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A coarse grained model for granular compaction and relaxation

D. A. Head∗ and G. J. Rodgers†

Institute of Physical and Environmental Sciences, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
(October 30, 2006)

We introduce a theoretical model for the compaction of granular materials by discrete vibrations
which is expected to hold when the intensity of vibration is low. The dynamical unit is taken to
be clusters of granules that belong to the same collective structure. We rigourously construct the
model from first principles and show that numerical solutions compare favourably with a range of
experimental results. This includes the logarithmic relaxation towards a statistical steady state, the
effect of varying the intensity of vibration resulting in a so-called “annealing” curve, and the power
spectrum of density fluctuations in the steady state itself. A mean field version of the model is
introduced which shares many features with the exact model and is open to quantitative analysis.

PACS numbers: 05.40.+j. 46.10.+z, 64.60.L, 81.05.Rm, 81.20.Ev

I. INTRODUCTION

Extrapolating bulk properties from the underlying mi-
croscopic dynamics is generally more difficult with gran-
ular materials than with gases, a difficulty that has been
attributed, at least in part, to the lack of thermal av-
eraging [1,2]. Unlike molecules, granules are static at
room temperature and so cannot explore phase space
without some external impetus. For example, consider
a column of loosely packed granules in a cylindrical con-
tainer, where loosely packed means that there are typi-
cally large gaps or voids between neighbouring granules.
It is energetically favourable for the granules to collec-
tively reorganise to a state which minimises these voids,
since a more compact column will have a lower centre
of gravity and hence a lower potential energy. That this
does not occur spontaneously is a direct consequence of
the lack of thermal motion. One way to allow the column
to evolve is simply to tap or otherwise perturb the con-
tainer, thus giving the granules a small amount of kinetic
energy with which to rearrange. This process has been
studied empirically in the context of industrial applica-
tions [3], but only recently have attempts been made to
try to understand the fundamental dynamics involved.

Mehta et.al. [4–6] employed a non-sequential Monte
Carlo algorithm to simulate the process on a microscopic
level. Non-sequential means that granules are allowed to
move and settle simultaneously, which is important in
this context since it allows for the cooperative reorgan-
isation of granule-granule contacts. These simulations
predict that granular media should relax on two time
scales, corresponding to individual granule motion and
collective processes respectively. However, this is not in
accord with the experimental work of Knight et.al. [7].
They measured the rate of compaction in a column of
monodisperse glass beads that was subjected to discrete
vertical vibrations. The plot of density against the num-
ber of vibrations was found to be best described by
ρ(t) ∼ (log t)−1, where the time ordinate t is proportional
to the number of taps. One possible reason for the dis-

crepancy between the simulations and the experiments
may simply be that the regimes of vibration intensity
studied were different. The smallest vibration considered
in the simulations corresponds to a 5% increase in volume
at every tap, which is much more than the experiments
involved.

A number of models embracing a variety of theoreti-
cal approaches have been introduced to try and account
for the experimental findings. Of those we are aware of,
one is a phenomenological macroscopic model [8], but
the remainder are all microscopic in nature. The slow
relaxation has been attributed by Ben-Naim et.al. to
the large number of reconfigurations required to bring
enough small voids together to make one void large
enough to absorb another granule [9–11]. de Gennes also
chose to focus on the voids and found that a Poisson
distribution of void sizes could give rise to the expected
inverse logarithmic relaxation [12]. Coglioti et.al. have
introduced a lattice model in which each granule can be
in one of two states with each state corresponding to a
different geometrical orientation [13,14]. The motion be-
tween neighbouring granules is constrained by their rel-
ative orientations, hence the rate of relaxation in their
model is governed by a form of geometrical frustration.

In this paper, we introduce a model for granular com-
paction which is neither macroscopic nor microscopic but
instead lies somewhere between these two extremes. It
is coarse grained in that it takes clusters of granules as
its dynamical unit rather than individual granules. This
approach is based on the picture of granular interactions
described by Mehta et.al. in relation to their simula-
tions [4–6], except that here we are interested in the
limit of weak vibrations. The resulting model is strik-
ingly similar to one already devised by Bak and Snep-
pen in a wildly different context, that of biological evo-
lution [15,16]. In Sec. II the model is described in detail
and its physical basis is explained. Careful considera-
tion is given to the range of validity of our assumptions.
Results of numerical simulations are compared to the ex-
perimental findings in Sec. III. The exact solution of a
mean field version of the model is investigated in Sec. IV.
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Finally, with give a summary of the model in Sec. V.

II. THE MODEL

Mehta et.al. picture the granular media as being sub-
divided into local clusters, as in Fig. 1(a), where a cluster
is defined as a group of granules belonging to the same
multi-particle potential well [4–6]. A vibration with an
intensity equivalent to the binding energy of a granule to
its well causes that granule to be ejected and move in-
dependently of the others. Under weaker vibrations, all
the granules remain in the well but still reorganise collec-
tively, albeit on a slower time scale to individual particle
motion. Although this description seems to be valid for
the range of intensities of vibration considered in their
simulations, it clearly fails for the much lower intensi-
ties relevant to the experiments [7,11]. We believe that
the picture is essentially correct but needs to be modi-
fied to describe the behaviour of the system deep in the
collective relaxation regime. To do this, we first need to
closely analyse exactly what is meant by a multi-particle
potential well.

Any given configuration of an ensemble of particles can
be represented by a single point in the space of all possi-
ble configurations. Each allowed configuration has a well
defined potential energy, and so the time evolution of the
ensemble under gravity can be described by a walk in con-
figuration space over a potential energy landscape. Now,
the preferred state for each individual granule is simply
resting at the bottom of the container. If the granules did
not interact, then the ensemble would trivially evolve to
the global minimum with every granule in its preferred
state, i.e. all resting on the bottom. Of course, real
granules do interact, and one granule moving downwards
will inevitably push some of the surrounding granules
upwards slightly. The ensemble is thus frustrated in that
it cannot simultaneously satisfy each granule’s tendency
to move downwards. In terms of the potential energy
landscape, this frustration results in a rugged landscape
with many local minima separated by barriers of various
heights. A schematic example is given in Fig. 2, where
for clarity we have compressed the entire configuration
space onto a single axis.

The ensemble will be at a local minimum between per-
turbations. The effect of the perturbation is to move
the ensemble to a point higher up on the landscape be-
fore it again relaxes, possibly to a different minimum.
For the low-energy perturbations we are concerned with
here, the ensemble will usually move between nearby
minima and consequently only a small number of gran-
ules will change their position or orientation. Following
Mehta et.al. we assume that these granules typically be-
long to some sort of collective structure, such as an arch
or bridge. Thus the system can be subdivided into lo-
calised clusters, where a cluster is now defined as the
unit of collective reconfiguration. Furthermore, we map

the system onto a lattice in which every site corresponds
to a single cluster, as in Fig. 1. This lattice representa-
tion is implicitly static and so will not be valid if there is
any form of global motion in the system, such as convec-
tion or surface flow, although it should still hold if there
is only a limited amount of local motion. Large per-
turbations will involve reorganisation on a system-wide
scale and the rapid rearrangement of cluster boundaries,
so the lattice representation is again expected to fail in
such situations.

(a)

(i,j)

(b)
FIG. 1. An example of the process of subdividing granu-

lar media into local clusters, given here for the case of two
dimensions. (a) A collection of circular granules separated
into clusters. The thick lines represent boundaries between
neighbouring clusters. (b) The corresponding lattice repre-
sentation. Each site (i, j) denotes a single cluster.

We now have a lattice of clusters, each of which move
on their own individual potential energy landscapes.
During the perturbation, each cluster is kicked to a point
higher up on its landscape, and those that subsequently
relax to a new minimum have collectively reconfigured.
When a cluster reconfigures the contacts between it and
adjacent clusters will be redistributed in a highly non-
trivial manner, the pattern of stress lines will be locally
distorted and the boundaries between adjacent clusters
may shift slightly to accommodate different granules. As
a consequence, there will be a significant change in the
landscapes of the cluster itself and those near to it. In
particular, we note that the heights of barriers between
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minima will change. It may seem possible for one of the
nearby clusters to move a significant distance on its new
landscape before finding a minimum, effectively consti-
tuting another reconfiguration event. However, this con-
tradicts the definition of a cluster as the fundamental unit
of collective reconfiguration, since any two clusters that
interact in this way should have been treated as a single
cluster in the first place. Thus it can safely be assumed
that nearby clusters will not reconfigure, although the
heights of barriers in their landscapes will still change.

Significant progress can be made if we do away with
the landscapes altogether and just deal with the heights
of barriers between minima instead. Indeed, as we are
only interested in the limit of weak perturbations, we
can go one step further and disregard all but the small-

est barrier, since this will almost always be the one that is
involved anyway. Each reconfiguration is assumed to al-
ter the landscapes in such a complicated manner that, to
good approximation, the height of a barrier can be taken
to be a random number drawn from a suitable probabil-
ity distribution. Although this distribution is in general
unknowable, we have found the model to be robust to a
variety of different choices, including uniform, exponen-
tial and Gaussian (robustness means that the essential
behaviour of the system remains unchanged with respect
to the modifications tried). We subsequently use the uni-
form probability distribution P (b) for barrier height b,
where

P (b) =

{

1 for b ∈ [0, 1], and
0 otherwise.

(1)

Consider now the effect of the external perturbation on
just a single cluster with a barrier height of bclust. Sup-
pose that the effect of the perturbation is for the cluster
to gain an energy of eΓ and to move to a corresponding
point higher up on its landscape. If eΓ < bclust, the clus-
ter cannot cross even its lowest barrier and so we can be
sure that it will relax to the same minimum that it was
at before. However, if eΓ ≥ bclust then there is a non-zero
probability that the cluster will reconfigure. We take this
probability to be of the form

{

∝ exp
{

−µ
(

eΓ
eΓ−bclust

)}

for eΓ > bclust,

= 0 for eΓ ≤ bclust,
(2)

where µ is a dimensionless constant. This may appear to
be a somewhat arbitrary choice, but a number of varia-
tions with a suitable cut-off at eΓ = bclust were tried, and
no essential difference in system behaviour was observed.
The choice of (2) was made since it is exponential in form,
implying some sort of underlying Poisson process, and it
has the correct asymptotics for eΓ → bclust and eΓ → ∞.
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FIG. 2. Schematic example of a potential energy landscape
for an ensemble of granules in configuration space. The en-
semble currently lies at the local minimum marked. The
smallest barrier to an adjacent minimum has a height of bclust.

When the container is vibrated, the associated energy
impulse is distributed in some undefined manner to all
the clusters in the system. We have observed little qual-
itative difference arising from distributing this energy
stochastically and henceforth assume that each cluster
receives the same energy eΓ. It should be clear from (2)
that the cluster with the smallest barrier in the system,
say of height bmin, is the most likely to reconfigure. With
this observation, we can make a further simplification
that also makes little difference to the system behaviour,
which is to assume that the cluster that reconfigures first
is always the one with the barrier height of bmin. Thus
there is no longer any need to simulate every perturbation
until the cluster reconfigures, we can instead just recon-
figure the cluster immediately and advance the time by
an amount δt, where

δt ∝ exp

{

µ

(

eΓ

eΓ − bmin

)}

. (3)

This is the expected number of perturbations of energy
eΓ required until the cluster with barrier height bmin re-
configures, and is the reciprocal of (2). For bmin ≤ eΓ, δt
is taken to be infinite.

We are now in a position to describe the model al-
gorithmically. The granular media is represented by a
lattice, each site of which corresponds to a unit of collec-
tive reconfiguration, ie. a cluster. The model is robust to
variations in lattice connectivity, so without loss of gener-
ality we choose a simple cubic array. Each cluster (i, j, k)
has an associated potential energy barrier against recon-
figuration, bijk, drawn from the probability distribution
P (b) given in (1). The external perturbation takes the
form of an energy impulse distributed uniformly through-
out the system, each cluster receiving an amount eΓ. At
each algorithm step, the cluster with the smallest barrier
in the system, bmin, is found. If eΓ ≤ bmin then the per-
turbation is too weak to cause any reconfiguration events,
the system is frozen and the simulation is complete. If
eΓ > bmin, the cluster in question and the 6 clusters ad-
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jacent to it are reconfigured - that is, their barriers are
redrawn from the same probability distribution as before.
The real time is increased by an amount δt defined in (3),
and the simulation moves on to the next algorithm step.
Note that we do not employ periodic boundary condi-
tions, instead clusters at the faces, edges or corners of
the lattice simply have 5, 4 or 3 adjacent clusters, re-
spectively.

Numerical solutions of the model are presented in the
following section. For now, we would like to remark
upon the strong similarity between this model and a
model of biological evolution already devised by Bak and
Sneppen [15]. The lattice sites in their model repre-
sent different species, each of which is assigned a bar-
rier against mutation corresponding to the smallest bar-
rier between local optima on a rugged fitness landscape.
The species mutate and interact with adjacent species in
much the same way that clusters reconfigure and inter-
act with adjacent clusters in our model. The primary
difference between the models is that, whereas clusters
cannot move higher than eΓ on their potential energy
landscapes, corresponding to the strength of the external
impulse, species are subject to no such energetic con-
straints (there is no such thing as the “conservation of
fitness”) and move around their fitness landscapes spon-
taneously. As long as this difference is borne in mind, we
can draw upon the plethora of results already accumu-
lated for the evolution model in analysing our model of
compaction (for a review, see [16]).

III. COMPARISON TO EXPERIMENTS

We begin by describing the numerical solution of the
model for a system comprising of N clusters. The dis-
tribution of barrier heights, Q(b), is defined such that a
proportion Q(b)δb of the clusters have a barrier height in
the range b to b + δb. As the system evolves, Q(b) ex-
hibits two qualitatively different regions, one for large b
and one for small b. Large barriers have either not been
touched since the simulation began, or (more likely) they
have been redrawn from the uniform distribution P (b)
as the consequence of an adjacent cluster reconfiguring.
As such, Q(b) for large b must also be uniform, except
for statistical fluctuations. The situation is more com-
plicated for small barriers since there is now the added
possibility of being selected as the minimum of the sys-
tem. Very small barriers are unlikely to last long and so
Q(b) tails off to zero as b → 0. The boundary between
these two regions is given by the gap function G(t), which
is the largest barrier height that has ever been the min-
imum of the system. Finding the minimum barrier and
giving it a new value can be viewed as a flux from the
region b ≤ G(t) to the region b > G(t). When there are
no barriers left in the region b ≤ G(t), larger barriers will
be selected as the minimum and so G(t) will increase.
If there were no interactions, there would only be this

unidirectional flux and G(t) would slowly approach 1 as
t → ∞. However, with interactions there is also a flux
in the reverse direction, from b > G(t) to b ≤ G(t), cor-
responding to the new values given to the barriers of
adjacent clusters. Hence G(t) in fact approaches a con-
stant value b∗ ∈ (0, 1), where b∗ is a function of the lattice
connectivity and the system size N .

We have not yet considered the effect of the parame-
ter eΓ. This appears in the equation for δt, the time step
between successive reconfiguration events, which also de-
pends on the current value of the minimum barrier (3).
It can be seen from (3) that δt becomes singular when the
minimum barrier is greater than or equal to eΓ. If eΓ > b∗

then this can never happen, since the minimum fluctuates
between 0 and G(t), and G(t) → b∗ as t → ∞. Accord-
ingly the system approaches a statistical steady state in
which δt fluctuates around some constant value. By con-
trast, if eΓ < b∗ then it now becomes possible for G(t),
and hence also the minimum, to take values close to eΓ.
As it does so, δt will diverge and the system will freeze
into a state in which every cluster has a barrier greater
than eΓ and there can be no further reconfigurations. An
example of how G(t) depends on eΓ is given in Fig. 3 for
a 40 × 40 × 40 lattice, for which b∗ ≈ 0.21.

Time, t
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FIG. 3. Plot of the gap function G(t) for various values of
eΓ, for a 40 × 40 × 40 lattice. Key: Plus signs, eΓ = 0.4. As-
terixes, eΓ = 0.3. Open circles, eΓ = 0.25. Crosses, eΓ = 0.2.
Filled circles, eΓ = 0.15. Dots, eΓ = 0.1. Note that in this
and all subsequent plots we have taken the time step to be
δt = exp{eΓ/(eΓ − bmin)}/N , where N is the system size, so
the units on the time axis are arbitrary.

The model has so far been described in terms of the en-
ergy impulse per cluster eΓ and the barrier distribution
Q(b). However, the experimental results were given in
terms of an acceleration parameter Γ and the density ρ.
Before comparing the model with the experimental re-
sults, we must first consider how these two sets of quan-
tities are related. We start with eΓ and Γ. The accel-
eration parameter Γ is defined as the peak acceleration
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during the perturbation scaled by gravity, Γ = amax/g.
This was also found to be the relevant parameter for the
stability of a bead heap under vibration [17]. Although
it seems reasonable that a higher Γ should mean more
energy is distributed throughout the system and hence
a higher eΓ, the precise relationship is likely to be very
complex and we have been unable to derive a formula
relating the two. Instead we simply assume that, for the
small vibrations considered here, the relationship is ap-
proximately linear, eΓ ∝ Γ.

Trying to quantify the relationship between the barrier
distribution and density is more problematic since a po-
tential energy barrier is an intrinsically abstract concept.
Nonetheless, a rough formula can be derived as follows.
Consider an individual cluster with a barrier bclust and
density ρclust. The cluster’s horizontal cross sectional
area is assumed to remain roughly constant throughout
the compaction process, so the typical vertical separation
between the granule centres will be inversely proportional
to ρclust. The cluster cannot reconfigure unless this ver-
tical separation is increased to the order of the granule
diameter, thus allowing the granules to move over one an-
other. Since the granule diameter is constant, the change
in height required for reconfiguration will also depend
inversely upon ρclust. The potential energy gained by a
particle is, of course, proportional to its height increase,
so bclust also varies inversely with ρclust. Extrapolating
this result over the entire system amounts to finding the
mean barrier height b̄, so finally we have

b̄ ∼ ρ−1 . (4)

This derivation is simplified in that, for instance, it does
not incorporate the effect of adjacent clusters on the value
of bclust. We expect it to work for overall trends in density
but not for small fluctuations.

We are now in a position to test the model against the
experimental results. As mentioned in the introduction,
the density was experimentally found to relax inverse log-
arithmically with time, ρ(t) ∼ (log t)−1 [7]. From (4) the
corresponding relationship in terms of the mean barrier
height is therefore b̄(t) ∼ log t, which will show up as a
straight line on a graph of b̄(t) vs log t. Such a graph is
given in Fig. 4 for a range of values of eΓ. Linear be-
haviour is apparent over a broad range of densities for
eΓ > b∗, confirming logarithmic relaxation towards the
statistical steady state. For eΓ < b∗, the relaxation is
initially logarithmic but slows down as the frozen steady
state is approached. Note that although the logarithmic
behaviour is robust, the actual values on the axes depend
upon which of the various arbitrary choices mentioned in
the previous section have been made and hence have no
physical meaning.

Little has been said so far about initial conditions.
Before the first selection of the minimum barrier Q(b)
is uniform over the entire range [0, 1], so that even a
small eΓ will cause a significant amount of reconfigura-
tion. This corresponds to a state of minimum compactiv-

ity which is very difficult to attain experimentally. For

instance, there will always be a certain amount of back-
ground noise, and the granules added later to the appa-
ratus will impact upon those already present, inevitably
causing some compaction. Instead, the experiments al-
ways started from a slightly compacted state with a den-
sity fraction of 0.577±0.005. This initial compaction can
be incorporated into the model by shifting the time axis
so that the origin corresponds to when G(t) first becomes
greater than a parameter binit > 0. Values of eΓ ≈ binit

or less are too small to cause any significant further com-
paction. This is readily apparent in Fig. 5, where we
have plotted b̄ in the limit t → ∞ against eΓ. The line
is flat for eΓ < binit, increases linearly for binit < eΓ < b∗

and levels out again for higher eΓ. This should be com-
pared with the corresponding experimental plot, which is
Fig. 3 in [7], from which we estimate that b∗ corresponds
to Γ ≈ 3.

ln( t )
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FIG. 4. b̄(t) vs. ln t for a range of values of eΓ. The data
was taken from single runs on a 40×40×40 lattice, for which
b∗ ≈ 0.21. From top to bottom, the values of eΓ are: 0.4, 0.3,
0.25, 0.2, 0.15, 0.1. Solid lines have been used for eΓ > b∗ and
dashed lines have been used for eΓ < b∗.

An apparently anomalous feature of Fig. 5 is that the
highest densities are to be found, not for large eΓ, as
might be expected, but instead for values of eΓ near the
threshold value b∗. This occurs because of finite size ef-
fects. Recall that, for eΓ > b∗, the barrier distribution
evolves to a state which is uniform for b > b∗ with a tail
for b < b∗. It is the very existence of this tail, which
disappears in the thermodynamic limit N → ∞, that re-
duces the mean barrier b̄ for finite systems. When eΓ

is slightly less than b∗ then, although the uniform re-
gion is slightly broader, the selection process can remove
some of the barriers from the tail permanently and so
the net effect is to increase b̄. An even greater degree
of compaction can be obtained if a system with eΓ > b∗

is first allowed to self-organise to the statistical steady
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state, then eΓ is slowly reduced to zero to remove as
much of the tail as possible. Quickly reducing eΓ will not
give enough time for the selection process to work be-
fore the system froze and so b̄ would barely change. An
example of this process is given in Fig. 6, where to ac-
centuate the finite size effects a 4×4×4 lattice was used.
Nowak et.al. have produced similar plots from their ex-
periments, which they regard as a type of annealing pro-
cess [11,18]. They label the lower branch of the graph,
when the intensity of vibration is increased for the first
time, as “irreversible”. In the language of our model,
we prefer to call this the self-organising branch. The
self-organising branch meets an upper reversible branch
around the point Γ∗ ≈ 3. This is to be expected since,
as mentioned in the previous paragraph, this value of Γ
corresponds to the threshold value b∗, that is, the point
at which the system can self-organise into the statisti-
cal steady state. According to the model, the change in
density along the upper branch is due to the effects of
finite size, so there should be a greater variation when
larger beads are used in the same sized apparatus. This
is in agreement with the experiments except for when
the largest bead size was used [18]. In this case, al-
though the overall density variation was the greatest, a
disproportionately large amount of it occurred along the
self-organising branch, possibly due to the cylinder walls
aligning the beads into a highly compact crystalline con-
figuration. Another feature observed in the experiments
is that the threshold value Γ∗ appears to increase when Γ
is updated more rapidly. The model agrees with this and
attributes it to the larger number of steps that will take
place before the system has had time to self-organise.
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FIG. 5. The mean barrier height b̄ in the final steady state
as a function of eΓ. Note that since b̄ ∝ (ρ0 − ρ)−1 ∼ ρ the
vertical axis can also be identified as the (approximate) den-
sity. The simulations were performed on a 10×10×10 lattice
and averaged over 1000 runs. binit = 0.08 and b∗ ≈ 0.25.

For eΓ > b∗ the steady state is statistical in nature, so
another test for the model would be to compare the fluc-
tuations of b̄ around its steady state value to the fluctu-
ations in density measured experimentally. However, as

previously mentioned, the argument relating b̄ to ρ is not
expected to hold for small changes. The change in density
caused by, say, a single reconfiguration event will be sen-
sitive to the exact positions of a large number of granules
at that instant in time. The experimental plot of density
fluctuations is Gaussian in form [11], indicative of the
large number of independent factors involved. A more
revealing distribution is the power spectrum of density
fluctuations, S(f), where the frequency f is measured
in units of (taps)−1. Experimentally, S(f) was found to
obey the power law S(f) ∝ f−δ, with δ = 0.9 ± 0.2, for
a broad range of f . Apart from finite size effects, the
model predicts a power law with δ = 1 [16]. When large
intensities of vibration were applied in the experiments,
the power law behaviour was broken up by regions with
δ = 0, 0.5 or 2. We cannot account for this and attribute
it to the expected breakdown of the model for large vi-
brations.
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FIG. 6. Annealing curve for a 4 × 4 × 4 lattice, for which
b∗ ≈ 0.38. eΓ first increases from 0.04 to 0.68 in steps of
0.04 (filled circles), then decreases by the same step size from
0.68 to 0.04 (open circles). Finally, eΓ is increased up to 0.68
again (asterixes). binit was set at 0.08. Each simulation was
run until t ≈ 156, and the final plot was averaged over 1000
such runs.

We end this section by briefly considering how the
model might also be applied to a set of related experi-
ments. Jaeger et.al. [19] have shown that the angle of
repose θ(t) of granular media in a half-filled cylindri-
cal drum relaxes according to θ(t) ∼ log t when vibrated.
Furthermore, they also demonstrated the existence of a
threshold in the intensity of vibration below which the
relaxation was qualitatively slower. If we ignore the
compaction process which presumably occurs in the bulk
of the pile, then the typical vertical separation between
granule centres is now proportional to tan θ, although for
the range of angles involved we can use tan θ ≈ θ instead.
We can now repeat the argument given earlier for density
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and find that the relationship between the mean barrier
and the slope is b̄ ∼ θ, to first order. Hence the model
also predicts relaxation of the form θ(t) ∼ log t and the
existence of the threshold in the intensity of vibration.
However, we have reservations in applying the model to
this new geometry since it blatantly involves a global, al-
beit slow, movement of granules over the surface, some-
thing which we have explicitly stated the model does not

cater for. It should also be mentioned that other theo-
retical explanations for this behaviour have already been
given [4,5,19].

IV. MEAN-FIELD ANALYSIS

The picture presented thus far can be extended by
considering a mean field version of the model which is
open to quantitative analysis. This simplified model ex-
hibits many of the traits apparent in the exact model,
especially in the relaxation towards the statistical steady
state. However, it behaves very differently in the steady
state itself, and we refer the reader elsewhere for analysis
of the original model in this much studied regime [15,16].
The required mean field approximation is to be achieved
in two stages. First, all spatial definition is removed.
This means that, when the cluster with the smallest bar-
rier in a system of N clusters is found and reconfigured,
K other clusters are chosen at random from the remain-
ing N − 1 and their barriers given new values. These
K clusters are equivalent to the adjacent clusters in the
original model, so for example K = 6 corresponds to a 3
dimensional system. The second simplification is to as-
sume that N is very large. In this way the system can be
described by continuous rather than discrete variables,
to within an error margin of O(1/N).

For the first part of this section, the evolution of the
system will be described in terms of a time variable τ
which increases by 1/N between successive reconfigura-
tions. The inclusion of the variable time step given in (3)
will be postponed until later. The system is described by
the cumulative barrier distribution C(b, τ), which is de-
fined as the proportion of clusters with barriers less than
b at time τ and is related to Q(b, τ) by

C(b, τ) =

∫ b

0

Q(x, τ) dx . (5)

The time scale has been normalised to one reconfigura-
tion per cluster per unit τ , so C(b, τ) evolves according
to

∂C(b, τ)

∂τ
= −θ(b − bmin(τ)) − K C(b, τ) + b (K + 1) ,

(6)

where bmin(τ) is the value of the minimum barrier in
the system at time τ and θ(b) = 1 for b > 0 and 0 oth-
erwise. The removal of the minimum barrier has the

effect of reducing C(b, τ) for all values of b > bmin(τ) but
leaves it unchanged for b < bmin(τ). This is handled by
the first term on the right hand side of (6). In a simi-
lar manner, the second and third terms account for the
selection of the K random nearest neighbours and the
K + 1 new barrier values, respectively. It is straightfor-
ward to check that (6) preserves C(0, τ) = 0, C(1, τ) = 1
and C(b1, τ) ≥ C(b2, τ) for b1 > b2, for all values of τ .

The rate equation (6) is not yet in a closed form be-
cause it involves the unknown quantity bmin(τ). We
might naively try to write down a second equation giv-
ing bmin(τ) in terms of C(b, τ), perhaps something like
C(bmin(τ), τ) = 1/N . However, it must be recalled that
errors of O(1/N) have already been made in going from
the discrete model to this continuous description, and so
C(b, τ) cannot be used to this degree of accuracy. In-
deed, any attempt to define the minimum barrier within
a continuum framework is doomed to failure for this very
reason. We are forced to conclude that there can be no
set of closed equations in terms of C(b, τ). All is not lost,
however, since this problem can be partially circumnavi-
gated by use of the gap function G(τ). As before, G(τ) is
defined as the highest value that bmin(τ) has ever taken,
or more formally,

G(τ) = sup
0≤z≤τ

bmin(z) . (7)

Values of b greater than G(τ) must by definition be
greater than every value bmin has taken up to a time
τ . This allows for (6) to be simplified to

∂C(b, τ)

∂τ
= −(K C(b, τ) + 1) + b (K + 1) , (8)

for b > G(τ). This can be solved by substituting
C(b, τ) = α(τ)b + β(τ) and comparing coefficients of b.
With the initial condition C(b, 0) = b (so binit = 0), the
result is

C(b, τ) = b +
b − 1

K

(

1 − e−Kτ
)

(9)

The fact that C(b, τ) is linear means that the barrier dis-
tribution Q(b, τ) is uniform for b > G(τ), as expected.
The solution (9) holds from b = 1 down to b ≈ G(τ),
where the continuum approximation starts to break down
and we have entered into the asymptotic tail. Since there
are only O(1/N) clusters in this tail, the value of G(τ)
will correspond to the point at which C(b, τ) is zero,
ie. C(G(τ), τ) = 0. Together with (9) this allows for the
time dependent form of G(τ) to be found,

G(τ) =
1 − e−Kτ

K + 1 − e−Kτ
. (10)

Ray and Jan have also found this result by an alternative
method [20]. The threshold value of b in this mean field
model is therefore

7



b∗ = lim
τ→∞

G(τ) =
1

K + 1
, (11)

which is smaller than in the exact model.
In this approximation, the mean barrier height b̄ be-

haves in the same way as the gap function. This
is because, to O(1/N), there is no tail for b < G(τ)
and the barrier distribution is uniform for b > G(τ),
so b̄(τ) = (1 + G(τ))/2, which is just a linear rescaling.
Hence we expect G(τ) to vary logarithmically with τ .
When the expression for G(τ) given in (10) is plotted
against log τ it exhibits a linear region similar to the ex-
act model, but not extending quite as close to the steady
state. The gradient of G(τ) in this log-linear plot is

dG(τ)

d(ln τ)
= τ

dG(τ)

dτ
= τG′(τ) . (12)

The linear region occurs around the point where the gra-
dient is stationary, ie. when the second derivative is zero,

d

d(ln τ)

(

dG(τ)

d(ln τ)

)

= τ (G′(τ) + τG′′(τ)) = 0 . (13)

The solution with τ = 0 corresponds to the singularity
in ln τ and can be ignored. Using (10), the non-trivial
solution is

τ =
1

K
tanh

K

2
(τ + τ0) , (14)

where the constant τ0 = (ln(K + 1))/K. Since the slope
is roughly constant in this region there is no need to find
the exact value of τ that satisfies (14). Instead we ob-
serve that, for large K, the tanh function is roughly equal
to 1 for all τ > 0, so an approximate solution is τ ≈ 1/K
and hence the slope is

dG(τ)

d(ln τ)

∣

∣

∣

∣

τ≈ 1

K

≈
Ke

[(K + 1)e − 1]2
. (15)

We now turn to consider the effect of the variable
timestep δt as defined in (3), which depends on bmin

and eΓ. The quantity bmin is unknown, but we know from
the discrete model that it fluctuates between 0 and G(τ)
and therefore substituting G(τ) for bmin(τ) gives a quali-
tatively identical solution. The new time scale is denoted
by t(τ) and is defined by

dt

dτ
= exp

{

µ

(

eΓ

eΓ − G(τ)

)}

. (16)

For small τ , G(τ) = τ + O(τ2) and (16) can be solved
with the initial condition t(0) = 0 to give

t(τ) = eµ

(

τ +
µ

2eΓ

τ2 + O(τ3)

)

, (17)

which is linear up to τ = O(e
1

2

Γ ). The behaviour of t(τ)
for large τ depends upon whether eΓ is greater than,

less than or equal to the threshold value b∗ = 1
K+1

. For

eΓ > b∗, G(τ) → 1
K+1

as τ → ∞ and consequently

t ∼ τ exp

{

µ

(

eΓ

eΓ − 1
K+1

)}

. (18)

The time scale is stretched by a constant factor, but oth-
erwise the system approaches the same statistical steady
state as before. For eΓ < b∗, (16) becomes singular at the
point τ = τcrit at which G(τcrit) = eΓ. Since δt diverges
there are no more reconfigurations and the system is in a
frozen steady state. The precise nature of this singularity
can be found by substituting τ = τcrit − ǫ into (16), with
ǫ small and positive. As ǫ → 0, t(τ) diverges according
to

dt

dτ

∣

∣

∣

∣

ǫ→0

∼ eA/ǫ , (19)

where the constant

A = µ
eΓ

(1 − eΓ)(1 − (K + 1)eΓ)
. (20)

Finally, for eΓ = b∗ (16) can be algebraically reduced to

dt

dτ

∣

∣

∣

∣

τ→∞

∼ exp

{

µ
K + 1

K
eKτ

}

(21)

for large τ , which is divergent.
Now that we have confirmed that eΓ has the same ef-

fect in the mean field model as in the exact model, we
need to see what it does to the rate of logarithmic decay.
This is straightforward for eΓ ≫ b∗ since

t = eµτ + O(e −1
Γ ) , (22)

so to first order in e −1
Γ the time scale is just stretched

by a constant factor, which does not alter the gradient in
a log-linear plot. This means that slope of G(t) vs log t
is the same as the slope of G(τ) vs log τ and (15) can
be used without modification. For instance, in the exact
system with large eΓ the slope is approximately 0.048
in 3 dimensions, whereas the value predicted by (15) for
K = 6 is 0.050.

Modifying (15) to incorporate eΓ < ∞ is troublesome
and we have been unable to derive a general formula.
Nonetheless there is still some hint of a correspon-
dence between this analysis and the experiments. In [7]
Knight et.al. introduce a parameter τ which we call τexp

so as not to confuse it with our τ . τexp gives a rough
measure of the time scale of the relaxation process. We
tentatively equate this to the quantity dt/dτ , and in-
deed the experimental plot of τexp vs Γ looks similar to
the form of dt/dτ given in (16). However, this is not
a robust feature of the model and so it is impossible to
come to any concrete conclusions. The experimental data
also shows a noticeable change in behaviour for small Γ.
This could be caused the system entering into the frozen
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steady state before the logarithmic relaxation has had
a chance to take hold, ie. when τcrit ≪

1
K , although it

could just be the effect of the initial compaction.
Finally, we demonstrate how this analysis can be ex-

tended to incorporate energy dissipated by a reconfigur-
ing cluster to its nearest neighbours. Suppose that each
adjacent cluster receives an energy ediss and immediately
reconfigures if its barrier is smaller than this, dissipating
a further energy ediss to each of its neighbours, and so on.
Using the same mean field approximations as before, the
net effect of this avalanche between perturbations is to
increase the number of barriers that change value at each
time step. Of the K random nearest neighbours, Kediss

will immediately reconfigure and so the total number of
new barriers per time step dτ is now

K + K(Kediss) + K(Kediss)
2 + K(Kediss)

3 + . . .

=
K

1 − Kediss

, (23)

for ediss < 1
K . Larger values of ediss are unphysical since

they result in perpetual reconfiguration. The new rate
equation for C(b, τ) is

∂C(b, τ)

∂τ
= −θ(b − bmin(τ)) −

K

1 − Kediss

+

(

1 +
K

1 − Kediss

)

b , (24)

which can be solved as before to give

C(b, τ) = b +
b − 1

K
(1 − Kediss)

(

1 − exp

[

−
Kτ

1 − Kediss

])

(25)

for b > G(τ). This is the same as the solution al-
ready given in (9) except that K has been replaced
by the effective number of random nearest neighbours
K/(1 − Kediss). The time scale is similarly stretched by
the constant factor 1 − Kediss. Hence the inclusion of
energy dissipation in this manner does not alter the be-
haviour of the system, nor does it change the slope of
G(τ) in a log-linear graph.

V. SUMMARY AND DISCUSSION

We have presented a theoretical model for the com-
paction of granular materials by low intensity perturba-
tions which appears to agree well with a range of experi-
mental results. This includes the logarithmic relaxation,
the effect of varying the intensity of vibration resulting
in a so-called “annealing” curve, and the power spec-
trum of density fluctuations in the steady state. We have
segmented the granular media into local subsystems or

clusters which represent ensembles of granules that col-
lectively reconfigure. Associated with each cluster is a
potential energy barrier against reconfiguration. When-
ever a perturbation gives a cluster enough energy to cross
over its barrier into a new configuration, nearby clusters
are disrupted and their barriers take on new values. The
system behaviour is dominated by this dynamical inter-
action between clusters and fine detail such as the choice
of distribution for the barrier values makes little or no
difference. Indeed, it is this very robustness that leads
us to hope that the model might correctly describe the
mechanism underlying the compaction process, despite
its algorithmic simplicity.

It has been suggested that standard statistical mechan-
ics can be applied to granular materials if the fundamen-
tal quantities involved are suitably reinterpreted [21,22].
Volume plays the role of energy, and the quantity con-
jugate to volume is known as compactivity, which is the
analogue of temperature. The compactivity is infinite
when the system is at its maximum volume and zero
when it is at its minimum. Our model can also be de-
scribed in terms of volume rather than energy since the
external perturbations increase the volume of the sys-
tem as well as its energy. Hence we can assign a volume
barrier to each cluster which must be exceeded for re-
configuration to take place. In this way, we can see the
beginnings of a link to the modified statistical mechanics,
perhaps with the barriers being in some way related to
the compactivity. This is just speculation, however, and
further investigation is required. There are also be many
ways in which the model can be enhanced make it more
physically realistic. For instance, the model is currently
isotropic, but real granular media exhibits a density gra-
dient with the densest regions near the bottom.

There is another way to compact granules into a
smaller volume, and that is simply to apply a uniform
pressure. This forces the granules to rearrange into a
higher density state, as with the perturbation-induced
compaction studied in this paper, although the granules
are now also subject to deformation and fracturing. A
theoretical model for compaction by applied pressure has
been proposed which treats the media as being comprised
of a number of subsystems, each of which is associated
with a pressure barrier [23]. This obviously bears some
similarity to the approach we have adopted in construct-
ing our model. A crucial difference is that the subsystems
in the pressure model do not interact and the values for
the barriers are simply drawn from a suitable distribu-
tion. In our model, the choice of distribution is unimpor-
tant and it is the dynamical interactions between sub-
systems that dominates the system behaviour. It would
be interesting to see if the interacting cluster picture can
be applied to this or any other experimental situation
involving granular materials.
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