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Introduction
The associations between long-term exposure 
to ambient particulate matter (PM) and various 
adverse health effects have been documented 
extensively by numerous epidemiological and 
toxicological studies (Brunekreef and Holgate 
2002; Hoek et al. 2013; World Health 
Organization 2013). Oxidative stress—triggered 
by the formation of reactive oxygen species 
(ROS) when PM interacts with cells—has been 
considered one of the underlying biological 
mechanisms behind PM-associated health 
effects (Nel 2005). As a result, suggestions have 
been made to use oxidative potential (OP) as 
an additional metric to PM mass concentra-
tions to measure PM toxicity (Ayres et al. 2008; 
Borm et al. 2007). OP is an intrinsic measure of 
PM to oxidize target molecules, and thus effec-
tively incorporates biologically relevant proper-
ties of PM, such as size, surface, and chemical 
composition. Despite its plausibility, little 
empirical documentation exists about whether 
OP predicts health effects better than currently 
regulated PM  characteristics, including mass 
and composition. 

Epidemiological studies use spatial 
variation to assess long-term health effects 

of PM, often accounting for the variations 
of air pollution concentrations within urban 
areas (Hoek et al. 2008; Jerrett et al. 2005). 
Land use regression (LUR) models can 
effectively explain spatial contrasts, by using 
statistical modeling to analyze associations 
between measured concentrations at moni-
toring sites and predictor variables derived 
from geographic information systems (GIS) 
(Hoek et al. 2008). Within the framework 
of the European Study of Cohorts for Air 
Pollution Effects (ESCAPE; http://www.
escapeproject.eu), LUR models have been 
developed to estimate the spatial variation of 
the annual mean concentration for various 
pollutants including PM mass concentration 
(Eeftens et al. 2012a), elemental composi-
tion (de Hoogh et al. 2013), nitrogen dioxide 
(NO2) and nitrogen oxides (NOx) (Beelen 
et al. 2013). These models were used to assess 
the association between long-term exposure 
to air pollution and specific health outcomes. 

To our knowledge, only one study has 
assessed the feasibility of modeling OP of PM 
for use in epidemiological studies of long-
term air pollution exposure. Yanosky et al. 
(2012) developed a LUR model for the OP 

of PM10 for greater London (UK), where 
OP was measured as the depletion rate of 
 antioxidant-reduced glutathione (GSH) in a 
model of human respiratory tract lining fluid. 
We analyzed OP of PM2.5 for the Netherlands/
Belgium study area within the ESCAPE study. 
We aimed to characterize the spatial contrasts 
of two acellular OP methods, which can 
provide different information regarding the 
oxidative properties of PM, and to develop and 
evaluate LUR models for the spatial variation 
of annual average OP. These OP models will 
be used to estimate long-term exposure to air 
pollution in epidemiological studies, and to test 
empirically whether OP predicts health effects 
better than commonly used metrics such as 
PM2.5 mass concentration.

Materials and Methods
Air sample collection .  The sampling 
campaign has been described in detail 
elsewhere (Eeftens et al. 2012b). Briefly, 
the study included 34 sites spread over the 
Netherlands and 6 sites in Antwerp, Belgium 
(see Supplemental Material, Figure S1 and 
“Description of the sampling site selections”). 
Three different site types were selected: 
regional background (n = 10), urban back-
ground (n = 12), and street sites (n = 18). 
Regional background sites were located in 
small towns. Urban background sites were 
located in a large urban area. Regional and 
urban background sites were at least 50 m 
away from major roads. Street sites were 
situated at building facades representative 
for homes, in streets with traffic intensi-
ties of ≥ 10,000 vehicles per day. Between 
February 2009 and February 2010, three 
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2-week PM measurements were conducted 
at each site in the spring/fall, summer, and 
winter months, resulting in a total of 120 
samples. The annual average of OP, used for 
model development, was calculated for each 
site and adjusted for temporal variability by 
using measurements collected continuously 
for 2-week periods over the entire year at 
a centrally located reference site. For each 
sampling period, the temporal correction was 
calculated as the absolute difference of each 
OP measurement at the reference site and 
the annual mean at the reference site (Eeftens 
et al. 2012b).

NO2 and NOx were measured with 
passive samplers using Ogawa badges (Cyrys 
et al. 2012). PM2.5 was sampled with Harvard 
Impactors on Teflon filters. These samples 
were also used to measure absorbance and 
analyzed for elemental composition using 
energy dispersive X-ray fluorescence (XRF) 
at Cooper Environmental Services (Portland, 
OR, USA). A total of 48 elements were 
measured. A more detailed description of 
the elemental composition is available in 
the study by de Hoogh et al. (2013). Until 
processing, the filters were stored in Petri 
dishes at 4°C in the dark.

Oxidative potential. In order to measure 
OP, the Teflon filters were extracted with 
methanol (HPLC grade). The suspensions 
were equally divided over two aliquots and 
dried. One aliquot was resuspended with 
800 μL ultrapure water (Sigma) and then 
distributed over four aliquots. Each sub-
aliquot containing 200 μL PM suspension 
was used for one OP analysis. 

We selected two acellular methods to 
evaluate oxidative potential: electron spin reso-
nance (OPESR) and dithiothreitol (OPDTT). 
Our application of these methods has been 
described in detail by Janssen et al. (2014). 
The rate of DTT consumption (expressed as 
nanomoles DTT/minute divided by sampled 
volume) was determined by linear regression 
of the remaining amount of DTT against 
time, based on two duplicate measurements. 
The ESR method is based on the trapping 
of PM-induced hydroxyl radicals (•OH) 
mainly generated via Fenton-type reactions 
in the presence of H2O2. 5,5-Dimethyl-1-
pyrroline-N-oxide (DMPO) was used as the 
spin trap. OPESR was calculated as the average 
of the total amplitudes of the DMPO–OH 
quartet in arbitrary units (A.U.), divided by 
sampled volume. 

No field blanks or duplicates were collected 
for PM2.5. However, for quality assurance, 
we analyzed 11 PM10 (PM ≤ 10 μm) field 
blanks. These were assumed to be representa-
tive of PM2.5 measurements because the same 
filter type and impactors were used (Eeftens 
et al. 2012b). All OP analyses were done in 
January 2014.

Data analysis of spatial variation. 
Descriptive statistics of the adjusted annual 
averages were calculated and stratified by site 
type. To assess the amount of spatial varia-
tion, the range (minimum–maximum) was 
calculated as a percentage of the mean. Analysis 
of variance (SAS version 9.3, PROC GLM; 
SAS Institute Inc.) was used to test for signifi-
cant differences between the three site types. 
Ratios between site types were obtained by 
exponentiation of the slopes from a regression 
model with natural log (concentrations) as the 
dependent variable and site type as the inde-
pendent variable. We assessed the specificity of 
the spatial OP pattern by calculating the corre-
lations (R2) between both OP methods, and of 
each OP method with NO2, NOx, PM2.5 mass 
concentration, PM2.5 absorbance, and PM2.5 
elemental composition as measured by XRF.

LUR model development. The LUR 
modeling procedure and description of the 
input data have been described in detail 
by Eeftens et al. (2012a). Briefly, potential 
predictor variables used for LUR model devel-
opment were derived from GIS (ArcGIS; 
ESRI). In addition, the regional OP back-
ground estimate was offered as a predictor. 
The OP background was calculated by inverse 
distance squared weighted interpolation of 
OP concentrations measured at the regional 
sites, except the site itself. See Supplemental 
Material, Table S1, for an overview of the 
predictor variables and buffer sizes used to 
develop the LUR models. Predictor variables 
where many monitoring sites (n > 30) had 
zero values were excluded. 

LUR models for OPESR and OPDTT 
were developed following the standard-
ized ESCAPE approach. Briefly, predictors 
yielding the highest adjusted R2 were subse-
quently added to the model if they conformed 
to the direction of effect defined a priori and 
added > 0.01 to the adjusted R2. The final 
models were checked for p-value (all predic-
tors with p > 0.10 were excluded), co-linearity 
[variables with variance inflation factor (VIF) 
> 3 were removed and the model was rerun], 
influential observations (models with Cook’s 
D > 1 were further examined), and autocor-
relation in the residuals (Moran’s I). We used 
two approaches to evaluate the final model: 
a) leave-one-out cross validation (LOOCV), 
which consecutively leaves out one site from 
the training data set and estimates model 
based on the remaining N-1 sites, leaving the 
model structure constant. The model predic-
tions are then compared with measured 
values; b) holdout validation (HV), where we 
randomly select 10 training data sets strati-
fied by site type (i.e., 50% of each site type, 
resulting in 20 sites), and develop new models 
based on these 20 sites. These new models are 
consecutively validated against the remaining 
10 test data sets (Wang et al. 2012). 

To evaluate whether LUR models for OP 
potentially have added value in epidemio-
logical studies over the existing models in the 
ESCAPE study (see Supplemental Material, 
Table S2), we assessed the correlations 
between the OP model predictions and the 
previously developed LUR model predictions 
at 40 sites where only NO2 was measured. 
These sites were not used in OP and PM 
model development, but did have the same 
GIS predictor variables available. The LUR 
models for eight selected elements [copper 
(Cu), iron (Fe), potassium (K), nickel (Ni), 
vanadium (V), sulfur (S), silicon (Si), and zinc 
(Zn)] are available in de Hoogh et al. (2013) 
and PM2.5 models in Eeftens et al. (2012a). 
We used the NO2/NOx models developed on 
the 40 PM2.5 sites (Wang et al. 2013).

Results
Quality control. All OPESR and OPDTT 
measurements were corrected with their corre-
sponding mean field blank measurements 
(OPESR: 850 A.U./m3; OPDTT: 0.12 nmol 
DTT/m3). For OPDTT, only three filter 
samples were below the limit of detection 
(LOD), whereas for OPESR, one sample was 
below the LOD. All values were retained. 

The correlations between mean concen-
trations based on measured values at 40 
monitoring sites and mean concentrations 
after temporal adjustment were high for 
OPESR (R2 = 0.65) and moderate for OPDTT 
(R2 = 0.46). 

Spatial variation. Spatial variations and 
descriptive statistics of the average concentra-
tions for OPDTT and OPESR are shown in 
Figure 1 (see also Supplemental Material, 
Table S3). Annual mean levels for OPDTT and 
OPESR showed substantial variation between 
site types. We also observed large variations 
within different site types. The spatial contrast 
(range, 102% of the mean) was lower for 
OPDTT than for OPESR (range, 150% of the 
mean). Both OPESR and OPDTT were consis-
tently higher at the street sites. The mean 
street/urban background (S/UB) ratios were 
1.2 for OPDTT and 1.4 for OPESR and statisti-
cally significant (p < 0.05) for both (Table 1). 
Average regional/urban background (RB/UB) 
ratios were 0.8 for both OPDTT and OPESR, 
but only significant for OPDTT. We observed 
no distinctive regional patterns for either OP 
measurement (data not shown). 

C o r r e l a t i o n s  b e t w e e n  m e a s u r e d 
OP and PM2.5 composition. We found 
moderate correlations between OPESR and 
OPDTT (Figure 2, Table 2; R2 = 0.35), 
and between both OPESR and OPDTT and 
PM2.5 (R2 = 0.48 and 0.31, respectively). 
For OPESR, the highest correlations were 
observed with the transition metals Cu and 
Fe (R2 = 0.76 and 0.71, respectively), whereas 
very low correlations were observed with 
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K, S, Ni, V, and Zn (R2 < 0.20). As seen in 
Figure 2, we observed the highest correlations 
between OPESR and traffic markers (e.g., Fe, 
Cu, NO2, PM2.5 absorbance).

The correlations between OPDTT and 
PM2.5 components were generally lower than 
for OPESR (Table 2). OPDTT also correlated 
highest with traffic markers (R2 = 0.43–0.54); 
however, these correlations were lower than 
for OPESR. OPDTT correlated poorly with K, 
Ni, and V (R2 < 0.10). 

Land use regression modeling .  For 
OPDTT, the regional background and road 
length (in a 500-m buffer) explained the 
largest contrast (Table 3), both resulting in 
an increased 0.3 OP units for a difference 
between the 10th and 90th percentile of the 
predictor. The model R2 value was 0.60, the 
LOOCV R2 was 0.47, and the HV R2 was 
0.30 ± 0.08. Removing the regional OPDTT 
from the final model reduced the R2 to 0.44. 

For the OPESR model, traffic load in 
a 50-m buffer explained the largest contrast 
(Table 4). Traffic load is the sum of the 
product of intensity and length of all road 
segments within a buffer. Traffic load incorpo-
rates all roads in a buffer, whereas the inverse 
distance–weighted traffic intensity variable 
included in the OPDTT model involves a 
single road (nearest major road). The road 
length variable of the OPDTT model does not 
incorporate traffic intensity. The OPESR model 
R2 value was 0.67, the LOOCV R2 was 0.60, 
and the HV R2 was 0.45 ± 0.17. Removing 
the regional OPESR from the final model 
reduced the R2 to 0.58.

Moran’s I tests to evaluate the spatial 
autocorrelation in the residuals was near 
zero and nonsignificant (p > 0.05) for both 
OP models. 

Correlation between model-predicted 
OP and PM characteristics. We found 
moderate correlations (Table 5; R2 = 0.44) 
between OPDTT and OPESR model predic-
tions. OPDTT and OPESR model predic-
tions were moderately to highly correlated 
(R2 = 0.37 and 0.52, respectively) with PM2.5 
model predictions. OPDTT model predictions 
were highly correlated with PM2.5 absor-
bance (R2 = 0.50) and NO2 model predic-
tions (R2 = 0.54). The correlations between 
OPDTT model predictions and majority of 
the components were mostly moderate 
(R2 = 0.31–0.49), except for V, Ni, and Zn 
(R2 = 0.09–0.22). OPESR model predictions 
were generally highly correlated (R2 = 0.50–
0.84) with the majority of the compo-
nents, except for K, Ni, V, and Zn model 
predictions (R2 = 0.07–0.33). The highest 
correlations were found between model 
predictions of OPESR and Cu (R2 = 0.79) 
and Fe (R2 = 0.84). The correlations between 
model predictions at 40 sites not used for 
the modeling were generally similar to those 
between the measurements. 

Discussion
We found substantial spatial variation 
for both OPESR and OPDTT, with higher 
contrasts for OPESR than OPDTT. OPESR 
was moderately correlated with OPDTT 
and PM2.5 mass concentrations, but highly 
correlated with PM2.5 absorbance, NO2/
NOx, and especially the transition metals Fe 
and Cu. In comparison, these correlations 
were lower for OPDTT. The LUR model for 
OPDTT had an explained variance of 60%, 
whereas the LUR models for OPESR had an 
explained variance of 67%. The LUR model 
performance was better for the OPESR model 

(LOOCV R2: 0.60; HV R2: 0.45) than for 
OPDTT (LOOCV R2: 0.47; HV R2: 0.30). 

Spatial contrasts. Although studies have 
evaluated the spatial contrasts of OP for 
different site types, none has characterized the 
spatial contrast in such an extensive way as in 
this study with 40 sites. Consistent with the 
results from our study, OPESR was generally 
higher at sites dominated by traffic (Boogaard 
et al. 2011; Janssen et al. 2014; Shi et al. 
2006; Wessels et al. 2010). Other studies in 
the Netherlands also found higher OPESR at 
street sites than at the urban background site 
(Boogaard et al. 2011; Janssen et al. 2014). 
Janssen et al. (2014) found that OPESR of 
PM2.5 was 1.1 higher at a “stop&go” site, and 
5.1 higher at a continuous traffic site than 
the urban background site. Boogaard et al. 
(2011) found a median ratio of 3.6 between 
street and corresponding urban background 
site, where the ratios ranged from 1.6 to 6.8, 
depending on the street configuration in a 
study of eight busy streets. In the study by 
Boogaard et al. (2011) OPESR of PM10 was 
measured, which could explain the higher 
contrast documented therein compared with 
our study, because the transition metals (Fe, 
Cu) to which ESR primarily responds are 
abundant in the coarse fraction of PM. 

The S/UB contrast was lower for OPESR 
(ratio of 1.4) than for the transition metals 
Fe and Cu (Table 1; ratio of 1.8 and 1.7, 
respectively). In our previous study of the 
temporal and spatial variation of OPESR for 
11 National Air Quality Monitoring sites 
in the Netherlands, we also found a lower 
contrast for OPESR than for Fe and Cu 
(Yang et al. 2015). Janssen et al. (2014) 
also reported lower S/UB ratios for OPESR 
(1.1 and 5.1) than for Fe (ratios of 2.2 and 
6.7) and Cu (ratios of 1.8 and 6.0) at two 
different street sites. This could potentially 
be due to the methods used to analyze the 
chemical composition (energy dispersive 
XRF and inductively coupled plasma mass 
spectrometry) in the aforementioned studies, 

Figure 1. Adjusted annual average of OPESR (left) and OPDTT (right) by site type. Median, mean, and 25th 
and 75th percentiles are shown in the box, whiskers indicate minimum and maximum values, and indi-
vidual outliers are shown as points. n = 40 sites.
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Table 1. Ratios between regional background 
(RB), urban background (UB), and street sites (S).

Component S/UB RB/UB S/RB

OPDTT 1.2* 0.8* 1.4*
OPESR 1.4** 0.8 1.7**
PM2.5 1.1** 1.0 1.2**
PM2.5 absorbance 1.5** 0.8* 1.8**
NO2 1.4** 0.7** 2.1**
NOx 1.7** 0.6** 2.7**
Fe 1.8** 0.7* 2.5**
Cu 1.7** 0.7** 2.5**
K 1.1 1.0 1.1
Ni 1.0 0.8 1.3
S 1.0 1.0 1.0
Si 1.6** 1.1 1.5**
V 1.0 0.8 1.2
Zn 1.1 0.9 1.1

*p < 0.05. **p <0.01.
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because only the total metal content was 
measured. As a result, the multiple valence 
states of the transition metals were not fully 
captured. Measurement of OPESR is based on 
the Fenton reaction between peroxides and 
transition metals, which leads to the produc-
tion of hydroxyl radicals, and is dependent 
not only on the valence state of the metal, but 
also on solubility (Valavanidis et al. 2005). 
Previous studies have shown that certain tran-
sition metal ions [Fe(II), Cu(I)] have a higher 
capability to generate hydroxyl radicals than 
others [Fe(III)] (Shi et al. 2003; Valavanidis 
et al. 2005). Therefore, one would not expect 
a perfect agreement between total transition 
metal and OPESR.

The S/UB contrast was higher for both 
OP methods than for the PM2.5 mass 
concentration (ratio = 1.1), but lower than 
for PM2.5 absorbance (Table 1; ratio = 1.5), 
NO2 (ratio = 1.4), and NOx (ratio = 1.7). 
The higher spatial contrast for OP compared 
to PM2.5 is consistent with previous studies 
(Boogaard et al. 2011; Janssen et al. 2014). 
The lower spatial contrast compared with 
PM2.5 absorbance and NO2/NOx could be 
attributable to the relatively larger influ-
ence of other sources than local traffic on 
 oxidative potential.

The lower S/UB ratio for OPDTT than 
for OPESR is consistent with observations at 
two traffic sites in the study by Janssen et al. 
(2014) (e.g., ratio of 2.4 for OPDTT and ratio 
of 5.1 for OPESR). These differences can be 
attributed to the different components in the 

PM mixture to which OPESR and OPDTT are 
sensitive. Although OPESR is especially sensi-
tive to transition metals driving •OH genera-
tion mechanisms via the Fenton reaction, 
OPDTT is associated with organic compounds 
such as polycyclic aromatic hydrocarbons 
(PAH) and organic carbon (OC), and to a 
certain degree transition metals (Charrier 
and Anastasio 2012; Li et al. 2003). Jedynska 
et al. (2014) assessed the contrasts of PAHs 
and OC for 16 sites of the 40 sites in our 
study area and found lower contrasts for OC 
(S/UB = 1.05) than for OPDTT (S/UB = 1.21, 
derived from this study using the 16 sites). 
In contrast, the ratio of PAHs (S/UB = 1.88) 
was higher (Jedynska et al. 2014). The OC 
contrast (associated with OPDTT) was lower 
than the contrast in transition metals (associ-
ated with OPESR), which could explain the 
higher OPESR contrast than OPDTT. PAH 
contrasts were similar to transition metals 
contrasts (Jedynska et al. 2014). 

Correlations between measured OP and 
PM characteristics. Consistent with previous 
studies, we found high spatial correlations 
between OPESR and all traffic-related PM 
components Fe, Cu, and PM2.5 absorbance 
(Boogaard et al. 2011; Künzli et al. 2006). 
The high correlations between transition 
metals and OPESR (Table 2; Cu: R2 = 0.76; 
Fe: R2 = 0.71) are comparable with those 
from Boogaard et al. (2011), who analyzed 
OPESR of PM10 (Pearson’s R ≥ 0.95 for Cu 
and Fe). In comparison, Künzli et al. (2006) 
found much lower correlations (Spearman’s 

r = 0.39 for Cu, r = 0.45 for Fe), possibly 
because OPESR was analyzed at 20 urban 
background sites only. As seen in Figure 2, 
the high correlations are largely driven by 
the street sites (n = 18) and suggest a direct 
impact of these transition metals on OP. 

Saffari et al. (2014) assessed the seasonal 
and spatial variation of OPDTT for quasi-
ultrafine particles (PM0.25) at 10 locations 
across the Los Angeles Basin, California, and 
found across seasons the highest correlations 
between DTT activity and carbonaceous PM 
(Pearson’s R > 0.70 for OC, both soluble and 
insoluble). Correlations between OPDTT and 
PM composition varied depending on the 
season, but are comparable with our results 
that were adjusted for temporal variation. 

Figure 2. Relationship among measured annual average of OPDTT, OPESR, Cu (ng/m3), Fe (ng/m3), NO2 (μg/m3), PM2.5 mass concentration (μg/m3), and PM2.5 absor-
bance (abs; 10–5/m) by site type; n = 40. The correlation coefficients (R2) are presented in Table 2. 
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Table  2. Squared Pearson’s correlations (R2) 
of measured OPESR, OPDTT with PM2.5, PM2.5 
absorbance, NO2, NOx, and eight selected PM2.5 
elements.

Component OPESR OPDTT

OPDTT 0.35
PM2.5 0.48 0.31
PM2.5 absorbance 0.63 0.48
NO2 0.56 0.43
NOx 0.57 0.48
Cu 0.76 0.52
Fe 0.71 0.54
K 0.19 0.09
Ni 0.14 0.06
S 0.11 0.36
Si 0.39 0.21
V 0.04 0.04
Zn 0.05 0.24
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However, they also found high correlations 
between the transition metals (e.g., Fe, Cu, 
V, Zn, Cr) and the organic compounds, espe-
cially for the quasi-ultrafine range, where the 
common source is vehicular emissions (Saffari 
et al. 2014). Nevertheless, for DTT, we found 
similar correlations with all inorganic traffic 
markers, which indicate no direct impact of 
one specific component on OPDTT and thus is 
a less traffic-specific measure than OPESR. 

Performance of the LUR models. To our 
knowledge, only one study has developed a 
model for outdoor OP, but their modeling 
approach differs from ours on several accounts. 
Yanosky et al. (2012) modeled OP of PM10 
(in OP per μg PM10) for greater London, 
where OP was measured as the depletion rate 
of GSH (OPGSH). The model used weekly 
averages from the year 2002 through 2006 
and a geostatistical spatiotemporal model was 
developed, with an R2 of 0.52 ( cross- validation 
R2 = 0.44). The two predictors of spatial varia-
tion in OPGSH were brake and tire wear emis-
sions of PM10 from local traffic (within 50 m) 
and NOx from heavy-duty vehicles with a 
negative slope. 

We developed LUR models for OP with 
reasonably good explained variance that 
was slightly higher for the OPESR model 
(R2 = 0.67) than for the OPDTT model 
(R2 = 0.60). This might be attributable to 
the larger impact of local traffic on OPESR 
compared with OPDTT as documented by 
the measurements. LUR models can effec-
tively model traffic effects in our study, due 
to adequate representation of traffic sites in 
the ESCAPE study and good availability of 
traffic predictors compared to other sources 
(e.g., wood burning). Both models contained 
large buffer variables for urbanity, consistent 
with the 25% higher measured OP values at 

the urban versus regional background sites. 
Both models included a regional estimate, 
which accounts for the regional contrast in 
background concentrations, because other 
predictor variables could not explain the 
large-scale spatial trends in our study area. 
We included the regional background OP 
in the model instead of subtracting it from 
all measurements to allow assessment of the 
contribution of regional background to the 
overall variability in OP. Exclusion of the 
regional estimate, which explained 19–20% 
of the variance for both OP methods, led to 
a more substantial reduction of explained 
variance for the OPDTT model (15.4%) than 
for OPESR (9%). 

The differences between modeled R2 and 
HV R2 for both OP models in our study 
are comparable with findings from another 
study in the Netherlands that evaluated the 
performance of NO2 and PM2.5 absorbance 
(using 20 training sites). A difference of 27% 
between modeled R2 and HV R2 was found 
for NO2, whereas a difference of 16% was 
found for PM2.5 absorbance (Wang et al. 
2013). The HV procedure we applied might 
have resulted in too low R2 values because 
the training sets included only 20 sites, which 
likely resulted in less robust models than the 
developed models that were based on 40 
sites. Especially for OPESR, an HV R2 of 45% 
(± 17%) is in the range of those previously 
reported by Wang et al. (2013). In another 
study by Wang et al. (2012), the difference 
between model R2 and HV R2 for NO2 was 
27% for 24 sites and 18% for 48 sites. The 
gap between model and HV R2 likely reflects 
modest overfitting (Wang et al. 2012, 2013). 
Our LUR models thus performed similarly 
to models developed for more often modeled 
pollutants, including NO2. 

Comparison of OP LUR models with other 
ESCAPE LUR models. Several LUR models 
(see Supplemental Material, Table S2) were 
developed in the ESCAPE project and used 
for cohort exposure assessment. Although 
the performance of the LUR models for both 
OPESR and OPDTT was comparable to the 
PM2.5 model (R2 = 0.67), it was lower than 
the models of traffic-related components 
such as Fe, Cu, NOx/NO2, and PM2.5 absor-
bance (see Supplemental Material, Table S2; 
R2 = 0.78–0.92). OP is probably less affected 
by local traffic than absorbance or Cu, as indi-
cated by the lower measured S/UB concentra-
tion ratios for OP. Furthermore, OP is an 
indicator of PM-induced oxidative stress, and 
we have no specific predictor variables for the 
biological activity. Despite the inclusion of 
similar (traffic) predictors in the OP and other 
models, the relative importance of predictors 
may differ in the OP model versus models for 
other pollutants. Dispersion models are not 
feasible because specific emission factors for 
OP are not available. 

An important issue to be considered is 
the added value of the OP models for appli-
cation in epidemiological studies compared 
with the existing models, which can well 
predict variation of traffic-related components. 
Furthermore, when applying the models 
to addresses of subjects in cohort studies, it 
is imperative that the predictions of the OP 
models can be disentangled not only from each 
other, but also from the existing models for 
PM2.5 mass concentration, PM2.5 absorbance, 
and nitrogen oxides. The moderately high 
correlations between OP model predictions 
and PM2.5 mass concentration predictions 
suggest some potential to evaluate whether OP 
predicts health effect better than the regulated 
metric PM2.5. 

The OPESR model predictions were gener-
ally highly correlated with predictions of most 
traffic-related elements (R2 > 0.50), espe-
cially with Cu. Similar to the OPESR model, 
traffic- and road-related variables were the 

Table 3. Description of developed LUR model for OPDTT. 

Predictor
Regression 
coefficienta

Standard 
error Pr > |t|

Partial 
R 2

Intercept 0.08 0.26 0.76
Regional estimate OPDTT 0.33 0.09 0.00 0.20
Road length 500 m buffer 0.31 0.09 0.00 0.49
Product T.I. and inverse distanceb 0.15 0.05 0.00 0.53
Seminatural and forested area, 1,000 m –0.11 0.06 0.095 0.55
aRegression slopes (see Supplemental Material, Table S2) multiplied by the difference between the 10th and 90th 
percentile for each of the predictors (0.43, 12997, 2214, 397834); intercept derives directly from model. Model R2 = 0.60; 
LOOCV R2 = 0.47; RMSE (root mean squared error) = 0.23 (nmol DTT/min/m3), HV R2 = 0.30 ± 0.08 (mean ± SE). n = 40 sites. 
bProduct of inverse distance to the nearest major road and the traffic intensity (T.I.) on this road (vehicles day–1 m–1).

Table 4. Description of developed LUR model for OPESR. 

Predictor
Regression 
coefficienta

Standard 
error Pr > |t|

Partial 
R 2

Intercept 327 177 0.07
Regional estimate OPESR 434 142 0.00 0.19
Traffic load within 50 m 587 108 < 0.00 0.58
Population density within 5,000 m 305 115 0.01 0.64
aRegression slopes (see Supplemental Material, Table S2) multiplied by the difference between the 10th and 90th 
percentile for each of the predictors (764, 2890943, 375645); intercept derives directly from model. Model R2 = 0.67; 
LOOCV R2 = 0.60; RMSE = 280 (A.U./m3); HV R2 = 0.45 ± 0.17 (mean ± SE). n = 40 sites.

Table 5. Squared Pearson’s correlations (R2) of 
LUR models predictions for OPESR, OPDTT with 
PM2.5, PM2.5 absorbance, Cu, Fe, S, Si, NO2, and 
NOx at 40 sites not used in modeling. 

Component OPESR OPDTT

OPDTT 0.44
PM2.5 0.52 0.37
PM2.5 absorbance 0.65 0.50
NO2 0.56 0.54
NOx 0.50 0.42
Cu 0.79 0.46
Fe 0.84 0.49
K 0.25 0.32
Ni 0.33 0.09
S 0.52 0.36
Si 0.55 0.31
V 0.33 0.10
Zn 0.07 0.22
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most important predictors for these models 
(see Supplemental Material, Table S2). This 
suggests it might be difficult to separate the 
effects of OPESR from the existing models 
of traffic components in the Netherlands. 
Nevertheless, OPESR could still be important 
in epidemiological studies because it might 
provide more consistent effect estimates in 
multiple countries, if the assumption of higher 
biological relevance compared with total metal 
concentrations is correct. Despite the high 
correlations between OPESR and elements 
such as Fe and Cu, the absolute concentra-
tion ratios may differ due to the difference in 
biological availability between countries. 

The OPDTT model predictions were 
moderately correlated with predictions of 
most elements (R2 < 0.50), except for PM2.5 
absorbance and NO2. This indicates that it 
should be possible to distinguish between the 
independent effects of OPDTT and PM2.5 
components in epidemiological studies. 
Finally, the moderate correlation (R2 = 0.44) 
between the predictions of the OPDTT and 
the OPESR model suggests it might be possible 
to investigate which of the two OP assays 
predicts health effects better. Alternatively, 
because the two assays respond to different 
PM components, we can evaluate whether 
OPDTT and OPESR together predict health 
effects better than PM2.5 mass concentration.

Conclusion
LUR models explained a large fraction of the 
spatial variation of the two OP metrics. The 
moderate correlations among the predictions 
of OPDTT, OPESR, and PM2.5 models offer 
the potential to investigate which metric is 
the strongest predictor of health effects. 
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