

GMMA from genetically-engineered meningococcus as vaccine for Africa

Arianna Marini¹, Omar Rossi², Allan Saul³, Calman A. MacLennan⁴, Ian Henderson¹, Adam Cunningham¹, Oliver Koeberling⁴

¹University of Birmingham, UK. ²University of Cambridge, UK. ³NVGH, Italy. ⁴Wellcome Trust Sanger Institute, UK

Meningitis in Africa

African meningits Belt

- >350 million people at risk
- · Incidence up to 1000 per 100,000 people
- · Mortality up to 15% of cases
- Serogroup A cases ↓
- Serogroup W and X still causing epidemics
- NO AFFORDABLE

VACCINE FOR ALL SEROGROUP AVAILABLE

GMMA

Gram-negative bacteria naturally shed outer membrane vesicles (OMVs). Structural changes in bacterial outer membrane lead to GMMA, Generalized Modules for Membrane Antigens: outer membrane vesicles to use as vaccine. They are safe, cheap to produce, and can give broad protection against pathogens.

GMMA as vaccine for Africa against N. meningitidis

We genetically engeneered a N. meningitidis african strain: it overproduces GMMA containing protective antigens against meningoccocal strains affectcting Sub-Saharan Africa.

Negative Stain Transmission Electron Microscopy of GMMA

NO capsule Over blebbing Over-expressing protective antigens Detoxified endotoxin

Negative Stain Transmission Electron Microscopy of engineered N. meningitidis

Conclusion and future prospective

- · We genetically engineered an African meningoccocal strain with deleted capsule biosynthesis, detoxified endotoxin, over-expression of protective antigens, and over-blebbing.
- GMMA from this mutated strain are promising as an affordable vaccine against all N. meningitidis serogroups causing meningococcal disease in sub-Saharan Africa.
- Evalution of fine-specificity of protection and mechanism of cellular immunuty to the vaccine are under evaluation.

References

- · WHO, 2014
- · Keoberling et al., Vaccine 2014
- · Xie et al., Vaccine 2013
- · Kuehn and Kesty, Genes & Dev. 2005

Acknoledgment

This work was supported by a PhD Fellowship to Arianna Marini as part of a European Union FP7 European Industrial Doctorate Programme, VADER (Vaccine Design and Immune Responses) between the Novartis Vaccines Institute for Global Health, University of Birmingham and Novartis Vaccines and Diagnostics [grant number 316940].

