
Checking States and Transitions of a set of

Communicating Finite State Machines

Rob M� Hierons Brunel University

June ��� ����

Abstract

Given a model M � consisting of communicating �nite state machines
�CFSMs�� that represents the required behaviour of an implementation I�
it is important to test I against M � This paper considers part of the test�
ing process� checking the transition structure of I against that of M � One
possible approach� to checking the transition structure of I� is to generate
the product machine from M and then test the global transitions using
standard �nite state machine test techniques� This approach may� how�
ever� su	er from a combinatorial explosion� Instead� this paper introduces
approaches that may allow local states and transitions of I to be checked
without the generation of the product machine� The paper then considers
the extension of these approaches to the checking of global states�
Keywords� communicating �nite state machines� state checking� testing�
constrained identi�cation sequences

� Introduction

Testing is an important� but expensive� part of the software development pro�
cess� However� the presence of a formal model or speci�cation� that de�nes
the required behaviour of a system� introduces the possibility of automating or
semi�automating much of the testing process� This can lead to more e�ective
and e�cient testing�

There are a number of approaches to formally modelling� or specifying� a
system� One approach represents a system as a �nite set of logical states�
possibly with an internal memory� Operations are modelled as actions� called
transitions� that receive input� produce output� may change the logical state
and may change the internal memory� Where there is no internal memory� and
the actions are simply input�output pairs� this is a �nite state machine �FSM��
Where there is an internal memory the model is an extended �nite state machine
�EFSM��

FSMs and EFSMs have proved e�ective in modeling a variety of systems
and forms of EFSMs have been proposed as the basis of a general software
development process 	
���
��� Since the structure of an EFSM may be repre�
sented by an FSM� FSM based test methods are often used to test the control
structure of an implementation under test 	IUT� modelled as an EFSM� There
has thus been much interest in the automatic generation of tests from FSMs
	
�� ��� �� �� �� ��� �� ����

�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Many systems may be more naturally and simply modelled by a set of FSMs�
rather than a single FSM� that operate concurrently and may interact by ex�
changing messages� The FSMs� that may communicate� are often given input
queues and are called communicating �nite state machines �CFSMs�� Two CF�
SMs interact by one machine producing an output that is placed in the input
queue of the other� CFSMs have been used to describe the control structure
of speci�cations written in languages such as Statecharts and SDL 	
��
����
CFSMs are thus relevant to a number of �elds including embedded systems
	
��� ��� �� and communications protocols 	
��� ����

Under certain conditions a model consisting of CFSMs M�� � � � �Mn can be
converted into an equivalent 	single� FSM called the product machine� The
product machine shall be described in Section �� Tests can be generated from the
product machine using standard FSM test techniques 	
���� Suppose ni denotes
the number of states of Mi� Then the number of states of the product machine
is of O	�ini� and thus this approach may su�er from a combinatorial explosion�
This paper explores approaches that avoids this combinatorial explosion�

When a modelM � comprising of CFSMs� receives an input this input triggers
a sequence of local transitions within the individual CFSMs� forming a global
transition inM � The number of global transitions is exponential in terms of the
number of CFSMs while the number of local transitions is simply the sum of the
number of transitions of the CFSMs� However� each global transition consists
of a number of local transitions and� if the local transitions are correct� the
global transitions are also correct� Thus� where feasible� it makes sense to test
the local transitions� rather than the individual global transitions� While there
are generally far fewer local transitions that global transitions� faults in local
transitions may be masked� Section � considers the problem of generating a set
of tests� for a local transition� that limits the opportunity for fault masking�
Given a local transition t� this involves testing a 	polynomial� number of global
transitions that contain t�

In order to test a global transition t it is necessary to follow t by further
transitions that check the �nal state of t� This paper introduces a new approach
to checking the state of a set of CFSMs� This approach is based on checking each
local state separately using sequences with associated constraints� A constraint
de�nes when a sequence may be used to check a state� The approach� of using
sequences with constraints� will be described in Section ��

The paper then focuses upon one particular type of constrained state iden�
ti�cation sequence� called a constrained identi�cation sequence �CIS�� Section �
shall show that CISs may be used to check the global state of a set of CFSMs�
Section � then considers sequencing CISs in order to reduce test e�ort� Finally�
in Section �� conclusions are drawn�

� Preliminaries

��� Finite state machines

A 	deterministic� �nite state machine 	FSM � M is de�ned by a tuple 	S� s�� ��
��X� Y � in which S is a �nite set of states� s� � S is the initial state� � is the
state transfer function� � is the output function� X is the �nite input alphabet�
and Y is the �nite output alphabet� If M receives input x while in state s it

�

produces output y � �	s� x� and moves to state s� � �	s� x�� This de�nes a
transition 	s� s�� x�y�� The functions � and � can be extended� to take input
sequences� to give �� and �� respectively�

The FSM M is completely speci�ed if � and � are total� Given an FSM M
that is not completely speci�ed it is possible to complete M by either adding
an error state or assuming that� where the response to an input is not given�
this input leads to no change in state and null output�

FSM M has reset capacity if there is some input r � X whose associated
transitions all go to s�� �s � S��	s� r� � s�� Often there is some reset operation�
called a reliable reset� that is known to have been implemented correctly� This
allows test sequences to be separated by resets and sometimes is simply imple�
mented through the system being switched o� and then on again� Throughout
this paper it shall be assumed than any implementation considered has a reliable
reset operation�

An FSMM is initially connected if every state ofM can be reached from the
initial state of M � If M is not initially connected the unreachable states may
be removed� M is strongly connected if� for every ordered pair of states 	si� sj�
fromM � there is some input sequence that takes M from si to sj� Clearly if M
is initially connected and has a reset operation then M is strongly connected�
It will be assumed that any FSM 	or CFSM� considered is strongly connected�

An input value x distinguishes states si and sj if ��	si� x� �� ��	sj � x�� Two
states si and sj are said to be distinguishable if there is some input value that
distinguishes them� This shall be denoted si �� sj � If si and sj are not distin�
guishable they are said to be equivalent and this is denoted si � sj � Two FSMs
are equivalent if their initial states are equivalent� M � M � shall represent M
and M � being equivalent and otherwise M ��M ��

An FSM M is minimal if there is no FSM M � that is equivalent to M and
has fewer states that M � It is known that M is minimal if and only if it is
initially connected and every pair of states from M is distinguishable� There
are algorithms that take an FSM and return an equivalent minimal FSM 	
���
and thus only minimal FSMs will be considered� For more on FSMs see� for
example�
���

Many approaches� that generate tests from an FSM� produce tests for indi�
vidual transitions� There are two types of faults for a transition� output faults�
in which the wrong output is produced� and state transfer faults in which the
state after the transition is wrong� In order to detect state transfer faults it is
necessary to follow a transition by further input values that check the state after
the transition� One common approach to state checking is the use of a unique
input�output sequence �UIO�� Suppose input sequence u	s� leads to output o
when executed from state s of M � Then u	s��o is a UIO for state s of M if� for
every state s�� if s� �� s then u	s� distinguishes between s and s��

��� Communicating �nite state machines

While many systems may be modelled as FSMs� it is sometimes more natural
and e�cient to model a system as a set of entities� each of which behaves like
an FSM� that may interact� These entities are called communicating �nite state
machines and essentially each is an FSM with an input queue� Since this paper
is concerned with the testing of the transition structure only� a CFSM will be

�

de�ned in the same way as an FSM� the queues will not be explicitly mentioned
in the de�nition�

Throughout this paper M shall be a model de�ned by CFSMs M�� � � � �Mn�
Here Mi denotes a CFSM 	Si� si�� �i� �i� Xi� Yi�� with an implicit input queue�
in which Si � fsi�� si�� � � � � simi

g� The transitions of a CFSM Mi shall be called
local transitions� IfM receives a value a� from either the environment or another
CFSM� contained in the input alphabet of Mi but no other CFSM� a enters the
input queue of Mi� If a is contained in the input alphabet of more than one
Mi� this value non�deterministically enters the input queue of exactly one Mi

with a � Xi� Since one CFSM can receive input from another� it is possible
for the output from a local transition to trigger a local transition in some other
machine� It is worth noting that� if a message is passed between two CFSMs�
this message is not observed by the environment� A CFSM cannot output a
value from its input alphabet and thus �� � i � n�Xi � Yi � ��

Some input values may be hidden from the environment� they can only be
received from CFSMs within M � Let H � 	iXi denote the set of hidden input
values for M � Then M � which is M� j � � � jMn with H hidden� shall be written
	M� j � � � jMn�nH�

This paper shall only consider deterministic systems� Thus each Mi is deter�
ministic and the input alphabets of the Mi are disjoint� A CFSM is minimal if
the corresponding FSM is minimal� It shall be assumed that eachMi is minimal
and completely speci�ed and that M is deadlock and livelock free�

At any moment M is in a global state� which is de�ned by the states of the
Mi and the contents of the queues� In this paper � shall denote the set of
global states of M � A global state is stable if all of the queues are empty and
otherwise it is unstable� The state of an individual CFSM Mi shall be called a
local state� In testing the transition structure it is normally su�cient to test in
stable states�

The input of some value a toM � whileM is in stable global state � � �� will
lead to a sequence of local transitions being executed� The �nal local transition
will output some value x to the environment and leave M in stable global state
��� Then 	�� ��� a�x� is a global transition of M �

Consider� for example� the CFSMs N�� N� and N� shown in Figure �� This
collection of CFSMs shall be denoted M� throughout the paper and M� � N� j
N� j N�� Suppose each CFSM is in its initial state and has empty input queue�
Then if M� receives input f � f enters the input queue of N�� This triggers a
local transition� in N�� that outputs a and moves N� to state s��� The value a
is in the input alphabet of N� and thus enters its input queue� N� reacts to the
value a by executing a local transition that moves N� to state s�� and outputs
the value x� As x is not in the input domain of any of the CFSMs it is sent to
the environment as output� Thus the input of a triggered the global transition
		s��� s��� s���� 	s��� s��� s���� a�x��

Throughout this paper a local transition shall be called an internal transi�
tion if its output is contained within some Xj and otherwise it shall be called
an external transition� In
� internal transitions are called communicating tran�
sitions and external transitions are called non�communicating transitions� The
next section shall further discuss the role of the input queues and de�ne the
product machine�

�

11

13

21

22 23

31

32 33

12
a/y

a/x

b/e

b/ya/cb/x

d/f

d/y

c/x

c/x

c/y

d/x

f/x

f/a

e/y

f/y

e/c

e/d

s s

s

s s

s

s s

s

Machine Machine

Machine

N N

N

2

3

 1

Figure �� The model M�

�

� The Product Machine

The existence of unbounded queues may lead toM having an in�nite number of
states� M will� however� have a �nite number of stable states� SinceM is livelock
and deadlock free� when only stable states are considered M is equivalent to an
FSM called the product machine�

Under some conditions� input values will only be received in stable states and
thus the full behaviour of M is equivalent to the product machine 	
���� Even
where there are queues� it is normally possible to test the transition structure
of a system while only inputting values in stable states� Naturally� where there
are queues in the IUT this testing should be supplemented by further tests that
check the queues� This paper deals with the problem of generating tests for the
transition structure and thus shall only consider testing transitions from stable
states�

Let P 	M � denote the product machine generated fromM � X and Y denote
the input and output alphabets of M � and �s � S�
 � � �
 Sn denote the set
of stable global states� Clearly some elements of �s may be unreachable� Then
X �

S
iXi n H and Y �

S
i Yi n

S
iXi� The input and output alphabets of

P 	M � are X and Y respectively and its state set is �rs� the set of reachable
states from �s� The initial state of P 	M � is sP

�
� 	s��� s��� � � � � sn���

The next state and output functions� � and �� of P 	M � shall now be de�ned�
These give the behaviour exhibited when M receives an input value when in a
stable state� These functions de�ne the transitions of the product machine and
thus P 	M � is de�ned by 	�rs� s

P
�
� X� Y� �� ���

A tuple p � 	p�� � � � � pm� 	�� � i � m�pi � D for set D� may be seen as a
function from f�� � � � �mg to D and thus� if � � k � m� p	k� denotes pk� Let �
denote functional overwriting� Thus p � fi � p�ig is p with its ith component
changed to p�i� Given x � Xk and stable global state � � �s� next state and
output functions � and � for the product machine are de�ned by the following�

If �k	�	k�� x� ��
S
iXi

�	�� x� � � � fk� �k	�	k�� x�g

�	�� x� � �k	�	k�� x�

If �k	�	k�� x� �
S
iXi

�	�� x� � �	� � fk� �k	�	k�� x�g� �k	�	k�� x��

�	�� x� � �	� � fk� �k	�	k�� x�g� �k	�	k�� x��

The �rst case de�nes the behaviour when the input triggers an external tran�
sition and thus the output of the local transition forms the output of the global
transition� The second case de�nes the behaviour when an internal transition t
is triggered� this is simply the behaviour produced if t is executed and then the
output from t is fed back into M as input� Since M is livelock and deadlock
free� � and � are total functions� Since these functions are de�ned for hidden
values it is necessary to restrict their input domains to �rs
 	

S
i
Xi nH��

It is worth noting that it is possible to determine the action of � and � on
certain values without stating the complete behaviour associated with � and
�� This is important since generating � and � is equivalent to generating the

�

product machine� Later � and � shall be used to de�ne Sequences for checking
local and global states but it shall not be necessary to produce the full behavior
of � and ��

� Testing Global and Local Transitions

This section shall consider the problem of testing the transitions of M � The
section will start by discussing the problem of testing global transitions and
shall then consider the problem of testing local transitions�

Given a stable global state �� a global transition 	�� ��� x�y� of M may be
tested in the same way as a transition from an FSM� The test starts with a
sequence that moves M to state �� then x is input and �nally sequences that
check state �� are executed� While the problem of generating an input sequence
to reach some global state is non�trivial� there are a number of conditions under
which it has been solved 	
���� The problems� of �nding input sequences to
reach global or local states� and of determining which local and global states
are reachable� are outside the scope of this paper� Sections � and � shall describe
approaches that may be used to check the global state of a set of CFSMs�

Instead of testing the global transitions the tester might check the individual
local transitions� This approach has the advantage that there are O	

Pn

i�� jXijmi�
local transitions but O	jXj

Qn

i��mi� global transitions� Thus� by testing local
transitions it may be possible to avoid the combinatorial explosion associated
with the generation of the global transitions� Testing a local transition does�
however� raise new issues�

Suppose the problem is to test some local transition t � 	s� s�� a�x� fromMi�
Whenever local transition t is tested it forms part of some global transition�
although this global transition might just contain t� If t is tested as part of
a global transition T � the test can only check the output and �nal state of T �
not of t� While the output and �nal state of T might provide some information
about t� a fault in t might be masked by the local transitions that follow it� A
fault in t� that is masked when it forms part of T � might lead to faulty behaviour
if executed� by the user� as part of a di�erent global transition�

Fault masking� and an approach that limits the opportunity for fault mask�
ing� shall now be described in further detail�

��� Fault Masking

This section shall describe ways in which faults may be masked� showing that
both output and state transition faults may be masked� The following section
shall describe an approach that limits the opportunity for fault masking�

Consider the local transition t � 	s��� s��� a�x� from the CFSM N� inM� and
the output fault that makes the transition become 	s��� s��� a�d�� Suppose also
that t is to be tested by entering a when M� is in the initial state 	s��� s��� s����
Then rather than produce output x� the fault leads to t producing output d�
The value d is not observed directly by the environment� instead it is passed to
N�� The value d triggers the local transition 	s��� s��� d�x� in N� and the value
x is sent to the environment� Thus the output is x and the �nal state of this
global transition is 	s��� s��� s��� as expected� Thus� it is not possible to detect
this fault by executing t from the initial global state�

�

The output fault described above was masked by a loop� a local transition
with the same initial and �nal states� Another way of masking an output fault
is through the existence of parallel transitions� two local transitions with the
same initial and �nal states� Parallel transitions with the same output maymask
output faults� Suppose� for example� that in the con�guration used to test some
local transition t� t is expected to trigger a local transition t� � 	sp� sq� x�y�
that is parallel to some other local transition t�� � 	sp� sq � x

��y�� If t produces
erroneous output x� it triggers t�� rather than t� but this leads to the expected
output and �nal global state� This test fails to detect the output fault in t�
Naturally� loops and parallel transitions are not the only ways of masking output
faults�

State transfer faults may also be masked� though to mask a state transfer
fault in some local transition t ofMi it is necessary forM to be in a global state
that leads to one or more further transitions being executed in Mi� A local
transition t fromMi feedbacks in a global transition T if T contains at least one
local transition from Mi after t� If the execution of t as part of T feedbacks an
incorrect �nal state for t might be masked by further local transitions in Mi�

��� Avoiding fault masking

While both output faults and state transfer faults in a local transition may be
masked� faults in global transitions are not masked� However� there will often
be many more global transitions than local transitions and thus a fault in a local
transition may appear in many global transitions� Interestingly� this observation
is consistent with empirical evidence that suggests that most faults are observed
from many global states 	
����

When testing local transition t it is su�cient to �nd a set of global transitions
that contain t and that� when used in testing� allow any fault in t to be detected�
Once such a set has been found� these can be tested� It is worth noting that
there may be some changes to t that are not capable of a�ecting any global
transition and thus do not introduce a fault� Clearly testing need not� and
indeed cannot� detect such changes�

When testing a local transition t� it shall be assumed that all other transi�
tions executed are correct� It is thus assumed that faults in other local transi�
tions cannot mask a fault in t� While it might be argued that� in practice� it is
unlikely that multiple faults will mask one another� there will be cases where this
assumption is not acceptable� It would thus be interesting to develop alternative
strategies that guarantee the detection of combinations of faults�

Suppose t � 	s� s�� a�x� is a local transition from Mi� Let F 	t� denote the
set of alternative versions of t� versions that have an output fault� a state
transfer fault or both� Thus F 	t� � f	s� s��� a�y�js�� � Siy � Yi 	s� s��� a�y� ��
	s� s�� a�x�g� Further let FNE	t� denote the largest subset of F 	t� such that if t
is replaced by any element t� of FNE	t� in M to get M
t��t then M
t��t ��M �
Thus� FNE	t� is the set of mutants of t that lead to a change in the behaviour
of M and thus lead to a fault in M � Clearly jFNE	t�j � jSijjYij � ��

It is possible to consider the e�ect of replacing t by some mutant t� � FNE	t�
in a global transition T � 	�� ��� ��	� that contains t� Suppose the input of � in
global state � of M
t��t leads to �nal state ��� and output 	�� Then T kills t��
by distinguishing M and M
t��t� if and only if either �� �� ��� or 	 �� 	�� This

�

shall be denoted kills	T� t��� Then it is su�cient to test some set T � of global
transitions� that satisfy the following property�

�t� � FNE	t���T � T �kills	T� t��

Such a set of global transitions might be produced by a breadth��rst search
through global transitions that contain t� The search starts with t� if this forms
a global transition� The search then considers global transitions that contain �
local transitions 	either t followed by another local transition or t preceded by
another local transition�� At each step the number of local transitions contained
in global transitions considered increases by � until a su�cient set is found� It
is worth noting that jFNE	t�j is polynomial in terms of the size of the Mi and
the number of local transitions is also polynomial in terms of the size of the Mi�
This contrasts with the number of global transitions which may be exponential
in terms of the size of the Mi�

In general� there may be no e�cient way of deciding whether M
t��t ��M �
In such cases it may not be practical to generate FNE	t� and instead F 	t�
might be used� the search terminating either when all mutants are killed or
when some pragmatic limit 	on the number of local transitions contained in a
global transition� has been reached�

Consider now the local transition t� � 	s��� s��� a�x� of N�� Then the input
of a� when M� is in its initial state� will detect a fault in t� unless the fault is an
output fault giving output d� To detect a fault consisting of the output fault d
it is su�cient to input a in state 	s��� s��� s���� Thus� these two tests� combined
with approaches that check the �nal state of each test� su�ce to check the local
transition t��

� Checking local states

This section shall consider the problem of checking the state of a CFSM Mi�
withinM � without generating the product machine� Since a global state consists
of a number of local states� it seems natural to use techniques developed for
checking local states to check global states� The problem of checking a global
state shall be considered in Sections � and ��

It is possible to extend the notion of a UIO for a single FSM to an input
sequence u	s� � X� that is capable of checking the local state s of Mi within
M � Then u	s� is a local state identifying sequence �LSIS� for local state s of Mi

if the following holds�

f��	�� u	s��j�	i� � sg � f��	�� u	s��j�	i� �� sg � ��

LSISs are simply called UIOs in
�� While the presence of LSISs simpli�es
the problem of state checking� it is likely that many CFSMs will not have LSISs
for each state� This section shall consider a number of alternatives�

Suppose s is a local state of Mi� Then for a global state �� with �	i� � s�
there may exist some input sequence u that distinguishes � from all other global
states in which only the local state of Mi di�ers� These are the global states of
the form � � fi � s�g for s� � Si n fsg� Then if the state of each Mj �� Mi is
known to be consistent with �� u might be used to check the state of Mi� If u is
used to check the local state ofMi it depends upon the states of the other CFSMs

�

being those in � and thus u has associated with it the constraint that takes a
global state �� and returns true if and only if �� � j � n�i �� j � �	j� � ��	j��

In general� there may be an input sequence u that is capable of checking
local state s of Mi for some set of states of the other Mj � This set of states
de�nes a constraint c� If input sequence u has constraint c then u may be used
whenever the global state satis�es c�

Consider the example� M�� given in Figure �� The only transition that has
input a and output y is 	s��� s��� a�y�� This suggests the use of a to check local
state s��� If� however� N� is in state s�� then� in response to a� it outputs c
which triggers a local transition in N�� This local transition� in N�� outputs y
if and only if the state of N� is s��� Thus� a checks that N� is in state s�� if and
only if N� is not in state s���

The following de�nes the notion of a constrained identi�cation sequence
�CIS��

De�nition � The tuple 	u� c�� in which u � X� and c is a constraint on the
global states of M � is a constrained identi�cation sequence for state s of Mi if
and only if f��	�� u�jc	�� �	i� � sg � f��	�� u�jc	�� �	i� �� sg � ��

A set Us is said to be a complete set of CISs for local state s of Mi if� for
every global state � with �	i� � s� there is some 	u� c� � Us such that � satis�es
c� Let U denote a mapping that takes a local state s and returns a set of CISs
U 	s�� If every local state of M has a known complete set of CISs given by U
then U gives a complete set of CISs�

There need not be a complete set of CISs� Instead� it is possible to weaken
this notion to allow the use of a set of sequences for state checking� The following
de�nes the notion of a constrained state identi�cation set �CSIS��

De�nition � The tuple 	w� c�� in which w � fw�� � � � � wkg� wi � X�� and c
is a constraint on the global state of M � is a constrained state identi�cation
set for state s of Mi if and only if f	��	��w��� � � � � ��	��wk��jc	�� �	i� �
sg � f	��	��w��� � � � � ��	��wk��jc	�� �	i� �� sg � ��

This paper shall concentrate on the use of CISs� It is possible to see the
existence of a 	prede�ned� relatively small set of CISs as a design for test con�
dition�

The following result� which states that where there is a complete set of LSISs
these provide a complete set of CISs� follows immediately from the de�nitions�

Lemma � Suppose M has an LSIS for each local state� Then this set of LSISs
forms a complete set of CISs for M �

The use of CISs thus generalizes the notion of an LSIS� The use of CISs may
also reduce the test e�ort where CISs are shorter than LSISs� The potential for
reducing test e�ort can be seen in M�� s�� has a LSIS aa but� when the state
of M� is s��� a will su�ce�

Every state of M� has a complete set of CISs� Such a set� with constraints�
is given in Figure � in which � denotes the global state� In this case the output�
corresponding to a CIS� is unique and so this is given�

While it is not the focus of this paper� it is worth brie�y considering the
problem of generating CISs� As noted earlier� the existence of a set of prede�ned
CISs might be seen as a design for test condition�

��

State in�out Constraint
s�� a�x �	�� � s��
s�� a�x� a�y

s�� a�y �	�� �� s��
s�� a�y� b�x

s�� b�x �	�� � s�� � 	�	�� � s�� �	�� � s��� � 	�	�� � s�� �	�� � s���
s�� a�x� a�x �	�� � s��
s�� a�y� a�x �	�� �� s��
s�� c�x� d�y

s�� c�x� d�x
s�� c�y

s�� e�y �	�� � s��
s�� f�x� f�x �	�� � s�� � 	�	�� � s�� �	�� �� s���
s�� f�y� f�x �	�� � s�� � 	�	�� � s�� �	�� � s���
s�� f�x �	�� � s�� � 	�	�� � s�� �	�� � s���
s�� f�x� f�y

s�� f�y �	�� � s�� � 	�	�� � s�� �	�� �� s���
s�� f�y� f�y �	�� � s�� � 	�	�� � s�� �	�� � s���

Figure �� CISs for M�

For each local state a breadth �rst search through the set of input sequences
might be applied� For each sequence considered� a corresponding constraint is
developed� This continues until a set of sequences� whose constraints cover all
possibilities� has been found�

In order to follow such a search� given an input sequence� it is necessary to
produce a constraint for this input sequence� The generation of the weakest
constraint may not be feasible since this may e�ectively require the exploration
of signi�cant sections of the product machine� Instead� it is possible to apply
some heuristic that leads to a relatively simple� conservative� constraint� Heuris�
tics might� for example� be based on limiting the complexity of the constraint
or on limiting the number of internal transitions that may be considered when
deriving the constraint�

Consider� for example� the local state s�� of N�� Then the input of a leads
to the output of x� This distinguishes s�� from any global state in which N�

is in state s��� If� however� N� were in state s��� the input of a would lead to
an internal transition and thus the output depends upon the state of the other
CFSMs� This internal transition triggers an external transition in N� and leads
to output other than x if N� is in state s��� Thus a forms the input of a CIS
for local state s�� and this CIS has constraint �	�� � s�� 	where � is the global
state��

Suppose now that input b is considered� This is expected to produce output y
and� again� is capable of triggering an internal transition� in this case producing
output e� The value e is received by N� and either outputs y 	if in state s���
or triggers another internal transition� Thus� input b does not su�ce if N� is in
state s��� If N� is in state s�� the input of e leads to c being sent to N�� This
leads to output x� and thus su�ces� if N� is not in state s��� If N� is in state

��

s��� the input of e leads to d being sent to N� and this then leads to output
x 	possibly after another transition in N� being triggered� if N� is not in state
s��� Thus� b has constraint �	�� � s�� �	�� �� s�� � �	�� � s�� �	�� �� s���

Once aa is considered� it is straightforward to con�rm that this always suf�
�ces and thus has constraint true� Thus the sequences a� b and aa su�ce�
Where simple constraints are considered to be desirable� just a and aa might
be used�

� Checking global states using CISs

The notion of a CIS� which may be used to check a local state� has been in�
troduced� The problem now is to use CISs to check global states� It shall be
assumed that the tester wishes to check that the global state� after some test
sequence
 � is � � 	s�� � � � � sn�� Naturally� the approach outlined in this and the
following section may be applied when checking some part of the global state�

One natural approach is to choose a CIS for each local state and� for each
of these� separately execute
 followed by the CIS� However� a set of CISs
U� � f	u�� c��� � � � � 	un� cn�g� that is consistent with �� might not be su�cient�
Suppose that there is some CIS 	ui� ci� that mentions the state of Mj � If the
state of Mj is not that expected� ui need not be able to check the state of Mi�
There might be a number of such dependencies and� potentially� circularities in
the set of dependencies� This happens if� for example� ui depends on the state
of Mj being from some subset of Sj and uj depends on the state of Mi being
from some subset of Si� Here the process used for checking the correctness of
the state ofMi assumes that the state ofMj is correct but in checking the state
of Mj it is assumed that the state of Mi is correct� Thus� these CISs may not
detect both states being incorrect� This situation� in which there is a cycle of
dependencies� shall be called dependency circularity�

The dependencies in U may be represented by a directed graph GD �
	VD� ED� in which the vertex set VD is fd�� � � � � dng and each di represents
the corresponding Mi� Then there is an edge from di to dj if and only if the
state of Mj is mentioned in the constraint ci� This directed graph GD shall be
called the dependency digraph� Then there is dependency circularity if and only
if the dependency digraph contains one or more cycles�

Where a constraint ci is not simply a conjunction of atomic predicates it
is possible to generate more than one dependency digraph� Then ci might be
rewritten to disjunctive normal form 	DNF� and each conjunct� formed by this
process� considered separately� Suppose� for example� that rewriting ci to DNF
gives c�i � � � � � cpii � Then it is su�cient for one conjunct cji � such that cji 	��
evaluates to true� to lead to a dependency digraph that is cycle free� Clearly�
it is not necessary to distinguish between two conjuncts that mention the same
machines�

The problem of choosing an appropriate set of CISs is thus that of �nding a
set U � f	u�� c��� � � � � 	un� cn�g� 	ui� ci� � U 	si�� in which

�� �� � i � n�ci	���

�� there is a corresponding cycle free dependency digraph�

Consider� for example� the global state �� � 	s��� s��� s��� of M�� Here it is
possible to use a to check state s��� c to check s�� and ff to check s��� The

��

d d

d
1

2 3

Figure �� A dependency digraph

dependency digraph G�

D includes an edge from d� to d� since the constraint for
the CIS used for s�� mentions the state of N�� The constraint of the CIS used
for s�� is not in DNF but the conjunct satis�ed is �	�� � s��� Thus G�

D� which
is shown in Figure �� contains an edge from d� to d�� Clearly G�

D is cycle free
and thus these CISs su�ce�

Suppose a set U� � f	u�� c��� � � � � 	un� cn�g of CISs� with cycle free depen�
dency digraph� has been found for the �nal state of
 � It is possible to check
the �nal state of
 by following it by each of the ui� separating these tests by
resets� Thus� for example� in order to check that the �nal states of c�x� d�y is
	s��� s��� s��� it is su�cient to use the test sequences�

� c�x� d�y� a�x

� c�x� d�y� c�y

� c�x� d�y� f�x� f�x�

In some cases it may be possible to sequence a number of the ui before a
reset� reducing the number of times
 must be executed and thus the cost of
testing� This will be discussed in the next section�

� Sequencing CISs

Suppose CIS set U� � f	u�� c�� �� � � � � 	un� cn�g is to be used for checking the
�nal state of
 � which is expected to be �� The test e�ort may sometimes be
reduced by following
 by a sequence composed of either all of the ui or some
subset of this� This reduces the number of times
 is executed during testing�

The edges of the dependency digraph impose an ordering on the CISs� if
there is an edge from di to dj then ui depends upon the state of Mj and thus�
if these CISs are being sequenced� ui should be applied before uj 	since uj will
change the state of Mj�� The rest of this section shall consider other properties
required of the set of CISs used and ways in which an appropriate set of CISs
may be chosen�

A CIS can impose a further ordering� if the state of Mi is a�ected by the
transitions included in uj then� if they are to be sequenced� ui must be applied

��

before uj� The ordering imposed by the CISs can be represented by a directed
graph GO � 	VO � EO� called the order digraph� Then VO � fo�� � � � � ong� in
which oi represents ui� There is an edge from oi to oj in EO if and only if one
or more of the following hold�

�� ui depends on the state of Mj 	and thus there is a corresponding edge in
the dependency digraph��

�� the input of uj is expected to trigger one or more local transitions of Mi�

Suppose the order digraph contains an edge from oi to oj � Then� if the CISs
are to be sequenced� oi should precede oj � The order digraph may contain one
or more cycles� in which case the full set of CISs should not be sequenced� This
type of situation� in which there is no valid order of execution for the full set of
CISs� shall be called order circularity� Where the order digraph is cycle free it
de�nes the allowed orders� of the CISs� in the natural way�

As before� where a constraint can be rewritten as a disjunction of constraints�
these may be considered separately� This leads to a set of order digraphs and
it is su�cient for one of these to be cycle free�

Consider� again� the global state �� � 	s��� s��� s��� of M� and the CISs a
for s��� c for s�� and ff for s��� Since none of these CISs a�ects another CFSM
in M�� the order digraph is the same as the dependency digraph� Thus� the
CISs should be sequenced in the order� ff then a and �nally c� Thus� in order
to check the �nal state of c�x� d�y it is su�cient to execute the test sequence
cdffac 	with expected output xyxxxy��

The problem of producing a set of CISs� that may be sequenced� becomes
one of �nding a set of CISs� one for each Mi 	� � i � n�� that is consistent with
the state � and has a cycle free order digraph�

Where the order digraph contains one or more cycles it may still be possible
to sequence some of the CISs� Suppose J is a subset of f�� � � � � ng and UJ �
fuiji � Jg� Then the CISs in UJ may be sequenced if the ordering between these
contains no cycles� This is the case if GO contains no cycle whose vertices all
have indices drawn from J � To be more precise� the CISs in UJ may be sequenced
if and only if the directed graph 	V�� fe � 	oi� oj�je � EO oi � J oj � Jg�
is cycle free� Thus� given an order digraph that contains one or more cycles� it
is su�cient to partition the set of CISs in a manner that leads to a set of cycle
free digraphs�

Suppose� for example� that there are four CFSMs M�� � � �M�� CISs with
input sequences u�� � � � � u� have been chosen and the order digraph is that shown
in Figure �� Since this order digraph contains a cycle these CISs cannot be
sequenced� However� there are a number of ways in which two sequences of
CISs may be used� Possible pairs of sequences include� for example� 	u�u�� u�u���
	u�u�u�� u�� and 	u�u�� u�u���

A further re�nement would be to allow the input values from the CISs to
be interleaved� While this may sometimes help� it complicates the problem of
�nding a valid set of CISs� This paper shall not consider interleaving these
inputs�

��

o o

oo

1 2

34

Figure �� An order digraph

��� Finding sets of CISs that may be sequenced

Suppose the tester wishes to sequence CISs where possible� Then� given a global
state � to check� the problem might be� �nd the minimal length u�� � � � � un�
	uj� cj� � U 	sj�� such that � satis�es each constraint and the order digraph is
cycle free� Alternatively� if the sequence
 � whose �nal state is being checked�
is known then the total cost may be found� If some CISs may be sequenced� to
form m sequences� the test length for
 	including resets� is

nX

i��

juij�m	j
 j� ��

The problem then is� �nd a set of CISs� and a way of sequencing these�
in order to minimize this cost� Where there are few alternative CISs for each
local state� this optimization problem may be quite small� Once this problem
has been solved� the order digraph and partition de�ne the allowed orders of
application�

Where an exhaustive search is infeasible� heuristics may be applied� One
possibility is to apply a greedy algorithm� starting with the lowest cost CIS�
At each stage the CIS that leads to the minimum extra cost is chosen� and the
corresponding edges added�

An alternative is to apply some meta�heuristic� such as Tabu search or a
Genetic Algorithm� In order to apply such search techniques it is necessary to
de�ne an objective function that says how good a candidate solution is� This
objective function might just be the cost function given above�

� Conclusions

When testing� against a model consisting of communicating �nite state ma�
chines� it is normal to test individual transitions� It has been shown that�
rather than test the global transitions� it is possible to check the local transi�
tions� This may signi�cantly reduce the test e�ort� Faults in local transitions
may� however� be masked� An approach� that limits the opportunity for fault
masking� has been given�

��

When testing a transition it is necessary to check the global state after the
transition� While it is possible to use the product machine as the basis for
test generation� the process of generating a product machine may su�er from
a combinatorial explosion� An alternative approach� of using constrained state
identi�cation sets� has been introduced� This approach checks local states� the
process of checking a global state being seen as that of checking each individual
local state� A special type of state identi�cation set� the constrained identi�ca�
tion sequence 	CIS�� has been considered in further detail�

When checking that the �nal global state� after input sequence
 � is � it is
necessary to �nd a set of CISs whose constraints are consistent with �� The
constraints may� however� de�ne certain dependencies between the CISs and the
set of CISs might generate a circuit of dependencies� The dependency digraph
has been de�ned and the problem of �nding an appropriate set of CISs has
been represented as that of �nding a consistent set of CISs with a circuit free
dependency digraph�

It is sometimes possible� when checking the �nal global state after input
sequence
 � to follow
 by a sequence composed of CISs� Each CIS may impose
an ordering on the CISs� The order digraph has been de�ned and the problem of
�nding an appropriate sequence of CISs has been represented as that of �nding
a set of CISs� that are consistent with �� with circuit free order digraph� Where
there are cycles in the order digraph� it is possible to partition the set of CISs
in a manner that leads to a number of cycle free order digraphs� The CISs in
each set of the partition may then be sequenced�

References

� A� V� Aho� A� T� Dahbura� D� Lee� and M� U� Uyar� An optimization tech�
nique for protocol conformance test generation based on UIO sequences and
Rural Chinese Postman Tours� In Protocol Speci�cation� Testing� and Ver�
i�cation VIII� pages ������ Atlantic City� ����� Elsevier 	North�Holland��

� J� Grabowski� R� Scheurer� D� Toggweiler� and D� Hogrefe� Dealing with
the complexity of state space exploration algorithms for SDL systems� Uni�
versity of Bern Technical Report� IAM�������� �����

� M� P� E� Heimdahl� J� M� Thompson� and B� J� Czerny� Speci�cation and
analysis of intercomponent communication� IEEE Computer� ���������
�����

� R� M� Hierons� Extending test sequence overlap by invertibility� The Com�
puter Journal� ����������� �����

� R� M� Hierons� Testing from a �nite state machine� Extending invertibility
to sequences� The Computer Journal� ����������� �����

� R� M� Hierons� Testing from semi�independent communicating �nite state
machines with a slow environment� IEE Proceedings on Software Engineer�
ing� ������������ �����

� R� M� Hierons� Adaptive testing of a deterministic implementation against
a nondetermistic �nite state machine� The Computer Journal� �����������
�����

��

� K� Inan and H� Ural� E�cient checking sequences for testing �nite state
machines� Information and Software Technology� ����������� �����

� F� Ipate and M� Holcombe� An integration testing method that is proved
to �nd all faults� International Journal of Computer Mathematics� �������
���� �����

�� ITU�T� Z�	

 Framework on formal methods in conformance testing� In�
ternational Telecommunications Union� �����

�� Z� Kohavi� Switching and Finite State Automata Theory� McGraw�Hill�
New York� �����

�� G� Luo� A� Das� and G� von Bochmann� Generating tests for control portion
of SDL speci�cations� In Protocol Test Systems VI� pages ������ Elsevier
	North�Holland�� �����

�� G� Luo� G� von Bochmann� and A� Petrenko� Test selection based on com�
municating nondeterministic �nite�state machines using a generalized Wp�
method� IEEE Transactions on Software Engineering� ����������� �����

�� E� P� Moore� Gedanken�Experiments� In C� Shannon and J� McCarthy�
editors� Automata Studies� Princeton University Press� �����

�� K� Ozdemir and H� Ural� Protocol validation by simultaneous reachability
analysis� Computer Communications� ����������� �����

�� M� Romdhani� P� Chambert� A� Je�roy� P� de Chazelles� and A� A� Jer�
raya� Composing activity charts�statecharts� SDL and SAO speci�cations
in codesign in avionics� In European design automation conference with
EUOR�VDHL ��	� pages �������� Brighton� England� September �����

�� T� Savor and R� E� Seviora� Towards automatic detection of software fail�
ures� IEEE Computer� ��������� �����

�� K��C� Tai and Y��C� Young� Synchronizable test sequences of �nite state
machines� Computer Networks and ISDN Systems� ������������� �����

�� A� S� Tanenbaum� Computer Networks� Prentice Hall� � edition� �����

�� C� Tropper and A� Boukerche� Parallel simulation of communicating ��
nite state machines� In The ��� workshop on Parallel and Distributed
Simulation� pages �������� San Diego� CA� USA� May �����

�� C� H� West� Protocol validation in complex systems� In ACM SIGCOMM�
pages �������� �����

�� B� Yang and H� Ural� Protocol conformance test generation using multiple
UIO sequences with overlapping� In ACM SIGCOMM �
� Communica�
tions� Architectures� and Protocols� pages �������� Twente� The Nether�
lands� September ����� �����

�� I� Zucconi and K� Reed� Building testable software� Software Engineering
Notes� ��������� �����

��

