®-PLOS

provided by edoc

COMPUTATIONAL
BIOLOGY

Cro_ssMark

G OPEN ACCESS

Citation: Siebourg-Polster J, Mudrak D, Emmenlauer
M, R&mo P, Dehio C, Greber U, et al. (2015) NEMix:
Single-cell Nested Effects Models for Probabilistic
Pathway Stimulation. PLoS Comput Biol 11(4):
€1004078. doi:10.1371/journal.pcbi. 1004078

Editor: Satoru Miyano, University of Tokyo, Japan
Received: June 26, 2014

Accepted: December 8, 2014

Published: April 16, 2015

Copyright: © 2015 Siebourg-Polster et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Data are freely
available as part of the R/Bioconductor package
‘nem’ at http://www.cbg.ethz.ch/software/NEMix.

Funding: CD, UG, and NB were supported by
SystemsX.ch (www.systemsx.ch), the Swiss initiative
in systems biology, under grant No. 51RT-0_126008
(InfectX), and CD and NB under grant No.
51RTP0_151029 (TargetinfectX). The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

NEMix: Single-cell Nested Effects Models for
Probabilistic Pathway Stimulation

Juliane Siebourg-Polster'2, Daria Mudrak®, Mario Emmenlauer?, Pauli Ramé?,
Christoph Dehio*, Urs Greber®, Holger Frohlich®, Niko Beerenwinkel'2*

1 Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland, 2 SIB Swiss Institute
of Bioinformatics, Basel, Switzerland, 3 Institute of Molecular Life Sciences, University of Zurich, Zurich,
Switzerland, 4 Biozentrum, University of Basel, Basel, Switzerland, 5 Algorithmic Bioinformatics, Bonn-
Aachen International Center for IT, University of Bonn, Bonn, Germany

* niko.beerenwinkel@bsse.ethz.ch

Abstract

Nested effects models have been used successfully for learning subcellular networks from
high-dimensional perturbation effects that result from RNA interference (RNAI) experi-
ments. Here, we further develop the basic nested effects model using high-content single-
cell imaging data from RNAI screens of cultured cells infected with human rhinovirus. RNAI
screens with single-cell readouts are becoming increasingly common, and they often reveal
high cell-to-cell variation. As a consequence of this cellular heterogeneity, knock-downs re-
sult in variable effects among cells and lead to weak average phenotypes on the cell popu-
lation level. To address this confounding factor in network inference, we explicitly model the
stimulation status of a signaling pathway in individual cells. We extend the framework of
nested effects models to probabilistic combinatorial knock-downs and propose NEMix, a
nested effects mixture model that accounts for unobserved pathway activation. We ana-
lyzed the identifiability of NEMix and developed a parameter inference scheme based on
the Expectation Maximization algorithm. In an extensive simulation study, we show that
NEMix improves learning of pathway structures over classical NEMs significantly in the
presence of hidden pathway stimulation. We applied our model to single-cell imaging data
from RNAI screens monitoring human rhinovirus infection, where limited infection efficiency
of the assay results in uncertain pathway stimulation. Using a subset of genes with known
interactions, we show that the inferred NEMix network has high accuracy and outperforms
the classical nested effects model without hidden pathway activity. NEMix is implemented
as part of the R/Bioconductor package ‘nem’ and available at www.cbg.ethz.ch/software/
NEMIix.

Author Summary

Experiments monitoring individual cells show that cells can behave differently even under
same experimental conditions. Summarizing measurements over a population of cells can
lead to weak and widely deviating signals, and subsequently applied modeling approaches,
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like network inference, will suffer from this information loss. Nested effects models, a
method tailored to reconstruct signaling networks from high-dimensional read-outs of
gene silencing experiments, have so far been only applied on the cell population level.
These models assume the pathway under consideration to be activated in all cells. The sig-
nal flow is only disrupted, when genes are silenced. However, if this assumption is not
met, inference results can be incorrect, because observed effects are interpreted wrongly.
We extended nested effects models, to use the power of single-cell resolution data sets. We
introduce a new unobserved factor, which describes the pathway activity of single cells.
The pathway activity is learned for each cell during network inference. We apply our
model to gene silencing screens, investigating human rhino virus infection of single cells
from microscopy imaging features. Comparing the learned network to the known KEGG
pathway of the genes shows that our method recovers networks significantly better than
classical nested effects models without capturing of hidden signaling.

This is a PLOS Computational Biology Methods paper.

Introduction

Network inference benefits substantially from perturbation experiments, such as RNA interfer-
ence (RNAi) screens. Monitoring high-dimensional effects of gene silencing enables inference
of non-transcriptional network structures that cannot be learned on observational data alone
[1]. Nested effects models (NEMs) are a class of probabilistic graphical models that aim at
learning hierarchical dependencies from such intervention experiments. Upon perturbing
nodes in a signaling graph, their connectivity is inferred from the nested structure of observed
downstream effects. The concept was first introduced in [2]. Since then, many further additions
concerning, for example, parameter inference, structure learning, and data integration, were
developed [3, 4]. In addition, dynamic models for time series data have been developed [5-7].
In [5], a first application of dynamic nested effects models to time laps microscopy data has
been described, but the model can not handle single-cell data. A Bayesian network representa-
tion of NEMs in [8] introduces a probabilistic notation for signal propagation, but in practice
the signaling is kept deterministic. In all previous NEM models and applications, the signaling
pathway under observation is assumed to be active and the signal flow disrupted by silencing
the signaling genes one by one.

In principle, RNAi experiments are a highly informative for learning NEMs. Perturbations
are introduced by gene silencing in cells through RNA interference using siRNAs [9, 10]. Ef-
fects of the knock-downs are then captured by high-dimensional down-stream observations.
The screening data analyzed here, comprises imaging data of thousands of individual cells for
genome-wide gene silencing. However, the experiments come at the cost of high noise levels, as
well as biological and technical biases, including off-target effects [11, 12]. These confounding
factors complicate the analysis and interpretation of the screening results. On the other hand,
RNAI screens currently reach very high resolution. Per knock-down, the present data sets com-
prise about 300 image features for several hundred individual cells, which allows for a very de-
tailed analysis of a knock-down event. However, it has been shown that measurements from
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individual cells of the same experiment can differ widely, for example, due to local environ-
mental differences [13, 14]. Such variation on the single cell level needs to be accounted for.
Otherwise, an ambiguous signal is obtained, when averaging over the cell population of a
knock-down.

Here, we specifically investigate single-cell observations of pathogen infection screens [15-
17]. The experiments monitor cells with an siRNA knock-down during infection with human
rhinovirus (HRV). After siRNA knock-down, the pathogen is added to the cells, and the suc-
cess of infection as well as many other cellular features are extracted from microscopy images
taken of the cells from each experiment [18-20]. The aim is to infer a signaling cascade in-
volved in pathogen entry in to the host cell. However, a challenge in the analysis of data from
this experimental setup is that by experimental design even in mock controls (i.e., infection
without knock-down) the infection rate is far from complete. In fact, the multiplicity of infec-
tion (MOI) of the assay was optimized to reach 30 to 50% infected cells, such that both infec-
tion-decreasing and infection-increasing hits can be detected. Which cells in the population
finally get infected is, at least to some extent, the result of stochastic effects, since cellular pro-
cesses can be differently manifested in different cells. The multi-functional nature of proteins,
for instance, enables a single host factor to enhance a signaling cascade, and at the same time
may antagonize other processes that support or inhibit infection. Obviously, infected cells
were reached by a pathogen triggering some signal to get internalized. However, for
uninfected cells, it is unknown whether a pathogen actually attempted to infect them, which is
crucial for determining the effect that the gene knock-down had on these cells. Wrongly as-
suming that the pathway is active, even though it is not, can result in conflicting knock-down
schemes. In the original NEM setting, individual cell observations are summarized for each
signaling gene.

To address the problem of network learning when the activation state of the signaling path-
way is unknown we introduce a new model, called NEMix, extending the existing NEM frame-
work in several ways. First, we do not summarize the data across cells, but rather perform
network inference using the single-cell observations directly. Furthermore, we model the un-
known pathway activation with an additional hidden random variable in the graph of signaling
genes. The activation state is then estimated for each individual cell. The pathway activity can
be regarded as an additional hidden silencing event in the signaling graph. We introduce a gen-
eral theoretical framework for probabilistic combinatorial knock-downs in NEMs. We develop
our model for the most general case, not making any assumptions about the signal propaga-
tion. We have implemented the special case of one hidden variable with probabilistic knock-
down, where the remaining network is kept deterministic. For inference of the hidden pathway
state, we developed an EM algorithm [21]. This step is repeated for each proposal structure
during the network search.

Results
Network inference under unknown pathway activity

We developed NEMix, a new model based on NEMs, which allows to estimate activity of a
pathway in individual cells. A NEM is a graphical model, consisting of two graphs. The transi-
tively closed graph @ encodes dependencies among signaling gene nodes S, € S, which are si-
lenced one by one. The bipartite graph ® connects a set of observable feature nodes E, € £
uniquely to the signaling genes (Fig. 1 A). We seek the structure of @, i.e., the topology of the
signaling pathway, by inferring it from the nested structure of observed effects. For a data

set D = (d) of a set of knock-down experiments k € {1, .. ., K} and observed features
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Fig 1. NEM versus NEMix. A schematic example is shown comparing the classical nested effects model (NEM; panel A) with the new nested effects mixture
model (NEMix; panel B) on six features observed in 15 individual cells. Blue nodes in the graph depict the signaling genes S+, S,, and S3 that have been
silenced and whose dependency structure is sought. The observed features Ej, . . ., Eg are shown in green. Each box below the graphs indicates the
observed (noisy) features (e.g., image-based read-outs) for a single cell. Within each box, dark entries indicate an effect of the knock-down on the feature,
light entries indicate no effect. In cells 1 and 2 (left in both A and B), the pathway has been activated via S,, whereas in cells 3, 4, and 5 (right in both A and B)
it has remained inactivated. In the latter case, the effects of silencing S, are masked and the resulting silencing scheme then differs from the one where the
pathway is stimulated. Classic NEMs (A) could explain such a heterogeneous cell population only by two different signaling graphs ®. By contrast, with the
NEMix model proposed in this work (B), both observed patterns can be explained by the same signaling graph ®, because the hidden pathway stimulation Z
(shown in red) is modeled explicitly. In the NEMix model, Z is a hidden binary random variable indicating pathway activation (Z = 1), which occurs with
probability P(Z=1) = p;.

doi:10.1371/journal.pcbi.1004078.9001
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e € {1, ..., m}, the likelihood function given ® and 8 is

p(o] 0.0) = [[[[P(d | 2.0 =) )

e

where 8, = s indicates that feature e is connected to signaling gene s € S.

The NEMix model consists of the same two graphs @ and ©®, but has an additional binary
hidden variable Z added to the signaling graph ®. Its connections to the signaling genes, as well
as its overall knock-down probability p, = P(Zy, = 0), are unknown and inferred for each indi-
vidual cell during the network reconstruction process. Given single cell data D = (d,) with
c=1,...,¢cells in knock-down experiment k, the likelihood function of the NEMix model,
given @ and 6, is

m K
P | @,0) = [[IIII D pP(ds | .0, =52, =j). (2)

e=1 k=1 c=1 je{0,1}

A detailed derivation of the model and its implementation are given in the Models section.
If a signal is activating a pathway, or parts of it, the signal flow is the same as in the NEM. Also
the observed knock-down effects for the features E, are the same. However, when the pathways
input signal is inactivated, the knock-down pattern of the features changes (Fig. 1A and B, cells
7 to 15). Not accounting for the pathway disruption can mislead inference of the structure ®
(Fig. 1A, left model).
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The connectivity of Z is learned in a greedy fashion during structure inference. For the
knock-down probability of the hidden variable, po, we implemented an EM algorithm,
which estimates jointly p, from each cell’s observation and the connections of observations
to signaling genes, 0. In the following, we show improved network inference with NEMix in
simulations and then infer networks of high accuracy, from single cell gene silencing
experiments.

Simulation study

To test our model, we performed a large simulation study. We generated 30 network structures
with 5 signaling genes, randomly sampled from KEGG pathway maps [22] as previously de-
scribed in [6]. To each network the hidden input signal was attached randomly. The resulting
30 sample networks are shown in supplementary S1 Fig. From each network, we sampled 50
data sets on 300 observed features in the following way. For each gene, we simulated single
knock-downs in 200 cells. To the observed features we added another 30 noise features, not at-
tached to any signaling gene. The data sets were generated in the following way. We sampled
effects from a normal distribution with mean m, = 1 and non-effects from a normal distribu-
tion with mean m,, = 0. The standard deviation for each experiment was sampled uniformly be-
tween 2 and 2.5. We furthermore sampled 200 cells for control experiments. The negative
control cells do not show any effects and are therefore drawn from the non-effect distribution.
The positive control cells always show effects and hence are drawn from the effect distribution.
The whole simulation process was repeated for five different fractions of pathway disruption,
Po €1{0,0.3,0.5, 0.8, 1}. NEMix inference was restarted for 16 initial networks. Each of them
consists of the empty graph @ plus a unique attachment of Z to the signaling genes. Setting the
maximal out-degree of Z to two, there are 16 possible such attachments of Z. This regulariza-
tion on the edges of Z reduces the search space significantly. During structure search we also
imposed this restriction, but additionally allowed transitive edges that had to be added as a con-
sequence of the insertion of any edge connecting Z to a gene (see Models section).

We compared NEMix to two other NEM models and, for a baseline comparison, to a ran-
dom approach, where network edges are sampled uniformly with probability 1/n, where n|®| is
the number of signaling nodes. This probability was chosen as it creates networks with approx-
imately the same number of edges as in the original graphs. To assess the impact that pathway
disruption has on the cell population level, we ran the simulations on a standard NEM using
the log-likelihood model introduced in [23]. For the NEM approach we had to summarize the
single cell observations to the gene level. For these gene-level data sets we used p-values of a
Wilcoxon test comparing the cell population of a knock-down to the control distribution.
From the p-value distributions a Beta-Uniform-Mixture model was estimated. For each feature
a density value is calculated from this model, indicating the effect strength of the knock-down.
These density values are used as the input data, as previously introduced in [23]. The third ap-
proach, called single-cell NEM (sc-NEM). is a NEMix model on individual cell observations,
but with fixed py = 0, i.e., a single-cell observation-based NEM without considering uncertain
pathway activity. For all three models, we applied a uniform prior on the feature attachments
6, and no prior knowledge was added for the network structures ®. The NEMix parameter p,
was initialized by drawing from a uniform distribution in each EM restart. As NEMix and
sc-NEMs infer networks on single-cell observations, we calculated log odds ratios from each
observation based on the positive and negative control distributions (see ‘Modeling the effect
likelihoods’ in S1 Text). For NEMs and sc-NEMs, we used maximum likelihood estimation to
infer 6 and in the NEMix it is estimated by in an EM algorithm. Structure learning is performed
using a greedy hill climbing algorithm, initialized with an empty network.
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Fig 2. Performance comparison of the simulations. (A) Simulation results are summarized based on the accuracy of recovered edges for the compared
methods. The methods are random, random edge sampling with rate ; NEM, the normal NEM inference; sc-NEM, the cell level NEM and NEMix, using the
NEMix inference with the hidden pathway state. All methods were run on 50 simulated data sets from 30 sample networks, repeated for different knock-down
probabilities of the pathway state py. (B) For the NEMix model, the distributions of inferred p, values are compared to the true po.

doi:10.1371/journal.pcbi.1004078.9002

Fig. 2A summarizes the overall performance for all methods and the different fractions of
pathway signal perturbation py. We display accuracy of the edge recovery, for varying p,. We
also calculated the area under the ROC curve (AUC) based on the edge frequencies of the 50
replicate data sets, which yielded similar results in terms of accuracy (see supplementary S2
Fig). As expected, all methods performed equally well when there is no signal disruption
(po = 0). However, when p, is moderate to high, NEMix performs significantly better than the
other methods. If the triggering signal is always turned off, performance of all methods drops
drastically. Intuitively, this is because in such a special case, all features downstream of Z always
show an effect and hence they cannot be used for structure learning. For example, if, in Fig. 1B,
Z is inactive for each cell, we could not infer the structure among S, and S;. In reality though,
permanent shut down of the pathway is very unlikely. For the infection screens p, = 1 would
mean that no cell is ever infected. Pathway activity estimates are also of overall high accuracy
(Fig. 2B). Although simulation results demonstrate that the performance of learning Z and 6
varies, depending on the network structure, the average performance is very good (S3 Fig, S4
Fig, S5 Fig).

Currently, one of the main obstacles for learning larger NEMix models is the fast growing
run-time for n > 5 network nodes. Run-time is further increased by a factor of n, when initiat-
ing the algorithm with each possible connection of Z to one of the knock-down genes. To assess
its performance on larger networks, we ran a reduced simulation study on n = 5, 10, and 15
genes. The setup and results of the study are described in detail in S6 Fig. Larger networks of 15
nodes can still be estimated very well (56 Fig. A) and estimation of the parameter p, even im-
proves (S1 Fig. D). However, the average time to estimate a 15-node network was 9.5 hours.
This is substantially more than the average 1.9 hours needed for 10-node networks. Thus, in a
highly parallelized computing environment, even larger networks can be estimated.

We also assessed the connection of features to the signaling genes in the inferred graph ©.
There can be situations, where attachment of features is equally likely for several signaling
genes. In these cases, where no single gene is preferred, we counted a feature as correctly at-
tached if it was connected to any of the signaling genes with equal likelihood. Accuracy of the 6
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estimates is high (> 80%) for small p, values and decreases with increasing p,. For small p,
also performance of the sc-NEMs is good, which shows the advantage of learning on the sin-
gle-cell data level. However, NEMix stands out from the other methods for higher p,. Recovery
of noise features, i.e., correct filtering of the additionally added uninformative features, is not
strongly affected by the hidden signal (see supplementary S7 Fig). Analyzing individual net-
works, one again observes high variation in performance (see supplementary S8 Fig).

Application to pathogen infection experiments

We applied NEMix in the context of infection signaling, using the RNAi screening data moni-
toring HRV infection, mentioned in the introduction. Briefly, viruses were added to the siRNA
transfected cells and after an incubation time, cells were fixated, stained, and then imaged. Sub-
sequently, 360 cell features were extracted from the 9 images per knock-down experiment
using the software CellProfiler [24]. For the whole experimental procedure the protocols of
[17] were followed. The HRV assay is rather short with an infection time of only seven hours,
resulting in measurements proximal to the infection event. The short time range is advanta-
geous, because it leaves less room for confounding developments in the cells. Furthermore, the
used antibody resulted in clean readouts, well to extract from the images.

Before using the data for network inference, we performed two additional filtering steps.
For each knock-down, the well is split into 9 images. They are arranged in three rows and three
columns. We used only the middle image, because it is of the highest quality. In this way we
avoided too many out-of-focus cells, which bias especially the cell texture features. After this
filtering step, we had around 200 to 300 cells per knock-down. A second filtering step concerns
siRNA off-targets [25]. We sought to avoid confounding by this effect and therefore selected
only genes with low predicted off-target effects as described in ‘siRNA filtering for off-targets’
of S1 Text.

We applied NEMix to a small subset of the screened genes, in order to recover a known
pathway. We decided on the well-known MAP-Kinase signaling cascade as a proof of principle,
for several reasons. First, it has been studied and validated in great detail [26-28], such that the
available signaling network from the KEGG database [22] can be used as a reliable source to
compare to. Second, the pathway is known to be involved in HVR infection signaling, where it
is associated with asthmatic and COPD exacerbation [29-31]. Finally, we observed an enrich-
ment for low off-target siRNAs in this pathway when performing a gene set enrichment analy-
sis [32] (see supplementary S9 Fig). We then selected a small subset of 8 MAP-Kinase pathway
genes for analysis based on the derived score for predicted off-target effects. Nodes of KEGG
pathways can contain several genes. We selected genes such that they are all assigned to differ-
ent KEGG nodes using a weighted maximum bipartite matching of low off-target siRNAs and
unique KEGG nodes. After gene selection, we inferred networks for the 5 and 8 genes with low-
est off-target score.

Like in the simulation study above, we compared the NEMix model to the NEM and the
sc-NEM approach. As input data sets, the local effect likelihoods from the selected knock-
down gene experiments were computed as follows. As the experiments lack reliable controls,
we instead used a random sample of cells from the plate on which the gene was located, assum-
ing that the majority of knock-downs will not have an effect. Like for the simulation study, we
derived the cell population effects for the NEM from Wilcoxon tests, comparing the knock-
down experiment to the control. From the resulting p-value distributions, effect strengths for
the features were estimated using the Beta-Uniform-Mixture model. Log odds ratios for sc-
NEMs and NEMix in this case are calculated only based on one control distribution (see Mod-
els section). NEMix inference again is repeated for the 16 initial networks of all possible
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Fig 3. Inferred MAPK networks on HRV infection data. Best networks of the 5 top scoring siRNAs from the MAPK pathway for HRV infection for the
different compared methods are displayed. (A) shows the known KEGG pathway. (B) is the inferred NEM and (C) the sc-NEM. (D) left shows the known
network with the most likely attachment of the hidden variable Z (blue) and (E) is the inferred NEMix. For all networks their performance is summarized in
Table 1. Subfigure (F) summarizes robustness of the MAPK network inference. For the inferred MAPK signaling networks on the HRV infection data, we
assessed robustness of the accuracy for edge recovery. Box-plots display the result of 50 bootstrap samples for the three compared methods, on the 5 gene
(n=5) and 8 gene (n = 8) network.

doi:10.1371/journal.pcbi.1004078.9003
connections of Z with maximal out-degree 2 to the empty graph @. Like in the simulation
study, po was initialized by drawing randomly from a uniform distribution. Again we used uni-

form priors for 8 and imposed no priors for the signaling networks other than the maximal
out-degree of Z (plus the transitive edges that need to be added).

Table 1. Performance summary of the 5 gene MAPK network.

Network Likelihood ACC AUC p0 Sub-figure
True Graph 2641.47 1 1 A
NEM 2809.83 0.5 0.23 B
sc-NEM 29410.81 0.65 0.47 C
True Graph + Z 31768.94 1 1 0.48 D
NEMix 34982.87 0.9 0.84 0.42 E

The first column gives the log-likelihood for each model, showing that the true network is much less likely than the inferred networks. The second and third
column show performance of the networks in terms of accuracy (ACC) and area under curve (AUC). The inferred p, for the NEMix models is displayed in
column four. Column five indicates the corresponding sub-figure of Fig. 3. The network ‘KEGG Graph + Z' denotes the structure of the known KEGG
network, where only the position of Z, po, and 0 are inferred.

doi:10.1371/journal.pcbi.1004078.t001
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The known KEGG network and the inferred results for the top 5 signaling genes are dis-
played in Fig. 3A-E. Results for the top-8 gene network are given in S10 Fig. To assess robust-
ness of the learned networks, we repeated the inference on 50 bootstrap samples of the original
data set. Both networks show high AUC values and even better accuracy (see Table 1). As can
be seen from Fig. 3F, network inference was very robust for the top-5 gene network. For the
top-8 gene network, performance had a slightly higher variation. Individual plots for sensitivity
and specificity are given in supplementary S11 Fig. A, B. Also the estimate of p, shows only lit-
tle variation (S11 Fig. C). In all cases, the likelihood score of the known KEGG network is
much lower than for the best inferred networks, indicating that under the assumptions of our
model, the data and the KEGG database do not perfectly agree. Possible reasons for this obser-
vation include our model missing to explain part of the data correctly, the KEGG database
being incomplete, and inaccuracies in the data generating process. Nevertheless, the accuracy
value of 0.85 for the learned NEMix outperforms all other methods. All edges contained in the
learned NEMix models are of high robustness (> 80% for 5 genes, and > 70% for 8 genes).
Consensus networks of the bootstrap results are shown in supplementary S12 Fig.

Furthermore, the hidden root Z is attached to the same nodes in both the known KEGG
graph and the estimated network for 5 genes. Also the inferred 8 node network connects Z to
the same three genes. As genes were selected based on small off-target effects of their targeting
siRNAs, they are not necessarily hits for HRV infection. However, of the selected genes EGFR
[33], TAB2 [34] and CACNA2D3 [35] have been shown to be involved in this process.

All models have a built-in filter for uninformative features, which has been previously intro-
duced in [36]. A comparison shows that averaged over the bootstrap samples, for all three
methods, the set of used features largely agrees (supplementary S13 Fig and S14 Fig). The maxi-
mum likelihood attachments of features to the knock-down genes and the null node are shown
in supplementary S15 Fig and S16 Fig, together with a detailed description of the different fea-
ture types. The inferred signaling disruption of py = 0.42 seems rather high. We compared this
to the average infection rate in mock experiments, i.e., cells without siRNA knock-down. These
resemble cases, where Z can be perturbed but none of the other signaling genes in the network.
Mock wells from plates of the 8 genes used here, actually have a much higher percentage of un-
infected cells, roughly in the range of 75 to 81%. However, this comparison should be taken
with caution since control wells of these screens might have suffered from strong plate location
bias, as they were located on the margins of the plate.

As a general observation, NEMix-inferred networks were sparser than those obtained from
NEMs, because spurious edges introduced in the latter are correctly explained by hidden path-
way activity Z in NEMix. Therefore, NEMix networks have increased specificity, which might
come at the cost of some missing true edges. Especially the 8-gene networks inferred by NEM
and sc-NEM are much denser than the known KEGG network. A sparse network is beneficial
in the sense that it allows to focus on a small set of highly specific edges. For validation experi-
ments, it is desirable to have a low false positive rate in the predicted interactions as usually
only very few of these dependencies can be experimentally tested.

Discussion

RNAi screens are known to be prone to many sources of noise and bias such that their analysis
is highly challenging. Here, we have identified one confounding factor, namely heterogeneous
signaling pathway activation within a cell population, and incorporated it directly into a novel
probabilistic model for pathway reconstruction. To address the problem of unknown activation
of signaling pathways during network inference, we have introduced a general framework,
building on NEMs, to handle hidden combinatorial knock-downs in a probabilistic manner.
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With NEMix we provide an implementation for inference under unknown pathway stimula-
tion. For the first time, image features are explicitly used on the single-cell level for NEM infer-
ence, acknowledging large cell-to-cell variation. We have demonstrated the advantages of
NEMix over current NEMs in simulations and inferred highly accurate networks in a case
study on HRV infection. Especially, when the underlying true signaling networks are expected
to be sparse, NEMix is beneficial. It removes spurious edges introduced due to confounding
factors and therefore reduces the false positive rate, a desired property when it comes to valida-
tion of edges.

A limitation of the current model formulation is the assumption of independent single cell
observations. In reality, this assumption might not be met as cells can be biased due to their lo-
cation and neighbors. Removing this bias either by normalization or explicit modeling, as for
example in [14], could further improve the model. Furthermore, in the current data sets cells
can be in different cell cycle states. Grouping them according their states may remove further
biases, but this clustering task is itself very challenging.

Another general limitation of NEMs and NEMix models is that they cannot learn certain
pathway features. From static data, NEMs cannot resolve any loop structures by construction.
This is a general problem for network inference without time resolved data. Therefore, only
performance statements based on comparing transitively closed pathways can be made. The
sampled graphs in the simulation are already transitively closed and since the transitive closure
is a feature inherent to all the models we compare, it should not influence the ranking based on
their performance. Before comparing a network to the corresponding KEGG pathway, we also
built its transitive closure. This fact should be considered when interpreting the inferred mod-
els. For example, the model does not allow for distinguishing a feed forward loop from a se-
quential cascade; however, the hierarchical order of genes in the network would remain the
same, and this piece of information does already provide considerable insight into the biologi-
cal processes. The way we have assessed performance here puts particular emphasis on this hi-
erarchical structure of the network nodes.

Further improvements could be achieved during data preparation. Image segmentation is
not always perfect and might introduce technical biases into data sets, adding more confound-
ing factors. If data is not curated carefully, we risk to capture technical biases with the addition-
al hidden variable in NEMix models. Another interesting aspect of the data sets deserving a
more thorough analysis, is the nature of the image features themselves. Here, readouts have
been used to infer the graph of signaling genes. However, one could investigate in more detail
how features are grouped when attaching them to the signaling genes. Some features might not
contribute useful information and could be filtered in advance, others might be redundant. Fu-
ture projects could use the output of NEMix models and seek for biological interpretation of
feature correlations.

In case of cell infection screens, infection efficacy was an obvious factor that needed to be
addressed. However, the same idea could be applied to other sources of noise. For example,
transfection efficacy of the knock-downs could be considered. Quality and efficacy of a knock-
down can be quantified by mRNA levels (QPCR) or protein level (western blot analysis) of a
gene. However, for high-throughput assays, such confirmation is not available for most gene
knock-downs. In order to account for different siRNA transfection efficacies further hidden
variables could be introduced. In contrast to the global Z variable introduced here, hidden
knock-down rates would then be estimated for each gene individually. As a consequence, the
complexity of the problem would increase substantially. Instead of one parameter, n (number
of genes) parameters would have to be estimated. Furthermore, knock-down probabilities
could only be estimated from a fraction of the observations (e.g., cells under the specific knock-
down). Another drawback is that the increased number of hidden variables gives rise to
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identifiability problems when estimating infection efficacy in combination with the knock-
down rates. For example, if the hidden variable Z was only attached to one signaling gene, ef-
fects of Z and a failed transfection could not be distinguished. Although extending the NEMix
model to this situation would be an interesting future project, we believe that problems in the
transfection process play an overall minor role. For the current experiments, KIF11 siRNAs
(cell killers) were used to control transfection quality on the plate level. For the plates contain-
ing the cells used in our analysis, these controls show very high penetrance, i.e., out of an aver-
age of 2000 cells per well, on average only 7% of cells survive in these wells. Although this test
does not make a statement about the efficacy of individual siRNAs, it ensures the general func-
tioning of the transfection process. Additionally, the library vendor claims the knock-down ef-
ficacies achieved with their smart-pool siRNAs to be in the range of 70-95%. This proportion
is a result of many possible sources of imperfect gene silencing, including non-transfected cells
and off-target effects. Given the above facts in combination with our off-target filtering strate-
gy, we are convinced that the analyzed data are of high quality.

We tried to minimize the general problem of confounding siRNA off-targets by considering
only genes targeted by siRNAs with low predicted off-target effects. This selection step helps to
achieve reasonably unbiased results with our model, but it also limits the gene sets we can ana-
lyze. Ideally, we want to be able to select any gene of interest. This scenario calls for models
that can correct the off-target effects on the single-cell level. A potential solution to this issue
could be delivered by NEMs directly. We could still learn the networks based on siRNA knock-
downs directly, but handle the signal propagation differently. With NEMix it is already possible
to use each siRNA as a combinatorial knock-down. In reality however, individual genes are
knocked-down to different degrees by an siRNA. In a NEM, this would mean to split up the si-
lencing signal of an siRNA into partial knock-downs of several genes. Then, signal propagation
would have to be formulated in a fully probabilistic fashion and NEMs would have to be refor-
mulated such that their nodes do not have binary states anymore. Further developing NEMix,
by integrating the above mentioned shortcomings, will make the models more powerful for fu-
ture network reconstruction tasks.

Especially in the light of single cell data sets, which show large heterogeneity among individ-
ual observations, our approach is beneficial. Such data sets are becoming more and more avail-
able, and they reveal that the high cell-to-cell variation has severe consequences when
summarizing such heterogeneous observations. On the population level, the signal is potential-
ly confounded as it is only contained in part of the observations. NEMix uses the full power of
single-cell experiments, as it is applied on the single-cell level directly, avoiding any data aver-
aging. Only at this data resolution, the heterogeneity within a cell population can be accounted
for and it becomes possible to investigate potentially confounding factors, such as, for example,
pathway activity. NEMix is the first NEM-based method with additional unknown components
in the signaling graph ®. It is capable of inferring these missing data and provides an estimate
for the fraction of signal disruption. We find such ambiguous signaling in RNAi infection
screens and we have demonstrated that NEMix can improve network inference substantially
by accounting for the confounding factor.

Models
The NEM framework

A NEM, as introduced in [2], aims to infer the hidden dependency structure among a set of n
binary signaling variables S from the nested structure of m observed effect variables £ (fea-
tures). It therefore consists of two directed graphs, one describing the dependencies among the
signaling genes and one connecting the features to the genes.
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The binary adjacency matrix of signaling genes is denoted @ = (¢y,), with ¢y, = 1 if gene k
propagates its effects to gene s and using the convention @ = 1, for all k. The signaling graph
® is thus always transitively closed. If a gene is silenced, the effect is propagated deterministi-
cally along the edges of ®. The connection of features £ to the genes S is given by parameters
0., where 0, = s indicates that feature e is linked to gene s. For a gene k and a feature e, a NEM
predicts an effect of k on e if there is a gene s such that ¢, =1 (i.e,, k and s are connected), and
0. =s (i.e., s has an effect on e). The observed data are denoted D = (d,), where each d, is the
measurement of feature e under perturbation of k (Fig. 1A).

Given an external signal which affects one or more of the signaling genes, each of them will
have a binary signaling state. The state value is 0 if the signaling is interrupted, i.e., does not
reach the node, and 1 if the signal reaches the node, i.e., the natural state of a

stimulated pathway.
For inferring the structure ® among the signaling genes, we consider its posterior
P(D | 2)P(2)
P(®|D)=——F7+""> 3
(@1D)= "5 o)

where the marginal likelihood P(D|®) can be obtained by integrating out the connections of
features to the genes,

P(D | ) = /0 P(D | ,0)P(0 | )d0, (4)

with prior distribution P(6|®). In the absence of further knowledge, the prior is usually set to
the uniform distribution. Given the network structure and assuming conditional independence
of the parameters 0, and of the silencing experiments k, the marginal likelihood becomes

b | 9) = Hz[np me—s)% 9 ®)

e=1 s=1

The local effect likelihoods P(d,|®, 6) denote the probability of observing an effect in fea-
ture e under knock-down of gene k. They can usually be pre-computed from the data and dif-
ferent approaches have been proposed [2, 23, 36]. For the results presented below, log-odds
ratios as introduced in [36] were used (see ‘Modeling the effect likelihoods’ in S1 Text for
details).

The NEMix model

We first define the NEMix model and then derive it in detail. A NEMix consists of a nested ef-
fects model with effects graph ® and an extended signaling graph ®@. The signaling graph @ de-
scribes the dependency structure among the signaling genes and has an additional binary
hidden variable Z indicating pathway activity. Z is a root of @, i.e., it can be connected to any of
its nodes and does not have any direct connections to features in 6. The silencing probability of
Z is denoted by py and is a priory not known. For a set knock-down experiments k € {1, .. ., K},
with single cell observations c € {1, .. ., ¢x} of signaling gens s € {1, . . ., n} and features

e € {1, ..., m}, the marginal likelihood of a NEMix is

P(D | @) HZP S)HH Z pj dy. | 2,0, =5,2,, = j), (6)

e=1 s=1 k=1 c=1 je{0,1}

where p; = P(Z = j).
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Probabilistic combinatorial knock-downs. We first extend the model to cope with several
silenced genes at the same time. To achieve this goal, we condition the perturbation state of
each gene on the states of its parents. For each knock-down experiment k € {1, . . ., K}, let
Sk € Sbe the set of genes knocked down at the same time in experiment k. We assume for com-
binatorial silencing events that we observe an effect on feature e if it can be reached by either of
the genes in S through a path in ®. Let furthermore S be the hidden binary random variable
for the silencing state of gene s under knock-down of Si. Then S = 0 if the gene is perturbed
and Sy = L if it is not. If s € Sy, then Sy is set to zero but otherwise its value depends on the
states of the parents of s, Spa(o) € {0, 1}lPal)l] through the conditional probability P(SgSpa(s)-

The local effect likelihoods are then given by the marginalization over Sg,

P(dek | ¢796 = S) = Z P(dek | 96 =5, Ssk = x)P(Ssk = x)? (7)

xe{0,1}

where P(Sg) is the probability of gene s being active in experiment k. If the state Sy depends on
the states of the parent nodes, one can deduce the marginal P(Sy) from the joint distribution
P(S) = P(S1% - - -» Sup) of the signaling graph @. The joint probability factorizes when condition-
ing on the parent nodes,

P(Ssk) = Z P(S]k7 Tt Snk) (8)

However, for all signaling genes in Sy, we know that their state is 0, independent of their pa-
rents. So in fact, we only need to sum over all genes S, x ={S1, &> - - » S—1, k> Sst1, k> - - > Sn, k)
that are not in the set of knock-down genes Sy, except for gene s itself:

ZHP S | Spatie H,ES P(S;=0) . 9)

Sa Sk —1

If s € Si, then P(Sy = 0) = 1. Substituting (7) and (9) into the marginal likelihood (5) leads
to

P(D| @) = HZP S)H Z P(d, | 0,=s,S; = x) ZHP Sk |S puz)k (10)

e=1 s=1 k=1 x€{0,1} Sak ¢Sk

The conditional local effect likelihoods P(d|6, = s, S¢x = x) can usually be pre-computed
(see ‘Modeling the effect likelihoods’ in S1 Text).

Deterministic combinatorial knock-downs. If we assume deterministic signaling and all
knock-downs are known, then P(S,) will either be 0 or 1. As mentioned above, we assume a
gene to be perturbed if at least one of its parents is perturbed, and unperturbed if none of the
parents are perturbed. For transitively closed NEMs this also means Sy = 0 if and only if
SNpa(s) # 0, i.e., only if the parents of s contain one of the knocked-down genes, then s itself
can be perturbed. Therefore, the conditional probabilities P(Sy|Spa(s)x) are in this case

{1 if (S, = (1,1,...,1) or pa(s) = 0) and s¢S;

0 otherwise

P(Ssk =1 | Spa(s)k) -

P(Ssk =0 | Spu(s)k) =1- P(Ssk =1 | Spa(s)k)' (11)
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Since these probabilities are either 0 or 1, we use the following indicator function

3,=P(S, =1) = P(S; = 1| S,,0)- (12)

The last equation holds, because for

P(Ssk) = Z P(Sskvspu(s)k) = Z P(Ssk | Spa(s)k)P(Spu(s)k) (13)
Spa(s)

pa(s)k Spa(s)k

all terms P(Spa(s)x) except for one parent configuration are zero. The local effect likelihoods can
then be written as

P(dek ‘ ¢70€ :S) = Z P(dek ‘ 95 :S7Ssk :x)ésk

xe{0,1}

{P(dek 10, =5,8,=0) if 6, =1 (14)

P(dek ‘ Be =5, Ssk = 1) lf 5$k = 17

which resembles the situation introduced in [6] for dynamic NEMs. However, in the following
we make use of the more general case.

Hidden pathway stimulation. We now turn to a special case, where exactly one (root)
node of the network has probabilistic signaling and the others follow the deterministic rules
above. Silencing experiments can be noisy for many different reasons and it might be unknown
whether the signaling pathway of interest is actually activated during knock-down of a gene.
To model this uncertainty, we consider an additional hidden binary random variable Z;, indi-
cating the state of an external signal that activates the pathway, where Z; = 1 means active and
Zi = 0 means inactive in experiment k. The random variable Z can be viewed as an additional
node in @ that has only outgoing edges and can not have any observables directly attached to it
(see Fig. 1B for an example). Let furthermore py = P(Z; = 0) be the probability that the signaling
pathway has not been activated, and p; = P(Z; = 1) = 1 — p, the probability that it is active. The
silencing of genes Sy together with a unknown pathway stimulation can then be regarded as a
hidden combinatorial knock-down event, where signaling genes Sy, are silenced deterministi-
cally and the external signal Z; is inactivated with probability p,. Fig. 1B illustrates a simple
NEMix with the additional pathway state variable. Since Z has no parents, we can easily factor-
ize p; out of the joint probability of the states P(S) in (9) to obtain

P(Sy) = Z prP(Sy | Z, =) = Z Pj'éikv (15)

jefo,1} jefo,1}

where &/, = P(S,, | Z, = j) is again an indicator function for the state of s in experiment k,
given that the pathway is in state j. Substituting this expression into the local effect likelihoods
(7) leads to

P 9.0 == D pd, |0.0,=55)%, 0 07 (16)

S4e{0,1} 4

= Z pj'P<dek | 9,0, =s,Z, = j),

jef0y
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and the marginal likelihood (10) becomes

P(D| @) HZP =9)[I D pPd, | 0.0, =52 =). (17)

e=1 s=1 k=1 je{0,1}

For the RNAI infection experiments described in the introduction and the results, pathways
of interest are those involved in infection signaling, i.e., pathways which are activated upon sig-
nals triggered by a pathogen. However, infection of a cell is a stochastic event, depending on
many factors, for example, whether at all a pathogen docked on successfully to the cell. Conse-
quently, in a cell with a silenced gene, there can be several explanations for why it stayed unin-
fected. It could be because the knocked-down gene was important for the infection signaling,
but there is also a chance that other factors account for this, for example, no pathogen came
within reach of the cell. In case a pathogen triggered a signal, the pathway is considered active
(Zx = 1), corresponding to a normal NEM. When no infection attempt was made, the infection
pathway is inactive (Z; = 0).

The population of cells in knock-down experiment k can be divided into infected and unin-
fected cells. For infected cells, the external input signal from the pathogen reached the cell and
the signaling pathway is active (Z; = 1). In these cases Z is observed. For uninfected cells, how-
ever the state of Z; is unknown and no longer deterministic. So, for an infected cell, we have
P(Z;.=0) =0and P(Z; = 1) = 1, whereas for an uninfected cell, we have P(Z; = 0) = po and
P(Z;. = 1) = p;. Here, p, is the probability that the signaling pathway has not been activated by
the pathogen and p, + p; = 1. This is exactly the above situation of a hidden combinatorial
knock-down and the additional model parameter p;, j € {0, 1} either needs to be estimated for
each observation, or it has to be integrated out.

Learning from single-cell data. As illustrated in the infection experiment example above,
in general, the signaling state Z; can be different for each individual cell c in an experiment k,
and therefore we have to treat each cell as an individual observation. Regarding single cells as
independent, for a given network structure @, the local likelihoods further decompose into

k
P(dek | (D’ 05 = S) = Hp(dekc | dj’ 06 = S)’ (18)
c=1

where ¢ is the number of cells in experiment k. Instead of a single number, now
Sk = (Sske)c = 1, ..., ¢, 18 @ vector where each Sg. is the state of gene s in cell c under knock-down
k. With this modification, the marginal likelihood expands to

K ¢

P(D| ®) = HZP =9)[III D pP(d, | 2.0, =52, =)). (19)

e=1 s=1 k=1 c=1 je{0,1}

In other words, for each cell, there will be an effect of the perturbation set Sy on feature e if
any of the perturbations reach gene s and e is connected to s.

Model identifiability. Asshown in [36], NEMs have unidentifiable components. If two
nodes share the same set of parents, then these two nodes are indistinguishable. Furthermore,
NEM:s are unique only up to reversals, i.e., different parametrizations can exist for the same
model that explain the data equally well. Such equivalent representations are related by cyclic
node permutations, ®® = '@’ with (¢, ®') = (®S ™', SO) and permutation matrix S reversing
cycles in @. This result still holds when adding the additional hidden pathway state Z.

Regarding inference of the new parameter p,, there are only few situations in which p can-
not be learned. For a NEMix model with given graphs ® and ©®, the pathway inactivation prob-
ability p, of its hidden pathway activity Z is not identifiable, if and only if either (1) there are
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no observables from &£ attached downstream of Z, or (2) Z is connected only to sub-compo-
nents of a network that are always perturbed (for a proof, see ‘Unidentifiable parameters’ in S1
Text). Both conditions are rather artificial cases. The first one describes the situation where
some signaling genes do not have any features attached and Z is connected only to these. In
this case, there are no observations from which p, can be estimated. However, usually we as-
sume a uniform attachment of features to the genes and models containing genes without any
downstream features are hardly ever observed. The interpretation of the second condition is
that only genes which receive a propagated signal from all other genes in the network are af-
fected by the pathway deactivation. Here, p, cannot be estimated because all observations
downstream of Z will show an effect, independent of the state of Z. Again, it appears rather ex-
ceptional that only the final node of a signaling cascade is affected by a pathway deactivation.

NEMix inference

Structure learning is performed using a greedy heuristic to find an optimal network. Similar to
the NEM procedure described in [3], edges are incrementally added if the likelihood is in-
creased (see ‘Structure learning’ in S1 Text). In addition, our approach is restricted to structures
without incoming edges into the hidden root Z. We initialize the algorithm with a set of initial
networks. These consist of the empty graph and one edge connecting Z to one of the knock-
down genes. Additionally, we limit the out-degree of Z to two. Here, by out-degree we mean
only the non-transitive edges. We still allow the insertion of transitive edges from Z to any sig-
naling gene, which has to be added in order to fulfill the transitivity requirement. This regulari-
zation reduces the search space and prevents that too many dependencies between genes are
explained by Z alone.

As for classic NEMs, network structure scoring involves the marginal likelihood. For the
NEMix model, P(D|®) cannot be optimized analytically. Marginalization over the feature at-
tachments is omitted in our extended model. Instead, we estimate 8 jointly with p during
model inference. To do so, we approximate the marginal likelihood (10) by the expectation of
the complete data log-likelihood

()
K % Zie

p(D,z | @,0,p)=[[I] ] pjﬁP(dekc | @0, =5, =/)| , (20)

k=1 c=1 je{0,1} e—1

with respect to Z, where 6 and p, need to be efficiently estimated. For this task we have devel-
oped an EM algorithm. A derivation of the expected hidden log-likelihood and the maximum
likelihood estimates is given in ‘Estimating the hidden signal’ of S1 Text. When starting the EM
algorithm, p, is initialized with a random draw from the uniform distribution and for 0 we use
a uniform initial configuration.

Implementation

The NEMix model is included as part of the R/Bioconductor package NEM as an additional in-
ference type. It is invoked by calling the package’s main function NEM (data, inference =
‘NEM.greedy’ , control) and choosing the inference type control$type =

‘NEMix’ . (See ‘NEMix implementation in NEM package’ in S1 Text for more detailed in-
structions on the implementation and usage of NEMix in R). To record run-times of NEMix
model estimation, simulations were run without any parallelization on a 1.7GHz Intel i7 ma-
chine. Only one starting configuration was used, and EM iterations were performed using three
restarts to avoid local optima that are globally suboptimal. For realistic data sets of 300 features
and 200 cells per knock-down, NEMix estimation took on average nine minutes for 5-gene
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networks, with an average of 13 iteration steps until convergence of the EM algorithm. For the
8-gene network, the average run-time was 66 minutes, while the average number of iterations
per EM round remained 13 also for these larger networks. The longer run-times of NEMix
models as compared to NEMs are primarily due to the hidden data estimation. Each structure
scored once in a NEM inference, needs to be scored 40 times on average during NEMix estima-
tion. In addition, the input data sets are roughly 200 times larger.

Supporting Information

S1 Text. Supplementary texts. The supplementary text contains additional information re-
garding the NEMIX model, description and pre-processing of the data sets, as well as a short
usage description of the NEMIX code in the R package nem.

(PDF)

S1 Fig. Sample networks. All 30 sample networks were randomly generated from the KEGG
graph using a random walk along the edges. Unidentifiable structures were omitted. The blue
node marks the randomly added hidden signal.

(EPS)

S2 Fig. Performance for varying p,. For each of the 30 generated networks, 50 data set were
drawn. In (A) the area under the ROC curve (AUC) was calculated based on edge frequencies
of the samples. The right most panel displays the result for all values of p, jointly. Sub-figure
(B) shows the area under the PR curve (AUPRC).

(EPS)

S3 Fig. Accuracy values per network. For each of the 30 generated networks, 50 data sets were
drawn. Then, the accuracy (ACC) was calculated based on edge frequencies of the samples.
(EPS)

S4 Fig. Estimated values for p,. For each of the 30 generated networks, 50 data sets were
drawn. The distribution of the estimated p, per network is shown. Each row represents a differ-
ent true signal disruption probability.

(EPS)

S5 Fig. Inferred pathway states Z. For each of the 30 generated networks, 50 data sets were
drawn. Percentage of correctly inferred state values of Z for the sample data sets is shown for
each of generated networks.

(EPS)

S6 Fig. Performance for larger network sizes. To assess the edge recovery performance for
larger NEMix models, we ran a reduced simulation study. We sampled 30 random networks of
network size n = 5, 10, and 15 genes. The hidden variable Z was again attached randomly to at
most 2 of the signaling genes (plus additional transitive edges). We fixed p, to 0.4, which is
close to our application example. For each network, we then generated 30 data sets of 300 fea-
tures from 200 cells per each knock-down. For run-time reasons we only initiated the structure
search with the empty network and used just 2 restarts for the EM runs. This reduces perfor-
mance of network learning but shows how the overall performance scales with growing net-
work size. Even for larger networks performance is still very good as can be seen from the area
under ROC curve (A), area under precision-recall curve (AUPRC; B) and accuracy (C). Esti-
mation of p, becomes even more precise for larger n, as shown in (D) by the absolute distance
of the sampled from the estimated p,. Run-time on the other hand increases substantially for
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larger networks. Panel (E) shows the run-times per network estimation in minutes.
(EPS)

S7 Fig. Performance of feature attachments 0. For each of the 30 generated networks, 50 data
sets were drawn. In (A) the percentage of correctly inferred feature attachments are displayed
and (B) shows the percentage of correctly filtered uninformative features. Both plots show re-
sults for different fractions of signal disruption p,.

(EPS)

S8 Fig. Network wise performance of feature attachments 0. For each of the 30 generated
networks, 50 data sets were drawn. In (A) the percentage of correctly inferred feature attach-
ments are displayed and (B) shows the percentage of correctly filtered uninformative features,
for each individual network.

(EPS)

S9 Fig. GSEA for reliable siRNAs. To see if KEGG pathways are affected differently by oft-tar-
geting siRNAs, we performed a gene set enrichment analysis [32] on the siRNA scores, using
the implementation in the R package ‘HTSanalyzR’ [37].

(EPS)

$10 Fig. Inferred 8 gene MAPK networks on HRV infection data. Best networks of the 8 top
scoring siRNAs from the MAPK pathway for HRV infection for the different compared meth-
ods are displayed. (A) shows the known KEGG pathway. (B) is the inferred NEM and (C) the
sc-NEM. (D) left shows the known network with the most likely attachment of the hidden vari-
able Z (blue) and (E) is the inferred NEMix. For all networks their performance is summarized
in S1 Table.

(EPS)

S11 Fig. Performance of MAPK network inference. We computed the specificity (A) and sen-
sitivity (B) for all compared methods, based on 50 bootstrap samples. Both plots show the re-
sults for 5 and 8 signaling genes with top scoring siRNAs, using the HRV infection data. Sub-
figure (C) shows robustness of inferred pathway activity. The estimated pathway activity for 5
and 8 gene networks, derived from the 50 bootstrap samples is shown. p, shows little variation
and is similar for both networks.

(EPS)

$12 Fig. Consensus networks for MAPK pathway. Consensus networks for 5 genes (A) and 8
genes (B) are displays. Shown are all edges with frequency of at least 0.7 in the 50 bootstrap
samples. NEMix inference was run using the 16 different starting configurations. For each
bootstrap sample the best solution was chosen.

(EPS)

S13 Fig. Feature attachments for the 5 MAPK pathway genes. Histograms show the selection
frequencies for image features from 50 bootstrap samples on the HRV infection data.
(EPS)

S14 Fig. Shared feature usage for compared methods. The Venn diagrams compare frequent-
ly attached features (left) and never attached features (right) based on the 50 bootstrap samples.
Results for the 5 gene network are shown in the top row and for the 8 gene network in the
bottom row.

(EPS)
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S$15 Fig. Uninformative features for the 5-gene network. Each row shows the probability for
one feature of being attached to each of the genes in the network or the null node. For all fea-
tures in this plot, the null node had the highest probability, which means, they are filtered out.
Features are colored by the channel they were measured from. These channels are, fluorescence
of DNA in the nucleus (blue), fluorescence of actin (red), fluorescence of cell internal patho-
gens (green). Furthermore there are general location and orientation features (black). The mea-
surements themselves then give information on intensity, shape, texture or neighbors of the
objects segmented from the images. These objects are ‘Cells’: the cell body, ‘Nuclei’: the cell nu-
clei, ‘PeriNuclei: a peripheral area around the nucleus, ‘VoronoiCells’: the area of the cell from
a Voronoi-tessellation of the image. Many of the uninformative features are related to orienta-
tion of objects or their location, which are expected not to carry useful information for the
network inference.

(EPS)

S16 Fig. Feature attachments in the 5-gene network. Each row shows the probability for one
feature of being attached to each of the genes in the network or the null node. Rows are sorted
by the gene for which the attachment probability is highest. For a description of the different
teature types see caption of supplementary S15 Fig.

(EPS)

$17 Fig. Illustration of a NEMix, with unidentifiable p = P(Z). The hidden variable is at-
tached only to signaling genes that are always perturbed. For models with such structure p can-
not be inferred.

(EPS)

S1 Table. Performance summary of the 8 gene MAPK network. The first column gives the
log-likelihood for each model, showing that the true network is much less likely than the in-
ferred networks. The second and third column show performance of the networks in terms of
accuracy (ACC) and area under curve (AUC). The inferred p, for the NEMix models is dis-
played in column four. Column five indicates the corresponding sub-figure of Fig. 3. The net-
work ‘KEGG Graph + Z’ denotes the structure of the known KEGG network, where only the
position of Z, p,, and 0 are inferred.

(PDF)
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