Reduced Length Checking Sequences

Robert M. Hierons ${ }^{1}$ and Hasan Ural ${ }^{2}$

1 Department of Information Systems and Computing, Brunel University, Middlesex, UB8 3PH, United Kingdom
2 School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada

Abstract

Here the method proposed in [13] for constructing minimal-length checking sequences based on distinguishing sequences is improved. The improvement is based on optimizations of the state recognition sequences and their use in constructing test segments. It is shown that the proposed improvement further reduces the length of checking sequences produced from minimal, completely specified, and deterministic finite state machines.

Index Terms -- Finite State Machine, Checking Sequence, Test Minimization, Distinguishing Sequence.

1 INTRODUCTION

Finite state machines (FSMs) have been used to model many types of systems including control circuits [11], pattern matching systems, machine learning systems, and communication protocols [1, 4]. FSM based modelling techniques are also often employed in defining the control structure of a system specified using languages such as SDL [2], Estelle [3], and State Charts [7]. Principles of testing an implementation I of a system modelled as an FSM M can be found in sequential circuit and switching system testing literature [5], where determining, under certain assumptions, whether I is a correct implementation of M is referred to as a fault detection experiment. This experiment consists of applying an input sequence (derived from M) to I, observing the actual output sequence produced by I in response to the application of the input sequence, and comparing the actual output sequence with the expected output sequence. The applied input sequence and the expected output sequence form a checking sequence.

Given an FSM M, that models the required behaviour of an implementation I, it is common to assume that I behaves like some unknown FSM (i.e., a "black box") with the same input and output sets as M, and that the faults in I do not increase the number of states in I but may alter the output and destinations of transitions in I. A further common assumption is that M is minimal, completely specified, and represented by a strongly connected digraph [8].

During the construction of a checking sequence from M, the following steps must be carried out in order to verify the correct implementation of each state transition of M by I, (say, from state s_{j} to state s_{k} under input x),
a) before the application of x, I must be transferred to the state recognized as state s_{j},
b) the output produced by I in response to the application of x must be as specified in M,
c) the state reached by I after the application of x must be recognized as s_{k}.

Steps b) and c) are collectively called a test segment for the transition.

Clearly, a crucial part of testing the correct implementation of each transition is recognizing the starting and terminating states of the transition. The recognition of a state of an FSM M can be achieved by a distinguishing sequence which is an input sequence for which the output sequence produced by M in response to this input sequence is different for each state of M [5]. It is known that a distinguishing sequence may not exist for every minimal FSM [5], and determining the existence of a distinguishing sequence of an FSM is PSPACE-complete [9]. Nevertheless, based on distinguishing sequences, a variety of methods for the construction of checking sequences have been proposed in the literature [5, 6, 8, 12, 13, 14]. An excellent survey on testing FSMs is given by Lee and Yannakakis [10]. However, the particular problem of constructing minimal length checking sequences remains open [6, 13].

This paper considers the problem of generating a minimal length checking sequence in the presence of a distinguishing sequence and improves the work of Ural et al. [13] by modifying it in two ways, each contributing to a reduction in the length of the checking sequence produced. These two modifications are related to extending the definition and the use of α-sequences which are state recognition sequences such that each α-sequence recognizes a subset of states of a given FSM. Firstly, the notion of α-sequences [13] is extended to α^{\prime}-sequences. The essential difference between α-sequences and α^{\prime}-sequences is that an α-sequence α_{k} must end in a section from within its own body while an α^{\prime}-sequence α_{k}^{\prime} can end in a section from within the body of some other α^{\prime}-sequence α_{k}^{\prime}. It is shown in this paper that α^{\prime}-sequences have two main advantages: α^{\prime}-sequences may be shorter than α-sequences and the use of α^{\prime}-sequences increases the set of checking sequences over which optimization occurs.

A second improvement is the use of α^{\prime}-sequences in forming test segments for some transitions. Ural et al. form a test segment for each transition of the given FSM by appending explicitly a distinguishing sequence at the end of the transition to verify the state reached by the transition. Since an α^{\prime}-sequence starts with a distinguishing sequence, its use in a checking sequence for state recognition eliminates the need for the explicit use of distinguishing sequences for state recognition and hence further reduces the length of the resulting checking sequence.

The rest of the paper is structured as follows. Section 2 provides an overview of related material. Section 3 then describes the new approach, contrasting it with that in [13], applies both approaches to an example, and compares these approaches. Section 4 gives the conclusions.

2 PRELIMINARIES

A finite state machine (FSM) is a quintuple $M=(S, X, Y, \delta, \lambda)$, where S is a finite set of states, X is a finite set of inputs, Y is a finite set of outputs, δ is a state transition function that maps $S \times X$ to S, and λ is an output function that maps $S \times X$ to Y. Functions δ and λ can be extended to take
input sequences in the normal way [13]. $s_{1} \in S$ is considered as the initial state of M. States s_{i}, $s_{j} \in S, i \neq j$, are equivalent if, for every input sequence $I \in X^{*}, \lambda\left(s_{i}, I\right)=\lambda\left(s_{j}, I\right) . M$ is minimal if there is no pair of states $s_{i}, s_{j} \in S, i \neq j$, that are equivalent.
M can be represented by a digraph $G=(V, E)$ where vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ represents the set S of states of $M,|S|=n$, and an edge $e=\left(v_{j}, v_{k} ; x / y\right) \in E$ represents a transition from state s_{j} to state s_{k} with input $x \in X$ and output $y \in Y$. Here v_{j} and v_{k} are the head and tail of e, denoted head (e) and tail(e), respectively and input/output (ilo pair) x / y is the label of e, denoted label(e). A path $P=\left(n_{1}, n_{2} ; x_{1} / y_{1}\right)\left(n_{2}, n_{3} ; x_{2} / y_{2}\right) \ldots\left(n_{r-1}, n_{r} ; x_{r-1} / y_{r-1}\right), r>1$, of G is a finite sequence of (not necessarily distinct) adjacent edges in E, where each node n_{i} represents a vertex from $V ; n_{1}$ and n_{r} are the head and tail of P, denoted $\operatorname{head}(P)$ and tail(P), respectively; and $\left(x_{1} / y_{1}\right)\left(x_{2} / y_{2}\right) \ldots\left(x_{r-1} / y_{r-1}\right)$ is the label of P, denoted label (P). For convenience, P will be represented by $\left(n_{1}, n_{r} ; I / O\right)$ where $\operatorname{label}(P)=I / O$ is the IO-sequence $\left(x_{1} / y_{1}\right)\left(x_{2} / y_{2}\right) \ldots\left(x_{r-1} / y_{r-1}\right)$, input sequence $I=\left(x_{1} x_{2} \ldots x_{r-1}\right)$ is the input portion of I / O, and output sequence $O=\left(y_{1} y_{2} \ldots y_{r-1}\right)$ is the output portion of $I / O . G$ is strongly connected if for all $v_{i}, v_{j} \in V$, there is a path from v_{i} to v_{j}. The cost (or length) of an edge is the number of ilo pairs in the label of the edge. The cost (or length) of path P is the sum of the costs of edges in P. The concatenation of two sequences (or paths) P and Q is denoted by $P Q$.

Digraph $G^{\prime}=\left(V^{\prime}, E\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. Digraph $G=(V, E)$ is symmetric if every vertex $v \in V$ has the same number of edges from E entering it as leaving it. A rural postman path $(R P P)$ from v_{i} to v_{j} over $E^{\prime} \subseteq E$ in $G=(V, E)$ is a path from v_{i} to v_{j} that includes all edges of E^{\prime}. A rural Chinese postman path $(R C P P)$ from v_{i} to v_{j} over $E^{\prime} \subseteq E$ in $G=$ (V, E) is a minimum-cost RPP. A tour is a path that starts and terminates at the same vertex. An Euler tour of $G=(V, E)$ is a tour that contains every edge in E exactly once.

Consider a minimal FSM $M=(S, X, Y, \delta, \lambda)$ represented by strongly connected digraph $G=$ (V, E). A transfer sequence T of M from state s_{i} to state s_{j} is the label of a path from s_{i} to s_{j}. A distinguishing sequence of M is an input sequence D for which the output sequence produced by M in response to D identifies the state of M : for all $s_{i}, s_{j} \in S, i \neq j, \lambda\left(s_{i}, D\right) \neq \lambda\left(s_{j}, D\right)$. Let $\Phi(M)$ be the set of FSMs that have at most n states and the same input and output sets as M and suppose $M^{*} \in \Phi(M) . M$ and M^{*} are equivalent if and only if for every state in M there is a corresponding equivalent state in M^{*}, and vice versa. A checking sequence of M is an IO-sequence I / O starting at a specific state of M that distinguishes M from any $M^{*} \in \Phi(M)$ that is not equivalent to M.

Let D denote a distinguishing sequence of M and let an IO-sequence Q of M be the label of a path $P=\left(n_{1}, n_{r} ; Q\right)=\left(n_{1}, n_{2} ; L_{1}\right)\left(n_{2}, n_{3} ; L_{2}\right) \ldots\left(n_{r-1}, n_{r} ; L_{r-1}\right)$ of G (cf. Fig. 1a). Hence, $\mathrm{Q}=L_{1} L_{2} \ldots$ L_{r-1} where $r>1, L_{j}=x_{j} / y_{j}, 1 \leq j \leq r-1$. It is shown in [13] that if every edge of G is verified in the IO-sequence Q, then Q is a checking sequence of M that starts at v_{1}.

In the following, we recall the definitions of recognition of a node n_{i} of P in Q as some state of M and verification of an edge $e=(a, b ; x / y)$ of G in Q given in [13].

Definition 1 A node n_{i} of P is d-recognized in Q as some state a of M if n_{i} is the head of a subpath of P whose label is an IO-sequence $D / \lambda(a, D)$.

Definition 2 Suppose that $\left(n_{q}, n_{i} ; T\right)$ and $\left(n_{j}, n_{k} ; T\right)$ are subpaths of P and $D / \lambda(a, D)$ is a prefix of T, and thus nodes n_{q} and n_{j} are d-recognized in Q as state a of M. Suppose also that node n_{k} is d recognized in Q as some state a^{\prime} of M. Then, node n_{i} is t-recognized in Q as state a^{\prime} of M.

Definition 3 Suppose that $\left(n_{q}, n_{i} ; T\right)$ and $\left(n_{j}, n_{k} ; T\right)$ are subpaths of P such that nodes n_{q} and n_{j} are either d-recognized or t-recognized in Q as some state a of M, and node n_{k} is either d-recognized or t-recognized in Q as some state a^{\prime} of M. Then, node n_{i} is t-recognized in Q as state a^{\prime} of M.

If node n_{i} of P is d-recognized or t-recognized in Q as some state a of M, then it is said to be recognized as state a. A node of P is said to be recognized if it is recognized as some state a.

Definition 4 An edge $e=(a, b ; x / y)$ of G is verified in Q if there is a subpath $\left(n_{i}, n_{i+1} ; x_{i} / y_{i}\right)$ of P such that n_{i} and n_{i+1} are recognized in Q as states a and b of M, and $x_{i} / y_{i}=x / y$.

Thus, for edge e to be verified in Q, it is sufficient for P to contain a subpath $\left(n_{i}, n_{j} ;(x D) / \lambda(a\right.$, $x D)$) with head $\left(\left(n_{i}, n_{j} ;(x D) / \lambda(a, x D)\right)\right)$ recognized in Q as a.

Definition 5 The subpath $\left(n_{i}, n_{j} ;(x D) / \lambda(a, x D)\right)$ of P used to verify e is called the test segment for e.

Figure 1 depicts the notions captured by the definitions above.

3 CHECKING SEQUENCE CONSTRUCTION

The problem studied in this paper is defined as follows: Given a strongly connected digraph $G=$ (V, E) representing a minimal FSM M with distinguishing sequence D, find a minimum-length path P of G such that every edge of G is verified in label $(P)=Q$. By definition, for an edge $e=$ $(a, b ; x / y)$ of G to be verified in $\operatorname{label}(P)=Q$ it is sufficient for the following conditions to be satisfied: 1) P contains a test segment $\left(n_{i}, n_{j} ;(x D) / \lambda(a, x D)\right)$ for e; and 2$)$ head $\left(\left(n_{i}, n_{j} ;(x D) / \lambda(a\right.\right.$, $x D)$)) is recognized in Q as state a of M. If condition 1) and 2) hold for every edge of G, then every transition of M is verified in Q. Thus, Q is a checking sequence of M that starts at v_{1} (Theorem 1, [13]).

3.1 An Existing Solution

The proposed solution to this problem is an enhancement of the solution given in [13] where first a digraph $G^{\prime}=\left(V^{\prime}, E\right)$ is obtained by augmenting the given digraph $G=(V, E)$, representing an

Fig. 1 Path $P=\left(n_{1}, n_{r} ; Q\right)$, (b) d-recognition, (c) t-recognition, (d) t-recognition, (e) edge verification, (f) test segment for edge $e=(a, b ; x / y)$

FSM M, with a set of edges $\left(E_{\alpha}\right)$ that recognize each state, and a set of edges $\left(E_{C}\right)$ that verifies each transition. A checking sequence is then derived from $G^{\prime}=\left(V^{\prime}, E\right)$ as the label of a path P constructed by combining elements of these two sets of edges in a judicious manner [13]. The enhancements to the solution in [13] will be given after the steps of the solution in [13] are outlined as follows.

Edges in E_{α} are constructed such that the label of each edge (an α-sequence) recognizes a subset of the states of M and that each state of M is recognized at least once by the labels of the edges in E_{α}. The construction of E_{α} is facilitated by forming a set of paths P_{1}, \ldots, P_{q} of G where each path P_{k} induces an edge of E_{α} whose label is label $\left(P_{k}\right)=\alpha$-sequence $\alpha_{k}, 1 \leq k \leq q$. That is,
a) the set of vertices $V_{k} \subseteq V$ covered by $P_{k}, 1 \leq k \leq q$, is $\left\{v_{1}^{k}, v_{2}^{k}, \ldots, v_{m_{k}}^{k}\right\}$;
b) the union of the V_{k} is V; and
c) the label of P_{k}, α-sequence α_{k}, is $D / \lambda\left(v_{1}^{k}, D\right) T_{1}^{k} D / \lambda\left(v_{2}^{k}, D\right) T_{2}^{k} \ldots D / \lambda\left(v_{m_{k}}^{k}, D\right) T_{m_{k}}^{k}$ $D / \lambda\left(v_{w}^{k}, D\right) T_{w}^{k}$ where for $1 \leq j \leq m_{k}, T_{j}^{k}=\left(I_{j}^{k} / O_{j}^{k}\right)$ is a transfer sequence from $\delta\left(v_{j}^{k}, D\right)$ to $v_{j+1}^{k}, v_{m_{k}+1}^{k}=v_{w}^{k}$, and v_{w}^{k} is any member of V_{k}.

So, when P_{k}, a path whose label is $\alpha_{k}, 1 \leq k \leq q$, is contained in the solution P of G then
a) $v_{j}^{k}, 1 \leq j \leq m_{k}$, is d-recognized in α_{k};
b) $\delta\left(v_{j}^{k}, D I_{j}^{k}\right), 1 \leq j \leq m_{k}$, is d-recognized in α_{k}; and
c) $\operatorname{tail}\left(P_{k}\right)$ is recognized in α_{k}.

The labels $\alpha_{1}, \ldots, \alpha_{q}$ of paths P_{1}, \ldots, P_{q} form an α-set. From the elements of the α-set, a set of transfer sequences, called T-set, is formed as a set of labels of subpaths R_{1}, \ldots, R_{p} of paths P_{1}, \ldots, P_{q}, such that each element T_{i} of T-set is label $\left(R_{i}\right)$ where $\left\{R_{i}: i=1,2, \ldots, p\right\}=\left\{\left(v_{j}^{k}, \delta\left(v_{j}^{k}, D I_{j}^{k}\right)\right.\right.$; $\left.D / \lambda\left(v_{j}^{k}, D\right) T_{j}^{k}\right): 1 \leq k \leq q$ and $\left.1 \leq j \leq m_{k}\right\}$. Thus, head $\left(R_{i}\right)$ is recognized in some α_{k} because D is applied to $\operatorname{head}\left(R_{i}\right)$ and $\operatorname{tail}\left(R_{i}\right)$ is recognized in some α_{k} because tail $\left(R_{i}\right)$ is $\delta\left(v_{j}^{k}, D I_{j}^{k}\right)$ to which D is applied. The set of paths P_{1}, \ldots, P_{q} and the set of subpaths R_{1}, \ldots, R_{p} are included in G^{\prime} as edges in $E_{\alpha} \subset E^{\prime}$ and in $E_{T} \subset E^{\prime}$, respectively, in order to facilitate the recognition of vertices in the label Q of the solution P. Moreover, a test segment for each edge of G is included in G^{\prime} as edges in $E_{C} \subset E^{\prime}$ in order to verify every transition of M in label $(P)=Q$. Furthermore, two more sets of edges are included in G^{\prime} as edges in $E_{\varepsilon} \subset E^{\prime}$ and in $E^{\prime \prime} \subset E^{\prime}$ to increase the connectivity of the vertices in G^{\prime}.
Formally, $G^{\prime}=\left(V^{\prime}, E\right)$ is obtained from $G=(V, E)$ as follows:
$V^{\prime}=V \cup U^{\prime}$ where $U^{\prime}=\left\{v_{i}^{\prime}\right.$: for every $\left.v_{i} \in V\right\}$ and $E^{\prime}=E \cup E_{\alpha} \cup E_{T} \cup E_{C} \cup E_{\varepsilon} \cup E^{\prime \prime}$,
$E_{\alpha}=\left\{\left(\operatorname{head}\left(P_{k}\right),\left(\operatorname{tail}\left(P_{k}\right)\right) ; \alpha_{k}\right): 1 \leq k \leq q\right\}$: for every $\alpha_{k},\left(\operatorname{tail}\left(P_{k}\right)\right)$ is recognized in α_{k};
$E_{T}=\left\{\left(\operatorname{head}\left(R_{i}\right),\left(\operatorname{tail}\left(R_{i}\right)\right)^{\prime} ; T_{i}\right): 1 \leq I \leq p\right\}$: for every $R_{i},\left(\operatorname{tail}\left(R_{i}\right)\right)^{\prime}$ is recognized in some α_{k};
$E_{C}=\left\{\left(v_{i}^{\prime},\left(\delta\left(v_{i}, x D I_{j}^{k}\right)\right)^{\prime}\left(x D I_{j}^{k}\right) / \lambda\left(v_{i}, x D I_{j}^{k}\right)\right):\left(v_{i}, v_{j} ; x / y\right) \in E\right\}:\left(\delta\left(v_{i}, x D I_{j}^{k}\right)\right)^{\prime}$ is recognized;
$E_{\varepsilon}=\left\{\left(v_{i}^{\prime}, v_{i} ; \varepsilon\right): v_{i} \in V\right\} ;$
$E^{\prime \prime}$ is a subset of $\left\{\left(v_{i}^{\prime}, v_{j}^{\prime} ; x / y\right):\left(v_{i}, v_{j} ; x / y\right) \in E\right\}$ such that $G^{\prime \prime}=\left(U^{\prime}, E^{\prime \prime}\right)$ has no tour and G^{\prime} is strongly connected.

Once G^{\prime} is formed, an RPP P^{\prime} of G^{\prime} is found that contains all edges in $E_{\alpha} \cup E_{C}$. Since G^{\prime} is obtained from G, P^{\prime} represents a path P of G. It is proven in [13] that, for each edge of G, P
satisfies conditions 1) and 2) above, and thus $Q=\operatorname{label}(P)$ is a checking sequence of M that starts at v_{1}. In [13] an RPP P is found through two steps. First, the minimal symmetric augmentation $G^{\prime \prime}$ of $\left(V^{\prime}, E_{\alpha} \cup E_{C}\right)$, that may be produced by adding edges from E^{\prime}, is found. If $G^{\prime \prime}$, with its isolated vertices removed, is connected, $G^{\prime \prime}$ has an Euler tour and this forms P. Otherwise, a heuristic is applied to make $G^{\prime \prime}$ connected and an Euler tour is formed. If $G^{\prime \prime}$ is connected, P is an RCPP over $E_{\alpha} \cup E_{C}[13]$.

3.2 The Proposed Enhancement

Our enhancements to the solution in [13] are based on modifying the definition of G^{\prime}.

Modification 1

The first modification is on the formation of the elements of the α-set. We observed that if the final section of an α-sequence is not required, unlike in [13], to end in a section within its own body, then the lengths of some α-sequences can be reduced which may reduce the overall length of a checking sequence. We call an α-sequence that does not necessarily end in a section within its own body an α^{\prime}-sequence. The following is an outline of a procedure that constructs the α^{\prime} sequence label $\left(P_{k}\right), 1 \leq k \leq q$, called α_{k}^{\prime} as opposed to α_{k} in [13], which can be used to form the P_{k} of G : Choose subsets $V_{k} \subseteq V(1 \leq k \leq q)$ of V whose union is V and order the elements in each V_{k}, giving $V_{k}=\left\{v_{1}^{k}, v_{2}^{k}, \ldots, v_{m_{k}}^{k}\right\}, 1 \leq k \leq q$. Given a V_{k}, obtain α_{k}^{\prime} as: $\alpha_{k}^{\prime}=D / \lambda\left(v_{1}^{k}, D\right) T_{1}^{k}$ $D / \lambda\left(v_{2}^{k}, D\right) T_{2}^{k} \ldots D / \lambda\left(v_{m_{k}}^{k}, D\right) T_{m_{k}}^{k} D / \lambda\left(v_{w}^{k^{\prime}}, D\right) T_{w}^{k^{\prime}}$ where $T_{j}^{k}=\left(I_{j}^{k} / O_{j}^{k}\right)$ is a (possibly empty) transfer sequence from $\delta\left(v_{j}^{k}, D\right)$ to v_{j+1}^{k} for $1 \leq j \leq m_{k}, v_{m_{k}+1}^{k}=v_{w}^{k^{\prime}}$, and $v_{w}^{k^{\prime}}$ is contained in any $V_{k^{\prime}}, 1 \leq k^{\prime} \leq q$ and $1 \leq w \leq m_{k^{\prime}}$. This definition differs from that, for α_{k}, in [13] in one important way: unlike α_{k}, the final section of an α_{k}^{\prime} need not be contained in this α_{k}^{\prime} but could be contained in any $\alpha_{k^{\prime}}^{\prime}$. Thus, every α_{k} is an α_{k}^{\prime} but the converse is not true.

Using the definition of α_{k}^{\prime}, the set of labels $\alpha_{1}^{\prime}, \ldots, \alpha_{q}^{\prime}$ of paths P_{1}, \ldots, P_{q}, called an $\alpha^{\prime}-$ set, can be formed. From the definition of α_{k}^{\prime}, it follows that, given an α_{k}^{\prime},
a) $v_{j}^{k}, 1 \leq j \leq m_{k}$, is d-recognized in α_{k}^{\prime},
b) $\delta\left(v_{j}^{k}, D I_{j}^{k}\right), 1 \leq j \leq m_{k}$, is d-recognized in α_{k}^{\prime}, and
c) tail $\left(P_{k}\right)$ is recognized in some $\alpha_{k^{\prime}}^{\prime}, 1 \leq k^{\prime} \leq q$.

Example 1

Consider the α-set and α^{\prime}-set for FSM M_{0}, in Fig. 2, where $D=a b a$ and empty transfer sequences are used in forming every α_{k} and α_{k}^{\prime}. The α-set for M_{0} is $\left\{\alpha_{1}, \alpha_{2}\right\}$ where α_{1}, the label of $P_{1}=\left(s_{5}, s_{4} ; \alpha_{1}\right)$, is $D / \lambda\left(s_{5}, D\right) D / \lambda\left(s_{2}, D\right) D / \lambda\left(s_{4}, D\right) D / \lambda\left(s_{1}, D\right) D / \lambda\left(s_{2}, D\right)$ and α_{2}, the label of $P_{2}=\left(s_{3}, s_{2} ; \alpha_{2}\right)$, is $D / \lambda\left(s_{3}, D\right) D / \lambda\left(s_{1}, D\right) D / \lambda\left(s_{2}, D\right) D / \lambda\left(s_{4}, D\right) D / \lambda\left(s_{1}, D\right)$. The α^{\prime}-set for M_{0} is

Fig. 2: FSM M_{0} represented by $G=(V, E)$
$\left\{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right\}$ where α_{1}^{\prime}, the label of $P_{1}^{\prime}=\left(s_{5}, s_{4} ; \alpha_{1}^{\prime}\right)$, is $D / \lambda\left(s_{5}, D\right) D / \lambda\left(s_{2}, D\right) D / \lambda\left(s_{4}, D\right) D / \lambda\left(s_{1}, D\right)$ $D / \lambda\left(s_{2}, D\right)$ and α_{2}^{\prime}, the label of $P_{2}^{\prime}=\left(s_{3}, s_{2} ; \alpha_{2}^{\prime}\right)$, is $D / \lambda\left(s_{3}, D\right) D / \lambda\left(s_{1}, D\right)$. It is observed that the final section of α_{2}^{\prime} (the application of D at s_{1}) is contained in α_{1}^{\prime} but not α_{2}^{\prime}. Thus α_{2}^{\prime} is not an α-sequence and the α-set contains 7 instances of D while the α-set contains 10 instances of D. As we shall show later, the difference between α_{k}^{\prime} and α_{k} may have a significant impact on the length of a checking sequence.

Modification 2

The second modification is in the formation of the elements of the subset E_{C} of E^{\prime} and stems from the following two observations. Since $\operatorname{label}\left(P_{k}\right), 1 \leq k \leq q$, starts with the application of D, the head of P_{k} is recognized and since label $\left(R_{i}\right)=T_{i}, 1 \leq i \leq p$, starts with the application of D, the head of R_{i} is recognized. Thus, an α_{k}^{\prime} or T_{i} can be used to verify the end state of a transition in forming a test segment for that transition. These properties of α_{k} or T_{i} were not utilized in [13] and their use will also contribute to the reduction in the length of the checking sequence.

These two modifications give rise to the following changes in the definition of $G^{\prime}=\left(V^{\prime}, E\right)$:
(1) replace all occurrences of α_{k} by α_{k}^{\prime}
(2) replace E_{C} in [13] by $E_{C}=\left\{\left(v_{i}^{\prime}, v_{j} ; x / y\right):\left(v_{i}, v_{j} ; x / y\right) \in E\right\}$
(3) eliminate E and E_{ε}
(1) ensures that α_{k}^{\prime} is used rather than α_{k}; (2) stands for the test segments for all edges of G since each edge in E_{C} terminates at a vertex in V and is to be followed by an edge leaving a vertex in V whose label is either an α_{k}^{\prime} or T_{i}; and (3) eliminates a precautionary measure in the previous definition of $G^{\prime}=\left(V^{\prime}, E\right)$ in [13] to provide connectivity that is now guaranteed without these edge sets. Since these changes do not alter the semantics of the definition of $G^{\prime}=\left(V^{\prime}, E\right)$, a path P^{\prime} of G^{\prime} that contains all edges in $E_{\alpha} \cup E_{C}$ is an RPP of G^{\prime} over $E_{\alpha} \cup E_{C}$. It is proven in [13] that this path is in fact a path P of G and for each edge of G, P of G satisfies the conditions 1) and 2).

Thus, it follows that the label Q of P is a checking sequence of M that starts at v_{1}.

Example 2

Consider now the problem of generating a checking sequence for FSM M_{0} in Fig. 2 using the algorithm from [13], the α-set $\left\{\alpha_{1}, \alpha_{2}\right\}$ given earlier, and the test segments in Table 1.

Table 1 Edges of E_{C}

$(x D) / \lambda\left(v_{i}, x D\right)=L_{i j k}$	$\left(v_{i}^{\prime}, v_{k}^{\prime} ; L_{i j k}\right)$
$(a D) /(x x y y)=L_{124}$	$\left(v_{1}^{\prime}, v_{4}^{\prime} ; L_{124}\right)$
$(b D) /(y x y x)=L_{112}$	$\left(v_{1}^{\prime}, v_{2}^{\prime} ; L_{112}\right)$
$(a D) /(x y y x)=L_{252}$	$\left(v_{2}^{\prime}{ }_{2} v_{2}^{\prime} ; L_{252}\right)$
$(b D) /(y x y x)=L_{212}$	$\left(v_{2}^{\prime}, v_{2}^{\prime} ; L_{212}\right)$
$(a D) /(y x x y)=L_{341}$	$\left(v_{3}^{\prime}, v_{1}^{\prime} ; L_{341}\right)$
$(b D) /(x y y x)=L_{352}$	$\left(v^{\prime}{ }_{3}^{\prime}, v_{2}^{\prime} ; L_{352}\right)$
$(a D) /(x x x y)=L_{441}$	$\left(v_{4}^{\prime}{ }_{4}, v_{4}^{\prime} ; L_{441}\right)$
$(b D) /(x y y x)=L_{452}$	$\left(v_{4}^{\prime}, v_{2}^{\prime} ; L_{452}\right)$
$(a D) /(y x y x)=L_{512}$	$\left(v^{\prime}{ }_{5}, v_{2}^{\prime} ; L_{512}\right)$
$(b D) /(y y x y)=L_{531}$	$\left(v_{5}^{\prime}, v_{1}^{\prime} ; L_{531}\right)$

In Table 1 a label of the form $L_{i j r}$ represents a test segment, that ends at s_{r}, for a transition from s_{i} to s_{j}. This leads to the digraph shown in Fig. 3, in which the edges from E and E_{ε} (which are used for connectivity) are not shown and dashed lines are used for the edges that are not in $E_{\alpha} \cup E_{C}$.

Fig. 3: $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with α-sequences
Here E_{α} is $\left\{\left(v_{5}, v_{4}^{\prime} ; \alpha_{1}\right),\left(v_{3}, v_{2}^{\prime} ; \alpha_{2}\right)\right\}$ and E_{T} is $\left\{\left(v_{1}, v_{2}^{\prime} ; T_{1}\right),\left(v_{2}, v_{4}^{\prime} ; T_{2}\right),\left(v_{3}, v_{1}^{\prime} ; T_{3}\right),\left(v_{4}, v_{1}^{\prime} ; T_{4}\right)\right.$, $\left.\left(v_{5}, v_{2}^{\prime} ; T_{5}\right)\right\}$. The minimal symmetric augmentation, of the edge set $E_{\alpha} \cup E_{C}$ of G^{\prime}, is now produced: this is the smallest symmetric digraph $G^{\prime \prime}$ that can be formed from $E_{\alpha} \cup E_{C}$ by adding edges from G^{\prime}. Digraph $G^{\prime \prime}$ is shown in Fig. 4. Since $G^{\prime \prime}$, with its isolated vertices removed, is
connected an Euler tour P of $G^{\prime \prime}$ exists and the label of P forms a checking sequence [13].

Fig. 4: $G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ with α-sequences
This leads to the checking sequence, of length 92 , represented by the following:
$L_{112}, L_{212}, L_{252}, T_{2}, L_{441}, L_{124}, b / x, L_{531}, a / x, a / x, \alpha_{1}, b / x, L_{512}, a / x, b / y, \alpha_{2}, T_{2}, L_{452}, T_{2}, b / x, b / y$, $L_{352}, T_{2}, b / x, b / y, L_{341}$

Consider now the use of the α^{\prime}-set $\left\{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right\}$ and the modification proposed in this paper. The digraph G^{\prime} is shown in Fig. 5, in which all the edges except the edges in $E_{\alpha} \cup E_{C}$ are represented by dashed-lines. Here the set E_{α} is $\left\{\left(v_{5}, v_{4}^{\prime} ; \alpha_{1}^{\prime}\right),\left(v_{3}, v_{2}^{\prime} ; \alpha_{2}^{\prime}\right)\right\}$ and E_{T} is as above.

Fig. 5: $G^{\prime}=\left(V^{\prime}, E\right)$ with α^{\prime}-sequences

Note that, as mentioned earlier, each edge from V represents an α_{k}^{\prime} or T_{i} and thus a sequence that recognizes its initial node. It follows that the inclusion, in a tour, of an edge e from E_{C} leads to the inclusion of a test segment for e. Thus a tour that includes every edge in E_{C} must include a test segment for every transition. The minimal symmetric augmentation of the edge set $E_{\alpha} \cup E_{C}$, formed by adding edges from G^{\prime}, is $G^{\prime \prime}$ which is shown in Fig. 6. $G^{\prime \prime}$ is connected and thus has an Euler tour which leads to the following checking sequence, of length 61, and thus to a reduction of one third in the checking sequence length:
$b / y, D / \lambda\left(s_{1}, D\right), b / y, D / \lambda\left(s_{1}, D\right), a / x, \alpha_{1}^{\prime}, a / x, D / \lambda\left(s_{4}, D\right), a / x, D / \lambda\left(s_{2}, D\right), b / x, D / \lambda\left(s_{5}, D\right), a / x, b / y, \alpha_{2}^{\prime}$, $a / x, a / y, D / \lambda\left(s_{1}, D\right), a / x, b / y, b / x, D / \lambda\left(s_{5}, D\right), a / x, b / y, a / y, D / \lambda\left(s_{4}, D\right)$

Fig. 6: $G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ with α^{\prime}-sequences

3.3 Comparison Between Two Approaches

First we note that the method proposed in this paper and that given in [13] involve solving the RCPP for digraphs of the same order. They thus have the same algorithmic complexity. Then, we compare the relative lengths of the sequences that are constructed by the two methods. For this, we will first consider an infinite class of FSMs and focus on our claim that: α^{\prime}-sets yield shorter sequences than α-sets. It will transpire that the elements of this class have α^{\prime}-sets that are significantly smaller than the corresponding α-sets. This shows that the proposed improvements are significant for a range of FSMs. After this analytical comparison, we will give the results of an empirical study performed on the lengths of sequences that corroborates the analytical comparison.

The α-set and α^{\prime}-set produced for an FSM M are defined by the digraph $G^{T}=\left(V, E^{T}\right)$ in which $E^{T}=\left\{\operatorname{head}\left(R_{i}\right), \operatorname{tail}\left(R_{i}\right) ; T_{i}\right\}$: each α-sequence and α^{\prime}-sequence is formed from a path in G^{T}. Given G^{T}, derived from an FSM with n states, there is always an α^{\prime}-set formed from no more than $2 n$ edges of G^{T}. We will now consider a class of such digraphs, with $n=2 m$, for which any α-set is significantly larger than this. Given m, consider $G_{m}^{T}=\left(V_{m}, E_{m}^{T}\right)$ where $V_{m}=\left\{v_{1}, \ldots, v_{2 m}\right\}$; for all $i, 1 \leq i \leq m$, there is an edge in E_{m}^{T} from v_{i} to $v_{i+1} \bmod m$; and for all $i, m<i \leq 2 m$, there is an edge in E_{m}^{T} from v_{i} to an element of $\left\{v_{1}, \ldots, v_{m}\right\}$. This is illustrated in Fig. 7. It is straightforward to show that each G_{m}^{T} may arise from a real FSM.

Fig. 7: The digraph G_{m}^{T}
Consider a minimal α-set that may be produced from G_{m}^{T}. Each $v_{j} \in\left\{v_{m+1}, \ldots, v_{2 m}\right\}$ leads to the inclusion of the α-sequence: an initial edge to some v_{i}, the cycle back to v_{i}, and one further edge. Thus the α-set contains m sequences, each comprising of $m+2$ edges from G_{m}^{T}, and so $O\left(m^{2}\right)=O\left(n^{2}\right)$ edges from G_{m}^{T}. As noted above, there are α^{\prime}-sets formed from $O(n)$ edges of G_{m}^{T}. Here such an α^{\prime}-set may be formed in the following way. Create one α^{\prime}-sequence α_{1}^{\prime} in the form of an edge from v_{m+1} to some v_{i}, then the cycle followed by one further edge. For each vertex $v_{j} \in\left\{v_{m+2}, \ldots, v_{2 m}\right\}$ there is a further α^{\prime}-sequence generated from the path of length 2 from v_{j}, since the second edge is contained in α_{1}^{\prime}. Thus, if each edge from G_{m}^{T} has cost at most $c(c \geq|D|)$ then an α-set generated from G_{m}^{T} must have size of $O\left(c n^{2}\right)$ while there is an α^{\prime}-set with size $O(c n)$. Further, the costs of the test segments is of $O(c|X| n)$ and thus this difference, in the sizes of the α-set and α^{\prime}-set, is significant and grows more significant as the number of states increases. This class of examples also shows that in general α-sets have size $O\left(c n^{2}\right)$ while α^{\prime}-sets have size $O(c n)$. Moreover, since every α-set is an α^{\prime}-set, any checking sequence allowed by the method of [13] is allowed by the method proposed in this paper, that is reduction in the lengths of checking sequences achieved by the method of [13] occurs over a larger set of checking sequences when our modifications are applied.

In order to further investigate the differences in sizes of α^{\prime}-sets and α-sets, 10 digraphs representing G^{T} were randomly generated for each FSM in the set of: FSMs with 10 states; FSMs
with 20 states; FSMs with 30 states; and FSMs with 50 states. In each case the number of edges used from G^{T} was recorded. The results, which are summarized in Table 2, suggest that α^{\prime}-sets are significantly smaller than α-sets and that this difference increases as the number of states increases. This observation is consistent with the analytical comparison given above.

Table 2 Mean sizes of randomly generated sets

n	Mean size of α-set	Mean size of α^{\prime}-set	Saving
10	20.7	14.4	30%
20	54.8	28.4	48%
30	98.3	41.7	58%
50	214.5	69.4	68%

4 CONCLUSIONS

This paper has introduced a method, for generating checking sequences, that enhances that given in [13] in two ways. Firstly, the notion of α-sequences has been generalized to α^{\prime}-sequences. Essentially, an α-sequence α_{k} must end in a section from within its own body while an α^{\prime} sequence α_{k}^{\prime} can end in a section from within the body of some other α^{\prime}-sequence $\alpha_{k^{\prime}}^{\prime}$. Thus, while every α-sequence is an α^{\prime}-sequence, the converse is not the case. The use of α^{\prime}-sequences, as opposed to α-sequences, allows two main advantages: α^{\prime}-sequences may be shorter than α sequences; and using α^{\prime}-sequences increases the set of checking sequences over which optimization occurs.

The second improvement upon [13] is based upon the observation that an α^{\prime}-sequence may be used to check the final state of a transition. This property is utilized, in the generation of checking sequences, to allow overlap between the α-sequences and the test segments. This further contributes to a reduction in the length of the checking sequence.

The method given in this paper might be further enhanced in two ways. Firstly, the connecting transitions might be chosen from the set of transitions of the given FSM M during optimization, rather than being drawn from a cycle-free subset (E^{\prime}) found prior to optimization. This may be achieved by including a copy of each transition and relying upon properties of the optimization algorithm, that starts with the production of a minimal symmetric augmentation, that guarantee that the set chosen is cycle free. Secondly, prefixes of the distinguishing sequence may be used to recognize states.

ACKNOWLEDGEMENTS

This work is supported in part by the Natural Sciences and Engineering Research Council of Canada under grant OGP0000976. The authors wish to thank the anonymous referees for their comments and suggestions.

REFERENCES

[1] A.V. Aho, A.T. Dahbura, D. Lee, and M.U. Uyar, "An optimization technique for protocol conformance test sequence generation based on UIO sequences and rural Chinese postman tours", IEEE Trans. on Communications, vol. 39, pp.1604-1615, 1991.
[2] F. Belina and D. Hogrefe, "The CCITT-Specification and Description Language SDL", Computer Networks and ISDN Systems , vol. 16, pp. 311-341, 1989.
[3] S. Budkowski and P. Dembinski, "An introduction to ESTELLE: A specification language for distributed systems", Computer Networks and ISDN Systems, vol. 14, pp. 3-23, 1987.
[4] A.T. Dahbura, K.K. Sabnani, and M.U. Uyar, "Formal methods for generating protocol conformance test sequences", Proceedings of the IEEE, vol. 78, pp. 1317-1325, 1990.
[5] A. Gill, Intro. to the Theory of Finite-State Machines, New York: McGraw-Hill, 1962.
[6] G. Gonenc, "A method for the design of fault detection experiments", IEEE Trans. on Computers, vol. 19, pp. 551-558, 1970.
[7] D. Harel, "Statecharts: A visual formalism for complex systems", Science of Computer Programming, vol. 8, pp.231-274, 1987.
[8] F.C. Hennie, "Fault detecting experiments for sequential circuits", Proc. Fifth Ann. Symp. Switching Circuit Theory and Logical Design, pp. 95-110, Princeton, N.J., 1964.
[9] D. Lee and M. Yannakakis, "Testing finite state machines: state identification and verification", IEEE Trans. on Computers, vol. 43, pp. 306-320, 1994.
[10] D. Lee and M. Yannakakis, "Principles and methods of testing FSMs: a survey", Proceedings of the IEEE, vol. 84, pp. 1089-1123, 1996.
[11] I. Pomeranz and S. M. Reddy, "Test generation for multiple state-table faults in finite-state machines", IEEE Trans. on Computers, vol. 46, pp. 783-794, 1997.
[12] D.P. Sidhu and T.K. Leung, "Formal methods for protocol testing: a detailed study", IEEE Trans. on Software Engineering, vol. 15, pp. 413-426, 1989.
[13] H. Ural, X. Wu, and F. Zhang, "On minimizing the lengths of checking sequences", IEEE Trans. on Computers, vol. 46, pp. 93-99, 1997.
[14] M. Yannakakis and D. Lee, "Testing finite state machines: fault detection", Journal of Computer and System Sciences, vol. 50, pp. 209-227, 1995.

