
Separating Sequence Overlap for Automated Test Sequence

Generation

R. M. Hierons, Brunel University, UK

Abstract

Finite state machines have been used to model a number of classes of system and there has thus been much

interest in the automatic generation of test sequences from finite state machines. Many finite state machine based

test techniques utilize sequences that check the final states of transitions, the most general such sequence being a

separating sequence: an input sequence that distinguishes between two states of an FSM. When using such techniques

the test sequence length can be reduced by utilizing overlap. This paper investigates overlap for separating sequences

and shows how this can be incorporated into test sequence generation.

Keywords: Test sequence generation, finite state machine, separating sequence, characterizing set, overlap.

1 Introduction

The existence of a formal model or specification of the required behaviour of an implementation under test

(IUT) introduces the possibility of automating or semi-automating parts of the testing process. This can lead to

more effective and efficient testing and thus, potentially, to the development of cheaper and more reliable software.

A finite state machine (FSM) can be used to model or specify the required behaviour of a state-based sys-

tem (see, for example, [Broekman and Notenboom, 2003, Pomeranz and Reddy, 1997]). If an implementation I

has been produced in the presence of an FSM M that describes the required behaviour of I, it is important to

verify I against M . Testing usually forms part of this verification. Several specification languages extend the

FSM formalism, by adding data to states and actions, to form extended finite state machines (EFSMs). Ex-

amples include SDL, ESTELLE, stream X-machines and Statecharts. FSM based test techniques can often be

applied where there is a specification in such a language [Duale and Uyar, 2004, Petrenko et al., 2004]. A num-

ber of authors have also noted that FSM based techniques can assist when testing against a Z specification

[Derrick and Boiten, 1999, Dick and Faivre, 1993, Hierons, 1992] and that such techniques can be used in model-

based testing [Farchi et al., 2002, Grieskamp et al., 2002].

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

When testing against an FSM M , it is common to utilize sequences that distinguish between the states of M

and there are three main approaches to this: using a distinguishing sequence (see, for example, [Hennie, 1964,

Hierons and Ural, 2002, Ural et al., 1997]); unique input/output sequences (see, for example [Aho et al., 1988,

Shen et al., 1990]); or a characterizing set (see, for example, [Chow, 1978, Sidhu and Leung, 1989]). An input

sequence is a distinguishing sequence for M if it leads to a different output sequence from each state of M . An

input/output sequence x̄/ȳ is a unique input/output sequence (UIO) for state s of M if M produces ȳ in response

to x̄ from state s but from no other state of M . Thus, a distinguishing sequence is capable of verifying any state of

M and a UIO for state s is capable of verifying state s. Naturally, if a distinguishing sequence exists for an FSM

M then it defines a UIO for every state of M . There are FSMs that have states that do not have UIOs. For such

an FSM, in order to verify a state s it may be necessary to use several sequences that, between them, distinguish s

from every other state of M . These sequences are called separating sequences. A set of separating sequences that

distinguishes all of the states of M is called a characterizing set. These notions are defined formally in Section 2.

Many FSM based test criteria are expressed in terms of developing a set T of individual test subsequences

for the transitions of FSM M and then generating a transition sequence that contains these test subsequences.

The test sequence is then formed by extracting the input sequence from this transition sequence. Thus, test

sequence generation can be seen as a process in which we connect test subsequences in an optimal manner. The

overall test sequence length can be reduced by allowing the test subsequences to overlap. A number of authors

have studied the problem of utilizing overlap when UIOs are used for state checking [Hierons, 1996, Hierons, 1997,

Miller and Paul, 1993, Yang and Ural, 1990, Zhang and Probert, 2005] and when a distinguishing sequence is used

[Ural and Zhu, 1993]. This paper generalizes overlap to the case where a characterizing set is used for state checking

and thus when separating sequences are used. This is important since an FSM might not have either a distinguishing

sequence or a UIO for every state but every (minimal) FSM has a characterizing set.

This paper makes the following contributions. The primary contribution is that it formalizes the notion of overlap

between separating sequences. It then shows how this overlap can be introduced into test sequence generation

algorithms. Finally, we prove that these algorithms produce shorter test sequences that test every transition than

the previous corresponding algorithms: the test sequence produced by the proposed algorithm cannot be longer

than the test sequence produced by the previous algorithms and can be shorter.

This paper is structured as follows. Section 2 provides an introduction to FSMs and FSM based testing. Section

3 explores overlap between separating sequences. Sections 4 and 5 give test sequence generation algorithms and

these are evaluated in Section 6. Finally, conclusions are drawn in Section 7.

2 Finite State Machines and Directed Graphs

A (deterministic and completely specified) finite state machine M is defined by a tuple (S, s0, δ, λ,X, Y) in

which S is a finite set of states, s0 is the initial state, δ is the state transfer function, λ is the output function, X

is the finite input alphabet, and Y is the finite output alphabet. If M receives input x when in state s it produces

2

a/p

a/pa/p

a/r

b/p

b/r

b/q

b/q

s0 s1

s2s3

Figure 1. The FSM M0

output y = λ(s, x) and moves to state s′ = δ(s, x). This defines a transition t = (s, s′, x/y) with starting state

s and ending state s′. The functions δ and λ can be extended to take input sequences giving functions of types

S × X∗ → S and S × X∗ → Y ∗ respectively. Let t = (s, s′, x/y) be a transition of M and let x̄ and x̄′ be input

sequences. Then in x̄′ we follow the transition t by the input sequence x̄ if there exists input sequences x̄1 and

x̄2 with δ(s0, x̄1) = s and x̄′ = x̄1xx̄x̄2. Only deterministic and completely specified FSMs are considered in this

paper. For more on FSMs see, for example, [Gill, 1962, Kohavi, 1978]. An FSM, called M0 throughout the paper,

is shown in Figure 1. Here, for example, δ(s1, a) = s2 and λ(s1, a) = p and thus M0 contains the transition

(s1, s2, a/p). Further, δ(s1, aa) = s1 and λ(s1, aa) = pp.

A sequence τ̄ = t1, . . . , tk, ti = (si, si+1, xi/yi) for 1 ≤ i ≤ k, of consecutive transitions of M is called a transition

sequence. The state s1 = head(τ̄) is the starting state of τ̄ while sk+1 = tail(τ̄) is the ending state of τ̄ . The

input/output sequence x1/y1 . . . xk/yk of transition sequence τ̄ is called the label of τ̄ and is denoted label(τ̄).

The transition sequence τ̄ can also be represented by the tuple (s1, sk+1, x1/y1, . . . , xk/yk). Given input/output

sequence z̄ = x1/y1, . . . , xk/yk, x̄ = In(z̄) = x1, . . . , xk is the input portion of z̄ and ȳ = Out(z̄) = y1, . . . , yk is the

output portion of z̄. In a slight abuse of notation, z̄ can be represented as x̄/ȳ.

When testing from an FSM we apply an input sequence, called a test sequence, to the IUT and compare the

resultant output sequence with that expected. If the observed input/output sequence is not the label of a transition

sequence from M that starts at s0 then a failure has been observed.

Two states s and s′ of M are equivalent if for every input sequence x̄, λ(s, x̄) = λ(s′, x̄). If λ(s, x̄) �= λ(s′, x̄)

then x̄ is said to be a separating sequence. Two FSMs are equivalent if their initial states are equivalent. An FSM

M is minimal if no equivalent FSM has fewer states. Given an FSM M it is possible to generate an equivalent

minimal FSM M ′ [Moore, 1956] and there are algorithms for transforming an FSM with n states and p inputs into

such a minimal FSM in O(pn log n)[Hopcroft, 1971]. Thus only minimal FSMs are considered in this paper.

A reset operation is an input reset ∈ X with the property that for every state s of M we have that δ(s, reset) =

3

s0. Some test sequence generation methods assume that there is a reliable reset operation: a reset operation that

is known to be correctly implemented. While many systems have a reset operation, the tester cannot always rely

upon the correctness of such an operation. The test sequence generation algorithms introduced in Sections 4 and

5 do not rely on the presence of a reset operation.

A directed graph (digraph) G is defined by a set V of vertices and a set E of directed edges between the vertices.

Each edge can be given a label and an edge e from vertex v to vertex v′ with label l is represented by (v, v′, l).

A walk from digraph G = (V,E) is a sequence of consecutive edges from E. A walk e1, . . . , ek, ei = (vi, vi+1, li)

(1 ≤ i < k) is a path if the vertices v1, . . . , vk are distinct. Walk e1, . . . , ek, ei = (vi, vi+1, li) (1 ≤ i < k) is a tour

if v1 = vk+1 and then ej , . . . , ek, e1, . . . , ej−1 represents starting e1, . . . , ek at vertex vj .

An FSM can be represented by a digraph in which the vertices represent states and the edges, labelled with the

input/output pairs, represent transitions. A digraph is strongly connected if for each ordered pair of vertices (v, v′)

with v �= v′ there is a path from v to v′.

An FSM is strongly connected if the digraph that represents it is strongly connected. An FSM M is initially

connected if every state s of M can be reached from the initial state of M : for all s ∈ S there exists some input

sequence x̄ such that δ(s0, x̄) = s. Since M is minimal it must be initially connected. If M is initially connected

and has a reset operation then M is strongly connected. It is worth noting that an FSM can be strongly connected

without having a reset operation. In this paper we assume that M is strongly connected.

Many test sequence generation techniques use sequences that distinguish the states of the specification M in order

to verify the states of the IUT. Normally one of the following is used to verify a state of M : a distinguishing sequence

(DS); a unique input/output sequence (UIO); or a characterizing set (see, for example, [Sidhu and Leung, 1989]).

An input sequence x̄ is a distinguishing sequence if each state of M leads to a different output sequence in response

to x̄: for all s, s′ in S with s �= s′ we have that λ(s, x̄) �= λ(s′, x̄). Thus, in order to check the final state of a

transition t of M using distinguishing sequence x̄ it is sufficient to follow t by x̄.

A UIO for a state s is an input/output sequence x̄/ȳ with the property that it distinguishes s from every other

state of M . Thus, x̄/ȳ is a UIO for state s of M if and only if ȳ = λ(s, x̄) and for all s′ ∈ S \ {s} we have that

λ(s, x̄) �= λ(s′, x̄). A UIO for a state s of M can verify that the state of M is s, but need not be able to verify any

other state of M . In order to check the final state s′ of a transition t of M it is sufficient to follow t by the input

portion of the UIO for s′.

Some FSMs do not have either a DS or a UIO for every state. Further, there is no polynomial upper bound on

the length of the shortest DS or UIO and the problems of deciding whether an FSM has a DS or a UIO for state

s are PSPACE complete [Lee and Yannakakis, 1994]. Where the FSM does not have a known DS or a complete

set of UIOs it is normal to use a characterizing set W = {w̄1, . . . , w̄m}: a set of input sequences with the property

that for every pair of states s, s′ of M , if s �= s′ then there is some w̄i ∈ W such that λ(s, w̄i) �= λ(s′, w̄i). Thus,

the set of output sequences produced by executing each w̄i ∈ W from state s of M verifies s. Every minimal FSM

with n states has a characterizing set that contains at most n− 1 sequences each of length at most n− 1 and this

set can be produced in O(n2) time (see, for example, [Kohavi, 1978]).

4

Input State s0 State s1 State s2 State s3

b q q r p

ab pq pr pq rr

Table 1. The output from the w̄i

Now consider the FSM M0. It is possible to observe that s0 does not have a UIO, since any input sequence

beginning with a cannot distinguish between s0 and s2 and any input sequence beginning with b cannot distinguish

between s0 and s1. Thus, M0 does not have a distinguishing sequence. However, M0 has characterizing set

W = {w̄1, w̄2} for w̄1 = b and w̄2 = ab.

In order to verify a state si of M it is possible to use a set Wi of prefixes of sequences from W with the

property that for every state sj �= si of M , some element of Wi distinguishes si from sj [Fujiwara et al., 1991]. By

considering Table 1 we see that the following sets can be used for M0: W0 = {b, ab}, W1 = {ab}, W2 = {b}, and

W3 = {b}.

2.1 Test sequence generation

Given FSM M , let Φk
M denote the set of FSMs with the same input and output alphabets as M and no more

than k states. When testing from an FSM M it is normal to assume that the IUT behaves like an unknown FSM

MI ∈ Φk
M for some predetermined k. Most techniques for generating test sequences from an FSM M fall into one

of two classes.

1. They produce a checking experiment : a set of test sequences that, between them, are guaranteed to determine

correctness as long as the IUT behaves like some element of Φk
M .

2. They produce a set T of transition sequences, called test subsequences, that check the transitions of M and

then form a walk ρ̄ of M that contains each element of T . The test sequence is produced by taking the input

portion of the label of ρ̄.

Where feasible it is desirable to produce a checking experiment. Approaches that do not rely on the use of

a reliable reset and generate a checking sequence based on a characterizing set produce test sequence lengths

that are at least exponential in the number of states of M [Rezaki and Ural, 1995]. Where k = n and there is

a reliable reset operation a checking experiment with polynomial length can be produced using the W-method

[Chow, 1978] or the Wp-method [Fujiwara et al., 1991]. However, the test sequence length is still greater than that

produced by algorithms that devise a single test sequence that checks the transitions of M . Further, the use of

resets can increase the cost of testing and reduce its effectiveness [Hierons, 2004, Yao et al., 1993]. Thus, there are

a range of problems for which it is not feasible to produce a checking experiment. Interestingly, the experience

of [Motteler et al., 1994] and [Sidhu and Leung, 1989] suggests that sequences that include a test subsequence for

every transition but are not checking sequences are usually effective at finding faults.

5

The second class of test sequence generation algorithm identifies a set T of test subsequences and produces a

walk ρ̄ of M , that starts at s0 such that each element of T is a subsequence of ρ̄. Once such a walk ρ̄ has been

found, we test with the input portion of the label of ρ̄. This is captured by the following notion of a walk covering

a test subsequence from T : we insist that each element of T is covered by the final walk.

Definition 1 A walk ρ̄ covers a sequence τ̄ of transitions from M if and only if τ̄ is a subsequence of ρ̄.

Suppose that we are using a characterizing set W = {w̄1, . . . , w̄m} in test sequence generation. Given a transi-

tion t = (s, s′, x/y), the input/output sequences xw̄1/yλ(s′, w̄1), . . . , xw̄m/yλ(s′, w̄m) could form the labels of the

corresponding test subsequences from s. In this case T = {(s, δ(s, xw̄j), xw̄j/λ(s, xw̄j))|s ∈ S, x ∈ X, δ(s, x) = sj}.
Where each state has a UIO and the UIO for state si is denoted x̄i/ȳi, if s′ = sj then usually only xx̄j/yȳj is used

for t.

Given a set T of test subsequences for M , if M is strongly connected then it is possible to produce one walk that

covers each element of T and extract the corresponding test sequence. The problem of finding a short walk that

contains each element of T can be described by representing M by a digraph G = (V,E) and then adding a set

Et of edges that represent the elements of T . Suppose that for each state si of M , si is represented by the vertex

vi ∈ V . Given a transition subsequence τ̄ from T with starting state si and ending state sj , in Et we represent τ̄

by an edge with starting vertex vi and ending vertex vj . The optimisation problem can then be seen as that of

finding the shortest tour of Gt = (V,E ∪ Et) that contains every edge from Et. Given the tour produced by this,

the test sequence is the corresponding input sequence. This is an instance of the Rural Chinese Postman Problem

(RCPP) [Aho et al., 1988]. While the RCPP is NP-complete Aho et al. [Aho et al., 1988] use a polynomial time

algorithm that is optimal under certain well defined conditions. This algorithm has time complexity of O(qn log n)

[Aho et al., 1988] for an FSM with n states and q transitions. Where it is suboptimal, a set of tours is produced

and these can be connected.

2.2 Previous work on test sequence generation and overlap

It has been noted that the test subsequences in T need not be disjoint: they may overlap [Aho et al., 1988].

Yang and Ural [Yang and Ural, 1990] introduced a heuristic to utilize this overlap where UIOs are used. They

note that where test subsequences overlap several of them can be combined to form a single sequence, called a

fully overlapped transition sequence (FOTS), that utilizes overlap. A set of FOTS is generated and then combined

optimally. However, there may be a number of alternative ways of devising the FOTS and the choice made in test

sequence generation might be suboptimal. A similar approach has been applied using distinguishing sequences

[Ural and Zhu, 1993].

Miller and Paul [Miller and Paul, 1993] represent overlap, when using UIOs, in terms of non-convergent tran-

sitions and Hierons [Hierons, 1992, Hierons, 1996] represents overlap by using invertible transitions. A transition

(s, s′, x/y) is invertible if it is the only transition with input x and output y that enters state s′. Invertible transi-

tions preserve state information: if the final state of an invertible transition has been checked then the initial state

6

has also been checked. Thus if t = (s, s′, x/y) is an invertible transition and x̄/ȳ is a UIO for s′, then xx̄/yȳ is a

UIO for s. Based on this, it is possible to reduce the number of UIOs required in testing and thus the total test

sequence length. This approach effectively includes the process of choosing the FOTS within test optimization.

Invertibility can be extended to invertible sequences [Hierons, 1997].

Where there is more than one known UIO for each state it is possible to produce a shorter test sequence even if

overlap is not used [Shen et al., 1990]. The optimisation algorithm chooses an appropriate UIO for each transition

and may use different UIOs for two transitions that end at the same state. The approaches of Miller and Paul

[Miller and Paul, 1993] and Hierons [Hierons, 1992, Hierons, 1996] take advantage of the fact that there may be

many alternative UIOs for a state: in effect they generate additional UIOs.

Previous approaches to utilizing overlap assume that UIOs or a distinguishing sequence are being used for state

checking. However, an FSM need not have a distinguishing sequence or a UIO for each state. Since every minimal

FSM has a characterizing set, this paper generalizes the approaches of Miller and Paul [Miller and Paul, 1993] and

Hierons [Hierons, 1992, Hierons, 1996] to the case where a characterizing set is being used.

3 Separating Sequences and Overlap

In this section we formalize overlap when using separating sequences. While every minimal FSM has a charac-

terizing set, this set is not unique. Throughout this section we assume that a characterizing set W = {w̄1, . . . , w̄m}
of M has been chosen. We now define terminology that underlies the analysis of overlap.

Definition 2 A transition sequence τ̄ , with starting state s = head(τ̄) and a label whose input portion is x̄, is a

w̄j sequence for state s if and only if for all s′ ∈ S \ {s} we have that if λ(s′, w̄j) �= λ(s, w̄j) then λ(s′, x̄) �= λ(s, x̄).

Thus, in terms of distinguishing state s from other states of M , the input portion of the label of any w̄j sequence

is at least as powerful as w̄j . Where τ̄ is a w̄j sequence for s, the input portion x̄ of the label of τ̄ can be used,

when checking state s, in place of w̄j . It transpires that this fact can be used to allow overlap to be utilized. It is

worth noting that this says nothing about the ability of x̄ to distinguish states other than s.

Definition 3 A transition sequence τ̄ whose label has input portion x̄ is said to be (w̄i, w̄j) converting if x̄w̄i is a

w̄j sequence for state head(τ̄).

We now define the following variants on Definition 3.

Definition 4 Suppose τ̄ has length 1, containing transition t. If τ̄ is (w̄i, w̄j) converting then t is said to be a

(w̄i,w̄j) converting transition.

Definition 5 If there is some k such that τ̄ is (w̄k, w̄i) converting then τ̄ is (, w̄i) converting. Similarly, if there

is some k such that τ̄ is (w̄i, w̄k) converting then τ̄ is (w̄i,) converting.

7

Input State s0 State s1 State s2 State s3

w̄1 (b) q q r p

w̄2 (ab) pq pr pq rr

bw̄1 (bb) qp qp rp pq

aw̄2 (aab) ppr ppq ppr rpq

bw̄2 (bab) qrr qrr rrr ppq

Table 2. The output from the w̄j and xw̄i

Definition 6 If all the transitions for some input value x ∈ X are (w̄i, w̄j) converting then x is said to be strongly

(w̄i, w̄j) converting.

The key point is that if τ̄ is (w̄i, w̄j) converting and has a label whose input portion is x̄ then x̄w̄i can be used

in place of w̄j . This allows a test subsequence for the final transition of τ̄ to be used as part of a test subsequence

for a transition preceding τ̄ and thus for there to be overlap between these two test subsequences. To see this

let us suppose that the last transition of τ̄ is t′ and t is a transition with input x whose ending state is head(τ̄).

As x̄w̄i (from state head(t)) applies w̄i after t′ and τ̄ is (w̄i, w̄j) converting, in testing xx̄w̄i can replace both the

transition t followed by w̄j and t′ followed by w̄i when applied in state head(t). This can be used to reduce the

test effort by introducing overlap.

It is straightforward to decide which transitions involving input x ∈ X are (w̄i, w̄j) converting, for each i, j. This

can be achieved by finding the output, from each state, produced by w̄i and xw̄i. The values for M0 are shown

in Table 2. As w̄2 = aw̄1, a is strongly (w̄1, w̄2) converting. Input a also produces (w̄2, w̄1) converting transitions

when executed from states s1 and s3, b produces (w̄1, w̄2) converting transitions when executed from s2 or s3, and

b is strongly (w̄2, w̄1) converting. Input b is also strongly (w̄1, w̄1) converting, a is strongly (w̄2, w̄2) converting, b

produces a (w̄2, w̄2) converting transition for states s2 and s3, and a produces a (w̄1, w̄1) converting transition for

states s1 and s3.

Suppose, for example, that we execute baw̄1 from the initial state of M0. Then we achieve two things.

1. We follow the transition (s3, s2, a/r) by w̄1.

2. We follow the transition (s0, s3, b/q) by a w̄2 sequence since a is strongly (w̄1, w̄2) converting.

Thus, the execution of baw̄1 from the initial state of M0 includes two test subsequences that overlap.

Not all (w̄i, w̄j) converting transitions are invertible, an example being the transition (s0, s1, a/p) in M0, which

is (w̄2, w̄1) converting but is not invertible since there is another transition (from state s2) with label a/p and

ending state s1. The following result thus demonstrates that this notion, of (w̄i, w̄j) converting transitions, is a

generalization of invertibility.

8

Proposition 1 If t = (s, s′, x/y) is invertible, w̄i is the input portion of a UIO for s′, and w̄j is the input from a

UIO for s then t is (w̄i, w̄j) converting.

Proof

It is sufficient to demonstrate that given any sk �= s, xw̄i distinguishes between s and sk. If λ(s, x) �= λ(sk, x)

then xw̄i distinguishes between s and sk, as required. If λ(s, x) = λ(sk, x) then, as t is invertible, δ(s, x) �= δ(sk, x).

Let s′k = δ(sk, x). Then, as s′k �= s′ and w̄i is the input portion of a UIO for s′, λ(s′, w̄i) �= λ(s′k, w̄i) and thus

λ(s, xw̄i) �= λ(sk, xw̄i), as required. �
It is possible to efficiently determine whether a sequence of transitions is (w̄i, w̄j) converting.

Proposition 2 Given an FSM M with n states and transition sequence τ̄ it is possible to determine whether τ̄ is

(w̄i, w̄j) converting in time of O(n(|τ̄ | + |w̄i| + |w̄j |)).

Proof

Let x̄ denote the input portion of the label of τ̄ . It is sufficient to observe that we need to determine the response

of M to both x̄w̄i and w̄j from the n states of M and determine which states are distinguished from head(τ̄) by

these input sequences. �
The following result demonstrates that it is possible to combine (w̄i, w̄j) converting sequences in the natural

way.

Proposition 3 If τ̄ is (w̄i, w̄j) converting, τ̄ ′ is (w̄j , w̄k) converting, and the ending state of τ̄ ′ is the starting state

of τ̄ then τ̄ ′τ̄ is (w̄i, w̄k) converting.

Proof

Let s denote the starting state of τ̄ and s′ denote the starting state of τ̄ ′. Further, let x̄ denote the input

portion of the label of τ̄ and x̄′ denote the input portion of the label of τ̄ ′. As τ̄ is (w̄i, w̄j) converting, the input

sequence x̄w̄i distinguishes between s and sp whenever w̄j distinguishes between s and sp. Similarly, whenever w̄k

distinguishes between s′ and sq, x̄′w̄j distinguishes between s′ and sq.

Suppose w̄k distinguishes between s′ and sq. It is sufficient to prove that x̄′x̄w̄i also distinguishes between s′

and sq. Let sp = δ(sq, x̄
′). As τ̄ ′ is (w̄j , w̄k) converting and w̄k distinguishes between s′ and sq, x̄′w̄j distinguishes

between s′ and sq. Thus λ(s′, x̄′w̄j) �= λ(sq, x̄
′w̄j). Clearly if λ(s′, x̄′) �= λ(sq, x̄

′) then x̄′x̄w̄i distinguishes between

s′ and sq as required. If λ(s′, x̄′) = λ(sq, x̄
′) then λ(s, w̄j) �= λ(sp, w̄j). Then, as τ̄ is (w̄i, w̄j) converting and w̄j

distinguishes between s and sp, λ(s, x̄w̄i) �= λ(sp, x̄w̄i). Thus λ(s′, x̄′x̄w̄i) �= λ(sq, x̄
′x̄w̄i) as required. �

Note that a (w̄i, w̄j) converting sequence can have length in excess of 1. However, for purpose of test generation

we focus on the use of (w̄i, w̄j) converting transitions.

9

4 Test Sequence Generation

4.1 Objective

Where we wish to produce a single test sequence that tests each transition of an FSM M using characterising

set W and no overlap, we require the use of a test sequence that satisfies the following criterion.

Definition 7 Given FSM M and characterising set W , let T denote the set of test subsequences for the transitions

of M created using W . Thus, for each transition t = (s, s′, x/y) of M and w̄i ∈ W , T contains a transition sequence

that has starting state s and label xw̄i/yλ(s′, w̄i). Let T = {τ̄1, . . . , τ̄p}. A test sequence x̄ is a W-test sequence

for FSM M and characterising set W if and only if x̄ is the input portion of the label of a transition sequence

ρ̄ = τ̄ ′
1τ̄1τ̄

′
2 . . . τ̄pτ̄

′
p+1, with starting state s0, for some τ̄ ′

1, . . . τ̄
′
p+1.

This criterion may be weakened in the following manner, allowing overlap and for a transition to be followed by

a w̄i sequence rather than w̄i.

Definition 8 A test sequence x̄ is a W-overlapping test sequence for FSM M and characterising set W if and

only if x̄ is the input portion of the label of a transition sequence ρ̄ with starting state s0 that has the property that

for every transition t of M and w̄i ∈ W , ρ̄ contains a subsequence tτ̄ ′ such that τ̄ ′ is a w̄i sequence.

Thus, our problem is to generate a W-overlapping test sequence for FSM M given characterising set W .

4.2 Overview of the algorithm

This section describes an algorithm that produces a W-overlapping test sequence that utilizes the overlap

produced by (w̄i, w̄j) converting transitions1. The first step is to determine which transitions are (w̄i, w̄j) converting

for each w̄i, w̄j ∈ W . The (w̄i, w̄j) converting transitions for M0 can be derived from Table 2 and are shown in

Table 3. Here (i, j) in a column associated with state s and in a row with label x denotes that the input of x in

state s produces a (w̄i, w̄j) converting transition.

The test sequence generation algorithm involves the following steps.

1. Generate a digraph that, for each transition t and w̄i ∈ W , includes an edge et representing t in a context

within which it must be followed by a w̄i sequence in any tour that contains et.

2. Produce a minimal tour that contains each of these edges.

3. Start the tour at the initial state to form a walk ρ̄ and return the input portion of the label of ρ̄.

These steps are now described.
1While this paper only considers the use of (w̄i, w̄j) converting transitions in test sequence generation it should be possible to utilize

sequences that are (w̄i, w̄j) converting in a similar way.

10

From s0 From s1 From s2 From s3

(w̄1,) for a (1, 2) (1, 1), (1, 2) (1, 2) (1, 1), (1, 2)

(w̄1,) for b (1, 1) (1, 1) (1, 1), (1, 2) (1, 1), (1, 2)

(w̄2,) for a (2, 2) (2, 1), (2, 2) (2, 2) (2, 1), (2, 2)

(w̄2,) for b (2, 1) (2, 1) (2, 1), (2, 2) (2, 1), (2, 2)

Table 3. The (w̄i, w̄j) converting transitions used

4.3 Representing tests

In this subsection we define a digraph G = (V,E) to be used as the basis of test sequence generation. G contains

a number of copies of each state of M : one for each element of W and one extra. These copies are labelled: for

w̄k ∈ W and state si the corresponding copy is called vk
i ; the extra copy is called v∗

i .

For each transition t and w̄k ∈ W there is an additional vertex vk
t . This represents the test subsequence

formed by following transition t by a w̄k sequence. Thus G has vertex set V = V0 ∪ V1 ∪ . . . ∪ Vn−1 ∪ V Tr, with

Vi = {v1
i , . . . , vm

i , v∗
i } (0 ≤ i < n,m = |W |), and V Tr = {vk

t |t = (s, δ(s, x), x/λ(s, x)), s ∈ S, x ∈ X, 1 ≤ k ≤ m}.
We now define the edge set E = Et ∪ E′ of G.

1. Given l ∈ {1, . . . , m} and transition t = (si, sj , x/y) there is an edge in Et from vl
t to vl

j representing the use

of t to be followed by a w̄l sequence starting at sj . This edge has cost 1 and label t.

2. There is an edge (v∗
0 , v∗

0 , ε) in Et, with cost 0, where ε represents null input. The inclusion of this edge

guarantees that any tour that contains every edge from Et passes through v∗
0 and thus can be started from

the initial state.

3. Given l ∈ {1, . . . , m} and transition t = (si, sj , x/y) that is (w̄l, w̄k) converting, there is an edge in E′ from

vk
i to vl

t with label ε. This represents the use of t as a (w̄l, w̄k) converting transition: if we pass through this

edge in a tour then by construction we must follow it by an edge representing t and then a sequence of edges

that represents a w̄l sequence. This edge has cost 0, since if we pass through this edge then we must pass

through the edge from vl
t, representing the use of t, and this has cost 1.

4. Given i ∈ {0, . . . , n − 1}, k ∈ {1, . . . , m} and sj = δ(si, w̄k) there is an edge in E′ from vk
i to v∗

j with label

w̄k representing the execution of w̄k from si. This edge has cost |w̄k|.

5. Given transition t = (si, sj , x/y) there is an edge in E′ from v∗
i to v∗

j with label t that represents the execution

of t in order to connect transition tests. This edge has cost 1.

6. Given transition t = (si, sj , x/y) and l ∈ {1, . . . , m} there is an edge in E′ from v∗
i to vl

t with label ε and cost

0. These edges are used to guarantee connectivity and to allow a (w̄l, w̄k) converting transition to be treated

as a normal transition (i.e. not to be involved in overlap).

11

An edge leaving vertex vk
i represents either a w̄k sequence or the beginning of a w̄k sequence. Thus, an edge

leaving vk
i represents either a transition sequence whose label has input portion w̄k or a (w̄r, w̄k) converting

transition, for some w̄r ∈ W . Vertices of the form v∗
i are included in order to allow the use of transitions that

connect the individual test subsequences.

The edge set Et is the set of edges that must be included in producing a transition sequence. All but one of these

edges represent a transition to be followed by a w̄k sequence (some k). The remainder, from v∗
0 to v∗

0 , guarantees

that any tour that contains every edge from Et must pass through v∗
0 . This latter property is important for two

reasons. First, we need a transition sequence that starts at s0. Second, we cannot start the tour with an edge e

that represents a transition being used as (w̄i, w̄j) converting (some w̄i, w̄j ∈ W) since by starting the tour with e

this edge and the following sequence no longer provides a w̄j sequence for the previous edge.

The digraph, without the edges between the vertices in V ∗, produced from M0 is shown in Figure 2 where

if a transition t with starting state si is (w̄l, w̄k) converting then there is a corresponding edge from vk
i to vl

t;

these edges are based on Table 2. In this figure, the edges from Et are represented by thick lines and the edges

representing w̄1 and w̄2 are represented by lines with no arrowheads (but all go to vertices of the form v∗
i). Given

a transition t = (si, sj , x/y) and k ∈ {1, 2}, the vertex vk
t is denoted vk

ix, since the starting state and input fully

define a transition of M0. In Figure 2, for example, vertex v2
1a represents the transition with starting state s1 and

input a to be followed by a w̄2 sequence and there is an edge from this vertex to v2
2 since the ending state of the

transition from s1 with input a is s2. Further, there is an edge from v2
2 to v1

2b since the transition from s2 with

input b is (w̄1, w̄2) converting; we can form a w̄2 sequence by following it by a w̄1 sequence.

The next step in test sequence generation is to find a minimum cost tour that contains a copy of each edge from

Et. This problem is an instance of the RCPP and can be solved using the approach discussed in [Aho et al., 1988].

The following proves that there always exist tours that satisfy the test criterion and include the vertex v∗0 .

Proposition 4 Suppose vl
t ∈ V Tr. Then G contains a path from v∗

0 to vl
t and a path from vl

t to v∗
0 .

Proof

Let si denote the starting state of t. Observe that G restricted to the vertices in V ∗ is strongly connected. Also,

there is an edge from vl
t to some v∗

j representing the execution of w̄l and there is an edge from v∗
i to vl

t with label

ε. The result thus follows. �
Once ρ̄ has been found, a test sequence can be generated from this by starting it at vertex v∗0 and using the

input portion of the label of the corresponding walk.

The overall algorithm can be summarized in the following manner.

Algorithm 1 1. For each w̄i, w̄j ∈ W , state s and input x, determine whether x is (w̄i, w̄j) converting from s.

2. Devise the digraph G.

3. Find a minimum cost tour of G that contains every edge from Et and start this from v∗
0 to form a transition

sequence ρ̄.

12

v
*
3

v
*
2

v
*
1

v
*
0

v
1
3

v
1
3b

v
1
3a

v
1
2b

v
1
2

v
1
2a

v
1
1b

v
1
1a

v
1
0b

v
1
0a

v
1
0

v
1
1

v
2
3b

v
2
3

v
2
3a

v
2
2b

v
2
2

v
2
2a

v
2
1b

v
2
1a

v
2
0b

v
2
0a

v
2
0

v
2
1

Figure 2. The Digraph G for M0

4. Extract the test sequence from ρ̄.

The following is straightforward to prove.

Proposition 5 Suppose that FSM M has n states, p inputs, and a characterizing set with m elements. Then the

digraph G produced in Algorithm 1 has O(pnm) vertices and O(pnm2) edges.

Suppose that G has v vertices and e edges. Then the optimization approach described in [Aho et al., 1988]

can be achieved using an algorithm with time complexity O(ev log v)). This gives an overall time complexity of

O(p2n2m3 log pnm)

Note that if we do not utilize overlap then we generate the transition sequence from a digraph that has O(pnm)

vertices and O(pnm) edges since we have to combine pnm test subsequences to form a single transition sequence.

Thus, the use of overlap does have a cost; it increases the test sequence generation effort.

5 Test sequence generation using prefixes

In order to verify a state si of M it may be possible to use a set Wi of prefixes of sequences from W with the

property that for every state sj �= si of M , some element of Wi distinguishes si from sj [Fujiwara et al., 1991]. We

assume that a set W = {W0, . . . ,Wn−1} is given and Wi = {w̄i1, . . . , w̄imi
} (0 ≤ i < n, 1 ≤ mi ≤ m). Earlier we

saw that the following sets can be used for M0:

13

Input State s0 State s1 State s2 State s3

w̄01 (b) q q r p

w̄02 (ab) pq pr pq rr

aw̄11 (aab) ppr ppq ppr rpq

Table 4. The transition from s0 with input a

1. W0 = {w̄01, w̄02} where w̄01 = b, w̄02 = ab;

2. W1 = {w̄11} where w̄11 = ab;

3. W2 = {w̄21} where w̄21 = b; and

4. W3 = {w̄31} where w̄31 = b.

If we wish to produce a single test sequence that tests every transition of FSM M using W and no overlap, we

require the use of a test sequence that satisfies the following criterion.

Definition 9 Given FSM M and set W, let T denote the set of test subsequences for the transitions of M created

using W. Thus, for each transition t = (si, sj , x/y) of M and w̄jl ∈ Wj, T contains a subsequence that has starting

state si and label xw̄jl/yλ(sj , w̄jl). Let T = {τ̄1, . . . , τ̄p}. A test sequence x̄ is a W-test sequence if and only if it

is the input portion of the label of a transition sequence ρ̄ with starting state s0 such that ρ̄ = τ̄ ′
1τ̄1τ̄

′
2 . . . τ̄pτ̄

′
p+1 for

some τ̄ ′
1, . . . τ̄

′
p+1.

Again, the test criterion may be weakened.

Definition 10 A test sequence x̄ is a W-overlapping test sequence for FSM M and set W if and only if it

is the input portion of the label of a transition sequence ρ̄ with starting state s0 such that for every transition

t = (si, sj , x/y) of M and w̄jl ∈ W, ρ̄ contains a subsequence tτ̄ ′ such that τ̄ ′ is a w̄jl sequence.

Thus, our problem is to generate a W-overlapping test sequence for M . We can represent overlap in a similar

manner to before.

Definition 11 A transition sequence τ̄ = (si, sj , x̄/ȳ) is said to be (w̄jl, w̄ik) converting if, whenever the sequence

w̄ik distinguishes a state s′ from si the sequence x̄w̄jl also distinguished s′ from si.

Consider the example M0. The transition from s0 with input a ends at state s1 and thus we have to determine

whether this is (w̄11, w̄01) converting and whether it is (w̄11, w̄02) converting. Here aw̄11 = aab and this sequence

distinguishes s0 from both s1 and s3 but not from s2. This is illustrated in Table 4. Thus, the transition from s0

with input a is (w̄11, w̄02) converting.

14

Similarly, we have that: the transition from s0 with input b is (w̄31, w̄01) converting; the transition from s1 with

input a is (w̄21, w̄11) converting; the transition from s2 with input b is (w̄31, w̄11) converting; the transition from

s3 with input a is (w̄21, w̄31) converting; and the transition from s3 with input b is both (w̄01, w̄31) converting and

(w̄02, w̄31) converting.

We are now in a position to adapt the algorithm from Section 4 to use prefixes from sets in W rather than the

entire characterizing set.

Test sequence generation is based on a digraph GW that has a number of copies of each state of M : for state si

there one copy for each element of Wi and one extra. These copies are labelled in the following way: for w̄ik ∈ W

and state si the corresponding copy is called vk
i ; the extra copy is called v∗

i .

For each transition t = (si, sj , x/y) and w̄jk ∈ Wj there is a vertex vk
t that represents t to be followed by a w̄jk

sequence. Thus GW has vertex set V = V0 ∪ V1 ∪ . . . ∪ Vn−1 ∪ V Tr, with Vi = {v1
i , . . . , vmi

i , v∗
i } (0 ≤ i < n), and

V Tr = {vk
t |t = (si, sj , x/y), 1 ≤ k ≤ mj}. The edge set EW = EtW ∪ E′

W of GW is now defined2.

1. Given l ∈ {1, . . . , mj} and transition t = (si, sj , x/y) there is an edge in EtW from vl
t to vl

j with label t

representing the use of t to be followed by an w̄jl sequence. This edge has cost 1.

2. There is an edge (v∗
0 , v∗

0 , ε) in EtW , with cost 0. The inclusion of this edge guarantees that any tour that

contains the edges from EtW passes through v∗
0 and thus can be started from the initial state.

3. Given l ∈ {1, . . . , mj} and transition t = (si, sj , x/y) that is (w̄jl, w̄ik) converting, there is an edge in E′
W

from vk
i with label ε to vl

t. This represents the use of t as a (w̄jl, w̄ik) converting transition. This edge has

cost 0.

4. Given i ∈ {0, . . . , n− 1}, k ∈ {1, . . . , mi} and sj = δ(si, w̄ik) there is an edge in E′
W from vk

i to v∗
j with label

w̄ik representing the input of w̄ik from si. This edge has cost |w̄ik|.

5. Given transition t = (si, sj , x/y) there is an edge in E′
W from v∗

i to v∗
j with label t that represents the use of

t in order to connect tests. This edge has cost 1.

6. Given transition t = (si, sj , x/y) and l ∈ {1, . . . , mj} there is an edge in E′
W from v∗

i to vl
t with label ε and

cost 0.

The digraph, without the edges between the vertices in V ∗, produced from M0 is shown in Figure 3. In this

figure, the edges from EWt are represented by thick lines and the edges representing sequences from the Wi are

represented by lines with no arrowheads (but all go to vertices in V ∗). Given a transition t = (si, sj , x/y), the

vertex vk
t is denoted vk

ix, since the starting state and input fully define a transition of M0.

The next step in test sequence generation involves finding a minimum cost tour that contains a copy of each

edge from EtW . As before, connectivity is ensured. Once τ̄ has been found, a test sequence can be generated from

this by starting τ̄ at vertex v∗
0 and using the input portion of the label of the corresponding walk ρ̄.

2The structures of G and GW are very similar, the difference being the use of w̄i sequences in G and w̄jl sequences in GW

15

v
*
3

v
*
2

v
*
1

v
*
0

v
1
3

v
1
3b

v
1
3a

v
1
2b

v
1
2

v
1
2a

v
1
1b

v
1
1a

v
1
0b

v
1
0a

v
1
0

v
1
1

v
2
3b

v
2
0

Figure 3. The Digraph GW for M0

The overall algorithm can be summarized in the following manner.

Algorithm 2 1. For each w̄jl ∈ Wj, w̄ik ∈ Wi such that there is a transition t from si to sj, determine whether

t is (w̄jl, w̄ik) converting.

2. Devise the digraph GW .

3. Find a minimum cost tour of GW that contains every edge from EtW and start this at v∗
0 to form a transition

sequence ρ̄.

4. Extract the test sequence from ρ̄.

Proposition 6 Suppose that FSM M has n states, p inputs, and a characterizing set with m elements. Then the

digraph GW produced in Algorithm 2 has O(pnm) vertices and O(pnm2) edges.

6 Evaluation

The test sequence generation algorithms given in this paper extend the applicability of test overlap. They differ

from the approaches, for using overlap with UIOs or a DS, in scope: they generalise the problem to the case where

we are not using either a DS or a set of UIOs by allowing overlap where separating sequences are used. This is

16

useful since, while every minimal FSM has a characterizing set, a minimal FSM need not have a distinguishing

sequence or a UIO for each state.

First consider the case where prefixes of the sequences in W are not used. Optimization occurs over a set of

tours of a digraph G. Importantly, this set of tours includes those that represent test sequences that do not utilize

overlap.

Proposition 7 Every W-test sequence for M is represented by a tour through G that contains each edge from Et.

The following shows that the test sequence produced using overlap will be no longer than any produced without

overlap.

Theorem 8 Suppose test sequence x̄ is generated from some shortest tour of G that contains every element of Et.

Then no W-test sequence is shorter than x̄.

Proof

This is an immediate consequence of Proposition 7. �
We now apply the algorithm given in Section 4 to the FSM M0 given in Figure 1. Recall that the (w̄i, w̄j)

converting transitions are shown in Table 3. The digraph G leads to the following tour.

v∗
0 → v1

0a → v1
1 → v1

1b → v1
3 → v2

3a → v2
2 → v2

2a → v2
1 → v2

1a → v2
2 → v1

2a →

v1
1 → v2

1b → v2
3 → v1

3b → v1
0 → v2

0b → v2
3 → v2

3b → v2
0 → v2

0a → v2
1 →

v1
1a → v1

2 → v2
2b → v2

3 → v1
3a → v1

2 → v1
2b → v1

3 − w̄1 → v∗
0 → v1

0b → v1
3 − w̄1 → v∗

0

This leads to the following test sequence of length 18: abaaaabbbbaababw̄1bw̄1. It is easy to check that every

transition is tested twice, once by a w̄1 sequence and once by a w̄2 sequence. If overlap is not used, the test

sequence is guaranteed to have length at least that of the total for the individual tests in T . Since M has |X||S|
transitions, this is |X||S|∑i(|w̄i| + 1). In this case, we get the value 40: any test sequence generated without

overlap must have length at least 40. Overlap has therefore reduced the test sequence length by a factor in excess

of 2. We have thus shown that the use of overlap produces a test sequence no longer than that produced without

overlap and is capable of producing a test sequence that is shorter than that generated without overlap.

Now consider the use of prefixes in state verification. We get results that are equivalent to those for the use of

a full characterizing set.

Theorem 9 Suppose that the set W is used for state verification and that test sequence x̄ is generated from some

shortest tour of GW that contains every element of Et. Then no W-test sequence is shorter than x̄.

17

Now consider the use of W and overlap in testing from M0. The following is a tour of GW that includes every

edge from EtW .

v∗
0 → v∗

0 − a/p → v∗
1 − a/p → v∗

2 → v1
2a → v1

1 → v1
1a → v1

2 − w̄21 → v∗
3 → v1

3a → v1
2 − w̄21 → v∗

3 − a/r → v∗
2 →

v1
2b → v1

3 → v1
3b → v1

0 → v1
0b → v1

3 → v2
3b → v2

0 → v1
0a → v1

1 → v1
1b → v1

3 − w̄31 → v∗
0

In addition to the transitions being tested, this includes three connecting transitions and three separating

sequences (all of length one). Thus the overall test sequence length is the number of transitions counting each

transition to state s0 twice as |W0| = 2 (nine) plus the number of connecting transitions (three) plus the total length

of the separating sequences used (three) and so is 15. We get the following test sequence: aaaaw̄21aw̄21abbbbabw̄31.

If overlap is not used, the test sequence is guaranteed to have length at least that of the total for the individual

test subsequences in T . In this case, we get the value 21: any test sequence generated without overlap must have

length at least 21. The use of overlap thus led to a reduction in the test sequence length. Interestingly, in this case

the test sequence produced using overlap and the entire set W is shorter than that produced using prefixes (W)

but no overlap.

7 Conclusions

When testing from an FSM, overlap may be used in order to reduce the test effort. While previous work has

considered the case when a DS or a set of UIOs are used for state checking, an FSM need not have such sequences.

However, every minimal FSM has a characterizing set. This paper has thus considered the problem of utilizing

overlap where a characterizing set is used for state checking. This paper has generalized the notion of invertibility,

used for UIOs, to (w̄i, w̄j) converting transitions. This allowed test subsequence overlap to be represented when a

characterizing set is used for state checking.

Having studied test subsequence overlap we considered the problem of generating a test sequence, from an FSM

M , in the presence of a characterizing set W . We considered the test criterion that for each transition t and

w̄i ∈ W , the test sequence contains t followed by a sequence that has at least the ability of w̄i to distinguish the

final state of t from other states of M . Overlap was utilized in order to reduce the test sequence length.

The test sequence generation algorithm presented is based around a digraph G that represents possible test

sequences. The problem reduces to that of finding a minimal tour in G that contains the edges in some set Et and

thus becomes an instance of the Rural Chinese Postman Problem. Importantly, any test sequence that does not

utilize overlap is also represented by a tour of G that contains the edges in Et and thus the optimal test sequence,

produced by the proposed algorithm, can be no longer than that produced without overlap. We have also shown

that the proposed test generation algorithm is capable of leading to a reduction in the length of the resultant test

sequence.

Sometimes it is sufficient to apply only a set Wi of prefixes of sequences in W in order to identify a state si. We

thus extended the test sequence generation algorithm to using a set W = {W0, . . . ,Wn−1} of sets for identifying

18

the states s0, . . . , sn−1 of M . The approaches to representing overlap and generating a test sequence extended

naturally to the use of W rather than W . Test sequence generation was again represented as the problem of

finding a minimal tour of a digraph GW that contains some set EtW of edges. Any test sequence that uses W but

does not utilize overlap is also represented by a tour of GW that contains the edges in EtW and thus the optimal

test sequence produced by the proposed algorithm can be no longer than that produced without overlap. Again,

when applied to an example the use of overlap led to a reduction in the test sequence length.

While the use of overlap can lead to shorter test sequences it increases the cost of test sequence generation.

In practice there will be a trade-off between the cost of test sequence generation and the cost of test sequence

execution. In some cases the use of overlap will not be justified. However, the use of overlap will be more appealing

if test execution is expensive or the test sequence is to be applied to many implementations.

References

[Aho et al., 1988] Aho, A. V., Dahbura, A. T., Lee, D., and Uyar, M. U. (1988). An optimization technique for

protocol conformance test generation based on UIO sequences and Rural Chinese Postman Tours. In Protocol

Specification, Testing, and Verification VIII, pages 75–86, Atlantic City. Elsevier (North–Holland).

[Broekman and Notenboom, 2003] Broekman, B. and Notenboom, E. (2003). Testing Embedded Software.

Addison–Wesley, London.

[Chow, 1978] Chow, T. S. (1978). Testing software design modelled by finite state machines. IEEE Transactions

on Software Engineering, 4:178–187.

[Derrick and Boiten, 1999] Derrick, J. and Boiten, E. (1999). Testing refinements of state–based formal specifica-

tions. Journal of Software Testing, Verification and Reliability, 9(1):27–50.

[Dick and Faivre, 1993] Dick, J. and Faivre, A. (1993). Automating the generation and sequencing of test cases

from model–based specifications. In FME ’93, First International Symposium on Formal Methods in Europe,

pages 268–284, Odense, Denmark. Springer–Verlag, Lecture Notes in Computer Science 670.

[Duale and Uyar, 2004] Duale, A. Y. and Uyar, M. U. (2004). A method enabling feasible conformance test

sequence generation for EFSM models. IEEE Transactions on Computers, 53(5):614–627.

[Farchi et al., 2002] Farchi, E., Hartman, A., and Pinter, S. (2002). Using a model-based test generator to test for

standard conformance. IBM systems journal, 41(1):89–110.

[Fujiwara et al., 1991] Fujiwara, S., v. Bochmann, G., Khendek, F., Amalou, M., and Ghedamsi, A. (1991). Test

selection based on finite state models. IEEE Transactions on Software Engineering, 17(6):591–603.

[Gill, 1962] Gill, A. (1962). Introduction to The Theory of Finite State Machines. McGraw–Hill, New York.

19

[Grieskamp et al., 2002] Grieskamp, W., Gurevich, Y., Schulte, W., and Veanes, M. (2002). Generating finite state

machines from abstract state machines. In Proceedings of the ACM SIGSOFT Symposium on Software Testing

and Analysis, pages 112–122.

[Hennie, 1964] Hennie, F. C. (1964). Fault–detecting experiments for sequential circuits. In Proceedings of Fifth

Annual Symposium on Switching Circuit Theory and Logical Design, pages 95–110, Princeton, New Jersey.

[Hierons, 1992] Hierons, R. M. (1992). Using Formal Specifications to Enhance the Software Testing Process. PhD

thesis, Brunel University.

[Hierons, 1996] Hierons, R. M. (1996). Extending test sequence overlap by invertibility. The Computer Journal,

39(4):325–330.

[Hierons, 1997] Hierons, R. M. (1997). Testing from a finite state machine: Extending invertibility to sequences.

The Computer Journal, 40(4):220–230.

[Hierons, 2004] Hierons, R. M. (2004). Minimizing the number of resets when testing from a finite state machine.

Information Processing Letters, 90(6):287–292.

[Hierons and Ural, 2002] Hierons, R. M. and Ural, H. (2002). Reduced length checking sequences. IEEE Transac-

tions on Computers, 51(9):1111–1117.

[Hopcroft, 1971] Hopcroft, J. E. (1971). An n log n algorithm for minimizing the states in a finite automaton. In

Kohavi, Z., editor, The theory of Machines and Computation, pages 189–196. Academic Press.

[Kohavi, 1978] Kohavi, Z. (1978). Switching and Finite State Automata Theory. McGraw–Hill, New York.

[Lee and Yannakakis, 1994] Lee, D. and Yannakakis, M. (1994). Testing finite-state machines: State identification

and verification. IEEE Transactions on Computers, 43(3):306–320.

[Miller and Paul, 1993] Miller, R. E. and Paul, S. (1993). On the generation of minimal length conformance tests

for communications protocols. IEEE/ACM Transactions on Networking, 1(1):116–129.

[Moore, 1956] Moore, E. P. (1956). Gedanken-experiments. In Shannon, C. and McCarthy, J., editors, Automata

Studies. Princeton University Press.

[Motteler et al., 1994] Motteler, H., Chung, A., and Sidhu, D. (1994). Fault coverage of UIO-based methods for

protocol testing. In Proceedings of Protocol Test Systems VI, pages 21–33.

[Petrenko et al., 2004] Petrenko, A., Boroday, S., and Groz, R. (2004). Confirming configurations in EFSM testing.

IEEE Transactions on Software Engineering, 30(1):29–42.

[Pomeranz and Reddy, 1997] Pomeranz, I. and Reddy, S. M. (1997). Test generation for multiple state–table faults

in finite–state machines. IEEE Transactions on Computers, 46(7):783–794.

20

[Rezaki and Ural, 1995] Rezaki, A. and Ural, H. (1995). Construction of checking sequences based on characteri-

zation sets. Computer Communications, 18(12):911–920.

[Shen et al., 1990] Shen, Y. N., Lombardi, F., and Dahbura, A. T. (1990). Protocol conformance testing using

multiple UIO sequences. In Proceedings of Protocol Specification, Testing, and Verification IX, pages 131–143,

Twente, Netherlands. North–Holland.

[Sidhu and Leung, 1989] Sidhu, D. P. and Leung, T.-K. (1989). Formal methods for protocol testing: A detailed

study. IEEE Transactions on Software Engineering, 15(4):413–426.

[Ural et al., 1997] Ural, H., Wu, X., and Zhang, F. (1997). On minimizing the lengths of checking sequences. IEEE

Transactions on Computers, 46(1):93–99.

[Ural and Zhu, 1993] Ural, H. and Zhu, K. (1993). Optimal length test sequence generation using distinguishing

sequences. IEEE/ACM Transactions on Networking, 1(3):358–371.

[Yang and Ural, 1990] Yang, B. and Ural, H. (1990). Protocol conformance test generation using multiple UIO

sequences with overlapping. In ACM SIGCOMM 90: Communications, Architectures, and Protocols, pages

118–125, Twente, The Netherlands.

[Yao et al., 1993] Yao, M., Petrenko, A., and v. Bochmann, G. (1993). Conformance testing of protocol machines

without reset. In Protocol Specification, Testing and Verification, XIII (C–16), pages 241–256. Elsevier (North–

Holland).

[Zhang and Probert, 2005] Zhang, F. and Probert, R. L. (2005). Minimizing the lengths of test sequences with

overlapping. In Intrumentation and Measurement Technology Conference (IMTC), Ottawa, Canada.

21

