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Abstract

We introduce and solve a model that mimics the herding effect in financial

markets when groups of agents share information. The number of agents in

the model is growing and at each time step either (i) with probability p an

incoming agent joins an existing group, or (ii) with probability 1− p a group

is fragmented into individual agents. The group size distribution is found to

be power-law with an exponent that depends continuously on p. A number

of variants of our basic model are discussed. Comparisons are made between

these models and other models of herding and random growing networks.
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I. INTRODUCTION

Empirical studies of financial price-data on short time scales have revealed that the price

variations of various assets, indices and currencies have fat-tails [1,2]. These tails have been

shown to be power-law with an exponent in the distribution of returns close to 4 in a number

of different markets [3,4]. Beyond this power-law behaviour the distribution crosses over to

an exponential decay or to a steeper power-law [3].

It is believed that this behaviour is brought about by a herding effect in which groups

of agents all behave in the same way. Cont and Bouchaud [5] introduced a model of ran-

domly connected agents to investigate this herding effect. In [5] agents are connected with

probability p and agents that are part of the same group share information and make the

same decisions. The parameter p is tuned to be close to the percolation threshold in order to

obtain a power-law distribution of group sizes. This in turn leads to a power-law distribution

of returns.

In [6] an extension to this picture was introduced in which, instead of being static, the

network of agents evolves dynamically as decisions are being made or as agents exchange

information. In this model, which was solved exactly in [7], at each time step either two

groups of agents shared their information and were aggregated, or a group of agents trade,

using their information, and the group is then fragmented.

In this paper we introduce an alternative kinetic model for this phenomenon. In our

model, as in [6,7], when a group of agents trade, they use up their shared information, and

are fragmented to become individual agents again. However, we allow new agents to enter

the system and join the existing groups. When this occurs the new agents join a group

of size k with a rate proportional to k, so that large groups grow more quickly than small

ones. This seems reasonable as one would expect a new agent to be more likely to come

into contact with a member of a large group than with a member of a smaller group. This

process is called preferential attachment in the theory of random growing networks where

an incoming node is more likely to connect to a node with a high degree [8,9].
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In Sec. 2 we present our model and find an exact analytical expression for the group

size distribution. In Sec. 3 we introduce a generalised version of our initial model and a few

particular cases are solved. We discuss our work and draw some conclusions in Sec. 4.

II. THE MODEL

We introduce a model in which at each time step one of two events can occur. With

probability p an agent is added to the system and joins a group of size k with a rate

proportional to k. Alternatively, with probability q = 1 − p a group is selected at random,

with a rate independent of the size of the group, and the group is fragmented into individual

agents. Consequently the number nk(t) of groups of size k > 1 at time t evolves like

dnk(t)

dt
=

p

M(t)
[(k − 1)nk−1 − knk] − q

nk

N(t)
(1)

and the number of groups with only one agent, or equivalently the number of agents in a

group on their own, behaves like

dn1(t)

dt
= −p

n1

M(t)
+

q

N(t)

∞
∑

k=2

knk. (2)

In these equations

N(t) =
∞
∑

k=1

nk(t) (3)

represents the number of groups and

M(t) =
∞
∑

k=1

knk(t) (4)

is the number of agents in the system. The first term on the right hand side of Eq.(1)

describes the addition of a new agent to an existing group and the last term describes the

fragmentation of a group of size k into k groups of size 1. In Eq.(2) the first term on the

right hand side is the destruction of free agents caused by the arrival of a new agent and the

second, summation, term is the creation of individual agents by the fragmentation of other

groups. Using rate equations (1) and (2) it is a simple matter to show that
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dN(t)

dt
= (1 − p)

[

M(t)

N(t)
− 1

]

(5)

and

dM(t)

dt
= p. (6)

Equation (5) represents the fact that with probability 1 − p, on average, the number of

groups increases by the average group size minus one. Similarly, Eq.(6) indicates that with

probability p the number of agents increases by 1. The form of Eqs.(1,2,5,6) suggests that

the solution for nk(t), for k = 1, 2, ..., is linear in time for large t. In this limit we can solve

Eqs.(5,6) to yield

N(t) = αt and M(t) = pt (7)

where

α =
1 − p

2

[
√

4
p

1 − p
+ 1 − 1

]

. (8)

Writing

nk(t) = tck (9)

we find that for k > 1

ck = [(k − 1)ck−1 − kck] −
1 − p

α
ck. (10)

Using an initial condition obtained from Eq.(2) we can solve Eq.(10) to give

ck =
p(1 − p)

α
Γ(β)

Γ(k)

Γ(k + β)
(11)

where

β = 2 +
1 − p

α
= 2





√

4 p

1−p
+ 1

√

4 p

1−p
+ 1 − 1



 . (12)

As k → ∞,
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ck ∼ k−β. (13)

Varying p in [0, 1], we find that β can take any value β > 2. As p → 0 then β → ∞ and

when p → 1 then β → 2. At p = q = 1/2, β = (
√

5 + 1)
√

5/2.

The distribution of returns, R(k), is the distribution of the relative difference between

the number of buyers and the number of sellers. This can be obtained by realising that

a group of agents of size k trades with rate kck. If we assume that the traded amount is

proportional to the number of agents in the group, then we find that

R(k) ∼ kck ∼ k−δ (14)

where δ = β − 1. By varying p we can allow δ to take any value greater than 1.

III. GENERALISATIONS

The above models can be generalised by allowing incoming agents to join groups of size

k with rate Ak and fragmenting groups of size k with rate Bk. In the previous section we

considered the model with Ak = k and Bk = 1. The rate equations (Eqs.(1,2)) can be

rewritten

dnk(t)

dt
=

p

A(t)
[Ak−1nk−1 − Aknk] − qBk

nk

B(t)
(15)

and

dn1(t)

dt
= −pA1

n1

A(t)
+

q

B(t)

∞
∑

k=2

kBknk. (16)

In these equations

A(t) =
∞
∑

k=1

Aknk(t) (17)

and

B(t) =
∞
∑

k=1

Bknk(t). (18)
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The terms in Eqs.(15,16) have the same meaning as those in Eqs.(1,2). Obviously we cannot

solve the above equations for general Ak and Bk so instead we consider four simple special

cases.

Model A Ak = Bk = 1. This is the simplest model in this class. With constant

interaction kernels one would expect the power-law behaviour to disappear. This is indeed

what happens and we easily find that

ck = (1 − p)
[

p

α + 1

]k

(19)

with α given in Eq.(8).

Model B Ak = k + λ and Bk = 1. Here we keep the fragmentation rate constant but

adjust the preferential attachment by adding a constant λ > −1 to the rate. As in the work

on random growing networks, [8], we retain a power-law group size distribution, but with a

modified exponent

β = 2

√

4 p

1−p
+ 1 + λ

√

4 p

1−p
+ 1 − 1

. (20)

As before, varying p in [0, 1] gives values of β between 2 and ∞.

Model C Ak = Bk = k. In this model the preferential attachment and the fragmenta-

tion proceed at the same rate and we find that

ck ∼
Γ(k)

Γ(k + p + 1)
pk (21)

so that the distribution is a power-law with an exponential cut-off for large k.

Model D Ak = 1 and Bk = 1/k. Here the ratio Ak/Bk ∼ k as in our first model.

Hence one might anticipate that the group size distribution would be power-law. In fact

ck = c1

Γ(k + 1)Γ(2 + ∆+1−p

∆+p
)

Γ(k + ∆+1−p

∆+p
+ 1)

[

p

∆ + p

]k−1

(22)

where ∆(p) is determined by

∆ =
∞
∑

k=1

ck. (23)

As in Model C, this version exhibits a power-law with an exponential cut-off. The cut-off

remains for all values of p.
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IV. DISCUSSION

We have introduced and solved a kinetic model of herding which exhibits a power-law

distribution of group sizes for all its parameter values. The exponent of the power-law can be

varied continuously. Other systems introduced to investigate the herding phenomenon, [5–7],

required a tuning of their parameters to obtain a power-law. Furthermore, the exponent

obtained in [5–7] is much smaller than those obtained empirically for this phenomenon [2–4].

We would require a value of p ≈ 1/3 to give a distribution of returns with an exponent ≈ 4,

Eq.(14), to match the empirical results [2–4].

Our system is open and growing with new agents are continually entering the system.

These new agents join an existing group with preferential attachment. This is in contrast

to [6,7], where there were a fixed number of agents and the groups increased in size by

coagulation. In this sense our model is reminiscent of random growing systems [8,9], where

power-law distributions are often found. We have been able to make use of similar solution

techniques to those employed on network models [9].

A consideration of a few variants of our model indicates that a delicate balance between

fragmentation and attachment is required to obtain power-laws over a range of parameter

values. An exponential group size distribution is found for the constant coefficient model

and a power-law mediated by an exponential cut-off is obtained when Ak = Ak = k and

Ak = 1, Bk = 1/k. It is only when we keep the same rate of fragmentation, and enhance

the preferential attachment with an additive constant, that power-laws are again recovered.

This suggests that preferential attachment is a necessary condition for power-laws in these

systems.
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