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Abstract. We consider solutions to the two-dimensional incompressible Euler system with
only integrable vorticity, thus with possibly locally infinite energy. With such regularity, we
use the recently developed theory of Lagrangian flows associated to vector fields with gradient
given by a singular integral in order to define Lagrangian solutions, for which the vorticity is
transported by the flow. We prove strong stability of these solutions via strong convergence of
the flow, under the only assumption of L1 weak convergence of the initial vorticity. The exis-
tence of Lagrangian solutions to the Euler system follows for arbitrary L1 vorticity. Relations
with previously known notions of solutions are established.
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1. Introduction

The incompressible Euler equations for a two-dimensional inviscid fluid are given by
$

’

&

’

%

Btv ` div pv b vq `∇p “ 0,

vp0, ¨q “ v0pxq,

div v “ 0,

(1.1)

where vpt, xq is the velocity of particles at position x and time t, and ppt, xq the scalar pressure,
that sustains the incompressibility constraint div v “ 0. The two-dimensional incompressible
Euler equations may be rewritten as a transport equation for the scalar vorticity ω defined by

ω “ curl v ” B1v2 ´ B2v1, (1.2)

which is advected by the velocity v. This gives the vorticity formulation
#

Btω ` div pωvq “ 0,

ωp0, ¨q “ ω0pxq,
(1.3)

with ω0 “ curl v0. The coupling (1.2) can alternatively be written via the Biot-Savart convolu-
tion law

vpt, xq “
1

2π

ż

R2

px´ yqK

|x´ y|2
ωpt, yq dy “ K ˚

x
ω, (1.4)

where we denote by px1, x2q
K “ p´x2, x1q and by

Kpxq “
1

2π

xK

|x|2
“

1

2π

ˆ

´x2

|x|2
,
x1

|x|2

˙

(1.5)

the Biot-Savart kernel.

In this paper we deal with the existence and stability of infinite kinetic energy solutions
associated to initial vorticities lying in L1pR2q. In this context, because of the lack of (even local)
kinetic energy bound, the velocity formulation (1.1) cannot be given the usual distributional
meaning (see Definition 3.1). Though, a symmetrized velocity formulation can be used, see
Definition 3.2.

For vorticities ω P L8pp0, T q;L1pR2qq, the decomposition

v “ K1 ˚ ω `K2 ˚ ω, (1.6)
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where K1 “ K 1B1p0q P L
1pR2q and K2 “ K 1B1p0qc P L

8pR2q, gives immediately with Young’s

inequality that v P L8pp0, T q;L1pR2qq ` L8pp0, T q;L8pR2qq. Nevertheless, as for the velocity
formulation, no direct distributional formulation is available for the vorticity equation (1.3),
since the factors in the product ωv are not summable enough to define a locally integrable
product. The symmetrized formulation can however be used again. More generally, one can
consider three alternate formulations of weak solutions for the vorticity equation, defined as
follows.

(1) Renormalized solutions [11], defined by the requirement that βpωq is a distributional
solution to the transport equation (1.3) for a suitable class of functions β:

#

Btpβpωqq ` div pβpωqvq “ 0,

βpωqp0, ¨q “ βpω0q,
(1.7)

(2) Symmetrized vorticity solutions [10, 22, 20], defined by exploiting the antisymmetry of
the Biot-Savart kernel K, so that multiplying (1.3) by a test function φ and integrating
gives the formulation

ż T

0

ż

R2

Btφpt, xqωpt, xq dxdt´

ż T

0

ż

R2

ż

R2

Hφpt, x, yqωpt, xqωpt, yq dxdydt`

ż

R2

φp0, xqω0pxq dx “ 0,

(1.8)
where Hφ is the bounded function

Hφpt, x, yq “ ´
1

2
Kpx´ yq ¨

`

∇φpt, xq ´∇φpt, yq
˘

, (1.9)

(3) Lagrangian solutions, i.e. solutions ω transported by a suitable flow associated to the
velocity v, to be precisely defined in the sequel.

The notions (1) and (2) of solutions have been considered previously, but no study has been
made concerning (3) in our low regularity context ω P L1. In this paper we prove that initial
vorticities in L1 give rise to well-defined weak solutions that are transported by flows. The
key point of our strategy relies on a priori error estimates (under bounds that are natural in
our setting) for a class of flows which are measure preserving, called regular Lagrangian flows.
These estimates were developed in [8]. The novelty of this approach for the Euler equations,
in contrast with [10, 22, 18, 15], is that it entirely relies on the Lagrangian formulation, and
therefore proves existence of solutions which are naturally associated to flows. In this setting
we also allow for velocities with locally infinite kinetic energy.

The usual strategy for proving existence of solutions to (1.1) is by smoothing the initial
data, and using estimates that enable passing to the limit in the weak formulation. For initial
velocities belonging to Hs, s ą 2, well-posedness of classical solutions is due to Wolibner [24].
Existence and uniqueness of solutions to (1.1) is known for vorticities in L1XL8, and was first
proved by Yudovich [25]. For compactly supported initial vorticities in Lp, with 1 ă p ă 8,
existence was first proved by DiPerna and Majda [12]. The proof relies on suitable Sobolev
embeddings, that guarantee strong convergence in L2

loc on the approximate velocities.
On the other hand, while a uniform L1 bound on the vorticities is still sufficient to guar-

antee the L1
loc convergence of the smoothed velocities, it is generally insufficient for the strong

convergence in L2
loc, see for instance Example 11.2.1 in [19]: the approximate velocities may

concentrate. However, concentrations may occur for sequences whose limit still satisfies (3.1),
in spite of the lack of strong L2

loc convergence: this is referred to as concentration-cancellation
and has been studied in [14, 19]. This happens for instance if the vorticity is a measure with
distinguished sign [10]. The key point in proving that concentration-cancellations occur is to
prove distributional convergence of the antisymmetric quantities v1

nv
2
n and v1

n´ v
2
n. For L1 vor-

ticities with compact support, without necessarily distinguished sign, and initial velocities with
locally finite kinetic energy, the propagation of the equi-integrability guarantees concentration-
cancellations [22]. However, these solutions were not proved to be Lagrangian, and only weak
L1 convergence was obtained on ω even for strongly convergent initial data. This is nevertheless



LAGRANGIAN SOLUTIONS TO THE EULER SYSTEM WITH L1 VORTICITY 3

sufficient to pass to the limit in the symmetrized formulation (1.8).

A stability estimate for flows associated to velocity fields with gradient given by the sin-
gular integral of an L1 function was derived in [8], building on previous results in [9]. This
regularity of the field is weaker than the one classically used, namely W 1,1 or BV [11, 1]. Our
assumptions in the context of Euler equations fall under the theory in [8]. From this theory it
follows that Lagrangian flows associated to velocities whose curl are equi-integrable are strongly
precompact, and thus stable under approximation, so that the limit flow solves the ODE with
the limit velocity. We shall therefore conclude that vorticities in L1 are strongly stable under
approximation, in the sense that if ω0

n converges strongly in L1 to ω0, then the solution ωn of
the corresponding vorticity formulation converges strongly in L1 to a Lagrangian solution ω.
Additionally, even for weakly convergent initial vorticities, the flow always converges strongly.
The main results of this paper were announced in [7].

A classical difficulty in proving strong compactness is related to time oscillations. Indeed,
when dealing with velocity formulations, the strong compactness in space follows from the L1

bound on the vorticity, but the compactness in time relies on bounds on Btvn in L8t pD
1
xq in

order for Aubin-Lions’ lemma to apply. Without the assumption v P L2
loc, we do not have such

regularity in time of v and we cannot apply Aubin-Lions’ lemma. We thus propose a refinement
of the stability estimates in [8] so that weak time convergence of the velocities is still sufficient
for the stability of regular Lagrangian flows. We nevertheless prove a posteriori the strong
compactness of v in time and space.

Main notations. We set BR :“ BRp0q. We denote by L0pRdq the space of all measurable real
valued functions on Rd, defined a.e. with respect to the Lebesgue measure, endowed with the
convergence in measure. We denote by L0

locpRdq the same space, endowed with local convergence

in measure (see definition below). The space logLpRdq contains all functions u : Rd Ñ R such
that

ş

Rd logp1 ` |upxq|q dx ă 8, with logLlocpRdq defined accordingly. We refer to BpE,F q
as the space of bounded functions between sets E and F . We also introduce the following
seminorm:

Definition 1.1. Let u be a measurable function on Ω Ă Rd. For 1 ď p ă 8, we set

|||u|||pMppΩq “ sup
λą0

!

λpL d
`

tx P Ω : |upxq| ą λu
˘

)

and define the weak Lebesgue space MppΩq as the space consisting of all such measurable
functions u : Ω Ñ R with |||u|||MppΩq ă 8. For p “ 8, we set M8pΩq “ L8pΩq.

Definition 1.2. We say that a sequence of measurable functions un : Rd Ñ R converges locally
in measure in Rd to a measurable function u : Rd Ñ R if for every γ ą 0 and every r ą 0 there
holds

L N ptx P Br : |unpxq ´ upxq| ą γuq Ñ 0, nÑ8.

2. Regularity of the velocity field

We summarize in the present section some integrability and regularity estimates for the vector
field v given by (1.4), when ω P L1pR2q.

(I) The Biot Savart kernel K belongs to L1
locpR2q and has distributional derivatives given by

the following singular kernels. For i, j “ 1, 2, we have

BjK
ipxq “ Bj

1

2π

ˆ

´x2

|x|2
,
x1

|x|2

˙

i

. (2.1)

The Fourier transform of (2.1) is bounded and is given by

zBjKipξq “ ξj

ˆ

´ξ2

|ξ|2
,
ξ1

|ξ|2

˙

i

P L8pR2q. (2.2)

It is well-known that the operators Sij of convolution with such kernels (2.1) defined by

Siju “ BjK
i ˚ u extend to bounded operators on L2pR2q, and have bounded extensions
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on LppR2q for 1 ă p ă 8. For p “ 1 and u P L1pR2q, Siju is a tempered distribution

Siju P S 1pR2q defined via the formula

xSiju, ϕy “ xu, S̃
i
jϕy @ϕ P S pR2q, (2.3)

where S̃ij is the singular integral operator associated to the kernel pBjK
iqp´xq. Thus for

v given by (1.4) with ω P L1pR2q and for i, j “ 1, 2, we have

p∇vqij “ Bjvi “ Sijω P S 1pR2q. (2.4)

(II) From (2.4) it follows that div v “ 0 in D 1, and curl v “ ω in D 1.
(III) We have from (1.6) that vorticities bounded in L8pp0, T q;L1pR2qq are associated to ve-

locities bounded in L8pp0, T q;L1pR2qq`L8pp0, T q;L8pR2qq. Moreover, the weak Hardy-
Littlewood-Sobolev inequality (see Lemma 4.5.7 in [16]) gives that

}v}L8pp0,T q;M2pR2qq ď c}ω}L8pp0,T q;L1pR2qq, (2.5)

which implies in particular the embedding vpt, xq P Lplocpr0, T s ˆ R2q for any 1 ď p ă 2.

3. Weak solutions

Several weak formulations can be considered. If the velocity has locally finite kinetic energy,
v P L2

locpR2q, the usual weak formulation of (1.1) is available:

Definition 3.1 (Weak velocity formulation). We say that v P L8pp0, T q;L2
locpR2qq is a weak

solution of the Euler velocity formulation with initial datum v0 P L2
locpR2q if for all φpt, xq P

C1
c pr0, T q ˆ R2,R2q with div φ “ 0, there holds

ż T

0

ż

R2

Btφ ¨ v `∇φ :
`

v b v
˘

dxdt`

ż

R2

φp0, xq ¨ v0pxq dx “ 0, (3.1)

and v is divergence free in distributional sense.

3.1. Symmetrized velocity solutions. In order to deal with solutions with locally infinite
kinetic energy we can propose a weaker formulation than the one in Definition 3.1. It is in the
same spirit as the symmetrized vorticity formulation (1.8). Using the identity div pv b vq “

v ¨∇v “ ω vK `∇ |v|2

2 , that is valid when div v “ 0, we can formally rewrite (1.1) as

Btv ` ωv
K `∇p1 “ 0, (3.2)

where p1 “ p` |v|2

2 . This modified pressure p1 can be eliminated by taking suitable test functions

as in (3.1). With this form (3.2) we can observe that only the quantities v1v2 and v2
1 ´ v

2
2 need

to be in L1, since we can write ωvK “ div pv b v ´ p|v|2{2qIdq, and the entries of the matrix
vbv´p|v|2{2qId are just these two scalars v1v2 and v2

1´v
2
2. However, without such assumptions,

we observe that the term ωvK has a priori no pointwise meaning when ω only belongs to Lp

for some p ă 4{3, since in such a case ω and v would not have conjugate summabilities.
Nevertheless, with the only assumption ω P L1, that yields v PM2 (but v R L2

loc in general), we
can give a meaning in distribution sense to this term by exploiting the symmetrization technique
analog to that in [10, 22], that uses the antisymmetry property Kp´xq “ ´Kpxq.



LAGRANGIAN SOLUTIONS TO THE EULER SYSTEM WITH L1 VORTICITY 5

Let φ P C1
c pr0, T q ˆ R2,R2q. Then using the Biot-Savart law we can write

ż T

0

ż

R2

pωvKqpt, xq ¨ φpt, xq dxdt

“

ż T

0

ż

R2

ż

R2

ωpt, xqωpt, yqKpx´ yqK ¨ φpt, xq dxdydt

“ ´

ż T

0

ż

R2

ż

R2

ωpt, yqωpt, xqKpx´ yqK ¨ φpt, yq dxdydt

“
1

2

ż T

0

ż

R2

ż

R2

ωpt, xqωpt, yqKpx´ yqK ¨
`

φpt, xq ´ φpt, yq
˘

dxdydt

“

ż T

0

ż

R2

ż

R2

ωpt, xqωpt, yqH̄φpt, x, yq dxdydt,

(3.3)

where H̄φpt, x, yq is the function on r0, T q ˆ R2 ˆ R2 given by

H̄φpt, x, yq “
1

2
Kpx´ yqK ¨

`

φpt, xq ´ φpt, yq
˘

. (3.4)

For φ P C1
c pr0, T q ˆ R2,R2q we have that H̄φ is a bounded function, continuous outside the

diagonal, that tends to zero at infinity. Indeed we have

|H̄φpt, x, yq| ď
1

4π
Lippφpt, ¨qq. (3.5)

Thus for vorticities belonging to L8pp0, T q;L1pR2qq, the last integral in (3.3) is well-defined.
This motivates the next definition of weak solutions.

Definition 3.2 (Symmetrized velocity formulation). Let pω0, v0q P L1pR2qˆM2pR2q, with ω0 “

curl v0. We say that the couple pω, vq is a symmetrized velocity solution of (1.1) in r0, T q with
initial datum pω0, v0q, if

(1) ω P L8pp0, T q;L1pR2qq,
(2) the velocity field v is given by the convolution in (1.4),
(3) for all test functions φ P C1

c pr0, T q ˆ R2,R2q with div φ “ 0, we have
ż T

0

ż

R2

Btφ ¨ v dxdt´

ż T

0

ż

R2

ż

R2

H̄φpt, x, yqωpt, xqωpt, yq dxdydt`

ż

R2

φp0, xq ¨ v0pxq dx “ 0, (3.6)

where H̄φ is the function on r0, T q ˆ R2 ˆ R2 given by (3.4).

3.2. Three formulations of the vorticity equation. According to the introduction, we
now define three notions of solution to the vorticity formulation (1.3) when the vorticity is only
L1 summable. Since we do not assume v0 P L2

locpR2q, we deal with velocities that belong to
M2pR2q, a consequence of the Hardy-Littlewood inequality (2.5).

Definition 3.3 (Renormalized solutions). Let pω0, v0q P L1pR2qˆM2pR2q with ω0 “ curl v0. We
say the couple pω, vq is a renormalized solution to (1.3) with initial data pω0, v0q, if

(1) ω P L8pp0, T q;L1pR2qq,
(2) the velocity field v is given by the convolution in (1.4),
(3) for every nonlinearity β P C1pRq with β bounded, we have that

#

Btpβpωqq ` div pβpωqvq “ 0,

βpωqp0, ¨q “ βpω0q
(3.7)

hold in the sense of distributions.



6 A. BOHUN, F. BOUCHUT, AND G. CRIPPA

For smooth solutions this is equivalent to the classical notion of solution (as can be seen by
multiplying the equation by β1pωq and applying the chain rule.) This formulation derives from
the classical DiPerna-Lions [11] framework for transport equations.

Definition 3.4 (Symmetrized vorticity formulation). As mentioned in the introduction, the sym-
metrization technique for the term div pωvq provides a second formulation of the vorticity equa-
tion. Let φ P C2

c pr0, T q ˆ R2q. Computations as in (3.3) give
ż T

0

ż

R2

div pωvqpt, xqφpt, xq dxdt “

ż T

0

ż

R2

ż

R2

Hφpt, x, yqωpt, xqωpt, yq dxdydt, (3.8)

with

Hφpt, x, yq “ ´
1

2
Kpx´ yq ¨

`

∇φpt, xq ´∇φpt, yq
˘

. (3.9)

We say that pω, vq is a symmetrized vorticity solution to (1.3) if (1), (2) above are satisfied and
if for all test functions φ P C2

c pr0, T q ˆ R2q there holds
ż T

0

ż

R2

Btφpt, xqωpt, xq dxdt´

ż T

0

ż

R2

ż

R2

Hφpt, x, yqωpt, xqωpt, yq dxdydt`

ż

R2

φp0, xqω0pxq dx “ 0.

(3.10)

Proposition 3.5. We have the following equivalence of notions of solutions to the Euler system.

(1) Symmetrized velocity solutions (Definition 3.2) are symmetrized vorticity solutions (Def-
inition 3.4), and conversely.

(2) If pω, vq is such that v P L8pp0, T q;L2
locpR2qq, then it is a symmetrized velocity solution

if and only if it is a weak velocity solution (Definition 3.1).

Proof. For (1), taking a test function of the form ´∇Kφ in (3.6) we see that a solution to the
symmetrized velocity formulation is also a solution to the symmetrized vorticity formulation,
indeed one has H̄´∇Kφ “ Hφ. The converse is also true since all functions φ̄ P C2

c pr0, T qˆR2,R2q

with div φ̄ “ 0 can be written φ̄ “ ´∇Kφ for some φ P C2
c pr0, T q ˆR2q. For φ̄ only C1 one just

approximates it by a C2 function. It follows that Definitions 3.2 and 3.4 are indeed equivalent.
Finally, the statement (2) follows from the next lemma. �

Lemma 3.6. Let ω P L1pR2q, define v “ K˚ω with K the Biot-Savart kernel (1.5), and assume
that v P L2

locpR2q. Then for all φ P C1
c pR2,R2q with div φ “ 0, we have

ż

R2

ż

R2

H̄φpx, yqωpxqωpyq dxdy “ ´

ż

R2

∇φpxq :
`

vpxq b vpxq
˘

dx (3.11)

where H̄φ is given by (3.4).

Proof. For smooth ω and v, the formula is just the weak form of the already mentioned identity

div pvb vq “ ω vK`∇ |v|2

2 , taking into account the computation (3.3). The general case follows
easily by smoothing ω and v by a regularizing kernel and passing to the limit. �

3.3. Lagrangian solutions. We describe now a third class of weak solutions which are trans-
ported by a measure-preserving flow in an “almost everywhere” sense. When the velocity is not
globally bounded, the associated flow X is not locally integrable in R2, thus the ODE defining
the flow has to be taken in the renormalized sense.

Let us recall the following general definition on RN . Assume that a vector field bpt, xq :
p0, T q ˆ RN Ñ RN can be decomposed as

bps, xq

1` |x|
“ b̃1ps, xq ` b̃2ps, xq, (R1)

with
b̃1 P L

1pp0, T q;L1pRN qq, b̃2 P L1pp0, T q;L8pRN qq. (3.12)
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Definition 3.7. If b is a vector field satisfying (R1), then for fixed t P r0, T q, a map Xps, t, xq
satisfying

ps, xq ÞÑ Xps, t, xq P Cprt, T ss;L
0
locpRNx qq XBprt, T ss; logLlocpRNx qq (3.13)

is a regular Lagrangian flow (in the renormalized sense) relative to b starting at t if we have the
following:

(i) The equation
Bs
`

βpXps, t, xqq
˘

“ β1pXps, t, xqqbps,Xps, t, xqq (3.14)

holds in D 1ppt, T q ˆ RN q, for every function β P C1pRN ;Rq that satisfies |βpzq| ď Cp1 `
logp1` |z|qq and |β1pzq| ď C{p1` |z|q for all z P RN , for some constant C,

(ii) Xpt, t, xq “ x for L N -a.e x P RN ,
(iii) There exists a compressibility constant L ě 0 such that

ş

RN ϕpXps, t, xqq dx ď L
ş

RN ϕpxq dx

for all measurable ϕ : RN Ñ r0,8q.

By now this is the usual definition of flows for weakly differentiable vector fields satisfying
the general growth condition (R1).

We next consider the condition that the components of ∇b can be written as singular integrals
of L1 functions,

Bjb
i “ Sijg

i
j in D 1pp0, T q ˆ RN q, (R2)

where Sij are singular integral operators in RN , and gij P L
1pp0, T q ˆ RN q.

Finally we consider the conditions

b P Lplocpr0, T s ˆ RN q for some p ą 1, (R3)

and
div b P L1pp0, T q;L8pRN qq. (R4)

According to [8], under the assumptions (R1), (R2), (R3), (R4), a regular Lagrangian flow
X as in Definition 3.7, except that now s P r0, T s instead of s P rt, T s (the forward-backward
flow defined in Corollary 6.6 in [8]) exist and is unique and stable.

With this notion of flow, we can define in accordance with [8] our class of Lagrangian solutions
pω, vq to the Euler equations by the relation

ωpt, xq “ ω0
´

Xps “ 0, t, xq
¯

, for all t P r0, T s. (3.15)

Definition 3.8 (Lagrangian solution). Let pω0, v0q P L1pR2q ˆM2pR2q with ω0 “ curl v0. We
say the couple pω, vq is a Lagrangian solution to (1.3) in r0, T s with initial data pω0, v0q, if

(1) ω P Cpr0, T s;L1pR2qq,
(2) the velocity field v is given by the convolution in (1.4),
(3) for all t P r0, T s, ω is given by the formula in (3.15), where X is the regular Lagrangian

flow associated to v.

Note that according to the properties stated in Section 2, the vector field b “ v satisfies the
properties (R1), (R2), (R3), (R4), with gij “ ω, justifying the existence of X. We remark

that according to [8], Lagrangian solutions in the sense of Definition 3.8 are also renormalized
solutions in the sense of Definition 3.3.

4. Strong stability of Lagrangian flows

We now recall from [8] the following stability result. It gives a quantitative estimate in
measure on the flows difference, in terms of the L1 norm of the difference of the vector fields.

Theorem 4.1 (Fundamental estimate for flows). Let b and b̄ be two vector fields, b satisfying
assumptions (R1)-(R3) and b̄ satisfying only (R1). Fix t P r0, T q and let X and X̄ be regular
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Lagrangian flows starting at time t associated to b and b̄ respectively, with compressibility con-
stants L and L̄. Then for every γ ą 0 and r ą 0, and for every η ą 0 there exist λ ą 0 and
Cγ,r,η ą 0 such that

L N pBr X t|Xps, ¨q ´ X̄ps, ¨q| ą γuq ď Cγ,r,η}b´ b̄}L1pp0,T qˆBλq ` η for all s P rt, T s. (4.1)

The constant λ and Cγ,r,η depend on γ, r, η and on the bounds on the operator norms of Sij, the

norms involved in the estimates from (R1) and (R3), the compressibility constants L and L̄ of
X and X̄, and the equi-integrability of gij from assumption (R2) for b.

In previous literature (see again [19]), strong L1
loc convergence of smoothed velocities was

guaranteed for initial data v0 belonging to L2
locpR2q. In order to allow for solutions with infinite

kinetic energy, we bypass this assumption and use the weaker M2 estimate arising in (2.5). As
seen in the estimate (4.1), we need the strong convergence in time and space of the vector field.
We have a priori only compactness in space, and we shall therefore use a general argument to
deal with only weak convergence in time. We shall show a posteriori that given equi-integrable
vorticity data, the associated velocities are indeed strongly compact in time and space. An
alternative way to get compactness is also explained in Remark 6.4.

We now expand in the following Proposition 4.4 a remark from [9] proving that weak conver-
gence is sufficient for stability, and adapt the proof from the setting of Sobolev regularity to the
regularity given by (R2). We begin with two lemmas, the first arising from standard analysis.

Lemma 4.2. Let K be the Biot-Savart kernel (1.5), and denote by τhKpxq “ Kpx` hq. Then
for any 1 ă p ă 2 and all h P R2 one has

}τhK ´K}LppR2q ď cp|h|
α (4.2)

with α “ 2{p´1 ą 0. In particular, the linear mapping L1pR2q Ñ L1
locpR2q defined by g ÞÑ K ˚g

is a compact operator.

Proof. See Lemma 8.1 in [6] for the proof of the first inequality. Next, denote Tg “ K ˚ g, and
take an exponent1 ă p ă 2. Whenever }g}L1pR2q ď 1, Tg is bounded in L1

loc and one has

}τhpTgq ´ Tg}LppR2q “ }pτhK ´Kq ˚ g}LppR2q

ď }τhK ´K}LppR2q

ď cp|h|
α.

(4.3)

Thus τhpTgq´Tg is uniformly small in L1
loc as hÑ 0. Applying the Riesz-Fréchet-Kolmogorov

criterion gives the result. �

The second lemma states that given classical flows associated to Lipschitz vector fields, weak
convergence of the vector fields suffices for the associated flows to converge uniformly.

Lemma 4.3. Let bn be a sequence of vector fields uniformly bounded in L8pp0, T q ˆ RN q
with ∇xbn uniformly bounded in L8pp0, T q ˆ RN q. Assume that there exists a vector field
b P L8pp0, T q ˆRN q with ∇xb P L

8pp0, T q ˆRN q, such that bn á
˚ b in L8pp0, T q ˆRN q ´w˚.

Let Xnps, t, xq and Xps, t, xq be Lagrangian flows (in the DiPerna-Lions sense) associated to bn
and b. Then Xnps, t, xq Ñ Xps, t, xq in L8pp0, T q2;L8locpRN qq.

Proof. It follows from the uniform bounds on bn and ∇xbn that ∇xXn is uniformly bounded,
with

|∇xXnps, t, xq| ď exp
`

T }∇xbn}L8pp0,T qˆRN q
˘

. (4.4)

Then, the ODE for Xn implies that BsXn is uniformly bounded. Also, the transport equation

BtXn ` bnpt, xq ¨∇xXn “ 0 (4.5)

implies also that BtXn is bounded. Thus up to modifying Xn on a Lebesgue negligible set, Xn

is uniformly bounded in Lippr0, T s2 ˆRN q. By Arzelà-Ascoli’s theorem there exists Y ps, t, xq P
Lippr0, T s2 ˆ RN q such that up to a subsequence Xnps, t, xq Ñ Y ps, t, xq locally uniformly in
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r0, T s2ˆRN . Using the identity bnpt, xq ¨∇xXn “ div pXnb bnq´Xn div bn, it follows from the
uniform convergence of Xn and the weak convergence of bn and div bn that we can pass to the
limit in (4.5), so that by the uniqueness of solutions to the transport equation we must have
Y “ X. �

Lemmas 4.2 and 4.3, together with Theorem 4.1, yield the following stability result for La-
grangian flows, which states that weak convergence of the velocity fields implies that the asso-
ciated flows converge strongly anyway.

Proposition 4.4. Let pvnq be a sequence of divergence free velocity fields uniformly bounded in
L8pp0, T q;M2pR2qq. Assume that vn á v in D 1pp0, T q ˆ R2q, where v P L8pp0, T q;M2pR2qq is
divergence free. Assume additionally that curl vn is uniformly equi-integrable in L1pp0, T qˆR2q.
Let Xn be the regular Lagrangian flows associated to vn, and X the one associated to v. Then
Xn converges locally in measure to X, uniformly in s and t.

Proof. The assumptions imply that ωn ” curl vn, ω ” curl v P L1pp0, T q ˆ R2q, vn “ K ˚ ωn,
v “ K ˚ ω, thus the conditions (R1)-(R4) are satisfied for vn and v, justifying the existence
and uniqueness of Xn and X. We regularize vn and v with respect to the spatial variable. Let
ρ P C8c pR2q be the standard mollifier with sptpρq Ă B1. Denote by ρεpxq “ ε´2ρpx{εq, and
define

vεn “ vn ˚
x
ρε, vε “ v ˚

x
ρε.

Let Xε
n and Xε denote the DiPerna-Lions flows associated to vεn and vε respectively, as in

Lemma 4.3. Since vεn and vε also satisfy (R1)-(R4), it is easy to see that Xε
n and Xε are also

the regular Lagrangian flows in the sense of Definition 3.7. Then we write

Xn ´X “ pXn ´X
ε
nq ` pX

ε
n ´X

εq ` pXε ´Xq

” I ` II ` III.
(4.6)

By Theorem 4.1 the term III tends to zero locally in measure, uniformly in s, t, as εÑ 0. For
I, applying also Theorem 4.1, which is possible because the ωn are uniformly equi-integrable,
gives that for all γ ą 0, r ą 0, η ą 0, there exist λ ą 0 and C ą 0 such that

L 2pBr X t|X
ε
nps, t, ¨q ´Xnps, t, ¨q| ą γuq ď C}vεn ´ vn}L1pp0,T qˆBλq ` η, (4.7)

for all s, t P r0, T s2. Using Minkowski’s inequality and applying Lemma 4.2, we estimate

}vεn ´ vn}L1pp0,T q;LppR2qq “

ż T

0

»

–

ż

R2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bε

rvnpt, x´ yq ´ vnpt, xqρεpyqdy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

dx

fi

fl

1{p

dt

ď

ż T

0

ż

Bε

»

–

ż

R2

|vnpt, x´ yq ´ vnpt, xq|
pdx

fi

fl

1{p

|ρεpyq|dy dt

ď cp }ωn}L1pp0,T q;L1pR2qq

ż

Bε

|y|α|ρεpyq|dy

ď C εα.

Thus the first term in the right-hand side of (4.7) tends to zero as ε Ñ 0, uniformly in n. We
deduce that the terms I and III can be made arbitrarily small independently of n, for a suitable
choice of ε. Once such ε is chosen, we observe that we can apply Lemma 4.3 to the vector fields
vεn and vε. We deduce that Xε

n Ñ Xε locally uniformly in s, t, x, as n Ñ 8, which concludes
the proof of the Proposition. �

5. Existence and stability of Lagrangian solutions to the Euler system

We now apply the stability results for Lagrangian flows derived in the previous section in
order to get stability and existence of Lagrangian solutions to the Euler equations.
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Theorem 5.1 (Stability of Lagrangian solutions). Let pωn, vnq P Cpr0, T s;L1pR2qq ˆ

Cpr0, T s;M2pR2qq be a sequence of Lagrangian solutions to the Euler equations (Definition 3.8)
associated to uniformly in n equi-integrable initial vorticities ω0

n. Let Xn denote the regular
Lagrangian flows associated to vn. Then, up to the extraction of a subsequence, there exists
pω, vq P Cpr0, T s;L1pR2qq ˆ Cpr0, T s;M2pR2qq such that v is associated to ω by the convolution
formula (1.4) and

(1) Xn Ñ X locally in measure, uniformly in s, t, where X is the regular Lagrangian flow
associated to v.

In addition,

(2) If ω0
n á ω0 weakly in L1pR2q, then ωn á ω in Cpr0, T s;L1pR2q ´ wq,

(3) If ω0
n Ñ ω0 strongly in L1pR2q, then ωn Ñ ω in Cpr0, T s;L1pR2q ´ sq,

(4) vn Ñ v strongly in Cpr0, T s;L1
locpR2qq.

Moreover, pω, vq is a Lagrangian solution to the Euler system with initial vorticity ω0.

Proof. Since vn has zero divergence, the flow Xn is measure preserving. The formula (3.15) then
implies that }ωnpt, ¨q}L1pR2q “ }ω

0
n}L1pR2q. Thus ωn is uniformly bounded in Cpr0, T s;L1pR2qq,

and vn is uniformly bounded in Cpr0, T s;M2pR2qq. Then, still the formula (3.15) implies that
ωnpt, ¨q is uniformly in n, t equi-integrable (the smallness at infinity follows from the estimate
of Remark 5.6 in [8]). In particular, ωn is uniformly equi-integrable in L1pp0, T q ˆ R2q.

Then, according to the bound on vn, up to a subsequence one has vn á
˚ v in L8pp0, T q;LplocpR

2qq´

w˚ for 1 ă p ă 2, with v P L8pp0, T q;M2pR2qq. Applying Proposition 4.4 gives point (1).
Extracting a new subsequence if necessary, one has ω0

n á ω0 weakly in L1pR2q, for some
ω0 P L1pR2q. One can define then the Lagrangian solution ω P Cpr0, T s;L1pR2qq to the transport
equation with initial data ω0 by ωpt, xq “ ω0pXp0, t, xqq. Since ωnpt, xq “ ω0

npXnp0, t, xqq, the
convergence of Xn yields point (2) by the same arguments as in Proposition 7.7 in [8]. Point (3)
works also with the arguments of Proposition 7.3 in [8]. We deduce then that vn “ K˚ωn Ñ K˚ω
in Cpr0, T s;L1

locpR2qq, because of the compact operator property stated in Lemma 4.2. We de-
duce that v “ K ˚ ω P Cpr0, T s;M2pR2qq and point (4). The definition of ω concludes that
pω, vq is a Lagrangian solution to the Euler system with initial vorticity ω0. �

Corollary 5.2 (Existence). Let pω0, v0q P L1pR2q ˆM2pR2q with div v0 “ 0 and ω0 “ curl v0.
Then there exists a Lagrangian solution pω, vq P Cpr0, T s;L1pR2qq ˆ Cpr0, T s;M2pR2qq to the
Euler system with initial data pω0, v0q.

Proof. Let ρpxq P C8c pR2q be a standard mollifier, and consider ω0
n “ ρn˚ω

0, v0
n “ K ˚ω0

n. Then
ω0
n Ñ ω0 in L1pR2q and for each n there exists a classical smooth solution pωn, vnq to the Euler

system with initial data pω0
n, v

0
nq. For each n it is also a Lagrangian solution. Thus applying

Theorem 5.1, we obtain at the limit a Lagrangian solution pω, vq with initial data pω0, v0q. �

6. Lagrangian renormalized symmetrized solutions

A byproduct of Theorem 5.1 is the strong compactness of smooth solutions to the Euler
system, provided that the initial vorticities are uniformly equi-integrable. The limit of such
smooth sequences of solutions give rise to Lagrangian, renormalized (because all Lagrangian
solutions are renormalized), symmetrized solutions. However, we do not know if any Lagrangian
solution pω, vq is necessary a symmetrized solution. We therefore define solutions which are
Lagrangian as well as symmetrized solutions. They include in particular smooth solutions.

Definition 6.1 (Lagrangian symmetrized solutions). Let pω0, v0q P L1pR2q ˆM2pR2q with ω0 “

curl v0. We say the couple pω, vq is a Lagrangian symmetrized solution to the Euler system in
r0, T s with initial data pω0, v0q, if it is a Lagrangian solution in the sense of Definition 3.8, and
pω, vq satisfies the formula (3.6) where H̄φ is given by (3.4).

According to Proposition 3.5, these solutions satisfy also the symmetrized vorticity formula-
tion (3.10). We have the following result.
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Proposition 6.2. Let pωn, vnq be a sequence of Lagrangian symmetrized solutions to the Eu-
ler system and assume that ωn have uniformly in n equi-integrable initial data ω0

n. Then up
to a subsequence, vnpt, xq Ñ vpt, xq strongly in Cpr0, T s;L1

locpR2qq, with pω, vq a Lagrangian
symmetrized solution, and

(1) If ω0
n á ω0 weakly in L1pR2q, then ωn á ω in Cpr0, T s;L1pR2q ´ wq.

(2) If ω0
n Ñ ω0 strongly in L1pR2q, then ωn Ñ ω in Cpr0, T s;L1pR2q ´ sq.

Proof. The convergence follows from Theorem 5.1. The only new thing is that pω, vq is also
symmetrized. This follows by passing to the limit in the equation (3.6) for pωn, vnq. The linear
terms clearly converge, and the convergence of the nonlinear term follows from the boundedness
of H̄φ and the convergence of ωn in Cpr0, T s;L1pR2q ´ wq, that implies the convergence of
ωnpt, xqωnpt, yq in Cpr0, T s;L1pR2 ˆ R2q ´ wq. �

Note that we are not able to pass to the limit in the renormalized formulation of Definition
3.3, unless strong convergence in L1pR2q of ω0

n to ω0 is assumed.

We finally conclude the existence of solutions to the Euler system in all the five senses defined
in Section 3.

Proposition 6.3 (Existence of Lagrangian symmetrized, and weak velocity solutions). Let
pω0, v0q P L1pR2q ˆM2pR2q with ω0 “ curl v0 and div v0 “ 0. Then there exists a Lagrangian
symmetrized solution pω, vq to the Euler system with initial data pω0, v0q. It is in particular a
renormalized and vorticity symmetrized solution.

Under the additional assumption v0 P L2
locpR2q, one can find pω, vq with the property v P

L8pp0, T q;L2
locpR2qq, and it is then a solution to the weak velocity formulation (3.1).

Proof. This follows from Proposition 6.2 after mollifying pω0, v0q as in Corollary 5.2. When
v0 P L

2
loc, the sequence of approximations is bounded in L8pp0, T q;L2

locpR2qq, which yields at
the limit v P L8pp0, T q;L2

locpR2qq. One can then invoke Proposition 3.5 to conclude. Another
way to do is to use the arguments of [10, 18] to pass to the limit in the weak velocity formulation
(3.1) (note anyway the identity provided by Lemma 3.6). �

Remark 6.4. In the context of Lagrangian symmetrized solutions, instead of using the general ar-
gument of Proposition 4.4 to get stability of the flow, it is possible to prove directly the compact-
ness in time and space of the velocity, by using v “ K˚ω, with ω bounded in L8pp0, T q;L1pR2qq,
and the symmetrized vorticity formulation (3.10) that implies that Btω P L

8pp0, T q; D 1q. These
properties imply by Aubin’s lemma that v is compact in L1

locpp0, T q ˆ R2q.

Acknowledgments. This research has been partially supported by the SNSF grants 140232
and 156112.

References

[1] Ambrosio, L. Transport equation and Cauchy problem for BV vector fields. Inventiones Mathematicae 158
(2004), 227–260.

[2] Ambrosio, L.; Crippa, G. Existence, uniqueness, stability and differentiability properties of the flow
associated to weakly differentiable vector fields. Transport equations and multi-D hyperbolic conservation
laws, 3–57, Lect. Notes Unione Mat. Ital. 5, Springer, Berlin, (2008).

[3] Ambrosio, L.; Crippa, G. Continuity equations and ODE flows with non-smooth velocity, Proc. Roy. Soc.
Edinburgh Sect. A 144 (2014), 1191–1244.

[4] Bahouri, H.; Chemin, J.-Y. Equations de transport relatives à des champs de vecteurs non-lipschitziens et
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