or less information
about deflections. The most important membership functions are the PL and NL
membership functions, which obtain the maximum and minimums of the mode
shapes. It is necessary to have PL and NL membership functions. Also, the
membership functions that represent the boundaries of the system are necessary. For
example, in Figure 5-5, it is necessary to have two Z for the boundaries and PL and
NL to illustrate the outline of the mode shape. The mode shape with only necessary

deflection terms is illustrated in Figure 5-6.
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Figure 5-6. Necessary fuzzy deflections.

The membership functions presented above and the complete rules for the whole input

and output, creates the Mode Shape Forms (MSF’s) that are presented in Figure 5-7.

input1

inpt2

Figure 5-7. A sample of MSFs from the sample fuzzy membership functions and the

corresponding rules.

From Figure 5-7 the MSFs can be extracted by selecting the desired natural frequency
from input 2 for all the point from input one (position). For example, the second

MSF of the above example is presented in Figure 5-8.
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Figure 5-8. Fuzzy second MSF, obtained form fuzzy output membership functions.

The fuzzy MSF depends on the number of the membership functions and the type of
function that is used for membership. The fuzzy MSF in Figure 5-8 is the second MSF
of a clamped-clamped beam. This MSF is obtained using various position
membership functions. The result of these fuzzy MSFs is presented to be compared
with the fuzzy MSF in Figure 5-8. The results are illustrated in Figure 5-9.
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Figure 5-9. Constructing a fuzzy MSF using various position membership functions.
The vertical axis is the deflection and the horizontal axis is position on the beam.
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The number of position membership functions of the fuzzy MSF in Figure 5-8 is 21

membership functions and triangle membership functions are used in this example.

The fuzzy MSFs obtained in this section have to be updated. This is because MSF
represent an initial guess and need to be related to experimental results and updated
accordingly. Experimental modal analysis is used to update these MSFs that is

explained in the next section.

5.2. Updating the fuzzy mode shape forms using experimental

modal analysis

The objective of updating, is to find an interpolated curve between the measured data,
which is described only by few points, and fuzzy representation of the mode shape,
which is described by a large number of points. This updates the initial “guess” fuzzy

mode profile or fuzzy MSFs.

Experimental modal analysis is employed to model the system. The procedure of the
modal analysis for a multi degree of freedom modelling requires the use of
instrumented hammer, accelerometer, data acquisition card, and modal analysis
software. The outcome of modal analysis is a discrete model. In this practice the
degree of freedom of the model depends on the number of points at which vibration is
measured. The experimental procedure is explained for a beam as an example (Figure
5-10). For example, in order to find a four-degree of freedom model of the beam, the
beam is divided to 5 equal segments (Figure 5-10). An accelerometer is attached to
the beam to receive the oscillation signals. An instrumented hammer is used to excite
the beam. The accelerometer is placed in each of four selected positions. The
instrumented hammer is used to excite the beam at each of the four selected points.
Fast Fourier transforms of hammer excitation and accelerometer signals are obtained.
FRF values are obtained by dividing the accelerometer signals by the corresponding

signals from the hammer.
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|: Hammer

Accelerometer

Figure 5-10. Experimental modal analysis using an instrumented hammer.

An example of an element of a FRF matrix is illustrated in Figure 5-11. In this figure

there are 6 peaks regarding 6 different natural frequencies. In this figure |h|l_

i=1,...,6, is the FRF magnitude corresponding to each natural frequency. |h| is the

peak value on the vertical axis. In this example, |h 1| shows that the hammer

excitation at position 1 and the accelerometer is located at position 1.

FRF Marnitude

Frequency

Figure 5-11. An element of a FRF matrix.

Peak-picking method is used to extract the mode shapes from FRF results. Second
mode shape of a four-degree of freedom clamped-clamped beam is obtained here to

explain the procedure of extracting the mode shapes from FRFs. To determine this
mode shape, |h11|2 , |h12|2, |h13|z and |h14|2 are obtained from 4 different FRF curves.

In another word corresponding |h| value for @, = @,, is obtained from 4 different

FRF curves (each FRF curve is an element of FRF matrix). Eigenvectors can be
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obtained using the following relation. The following equation is valid for @, =@,

and from Chapter 3, Equations (3-25).

] 2
Uy Uy _|hil |k § @,

Where @, = w,, is the natural frequency, u is the deflection and ¢, can be obtained

as below.

Figure 5-12 illustrates the method that is used to extract the modal parameters (# and

¢, ) from FRF peaks.
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Figure 5-12. Extracting modal parameters from FRF peaks.

Figure 5-13 illustrates the method of extracting the modal parameters from the first

peak of the FRF curve in Figure 5-11.
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Figure 5-13. Extracting the modal parameters from FRF peak for k=1 and #,, .

The parameters from Figure 5-13 can be substituted in the above equation as below.

] 2
Uy _|h11|1§1wn1
Where

§1 — (waz_zwhz)z%
() @,

nl
By selecting the other peaks of the FRF result in Figure 5-11, u,,, u,,, u,; and u,,
can be obtained. By changing the location of the accelerometer and the hammer
excitation to other possible positions, remaining of the modal parameters can be
extracted. This mode shape consists of 4 elements. The corresponding eigenvector of

this mode shape is as below.

Uy u,
Uy | U2
Usy Us
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In this relation, k is the mode number. In this example k=2 that indicates the second
natural frequency (@,,). u,, u,, u, and u, are the deflection of the corresponding
points on the beam (Figure 5-10). This mode shape is illustrated in Figure 5-14. Other

points of the mode shape are derived by linear interpolation of those four pints (Figure

5-14).
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Figure 5-14. A mode shape example of a four-degree of freedom clamped-clamped
beam.

Four points in the fuzzy data set are simply replaced by the corresponding four points
from the experimental set. In this example the deflection in the fuzzy MSF are simply
replaced by the corresponding u,, u,, u, and u, values. By doing this, a “spiked”
version of the fuzzy curve (fuzzy MSF) is created. The spike points are the
experimental data points (in this example four points). Figure 5-15 is an example of a

spiked version of the curve in Figure 5-8.
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Figure 5-15. Spiked version of the fuzzy MSF.
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Both the fuzzy MSF and the spiked version are illustrated in Figure 5-16. This figure

shows the spikes clearly.
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Figure 5-16. The fuzzy MSF and the spiked version.

The mode shapes obtained from the fuzzy model might not be the same scale as the
experimental model. The mode shapes curve from fuzzy model can be matched to the
experimental mode shapes with an appropriate scaling. This is valid because the mode

shapes can be multiplied to any arbitrary scaling factor.

The second stage of modification involves using a fuzzy neural network to “smooth”

the spiked curve using neural networks.

5.3. Obtaining the mode shapes using neural networks

A fuzzy neural network used here. This network is a single-input-single-output fuzzy
neural network. The input training data of the neural network is position on the body
(for example the data on the X axis in Figure 5-15). The output training data of the
neural network is the deflection of the body (for example the data on the Y axis in
Figure 5-15). Therefore the input of the system is the position on the beam and the
deflection of the body (Figure 5-15) is the output or the target of the network. This
deflection is the deflections in the updated fuzzy MSF (for example the deflection

values on the Y axis in Figure 5-15). Constructing the MSFs using fuzzy sets is
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introduced in section 5.1 and the updating procedure in section 5.2. For each MSF,

one neural network is introduced for each natural frequency (Figure 5-17).

05+
Deflection
0 N
—l
Position
0.5

=
]
[
=
e
=
fag]
=l
o F

Deflection or
displacement

Neanral
Networks

Position

Figure 5-17. Input and output of the neural network

As mentioned in section 5.2, updating the fuzzy MSF using experimental data create
spikes in the MSF. The mode shape from the trained neural networks is different from
the updated fuzzy MSFs. The neural network is trained by updated fuzzy MSFs. The
trained neural network gives smooth version of updated fuzzy MSFs. In this stage,
running the trained neural network generates the final mode shapes. This is illustrated
in Figure 5-18 where the position is the input of the network and the deflection is the
output. The mode shape is obtained by giving the whole geometry or position of the
structure as the input of the network. The corresponding deflection at each position
gives the mode shape. There is one neural network for each natural frequency.
Therefore each neural network provides only one mode shape for each natural
frequency and there are m number of neural networks for m mode shapes and natural

frequencies.
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Figure 5-18. Obtaining the mode shape deflections from the neural network.

Figure 5-19 illustrate the application of the method in obtaining the behaviour of the
system. The equation in Figure 5-19 is the equation of motion of a mechanical system.
In this equation the natural frequency (@, ) is obtained from a single experimental
FRF test. Factors ¢, and constants ¥ can be obtained from velocity and

displacement initial conditions when the model is to be used in time domain.

Deflection or
displacement

/

m™ Mode Shape

Neural

Position B
Networks

15 Mode Shape

274 Mode Shape

[ 1 g

J}l [T,
¥, 3 ; 3} JIZ
b =g Jrsml@grtu e, D osinl@ gty ) bete,q

nlz)
J Y ()

; sin[@mrerm]

:L'*‘(?)JI F»:J 1 }_aru 1

X

Figure 5-19. Obtaining the response of the system from neural network.
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The eigenvectors of the equation of motion in Figure 5-19 are derived from the
proposed method in this chapter. The eigenvectors or the mode shapes are derived

from the output of the neural network. An example of the output of the neural

network is illustrated in Figure 5-20.

E
- -
- LN
T e P
¥, ¥,
E 'ﬁ' '\.I‘“‘ -f —
X, A &
7 | 5
- vr I I I b
0 02 04 08 08 1
(a) Position

Figure 5-20. Obtaining the j” eigenvector from the j” mode shapes. a) Y, is one of
the elements of the matrix.

The eigenvectors are obtained for each natural frequency. In this stage, the procedure

is completed.

The following section discusses the treatment of error in this method.

5.4. Obtaining the error, creating a mode shape where the guess

is wrong and/or where there is no guess available for the

mode shape

This section includes two parts. The first part introduces the method of calculating the

error. To calculate this error, no new experimental data is needed.

The second part proposes a method of obtaining a mode shape where a) The MSF is
guessed wrongly and the guess for the mode shape belongs to another natural
frequency (but in this case the correct MSF is also guessed as an alternative and is
available among MSF guesses and can be found), and where b) The MSF is not

available the alternative guessed MSFs (if there is any) for a particular natural
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frequency are wrong. If the available MSFs and the alternatives are wrong then an
available MSF with the minimum error relative to the corresponding experimental
model is selected. Then the fuzzy rules that used in constructing of this MSF are
updated to determine a new MSF with less error. This procedure is repeated until the

error is acceptable. The following section describes these two parts (a and b).

54.1. Obtaining the error

The error of the mode shapes in this method can be calculated relative to the

experimental model. The following equation can be used in calculation of the error.

Where Z. is the experimental data, Y, is the data from the proposed mode shape and

m is the number of points in the proposed model. If the number of points in the
experimental data (for example u,, u,, u, and u, in Figure 5-14) is less than the
points in the proposed model, then a linear interpolation of the experimental result is

performed (Z; for i=1,2,...,m). Therefore any desired number of points can be

selected from the linear interpolation of the experimental result. These points can be
used for calculating the error between the proposed method and the experimental

result. However, linear interpolation of the experimental data itself will have error.

5.4.2. Obtaining a mode shape where a wrong mode shape is
guessed and where there is no guess available for the

mode shape

Two methods are proposed in this section to deal with two problems, where a) the
guess for the mode shape is wrong and where b) there is no guess available for the

mode shape.
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a) Treatment of error where the guess for the mode shape is wrong

The flowchart in Figure 5-21 describes the treatment of error where the guess for the
mode shape is wrong. In this flowchart, first availability of a MSF is queried, and if it
is available (the answer YES) then the normal method (as described above) is applied
to obtain the mode shape (including construction of the mode shape by fuzzy mode
shapes, FRF updating the mode shape and applying neural networks to update the
mode shape). After obtaining the mode shapes, the error between this mode shape and
the experimental mode shape is calculated. If the error is acceptable (query about
error level) then the procedure ends. If the error is not acceptable then another MSF is
selected and the procedure is repeated. This procedure is repeated until the “correct”

MSF is found among available MSFs.

b) Creating the mode shape where there is no guess available for the

mode shape

In this method a mode shape can be obtained when a heuristic guess is not available.
In this case an available MSF from the other natural frequencies can be selected. The
following flowchart demonstrates the procedure of the proposed method including
correction of error in MSFs. The procedure in section (a), for the situation where the
guess mode shape is wrong, is repeated. The difference between this section and

section (a) is that, no MSF with acceptable error is found among available MSFs.

If none of the MSF's satisfy the acceptable error then the MSF with the minimum error
is selected. Then the flowchart enters correction of fuzzy rules section of the
flowchart. This section is an iterative closed loop section and continues until an
acceptable rules combination is obtained. The procedure of correction of the fuzzy
rules is explained below where the correction is applied to the mode shape to reduce

the error.
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Figure 5-21. Treatment of error flowchart.

To demonstrate the corrective updating of fuzzy rules following example is given

with three fuzzy rules. These rules are expressed as below.

Rule I: If geometry input (input 1) is MF,_, (Membership Function i-1) and

X, , € MF,_, Frequency input is F; and the other input (if exist) is I/, Then the

output (Deflection) is y, ;.
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Rule 2: If geometry input (input 1) is MF, (Membership Function i) and x; € MF,,

Frequency input is F; and the other input (if exist) is 7, Then the output (Deflection)

s y,.

Rule 3: If geometry input (input 1) is MF,, (Membership Function i) and

x.., € MF,

i+1 i+l

Frequency input is F; and the other input (if exist) is /; Then the

output (Deflection) is y,,; .
These rules are demonstrated in Figure 5-22 and the mode shape is constructed based
on these three rules. Here, in order to carry out updating, the mode shape from
experimental modal analysis results have to be interpolated in order to have consistent

number of points as the fuzzy mode shape.

Mode shape
interpolated from
the experimental
results

Fuzzy mode
shape

= Input 1

Figure 5-22. Fuzzy representation of a part of a mode shape and the corresponding

experimental result.

Having done that, the fuzzy mode shape is ready to be updated using the method
described in section 5.2. After updating the fuzzy mode shape with experimental
results and using neural network to obtain the final version of the mode shape, then

the curve presented in Figure 5-23 is determined. In this figure, Y (1) is the first mode

shape result before any correction. The error between the updated fuzzy mode shapes
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and the experimental results are calculated according to the scheme shown in Figure
5-23. In this thesis, the vectors that are used to represent the difference between the

points of experimental mode shapes and updated fuzzy mode shapes are called Error

Vectors.
Output
Fil
O OO 1 = Mode shape from
- i i the proposed method
Filhs L i__ _i_ ——
¥ (DL _ _|_ ! !
(), - | Error between the mode shape and
' x\<'/ the corresponding experimental
5 mode shape (Error Vectors)
Za=30n 5 _owy Zy-yDa
L= Input 1
2,553 X, Xy

Figure 5-23. Mode shapes after modification and the error between the experimental

result and the result from the proposed method (error vectors).

The error for each point is demonstrated in Figure 5-24.

'ﬂufpuf
s Z; — (1),
Z.— 2,
Zo -0 | =¥ D
i
T y B
r, .
Yy, L= !
|
.y
| | | > Input 1
i X Xin

Figure 5-24. Error of each point.



Sec. 5.4 Obtaining the Error 89

At this stage the following scheme in Figure 5-25 is used to change (correct) the fuzzy

rules for each point. For instance, from rule 1, if geometry input (input 1) is MF, |
and Frequency input is F,, then the output (Deflection) is y, ;. Where y, , is a fuzzy

linguistic term such as medium, large, etc. From Figure 5-24, the error can be

calculated as below.

E =Z_,-Y1),

1

In this case the rule will be changed to the following rule.

If geometry input (input 1) is MF, | and Frequency input is F,, then the output

(Deflection)is y, , + E,_,.

An example of obtaining the relation between the error magnitudes and the fuzzy

linguistic terms is demonstrated in Figure 5-25.

PL +1

‘ PM +0.5 s

2
n—1
. " \ h
if(Z, -y )is—ve if(Z,—y )is+ve z 0 —
NM -0.5
NL -1
a) b)
c) d)

Figure 5-25. An example of relation between error magnitudes and the fuzzy
linguistic terms.
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The relation between the fuzzy linguistic terms in Figure 5-25(c) and the magnitudes
in Figure 5-25(d) can be found from output membership functions. In this case, an
example output membership function is presented in Figure 5-26. In this figure,

magnitude is given to each fuzzy linguistic term.

N /\ /\ /\ /
/\ /<

/ H\// \\/ 2 / \\\,
o Y

4] Y.’ 06 i.m V0,2 i Y R "ogg'
¥

-1 -0.5 0 0.5 +1

=
wn
1

Deaflaction

Merrb ership Faoctions

Figure 5-26. Output membership functions.

Assume the output consists of n membership functions (as in Figure 5-25 or Figure 5-

26 consist of 5 membership functions including NL, PM, Z, NM and NL) then the

magnitude between each fuzzy rule is equal to where 2 is the range of output

n—1

membership functions that is between —1 to 1. Therefore if is the distance

n—

E., _Z_- y(),,

(2/n-1)" (2/n-1)

of fuzzy rules between the first fuzzy rule and fuzzy rule after correction.

magnitude between each fuzzy rule then shows the number

For example if the error is E,_ =Z,, —y(), ,=0.4 and the output membership

function consist of 5 membership functions (including NL, PM, Z, NM and NL from

E. 04
Figure 5-25) then H =
s e )T 2
5-1

=0.8. Rounding up 0.8 to the nearest real number

gives 1, which means the method suggests one step correction of fuzzy rules from the
initial fuzzy rule (that was used to construct the MSF). For example if the first fuzzy
rule is NM then one step rule changing gives Z or for example if the error magnitude
was a negative number the rule would change from NM to NL (Figure 5-25). The error
is calculated again for the mode shape with new fuzzy rules. If the error is acceptable
then the procedure will end. If the error is not acceptable the procedure is repeated

and new fuzzy rules will be created until the error is acceptable.
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5.5. Conclusion

The procedure of the proposed method in this thesis is introduced in this chapter. In
this method fuzzy sets are used to construct the MSFs (to obtain fuzzy MSFs),
experimental modal analysis is used to update the fuzzy MSFs and neural network is
used to obtain the final version of the mode shapes. Two methods are also introduced
to reduce the error in the mode shapes. The methods are extended to deal with
situations where, a) wrong MSF is guessed for the corresponding mode shape and
natural frequency, and b) There is no MSF available for a corresponding natural

frequency.



Chapter 6

Experimental Setup

This chapter presents the experimental set up for experimental modal analysis, fuzzy
reasoning and neural networks. In modal analysis procedure, instrumented hammer,
accelerometer, data acquisition card, PC and FRF analysis software are used. In fuzzy
and neural networks procedures, MATLAB software [28] with fuzzy, neural network

and SIMULINK toolboxes is used.

6.1. Modal analysis

In modal analysis procedure, an instrumented hammer, accelerometers, a charge
amplifier, a data acquisition card, a PC and modal analysis software are used. The
hammer applies impact forces to the bodies. By applying an impact force to a body,
the hammer piezoelectric generates a corresponding voltage. The voltage is calibrated
to force. An accelerometer consists of a frame, a mass and a piezoelectric element.
Vibrating the mass in the accelerometer generates electrical current in the
piezoelectric element. The corresponding voltage of the piezoelectric element is
calibrated to acceleration, velocity and displacement. The signals from
accelerometers and the impact hammer are translated to a charge amplifier. The

charge amplifier is connected to a data acquisition card and a PC. A Frequency

92
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Response Function (FRF) analyser is installed on the PC that can be used for modal

analysis.

Modal analysis theory is presented in Chapter 3. The experimental procedure used in
the proposed method is explained here. The first step in each experiment is

calibration. Calibration for experimental modal analysis is presented below.

6.1.1. Calibration

Before measurement, the instruments have to be calibrated. Calibration provides a
physical sense of the measured parameters. FRF is used to obtain the mode shapes. In
this project, a suspended mass is used to calibrate FRF signals. The experimental
equipment includes a mass with a known magnitude, instrumented hammer and a FRF
analyser (here, PCI230 card, charge amplifier and Agilent VEE software [29]). The
PCI230 card features are, 2-channel, 12 bit digital to analogue conversion with output
voltage ranges of 0 to +10. A 28982ENDEVCO instrumented hammer (Figure 6-1) is

used here.

Figure 6-1. The instrumented hammer.

An accelerometer (here model AQ40 accelerometer with frequency range of 0.5-

8000HZ, supplier Environmental Equipments LTD) is attached to the mass.

Figure 6-2 illustrates the calibration setup with the suspended mass.

The accelerometer and the hammer are connected to a charge amplifier (Figure 6-3).

The charge amplifier is a DJB amplifier. The charge amplifier is connected to a data
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acquisition card that is assembled in a PC. An FRF analyser software is installed on

the PC (here AgilentVEE version 5.01).

SN,

Strings

{1 Mass

Accelerometer

An instrumented
hammer

Figure 6-2. FRF calibration using an impact hammer and a suspended mass.

.4 BIRCHALL
| MILDENHALL
SUFFOLK

BT

Figure 6-3. A charge amplifier

The signal (in the time domain) from the hammer due to exciting the suspended mass

is presented in Figure 6-4.

Accelerometer response to the hammer excitation in time domain is presented in

Figure 6-5.

FRF can be derived by dividing the displacement by the force. When the hammer hits
the mass, the response from the accelerometer is divided by the response of the

hammer (in frequency domain).
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Figure 6-4. Hammer response in time domain.
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Figure 6-5. Accelerometer response to the hammer excitation in time domain

The software transforms the hammer and accelerometer signals to frequency domain
by Fourier transform. Figure 6-6 shows the object (in AgilentVEE software) that is

used for transforming time domain to frequency domain by Fourier transform.

o I N

ﬁ ﬁ{x} Result ir

&

Figure 6-6. Fourier transform object in AgilentVEE software
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The object presented in Figure 6-7 can obtain division of frequency response of

accelerometer by the hammer (AgilentVEE software).

=8 ATB =
A
) B _Rfs_u't_i}

Figure 6-7. Dividing object.

.

FRF result is presented in Figure 6-8. The average FRF magnitude is 3.50. This
average is obtained from various FRF tests using different impact excitations by the

instrumented hammer.

Magnitude Spectrum_{Accelerance FRF)

L

Mag

Tracel

i

4

1 1 II 1
. ]
o 1000 2000 2500

O = kW B h m - W@

Freg

Figure 6-8. FRF signal.

X 1
In this calibration FRF= 7 =— (Newton law). The mass magnitude is known and is
m

equal to 0.5 kg. FRF magnitude has to be y =2 but the FRF result is 3.50. The

0.5kg

result magnitude of 3.50 is obtained by averaging various FRF results by repeating
the calibration test with different levels of impact excitations. 3.50 unit of FRF is

relative to 2 units of the calibration magnitude. Then the FRF calibration value is

3-% =1.75. Therefore FRF results in modal analysis have to be divided 1.75.
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An experimental FRF measurement setup using AgilentVEE software is illustrated in

Figure 6-9.

Accelerometer (Time)
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Figure 6-9. AgilentVEE setup for experimental FRF measurements.

In Figure 6-9 two Built Waveform objects consist of hammer and accelerometer
signals. Fourier transform of these signals are obtained using fft(x). ‘A/B’ object gives
the FRF results. ‘abs(x)’ gives the absolute value of FRFs as FRF's include imaginary
and real numbers. ‘phase(x)’ gives the phase angles. meansmooth(x,nu) gives the
average value of signal. These signals can be plotted using waveform (time) or
spectrum (frequency) in time or frequency domain respectively. The result data can

also be stored in a file using ‘To File’ object.

6.2. Fuzzy logic and neural networks

Fuzzy logic and neural networks are used in the proposed method. The methods were
introduced in Chapter 5. In this section application of fuzzy logic and neural network

toolboxes of MATLAB software are introduced regarding the proposed method.
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6.2.1. Fuzzy logic

The application of fuzzy logic toolbox of MATLAB software is introduced here. In
the proposed method, the mode shapes are guessed. The guessed mode shapes are
called mode shape forms (MSFs). MSF is introduced based on the approximate
deflection values. Fuzzy logic is used to represent these approximate values. The
fuzzy representative of MSFs consists of input fuzzy membership functions, output
membership functions and the corresponding fuzzy rules. The input membership
functions consist of dimension (or position) membership function and natural
frequency membership function. The number of position membership functions
depends on the dimension of the system. For one-dimensional systems there is one
position membership function. For two-dimensional structures there are two
membership functions. For three-dimensional structures, three membership functions
are required. An example of position membership functions, using fuzzy toolbox is

illustrated in Figure 6-10.

<} Membership Function Editor: fre
File Edit Miew
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0.5 g

input2
] . , . :
0 02 04 OE 08 1
Current % ariable Current Membership Function [click on kMF
M ame inpuit] MName I n
Type input Type ’ trimnf VI
Paramsz
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[rizplay I mn ‘ Help | Cloge |
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Figure 6-10. Position membership function.

In this figure, numbers from O to 20 is assigned to each membership function. Each of

these 21 functions corresponds to a position on the body. If the body is two or three-
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dimensional, then two or three position membership functions will be required. An

example of frequency membership functions is illustrated in Figure 6-11.
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Figure 6-11. Frequency membership functions.

Each function corresponds to a natural frequency. For example membership function
number 1 (Figure 6-11) corresponds to the first natural frequency. In this figure the
mode shapes of first 8 natural frequencies are of interest. For this reason, there are 8

frequency membership functions.

The output membership functions include deflection properties of the elastic body. An

example of the output membership functions is illustrated in Figure 6-12.

In this membership function example, the magnitudes of deflections are introduced by
fuzzy terms, NL, NM, Z, PM and PL. N is negative, P is positive, Z is zero, M is
medium and L is large. After introducing the fuzzy membership functions, the fuzzy
rules are required to relate the inputs to the output. The fuzzy rules are constructed
based on the MSFs. Obtaining the MSFs of a system are explained in Chapter 4. For
example if a MSF is obtained as shown in Figure 6-13, then a set of fuzzy rules for

this MSF can be expressed as shown in Figure 6-14.
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Figure 6-12. Output membership functions (deflection).
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Figure 6-13. A MSF sample.

However in this figure only 8 rules are illustrated. The complete number of the rules
in this example is more that what is appeared in the following figure. A part of the

rules is only shown here.
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Figure 6-14. Fuzzy Rules.

In the next stage SIMULINK toolbox is used to derive the output from the inputs.

Figure 6-15 illustrates an example of SIMULINK setup to obtain the output.

Fosition
giiAN "

Ceflection
Fuzzy Logic
F Controller |:|
Matural Frequenoy Scope

Figure 6-15. SIMULINK fuzzy controller in obtaining deflections (output) from the

inputs.

In two-dimensional bodies the SIMULINK model consist of two position inputs

(Figure 6-16).
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Figure 6-16. SIMULINK setup in two-dimensional modelling.

For three-dimensional modelling another position input is required (Figure 6-17).
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Figure 6-17. SIMULINK setup for three-dimensional modelling

The following setup is used in obtaining the mode shapes using the SIMULINK

toolbox.
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6.2.2. Neural networks

Application of neural network in the proposed method was introduced in Chapter 5.
Both Fuzzy Neural Networks and Artificial Neural Networks are used in deriving the
mode shapes. Fuzzy Neural Network obtains the results in a shorter time. MATLAB
commands in application of Adaptive Neuro-fuzzy Inference System (ANFIS) are

presented below.

trnData = [m ;Ym']';
in_fismat = genfisl(trnData);

out_fismat = anfis(trnData,in_fismat);

Where trnData is the network training data, m is the input training data of the neural
network that is the geometry of the body. Ym is the deflection output magnitude of
MSFs from the SIMULINK toolbox that is updated by experimental modal analysis.
Ym is the output training data of the neural network. Ym'is the transpose of Ym
matrix. genfisl initialize the membership function parameters. anfis obtain the output

of the neural network.

evalfis(x,out_fismat));

evalfis derives output of the network for any input (here x is the input).

Another command can be used to control the epochs. This command has not been
discussed here as changing the epochs makes little difference (in the application of
ANFIS in this thesis) in the results.

For each mode shape one neural network has to be introduced. The input of the

networks is the dimension and the output is the deflection. One network is introduced

for each mode shape and the corresponding natural frequency.



Chapter 7

Experimental Validation

In this chapter, four examples are provided to validate the proposed method. Example
1 includes the vibration modelling of a clamped-clamped beam. In this example also,
the possibility of obtaining the mode shape is presented in two cases, where, a) The
mode shapes is guessed wrong, and b) There is no MSF available. Example 2
addresses the method to obtain the vibration behaviour of a clamped-free-clamped-
free plate. In example 3, the modelling procedure of a 3-beam structure is presented.
Example 4 deals with the modelling problem of a clamped-free beam where the
updating procedure is performed for only part of the length of the beam. Therefore

there is only incomplete experimental data available for updating the fuzzy MSFs.

The procedure of guessing mode shapes or obtaining MSF's is presented in Chapter 4.
The proposed method is introduced in Chapter 5. Experimental setup is presented in

Chapter 6.

7.1. One-dimensional elastic bodies

In this section, an example is provided in vibration modelling of a clamped-clamped

beam. After the modelling procedure, another example is presented where; a) A
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wrong mode shape is guessed for MSF, and b) The MSF of a particular mode is not
available. The method that is presented in Chapter 5 (Method) is used to solve this

problem.

7.1.1. Example 1

Vibration modelling of a clamped-clamped beam is considered in this example. The
method was presented in Chapter 5. The problem is to obtain the mode shapes of the
system up to 4™ natural frequency (n=4). The first input of the fuzzy model is the

beam length. Figure 7-1 illustrates the membership functions of the first input. The
beam length is taken to be normalised to 1.

i
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Figure 7-1. Position membership functions (input 1).

The second input of the fuzzy model is frequency. Figure 7-2 shows the membership
function of the second input. The region of frequency input is designed for the first to
the 4™ natural frequency. The magnitude of the natural frequencies are measured by

experimental test or FRF.
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Figure 7-2. Natural frequency membership functions (input 2).
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The output of the fuzzy system is deflection or the fuzzy MSFs. Figure 7-3 shows the
membership function of the output based on the NL, NM, Z, PM, and PL.
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Figure 7-3. Deflection membership functions (output).

Fuzzy rules are defined based on the boundary conditions of the beam and the
approximate (guessed) mode shapes of each natural frequency. For example in second
natural frequency, the mode shape of the beam is zero (Z) and will go up to positive
large (PL) and this is followed by going down to negative large (NL) and again zero
(Figure 7-4).
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D e tion ()

ML

Beam length (3}

Figure 7-4. Explaining the guessed mode shapes by fuzzy rules.

As the beam is clamped-clamped, then the boundary conditions present zero
deflections in both ends. The zero slopes are defined by having two zeros at each end.
Zeros at length positions 1 and 2 at the first end, and at length positions 18 and 19 at

the other end are shown in Table 7-1.
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Table 7-1. Fuzzy rules for the guessed mode shapes (MSF’s) up to the forth natural

frequency.

Frequency First  natural Second natural Third natural Forth natural
Length frequency frequency frequency frequency
(V)

1 Z Z Z Z

2 Z Z Z Z

3 PM PM PM PM
4 PM PM PL PL
5 PM PL PL PM
6 PM PL PM Z

7 PM PL Z NM
8 PM PM NM NL
9 PL PM NM NM
10 PL Z NL Z
11 PL NM NM PM
12 PM NM NM PL
13 PM NL Z PM
14 PM NL PM Z
15 PM NL PL NM
16 PM NM PL NL
17 PM NM PM NM
18 Z Z Z Z
19 V4 Z Z Z

The fuzzy MSF's that are created from membership functions in Figures 1-3 and fuzzy

rules in Table 7-1 are illustrated in Figure 7-5.
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inprt

input2

Figure 7-5. The fuzzy MSF's from the fuzzy membership functions.

Input 1 is the position on the beam and input 2 is the frequency. The SIMULINK
toolbox of MATLAB software is used to generate the fuzzy beam deflections (fuzzy
MSFs) from fuzzy beam length and fuzzy frequency (inputs). This is illustrated in

Figure 7-6.
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Figure 7-6. SIMULINK fuzzy controller for obtaining the output from the inputs.

To illustrate the output, if the position on the beam is varied between, x=0 to 1 (input
1) and the frequency input is the 4™ natural frequency (or number 1 in input2 axis in
Figure 7-5), then the output (or Y in Figure 7-6) will be the 4 fuzzy MSF of the

beam. This output is shown in Figure 7-7(d).
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Figure 7-7. Fuzzy MSFs from fuzzy model before modification.

After obtaining the fuzzy MSFs, these MSFs are to be modified by experimental data
from a real system. A four-degree of freedom model is derived by modal analysis.

The experimental rig is shown in Figure 7-8.

Bouvndary

Figure 7-8. A clamped-clamped beam

An accelerometer is attached to the beam to receive the oscillation signals. A charge
amplifier is used to amplify and send the signals to the data acquisition card. The data

acquisition card (PCI230) is assembled to a Pentium PC. AgilentVEE software is used
to obtain the FRF curves.

The beam dimension is 500 mm length, 10 mm thickness and 20mm width. The

material is steel. Boundary conditions are clamped-clamped.
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Before obtaining the eigenvectors (mode shapes) of the beam from FRF signals,
calibration of FRF is performed by using a suspended (488.50gr) mass. An
accelerometer is attached to one side of the suspended mass and an instrumented
hammer is used to apply an impulse. Fourier transform of both signals (accelerometer
and hammer) are obtained by AgilentVEE software. Fourier transform of
accelerometer signal from the suspended mass is divided to Fourier transform of
hammer signal and the average value result of the division is equalled to one over

mass value (1/488.50). The calibration procedure was explained in Chapter 6.

After calibrating FRF values, the FRF from experimental modal analysis can be used
to extract the eigenvectors of the model. The experimental procedure is described
below. To find a four-degree of freedom model of the beam, the beam is divided to 5
equal segments. Corresponding four positions to 5 segments are 100mm, 200mm,
300mm, 400mm. An accelerometer is attached on the beam and the instrumented
hammer is used to excite the beam. The accelerometer is placed in each of four
selected positions. The instrumented hammer is used to excite the beam in each of the
four selected points. Sixteen excitations with hammer are applied to the beam
corresponding to different combinations of accelerometer and hammer excitation
positions. Fast Fourier transform of hammer excitation and accelerometer signals are
obtained from AgilentVEE software. Fourier transforms of accelerometer signals are
divided by Fourier transform of the signals from the hammer in order to find FRF
values (for each excitation). A four by four FRF matrix is obtained from Sixteen FRF
data in this experiment. FRF curves are presented in Appendix D. Only four FRF

curves (h,, h,, h, and h,) of 16 FRFs are presented in Appendix D. However

these four FRFs are sufficient to determine the 4DOF model of the beam. The peak-
amplitude (peak-picking) method is performed to extract the modal constants and
eigenvectors from the FRF matrix. This method is introduced in Chapter 5. The

following equation is valid based on this method.

Ry uugy,

=06 ,=h = =
" | ! (S)|k é,ka)j,k gkwj,k

Where
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The experimental results are demonstrated in Table 7-2. Table 7-2 includes first four

mode shapes described by 4 positions on the beam (0.2, 0.4, 0.6, 0.8). The position on

the beam is normalized, to have the length of the beam equal to 1.

Table 7-2. Mode shapes from experimental modal analysis result.

Position on the beam Mode shape 1 Mode shape 2

Mode shape 3 Mode shape 4

(normalise)

0.2 0.41 1.00 1.00 0.94
0.4 0.98 0.80 -0.41 -1.00
0.6 1.00 -0.85 -0.43 1.00
0.8 0.43 -0.99 1.00 -0.93

Now the experimental mode shapes from Table 7-2 are used to modify the fuzzy

MSFs. Fuzzy MSFs are presented in Figure 7-7. Experimental mode shapes are

presented in Figure 7-9.
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0
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0 05 1

d) Forth moda

Figure 7-9. Normalized mode shapes from Table 7-2, where the horizontal axis is the

position on the beam length and the vertical axis is the deflection of the beam.
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Corresponding data from the fuzzy MSFs is replaced by the data from experimental
mode shapes (in this example, four points). The mode shapes are determined from the
updated fuzzy MSFs. Experimental measurements were carried out at 4 positions.
Updating the fuzzy MSFs is performed by simply replacing the points in the fuzzy
data set with the corresponding points from the experimental set. The inputs and
output fuzzy membership functions are described by 51 points. Therefore each fuzzy
MSF include 51 numbers of position points and the corresponding 51 numbers of
deflection values. Both the fuzzy neural network and back-propagation neural
network are used to generate the updated curves (MATLAB software is used). It is
found that the fuzzy neural network generates smoother curves compared to back-
propagation networks. The neural network is based on a single-input-single-output
system. The input of the system is the position on the beam. The deflections from
modified fuzzy data determine the output of the network. The following procedure is
performed to train the network. The input training data includes the position on the
beam for each mode shape (as here, 51 numbers of inputs). Updated fuzzy MSFs
deflections are the output training data of the network (as here, 51 numbers of
outputs). As four degree of freedom modelling is used here, then four neural
networks are introduced for each mode shape individually. The same input output and
training procedure that is described earlier is used for each neural network. The
trained neural networks determine the mode shapes. By giving the position on the
beam as the input of the networks, the mode shapes are generated. Figure 7-10 shows

the mode shapes from the presented method and experimental data.
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a) The first mode shape.
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b) The second mode shape.
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d) The forth mode shape.

Figure 7-10. Mode shape results that is obtained from the proposed method. a) 1%

mode b) 2™ mode d) 3™ mode d) 4™ mode
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The result of this example can be presented in time domain using the following

equation.
@) Y, Y, Y,
¥, (1) Y, . Y, . v, .
=c sinl@, t+y,)+c sinlw .t +y, )+c¢ sinl@, ,t + 5 )+
y3(t) 1 Y3 ( nl y/l) 2 Y3 ( n2 1/12) 3 Y3 ( n3 l//3)
v, () Y, ], Y,), Y, |,
Y,
Y.
Cy ! Sin(wn4t+l//4)
Y3
Y,),

Using the eigenvectors obtained from the proposed method and experimental natural

frequency values then the equation can be express as below.

v, () 0.41 0.91 0.83
v, (1) 0.81] . 082 | . -0.68] .
= sin(19¢ + + sin(537 + + sin(104¢ + +
¥, () ¢ 0.78 ( Wl) ) 078 ( ')Vz) G —0.62 ( l//3)
v, () 0.55 -0.82 091
0.84

-0.94
Cy sin(174¢ + 1/14)
0.91

-0.83

Where constants ¢ and ¥ can be obtained from displacement and velocity initial

conditions.

7.1.2. Comparison of error between the proposed method

and the mathematical equation

The mathematical equation of motion of the clamped-clamped beam is used to
compare the result that is obtained in this section. Although comparison of the model

obtained against further experimental tests was another option. This was declined as
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no one specific experimental result can be taken as benchmark. The mathematical

equation of motion of a clamped-clamped beam is [41].

y =cosh [azx] - cos[wLx] - ﬂ{sinh(aixj - sin[azxﬂ (7-1)
0=0T/ o125

A is a dimensionless parameter which is the function of the boundary conditions
applied to the beam and its magnitudes are presented in Table 7-3 for different natural

frequencies.

Table 7-3. A4 for mode shape i.
i 1 2 3 4 5,6, ..
A, 0982 1.0007 0.9999 1.0000014 1

@ gives very good accuracy for i > Swhile for i <35 is less accurate but still a good

approximation [41].

The following equation used to calculate the error (e) between the mathematical

equation and the proposed method in this example.

(X, = x7)

= |

Where x; is the experimental data (deflection) and X, is the data (deflection) from

the proposed method.

The proposed method exhibits a maximum error of 15.57%, relative to the
mathematical model in the 4™ mode in the mode shapes. Error in the first, second and

third mode shapes are 14.3%, 11.2% and 9.8% respectively.
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7.1.3. Creating a mode shape where either there is no guess
available for mode shape or guessed mode shape is

wrong for the clamped-clamped beam

In this method a mode shape can be obtained in two situations as below.

a) A wrong guess is assumed for the mode shape.

b) The heuristic guess is not available.

The method of treating the error in conditions (a) and (b) are introduced in chapter
5.4. The flowchart in Chapter 5, Figure 5-11, demonstrates the procedure of the
proposed method. In this flowchart, first a MSF is selected, then the method is applied
to obtain the mode shape. Obtaining the mode shapes includes construction of the
fuzzy MSFs, FRF updating the mode shape and applying neural network to the
updated fuzzy MSFs. After obtaining the mode shapes, the error between these mode
shapes and the corresponding experimental mode shapes are calculated. If the error is
acceptable, then the procedure will end. If the error is not acceptable, then another
MSF will be used and the procedure will be repeated. If none of the MSFs satisfy the
acceptable error, then the MSF with the minimum error will be selected. In this case
alternative guess of mode shapes are available. The alternative mode shapes may be
guesses for the other natural frequencies, initially. Then the fuzzy rules of this MSF
are corrected and the error is calculated. If the error is acceptable then the procedure

will end. If the error is not acceptable the correction of fuzzy rules is repeated.

The following example shows the treatment of error when the guess is wrong and

when the correct MSF (guess) is not available.
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a) An example of creating a mode shape when the guess is wrong

Assume the 3" mode shape of the clamped-clamped beam (in example 1), to be
guessed as Figure 7-11 (the wrong guess). However this mode shape is the 2" mode

shape.

it
r—
05| /-

T

05 | \k—\w/

0 0.5 X 1
Beam Length

Deflection

Figure 7-11. Wrong guessed mode shape (MSF) for the 3" mode.

This mode shape has to be modified after constructing the mode shape by fuzzy
membership functions. In the modification stage, this mode shape has to be updated
by the 3 experimental mode shape. A sample of experimental results is presented in

Table 7-3.

Table 7-3. Experimental modal analysis data.

Position on the Mode shape 1 Mode shape 2 Mode shape 3  Mode shape 4

beam (normalise)

0.2 0.41 1.00 1.00 0.94

0.4 0.98 0.80 -0.41 -1.00
0.6 1.00 -0.85 -0.43 1.00
0.8 0.43 -0.99 1.00 -0.93

The experimental results for the 3" mode shape is illustrated in Figure 7-12.
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Figure 7-12. Third mode shape from experimental results
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The curve in Figure 7-13 is derived after updating procedure (using experimental

modal analysis) and after that using neural network for smoothing the mode shape.

Deflection

1.5

0z

0.4 0k 0.5 1

Beam Length

Figure 7-13. Mode shape result from the wrong guessed mode shape.

In this stage the error between the result mode shape in Figure 7-13 is compared with

the experimental result (Figure 7-12) that is used in updating the model. These two

mode shapes are shown in Figure 7-14 including the difference between each two

points in each mode shape using (xi -X l.) relation. Where x; is the experimental
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data, X, is the data from the proposed method. 51 points are used for drawing of each

curve.

1.5 . — Experimental i
Mode Shape Diffarence
between
experimental and
the proposed

Deflection

Mode shape
result from
the proposed
method by a
wrong M5F

0 0.2 0.4 0.6 0.8 1

Position along the beam length beam length

Figure 7-14. Experimental mode shape, the mode shape result from the proposed
method (by the wrong guess) and the difference between each point of these two

mode shapes (both mode shapes are normalized to 1).

The error between these two mode shapes are calculated using the following equation.

Q |(Xi _xil
e = _—
= |

Where x; is the experimental data, X, is the data from the proposed method and 51 is

the number of points that are considered for calculating the error. The error is equal to
65.67%. The flowchart suggests that the procedure has to be repeated using another

guess of mode shape or MSF.

In this example all the available heuristic guesses are presented in Figure 7-15 (up to
the forth mode). In this stage the flowchart suggests using another MSF, for example
the mode shape in Figure 7-15(c). This MSF used in example 1. 11.46% error

obtained and with this level of error the iteration procedure ends.
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Figure 7-15. The entire available heuristic mode shape guess (MSFs) (where X axis is

the beam length and the Y axis is the deflection of the beam)

b) An example of creating the mode shape when the guess is not

available

If the entire possible heuristic MSFs are considered as in Figure 7-16 then the desired
MSF is not available for the third mode. In this stage the flowchart select the MSF
with the minimum error relative to the corresponding experimental mode shape data.

The error was calculated by the following equation.

The MSF by the minimum error (Error (j)) is selected as MSF; . Where j indicates the

corresponding MSF number. In this example the MSF in Figure 7-16(b) obtained the

minimum error. Therefore this MSF is used to determine the 3™ mode shape.
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Figure 7-16. The entire available heuristic MSFs (where X axis is the beam length and

the Y axis is the deflection of the beam)
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Figure 7-17. Fuzzy second mode shape with the corresponding fuzzy deflection terms
(Z, PM, PL, ...) and the difference between the second mode shape and the

experimental third mode.

Then the fuzzy rules of this MSF are corrected and the error is calculated. If the error

is acceptable, then the procedure ends. If the error is not acceptable, the correction of
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fuzzy rules is repeated. The procedure of the correction of the fuzzy rules is explained
below, where the correction is applied to the mode shape to reduce the error. The
difference between deflection in the mode shape obtained from the proposed method
and the experimental result is illustrated in Figure 7-14. The difference is calculated

by (xl. —X,) where x, is the experimental beam deflection and X, is the beam

i

deflection from the proposed method. 51 points are used for this calculation. This

difference and the fuzzy second mode shape are illustrated in Figure 7-17.

The fuzzy rules to create this mode shape (Figure 7-16b) is presented in Table 7-1,

which is the fuzzy rules of the second mode shape.

The curves in Figure 7-17 are repeated in Figure 7-18. Vectors are used to show the
difference magnitudes between the points in the fuzzy MSF and the corresponding
points in the third experimental mode shape. These are called the Error Vectors in this

thesis.
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Figure 7-18. The second fuzzy MSF with the corresponding fuzzy deflection terms
and the difference between the second mode and the experimental third mode the

difference is shown with Error Vectors.
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The Error Vectors in Figure 7-18 are shifted to the corresponding points on the fuzzy

MSF (Figure 7-19).
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Figure 7-19. Each Error Vector is shifted to the corresponding point on the fuzzy
MSF.

Now each fuzzy rule in Figure 7-19 has to be changed relative to the corresponding
Error Vector. Changing the fuzzy rules is applied based on the process explained in
Chapter 5 (Chapter 5, Figures 15 and 16). Each Error Vector magnitude is used to
change the fuzzy rules of the fuzzy MSF. The relation between the Error Vectors
magnitudes and changing the fuzzy rules are presented in Chapter 5. The fuzzy
deflections terms are PL, PM, Z, NM and NL. P stands for plus and N for minus. The
range of fuzzy deflections is between —1 to 1 as in fuzzy output membership functions

in this example. The distance between each two fuzzy deflection term is obtained
from Ll Where 2 is the range (-1 to 1) of output membership functions and # is
n —_—

the number of membership functions. There are 5 membership functions here as PL,

PM, Z, NM and NL. Then %:0.5 is the distance between each fuzzy deflection.

The fuzzy deflection terms, PL, PM, Z, NM and NL can be represented by +1, +0.5, 0,
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-0.5 (as shown in Chapter 5). Hence the Error Vector can be added to this magnitude.

This addition is illustrated in (Figure 5-15, Chapter 5) where the —|xi -X l.| applies
when Error Vector is negative and |xl. -X t.| applies when the Error Vector is positive.

For example if the fuzzy deflection is PM (+0.5) and the corresponding Error Vector
is —1 this fuzzy deflection has to be changed to “+.05-1=-0.5", where the result, —0.5

corresponds to NM. Therefore this fuzzy deflection has changed from PM to NM.

If the magnitude of the result after adding the Error Vector to the fuzzy deflection is
out of the fuzzy membership functions range, then the maximum range is applied.
For example, if the fuzzy deflection is PM (+0.5) and the Error Vector is +1 the result
will be “+.05+1=+1.5". But as the maximum range is +1 or PL. Therefore this fuzzy

deflection can be changed to maximum of +1 or PL.

If the Error Vector is not an integer number, then the round-up magnitude is used. For
example, if the error is 0.35, then it is considered as 0.5. but if the Error Vector is less
than 0.25, it is possible to apply a one step change or rounding up any value between

0to 0.5, to 0.5. This option is applied here and can be seen in Figure 7-20.
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Figure 7-20. Changing fuzzy deflections relative to the corresponding Error Vectors.
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Changing the fuzzy deflections in this example relative to Error Vectors is presented

in Figure 7-20.

Table 7-4 shows the initial fuzzy rules and the new corrected fuzzy rules that are

corrected based on the above discussion.

Table 7-4. Initial fuzzy rules and the new corrected fuzzy rules.

Frequency Fuzzy rules New rules I

Length Second natural
frequency

1 Z Z

2 Z Z

3 PM PL

4 PM zZ

5 PL PL

6 PL PM

7 PL PM

8 PM Z

9 PM Z

10 Z NM

11 NM NL

12 NM Z

13 NL Z

14 NL

15 NL zZ

16 NM PM

17 NM PL

18 Z PM

19 Z Z
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In this stage the procedure of obtaining the mode shape is repeated and the new fuzzy

MSF (that is constructed based on the new rules in Table 7-4) is considered in this

procedure. This MSF is illustrated in Figure 7-21.
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Figure 7-21. The new fuzzy MSF.

Now experimental modal analysis is used to update this fuzzy MSF and neural

network to determine the mode shape (Figure 7-22).
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Figure 7-22. The new mode shape constructed based on the new fuzzy rules.
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In this stage the procedure is repeated and the difference between the new mode shape
(Figure 7-22) and the experimental modal analysis is obtained. The Error Vectors are
determined. The fuzzy mode shape and the Error Vectors are illustrated in Figure 7-

23.
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Figure 7-23. Error Vectors and the fuzzy mode shape.
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Figure 7-24. Error Vectors are shifted to the corresponding fuzzy rules.
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The error vectors are shifted to the corresponding fuzzy deflection in Figure 7-24.

Second new rules are determined based on the Error Vectors (Table 7-5).

Table 7-5. Second new rules.

Frequency Fuzzy rules New rules I New rules II
Length Second natural

frequency
1 Z
2 Z Z Z
3 PM PL PL
4 PM Z PM
5 PL PL PL
6 PL PM PL
7 PL PM PM
8 PM Z NM
9 PM Z NM
10 Z NM NM
11 NM NL NL
12 NM Z NM
13 NL Z NM
14 NL Z NM
15 NL Z Z
16 NM PM PL
17 NM PL PL
18 Z PM PM
19 Z Z Z

The mode shape is determined after updating and using neural networks as in Figure

7-25.
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Figure 7-25. Mode shape based on the second new fuzzy rules.

The difference between this mode shape and the experimental modal analysis results
are obtained. The error vectors and the fuzzy mode shape are presented in Figure 7-
26. The Error vectors are presented for the region that the error is more than 0.25. In

this stage if the Error Vector is less than 0.25, there would be no change in the rule.
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Figure 7-26. Second new fuzzy MSF and the difference between the mode shape and

the experimental modal analysis, and the Error Vectors.
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Third new rule is determined based on the Error Vectors in Figure 7-26. The Error
Vectors for the most of the region is less than 0.25 and it is considerable only at the
end of the mode shape. Therefore the third new rule can be introduced as in Table 7-

6.

Table 7-6. New fuzzy rules.

Frequency Fuzzy rules New rules I New rules 11 New rules III
Length Second natural

(% %Xn) frequency

1 Z Z Z Z

2 Z Z Z Z

3 PM PL PL PL
4 PM Z PM PM
5 PL PL PL PL
6 PL PM PL PL
7 PL PM PM PM
8 PM Z NM NM
9 PM Z NM NM
10 Z NM NM NM
11 NM NL NL NL
12 NM Z NM NM
13 NL Z NM NM
14 NL Z NM NM
15 NL Z Z Z
16 NM PM PL PL
17 NM PL PL PL
18 Z PM PM PL
19 Z Z Z PM

After using modal analysis to update the third new fuzzy MSF and using neural
network to drive the mode shape then the final mode shape can be determined as in

Figure 7-27.
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Figure 7-27. Third mode shape after the rule corrections.

In this mode shape the error vectors are less than 0.25. Therefore there are no more
changes or corrections in the fuzzy rules. In this stage the overall error between this
mode shape and the experimental modal analysis mode shape is calculated. The error
magnitude is 17.24%. As this error is less than 20% then this mode shape is
considered as an acceptable mode shape for the third mode shape of a clamped-
clamped beam. In the above correction procedure the fuzzy rule correction is repeated

3 times to achieve an acceptable mode shape.

7.2. Two-dimensional elastic bodies

An example of a plate is presented in this section. The procedure of the method is the

same as the beam example. The differences are explained in the example.
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7.2.1.  Example 2

A clamped-free-clamped-free plate is considered in this example (Figure 7-28).

Free

edges

Figure 7-28. A Clamped-free-clamped-free beam.

The differences in this example with one-dimensional bodies are stated below.

1) There are two position inputs along two edges of the plate (X and Y in Figure 7-

/]

¥ Fi

Figure 7-29. X and Y as two position inputs.
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Input fuzzy membership functions for X position, Y position and frequency are

presented in Figure 7-30-33.
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Figure 7-30. Input 1 (X position) membership functions.
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Figure 7-31. Input 2 (Y position) membership functions.
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Figure 7-32. Input 3 (frequency) membership functions.

Output or deflection membership function is presented in Figure 7-33.
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The fuzzy rules to construct the mode shapes of the plate up to the 3 mode shape are

presented in Table 7-7 and 8.

Table 7-7. Fuzzy rules to construct the first fuzzy MSF of the plate.

Y X 0 0.25 0.5 0.75 1
0 i PM PL PM Z
0.25 Z PM ] PM Z
0.5 Z PM [ ] PM Z
0.75 Z PM Bl PM Z
1 Z PM ] PM |
Table 7-8. Fuzzy rules to construct the second fuzzy MSF of the plate.

Y X 0 0.25 0.5 0.75 1
0 Z PL Z NL |
0.25 Z Bl Z NL Z
0.5 Z ] Z NL Z
0.75 Z ] Z NL Z
1 Z Bl Z NL Z
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Table 7-9. Fuzzy rules to construct the third MSF of the plate.
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Y X 0 0.25 0.5 0.75 1
0 Z PL NL PL Z
0.25 Z ] NL Bl Z
0.5 Z [ ] NL [ ] Z
0.75 2 ] NL Bl Z
1 z PL NL PL z

The fuzzy MSFs from above membership functions and rules are presented in Figure

7-34.

> :
2 g input! ingut2 L input
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c) The third fuzzy MSF.

Figure 7-34. Plate fuzzy MSFs that are obtained from the membership functions and

the rules presented above.

2) The SIMULINK fuzzy controller consist of three inputs. Two inputs are designed

for position and one input for natural frequency (Figure 7-35).
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Figure 7-35. SIMULINK fuzzy controller to obtain the output from the inputs.

3) The experimental modal analysis is carried out in two dimensions. The plate is

modelled by measuring 6 points on the plate (Figure 7-36).

¥ i

Figure 7-36. Experimental FRF measurement points on the plate.

The mode shape can be obtained using the Peak-Picking method. This method is
introduced in Chapter 5 and 6. The mode shapes are presented in Table 7-10 (FRF

results are presented in Appendix D).

The corresponding fuzzy MSFs for points 1 to 6 are replaced by the experimental
deflection results in Table 7-10. Replacing or updating these data are performed for

modes 1 to 3. Updated mode shapes are not smooth surfaces. After updating the fuzzy
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data by experimental data the mode shapes are smoothed by interpolating the mode

shape surfaces using neural network.

Table 7-10. Deflections of points 1 to 6.

Mode Point 1 2 3 4 5 6
Number

1 0.51 052 050 049 054 048

2 -1.1 -1.3 -0.99 1.0 1.2 0.98

3 0.99 1.1 1.3 1.2 0.98 1.0

4) Neural networks consist of two inputs and one output where the two inputs

include position inputs (Figure 7-37)

Position (X)

Nenral
Networks

Plate
Deflection

Position (v)

Figure 7-37. Neural networks inputs and output.

Mode shape results are presented in Figure 7-38.

The error in this example is investigated using a corresponding FE model. ANSYS
software [42] is used to obtain the vibration model of the clamped-free-clamped-free
plate in order to compare the result in this research with FE results. In the FE
modelling, the material property of the plate (Figure 7-28) is aluminium with module
of elasticity of 71 N/mm? and specific weight of 2.7 Kg/m3. The width of the plate is
100 mm, the length is 180 mm and the thickness is 2 mm. Maximum error of 18.9%
occurred in the third mode. Errors of 15.1% and 17.3% occurred in the second and

first mode shapes respectively.
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Figure 7-38. Plate Mode shapes, a) Mode 1, b) Mode 2, and c) Mode 3.
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7.3. Structures

A 3-beam structure is presented here as an example. The procedure of the method is

the same as Examples 1 and 2. The differences are explained in the example.

7.3.1. Example 3

A 3-beam structure is considered here as an example (Figure 7-39).

Clamped
Ends

Figure 7-39. A 3-beam structure.

The differences in this example with one-dimensional bodies are stated below.

1) Mode shape forms of the structure for modes 1 and 2 are presented in Figure 7-40
and Figure 7-41. The corresponding fuzzy deflections are presented on each
figure. Each fuzzy deflection is introduced for each beam relative to the position
of the beam before deflection. N, Z and P notations represent Negative, Zero and
Positive fuzzy deflections. However introducing the fuzzy deflection is not a
unique approach and any other linguistic terms such as Large, Small and etc. can
be introduced. These fuzzy deflections can be introduced for any arbitrary
position on the beam too. This is the flexibility of application of fuzzy reasoning

in this method. Another advantage of this method is that user described
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deflection in local coordinates and question of coordinate transformation does not

appear.

Beam 3

Beam 1
z
7 7z
SRRNRR SRRRRRR

Figure 7-40. Mode Shape Form 1 with the corresponding fuzzy deflections.

7 P Beam 2 7
+
P N P
+
e
P
Beam 1 B
Z Z Beam 3
z Z

Figure 7-41. Mode Shape Form 2 with the corresponding fuzzy deflections.

Membership functions are presented in Figure 7-42.
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Figure 7-42. Inputs and output membership functions a) Input 1 (Beam Number), b)
Input 2 (Position on the beam), ¢) Input 3 (Natural frequency number), d) Output
(Deflection).

The corresponding fuzzy rules for these Mode Shape Forms are presented in Table 7-

11 and 12.

Table 7-11. Fuzzy rules for the first MSF.

Beam Position 0 0.333 0.666 1

No.

1 Z Z N N
2 Z P P 4

3 N N Z Z




142 Experimental Validation Chap. 7

Table 7-12. Fuzzy rules for the second MSF.

Beam Position 0 0.333 0.666 1
No.

1 Z Z P P
2

3 P P Z Z

2) The SIMULINK fuzzy controller consists of three inputs. Input 1 is considered
for the beam number. Input 2 gives the position on the beam. Input 3 is included

the interested natural frequency (Figure 7-43). The output is the fuzzy MSFs.

L]
’—’Scopﬂ
1

Beam
F/iA '
i x4
Foszition = N
Fuzzy Logic ldode Shape Farm
4 Cantraller
[
Matural Frequency Mumber
Scope

Figure 7-43. SIMULINK fuzzy controller for obtaining the output from inputs. In this
figure, beam number 1 is considered for the first natural frequency where the output is

the first MSF (X11).

Fuzzy mode shape forms are presented in Figure 7-44.

Beam 2 Beam 2

Beam 1 Beam 3 |
s Beam 3

o
B

b) The second fuzzv MSF.
a) The first fuzzy MSF.

Figure 7-44. Fuzzy Mode Shape Forms derived from SIMULINK.
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3) The experimental modal analysis is carried out in two dimensions. Positions of
accelerometers are demonstrated in Figure 7-45. Direction of motions of

accelerometers is shown with arrows in each position.

® e s

RUSRCNNAN RARRENGY

Figure 7-45. Position of accelerometers on the structure and the direction of motion of

each accelerometer.

Experimental mode shapes are presented in Table 7-13 (FRF results are presented in

Appendix D). Positions 1, 2 and 3 are demonstrated in Figure 7-45.

Table 7-13. Experimental mode shapes.

Mode Position 1 2 3
1 -1.1 0.86 -0.94
2 0.97 0.04 1.2

Now the fuzzy MSFs are updated by experimental mode shape results. This
modification is performed by replacing the fuzzy MSFs data by the corresponding
experimental data. In the next stage, updated fuzzy MSFs are smoothed using neural

networks.
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4) Neural networks consist of one input and one output (Figure 7-46).

Neural
Networks

Beams
Deflection

Position on
the beams

Figure 7-46. Neural networks input and output.

After the neural networks procedure, 3 beams are assembled together. This assembly
is performed by placing beams 1, 2 and 3 together in each mode as shown in Figure

7-47.
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a) The first mode shape. b) The second mode shape.

Figure 7-47. Mode shapes after neural network procedure (beam length is normalized

to 1).

A corresponding FE model is used to obtain the error in this example. ANSYS
package [42] is used to obtain the vibration model of the frame in order to compare
the result in this research with FE results. In the FE modelling, the material property
of the frame (Figure 7-39) is steel with module of elasticity of 200 N/mm? and
specific weight of 7.9 Kg/m3. The beams of the frame are built from 200 mm length,
15 mm width and 2 mm thickness. An Error of 19.83% occurred in the first mode and

16.41% in the second mode.
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7.4. Mode Expansion: Example 4

An example of a clamped-free beam is presented here. There are four differences

between this example and example 1.

1) Boundary conditions are different.

2) Experimental FRF measurement is not preformed in equal distance positions.
3) The mode shapes are obtained up to 8™ natural frequency.

4) Other forms of fuzzy rules are presented to show the flexibility of the fuzzy

systems.
The rest of the procedure is the same. The procedure is presented below.

The first input of the fuzzy model is the beam length. Figure 7-48 illustrates the
membership functions of the first input. The beam length is taken to be normalised to
1.

The second input of the fuzzy model is frequency. Figure 7-49 shows the membership
function of the second input. The region of frequency input is designed to demonstrate
first to eighth natural frequency. The magnitude of the natural frequencies is measured
by an experimental test or a FRF curve. In the frequency membership function the
number that represent the first, second and third etc. natural frequency are used to
identify the membership functions. For this purpose the natural frequency magnitudes

are not used.

The output of the fuzzy model is the deflections of the beam or the mode shapes.
Figure 7-50 shows the membership function of the output that is based on the NL,
NLM, NM, ZNM, Z, ZPM, PM, PLM and PL.
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Figure 7-48. The first input (beam length) membership functions.
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Figure 7-49. The second input (frequency) membership functions up to 8™ natural

frequency.

NL NLM NM ZNM Z ZPM PM PLM PL

1

-1 -08 -05-03 0 025 05 075 1
Beam Deflection

Membership

Figure 7-50. Output (deflection) membership functions.

Fuzzy rules are defined based on the boundary conditions of the beam and the
approximate mode shapes of each natural frequency.

For example in second natural frequency the mode shape of the beam is, zero (Z) and
will go up to positive large (PL) and this is followed by going down to negative large
(NL) and again zero (Figure 7-51). However medium regions can be introduced in the

middle of large and zero regions (by ZM, M, and LM that can be either positive (P) or

negative (N) too).
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Figure 7-51. A general view of the second mode shape of a Clamped-Free beam

without exact deflection magnitudes.

As the beam is Clamped-Free then the boundary conditions present zero deflections at

one end. The zero slope is defined by having two zero at the end (zero at length

positions 0 and 1 at the first end as shown in Table 7-14). The fuzzy rules based on

the approximate mode shapes are presented in Table 7-14. These rules are created for

a clamped-free beam up to 8™ mode shape.

Table 7-14. Fuzzy rules up to eighth-natural frequency

Natural

Frequency

Beam Length 1 2 4 5 7

0 Z Z Z Z Z Z Z

1 Z Z PM

2 Z Z ZPM PM PM PM PLM PM
3 ZPM ZPM PM  PL PLM PLM Z PLM
4 ZPM ZPM PM  PL PM PM NLM PM
5 ZPM ZPM PLM PL Z Z NM  Z

6 ZPM 7ZPM PLM PM NM NM Z NM
7 PM PM  PLM Z NLM NLM ZPM NLM
8 PM PM PM ZNM NM Z PM  Z

9 PM PM  ZPM NLM Z PLM ZPM PLM
10 PM PM  Z NLM PM PM Z Z

11 PM ZPM ZNM NLM PLM Z ZNM NLM
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12 PM ZPM NM ZNM PM NM NM Z

13 PLM Z NM 7 Z NLM Z PLM
14 PLM Z NLM PM NM NM PM Z

15 PILM ZNM NM PM NLM Z PLM NLM
16 PLM ZNM ZNM PLM NLM PM Z Z

17 PLM NM Z PM NM PLM NM  PLM
18 PL NM  ZPM Z VA PM  NLM PM
19 PL NL PM  NM PM Z Z Z

20 PL NL PL NL PL NM PM  NM

The mode shapes created from the membership functions in Figure 7-48 to 7-50 and
fuzzy rules in

Table 7-14 are illustrated in Figure 7-52.

X

E D-z e q\“;ﬁ"\) ' }r %‘-‘ﬂf
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0.5

Frecuency 0 o Beamlenath

Figure 7-52. The guessed mode shapes created by fuzzy membership functions and

rules.

As it is mentioned earlier, input 1 is the position on the beam and input 2 is the natural
frequency. The SIMULINK toolbox of MATLAB software is used to generate fuzzy
beam deflections (output) from the beam length and frequency (inputs). This is

illustrated in Figure 7-53.
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Figure 7-53. MATLAB SIMULINK fuzzy controller for generating the output from

inputs.

To illustrate the generation of fuzzy function, if the position on the beam is varied
between, x=0 to 1 and the frequency input is the 2" natural then the output (or Y in
Figure 7-53) will be 2" mode shape of the beam. This output is shown in Figure 7-
54(a). By performing this procedure for other natural frequency inputs, deflection
(output) for the other mode shapes are derived (Figure 7-54(b) shows the 5™ mode as

another example).

Deflection
o

-0.50:00 0.14 0.27 0.41 0.55 0.69 0:820.96

Beam Length

a) Mode 2
< 2
5 1
2 0
e -10J.00 0.14 0M1 0.55 0.69-7.82 0.96
Beam Length
b) Mode 5

Figure 7-54. Mode shapes from fuzzy model before modification, a) The second

fuzzy MSF, b) The fifth fuzzy MSF.
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After obtaining the approximate mode shapes (or fuzzy MSFs), these MSFs are to be
modified using experimental data from a real system. Modification of the fuzzy model
using experimental modal parameters is discussed below.

In this section an incomplete four-degree of freedom model is derived by modal
analysis. Here the complete model refers to a model that the experimental FRF
measurements are carried out in 8 equal distances points on the beam where beam is
divided to 8 points. In this case an incomplete four-degree of freedom model refers to
a beam that is divided to 8 segments (and 8 points) but only four points on the beam
is measured experimentally in obtaining FRFs. These four points are selected from the
first four points on the clamped end section of the beam. The experimental rig is
shown in Figure 7-55. In this figure the accelerometer is placed in the third point on

the beam from the clamped end or left end in the figure.

Figure 7-55. A clamped-Free beam.

An accelerometer is attached to the beam to receive the oscillation signals. A charge
amplifier is used to amplify and send the signals to the data acquisition card. The data
acquisition card (PCI230) is assembled to a Pentium PC. AgilentVEE software is used
to find the FRF curves.

The beam dimensions are 500 mm length, 10 mm thickness and 20mm width. The

material is steel. The boundary condition is clamped-free.

Before finding the eigenvectors (mode shapes) of the beam from FRF signals,
calibration of FRF is performed by using a suspended (0.5kg) mass. In this calibration
Fourier transform of accelerometer signal divided by Fourier transform of the hammer
impulse and the peak value result of the division is equalled to one over mass value
(1/488.50). Fourier transform of both signals (accelerometer and hammer) are found
by AgilentVEE software. The calibration procedure is explained in Chapter 6,

experimental setup.
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After calibrating FRF values, the FRF from experimental modal analysis can be used
to extract the eigenvectors of the model. The experimental procedure is described
below. To obtain an incomplete four-degree of freedom model of the beam, the beam
is divided to 8 equal segments, to have 8 points on the beam. Four points are selected
to measure experimentally from these eight points (here, first four points from the
clamped end). Corresponding four positions are, 62.5mm, 125mm, 187.5mm, 250mm
from the clamped end (where the beam length is 500 mm). An accelerometer is
attached to the beam and the instrumented hammer is used to excite the beam. The
accelerometer is placed in each of four selected positions and the instrumented
hammer is used to excite the beam in each four selected points. Sixteen excitations
with hammer are applied to the beam corresponding to different combination of
accelerometer and hammer excitation positions. Fast Fourier transform of hammer
excitation and accelerometer signals are found by AgilentVEE software. Fourier
transforms of accelerometer signals are divided by Fourier transform of the signals
from hammer in order to obtain FRF values. Four by four FRF matrix is obtained
from sixteen FRF data in this experiment. As one row of FRF matrix is usually
enough to drive the mode shapes so the accelerometer can be placed to one position
and hammer excitation can be applied to all four positions. A row of the FRF matrix

can be constructed by A,,, h,, h; and h,,. These results are obtained by placing the

accelerometer on point 1 and hitting the beam by the hammer on points 1, 2, 3, and 4.
Peak-picking method is performed to extract the modal constants and eigenvectors
from the FRF matrix. This method is presented in Chapter 5 and 6. The experimental
results are demonstrated in Table 7-15 (FRF curves are presented in Appendix D).
Table 7-15 is included first four mode shapes described by 4 measurement positions
on the beam. The beam length is normalized to one so the positions on the beam
regarding the experimental mode shape measurements include 0.1, 0.2, 0.3 and 0.4.

From Chapter 3, equation (25), we have:
_ 2
Uy Uy _|hil|k §, @,
In this equation i and [ are the accelerometer position and excitation position

respectively. For example if the accelerometer is placed in 0.1 position and the

excitation is applied to position 0.2 then the equation can be presented as below.

] 2
U Usy _|h12 |1< §
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Table 7-15. Normalized mode shapes from experimental modal testing

Position on the beam (normalise)

Nods shane 0.1 0.2 0.3 0.4
1 0.0259 0.0973  0.2048  0.3395
2™ 0.1379 04173  0.6542  0.7137
3% 0.3254 0.7245  0.6177  0.0197
4" 0.5193 0.6852  -0.1304 -0.7071
5™ 0.6733 0.2852  -0.691  0.0009
6" 0.7512 -0.2639 -0.3921 0.7072
70 0.7325 -0.6502 0.3931 0

8" 0 0.6142  -0.6519  0.6936

The important note in this example is, k that is the number of peaks in the FRF curve
is not limited to the measurement points. The reason is, each FRF curve have any
arbitrary number of peaks. More FRF peaks are appeared by simply expanding the
frequency range of the FRF measurement. Therefore in this example, k can be from 1
to any arbitrary number depending on the frequency range of the FRF measurement.
This frequency range can be adjusted experimentally in order to represent all the
sufficient peaks. Consequently, although i and / are limited to the number of FRF

measurements, but k is not limited. Therefore the experimental mode shapes (u, or
u, ) that are obtained from above equation can be expanded to k number of natural

frequency as long as the FRF curve includes the k" natural frequency. This allows us
to have experimental mode shape up to any arbitrary natural frequency regardless of
the limitation of the measurement points. However this mode shape only exhibits in

the measured points. This is shown in the following section.

The experimental mode shapes from Table 7-15 are used to modify the fuzzy MSFs.
Fuzzy MSFs are presented in Figure 7-54. Experimental mode shape is derived for an
incomplete 4DOF model. Figure 7-56 shows examples of complete and incomplete
mode shapes for second, forth and sixth modes. In the presented method, the

incomplete set of mode shape data are used to update the models and the complete
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8DOF model is presented in the figures for better understanding the difference

between complete and incomplete experimental mode shapes.
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Figure 7-56. Normalized experimental measured mode shapes from table 7-2, a) o

Complete mode shape, b) o incomplete mode shape, c) 4 Complete mode shape,

d) 4™ incomplete mode shape, €) 6" Complete mode shape, f) 6" incomplete mode

shape.

A 4DOF experimental modal analysis is performed but the model is capable of having

up to eighth mode shape. The reason is that each FRF from 4DOF modelling consists

of all the natural frequency peaks (as well as eighth for example), so these peaks can

be used to find the model up to any frequency range (as explained earlier in this

example). The only limitation is that this model shows the mode shapes for four

points on the beam or for the points that the experimental measurements are

performed. The mode shape for the other points except these four points is not

available.
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Data from Table 7-15 are used to modify the fuzzy MSFs in Figure 7-54. In this stage
the modification is performed simply be replacing the fuzzy MSFs data with the
corresponding experimental data (in this example four points for each mode). Next
stage of the modification is to drive smooth curves from these mode shapes, as there
are some spikes in the curves generated due to the difference between the

experimentally measured points and guessed mode shape.

The mode shapes are derived from the updated fuzzy MSFs as explained before.
Experimental measurements were carried out at 4 positions by simply replacing the
points in the fuzzy MSF data with the corresponding points from the experimental set.
The inputs and output fuzzy membership functions are described by 51 points. Both
fuzzy neural network and back propagation neural network are used to generate the
updated curves (MATLAB software is used). As before, it is found that the fuzzy
neural network generates smoother curves compared to back propagation networks.
The fuzzy neural network is based on a single input-single output system. The input of
the system is the position on the beam. The deflections of the mode shapes are the
output of the network. The following procedure is performed to train the network. The
input training data include, the position on the beam for each mode shape (here, 51
data). Updated fuzzy MSFs are included the output training data of the network (here,
51 data). As eight mode shapes are derived then eight neural networks are introduced
for each mode shape individually. The same training procedure is used for each neural
network. The trained neural networks determine the mode shapes. By giving the
position on the beam as the input of the networks, the deflection of the mode shapes
are obtained. Figure 7-57 shows the mode shapes from the presented method and the

incomplete and complete experimental models.
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Deflection

Beam Length

Series3

Series1 ------- Series2

d) The seventh mode shape.

Figure 7-57. The mode shapes, Series1: Incomplete experimental model, Series2:
Complete experimental model, Series3: the mode shapes obtained from the proposed

method. a) 2" mode b) 3" mode d) 5" mode d) 7" mode.

Maximum errors in this example are presented as below. Maximum error of 50% is

occurred in seventh mode shape (on position, 0.392, on the beam length) the error is

presented in Figure 7-58.

Maximum error position

1,

,&Q

O
A%

Deflection

0.35 0.45
-0.51 Beam Length

-1

Series2 ‘

Series1

Figure 7-58. The maximum error, Series1: Experimental model, Series 2: proposed

model (seventh mode shape)

This error although appears to be rather serious and severe, it is caused between two
models with different degrees of freedom. Here a “continuous” model (that is

obtained here) is compared with a model with less degree of freedom (incomplete
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4DOF modal model) that is only described by linear interpolation with adverse effect
on accuracy. The error between continuous model and discrete model must be zero in
the positions that the measurement is performed. Then in the proposed model, the
maximum error is 41.8% and in most of the other positions it is relatively accurate.
This error is demonstrated in Figure 7-59 illustrates the behaviour in the second mode

shape between the proposed and experimental models.

Deflection

0.4 0.5
0 Beam Length

Series1 - - - - - Series2 Series3 ‘

Figure 7-59. Maximum error of the proposed model and experimental model (second
mode shape), Series 1: Incomplete experimental model, Series 2: Complete

experimental model, Series3: The proposed model.

Here again, the error exists between the proposed model and the complete
experimental model where there has been no data to modify the proposed model. In
this region the proposed fuzzy model is extrapolated or expanded. Figure 7-60
demonstrates the maximum value of this error that has occurred in second mode shape
in position 0.6 along the beam length where no data available to modify the model.
This error is 82.8%. However the model is still following the right mode shape

trajectory.
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Deflection
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Figure 7-60. The maximum error of the proposed model and experimental model
(second mode shape), Series 1: Incomplete experimental model, Series 2: Complete

experimental model, Series3: proposed model

As before the result of this example can be presented in time domain using the

following equation.

@) Y, Y, Y,

t Y Y
yz.( " cd Zbsin(@ r+y,)+c,d P sin(@t+ )+ +ed D sin(w i +wy)
Ys (@) 1 Y 1 Y 2 ¥ 8

Where constants ¢ and ¥ can be obtained from displacement and velocity initial

conditions.

7.5. Discussion

Example 1 includes a modelling procedure of a clamped-clamped beam. In order to
construct the guessed mode shapes (MSF’s) a fuzzy input is introduced for position on
the beam and another input for number of natural frequency. In this example 21
number of membership functions are introduced for position input. Each membership
function belongs to a region of the beam. 4 fuzzy membership functions are
introduced for natural frequency input to demonstrate the mode shapes up to forth

mode. Output membership functions are designed to demonstrate the deflection of
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mode shapes. This output consists of 5 memberships including NL, NM, Z, PM and
PL. 76 fuzzy rules introduced to relate the inputs to the output. Alternatively, other
kinds of position input and deflection output membership functions can be introduced
too. Different number of membership functions and fuzzy rules are used in the other
examples to demonstrate the effect of membership functions and rules in the mode

shape curves.

Both fuzzy neural network and back-propagation neural network are used to generate
the updated curves (MATLAB software used). It is found that the fuzzy neural
network generates smoother curves compared to back-propagation networks.

In order to evaluate the error in the proposed method, eigenvectors from the fuzzy
model are compared with mathematical mode shape. The proposed method exhibits
an error of 15.57%, relative to the mathematical model in the 4™ mode. Error in the

first, second and third mode shapes are 14.3%, 11.2% and 9.8% respectively.

A discussion is presented in Chapter 7 for the clamped-clamped beam example
(example 1) for the situation where a) The guess for the mode shape is wrong and b)
There is no guess available for the mode shape. In the first case where the guess for
the mode shape is wrong, an initial error of 65.67% is observed. This error is not
acceptable. Then the method suggests selecting another mode shape. The error
(11.46%) found to be acceptable only when a correct MSF is selected. In the second
case there is no guess available for the mode shape. Here, fuzzy rules that are used in
constructing of fuzzy MSF are corrected iteratively to obtain an acceptable version of
the MSF. First, an available MSF with minimum error relative to other available MSF's
is selected. In this case it was assumed that some guesses are available that correspond
to the other natural frequencies and is not the correct mode shape. The method
developed describes how fuzzy rules are corrected relative to the experimental modal
analysis model. The experimental modal analysis model is the same model that was
used for updating procedure. This modal analysis model is a linear interpolation
version of the previous modal analysis model. The final version of the MSF after
correction exhibits a 17.24% error. As this error is less than 20% then this mode
shape is considered to be acceptable for the third mode shape of a clamped-clamped

beam.
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These examples demonstrate the reliability and effectiveness of the methods as they
show how wrong MSF's can be corrected and new MSF can be obtained in the absence

of MSFs.

Although it was demonstrated that error can be reduced, the methods presented are
with certain limitations. The method presented relies on correct guesses of boundary
conditions. Therefore the method depends on the possibility to observe of the
structure and boundary conditions. Also the method has to be applied with a great care
and learning rate has to be controlled to prevent the updated curve from being
excessively pulled to the sampling points in the vicinity of sampling points. This is
important, especially if the errors between fuzzy curve and measured points are high.
This problem somewhat compromises the robustness of the proposed method,
however the problem is surmountable and apart from neural network solution other
numerical methods for curve smoothing may be devised (although no attempt was

made to do this).

Example 2 involves modelling of a two dimensional body. A clamped-free-clamped-
free plate was considered in this example. This example, compared to example 1 has
another input. This is an extra position input (or geometry input) as the system is of
two dimensions. The rest of the procedure is the same as example 1. In this example,
different than example 1, 5 membership functions were used in each input. The
proposed method result was compared with a FE model. The maximum error of
18.9% occurred in the third mode shape. Errors of 15.1% and 17.3% occurred in the

second and first mode shapes respectively.

Example 3 demonstrates the application of the method regarding structural modelling.
In this example a 3-beam structure was considered for modelling. Here, compared to
example 1, three beams, rather than one beam was used. The position input, frequency
input and the deflection output were constructed with the same procedure as the other
examples. However, here different membership functions were used. For instant, only
4 membership functions are used for the position input and 2 membership functions
for frequency input. Here one more input was required to identify beams. In this

example obtained MSFs are compared with the corresponding FE model. The
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maximum error of 19.83% occurred in the first mode shape and error of 16.41% in the

second mode shape.

Example 4 demonstrates a clamped-free beam modelling problem. In this example the
experimental updating procedure is applied to only a part of the beam. In this case the
proposed method is still applicable. In this example higher errors are exhibited. The
reason is, the experimental updating procedure is applied to only a part of the beam
and there is not enough experimental data to update the entire fuzzy MSFs. However
the method still works and presents a trajectory of the mode shapes even in not

updated sections.



Chapter 8

Discussion

Deterministic vibration modelling approaches have become very complicated and
involve extensive mathematical efforts and the use or development of computational
techniques and optimization methods. Further more limitations of deterministic
approach have becoming more obvious as dimensionality and complexity of
engineering systems continue to grow. Therefore modelling of uncertainty in
dynamical behaviour of systems has become an important tool during the last 25
years. This resulted in the development of stochastic methods and provided additional
analysis tools to designers. Uncertainty methods enabled engineer to study structures
under imprecisely defined excitations such as force and initial conditions, or with

other imprecise parameters such as unknown geometry and material properties.

This thesis deals with vibration analysis of mechanical systems with imprecise
parameters. Most of structures are imprecisely defined due to lack of information
about the parameters of the system, or inaccurate measurements. Parameters of the
system are mass, stiffness, damping, geometry and material properties. Lack of
information about the system and inaccurate measurements cause uncertainty in the
analysis. Some of the sources of inaccuracies in parameters that lead to uncertainties
in the analysis are measurement, manufacturing tolerances and time variation of

systems properties that are described in Chapter 1 (introduction).
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Therefore it is very important to consider these unavoidable uncertainties in order to

obtain a realistic model of the structure.

Regarding the literature survey in this thesis, it is found that uncertainty methods
developed by previous researchers studied the effect of uncertainty on parameters of
systems or uncertain excitations on the system response. However the proposed
method in this thesis deals with uncertainty in the behaviour (mode shape) of
structures without considering the parameters of the system. This is a novel approach
in modelling of vibratory behaviour of structures and has not been done before. This
method is significant as it provides an alternative perspective of uncertainty. It
proposes that the final behaviour of modes can be described without any reference to
system parameters or equations (although the equations of motion are extensively
used for comparison purpose). This approach ensures that fuzzy methods can be used.
Otherwise it is not possible to start with fuzzy system variables and proceed forward
to obtain fuzzy response as many mathematical operations do not have their fuzzy
counterparts. However this is a normal procedure in uncertainty analysis using

stochastic or statistical methods.

Thus the proposed method in this thesis offers an advantage over other uncertainty
analysis methods. Available methods in uncertainty analysis involve solving
complicated mathematical equations where the equations consist of imprecise
parameters. Solving mathematical equations consisting imprecise parameters provides
imprecise and approximate solutions. The proposed method is different from this
conventional approach in the sense that the process start with a solution. In other
word a solution is guessed and described in terms of fuzzy functions (or fuzzy mode
shapes). This initial imprecise and approximate solution of vibratory behaviour of
structures is used to start the modelling procedure. As mentioned before, the
imprecise and approximate solutions refer to approximate mode shape of structures
where the approximate mode shapes of structures are guessed heuristically (Guessing
the approximate mode shapes is explained in Chapter 4). Therefore this method
avoids complicated and time consuming mathematical computations where other

uncertainty methods rely on.
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Also the proposed method provides a basis for dealing uncertainty inherently present
in all experimental measurements and ensures that the future extension of the method

is based on well tested fuzzy formulism.

The method presented in this thesis involves estimating the mode shapes of a structure
and describing these shapes in terms of fuzzy membership functions. These initial
guesses are based on engineer’s experience assisted by end and boundary conditions
and the rules introduced in Chapter 4. The second stage of the process is, updating
these guessed mode shapes by experimental data. This involves performing
experimental modal analysis. The curve updating is not a simple process and poses
complications. The main source of complication is related to the fact that, a mode
shape derived from experimental FRFs collects only a limited number of sampling
points. Therefore the main difficulty to be addressed, is, how to update the fuzzy
curve with only few sampling points. The method proposes to use neural networks to
achieve this. When the fuzzy data is updated by experimental data, the method
proposes that the points of the fuzzy data correspond to the sampling points of FRF
are to be replaced by the experimental data. Doing this creates a new fuzzy curve
which is the same as the previous one, except at those points. In another word a
“spiked” version of the original fuzzy curve is obtained. In the next stage of this
process, neural network is used to “learn” the spiked curve. By controlling the
learning process (by preventing it from overtraining) an updated fuzzy curve is
generated. The method is similar to ones routinely used in neural network, where

noise is added to target curve to enhance network generalisation.

The proposed method relies on informed guess, probably based on experience of
operator. In this thesis, it was proposed that to minimise operator dependence a
modal shape repertoire may be assembled or mode shapes of analytical solution of
some standard structures can be made available to the operator of the proposed
method. Never the less the proposed method still heavily rely on the operator.
However a method can not be effective and robust unless it is independent of
operator. In addressing these two problems relating to concept of guessing, it has to
be addressed, what happens if, a) the guessed mode shape is wrong, and b) there is no
guess available. In addressing the first problem, mode shape forms are considered

for a uniform or regular structure (such as a beam, or simple multi spring mass
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system) for the purpose of assisting the guess of the structure under consideration.
These MSFs may relate to the first, second or other mode shape of the structure. The
procedure of fuzzy construction of MSF, modal testing for model updating, and neural
network learning of data is applied to obtain the mode. The error between this mode
shape and modal analysis model is obtained. The modal analysis model is the same
model that is used for model updating. If the error is not acceptable then another
available MSF is considered and the procedure repeated until the correct MSF is
found. The second obstacle to overcome in order to improve the effectiveness is to
deal with the situation where there is no MSF available. Either not available in
existing repertoire or operator decide not to choose one. In this situation all the
method scans all available mode shapes and consider them one by one. The error for
each MSF is calculated with comparing with the modal test results. The MSF with the
minimum error is selected. The difference between the deflection points in the
experimental modal analysis mode shape and the MSF is obtained. The magnitude of
this difference is converted to fuzzy deflection terms. Then this new fuzzy deflection
that is obtained from the difference between the experimental modal analysis and the
proposed model is replaced by the previous fuzzy deflections. This replacement is
applied by changing the fuzzy rule for the particular geometry of the structure, where
the difference is found. By doing this for the whole geometry and correcting all the
fuzzy rules, then the overall error is calculated. If the overall error is acceptable then
the procedure will end. If the error is not acceptable then the procedure is repeated by

changing the fuzzy rules until the error becomes acceptable.

These two techniques are presented in Chapter 5 and are applied to example 4 in
Chapter 7. These techniques found to improve the reliability and robustness of the

proposed method.

In Chapter 7, four examples were provided to demonstrate and illustrate the proposed
method. The examples were included vibration modelling of a clamped-clamped
beam, a clamped-free beam, a clamped-free-clamped-free plate and a 3-beam

structure.

As mentioned before, uncertainty in modelling and analysis of structures usually exist

due to imprecise excitations such as forces and initial conditions or imprecise
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parameters such as masses, material properties, stiffness of the system. In many
situations of uncertainty analysis, the error cannot be described in conventional terms.
The reasons include; a) It is not possible to find exact solution (for example for
complex structures), and b) The deterministic model parameters inevitably contains
error. In other word, error of the method of analysis and uncertainty can not be
decoupled. Uncertainty modelling methods provide a range of solution for range of
uncertain parameters. In this case deterministic methods do not provide information
about the solution for a range of parameters, especially if more than one parameter is
interested for analysis of the solution. Uncertainty analysis is also used where there is
a high error in deterministic methods due to uncertainty in parameters and provides an
indication of decreasing or increasing in the solution. Classical uncertainty analysis
is described in terms of statistical variables and provides results which inform the
level of probability of expecting a certain solution in a given range. Therefore
variability of results is neither an error in classical sense or reflection of the
effectiveness of the method. The variation of results predicted by the method
proposed in this thesis can be interpreted in exactly the same way as the statistical
method. The “variation” between the analytical value and fuzzy results, simply
reflects the level of uncertainty rather than an error in classical sense. The maximum
20% difference was estimated in the proposed method in comparison against the other
results. However this error is calculated relative to experimental modal analysis
model that only exists in few points and other points are linearly interpolated and
consist of error. In another word the modal analysis model that is used for comparing
with the proposed model is not an exact solution. Although the local error in updated

positions is found to be around 5%.

Having developed this method, the question is, how these results can be used in an
industrial situation. The answer is simple, exactly the same way as how modal
analysis used currently. Of course the method proposed here provides additional

advantage of uncertainty.

In mathematical terms, fuzzy vector can be used to express the system response
function. Just to clarify, fuzzy mode shape forms are equivalent to eigenvectors in
classical sense and eigenvalues are the natural frequencies which are crisp and

measured during the experiment.
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x, (1) X,
X, (t ul X
2() :Zci -2 Sin(wnit+Wi)
. i=1 .
'xm ([) Xm i
Where in this equation the mode shape matrixes or {X, X, - X, }IT for

i=1,2,---,m are obtained from the proposed method in this thesis and natural

frequencies (@, ,, i =1,2,---,m ) can be obtained from a single FRF result. One of the

ni*

available FRF results that was used in modal analysis model updating procedure can

be used in this case. Constants ¢, and phase angles y,, i =1,2,---,m can be obtained

form the displacement and velocity initial conditions.



Chapter 9

Conclusion and future work

9.1. Conclusion

A novel method of dealing with uncertainty in vibration modelling was proposed in
this thesis. In this respect fuzzy sets were used to deal with the uncertainty in
modelling, modal analysis was used for model updating and neural networks
simulated the dynamical behaviour of the structure. The procedure of obtaining a

vibration model of a structure using the proposed method is listed below.

e Heuristically guessing an approximate version of mode shape functions (MSF)
and constructing MSFs using fuzzy sets (fuzzy MSF’s) as a tool to deal with the
uncertainties.

e Updating the fuzzy MSFs using experimental modal analysis.

¢ Obtaining the mode shapes from fuzzy MSF's using neural networks.

Fuzzy membership function found to be a very flexible tool to deal with the
uncertainties in the MSFs (approximate mode shapes). Experimental modal analysis
is an accurate modelling method and found to be suitable for updating of vibratory
behaviour of mechanical systems. Neural networks also used successfully in obtaining

the final (or mathematical) version of the mode shapes from updated fuzzy MSFs.
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Therefore this thesis proposes the use of fuzzy sets to describe mode shapes of
structures. The method describes a procedure to achieve this. The procedure starts
with rough guess of mode shapes (mode shape forms or MSFs) and fuzzy membership
functions are used to construct the guessed mode shapes. These curves are updated by
using experimental FRF measurements, obtained at limited number of sampling
points. In the last stage of the procedure the updated fuzzy MSFs are modified by
experimental values at sampling points. This creates a new curve with “spikes”.
Using fuzzy neural networks to ‘learn’ the spikes curve produces a smooth and
mathematical version of the curve. This method proved to be very effective in

generating mode shapes with limited number of sampling points.

The method was demonstrated using a beam, plate and a simple structure (3 beam
structure). Fuzzy mode shape forms which were updated and refined by experimental
results and neural network using the proposed method are compared against the

analytical results.

Achievements in this thesis in modelling of vibration behaviour of structures are listed
below.

e MSFs (mode shape forms) are introduced and some general rules are obtained
for MSFs where MSF’s are approximate mode shapes.

¢ Guessed mode shapes can be used as the uncertain model of the structure (that
can be updated by experimental modal analysis)

e Fuzzy sets found to be a flexible tool in introducing the uncertain vibration
model.

e The error observed in models developed by the proposed method is found to
be less than 20%, well within levels of uncertainty reported by other
researchers [15, 19].

e The proposed method tested and proved to be applicable by four experimental
examples for one dimensional and two-dimensional elastic bodies and a three-
beam structure.

¢ In all examples, the levels of uncertainty had not exceeded 20%.

e The method found to be reliable even with cases where initial modal shape has

not been guessed accurately.
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9.2,

Conclusion and Future Work Chap. 9

The method proposed in this thesis is a novel method and has not been done

before.

Future work

It is possible to extend the method to study equation of motion where the
parameters of the system (such as mass, stiffness, damping dimensions and
material properties) can be considered as fuzzy parameters. The effect of
changing fuzzy parameters on MSFs can be studied. Therefore the MSFs can
be determined for a range of parameters and can be stored in a library of
MSFs. This library offers a reference of MSFs for a range of structure
parameters.

The second possible further work relates to developing mathematical
formalism to support the method proposed in this thesis. One way of
achieving this is to study sources of uncertainty and compare it with stochastic
methods.

Developing a package compatible with existing modal testing software and
using the proposed method as a new tool.

Drive a library of MSFs with more reliable and general rules based on the
method introduced in Chapter 4 in developing MSF rules.

Using the fuzzy presentation of the mode shapes as a fuzzy feedback
controller in reducing the error when the MSFs are wrong or not available
(figure 9-1).

D Modal Analysis

X

Scopel

Position on the
beam length

EERES

Beam deflection

1

Fuzzy Logic

Frequency

Errar Mermbership
Functions

Controller L [:I

Scope

Figure 9-1. Controlling of error.



Appendix A

Orthogonality of modes relative to mass and stiffness

matrixes

The vibration behavior of an undamped system can be expressed as below [17, 34].
(x,1- @M, )} =0} (A-1)

Where the response can be expressed with the following equation.

L} =[Plg)} = [P]{ QQl Z’EEZ :Z )J (A-2)

To have non zero solutions, Q,, O, , sin(a)n1 + l//l) and sin(a)n2 + l//z) can not be zero or

{g(©)}# 0. Then from (A-1) and (A-2):

(x.1-@*[m,]fP]= {0}
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For a particular mode @ = @, we have:
(&1~ o7 P}, = 0}

By Pre multiplying the above equation by {P}g then:

{PY (k. 1- @7 [m, )P}, = o}

For a particular mode @ = @y we have:

(x.1-@?[m,JfP}, = o}

Transpose of the above equation is as below.

P (K.Y - o3lm.T)= 10}

By post multiplying the above equation by {P},, then:
PEIK.T - a3l T NP}, =0}

As mass and stiffness matrices are symmetric, then we have:
k] =[k ] and [M,] =[m,]

Thus

{Pf (. ]-wilm, J{P}, =0}

(A-3)

(A-4)

App. A
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Equation (A-4) minus equation (A-3) gives:

{PY [k KP}, ~{PY K HPY, + (o - o} PY M, P, = (0}

Or

(@7 -2 fPYi[M KP}, =0}

And for @, # @ :

{PY[m JP}, =10} (A-5)
That shows orthogonality of the modes relative to the mass matrix.

From (A-5) and (A-3), we have:

{PXs [k, KpP}, - 0} {P}s[Mm KPP}, ={o} (A-6)
Or

{PElx, P}, =10}
That shows orthogonality of the modes relative to the stiffness matrix.

From (A-6)

{PY [k J{P}, = 07 {PY[M P},

Where

Then

{PX K P}, =&,

And

{PY[m KP}, =m,
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The above relations can be expressed with another notation for all the modes as below.

[PI'[x,1P]= [k, ]

And

[P] [m,TP]=[m, ]

Where lK qJ and lM qJ are diagonal matrixes and [P]z [{P}1 {P}2 {P}r ]



Appendix B

Plate Vibration

The governing equation of bending vibration of a rectangular plate (Figure B-1) can

be written as [38-40].

84W(x,y)Jrza“W(x,y) o'W(x,y) qlx,y)

ox* ox’ay’ oy* D

82W(x, y,t)

dA
P ot? Fa

kv

Figure B-1. A rectangular plate and an element of the plate.
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Where ¢(x, y) is the applied static force and W is the displacement (deflection) of the

plate.

For the free vibration of the plate the equation in term of geometry and time will be

4 4 4 4
0 W(x;y,t)+28 ng,);,t) 0 W(x;y,t)_lrﬁa W(x;y,t):() (B-1)
ox dx“dy dy D ot
It is possible to express the solution of the equation as
W(x, y.1) =W (x, y)T(r) (B-2)

By substituting equation (B-2) to (B-1) then

T(t)£[34W (x.y), ,d'Wlxy) ‘W, y)} (e )2 T0)

D|  ox’ ax>ay> dy* ot
Or
4 4 4
p|o W(x,y)+2a W(x,y)+a W (x, y) 97T (¢)
D| ox* ox’dy? '
W(x,y) T(t)

As the left hand side of the above equation is a function of x and y and the right
hand side is a function of ¢ then the equation is valid when both sides are equal to a

constant (here @”). The right hand side of the above equation can be obtained as

2
97(0) +@’T(t)=0
ot

Then

T(¢)= Asin(w? +a)

Where A and a can be obtained from initial conditions.
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4 4 4 2
OIWlxy), ,0'Wxy) IWlxy) @’p,

s = O
ox* ox*dy’ oy’ (x y)

It is useful to express the above equation in terms of dimensionless variables & and

n. Where &= X and n :% and a and b are the dimensions of the plate.
a

4
LW (x.y)

2a a aw” p

_ a =0
D

W(x,y) » Wix,y)
a
4

(
) e 23] el

Substituting & and 7 then in the equation of motion, we have:

9‘W(x,y) 0
b4

IW(En)  20W(En)  OWEN) _ jui )
&t g | gan ’

Where 4° = a)az\/% and ¢ = b (plate aspect ratio).
a

By multiplying the above equation by ¢* then we have:

+0'W(En)
Q&

W), 2 9 WED)

-¢' AW =0 B-3
8774 3523772 ¢ (5,77) ( )

+9

To solve the above equation the following assumption is made (Levy-Type solution

for free vibration of rectangular plates)

k

W(&En)=>Y,(n)sinmré (B-4)

limk—seo ey

By substituting Equation (B-4) into (B-3) then we have:
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i{d%f”) —2¢*(mx)’ dde;f”) +¢*[mr) -2k, (n)} sinmaé =0
From above equation:

D)2y Loy 4oy - 2 ) =0

The solution of the above equation for (sz')4 = or < A'can be obtained as:

For A2 > (mx)’

Ym (77) = Am COSh ﬂlﬂn + Bm Sinh ﬂlﬂn + Cf’l‘l Sin 7"177 + Dm COS 7"177 (B_S)

And for A < (mzx)’

Where 8, = ¢+JA> + (mz ) and ¥, = gy A +(mx)’ or gy A +(mx)’

The coefficients A and B can be obtained from boundary conditions where the

boundary conditions can be expressed as below
a) Simply supported edges

9*W (x, y)

Wix,y)=———=0

(x y) ax2 x=a

Or in terms of dimensionless coordinates
I*W(.7n)

W(&.m)= e 0.,

b) Clamped edges

oW (x,
W)=Y

X=a
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Or in terms of dimensionless coordinates

c) Free edges

Edge x=a:
2 2
0 W(x,y)_’_va W(X,Y)z
axz ayZ x=a
3 3
0 W(x,y)_H)* J W(x,y):
ox’ ox0y’ e
Edge y=b:

2 2
J W(f,y)ﬂ)a W(;c,y)=0|
dy ox

y=b

83W(x,y)+v* *W(x,y) |
dy’ dyox’ =

And in dimensionless coordinates

Edge £=1:
BZW(f,n)JriazW(f,ﬂ):
o> 9> o

O'W(.n), v a'W(7) _
&=l

o' ¢* oLy’

9.,

Edge n=1:

I*W(&.n)
on’

IWET) | g2 @ WEN)

8773 anagz |;7:1

s OWET)

afz |77:1




Appendix C

Structural vibration by finite elements

Figure C-1 shows a 3-beam structure with 3 degrees of freedom (D1, D2 and D3).

01

+
—

/ = 2
03

Figure C-1. A three beam structure.

The elements of the structure can be axial element (element number 2 with D2 degree

of freedom). An axial element is presented in Figure C-2.

180



App. C Structural Vibrations by Finite Elements

X

Figure C-2. An axial element

The stiffness (K) and mass (M) matrixes of this element can be obtained as below.

If the shape functions can be considered as [35-37]

r=Ir fz]{l—% ﬂ

Therefore the differentiation of f relative to x will be:

B=df:%=%[—l 1]

The element stiffness matrix can be expressed as:

[ nr _E|-1 L _EA| 1 -1
K=| B EBdV—E{J[—I i jAdAdx_T[l |

And the mass matrix can be obtained as:

3 . _P It L—x B _ﬂ2 1
M_jvpf de—LzL L[ i }[L x xJdAdx= - L 2}
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The elements of the structure can be flexural element (element number 1 and 3 with

D1 and D3 degrees of freedom). An axial element is presented in Figure C-3.
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qi&{/f}{ﬁl L q#&{J
e

Figure C-3. A flexural element.

The stiffness (K) and mass (M) matrixes of this element can be obtained as below.

If the shape functions can be considered as [35-37].

r=n £ £l

1
=F[2x3_3sz+L3 PL-2xL +x —2x +3x°L x’L-x"I*]

Therefore the differentiation of f relative to x will be:

B=df

:—i%h2x—6L 6xL—4L* —12x+6L 6xL—2I7]

Where operator d, here is:

d2

d=—-y——
dx?

The element stiffness matrix can be expressed as:

K:LlﬂEBdV
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Then

6 3L -6 3L
2FEI|3L 21> -3L I

T -6 -3L 6 -3L
3L [} -3L 2’

Where

_ 2
1= L y2dA
And the mass matrix can be obtained as:
_ T
M, =[ pf'fav
Then

156 221 54 —13L
pAL| 22L 4L 13L  -3[
‘T 420| 54 131 156 —22L
—13L =317 -22L 4I°

The mass matrix includes two parts. The translational inertia term that is presented

above is much more important. Only this part is usually considered in calculations.
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A 6-degrees of freedom element can be obtained by combining the flexural and axial

element that is illustrated in Figure C-4.
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Figure C-4. 6 degree of freedom element.

U

z

The stiffness and mass matrix of this element can be presented as below:

2 0 -b 0 0 |1
0 6 3L 0 -6 3L |2
0 3L 2I* 0 -3L I* |3
K=a
-b 0 0 b 0 0 |4
0 -6 -3L 0 6 -3L|5
|0 3L L* 0 -3L 2’6
1 2 3 4 5 6
Where
EA
_2EI L AL
a= I and TR,
L3
[ d 0 0 -d 0 0 |1
0 156 22L 0 54  —13L |2
0 22L 4I* 0 13L =313
M =c
-d 0 0 d 0 0 |4
0 54  13L 0 156 —=22L|5
| 0 —13L -3 0 -22L 4L |6
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PAL
Where c= AL ang a=-6 40 4.
420 PAL 6
420

Based on the element introduced in Figure C-4, the elements of the structure in Figure
C-1 can be obtained as in Figure C-5. All degrees of freedom are considered for the
elements. However the elements only consist of the degrees of the freedom that is
shown in Figure C-1 (D1, D2 and D3). Also there is no degree of freedom in nodes 1

and 4 as these nodes are fixed.

Figure C-5. Elements of the structure with all degrees of freedom.

The elements with the valid degrees of freedom are illustrated in Figure C-6.
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Figure C-6. Elements of the structure.

The structural mass and stiffness matrixes can be obtained as:

s =%k
i=1

And

M, =2M,.

Where S ¢ and M s are the structural stiffness and mass matrixes, n, is the number of
the elements and K, and M, are the stiffness and mass matrixes of the elements of

the structure. Then the structural matrixes can be expressed as:

S, =K, +K,+K,
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Then based on the matrixes introduced earlier, the stiffness for the elements in Figure

C-6 can be presented as

00000 0 0 0 0 00 0] 1
00000 0 0 0 0 00 0f 2
00000 0 0 0 0 00 0f 3
00000 0 0 0 0 00 0f 4
00000 0 0 0 0 00 0|5

¢ |0 0000 20 +20, 0 0 La, 00 0] 6

7100 0 0 0 0 bya, +6a, 0 3La, 00 0f 7
00000 0 0 0 0 00 0| 8
00000 La, 3La, 0 2L%a,+2’a, 0 0 0| 9
00000 0 0 0 0 00 0f10
00000 0 0 0 0 00 0f 11
00000 0 0 0 0 00 0] 12

And M =M +M,+M,.

Using the same calculation as above for stiffness matrix then the mass matrix will be:

O 0 9 N Lt A W N

00000 0 0 0 0 00 0
00000 0 0 0 0 00 0
00000 0 0 0 0 00 0
00000 0 0 0 0 00 0
00000 0 0 0 0 00 0

4y |00 0 0 0 4l +dli, 0 0 -3, 00 0

7100 0 0 0 0 dyc, +156c, 0  22Lc, 00 0
00000 0 0 0 0 00 0
00000 -3, 2Le, 0 4I%c,+4L%¢, 0 0 0
00000 0 0 0 0 00 0
00000 0 0 0 0 00 0
00000 0 0 0 0 00 0]

—_— = =
N - O
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Free vibration equation of motion of the structure can be expressed as:
MD+SD=0

Displacement vector, D can be presented as:

D, =®,sin(w,t+a,)

Where i=1,2,...,n, and n is the number of degrees of freedom. ®, is a vector of
nodal amplitude or the mode shape for the i"” mode of vibration. @, is the angular

frequency of mode i. ¢; is the phase angle.

D, =-0'®,sin(wt+a,)

By substituting D and D in the equation of motion then the equation will be:
(S —’M )P, =0

By substituting stiffness and mass matrixes into the above equation then (zeros in the

mass and stiffness matrixes are not entered in the matrix as they have no effect on the

equation).
2l%a, +2%a, 0 0 La,
0 b,a,+6a, 0 3La, B
0 0 0 0
L’a, 3La, 0 2L%a,+2La,
4L%c, +4Lc, 0 0 -3, D,
o2 0 d,c, +156c, 0 22Lc, @, | _ 0
’ 0 0 0 0 o,
-3L%, 22Lc, 0 4L%c, +4Llc, | )| P,

Or
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2La, +21%a, - (412, +41%c,) 0
0 b,a, +6a, — @’ (d,c, +156¢,)
0 0
La, - (-30¢,) 3La, -’ (22Lc,)
0 La, -’ (— 3L2c2) D,
0 3La, — o (22Lc,) D, | 0
0 0 D,
0 20%a,+2La, - >4, +4L%,)|| @,

Then the system of equation can be expressed as

[212a, + 2020, - (412¢, + 4L, |o, +|2a, + @* (312¢, )P, =0 (C-1)
lb,a, + 6a, — @?(d,c, +156¢,)0, +3La, — &> (22Lc, )jp, =0 (C-2)

|2a, + 0 (30, )lo, +[3La, — 02 (22Lc,)l0, + 2120, + 202a, - @ (412c, +41%¢, )}p, =0



Appendix D

Experimental FRF results

FRFs of the clamped-clamped beam (example 1, Chapter 7) are presented in Figure

D-1 when the accelerometer is in point 1 and the excitation force from the hammer is

applied to points 1, 2, 3 and 4.
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Figure D-1. Clamped-clamped FRF graphs; a) h,,, b) hy,, ¢) h;,d) h,.
FRFs of the plate (example 2, Chapter 7) are presented in Figure D-2 when the

accelerometer is in point 1 and the excitation force from the hammer is applied to

points 1, 2, 3,4, 5 and 6.
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FRF (h12)
1800
1600
1400 A
o 1200
o
§ 1000
@
8 800 \
Q
< 600 J \
400 j \
200 vf\ il
1 165 329 493 657 821 985 1149 1313 1477 1641 1805 1969 2133 2297 2461
Frequency
b) A,
FRF (h13)
1200
1000
o 800 A
8 | |
©
& 600
[}
AT
o= e -

1 166 331 496 661 826 991 1156 1321 1486 1651 1816 1981 2146 2311 2476

Frequency

c) hy,



194

Experimental FRF Results App. D
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Figure D-2. Experimental FRF results by placing the accelerometer on point 1 and
exciting the plate on points 1 to 6.

FRFs of the structure (example 3, Chapter 7) are presented in Figure D-3 when the
accelerometer is in point 2 and the excitation force from the hammer is applied to

points 1, 2 and 3.
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Figure D-3. Experimental FRF results of the structure.

FRFs of the clamped-free beam (example 4, Chapter 7) are presented in Figure D-4
when the accelerometer is in point 1 and the excitation force from the hammer is

applied to points 1, 2, 3 and 4.
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Figure D-4. FRF results for incomplete (4DOF) clamped-free beam model; a) #,,, b)
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