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Abstract. We consider shape optimization problems under uncertainties on the input parame-
ters. The presented theory applies to the minimization of the expectation of a quadratic objective
for a state function that depends linearly on a random input parameter. It covers important objec-
tives such as tracking-type functionals for elliptic second order partial differential equations and the
compliance in linear elasticity. We show that the robust objective and its gradient are completely
determined by low order moments of the random input. We derive a cheap, deterministic algorithm
to minimize this objective and present model cases in structural optimization.
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1. Introduction. Shape optimization has been developed in recent decades as
an efficient method for designing devices which are optimized with respect to a given
purpose. Many practical problems in engineering lead to boundary value problems
for an unknown function which needs to be computed to obtain a real quantity of
interest. For example, in structural mechanics, the equations of linear elasticity are
usually considered and solved to compute, e.g., the leading mode of a structure or
its compliance. Shape optimization is then applied to optimize the workpiece under
consideration with respect to the output quantity. We refer the reader to [12, 18, 21,
24, 32] and the references therein for an overview on shape optimization which falls
into the general setting of optimization with PDE constraint.

Usually, the input parameters of the model, like the applied loads, the material’s
properties (typically the value of the Young modulus or Poisson ratio), or the geome-
try of the involved shapes itself, are assumed to be perfectly known. This assumption
is useful for optimization but unrealistic with respect to applications. In practice, a
manufactured device achieves its nominal geometry only up to a tolerance, the mate-
rial parameters never match the requirements perfectly, and applied forces can only
be estimated. In particular, the loading of a bridge can certainly not be perfectly
cast. Since the optimized design would depend on the applied loading, it is practi-
cally relevant to take these uncertainties into account. Therefore, shape optimization
under uncertainty is of great practical importance but has only recently begun to be
investigated; see, e.g., [2, 5, 8, 9, 10, 13, 20, 29] for related results.

Two approaches are at hand in the context of optimization under uncertainty,
depending on the eventual knowledge of the uncertain parameters. On the one hand,
if no a priori information is available, one usually considers a worst-case approach.
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On the other hand, if some statistical information on the distribution of the unknown
parameters is given, one can study the objective, which depends on the random pa-
rameters through the state equation. Notice that in this case the state function is a
random field, and so the objective itself becomes random; the value of the objective
depends on the design variables and on the random variable.

One is usually at first interested in stochastic quantities of the objective such as its
expectation. When this crude average is not sufficient, one may consider a weighted
combination of the expectation and the standard deviation to the mean in order
to limit the dispersion of the objective values around its expectation. Finally, one
sometimes also considers the probability that the objective exceeds a given threshold.
This last objective usually stands for constraints. In the present article, we address
the following problem: given a partial statistical description of the random loading,
design an efficient algorithm to minimize the expectation of the objective.

We restrict ourselves to a special class of problems: a quadratic shape functional
for the state function which is defined by a state equation with random right-hand side.
This in particular means that the random state depends linearly on the random input
parameter. Our theory covers important shape functionals like the Dirichlet energy
and quadratic tracking-type functionals. In particular, the compliance functional in
linear elasticity also belongs to the important members of the class of functionals
under consideration.

Our main message is the following: for objectives of the class under considera-
tion, whose expectation is to be minimized, all quantities for performing a gradient-
based shape optimization algorithm can be expressed deterministically, i.e., without
any approzimation. We only need access to the random parameter’s first and second
moments. An appropriate low-rank approximation scheme allows us to reduce this
computation to the resolution of some classical boundary values that can be solved
thanks to a standard toolbox. This leads to a nonintrusive implementation of the
proposed method.

The main object is the two-point correlation function Cor(u) of the state function
u. It is the solution of a tensor-product—type boundary value problem with the random
right-hand side’s two-point correlation as right-hand side. As a consequence, both
the expectation of shape functional and the related shape gradient can explicitly be
determined and efficiently be computed just from the knowledge of the random right-
hand side’s expectation and two-point correlation function. This fact is of tremendous
importance for applications: it is completely unrealistic to have access to the law of
the random loadings, whereas the knowledge of its expectation and of its two-point
correlation function seems to be a much more reasonable assumption. We therefore
end up with a fully deterministic, efficient algorithm of cost similar to that of classical
shape optimization when no uncertainties are taken into account.

This paper is organized as follows. First, we present in section 2 the leading idea
to reduce the stochastic problem to a deterministic one. To that end, we introduce a
very simplified model in finite dimension for the reader’s sake. We introduce the tensor
formulation that is the keystone of the subsequent calculations. Then, in section 3,
we present the shape calculus which we shall use and adapt the idea to this more
complex setting. In particular, we recall definitions and properties of tensor products
on Hilbert spaces. We then apply in section 4 the obtained method to three significant
examples in the context of the Laplace operator and the equations of linear elasticity.
Finally, we explain in section 5 how to design efficient numerical methods to solve the
corresponding optimization problem. The main point is that the numerical resolution
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of the high-dimensional boundary value problem which defines Cor(u) can be avoided
if desired. We conclude in section 6 with numerical examples concerning the robust
optimization of the compliance of a mechanical structure.

2. Formal presentation of the main idea. In this section, we formally outline
the main idea of our approach in a finite-dimensional setting where calculations can
be performed in an intuitive way by using only elementary algebra. To that end,
let H be a vector space of designs h, whose performances are evaluated by a cost
function C(h,w) which depends on h via the solution u(h,w) = (u;(h,w))i=1,... .~ of

the N-dimensional system
(2.1) A(h)u(h,w) = f(w).

In this formula, A(h) € RN ® is an invertible matrix of dimension N x N, flw)isa
(random) vector in R, and w € € is an event, belonging to a complete probability
space (2,2, P). The cost function C is assumed to be quadratic, i.e., of the form

C(h,w) = (Bu(h,w),u(h,w)) = B : (u(h,w) @ u(h,w)),

where B € RV is independent of the design for the sake of simplicity. In this formula,
the tensor product v ® w of two vectors v, w € RV is the (N x N)-matrix with entries
(v ®w)i; = vywy, t,j =1,..., N, and : stands for the Frobenius inner product over
matrices.

The objective function of interest is the mean value of the cost C(h,w):

(2.2) M(h) =E (C(h)) = /Q C(h,w) P(dw) = B : Cov(u)(h).

Here, E denotes the expectation of a random variable and Cov(u,v)(h) is the N x N
covariance matriz of u(h,w), whose entries read

Cov(u,v)(h)i; = /ﬂui(h, w)vj(h,w) P(dw), i,5=1,...,N.

The matrix Cov(u)(h) denotes simply Cov(u,u)(h). This matrix can be calculated as
the solution to the (N x N )-dimensional system

(2.3) (A(h) ® A(h)) Cov(u)(h) = Cov(f).

At this point, let us recall that A(h)®.A(h) : RN * 5 RM’ is the unique linear mapping
such that

Vu,v € RN, (A(h) ® A(h))(u®v) = (A(h)u) ® (A(h)v).

Let us now calculate the gradient of M(h). Denoting with ’ the differentiation
with respect to h, we differentiate (2.1), (2.2) in an arbitrary direction h to obtain

(2.4) M (h)(h) =2 /ﬂ (Bu' (R, w)(R), u(h,w)) P(dw),

where

A(h) (h,w)(h) = —A'(h)(R)u(h,w).
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Introducing the adjoint state p(h,w), which is the solution to the system
(2.5) A(h)Tp(h,w) = —2BTu(h,w),
we derive successively
2(Bu(h,w)(h), u(h,w)) = — (' (h,w)(h), A(h)"p(h,w)) = (A'(h)(h)u(h,w), p(h, w)).
Hence, we arrive at
M (h)(h) = (A'(h)(ﬁ) ® I) Cov(u, p)(h).

In this last formula, the covariance matrix Cov(u,p)(h) can be calculated as the
solution to an (N x N)-dimensional system; indeed, using (2.1), (2.5), one has for any
event w that

(A(h) © AR)T) (ulh) @ p(h, w)) = — (A(R) @ B) (u(h,w) & u(h, ),
whence the following system for Cov(u,p)(h):
(2.6) (A(h) ® A(h)T) Cov(u,p)(h) = — (A(h) @ B) Cov(u)(h).

These considerations show that both the objective function M(h) and its gradient
can be exactly calculated from the sole datum of the covariance matrix of f (and not
of its law!).

At this point, one may wonder about the practical interest of the foregoing com-
putations since the systems (2.3)—(2.6) are difficult to solve (see, however, [30]). The
main idea consists in performing a low-rank approximation of the covariance matrix

Cov(f):

Cov(f) =) fi® fi, m<N.

=1

Then, formula (2.3) leads to the calculation of a convenient approximation of Cov(u)(h)
in accordance with

m

Cov(u)(h) = > ui(h) @ ui(h),

=1

where u;(h) arises from the solution of the system

(2.7) A(R)ui(h) = fi.
Similarly, by (2.6), one has

Cov(u,p)(h) = Z u;i(h) ® pi(h)
with
(2.8) AT pi(h) = —BTu;(h).

Hence, calculating M(h) and its derivative M’(h) amounts to solving (only) m sys-
tems of the form (2.7) and m systems of the form (2.8).
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Remark 2.1.

e Cost functionals C of the design involving a linear term of the form £(u(h,w))
can be considered in the same way (see section 4.1.2). The corresponding
mean value also involves the mean value of u E(u)(h) := [, u(h,w) P(dw).

e Formulae (2.2)—(2.4) show explicit expressions of M(h) and M’(h) only in
terms of the covariance Cov(f), which is quite appealing for at least two
reasons. First, Cov(f) may be imperfectly known (in realistic applications,
it is often reconstructed from observations by statistical methods). Second,
as we have just discussed, it is often desirable to approximate it so as to
ease numerical computations. In either situation, these formulae allow us to
directly measure the impact of an approximation of Cov(f) on M(h) and
M'(h).

e An alternative approach to the calculation of M(h) and M’(h) consists
in computing a truncated Karhunen-Loéve expansion of f(w), i.e., f(w) =
Yo, fii(w) with {f;} being orthogonal vectors in RV and {;} being un-
correlated random variables. Injecting this expression into (2.1) yields an
approximation of u in accordance with u(h,w) & Y %, ui(h)&(w), where the
u;(h) are given by (2.7). Then, using the quadratic structure of the cost C
allows us to conveniently approximate M(h) and M’(h), leading to similar
formulae. Doing so is, however, less efficient than the proposed approach for
at least two reasons. On the one hand, calculating the Karhunen—Loeve ex-
pansion of a random field is rather involved in terms of computational cost.
In contrast, the proposed method in this paper relies on any low-rank approx-
imation of the covariance Cov(f). On the other hand, estimating the error
entailed by such a process is awkward, since it does not rely on the direct
connection between M(h), M’(h) and Cor(u), Cor(u,p) (it passes through
the approximation of u(h,w) itself, which is not directly involved in their
expressions).

3. Shape optimization setting. Extending the framework presented in the
previous section to the infinite dimensional setting, and more specifically to that of
shape optimization, demands adequate extensions of the notions of random variables,
covariance matrices, etc. At the center of these generalizations lies the notion of a
tensor product between Hilbert spaces, about which this section gathers some useful
material for the reader’s convenience.

3.1. Differentiation with respect to the domain: Hadamard’s method.
Several notions of differentiation with respect to the domain are available in the
literature. In this paper, we rely on Hadamard’s boundary variation method (see,
e.g., [1, 18, 21]). For this purpose, we consider variations of a bounded, Lipschitz
domain D C R? of the form (see Figure 1)

(3.1) Dy = (I+6)(D), 6 € W'(R%,RY), [|f]lwree(ea o)< L.

DeFINITION 3.1. A function J(D) of the domain is said to be shape differentiable
at D if the underlying functional 6 + J(Dg) which maps W1°(R% RY) into R is
Fréchet differentiable at § = 0. The shape derivative § — J'(D)(0) of J at D is the
corresponding Fréchet derivative, so that the following asymptotic expansion holds in
the vicinity of € = 0:

|o(6)| 650

J(Dg) = J(D) + J'(D)(0) + o(6), where —2XL 920
||6||W1=°°(r\d,.r\d)
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Fic. 1. One variation Dg of a shape D in the framework of Hadamard’s method.

In practice, shape optimization problems are defined only over a set U4 of ad-
missible shapes (which, e.g., satisfy volume or regularity constraints). To ensure that
variations (3.1) of admissible shapes remain admissible, one usually imposes that the
deformations 6 lie in a subset ©,4 C W1°(R%,R?) of admissible deformations.

In the following, we implicitly and systematically assume that the sets U,q and
©,4 contain shapes or deformations with sufficient regularity to legitimate the use of
the classical formulae for the shape derivatives of the considered functionals. We refer
the reader to, e.g., [18] for precise statements on these issues.

Another notion of a derivative used in shape optimization is the topological deriva-
tive. Some applications of this derivative to uncertain data can be found in [26, 27].

3.2. Tensor products and Hilbert spaces. In this subsection, we collect some
definitions and properties around the notion of the tensor product of Hilbert spaces.
A more thorough exposition can be found in [19, 28]. In what follows, we consistently
assume all the Hilbert spaces to be separable. This is merely a matter of convenience,
and most of the forthcoming definitions and results hold also in the general context.

DerFiNiTION 3.2. Let (H1,{-)m,), (H2,{-)u,) be two (separable) Hilbert spaces.
Then, for any hy € Hy, hy € Hs, the pure tensor hy @ hg is the bilinear form acting
on Hy x Hy as

(3.2) V(p1,p2) € Hi x Hy, (h1 ® ha)(p1,92) = (h1, 1) m, (h2, ©2) H,-

The vector space of all pure tensors
H = Spa.]:l{hl ®h2, hl [= H], hg [= Hg}

has a well-defined inner product H x H — R which is determined by its action on pure
tensors

(3.3) Vi1 @ wo, 1 @2 € H, (p1 @ 2,91 @ 2) = (w1, V1), (P2, ¥2) 1,

and extended to H by bilinearity. In particular, this inner product does not depend on
the choice of the decomposition of elements of H as finite sums of pure tensors are
used to calculate it. The tensor product Hi ® Hy is finally the Hilbert space which is
eventually defined as the completion of H for {-,-).

Remark 3.3. Alternative definitions can be found in the literature, e.g., relying
on the notion of Hilbert—Schmidt operators.

PROPOSITION 3.4. Let H1, Hy be Hilbert spaces, and let {¢i},c, , {”(,bj}jeN be
associated orthonormal bases.
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1. The set {¢; ®¢j}g‘j@ is an orthonormal basis of Hy ® Hs for the inner
product defined in (3.3).
2. For any h € H; ® Hy, there exists a unique family {u;};., of elements in Hy

such that

h:Zui ® ;.
i=1

The main purpose of a tensor algebra is to transform multilinear expressions into
linear ones. Before stating a version of the universal property of tensor products
in the Hilbert space context, let us recall that a weak Hilbert—Schmidt mapping b :
H; x Hy — K between Hilbert spaces Hy, Ha, (K, ()i ) is a bilinear mapping with
the property that there is a constant ¢ > 0 such that

Vue K, Y |(b(¢i, %), w)kl|* < ellullk

i,j=1

for given (then any) orthonormal bases {¢:},., of H1 and {¢;},., of Ha, respectively.

ProposiTION 3.5. Let Hy, Hy, K be Hilbert spaces, and let b : H;y x Hy — K
be a weak Hilbert—Schmidt mapping. Then, there exists a unique bounded operator
¢: Hy ® Hy — K such that the following diagram is commutative:

Hleg

| N

HeH Xt K

where the mapping Hi x Hy — Hy ® H3 is simply (h1, h2) — h1 ® ha.

We now come to the following very important identification of L? spaces taking
values in a Hilbert space.

PROPOSITION 3.6. Let (£, A, i) be a measure space, and let H be a Hilbert space.
Then, the mapping

L*(Q,p) x H3 (6, h) — th e L*(Q, p, H)

induces a natural isomorphism L?(Q, p) ® H ~ L*(Q, u, H) between Hilbert spaces.

Ezample 3.7. In the particular case that H = L%(D,v), where (D,v) is another
measured space, Proposition 3.6 yields the isomorphism L?(Q2, u)® L%(D,v) ~ L%(Q x
D, p®v), where pp® v stands for the usual product measure of ; and v on 2 x D and
the above identification is supplied by

Vu e L2(Q, p), v € L*(D,v), (u®v)(z,y) =u(z)v(y), z€Q, ye D.

In the following, we consistently employ this identification.

3.3. First and second moments analysis. In this section, we slip into the
probabilistic context, so to speak, relying on the framework of [30, 31]. Hence, let
(€2, X,P) be a complete probability space, and let H be a (separable) Hilbert space.
To keep notation simple, we omit mentioning the measure P on () when the context
is clear.
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DEFINITION 3.8.
1. The mean value operator E : L%(Q) ® H — H is defined as the unique linear
and bounded operator which satisfies

Vée L?(Q),uc H, E(f®u) = (/ﬂg) u.

2. The correlation Cor(u,v) € H® H between two elements u,v € L?(Q) ® H is
defined as

(= =]
Cor(u,v) = Z u; @ v;,
i=1

where u = ) 01 & ®u; and v = Y 10, & ®v; are the decompositions of u
and v supplied by Proposition 3.4, according to the orthonormal basis {£;},¢, -
Cor(u,v) is, moreover, independent of the basis {&;};c, used to perform the
above construction.

3. The function Cor(u,u) is simply denoted as Cor(u) and called the (two-point)
correlation of u.

This terminology is consistent with the usual definitions of the mean and cor-
relation of random fields. Indeed, if D C R is a domain (equipped with the usual
Lebesgue measure) and H = L?(D), then it is easily seen that the mean E(u) € L%(D)
of an element u € L?(Q) ® L?(D) ~ L?(Q x D) is

E(u) = /ﬂ u(-,w) P(dw)

and that the correlation Cor(u,v) € L?(D) ® L?(D) ~ L?(D x D) of u,v € L?() ®
L?(D) is given by

Cor(u,v)(z,y) = /ﬂu(ﬂ:, w)v(y,w)P(dw) a.e. (z,y) €D x D.

For the following, we have to precisely define the expressions of the form
Cor(u,v)(x, ), where u,v € L?(2) ® L?(D) and = € D. Note that this is not com-
pletely straightforward since Cor(u,v) is only an element in L?(D x D). Hence, it is
a priori not defined on null measure subsets of D x D. Doing so is the purpose of the
following lemma.

LEMMA 3.9.

1. Let F € L%(D x D) be the subspace defined as

F =span{u®v, u,ve L*D)},
equipped with the nuclear norm
N N
||[|«= inf {Z llwsl 2oy l[villez(py, b= ui ® v, wi,v; € LZ(D)} .
i=1 i=1

There is a unique linear and continuous operator v : F — L'(D) such that,
for any functions u,v € D(D) (that is, the space of C* functions with compact
support in D), it holds that

Y(u@v)(z) =u(z)v(z) ae zeD.
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2. Let F. C L*(D x D) be the subspace defined as
F. = span {Cor(u,v), u,v € L*(Q)® L*(D)},

equipped with the norm

N
[[7]]e,« = inf { Z [will L2 x )l Vil L2 (2x D)

=1

N
h = ZCor(ui,vi), Ui, V; € L2(Q) ® L2(D)}.

i=1

There is a unique linear and continuous operator 7. : F. — L'(D) such that,
for any functions u,v € D(2 x D), it holds that

~e(Cor(u, v))(z) = Cor(u,v)(x,z) a.e. x € D.

3. The following diagram is commutative:

L2(Q x D)2 -22- 12(D x D)

I ) |

LYQ x D) %~ L(D)

Proof. 1. First, note that [|-||« does define a norm on F since, for arbitrary
h € F, it follows that ||h||z2(pxp)< [|h|[«. What is more, the subspace G :=
span{u ® v, u,v € D(D)} is obviously dense in F for the norm ||-||.. Define now
the mapping v : G — LY(D) by

N N
Vh = Zuz ® v, u,v; € D(D),  ~(h)(x) = Zuz(x)vz(x) a.e. x € D.

i=1

This mapping is obviously well defined and continuous provided that G is endowed
with the norm |[|-][.. Thus, it is uniquely extended into a linear and bounded operator
v : F — LY(D), which fulfills the desired properties.

2. The proof is completely analogous to that of 1.

3. The commutation relations obviously hold for smooth functions ¢, € D( x
D), and the general result follows by continuity of the mappings at play. O

Remark 3.10.

e To keep notation simple, we will often omit explicitly mentioning the opera-
tors v and 7., and, e.g., we write expressions such as (u ® v)(x, ) instead of
21 ® )z, 2).

e Analogous definitions and commutation relations, involving different opera-
tors (derivatives, etc.), hold and can be proved in an identical way when the
space H used in Definition 3.8 of the correlation function is, for instance,
H = [L*(D)]* or H = H*(D). We do not specify these natural relations so
as to keep the exposition simple.

4. Applications in concrete situations. Throughout this section, D denotes
a bounded Lipschitz domain. The reader interested in the minimal required regularity
of the domain to obtain shape differentiability is referred to [18, Chap. 5].
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4.1. Quadratic shape functionals in the context of the Poisson equation.
Let f € L?(Q, L%(R%)) be a random source term. For almost any event w € €, let
up(-,w) € H}(D) be the unique solution to the Poisson equation

{ —Au(-,w) = f(w) in D,

(41) u(-,w) =0 on dD.

By the standard Lax-Milgram theory, this equation has a unique solution in HZ(D)
for almost all events w € €, and it is easily seen that up € L2(§2, H}(D)). Moreover,
owing to the standard elliptic regularity theory (see, e.g., [6]), it holds that u(-,w) €
H?(D) for almost all events w € 2 and even to L?(Q), H?(D)) by the usual H? a priori

estimate.

4.1.1. The Dirichlet energy as cost function. The first functional under
consideration is the mean value M(D) of the Dirichlet energy:

M(D):/QC(D,w)P(du), C(D,w)z—%/DHVUD(I,w)HZ dr.

The result of interest is as follows.
THEOREM 4.1. The objective function M(D) can be rewritten as

(4.2) M(D) = —% L (V@ V) Cor(up)(z, ) dr.

This functional is shape differentiable over Uyg, and its shape gradient is given by

, 1 7] 7]

(4.3) V0 € Oqq, M'(D)(0) = —3 /39 (% ® a) Cor(up)(z,z) (6 - n)(x) ds(x).
In the last two formulae, (V®V) : Hi(D)®H§(D) — LA(D)®L*(D) and (£ ®£) :
H?*(D) ® H*(D) — L%*@@D) ® L*(0D) stand for the linear forms induced by the
respective bilinear mappings
du dv
On dn’
The correlation function Cor(up) € H}(D) ® H}(D) ~ H}(D ® D) can be obtained
as the unique solution of the boundary value problem

—(A® A)(Cor(up)) = Cor(f) in D x D,

Cor(up) =0 on d(D x D).

(w,v) = Vu-Vv and (u,v)—

(4.4)
Proof. We find
MD) =3 [ [ 1IVup(a,w)IP dop(a)

1
- /ﬂ /D Y((V ® V)(up(-,w) ® up (-, w)))(z, z) dr P(dw).

Now using Lemma 3.9 (see also Remark 3.10), we obtain

M(D) = —%/D’rc (/ﬂ (Ve V)(up(-,w) @up(-,w))(z, ) IP(dw)) dz

- —%/nyc ((V V) (/ﬂuo ®up ﬂ’(dtv))) (z, ) dz,
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which implies the desired expression (4.2).
To prove (4.3), we follow the same analysis, starting from the classical formula
for the shape derivative, for a given event w € Q) (see, e.g., [18]):

C'(D,w)(f) = —% /39

dup(-,w)|?

B 6 -nds.

Finally, that up is the unique solution to the system (4.4) follows from tensorizing
the state equation (4.1) and applying the usual Lax—Milgram theory (again, see [30]
for details). O

4.1.2. L?-tracking-type cost function. Still in the setting of the Poisson
equation outlined above, we are now interested in the L?-tracking—type cost function

e(Dw) =5 [ lun(a,w) ~ wa)f da

where up is the solution to (4.1), B € D is a fixed subset of D, and uy € L?(B) is a
prescribed function. Again, we aim at minimizing the mean value of the cost C, that

is,

M(D) = /QC(D,w) P(dw).

The main result in the present context is the following theorem.

THEOREM 4.2. The functional M(D) defined above can be rewritten as
1
(4.5) M(D) = 5/ (Cor(up)(z, z) — 2uo(z)E(up)(z) + uj(z)) dz.
D

It is shape differentiable at any shape D € Uyq with shape derivative given by

7]

(4.6) V8 € Bnq, M'(D)(0) = — \/BD (a ® %) Cor(pp,up)(z,z)(0 - n)(z) ds(z).

In this formula, the adjoint state pp € L*(Q) ® H3(D) satisfies the boundary value
problem

(4.7) a.e. w €, { —Ap(,w) = —xB(up(-,w) —uo) n D,

p(":w) =0 on 3D,

where xp stands for the characteristic function of B. Moreover, the mean value
E(up) € HE(D) which enters (4.6) is the unique solution of

{ —AE(u) =E(f) in D,

(48) E(u)=0 on 0D,

the two-point correlation Cor(up) is the solution of (4.4), and the correlation function
Cor(pp,up) € HY(D)®HZ(D) can be calculated by solving the boundary value problem

(4.9) —(A®I)Cor(p,u) =—(x ®I)(Cor(u) —up @ E(u)) in D x D,
' Cor(p,u) =0 on 8(D x D).
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Proof. The proof is essentially identical to that of Theorem 4.1 and hence is
not repeated here. Nevertheless, let us just point out that (4.9) stems from the
computation

(A ®I)Cor(pp, up)(x,y) = /ﬂ — App(,w)up(y, )P (dw)

Z—XB(IJ/ (up(z,w) — uo(z))up(y,w)P(dw)
Q
= —x5(z) (Cor(u)(z,y) — uo(z)E(un)(y))

for almost all (z,y) € D x D. O

4.2. Quadratic functionals in the context of linear elasticity. We now
slip into the context of the linear elasticity system. The shapes D R under con-
sideration are filled with a linear elastic material with Hooke’s law A given by

Ve € S(R?), Ae =2ue+ Atrel,

where the Lamé coefficients A and p satisfy p > 0 and A 4 2p/d > 0, respectively.

The admissible shapes D € U,4 are clamped on a fixed subset I'p of their bound-
aries, and surface loads are applied on another fixed, disjoint part I'yy € @D, so that
only the free boundary I' := @D \ (I'p UT'y) is subject to optimization. Accordingly,
we shall assume that all the deformation fields # € ©,4 vanish on I'p UT'y. Omitting
body forces for simplicity, the displacement up of D belongs to the space [H{ . (D)4,
where

Hf (D)={ue H'(D), st. u=00nTp},
and is the unique solution in this space to the boundary value problem

—div(Ae(u)) =0 in D,

u=0 onlp,
(4.10)
Ae(uyjn =g on 'y,

Ae(u)n=0 onT,

where e(u) = (Vu + VuT)/2 stands for the linearized strain tensor.
The cost function at stake is the compliance of shapes

C(D,w) = [ Aetun)(ww): elun)(ww) do = [ glo,w)- uplz,w) ds(a),
D D
and we still aim at optimizing its mean value M(D) = [, C(D,w) P(dw). Arguing as

in the previous subsection, we obtain the following result.
THEOREM 4.3. The above functional M(D) can be rewritten in accordance with

M(D) = L ((Aeg : ey)Cor(u))(x, =) dr,

where (Aeg : ey) : [H} (D)]? ® [HE, (D)]* = L*(D) ® L*(D) is the linear operator
induced by Proposition 3.5 from the bilinear mapping

(u,v) —= Ae(u) : e(v).
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This functional is differentiable at any shape D € Uyq, and its derivative reads
V8 € Oqq, M'(D)(0) = —/ ((Aeg : ey)Cor(u))(z, z)(0 - n)(x) ds(z).
r

Here, the two-point correlation function Cor(u) € [Hf, (D)]? @ [HE (D))¢ is the
unique solution to the following boundary value problem:

( (divs ® divy)(Aes ® Aey) Cor(u) = 0 in D x D,
Cor(u) =0 onI'p x I'p,
(divy ® Iy)(Aez @ I) Cor(u) =0 on D xT'p,
(I ® divy)(Iz ® Aey) Cor(u) =0 onTp x D,
) (Aez @ Aey) Cor(u)(nz @ ny) = Cor(g) onTn x 'y,
(divy ® Iy)(Aes ® Aey) Cor(u)(Iz @ ny) =0 on D x (I'yUT),
(Iz ® divy)(Aes ® Aey) Cor(u)(ne @ Iy) =0 on (I'yUTy) x D,
(Aez @ Aey) Cor(u)(nz @ ny) =0 on (TwUT) x (TxUT))\ (Tn x Tn),
(Aez @ Iy) Cor(u)(ny @ Iy) =0 on (I';y xT') x T'p,
L (I: ® Aey) Cor(u)(Iz @ ny) =0 onTp x (I'w xT).

Remark 4.4. All the involved mappings in the foregoing expressions are naturally
produced by Proposition 3.5, and we do not make the underlying functional spaces
explicit. The subscripts ; and , refer to operators acting, respectively, on the first
and second component of a pure tensor in a tensor product space.

5. Numerical realization. In this section, we now focus on how the previous
formulae for the objective functions of interest and their derivatives pave the way to
efficient calculations in numerical practice.

5.1. Computing second moments. Without loss of generality, we focus the
discussion on the setting of the Poisson equation, as discussed in section 4.1. The
expressions (4.2), (4.3), (4.5), (4.6) involve the mean value E(u) and the correlation
Cor(u) of the solution u(-,w) to (4.1) and the correlation Cor(u, p) between u and the
solution p(-,w) to (4.7).

The quantity E(u) is fairly straightforward to calculate once the mean of the data
E(f) is known, since it arises as the solution to the boundary value problem (4.8),
which can be solved owing to any standard finite element method.

It is, however, more complicated to compute Cor(u) (or Cor(u, p)) since, in accor-
dance with (4.4), a fairly unusual boundary value problem for the tensorized Laplace
operator needs to be solved on the product domain D x D. This moderately high-
dimensional problem can be solved in essentially the same complexity as (4.8) if a
sparse tensor product discretization is employed as proposed in, e.g., [14, 16, 17].
However, the implementation of this approach is highly intrusive insofar as it de-
mands a dedicated solver.

A way to get past this difficulty, which is also much simpler to implement, consists
in relying on an expansion of the two-point correlation function of f(-,w) of the form

(5.1) Cor(f) =Y fx ® fx-
k

Then, the two-point correlation function Cor(u) can be expressed as

(5.2) Cor(u) = Z up @ U,
k
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where each function wuy is the solution to the Poisson equation (4.1) with data fi.
In other terms, the solution’s two-point correlation function can be determined from
solving (possibly infinite) standard boundary value problems. In practice, the expan-
sion (5.1) is truncated so that this process becomes feasible.

Several possibilities are available when it comes to decomposing Cor(f) as in
(5.1). For example, in the situation that Cor(f) € L?(D x D), the most natural idea
is to perform a spectral decomposition, as an application of Mercer’s theorem

(5.3) Cor(f) =Y M(dx ® ¢x),
k
where (A, @) are the eigenpairs of the associated Hilbert—Schmidt operator
LX(D)3 6 [ Cor(f).0)d) dy € LXD).
D

Another way to obtain the decomposition (5.1) is a (possibly infinite) Cholesky
decomposition of the two-point correlation function. Pivoting the Cholesky decom-
position yields an extremely efficient approximation method; see, e.g., [14, 15].

5.2. Numerical calculation of a low-rank approximation of Cor(f). In
general, the expansion (5.1) is infinite and has to be appropriately truncated for
numerical computations. Let V := span{¢; : i = 1,2,..., N} C L?(D) be a suitable
discretization of L?(D), e.g., a finite element space associated with a mesh of D. We
are looking for a low-rank approximation of Cor(f) in the tensor product space VaV:

G4)  ColHmn~Y (:1 ) (Zﬂjfkm w)<evev

k=1 j=1

with 0 < n < N. The unknown coefficient vectors in (5.4) can be computed as follows.
Define the discrete correlation matrix C € RV as

Cis = [ [ corth)e.nelales) dody, i.j=1....,N
pJp
and the mass matrix G € RV as
Gi;j Z/ pi(z)pj(z)ds, i,5=1,...,N.
aD

Then, it is easily seen that searching for a decomposition of the form (5.4) translates,
in terms of matrices, into the search for an approximation C), such that

CmCm=) GlE with = (lyi)im1,. v =G Uy
k=1

in such a way that the truncation error |C' — Cy,|| is rigorously controlled (in a way
vet to be defined).

The best low-rank approximation in L%(D x D) is known to be the truncated
spectral decomposition (5.3) (see, e.g., [31]). In the discrete setting, this corresponds
to the spectral decomposition of C, which is a very demanding task. In particular,
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the decay of the eigenvalues {\;} and thus the rank m to be reached for an accu-
rate decomposition depend heavily on the smoothness of the underlying two-point
correlation function Cor(f). Related decay rates have been proved in [31].

We suggest instead employing the pivoted Cholesky decomposition in order to
compute a discrete low-rank approximation of Cor(f), as originally proposed in [15].
It is a purely algebraic approach which is quite simple to implement. It produces a
low-rank approximation of the matrix C for any given precision € > 0 where the ap-
proximation error is rigorously controlled in the trace norm. A rank-m approximation
is computed in O(m?n) operations. Exponential convergence rates in m hold under
the assumption that the eigenvalues of C' exhibit a sufficiently fast exponential decay;
see [15] for details. Nevertheless, numerical experiments suggest that, in general, the
pivoted Cholesky decomposition converges optimally in the sense that the rank m is
uniformly bounded with respect to the truncation error e by the number of terms
required for the spectral decomposition of Cor(f) to get the same error .

5.3. Low-rank approximation of the shape functional and its gradient.
The basic idea is now to insert the state’s expansion (5.2) into the expectation of
the random shape functional and the associated shape gradient to derive computable
expressions. In fact, it turns out that only standard solvers for boundary value prob-
lems need to be provided. Loosely speaking, this implies that, if one can compute
the shape functional and its gradient for a deterministic right-hand side, then one can
also evaluate the expectation of the shape functional and its gradient for a random
right-hand side. We illustrate this idea with the three examples introduced in section
4:

e Having decomposed Cor(u) as Cor(u) = ), ur ® uy, with each function wuy,
satisfying

(5'5) { —Auk = fk in D7

up =0 on dD,

the mean value (4.2) of the Dirichlet energy can be computed as follows:

1
M(D) = —§Z/D|\Vuk||2d3:.
k

Moreover, its shape derivative is given by

V0 € ©4q, M'(D)(0) = —% /8D <Z

k

Ouk
on

2) 0-nds(x).

e The mean value (4.5) of the L2-tracking—type functional considered in section
4.1.2 can be computed as

M(D) = %/BZ (u — u0)2 dx
e

with the u given by (5.5). As for the calculation of the shape gradient (4.6),
we have to introduce the adjoint states py € H} (D), defined by

—Apy = —(ur —ug) in D,
Pk = 0 on 0D.
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Thus, in view of the fact that Cor(pp,up) = >, pr ® ug, we are led to the
following formula for the shape gradient:

duy, Opy
a ! D - — Y~ A . .
VO € ©uq, M'(D)(0) /8 (k - n)@ n ds(z)

Last but not least, in the linear elasticity setting of section 4.2, expanding the
correlation function of the surface loads Cor(g) = >, gx ® g, the two-point
correlation Cor(u) satisfies the expansion Cor(u) = ), up @ up with uy given
by

—div(Ae(ur)) =0 in D,
ur =0 onI'p,
Ae(ur)n =g on 'y,
Ae(ug)n =0  onT.

Hence, the mean value M (D) of the compliance is given by
M(D) = Z/ Ae(uy) : e(uy) dx,
— Jp

while its shape derivative reads

V0 € ©pa, M'(D)(0) = —/ (ZAe(uk):e(uk)> 0 da.
P\ %

Remark 5.1.

e In the last example, one may be interested in the case that random body

forces f(x,w) are also applied to the system. Then, one has to perform two
low-rank expansions Cor(f) = >, fr ® fr and Cor(g) = >, 91 ® ¢;, which
leads to an expansion of u of the form Cor(u) =), , uk,; ® ui,; with the uy
given by )

—diV(Ae(ukJ)) = fk in D,
l

ug, =0 onI'p,
Ae(upi)n =g onI'n,
Ae(ur;)n =0  onT.

The above formulae coincide with those for the multiple load objective func-
tions (and their derivatives) proposed, e.g., in [3]. In contrast to this work,
here, the different load cases are not known a priori but originate from a
low-rank approximation of the correlation function of the data.

Hitherto, we have only been considering low-rank approximations of Cor(f)
of the form Cor(g) ~ Y, gr ® gr, where the g are deterministic data func-
tions, as they are naturally produced by the pivoted Cholesky decomposition.
Notice, however, that the above discussion straightforwardly extends to the
case of a low-rank decomposition of the kind Cor(g) ~ >, (9x @ gk + gr @ gr)
(see the example of section 6.2 for an application of this remark).

6. Numerical examples. We eventually propose two numerical examples which
illustrate the main features of this article; both of them take place in the setting of
linear elasticity as considered in section 4.2.
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6.1. Presentation of the numerical algorithm. When it comes to the nu-
merical implementation of shape optimization algorithms, one main difficulty lies in
the robust representation of shapes and their evolution. To achieve this, we rely on
the level set method, which was initially introduced in [23] and brought into the con-
text of shape optimization in [4, 33]. It can be seen as a particular implementation of
the gradient method (with respect to the shape derivative) and inherits its properties
of convergence to local extrema.

The basic idea is to consider a shape D C R? as the negative subdomain of an
auxiliary “level set” function ¢ : R? = R, i.e.,

o(r) <0 ifreD,
vz eRY { ¢(x)=0 ifzedD,
é(x) >0 ifxeD.

Thus, the motion of a domain D(t), ¢t € [0,T], induced by a velocity field with normal
amplitude V (¢, ), translates in terms of an associated level set function ¢(t,-) as a
Hamilton—Jacobi equation:

d¢p d
(6.1) Bt +VI|Vg|=0, te(0,T), zeR"

Hence, a (difficult) domain evolution problem is replaced by a (hopefully easier) PDE
problem. Note that, in the present situation, V stems from the analytical formula
for the shape derivative of the considered objective function M (D), which enjoys the
structure (see Theorem 4.3)

Y6 € Ogq, M'(D)(6) = / Dp 6 - nds,
r

where Dp is a scalar function.

In numerical practice, the whole space R? is reduced to a large computational
box Dy, equipped with a fixed triangular mesh 7. Each shape D C Dy is represented
by means of a level set function ¢, discretized at the vertices of 7. In this context
the elastic displacement up, solution to the linear elasticity system (4.10), which is
involved in the computation of Pp, cannot be calculated exactly since no mesh of D
is available. Therefore, we employ the Ersatz material approach [4] to achieve this
calculation approximately: the problem (4.10) is transferred to a problem on Dy by
filling the void part Dy \ D with a very soft material, whose Hooke’s law is €4 with
ek 1.

All our finite element computations are performed within the FreeFem++ environ-
ment [25], and we rely on algorithms from our previous works [7, 11], based on the
method of characteristics, when it comes to redistancing level set functions or solving

(6.1).

6.2. Comparison between correlated and uncorrelated loads. This first
example is aimed at appraising the influence of correlation between different sets of
loads applied to the shapes. Let us consider the situation depicted in Figure 2 (left):
a bridge is clamped on its bottom part, and two sets of loads g, = (1,—1) and
g = (—1,—1) are applied on its superior part, which may or may not be correlated.
The actual loads are then modeled as a random field g(z,w) of the form

g(x,w) = &1 (w)ga(z) + E2(w)gs(x),
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where the random variables £; and £; are normalized so that
/gi P(dw) =0, / g Pdw)=1, i=12.
Q Q

The degree of correlation between g, and gp is measured by a := fﬂ £1&2 P(dw), where
the case & = 0 corresponds to uncorrelated loads. In this context, the correlation
function Cor(g) € [L?(T'y)]% x [L%(T'x)]® naturally arises as a finite sum of pure
tensor products (so that no low-rank approximation is necessary) and reads

Cor(g) =9a ®ga+ 96 @ g + 0 (ga @ gp + 9o ® ga) -

The mean value M (D) of the compliance of shapes and its derivative can be calculated
explicitly, along the lines of section 5.3 (see also Remark 5.1).

We run several examples associated to different values of the degree of correlation
|a|< 1. In each situation, an equality constraint Vol(D) = [, dz = 0.35 on the volume
of shapes is enforced owing to a standard augmented Lagrangian procedure (see [22,
section 17.4]). Starting from the initial shape of Figure 2 (right), 250 iterations of the
algorithm outlined in section 6.1 are performed. The mesh T of the computational
domain is composed of 12 141 vertices and 23 800 triangles; the CPU time for each
example is approximately 12 min on a MacBook Air with a 1.8 GHz Intel Core i5
with 4 GB of RAM. The resulting optimal shapes are represented in Figure 3, and the
evolution of the objective function M(D) and the volume Vol(D) can be appraised
on the histories of Figure 4.

A tremendous difference in trends can be observed, depending on the degree of
correlation between the loads (observe also the values of the objective function M (D)
in Figure 4). Roughly speaking, as & gets closer and closer to —1, the shapes have to
withstand the “worst case” of the situations triggered by g, and g.

Do i i, 0 0, 58, A, A

I'm

I'p

Fic. 2. Details of the test case of section 6.2 (left) and initial shape (Tight).

6.3. An example with a more complex correlation function. Let us turn
to an example where the correlation function of the data is no longer trivial (i.e., it
cannot be written as a finite sum of pure tensor products). The situation at stake
is depicted in Figure 5: a bridge is clamped on its lower part, and (random) surface
loads g = (g1, g2) are applied on its top.

We study three different scenarios, corresponding to surface loads g* = (g}, g%),
i = 1,2,3. For the sake of simplicity, in all three cases, the horizontal and vertical
components g} and g} are uncorrelated; the associated correlation functions are given
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F1c. 3. Optimal shapes obtained in the test case of section 6.2, associated to degrees of corre-
lation o = —1,—-0.7,0,0.5,0.8,1 (from left to right, top to bottom,).

apha =1
fona=07 —

!‘
Nw‘v‘w‘v'v Hptp=n w, iy ‘\"“%@@ﬁ il

Ny 1 W

L o W%r |
0 1 N %M s AL%MMLLMIM_MM il

Aol O i a Sl B

o 50 100 150 200 250 1 50 100 150 200 250

Fia. 4. Convergence histories for the mean value (left) and the volume (right) in the test case
of section 6.2.

by

Cor(gi)(x,y) _ 105 h:'_ ($2 +y2) 67"’”17111\’

2

Va,y € I'y,
vy N T2 +y2) ei\’m?yﬂ

Cor(gé)(:v,y) =10 kf ( 5

where the superscript T stands for the positive part, the characteristic length [ is
taken as [ = 0.1, the origin is fixed in the middle of the top segment of Figure 5, and
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the functions h; and k; (i = 1,2, 3) are defined as (see also the graphs in Figure 6)

~ T+

) 1y 16 (t—1)* ift < i,
hi(t) = 1 4<t 2) , ka(t) = {16( %)2 else, 2
IR 24 (t— L) (t— 1) ife<i
ha(t) =201 =)+, ka(t) = {24( %)(t—é) else,
4( %)( ¢)

Loosely speaking, these correlation functions show a decreasing dependence on the
distance |z—y| between two points 2,y € 'y, and the factors h;, k;, which depend only
on the average position (z + y)/2, mimic a variable intensity of the loads according
to the spatial location. Note that the pivoted Cholesky decomposition, as described
in section 5, is used to obtain low-rank approximations of these correlation functions
of the form (5.1), and we retain the first five terms in each expansion.

I'n

A
\

Fi1G. 5. The setup of the test case of section 6.3 (left) and initial shape (right).

The objective function of interest is, again, the mean value M(D) of the com-
pliance of the structure. A constraint Vol(D) = 0.75 is imposed on the volume of
shapes, and 250 iterations of the algorithm outlined in section 6.1 are performed in
each situation on a computational mesh composed of 5 752 vertices and 11 202 trian-
gles, which requires a CPU time of approximately 15 minutes. The resulting optimal
shapes and convergence histories are reported in Figures 7 and 8, respectively, showing
very different trends depending on the particular situation.
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h—— i\ K ——
hs ——

\ /
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\ / /
os osf \ N\ /)

| N

2 8 1

o 02 04 06 08 1 1 o.

Fi1G. 6. Graphs of the functions h; (left) and graphs of the functions k; (right).

Fic. 7. Optimal shapes obtained in the situations 1,2,3 in the test case of section 6.3 (from
left to right).
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Siuation (11 k1) ——
Situation (h2k2) ——
Situation (13K3) ——

Situatlon (n1 k1) ——
Situation (h2,k2) ——
Situation (h3.k3) ——

Fic. 8. Convergence histories for the mean value (left) and the volume (right) in the test case
of section 6.3.
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