
Comparing test sets and criteria in the presence of
test hypotheses and fault domains

R. M. Hierons

Deparment of Information Systems and Computing,

Brunel University, UK

A number of authors have considered the problem of comparing test sets and criteria. Ideally
test sets are compared using a preorder with the property that test set T1 is at least as strong
as T2 if whenever T2 determines that an implementation p is faulty, T1 will also determine that
p is faulty. This notion can be extended to test criteria. However, it has been noted that very
few test sets and criteria are comparable under such an ordering; instead orderings are based
on weaker properties such as subsumes. This paper explores an alternative approach, in which
comparisons are made in the presence of a test hypothesis or fault domain. This approach allows
strong statements about fault detecting ability to be made and yet for a number of test sets and
criteria to be comparable. It may also drive incremental test generation.

Categories and Subject Descriptors: D2.4 [Software Engineering]: Software/Program Verifica-
tion; D2.5 [Software Engineering]: Testing and Debugging

1. INTRODUCTION

Testing forms an important, but expensive, part of the software verification process.
In testing, the tester executes the implementation under test (IUT) on certain input
and observes the output produced. The output observed is then compared with
that expected. Testing thus involves exploring the behaviour of the IUT in order
to determine whether it conforms to the specification.

In general, it is not feasible to use the entire input space of the IUT during
testing; instead the tester chooses a subset of this. Each value chosen is a test input
and the subset used is called a test set. The choice of test set is often based on some
test criterion that states what it means for a test set to be sufficient. While there
are many test generation techniques, based around alternative criteria, there are
relatively few results that allow the tester to compare test sets and techniques. This
makes it difficult for the tester to choose between different test sets and criteria.

It has been argued that test generation can be made more systematic through
the use of a test hypothesis that represents properties the tester believes the IUT
has. For example, the uniformity hypothesis is used in partition analysis: here it

R. M. Hierons, Department of Information Systems and Computing, Brunel University, Uxbridge,
Middlesex, UB8 3PH, United Kingdom.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–21.

lbsrjpm
Cross-Out

2 ·
is assumed that for a given subdomain Di of the input domain, either all values in
Di lead to a failure or no value from Di leads to a failure. If we were testing an
implementation p, that is intended to apply the absolute value function to integers,
we might choose one subdomain D1 of positive integers. The uniformity hypothesis
with D1 would state that either p is correct on all positive integers or it fails on all
positive integers. The test hypothesis might reflect expert knowledge or be based
on information derived using program analysis. Further, it may be possible to prove
that the test hypothesis holds. Given test hypothesis H, it might be possible to
devise a finite test set T with the property that, as long as the IUT I satisfies H, T
determines the correctness of I [Bernot et al. 91; Gaudel 1995]. Thus the existence
of test hypotheses allows stronger statements to be made about test effectiveness.
Of course, the existence of a test hypothesis H will not always lead to a feasible
test set that determines correctness under H and it may not always be possible to
prove that the IUT satisfies the hypothesis H.

A fault domain is a set F of (functional) behaviours with the property that
the tester believes that the functional behaviour of the IUT is equivalent to some
(unknown) element of F [ITU-T 1997]. Where there is some such fault domain F it
may be possible to produce a test that determines correctness under the assumption
that if the IUT is faulty then it behaves like some element of F . Clearly, fault
domains and test hypotheses are related concepts.

Naturally there are a number of practical issues related to the use of test hypothe-
ses or fault domains. These issues include the problem of choosing the assumptions
to be made and the problem of generating tests on the basis of such assumptions.
These issues have been considered in the areas of protocol conformance testing
[ITU-T 1997], hardware testing, and testing from algebraic specifications [Bernot
et al. 91; Gaudel 1995].

This paper explores the problem of comparing the effectiveness of alternative
test sets and criteria when testing a deterministic implementation. We make com-
parisons in the context of test hypotheses and fault domains, assuming that there
is some test hypothesis H or fault domain F that represents properties that the
tester believes the IUT has. We show that under such assumptions it is possible
to make much stronger statements about the relative fault detecting ability of test
sets and criteria. This is the case even when the tests considered do not determine
correctness under the assumptions made. It transpires that, given a test hypothesis
or fault domain and test set T , it may be possible to extend T without increasing
its fault detecting ability. In fact, a large test set may have the same fault detecting
ability as the empty set. This illustrates the importance of considering the available
information, regarding the IUT, during test generation.

It is argued that the relation introduced may be used to drive incremental test
generation. Specifically, a test set T should only be extended to test set T ′ if T ′ is
strictly stronger than T under the assumptions made.

The paper is structured as follows. Section 2 describes test criteria, test hy-
potheses and related work. The relation used to compare test sets and criteria is
defined and explored in Section 3. Section 4 then shows how this relation may
drive incremental test development. A number of types of test sets and criteria
are considered in Section 5. Section 6 discusses possible future work and finally, in
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 3

Section 7 conclusions are drawn.

2. PRELIMINARIES

2.1 Testing and test criteria

Throughout this paper testing will refer to the process of executing the IUT with
input and observing the output produced. X will denote the input domain of
the specifications and programs considered, Y will denote the output domain, S
will denote the set of specifications, and P will denote the set of implementations.
P (X) will denote the set of test sets, which is the power set of X . For all p ∈ P,
s ∈ S, p ¹ s will denote p conforming to s. It will be assumed that P contains
representatives of the set of computable functions from X to Y. It will also be
assumed that every specification s ∈ S is feasible: there is some program that
conforms to s. When reasoning about testing, the following definitions (which are
based on those in [Gourlay 1983]) will be of use.

Definition 1. Given s ∈ S, p ∈ P, and T ∈ P (X), p conforms to s on T if and
only if for all t ∈ T the behaviour of p on t is consistent with s. This is written
p ¹T s. Similarly, p fails on T if for some t ∈ T , the behaviour of p on t is not
consistent with s. This is written p 6¹T s.

From these definitions it is possible to make the following observation.

Proposition 1. For all p ∈ P and s ∈ S, p ¹ s if and only if p ¹X s.

It is important to have some way of determining when to stop testing. While
this might be based on limits on budget or time, ideally it is based on some notion
of what it means for a test set to be sufficient. In turn, such notions are usually
described in terms of test criteria. A test criterion is some property, that might
depend upon the code and the specification, that states whether testing is sufficient.
For example, one (relatively weak) test criterion is that, in testing, every reachable
statement of the IUT is executed.

A test criterion C is a predicate that takes a specification, a program and a test
set and returns a boolean. Under C, test set T is sufficient for p ∈ P and s ∈ S if
and only if C(s, p, T) evaluates to true. Given specification s and program p, test
criterion C may be partially evaluated to give C(s, p) defined by: C(s, p)(T) ⇔
C(s, p, T). Naturally, there are a number of properties that test criteria should
possess [Weyuker 1986; 1988; Zhu and Hall 1993]. Test criteria that depend upon
the program p usually consider the structure of p, insisting that certain constructs
of p are executed in testing [Ntafos 1988].

Given a test criterion C, specification s, and program p, test generation can be
seen as a process of producing some test set T that satisfies C(s, p). Thus, rather
than compare the effectiveness of test generation techniques it is normal to compare
test criteria.

2.2 Previous approaches to comparing test sets and criteria

This section provides a brief overview of some approaches to comparing test sets
and criteria. For a more detailed survey see [Weyuker 2002].

The literature contains many test criteria and there has thus been much interest in
comparing the effectiveness of the corresponding tests. A natural way of comparing

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 ·
two criteria C1 and C2 is to say that C1 is at least as strong as C2 if and only if
whenever the use of C2 is capable of determining that the IUT p is faulty, the use
of C1 is guaranteed to determine that p is faulty. This corresponds to Hamlet’s test
comparison relation [Hamlet 1989], which may be defined in the following way.

Definition 2. C2 ≤ C1 if and only if for every s ∈ S, p ∈ P, if there exists
T2 ∈ P (X) such that C2(s, p, T2) is true and p 6¹T2 s then for every T1 ∈ P (X),
C1(s, p, T1) ⇒ p 6¹T1 s.

This notion relates directly to the ability of the criterion to determine correctness
and thus of the ability of the criterion to lead to a faulty implementation being
identified. Unfortunately, while this might be a property of interest to the tester,
very few real test criteria are comparable under ≤. This is because there is usually
a wide range of test sets that satisfy a test criterion, some of which are capable of
finding a particular fault while others miss this fault. In particular, assuming each
test criterion C is monotonic (∀T, T ′ ∈ P (X).C(s, p, T)∧T ⊆ T ′ ⇒ C(s, p, T ′)), we
have the following property: given test criterion C, s ∈ S, and p ∈ P, if p is faulty
then there is some test set T ∈ P (X) such that C(s, p, T) and p 6¹T s. This leads
to the following observation made by Hamlet [Hamlet 1989].

Proposition 2. No two effective, monotonic test methods are comparable under
≤.

The relation ≤ may be extended to test sets in the following way.

Definition 3. T2 ≤ T1 if and only if for all s ∈ S and p ∈ P if p 6¹T2 s then
p 6¹T1 s.

However, assuming P contains representatives of every computable function from
X to Y, then given s ∈ S and x ∈ X there is some px ∈ P such that px 6¹{x} s and
px ¹X\{x} s. This leads to the following observation.

Proposition 3. Assuming P contains representatives of every computable func-
tion from X to Y, T2 ≤ T1 if and only if T2 ⊆ T1.

An alternative way of comparing test criteria is to determine whether one crite-
rion subsumes another, where the subsumes relation is defined as follows (see, for
example, [Zhu 1996]).

Definition 4. Criterion C1 subsumes C2 if and only if for all s ∈ S, p ∈ P,
whenever a test set T ∈ P (X) satisfies C1(s, p) it also satisfies C2(s, p).

Thus, if C1 subsumes C2 and a test set T satisfies C1(s, p), T is guaranteed to
satisfy C2(s, p). This suggests that the tester need not consider C2 if C1 is being
used.

Many test criteria are comparable under the subsumes relation [Ntafos 1988].
However, C1 subsuming C2 does not guarantee that faulty implementations that
can be identified using C2 will be identified when using C1. It is also possible that
while C1 subsumes C2 there are corresponding test generation techniques TG1 and
TG2 such that TG2 is more likely to lead to fault detection than TG1. See [Hamlet
1989] for a critique of the subsumes relation.
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 5

Alternative approaches to comparing test criteria are based upon simulations
[Chen and Yu 1996; Duran and Ntafos 1984; Hamlet and Taylor 1990; Hierons
and Wiper 1997; Weyuker et al. 1991]. Probabilistic arguments have also been
successfully applied: these consider the probability of finding at least one failure or
the expected number of failures found [Frankl and Weyuker 1993a; 1993b]. These
studies provide extremely useful information about the general effectiveness of test
techniques and criteria. However, one criterion C1 being stronger than another
criterion C2, under these relations, does not mean that an implementation that
can be found to be faulty under C2 is guaranteed to be found to be faulty under
C1. The issue, of how test hypotheses and fault domains might affect probabilistic
comparisons, is a topic for future work.

This paper describes a new approach to comparing the effectiveness of test sets
and test criteria. This approach uses test hypotheses to produce a relation that has
the advantages associated with ≤ but is applicable to more test sets and criteria
than ≤.

2.3 Test hypotheses and Fault domains

A test hypothesis H is some property the tester believes the IUT has. Given a test
hypothesis H and specification s there may be some finite test set T such that T
determines correctness under H [Bernot et al. 91; Gaudel 1995]. This is defined
more formally by the following.

Definition 5. Test set T ∈ P (X) determines conformance to s ∈ S under test
hypothesis H if and only if for all p ∈ P.H(p) ∧ p ¹T s ⇒ p ¹ s.

A classic example of a test hypothesis is the uniformity hypothesis. Here there
is some subset X1 of the input domain X and it is assumed that all test input in
X1 are equivalent: if the input of some value in X1 leads to a failure then all values
in X1 lead to failures.

Given specification s, test generation can be seen as a process of refining the test
hypothesis until there is some hypothesis H for which there is a feasible test set T
such that T determines conformance to s under H. This process starts with some
minimal hypothesis Hmin that usually simply states the input and output domains
of the IUT. Here the minimal hypothesis will also restrict the implementation to
being deterministic.

Naturally, the tester might not always have enough information to produce a test
hypothesis H in which they can have confidence and which leads to a feasible test
set that determines correctness under H. However, we will see that even when this
is the case, test hypotheses can play a role in allowing test sets and criteria to be
compared and in driving incremental test generation.

While a test hypothesis represents properties the IUT is believed to have, a fault
domain represents a possible set of functional behaviours for the implementation.
Thus, a fault domain is a set B of behaviours with the property that it is believed
that the IUT behaves like some (unknown) element of B. Naturally, associated
with B is a (generally uncomputable) set PF ⊆ P: PF is the set of elements of P
that are functionally equivalent to elements of B.

Fault domains are widely used in a number of areas, including protocol confor-
mance testing [ITU-T 1997] and hardware testing. Given a fault domain B there

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 ·
may be some test that determines correctness under the assumption that the IUT
behaves like some unknown element of B. Naturally, fault domains and test hy-
potheses are related.

(1) Given fault domain B there is the corresponding test hypothesis that the IUT
p is functionally equivalent to some (unknown) element of B.

(2) Given test hypothesis H there is the corresponding fault domain consisting of
the behaviours of the elements of P that satisfy the test hypothesis.

Interestingly, the argument regarding the equivalence of test hypotheses and fault
domains only holds for black-box techniques. It will transpire, in Section 5, that
fault domains are less applicable when considering a particular white-box test tech-
nique: mutation testing.

While the results in this paper are phrased in terms of test hypotheses, they also
apply to fault domains.

3. COMPARING TESTS: A NEW APPROACH

This section introduces a new way of comparing test sets and criteria. This is
based on the existence of a test hypothesis: given test hypothesis H, two test
sets or test criteria are related by a preorder ≤H that is defined in terms of H.
Properties of ≤H are then explored. Section 4 describes how ≤H may be used to
drive incremental test generation. Throughout this section it will be assumed that
a specification s ∈ S has been given and thus that H may refer to s. For example,
H might state that there are structural similarities between the specification and
the implementation. Naturally, the results and discussion contained in this section
transfer immediately to fault domains.

The essential observation is that the presence of a test hypothesis H represents
information about the class of faults that might occur. This might lead to relation-
ships between test sets or criteria that do not hold in general. Section 5 will show
how ≤H may be applied to some existing test criteria and corresponding test sets.

3.1 Comparing test sets

In this section we will say what it means for one test set to be at least as strong
as another in the presence of a test hypothesis H and then explore a number of
properties of this relation. Essentially, one test set T1 will be said to be at least as
strong as another test set T2 in the presence of H if and only if for every erroneous
implementation p ∈ P that satisfies H, if p fails T2 then p fails T1. This is defined
by the following.

Definition 6. Given T1, T2 ∈ P (X), T2 ≤H T1 if and only if for all p ∈ P,
H(p)∧ p 6¹T2 s ⇒ p 6¹T1 s. Where T2 ≤H T1 we say that T1 is at least as strong as
T2 under H. Where this is not the case we write T2 6≤H T1.

Note that this definition relates to the ability of a test set to detect one or more
failures. Naturally, the failures found by different test sets may refer to different
faults.

Proposition 4. ≤H is a preorder on the elements of P (X).

Proof. By definition, ≤H is a preorder if and only if the following hold.
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 7

(1) For every test set T ∈ P (X), T ≤H T .
(2) Given T1, T2, T3 ∈ P (X), if T3 ≤H T2 and T2 ≤H T1 then T3 ≤H T1.

The first property holds immediately. Now consider the second property and
assume that test sets T1, T2, and T3 are given such that T3 ≤H T2 and T2 ≤H T1.
Suppose also that p ∈ P, H(p) is true and p 6¹T3 s. It is sufficient to prove that
p 6¹T1 s. By the definition of ≤H we know that, since p 6¹T3 s and T3 ≤H T2,
p 6¹T2 s. By the definition of ≤H , since T2 ≤H T1, p 6¹T1 s. Thus T3 ≤H T1 as
required.

It is worth noting that Bernot et al. [Bernot et al. 91] describe a more general
notion of refinement in which they refine a triple consisting of a test hypothesis;
a test set; and a test oracle. This is described within the context of testing from
algebraic specifications.

The following result, which places a lower bound on the relation ≤H , follows
immediately from the definition of ≤H .

Proposition 5. Given test hypothesis H and T1, T2 ∈ P (X), T2 ⊆ T1 ⇒ T2 ≤H

T1.

It is also possible to say something about when this lower bound may be met.
Under the minimal hypothesis Hmin, since we know nothing about the faults, two
test sets are related if and only if one is contained within the other. This corresponds
to Proposition 3 regarding the extension of ≤ to test sets.

Proposition 6. For all T1, T2 ∈ P (X), T2 ≤Hmin T1 ⇔ T2 ⊆ T1.

While T2 ⊆ T1 ⇒ T2 ≤H T1, we will see that there may be test sets that are
comparable under ≤H but not under ⊆.

The following observations may be made.

Proposition 7. For every test set T ∈ P (X) and hypothesis H

(1) T ≤H X
(2) ∅ ≤H T .

The first of these states that given hypothesis H and test set T , the entire input
domain X is always at least as strong as T . The second observation states that given
hypothesis H and test set T , T is at least as strong as the empty set. Naturally
both hold for ≤ as well as ≤H . The following says that if (under H) a test set is as
least as strong as all other test sets then this test set determines correctness under
H.

Proposition 8. A test set T ∈ P (X) determines correctness under H if and
only if ∀T2 ∈ P (X).T2 ≤H T .

Proof. We will initially prove the ⇒ part. Suppose T determines correctness
under H and thus, if T is applied to a faulty implementation p from P that satisfies
H, p must fail on T . It follows immediately from the definition of ≤H that for all
T2 ∈ P (X).T2 ≤H T .

We will now consider the ⇐ direction. Proof by contradiction will be used:
suppose T does not determine correctness under H. Then there exists p ∈ P such

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 ·
that p satisfies H, p ¹T s but p does not conform to s. Since p does not conform
to s there is some test set T2 that can find this fault (otherwise the fault cannot be
exhibited, in which case it is not a fault). But T2 ≤H T and thus, by definition, p
does not conform to s on T . This provides a contradiction as required.

It is natural to say that two test sets are equivalent under a test hypothesis H if
each is related to the other under ≤H .

Definition 7. T1 ≡H T2 if and only if T1 ≤H T2 and T2 ≤H T1.

It is clear that ≡H is an equivalence relation. Let Hcorr denote the test hypothesis
that states that the IUT is correct. All test sets are equivalent under this.

Proposition 9. For all T1, T2 ∈ P (X), T1 ≡Hcorr T2.

Interestingly a non-empty test set may be equivalent, under some test hypothesis
H, to the empty set.

Proposition 10. There exist test hypothesis H and non-empty test set T ∈
P (X) such that T ≡H ∅.

Proof. This follows immediately from Proposition 9.

This result holds for a wider range of hypotheses than Hcorr.

Proposition 11. There exist a test hypothesis H 6= Hcorr and non-empty test
set T ∈ P (X) such that T ≡H ∅.

Proof. We will construct such H and T . Initially we choose some subset X ⊂ X
and use the test hypothesis H that states that the program is correct on all values
in X \ X. Then, under H any test set that does not contain a value from X is
equivalent to the empty set.

These results demonstrate why it is important to consider properties of the IUT
in test generation: otherwise the tester might produce a test set that is not capable
of finding a fault. Further, the tester might extend a test set T with input that
does not increase the fault detecting ability of T . Naturally, there are practical
issues regarding the generation of test input that strengthens a test set. In some
cases, such as where the uniformity hypothesis is applied based on the specification,
it may be relatively straightforward to find such tests. In other cases it may be
extremely difficult.

It is possible to define what it means for one test set to be stronger than another
under H.

Definition 8. Test set T1 is stronger than test set T2 if and only if T2 ≤H T1

and T1 6≤H T2. This is denoted T2 <H T1.

In Section 4 we will see that this notion is useful in test generation: it only makes
sense to extend a test set T2 to a test set T1 if T2 <H T1.

3.2 Comparing test criteria

This section extends the definitions given in Section 3.1 to allow test criteria to be
compared. One approach might be to say that one criterion C1 is at least as strong
as another C2 (denoted C2 ≤1

H C1) if and only if we have that for every p ∈ P
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 9

that satisfies H, if some test set that satisfies C2 determines that p is faulty, all
test sets that satisfy C1 determine that p is faulty. There is, however, an issue to
consider: most test criteria will allow exhaustive testing and thus can allow any
fault to be detected. This means that, under the definition of ≤1

H given above,
for this relationship to hold either C1 must be guaranteed to determine correctness
under H or C2 must preclude certain test cases being used.

A solution to this problem is, when comparing criteria C1 and C2, to compare
non-reducible test sets that satisfy these criteria. A test set T ∈ P (X) is non-
reducible for criterion C1, program p and specification s if C(s, p, T) is true and
for every proper subset T2 ⊂ T , C(s, p, T2) is false. Naturally, non-reducible test
sets are not unique and a non-reducible test set need not be the smallest test set
that satisfies the criterion. Non-reducible tests sets are considered because testers
often aim to produce non-reducible test sets and thus this comparison relates to the
likely use of test criteria. Note that this paper is concerned with test effectiveness
rather than test efficiency and thus, when making comparisons, there is no need to
normalise the sizes of the test sets.

The notion, of one criterion being at least as strong as another in the presence
of a test hypothesis H, may be represented by a relation ≤H which is defined by
the following.

Definition 9. C2 ≤H C1 if and only if for every p ∈ P such that H(p) is true,
if there is some non-reducible test set T2 ∈ P (X) that satisfies C2(s, p) such that
p 6¹T2 s then for every test set T1 that satisfies C1(s, p), p 6¹T1 s.

It is vital that the test sets satisfying C2 are non-reducible: otherwise, assuming
that C2 is monotonic, we need to consider the test set X and this is guaranteed to
find any failure. Thus, without the restriction to non-reducible test sets, monotonic
test criteria could not be comparable under ≤H .

Proposition 12. ≤H is a preorder on the set of test criteria.

Proposition 13. Given test criterion C, the following are equivalent:

(1) for every test criterion C2, C2 ≤H C

(2) C determines correctness under H.

Proof. The first case: 1) ⇒ 2). Proof by contradiction: assume that C does
not determine correctness under H. There exists p ∈ P such that H(p), p does not
conform to s, and there is a non-reducible test set T1 ∈ P (X) that satisfies C(s, p)
such that p ¹T1 s. Since p does not conform to s there is some input t ∈ X such
that p 6¹{t} s. Choose the test criterion C ′ such that C ′(s, p, T) is true if and only
if t ∈ T . Any non-reducible test satisfying C ′ determines that p does not conform
to s. Thus, since C ′ ≤H C, any test that satisfies C(s, p) must also determine that
p does not conform to s, providing a contradiction as required.

The second case, 2) ⇒ 1), follows immediately.

We also have the notion of equivalence as before.

Definition 10. C1 ≡H C2 if and only if C1 ≤H C2 and C2 ≤H C1.

All test criteria are equivalent under Hcorr.
ACM Journal Name, Vol. V, No. N, Month 20YY.

10 ·
Proposition 14. For all test criteria C1, C2, C1 ≡Hcorr C2.

Let C∅ denote the test criterion that allows any test set, even one that is empty.
Clearly there is only one non-reducible test set under C∅: the empty set. A test
criterion, that does not lead to empty test sets, may be equivalent, under a test
hypothesis H, to C∅.

Proposition 15. There exist test hypothesis H and criterion C, with the prop-
erty that ∀s ∈ S, p ∈ P.¬C(s, p, ∅), such that C ≡H C∅.

Proof. By choosing H = Hcorr, this follows directly from Proposition 14.

It is clear that ≤H and ≤ are related: they become equivalent when all elements
of P satisfy H. Assuming an appropriate choice of P, this is equivalent to H being
the minimal hypothesis. This is stated more formally in the following.

Proposition 16. Assuming each element in P satisfies the minimal hypothesis
Hmin, C2 ≤ C1 if and only if C2 ≤Hmin C1.

4. INCREMENTAL TEST DEVELOPMENT

This section explores the role test hypotheses may play in the development of test
sets. Again it will be assumed that the specification s ∈ S is given. We will show
that even when it is not feasible to produce a test set that determines conformance
to s under the test hypothesis H being used, the existence of H can assist test
generation. It is worth noting that the notion of refinement used in this section is
similar to that discussed in Bernot et al. [Bernot et al. 91] within the context of
testing from algebraic specifications. However, Bernot et al. do not consider test
criteria and do not consider incremental test development.

The presence of hypothesis H can assist incremental test generation in the fol-
lowing way: under H it is only worth considering incrementing test set T ∈ P (X)
to T ′ ∈ P (X) (T ⊂ T ′) if T <H T ′. This is because, it is known that T ≤H T ′

(since T ⊂ T ′) and thus if T 6<H T ′ we must have that T ≡H T ′. From this we
may conclude that if T 6<H T ′ then any faulty implementation that T ′ identifies is
also identified by T .

The following shows that whenever a test set does not determine correctness
under H, it is possible to improve its fault detecting ability by extending it by a
single value.

Proposition 17. If T ∈ P (X) does not determine conformance to s under H
there is some t ∈ X such that T <H T ∪ {t}.

Proof. Since T does not determine correctness under H, there exist p ∈ P such
that p does not conform to s but p ¹T s. Now choose some t ∈ X such that
p 6¹{t} s (since p does not conform to s there must be some such value). Clearly
T ≤H T ∪{t}. Since p passes T but fails T ∪{t}, T ∪{t} 6≤H T . Thus T <H T ∪{t}
as required.

The following shows that every finite non-reducible test set may be generated
though a process of adding single tests that increase the fault detecting ability.

Proposition 18. If T = {t1, . . . , tn} is a non-reducible test set under H then
for all 1 ≤ m ≤ n.{t1, . . . , tm−1} <H {t1, . . . , tm}.
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 11

Proof. Let Ti denote {t1, . . . , ti}. A proof by contradiction will be produced,
initially assuming that there exists 1 ≤ m ≤ n such that {t1, . . . , tm−1} ≡H

{t1, . . . , tm}. From this we may conclude that for all p ∈ P, p 6¹{tm} s⇒ p 6¹Tm−1 s.
Thus p 6¹T s ⇒ p 6¹T\{tm} s and so T ≡H T \ {tm}, contradicting T being non-
reducible. The result thus follows.

This suggests that, given test hypothesis H, a finite non-reducible test set may
be generated by a sequence of refinements, at each stage adding a new test case
that increases the fault detecting power.

Test hypothesis H ′ is a refinement of test hypothesis H if and only if H ′ ⇒ H.
It has been noted that a test hypothesis can be developed through a process of
refinement [Gaudel 1995]. Since test generation, in the presence of a test hypothesis,
can be seen as a process of refinement, this suggests that the two forms of refinement
might proceed together. Interestingly, relationships under ≤H are preserved if H
is refined.

Proposition 19. Suppose C2 ≤H C1 and H ′ is a refinement of H. Then
C2 ≤H′ C1.

Proof. Proof by contradiction: assume there exist p ∈ P such that the following
hold.

(1) H ′(p) is true.
(2) There is some non-reducible test set T2 ∈ P (X) that satisfies C2(s, p) such that

p 6¹T2 s.
(3) There is a non-reducible test set T1 that satisfies C1(s, p) with p ¹T1 s.

Now it is sufficient to note that since H ′(p) is true, H(p) is true. Thus C2 6≤H C1,
providing a contradiction as required.

This is an important property since it means that decisions made, with regard
to the choice of test set or criterion, are not invalidated by refinements of the test
hypothesis. Further, it suggests that test development might proceed through an
iterative process in which both test hypotheses and test sets are refined. However,
the converse of the above result does not hold.

Proposition 20. There exist C2, C1, H, and H ′ such that C2 ≤H′ C1, H ′ is a
refinement of H but C2 6≤H C1.

Proof. Here it is sufficient to choose H = Hmin and H ′ = Hcorr. All test
criteria are comparable under H ′. Consider now the following two criteria that are
based on any two values t1, t2 ∈ X (t1 6= t2).

(1) C1(s, p, T) is true if and only if t1 ∈ T .
(2) C2(s, p, T) is true if and only if t2 ∈ T .

Clearly C1 ≤H′ C2 but C1 6≤H C2 as required.

While the refinement of the test hypothesis cannot remove relations from ≤H , it
can have an impact on efficiency

Proposition 21. Suppose T ∈ P (X) is a non-reducible test under H and H ′ is
a refinement of H. Then T may contain redundancy under H ′.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 ·
Proof. Here it is sufficient to choose H = Hmin, H ′ = Hcorr, and T to be any

non-empty test set. Then all test sets are non-reducible under Hmin, and thus T is
non-reducible under H. Further, only the empty set is non-reducible under Hcorr

so T contains redundancy under H ′.

These results suggest that test set refinement and test hypothesis refinement
can proceed together, potentially allowing tests to be executed before hypothesis
refinement has completed. This might reduce the time taken to complete testing.
Information derived in test execution and refinement might also feed into hypothesis
refinement. However, the results show that there may be a cost associated with
this process: the introduction of redundancy in the test used and thus a reduction
in test efficiency.

5. EXAMPLES OF CURRENT TEST TECHNIQUES

The notion of test hypotheses has traditionally been used in black-box testing.
Thus, the approach of using the existence of a test hypothesis when comparing tests
currently makes most sense when considering specification-based testing. However,
this might be seen as a challenge to develop sensible test hypotheses that are useful
in white-box testing.

This section will consider three types of black-box testing, one type of white-box
testing, and associated test hypotheses. In each case it is shown that properties of
the test criteria may be expressed in terms of ≤H for some hypothesis H. In each
case the key benefit is that it is possible to state when guarantees, regarding the
ability of tests to find faults, may be made.

5.1 Testing Boolean specification

A number of authors have considered the problem of generating tests from a Boolean
specification, in which all variables are Booleans, based on fault classes [Richardson
and Thompson 1988; 1993; Weyuker et al. 1994]. Recently, Kuhn [Kuhn 1999] has
shown that certain standard techniques are related. Specifically, the following fault
classes were considered for expressions [Kuhn 1999]:

—Variable Reference Fault (VRF) - a variable is replaced by some other variable.

—Variable Negation Fault (VNF) - some variable is replaced by its negation.

—Expression Negation Fault (ENF) - some expression E that forms a complete
clause in S (i.e. S is equivalent to E∨E′ for some E′) is replaced by its negation.

Kuhn showed how, given a specification, for each fault in one of these classes it is
possible to define a condition such that: a test input satisfies this condition if and
only if the test input finds the fault. If s denotes the specification and s′ denotes
the specification with a fault added, the condition for detecting the fault in s′ is
¬(s ⇔ s′).

Assuming that the variable or expression has been identified, SV RF denotes the
condition under which a Variable Reference Fault is found, SV NF denotes the con-
dition under which a Variable Negation Fault is found, and SENF denotes the
condition under which a Expression Negation Fault is found. Kuhn proved the
following results [Kuhn 1999].
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 13

Proposition 22. If the variable replaced in VRF is the same variable negated
in VNF then SV RF ⇒ SV NF .

Proposition 23. If expressions containing the variable negated in VNF are
negated in ENF then SV NF ⇒ SENF .

Interestingly, Kuhn also introduces results such as the following.

Corollary 1. Any test that detects a variable reference fault for a variable x
will also detect a variable negation fault for x.

Implicit in this result is an assumption: that only the single fault exists. If we do
not make such an assumption, it is straightforward to produce a counterexample in
which another fault masks these faults for certain ranges of values. For example,
suppose we consider the simple specification S ≡ x. Then a test that detects the
variable reference fault in which x is replaced by y need not find a variable negation
fault combined with an additional fault that transforms S to ¬x ∨ (x ∧ p): here
the fault goes undetected if x and p are both true. An example of such a test is
one in which x = true, y = false, and p = true. This detects the fault in which
S ≡ x is replaced by y since the values of x and y differ. However, ¬x ∨ (x ∧ p)
is ¬true ∨ (true ∧ true) which simplifies to true. Thus, the test does not detect x
being replaced by ¬x ∨ (x ∧ p).

We will now give a test hypothesis HB and rephrase the above results in terms
of ≤HB .

Definition 11. The test hypothesis HB states that the implementation is equiv-
alent to some behaviour that may be formed by introducing one instance of one of
the following types of fault into the specification:

—Variable Reference Fault.

—Variable Negation Fault.

—Expression Negation Fault.

We may now define the following test criteria.

Definition 12. Given a specification s

—a test set T satisfies CV RF if for every s′ that may be formed from s by introducing
a single VRF, some test in T distinguishes s′ from s.

—a test set T satisfies CV NF if for every s′ that may be formed from s by introducing
a single VNF, some test in T distinguishes s′ from s.

—a test set T satisfies CENF if for every s′ that may be formed from s by introducing
a single ENF, some test in T distinguishes s′ from s.

Proposition 24. The following relations hold:

—CV NF ≤HB
CV RF

—CENF ≤HB CV NF

Proof. These results follow from Propositions 22 and 23 respectively.
ACM Journal Name, Vol. V, No. N, Month 20YY.

14 ·
Thus it can be argued that Kuhn in effect proved results about the relation ≤HB

.
The process of rephrasing these results in terms of ≤HB

has a number of additional
benefits. First, it makes explicit the conditions under which the criteria are related
in terms of fault detecting ability. Where these conditions might not hold, the
tester is made aware of the limitations in these results. Secondly, it introduces the
possibility of adding additional hypotheses, that represent known system properties,
that might induce further relations between test techniques.

5.2 Mutation testing

In mutation testing [Budd 1981; King and Offutt 1991; Offutt 1992; Woodward
1993] a set M of mutants is produced by mutating, or changing, the program p.
Changes to p are produced using mutation operators. Typically, each mutant is
produced by making one application of a mutation operator to p. Such mutants
are called first order mutants.

A test input t is said to kill mutant pm ∈ M if and only if p and pm produce
different output when given input t. A mutant is an equivalent mutant if no test
input kills it.

Given a setM of mutants, the quality of a test set is judged by determining which
of the non-equivalent mutants are killed by it. Often the percentage of mutants
killed is recorded, the target being to kill all of the non-equivalent mutants. The
argument is that if a test set T is good at distinguishing p from its mutants then,
assuming p is faulty, T it is also likely to be good at distinguishing p from a correct
program.

Ultimately, the effectiveness of a test set is judged by determining which mutants
it kills. We will now explore how this may be formalised in terms of ≤H for some
appropriate test hypothesis.

The first step is to define the test hypothesis.

Definition 13. The test hypothesis, Hm, holds if either p is correct or there
exists some first order mutant of p that is correct.

It is straightforward to demonstrate that ≤Hm satisfies the following property
that seems to capture the essence of mutation testing: that there is a link between
the strength of the test set and the set of mutants killed by the test set.

Proposition 25. Given test sets T1 and T2, T2 ≤Hm
T1 if and only if every

first order mutant killed by T2 is also killed by T1.

An interesting question is: are there (relevant) weaker hypotheses under which
this result holds? The existence of such hypotheses might make mutation testing
more systematic.

Interestingly, the test hypothesis Hm is difficult to represent using a fault domain.
This is because typically a fault domain contains variants on the specification that
are intended to bound the possible behaviour of the IUT. In mutation testing,
instead we fix the IUT and produce a set of possible behaviours that relate to the
behaviour of the IUT, not the specification.
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 15

5.3 Partition analysis

Suppose the input domain has been partitioned to form a set Π = {π1, π2, . . .} of
subdomains. For s ∈ S, p ∈ P, and Π the uniformity hypothesis states that for
every πi ∈ Π, if there exists some x ∈ πi such that p ¹{x} s then for every x′ ∈ πi

we have that p ¹{x′} s. Naturally, the instance of the uniformity hypothesis used
might be based on a number of factors including: the structure of the specification;
expert knowledge; and information derived from program analysis.

Let Hs
Π denote the uniformity hypothesis for partition Π and specification s. A

program p satisfies Hs
Π if and only if for every πi ∈ Π, one of the following holds:

(1) ∀x ∈ πi.p ¹{x} s.
(2) ∀x ∈ πi.p 6¹{x} s.

The uniformity hypothesis formalises the intuition behind partition analysis,
in which the tester partitions the input domain to form a set Π of subdomains
{π1, π2, . . .}. The partition Π represents the belief that the behaviour of the IUT
is uniform on each πi. Ideally Π is finite. While the notion of uniformity on sub-
domain πi is not formally defined, the intuition behind uniformity is clear. This is
that faults in the behaviour of the IUT p on πi are likely to be exhibited throughout
πi. This suggests that, assuming the behaviour of p is uniform on πi, only a few
test cases need be taken within πi. Often these are supplemented by tests around
the boundaries [Clarke et al. 1982; White and Cohen 1980]. Boundary tests may
be represented by adding corresponding subdomains. A formal treatment of the
uniformity hypothesis may be found in [Gaudel 1995].

Let ΠX denote the partition {{x}|x ∈ X}: the partition in which each subdomain
contains a single element. The minimal hypothesis might be seen to be an instance
of the uniformity hypothesis using partition ΠX .

Proposition 26. The hypothesis Hmin is equivalent to Hs
ΠX .

The following gives sufficient and necessary conditions for a test set to determine
correctness under an instance of the uniformity hypothesis [Howden 1976].

Proposition 27. A test T ∈ P (X) determines correctness under Hs
Π if and

only if ∀πi ∈ Π.πi ∩ T 6= ∅.
Of course, in practice it is normal to generate several tests from each subdomain.

This is because of a lack of confidence in the uniformity hypothesis holding.
It is worth noting that, since Π need not be finite, there may be no practical test

set that satisfies this condition. Where Π is finite, it may be sufficiently large to
make it infeasible to satisfy this condition. However, it is still possible to compare
the effectiveness of test sets in the presence of HΠ.

Given partition Π, it is straightforward to say when one test set is at least as
strong as another under the hypothesis HΠ.

Proposition 28. Given s ∈ S, T1, T2 ∈ P (X) and partition Π, T2 ≤Hs
Π

T1 if
and only if for all πi ∈ Π, T2 ∩ πi 6= ∅ ⇒ T1 ∩ πi 6= ∅.

Proof. Case 1: ⇒. Proof by contradiction: suppose T2 ≤Hs
Π

T1 and there is
some πi ∈ Π such that T2∩πi 6= ∅ and T1∩πi = ∅. Now consider a program p1 ∈ P

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 ·
such that p1 ¹X\πi

s and ∀x ∈ πi.p 6¹{x} s. Then p satisfies Hs
Π. Since T1 ∩πi = ∅,

p1 ¹T1 s and since T2 ∩ πi 6= ∅, p1 ¹T2 s. This contradicts T2 ≤Hs
Π

T1 as required.
Case 2: ⇐. Proof by contradiction: assume for all πi ∈ Π, T2∩πi 6= ∅ ⇒ T1∩πi 6=

∅ but T2 6≤Hs
Π

T1. Since T2 6≤Hs
Π

T1 there is some program p ∈ P that satisfies Hs
Π,

p ¹T1 s and p 6¹T2 s. Consider now some x ∈ T2 such that p 6¹{x} s with x ∈ πi

say. Since T2 ∩ πi 6= ∅ ⇒ T1 ∩ πi 6= ∅, there is some x′ ∈ T1 with x′ ∈ πi. But
since p satisfies Hs

Π and p fails on some value in πi, p must fail on all values from
πi and, in particular p must fail on x′. Thus p 6¹T1 s, providing a contradiction as
required.

This result shows how, by ignoring the hypothesis Hs
Π, the tester might add to a

test set without increasing its fault detecting ability. In order to see this, suppose
test set T is to be extended. Let ΠT denote {π ∈ Π|T ∩ π 6= ∅}. If tests are added
to T to form T ′, by Proposition 28 we know that T ≡Hs

Π
T ′ if ΠT = ΠT ′ . Where

some of the subdomains in ΠT are infinite, this allows a (possibly small) test set T
to be extended to an infinite test set (such as

⋃
πi∈ΠT

πi) that has the same fault
detecting ability as T .

While the test hypothesis Hcorr does not have a corresponding uniformity hy-
pothesis, there is a maximal uniformity hypothesis. Under this hypothesis, all
non-empty test sets are equivalent.

Proposition 29. All non-empty test sets are equivalent under the test hypoth-
esis Hs

{X}.

Proof. This follows immediately from Proposition 28.

One of the nice properties of the class of uniformity hypotheses is that it contains
minimal and maximal elements. The following result, which follows directly from
the definitions, represents this fact.

Proposition 30. If Π is a partition of X then

(1) Hs
Π is a refinement of Hs

ΠX

(2) Hs
{X} is a refinement of Hs

Π

Let CΠ denote the criterion that the test must have at least one test from each
subdomain in the partition Π. Given partitions Π1 and Π2, Π1 is a refinement of
Π2 if each subdomain in Π2 is the union of a set of subdomains from Π1. Then the
following results hold.

Proposition 31. Suppose partition Π1 is a refinement of partition Π2. Then

—CΠ2 ≤HΠ1
CΠ1

—CΠ2 ≡HΠ2
CΠ1

5.4 Testing from a finite state machine

Many systems are specified using state-based languages such as Statecharts [Harel
and Politi 1998] and SDL [ITU-T 1999]. Testing from specifications written in
state-based languages has thus been an active research area, particular attention
being paid to the conformance testing of communication protocols [ITU-T 1997].
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 17

State-based systems are often tested using finite state machine (FSM) based
techniques, one of the following approaches being applied to produce an FSM from
the specification:

(1) Applying an abstraction.
(2) Expanding out the data elements (usually after restricting the range of values).

A (deterministic) finite state machine M is defined by a tuple (Q, q0, δ, λ, Σ, Γ) in
which Q is a finite set of states, q0 ∈ Q is the initial state, δ is the state transition
function, λ is the output function, Σ is the finite input alphabet, and Γ is the finite
output alphabet. If M receives input x ∈ Σ while in state q ∈ Q, it produces
output λ(q, x) ∈ Γ and moves to state δ(q, x) ∈ Q. This defines a transition
(q, δ(q, x), x/λ(q, x)).

Given FSM M that describes the required behaviour of IUT p, it is normal to
assume that p behaves like some (unknown) FSM Mp [ITU-T 1997]. This might be
seen as the minimal hypothesis. It is then normal to make further assumptions that
limit the classes of faults that may occur. The following are (alternative) typical
assumptions.

(1) The only faults are due to incorrect output in transitions.
(2) The FSM Mp has at most m states (some predefined m).

In conformance testing the set of assumptions used is seen as a fault domain
[ITU-T 1997]. However, as was noted earlier, a fault domain is equivalent to a test
hypothesis. We will briefly investigate these two fault domains and their impact on
test generation.

5.4.1 Output faults. It is possible to assume that the state and transition struc-
tures are correctly implemented but that transitions might produce incorrect out-
put. Given M , this test hypothesis might be denoted HM

O . Hypothesis HM
O states

that p behaves like some unknown FSM that has no state transfer faults.
The existence of an internal state leads to the use of test sequences: in order to

test an element of the system it may be necessary to set up the state for the test.
To simplify the exposition, this section will work on the assumption that a single
test sequence is being developed. However, similar results follow when using a set
of test sequences.

Given test sequence x let τ(x) denote the set of transitions, of M , triggered by
the input of x. A test sequence determines correctness under HM

O if and only if
it triggers every transition in M . Such a test sequence is called a transition tour
[Sidhu and Leung 1989].

Proposition 32. A test sequence x determines correctness under HM
O if and

only if τ(x) contains every transition from M .

The following property of ≤HM
O

is clear.

Proposition 33. Given test sequences x and x′, {x} ≤HM
O
{x′} if and only if

τ(x) ⊆ τ(x′).

An interesting extension of this may occur when the FSM has been formed
through a process of abstraction. Here each transition represents a set of possible

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 ·
input/initial state values. Testing from the corresponding FSM effectively involves
using a uniformity hypothesis for each transition: if there is a fault for one value
there is a fault for all values. Instead, the input domains of the transitions may be
partitioned, the tester using the uniformity hypothesis based on these partitions.
This leads to a hybrid test hypothesis that may form the basis for test generation
[Hierons et al. 2001]. Future work will consider such hybrid test hypotheses.

5.4.2 Upper bound on the number of states. Rather than assume that only out-
put faults may occur, it is possible to place an upper bound on the number of extra
states to form HM

m . The hypothesis HM
m states that the IUT p behaves like some

(unknown) FSM Mp that has the same input and output alphabets as M and has
no more than m states. There are algorithms that generate tests, called checking
experiments, that determine correctness under this hypothesis [Chow 1978; Hennie
1964; Petrenko et al. 1994; Rezaki and Ural 1995; Ural et al. 1997].

Let Υm denote a test set that determines correctness under hypothesis HM
m .

Proposition 34. If m1 ≥ m2 then

(1) Υm1 determines correctness under HM
m2

(2) Υm2 ≤HM
m1

Υm1

(3) Υm2 ≡HM
m2

Υm1

Interestingly, it seems significantly more difficult to characterize ≤HM
m

than the
relations given in Section 5.3. Possibly this is because the test hypothesis refers to
the structure of a state-based system rather than the input/output behaviour of a
state-less system. For state-based systems the test hypotheses relate to a (regular)
language of sequences of input/output pairs rather than a set of input/output pairs.

6. FUTURE WORK

This paper has highlighted a number of challenges. One challenge is to develop
further test hypotheses that represent properties systems are likely to have and
that allow statements about the effectiveness of testing to be made. Ideally these
hypotheses should either be relatively simple to verify or to derive from the IUT.
Where a test hypothesis is verified, the relation ≤H may be used with confidence.
Appropriate hypotheses seem to be particularly lacking in white-box testing, the
main exception to this possibly being mutation testing.

It has been shown that, given some test hypothesis H, the relation ≤H may be
used to drive test generation: tests may be produced in an incremental manner.
Naturally, practical issues remain and thus there is a further questions regarding
when is it practical to use ≤H to drive incremental testing and how this may be
achieved.

The work has raised a further interesting question. Suppose the tester knows
some weakest test hypothesis H such that C2 ≤H C1. What does this tell the tester
about C1, C2 and their relative effectiveness? Finally, future work will consider
how test hypotheses and fault domains may be used when applying probabilistic
comparators.
ACM Journal Name, Vol. V, No. N, Month 20YY.

· 19

7. CONCLUSIONS

This paper has explored the problem of comparing test sets and criteria in the
presence of test hypotheses. The existence of a test hypothesis H, that represents
known system properties, allows the introduction of a relation ≤H defined by: for
test sets T1 and T2, T2 ≤H T1 if and only if whenever T2 finds a fault in an
implementation p that satisfies H, T1 finds a fault in p. The relation is extended
to test criteria by considering non-reducible test sets that satisfy the criteria.

The relation ≤H introduced represents test effectiveness: the ability of testing to
determine whether an implementation is faulty. This contrasts with relations such
as subsumes, that say little about fault detection. The use of test hypotheses has
proved to be vital: the relation ≤, produced without them, is equivalent to ⊆ when
applied to test sets and cannot be used to compare effective test criteria.

The comparator ≤H is based on the observation that relations that do not hold
generally may hold where system properties are known. Importantly, the defini-
tion of ≤H provides a framework in which formal statements, about the relative
effectiveness of test sets and criteria, can be made in the presence of known system
properties.

We have observed that given a test hypothesis H, a non-empty test set T may
have the same fault detecting ability as the empty set. Further, a test set T might
be extended to form some test set T ′ with the same fault detecting ability as T .
Thus it is importance to consider information, in the form of hypothesis H, during
test generation.

The relation <H , defined in terms of ≤H , may be used to drive incremental test
generation: a test input t should only be added to a test set T if T <H T ∪{t}. Test
hypothesis refinement preserves ≤H : if H ′ refines H and T2 ≤H T1 then T2 ≤H′ T1.
Test development may thus be represented as an incremental process of refining test
hypotheses and test sets. This allows tests to be generated, and executed, before
test hypothesis refinement is complete. Of course, there are issues that must be
resolved in order to make such incremental test development practical.

Four types of test hypothesis have been investigated. Where Boolean specifica-
tions are concerned, the results of Kuhn [Kuhn 1999] translate into results regarding
≤H for a natural choice of test hypothesis H. These results state what the results
from [Kuhn 1999] mean in terms of the fault detecting ability of tests.

In mutation testing there is an implicit test hypothesis Hm. Once this test
hypothesis is expressed, the relation ≤Hm is as expected: given test sets T1 and T2,
T2 ≤Hm T1 if and only if every mutant killed by T2 is also killed by T1.

Under the uniformity hypothesis many tests sets and criteria are related by ≤H

and ≤H can be easily characterised. Test hypotheses have also been considered in
the area of testing from a finite state machine. Here the results are much more
mixed: under the hypothesis that only output faults exists, it is relatively simple
to characterise ≤H . However, due to their structural nature, ≤H is more difficult
to characterise for alternative hypotheses.
Acknowledgements

I would like to thank the anonymous referees for their comments: these strength-
ened the paper. This work was partially funded by EPSRC grant number GR/R43150.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 ·
REFERENCES

Bernot, G., Gaudel, M.-C., and Marre, B. 91. Software testing based on formal specification:
a theory and a tool. Software Engineering Journal 6, 387–405.

Budd, T. A. 1981. Mutation analysis: Ideas, examples, problems and prospects. In The Summer
School on Computer Program Testing. Academic Press, Sogesta, Urbino, Italy, 1–50.

Chen, T. Y. and Yu, Y. T. 1996. On the expected number of failures detected by subdomain
testing and random testing. IEEE Transactions on Software Engineering 4, 109–119.

Chow, T. S. 1978. Testing software design modelled by finite state machines. IEEE Transactions
on Software Engineering 4, 178–187.

Clarke, L. A., Hassell, J., and Richardson, D. J. 1982. A close look at domain testing. IEEE
Transactions on Software Engineering 8, 380–390.

Duran, J. W. and Ntafos, S. C. 1984. An evaluation of random testing. IEEE Transactions
on Software Engineering 10, 438–444.

Frankl, P. G. and Weyuker, E. J. 1993a. A formal analysis of the fault-detecting ability of
testing methods. IEEE Transactions on Software Engineering 19, 202–21.

Frankl, P. G. and Weyuker, E. J. 1993b. Provable improvements on branch testing. IEEE
Transactions on Software Engineering 19, 962–975.

Gaudel, M. C. 1995. Testing can be formal too. Lecture Notes in Computer Science 915, 82–96.

Gourlay, J. S. 1983. A mathematical framework for the investigation of testing. IEEE Trans-
actions on Software Engineering 9, 686–709.

Hamlet, R. 1989. Theoretical comparison of testing methods. In Third Symposium on Testing,
Analysis and Verification. ACM, Key West, Florida, USA, 28–37.

Hamlet, R. and Taylor, R. 1990. Partition testing does not inspire confidence. IEEE Trans-
actions on Software Engineering 16, 1402–1411.

Harel, D. and Politi, M. 1998. Modeling reactive systems with statecharts: the STATEMATE
approach. McGraw-Hill, New York.

Hennie, F. C. 1964. Fault-detecting experiments for sequential circuits. In Proceedings of Fifth
Annual Symposium on Switching Circuit Theory and Logical Design. Princeton, New Jersey,
95–110.

Hierons, R. M., Sadeghipour, S., and Singh, H. 2001. Testing a system specified using state-
charts and Z. Information and Software Technology 43, 137–149.

Hierons, R. M. and Wiper, M. P. 1997. Estimating failure rates by partition and random
testing. Journal of Software Testing, Verification and Reliability 7, 153–164.

Howden, W. E. 1976. Reliability of the path analysis testing strategy. IEEE Transactions on
Software Engineering 2, 208–215.

ITU-T. 1997. Recommendation Z.500 Framework on formal methods in conformance testing.
International Telecommunications Union, Geneva, Switzerland.

ITU-T. 1999. Recommendation Z.100 Specification and description language (SDL). Interna-
tional Telecommunications Union, Geneva, Switzerland.

King, K. N. and Offutt, A. J. 1991. A FORTRAN language system for mutation-based software
testing. Software Practice and Experience 21, 686–718.

Kuhn, D. R. 1999. Fault classes and error detection capability of specification-based testing.
ACM Transactions on Software Engineering Methodology 8, 411–424.

Ntafos, S. C. 1988. A comparison of some structural testing strategies. IEEE Transactions on
Software Engineering 14, 868–874.

Offutt, A. J. 1992. Investigations of the software testing coupling effect. ACM Transactions on
Software Engineering and Methodology 1, 3–18.

Petrenko, A., Yevtushenko, N., Lebedev, A., and Das, A. 1994. Nondeterministic state
machines in protocol conformance testing. In Proceedings of Protocol Test Systems, VI (C-19).
Elsevier Science (North-Holland), Pau, France, 363–378.

Rezaki, A. and Ural, H. 1995. Construction of checking sequences based on characterization
sets. Computer Communications 18, 911–920.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 21

Richardson, D. J. and Thompson, M. C. 1988. The relay model of error detection and its
application. In The 2nd workshop on Software Testing, Analysis and Verification. ACM Press,
Banff, Canada, 223–230.

Richardson, D. J. and Thompson, M. C. 1993. an analysis of test data selection criteria using
the RELAY model of fault detection. IEEE Transactions on Software Engineering 19, 533–553.

Sidhu, D. P. and Leung, T.-K. 1989. Formal methods for protocol testing: A detailed study.
IEEE Transactions on Software Engineering 15, 413–426.

Ural, H., Wu, X., and Zhang, F. 1997. On minimizing the lengths of checking sequences. IEEE
Transactions on Computers 46, 93–99.

Weyuker, E., Goradia, T., and Singh, A. 1994. Automatically generating test data from a
boolean specification. IEEE Transactions on Software Engineering 20, 353–363.

Weyuker, E. J. 1986. Axiomatizing software test data adequacy. IEEE Transactions on Software
Engineering 12, 236–246.

Weyuker, E. J. 1988. The evaluation of program-based software test data adequacy criteria.
Communications of the ACM 31, 668–675.

Weyuker, E. J. 2002. Thinking formally about testing without a formal specification. In Formal
Approaches to Testing of Software (FATES). INRIA Press, Brno, Czech Republic, 1–10.

Weyuker, E. J., Weiss, S. N., and Hamlet, D. 1991. Comparison of program testing strategies.
In 1991 Symposium on Software Testing, Analysis, and Verification (TAV4). ACM Press,
Victoria, British Columbia, Canada, 1–10.

White, L. J. and Cohen, E. I. 1980. A domain strategy for computer program testing. IEEE
Transactions on Software Engineering 6, 247–257.

Woodward, M. R. 1993. Mutation testing - its origins and evolution. Information and Software
Technology 35, 163–169.

Zhu, H. 1996. A formal interpretation of the subsumes relation between software test adequacy
criteria. IEEE Transactions on Software Engineering 22, 248–255.

Zhu, H. and Hall, P. A. V. 1993. Test data adequacy measurement. Software Engineering
Journal 8, 12–30.

Received June 2002; October 2002; Accepted November 2002

ACM Journal Name, Vol. V, No. N, Month 20YY.

