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Abstract We consider the e�cient solution of partial di↵erential equations for
strongly elliptic operators with constant coe�cients and stochastic Dirichlet data
by the boundary integral equation method. The computation of the solution’s two-
point correlation is well understood if the two-point correlation of the Dirichlet
data is known and su�ciently smooth. Unfortunately, the problem becomes much
more involved in case of rough data. We will show that the concept of the H-matrix
arithmetic provides a powerful tool to cope with this problem. By employing a
parametric surface representation, we end up with an H-matrix arithmetic based
on balanced cluster trees. This considerably simplifies the implementation and
improves the performance of the H-matrix arithmetic. Numerical experiments are
provided to validate and quantify the presented methods and algorithms.

Keywords H-matrix arithmetic · uncertainty quantification · non-local operators

1 Introduction

Modelling and simulating boundary value problems with stochastic input parame-
ters is of great importance for applications in engineering and science. A principal
approach to such problems is the Monte Carlo approach, see e.g. [30] and the
references therein. However, it is very costly to generate a large number of ap-
propriate samples and to solve a deterministic boundary value problem on each
sample. Thus, we aim here at a direct, deterministic computation of the stochastic
solution.

Deterministic approaches to solve stochastic partial di↵erential equations have
been proposed in several papers. For instance, stochastic loadings have been con-
sidered in [29,35], stochastic coe�cients in [1,2,4–6,23,26,28], and stochastic do-
mains in [21,37].
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In this article, we present a new approach for the second moment analysis of
stochastic, strongly elliptic potential problems with rough correlation functions,
i.e. the eigenvalues of the correlation kernel provide a rather slow algebraic decay.
Concretely, given a domain D ⇢ Rd and a separable, complete probability space
(⌦,⌃,P), we consider the Dirichlet problem

Lu(!,x) = 0 for x 2 D

u(!,x) = f(!,x) for x 2 � := @D

)
P-almost surely (1)

with stochastic Dirichlet data f(!,x). Here, the linear di↵erential operator L is
given by

(Lu)(x) := �
dX

i,j=1

ai,j(x)
@2u

@xi@xj
(x) +

dX

i=1

bi(x)
@u

@xi
(x) + c(x)u(x) (2)

with ai,j , bi, c 2 C1(D). We suppose L to be strongly elliptic, i.e. y|A(x)y �
cy|y > 0 for all y 2 Rd \ {0} and almost every x 2 D, where A(x) := [ai,j(x)]i,j .
Under these conditions, the Dirichlet problem (1) is known to be uniquely solvable
for appropriate Dirichlet data f , see e.g. [7].

We will later restrict ourselves to the case of constant coe�cients in (2). This is
a necessary restriction which guarantees, using the Malgrange-Ehrenpreis theorem,
the existence of a fundamental solution. The fundamental solution is then required
to reformulate the problem using boundary integral equations.

For example, the Dirichlet problem for the Laplace- or the Helmholtz equa-
tion can be represented with a di↵erential operator of the form (2) with constant
coe�cients.

We can compute the solution’s mean

Eu(x) :=

Z

⌦
u(!,x) dP(!)

and also its two-point correlation

Coru(x,y) :=

Z

⌦
u(!,x)u(!,y) dP(!)

if the respective mean Ef and Corf of the Dirichlet data are known. Namely, the
mean Eu satisfies

LEu = 0 in D and Eu = Ef on � (3)

due to the linearity of the expectation and the di↵erential operator L. By addi-
tionally taking into account the multi-linearity of the tensor product, one readily
verifies by tensorizing (1) that

(L⌦ L)Coru = 0 in D ⇥D,

(L⌦ Id)u = 0 on D ⇥ �,

(Id⌦L)u = 0 on � ⇥D,

Coru = Corf on � ⇥ �.

(4)

The numerical solution of problems similar to (4) have already been the topic
of several articles. They all have in common that they are in some sense based on a
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sparse tensor product discretization of the solution. For example, the computation
of the second moment, i.e. Coru, has been considered for elliptic di↵usion problems
with stochastic loadings in [35] by means of a sparse tensor product finite element
method. A sparse tensor product wavelet boundary element method has been used
in [21] to compute the solution’s second moment for elliptic potential problems on
random domains. In [17,20], the computation of the second moment was done
by multilevel finite element frames. Recently, this concept has been simplified by
using the combination technique, cf. [19].

We consider here another approach for the solution of (4) which does not
employ a hierarchic decomposition of the ansatz and test spaces. Namely, we follow
here the idea of [21] and reformulate (4) as a boundary integral equation. Then,
we employ an H-matrix discretization and solve the problem by means of the
H-matrix arithmetic. This is justified since rough two-point correlation kernels
behave quite similar to kernels of boundary integral operators.

The general concept of H-matrices and the corresponding arithmetic have at
first been introduced in [13,15]. H-matrices are feasible for the data-sparse rep-
resentation of (block-) matrices which can be approximated block-wise with low-
rank. Our particular realization is based on a parametric representation of the
surface � by four-sided patches. Such parametric surface representations can be
obtained directly from computer aided design (CAD). They are recently studied
in the context of isogeometric analysis [18,22] and o↵er the advantage that they
lead to balanced cluster trees. We develop a fast H-matrix arithmetic tailored
to such cluster trees which only induces a slight restriction to the generality of
the H-matrix concept. Nevertheless, the gain in performance and the much easier
implementation justify this minor drawback. Especially, the H-matrix based dis-
cretization of non-local operators on parametric surfaces has recently been studied
in [18].

The rest of this article is organized as follows. In Section 2, we provide the
theoretical background for the further considerations. Especially, we introduce the
parametric surface representations which is referred to and reformulate problem
(1) in terms of a boundary integral equation. Section 3 is then devoted to the
Galerkin discretization of the obtained boundary integral equation. In Section 4,
we explain in brief why sparse grids are not feasible to solve problems with rough
correlation kernels. Furthermore, we introduce here the class of Matérn kernels.
Section 5 is concerned with the H-matrix arithmetic in case of balanced cluster
trees. Some improvements of the conventionalH-matrix arithmetic are pointed out.
In Section 6, we present the algorithm for the iterative solution of the linear system
of equations derived in Section 2. This algorithm is based on the approximate
computation of the inverse to the sti↵ness matrix which arises from the single-
layer operator combined with an iterative refinement of the solution. Section 7
is dedicated to numerical experiments which validate and quantify the presented
methods and algorithms. Finally, in Section 8, we summarize the theoretical and
numerical results presented in this article and draw a conclusion.

In the following, in order to avoid the repeated use of generic but unspecified
constants, by C . D we mean that C can be bounded by a multiple of D, indepen-
dently of parameters which C and D may depend on. Obviously, C & D is defined
as D . C, and C ⇠ D as C . D and C & D.
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2 Preliminaries

2.1 Boundary integral formulation

In the following, we restrict ourselves to the most important case d = 3. Therefore,
let D ⇢ R3 denote a domain with piecewise smooth and globally Lipschitz contin-
uous surface � := @D. The coe�cients of the di↵erential operator L, cf. (2), are
assumed to be constant, i.e. A 2 R3⇥3, b 2 R3 and c 2 R. Then, the fundamental
solution for L is given by

�(x,y) =
1

4⇡
p
detA

exp
�
b|(x� y)� �kx� yk

A

�

kx� yk
A

,

where kxk
A

:=
p
x|Ax and � =

p
✓ if ✓ � 0 or else � = �i

p
|✓| with ✓ := c+kbk2

A

,
cf. [33]. Notice that the fundamental solution is symmetric if b = 0 which will be
employed later on in our numerical experiments.

Given a density ⇢ 2 H�1/2(� ), the single-layer potential

S̃ : H�1/2(� ) ! H1(D), (S̃⇢)(x) :=
Z

�
�(x,y)⇢(y) d�

y

.

satisfies
L(S̃⇢)(x) = 0 for x 2 Rd \ �,

cf. [3]. Thus, for given boundary data f 2 H1/2(� ) a solution to the corresponding
Dirichlet problem is obtained by solving the boundary integral equation

(S⇢)(x) := �int

0

(S̃⇢)(x) = f(x) for x 2 �. (5)

Here, �int

0

: H1(D) ! H1/2(� ) denotes the (interior) trace operator.

Remark 1 We consider here the indirect formulation by the single-layer potential
since it provides a higher order of approximation to the solution of (1). Of course,
also an ansatz by the double-layer potential would be possible, cf. [3,33].

For the solution of (1), it is reasonable to assume that the Dirichlet data f are
contained in some Bochner space. More precisely, we have f 2 L2

P
�
⌦, H1/2(� )

� ⇠=
L2

P(⌦)⌦H1/2(� ). Thus, the solution ⇢ 2 L2

P(⌦)⌦H�1/2(� ) to

(Id⌦S)⇢(!,x) =
Z

�
�(x,y)⇢(!,y) d�

y

= f(!,x) (6)

satisfies
L
x

(Id⌦S̃)⇢(!,x) = 0.

Together with Fubini’s theorem, we arrive at
Z

⌦
(Id⌦S)⇢(!,x) dP(!) = (SE⇢)(x) = Ef (x) (7)

and in complete analogy at L(S̃E⇢)(x) = 0. This means that, having determined
the density E⇢ from the boundary integral equation (7), the solution Eu to (3) is
given via S̃E⇢.
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By tensorizing (6) and integration with respect to the stochastic variable, we
obtain

Z

⌦
(Id⌦S)⇢(!,x)(Id⌦S)⇢(!,y) dP(!) = (S ⌦ S)Cor⇢(x,y) = Corf (x,y). (8)

Furthermore, it holds

(L⌦ L)(S̃ ⌦ S̃)Cor⇢ = 0 in D ⇥D,

(L⌦ �int

0

)(S̃ ⌦ S̃)Cor⇢ = 0 on D ⇥ � ,

(�int

0

⌦ L)(S̃ ⌦ S̃)Cor⇢ = 0 on � ⇥D.

Therefore, we conclude that Coru = (S̃ ⌦ S̃)Cor⇢ is the solution to (4).
Obviously, a solution to (7) is easily obtained by means of standard boundary

element techniques. Thus, we shall focus on the solution of (8) which is much
more involved. To that end, we assume that Corf is asymptotically smooth, i.e. Corf
satisfies the following definition.

Definition 1 Let k : R3 ⇥ R3 ! R. The function k is called asymptotically smooth

if for some constants rk > 0 and q 2 R holds

��@↵
x

@�
y

k(x,y)
�� . (|↵|+ |�|)!

r
|↵|+|�|
k

kx� yk�2�2q�|↵|�|�|
2

(9)

independently of ↵ and �.

Note that the term 2q in this definition usually reflects the order of the integral
operator under consideration, e.g. we have 2q = �1 in the case of the single-layer
operator S and 2q = 0 for general Hilbert-Schmidt operators

A : L2(� ) ! L2(� ), (Au)(x) :=

Z

�
k(x,y)u(y) d�

y

. (10)

A main feature of asymptotically smooth functions is that they exhibit a data-
sparse representation by means of an H-matrix, cf. [15].

2.2 Parametric surface representation

To introduce H-matrices, we have at first to provide a hierarchical subdivision of
the surface � . Since � is assumed to be piecewise smooth and globally Lipschitz
continuous, it is representable by the union of several smooth patches, i.e.

� =
M[

i=1

�i,

where the intersection �i \ �i0 consists at most of a common vertex or a common
edge for i 6= i0. Each patch �i is supposed to be the image of the reference domain
⇤ := [0, 1]2 under a smooth di↵eomorphism �i, i.e.

�i : ⇤ ! �i with �i = �i(⇤) for i = 1, 2, . . . ,M.
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Fig. 1 Di↵erent parametric surfaces.

The regularity of the mesh is ensured by a matching condition: for each x = �i(s)
on a common edge of �i and �i0 exists a bijective, a�ne mapping ⌅ : ⇤ ! ⇤ with
�i(s) = (�i0 �⌅)(s).

A mesh Qj on level j for � is induced by dyadic subdivisions of depth j of
the unit square ⇤ into 4j congruent squares, each of which is lifted to � by the
associated parameterization �i. This construction results in a quad-tree structured
sequence Q

0

⇢ Q
1

⇢ . . . ⇢ QJ of meshes consisting of Nj = 4jM elements on level
j. We refer to the particular elements by �i,j,k where i is the index of the applied
parameterization �i, j is the level of the element and k is the index of the element in
hierarchical order. A visualization of the resulting quadrangulations of parametric
surfaces can be found in Figure 1.

�i,0,0

level 0

�i,1,3

�i,1,0

�i,1,2

�i,1,1

level 1 level 2

�i,2,6

�i,2,5

�i,2,4

�i,2,7

Fig. 2 Visualization of the element tree

It is convenient to refer to �i,j,k also as a cluster. In this case we think of
�i,j,k as the union {�i,J,k0 : �i,J,k0 ⇢ �i,j,k}, i.e. the set of all tree leafs appended
to �i,j,k or its sons. Furthermore, we call the collection of all clusters up to the
discretization level J the cluster tree T . A scheme for the subdivisions of the patch
�i up to level 2 is shown in Figure 2. In the following it will also be handy to set
� := (i, j, k) with |�| = j. With regard to the tree structure of T , we define also
dad(�) := (i, j � 1, bk/4c) and sons(�) := {(i, j + 1, 4k + `) : ` = 0, . . . , 3}.

Note that the current setup refers to the framework of [18] where black-box
boundary element methods for the e�cient solution of boundary integral equations
on parametric surfaces have been considered. As it turns out, the assembly and the
arithmetics of H-matrices are remarkably sped up due to the special structure of
the geometry which results in balanced trees. Nevertheless, the special choice of
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the surface representation does not impose a restriction to the applicability of the
presented algorithms. In fact, one could also introduce any other clustering of the
surface which results in balanced trees.

2.3 Block-cluster tree

For the discretization of a Hilbert-Schmidt operator with asymptotical smooth
kernel, it seems natural to introduce a subdivision of the preimage space � ⇥ �

which separates smooth and non-smooth areas of the kernel function. Therefore,
we choose a special sub-tree of the level-wise Cartesian product T ⇥ T := {�� ⇥
��0 : ��,��0 2 T , |�| = |�0|} with respect to the following definition.

Definition 2 (i) The clusters �� and ��0 with |�| = |�0| are called admissible if

max
�
diam(��),diam(��0)

 
 ⌘ dist(��,��) (11)

holds for some fixed ⌘ 2 (0, 1).
(ii) The largest collection of admissible blocks �� ⇥ ��0 such that �

dad(�)

⇥
�
dad(�0

)

is not admissible forms the far-field F ⇢ T ⇥ T of the operator. The re-
maining non-admissible blocks correspond to the near-field N of the operator.

(iii) Finally, we denote by B := F [N the block-cluster tree.

The block-cluster tree can be constructed in accordance with Algorithm 1.

Algorithm 1 Construction of the block-cluster tree B
procedure BuildBlockClusterTree(cluster ��,��0 )

if (��,��0 ) is admissible then
sons(�� ⇥ ��0 ) := ;

else
sons(�� ⇥ ��0 ) := {�µ ⇥ �µ0 : µ 2 sons(�),µ0 2 sons(�0)}
for µ 2 sons(�),µ0 2 sons(�0) do

BuildBlockClusterTree(�µ,�µ0 )
end for

end if
end procedure

Remark 2 In practical applications, Algorithm 1 terminates if the cardinality #�� =
4J�|�| of �� falls below a certain threshold k 2 N.

Now, with the definition of the block-cluster tree at hand, we are able to
introduce H-matrices.

Definition 3 Let B be a block-cluster tree and k 2 N. We define the set R(n, k)
of rk-matrices by

R(n, k) := {M 2 Rn⇥n : rank(M)  k}.
Then, the set of H-matrices is defined according to

H(B, k) :=
�
M 2 RNJ⇥NJ : M��⇥��0 2 R(4J�|�|, k) for all �� ⇥ ��0 2 F

 
,

where we assume that #��  k for all non-admissible blocks �� ⇥ ��0 2 N .
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3 Galerkin discretization

Given s, t 2 R, we define the Sobolev spaces Hs,t
mix

(� ⇥ � ) of dominant mixed
derivatives on � ⇥ � by

Hs,t
mix

(� ⇥ � ) := Hs(� )⌦Ht(� ).

Then, the variational formulation of the boundary integral equation (8) is given
as follows:

Find Cor⇢ 2 H
�1/2,�1/2
mix

(� ⇥ � ) such that
�
(S ⌦ S)Cor⇢, v

�
L2

(�⇥� )

= (Corf , v)L2

(�⇥� )

for all v 2 H
�1/2,�1/2
mix

(� ⇥ � ).

(12)
For the Galerkin discretization of (12), we fix J 2 N and introduce the space

V̂J :=
�
'̂ : ⇤ ! R : '̂|⇤J,k

is a polynomial of order d
 
⇢ L2(⇤),

where we define ⇤j,k := ��1

i (�i,j,k). Then, the univariate ansatz space VJ on level
J is given by

VJ :=
�
'̂ � ��1

i : '̂ 2 V̂J , i = 1, . . . ,M
 
⇢ H�1/2(� ).

For di↵erent values of J , the spaces VJ are nested, i.e. V
0

⇢ V
1

⇢ · · · ⇢ VJ . The
Sobolev smoothness t of VJ depends on the global smoothness of the functions ' 2
VJ . Especially, for transported piecewise constant functions (d = 1), we have t <

1/2, which is su�cient for the Galerkin discretization of (8). Note that, due to the
parametric surface representation, the Galerkin discretization may be performed
on the reference domain ⇤ with respect to the space V̂J . For the details we refer
to [18].

By replacing the energy space H
�1/2,�1/2
mix

(�⇥� ) in the variational formulation

(12) by the finite dimensional ansatz space VJ ⌦VJ ⇢ H
�1/2,�1/2
mix

(�⇥� ), we arrive
at the Galerkin formulation for the boundary integral equation (8):

Find Cor⇢,J 2 VJ ⌦ VJ such that
�
(S ⌦ S)Cor⇢,J , v

�
L2

(�⇥� )

= (Corf , v)L2

(�⇥� )

for all v 2 VJ ⌦ VJ .
(13)

We choose a basis {'` ⌦ '`0}`,`0 and represent Cor⇢,J by its basis expansion

Cor⇢,J =
NJX

`,`0=1

c⇢,`,`0('` ⌦ '`0).

Then, setting C⇢ := [c⇢,`,`0 ]`,`0 , we end up with the linear system of equations

(S⌦ S) vec(C⇢) = vec(Cf ), (14)

where Cf :=
⇥
(Corf ,'` ⌦ '`0)L2

(�⇥� )

⇤
`,`0

is the discretized two-point correlation

of the Dirichlet data f and S :=
⇥
(S'`0 ,'`)L2

(� )

⇤
`,`0

is the system matrix of the

single-layer operator. In (14), the tensor product has, as usual in connection with
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matrices, to be understood as the Kronecker product. Furthermore, for a matrix
A = [a

1

, . . . ,an] 2 Rm⇥n, the operation vec(A) is defined as

vec([a
1

, . . . ,an]) :=

2

64
a
1

...
an

3

75 2 Rmn.

For matrices A 2 Rk⇥n, B 2 R`⇥m and X 2 Rm⇥n, there holds the relation

(A⌦B) vec(X) = vec(BXA|).

Hence, we may rewrite (14) as

SC⇢S
| = Cf . (15)

Since � and Corf are asymptotical smooth kernel functions, the related sti↵ness
matrices S and Cf are compressible by means of H-matrices. How this approx-
imation can be achieved in case of parametric surfaces is explained in detail in
[18]. By representing the unknown quantity C⇢ of interest also in the H-matrix
format, with respect to a common block-cluster tree, we can employ the H-matrix
arithmetic to solve the equation (15).

4 On the sparse tensor product approximation

With the Galerkin discretization (14) and even a multilevel hierarchy at hand,
the question arises, why one should not follow the approach of the preceding
articles [17,20] and use a sparse tensor product discretization, or equivalently
the combination technique, cf. [11,19], for the solution of (8). As it turns out,
a discretization with H-matrices, which can be thought of as a compressed full
tensor approximation, yields a rate of convergence which is twice as high as that
of the sparse tensor product approximation. With the following considerations we
want to elaborate on this point. Therefore, it is convenient to fix some notation.

We denote the energy space related with (8) by H := H
�1/2,�1/2
mix

(� ⇥ � ) and

its dual by H0 = H
1/2,1/2
mix

(� ⇥ � ). Then, the additional isotropic smoothness of a
function relative to the energy space is measured by the spaces

Hs :=
�
v 2 H : k@↵

x

@�
y

vkH < 1, |↵|+ |�|  s
 
.

To the best of our knowledge, these classes of Sobolev spaces have at first been
considered in [12]. In order to measure the error of the sparse tensor product
approximation, we also need the anisotropic version of these spaces, that is

Hs
mix

:=
�
v 2 H : k@↵

x

@�
y

vkH < 1, |↵|, |�|  s
 
.

Note that it holds Hs
mix

= H
s�1/2,s�1/2
mix

(� ⇥ � ).
Provided that Cor⇢ 2 Hs

mix

or Cor⇢ 2 Hs respectively, we end up with the

well known error estimates for Galerkin approximation dCor⇢,J in the sparse tensor

product space \VJ ⌦ VJ and for Galerkin approximation Cor⇢,J in the full tensor
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product space VJ ⌦ VJ , respectively. Here, the sparse tensor product space is de-
fined by

\VJ ⌦ VJ :=
J[

j=0

Vj ⌦ VJ�j .

From this representation it becomes clear that VJ/2 ⌦ VJ/2 is the finest (isotropic)

full tensor product space which is contained in \VJ ⌦ VJ .
According to [10,12], we have

kdCor⇢,J �Cor⇢ kH . 2�Js
p
JkCor⇢ kHs

mix

for s  d+ 1/2

in the case of the sparse tensor product approximation and

kCor⇢,J �Cor⇢ kH . 2�JskCor⇢ kHs for s  d+ 1/2

in the case of the full tensor product approximation. Thus, given that Cor⇢ is
su�ciently smooth, both methods yield essentially the same order of convergence.
Unfortunately, the available smoothness is limited in our case.

In the framework of stochastic fields it is quite common to assume that Corf
is isotropic, i.e. Corf (x,y) depends only on the distance r = kx � yk

2

, cf. [31].
Examples for correlation functions of this kind are given by the Matérn class of
kernels, i.e.

Corf (r) = k⌫(r) :=
21�⌫

� (⌫)

✓p
2⌫r
`

◆⌫

K⌫

✓p
2⌫r
`

◆
(16)

with `, ⌫ 2 (0,1). Here, K⌫ denotes the modified Bessel function of the second kind.
For half integer values of ⌫, i.e. ⌫ = p+ 1/2 for p 2 N the expression simplifies to

kp+1/2(r) = exp

✓
�
p
2⌫r
`

◆
p!

(2p)!

pX

i=0

(p+ i)!
i!(p� i)!

✓p
8⌫r
`

◆p�i

.

In accordance with [31], we obtain in the limit case ⌫ ! 1 the Gaussian kernel:

k1(r) = exp

✓
�r2

2`2

◆
.

The smoothness of the kernel k⌫ is controlled by the smoothness parameter ⌫

and the correlation length `. A visualization of these kernels for varying ⌫ is given
in the left plot of Figure 3 and for varying values of ` in the right plot of Figure 3.
Although the correlation length ` does not influence the Sobolev smoothness of
the kernel, it has a large impact on the preasymptotic behaviour and may cause
severe numerical di�culties.

Let us assume that the two-point correlation Corf is contained in some isotropic
Sobolev space Hs(� ⇥ � ). For example, for the exponential two-point correlation,
i.e. ⌫ = 1/2 in (16), we find s = 2� " for any " > 0 since the kernel is continuous
with a kink on the two-dimensional diagonal. Whereas, for the Matérn kernel with
⌫ = 3/2, we find s = 4 � " for any " > 0 since it is two orders smoother than the
exponential kernel.

The highest order Sobolev space of dominant mixed derivatives which contains

the Sobolev space Hs(� ⇥ � ) is H
s/2,s/2
mix

(� ⇥ � ) = H
(s+1)/2
mix

. In particular, to
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Fig. 3 Matérn kernels for di↵erent values of the smoothness parameter ⌫ (left) and for di↵erent
correlation lengths ` (right).

ensure Corf 2 H0 = H
1/2,1/2
mix

(� ⇥ � ), we have to ensure that s � 1. In view of the
shift property of the single-layer operator, cf. [3,33], we arrive at the regularity

statement Cor⇢ 2 H
(s�1)/2
mix

.
For the error estimation in case of the full tensor product approximation, we

make use of the following result.

Lemma 1 Let s � 1. For Corf 2 Hs(� ⇥ � ) it holds Cor⇢ 2 Hs�1.

Proof The two-point correlation Corf satisfies

Corf 2 Hs(� ⇥ � ) =
\

s�t�0

Hs�t,t
mix

(� ⇥ � ) ⇢ H0.

The shift properties of the single-layer operator imply thus

Coru 2
\

s�t�0

Hs�t�1,t�1

mix

(� ⇥ � ) ⇢ H.

From this, we derive k@↵
x

@�
y

Coru kH < 1 for all |↵|+ |�|  s� 1 which proves the
assertion. ut

We conclude that, for small values of s, i.e. in case of rough correlation kernels,
the rate of convergence in the full tensor product VJ ⌦ VJ is up to twice as high
as the rate of convergence in the sparse tensor product \VJ ⌦ VJ . Nevertheless, by
using the H-matrix approach proposed in the subsequent section, the cost for the
approximation is essentially linear for both approaches. We refer the reader to e.g.
[18,35] for the computational complexity of the sparse tensor product approach.

5 H-matrix arithmetic

5.1 Preliminary considerations

We assume that C⇢ can be approximated as an H-matrix with respect to some
block-cluster tree for � . Thus, there exists a common block-cluster tree B such that
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C⇢ 2 H(B, k
1

), Cf 2 H(B, k
2

) and S 2 H(B, k
3

). Therefore, we have C⇢,Cf ,S 2
H(B,max{k

1

, k
2

, k
3

}).
In the following, we show how to add and how to multiply H-matrices with

respect to a common block-cluster tree B. We especially point out the simplifica-
tions which are possible with regard to the balanced cluster tree we have. More
general results may be found in [14].

Let B denote a block-cluster tree on level J 2 N and an H-matrix H 2 H(B, k)
defined on B. On level 0, B has M2 children that correspond to M2 quadratic

submatrices H`,`0 2 R4

J⇥4

J

. Hence, we can consider the matrix H as an M ⇥ M

block matrix, that is

H =

2

64
H

1,1 . . . H
1,M

...
...

HM,1 . . . HM,M

3

75 . (17)

Here, each submatrix H`,`0 corresponds to a block-cluster ��⇥��0 2 B . If ��⇥��0

is a leaf of B, then H`,`0 is either an rk-matrix or a full-matrix, respectively.
Otherwise, �� ⇥ ��0 has exactly 42 children. In this case, H`,`0 is again a block-

matrix with quadratic matrix blocks H0
`,`0 2 R4

J�1⇥4

J�1

.
On the one hand, in order to compute the sum H

1

+H
2

of two H-matrices
H

1

,H
2

2 H(B, k), we exclusively have to explain the following elementary sums:

+ H-matrix rk-matrix full-matrix
H-matrix recursively
rk-matrix approximately
full-matrix exactly

On the other hand, for the product H
1

*H
2

of two H-matrices H
1

,H
2

2 H(B, k),
besides elementary products, we also have to introduce compound sums:

* H-matrix rk-matrix full-matrix
H-matrix recursively exactly
rk-matrix exactly exactly exactly
full-matrix exactly exactly

+= H-matrix rk-matrix full-matrix
H-matrix recursively recursively
rk-matrix approximately approximately approximately
full-matrix exactly exactly

In the table for the compound operations, i.e. +=, the operands in the rows of
the table coincide with the target format of the respective operation. In all the
preceding tables, recursively means that we use a recursive algorithm to compute
the operation. The term exactly means that we can perform this operation without
a truncation error. The term approximately indicates that we need to truncate the
operation’s result in order to guarantee H

1

+H
2

,H
1

*H
2

2 H(B, k). Hence, the
subsequent subsection is devoted to appropriate truncation operators.

5.2 Truncation operators

We shall develop truncation operators to approximate a given matrix by an rk-
matrix. Especially, we have here in mind the following situations from the preced-
ing table for compound operations,

R
1

+=R
2

, H+=R, R+=H, R+=F,
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for R,R
1

,R
2

2 R(n, k), H 2 H(B0, k) and F 2 Rn⇥n. These operations can for-
mally be introduced by means of a truncation operator.

Definition 4 Let M 2 Rn⇥n. We define the truncation operator T to rk-matrices,

T : Rn⇥n ! R(n, k), M 7! R,

to be the best approximation of M in R(n, k) with respect to a given norm. We
call R = T(M) the truncation of M to rank k.

Remark 3 We may extend T to H(B, k) by the block-wise application of the trun-
cation operator T : Rn⇥n ! R(n, k) with respect to the admissible blocks of a
block-cluster tree B.

With the truncation operator T at hand, we may define

(R
1

+=R
2

) := T(R
1

+R
2

) 2 R(n, k), (H+=R) := T(H+R) 2 H(B, k),
(R+=F) := T(R+ F) 2 R(n, k), (R+=H) := T(R+H) 2 R(n, k).

For the specific realization, let the truncation operator T be defined with respect
to the Frobenius norm or the spectral norm. Then, the best approximation in
R(n, k) is provided by the truncated singular value decomposition.

Definition 5 The singular value decomposition of a matrix R 2 R(n, k) is a de-
composition of the form

R = U⌃V|

where U,V 2 Rn⇥˜k are orthogonal matrices, i.e. U|U = V|V = I 2 R˜k⇥˜k, and

⌃ 2 R˜k⇥˜k is a diagonal matrix whose diagonal entries

⌃
1,1 � · · · � ⌃

˜k,˜k > 0

are called singular values. Here, k̃  k denotes the actual rank of R.

Remark 4 This definition of the singular value decomposition is in contrast to the
standard definition, see e.g. [9], where the matrices U and V contain a complete
basis for the image space and the preimage space, respectively.

The truncation of the singular value decomposition provides the best approx-
imation of a matrix in R(n, k).

Lemma 2 Let k
1

 k̃  k
2

. Then, for a matrix R 2 R(n, k
2

) with actual rank k̃, the

best approximation of R = U⌃V| in R(n, k
1

) with respect to the Frobenius norm and

the spectral norm is given by R̃ = U⌃̃V
|
where ⌃̃ = diag(⌃

1,1, . . . ,⌃k
1

,k
1

, 0, . . . , 0).
In particular, it holds

kR� R̃kF =

vuut
k
2X

i=k
1

+1

⌃2

ii and kR� R̃k
2

= ⌃k
1

+1,k
1

+1

.

Furthermore, R̃ is the best approximation to R in the sense that

kR� R̃kF/2 = min
R

02R(n,k
1

)

kR�R0kF/2.

The proof of this lemma is a straightforward consequence of the orthogonal
invariance of the Frobenius norm and the spectral norm.
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The situation R
1

+=R
2

In the following, it is convenient to assume that all matrices are in factorized form.
This means, for R

1

,R
2

2 R(n, k), we have Ri = AiB
|
i with Ai,Bi 2 Rn⇥k. Then,

without truncation, it holds R
1

+R
2

= [A
1

A
2

][B
1

B
2

]| 2 R(n, 2k). The action
of the truncation operator T on R

1

+ R
2

can now e�ciently be computed with
the reduced singular value decomposition (rSVD). Numerically, this is performed by
computing the rSVD of R

1

+R
2

with Algorithm 2, cf. [14], and then truncating
to the k-th dominant singular values.

Algorithm 2 Calculation of the rSVD for an rk-matrix

QARA = QR-decomposition of A, QA 2 Rn⇥k, RA 2 Rk⇥k

QBRB = QR-decomposition of B, QB 2 Rn⇥k, RB 2 Rk⇥k

Ũ⌃̃Ṽ
|
= SVD(RARB

|)
U = QAŨ
V = QBṼ

The situation H+=R

With the definition of R
1

+=R
2

, we can easily explain H+=R in a recursive manner.

Let H 2 H(B0, k) ⇢ R4

J�j⇥4

J�j

and R 2 R(4J�j , k). We can exactly represent R
with respect to the block-cluster structure of B by recursively breaking up the
rk-matrix structure. In the first step, we have

R = = = (R`,`0)`,`0 .

Now, proceeding this subdivision with respect to the structure of B0 yields a sit-
uation where we only have to add either two rk-matrices or a full-matrix and an
rk-matrix. The first is done with respect to the definition of R

1

+=R
2

, the latter
can be exactly performed.

Remark 5 For numerical issues, the subdivision of an rk-matrix with respect to
the block-cluster tree B0 can be realized by index shifts. Therefore, no additional
calculations or storage are necessary here.

The situation R+=H

In contrast to the idea of the hierarchical approximation, cf. [14], which is a succes-

sive approximation of the matrix H 2 H(B0, k) ⇢ R4

J�j⇥4

J�j

by rk-matrices, we
make another approach here: We exploit the fact that we can multiply the matrix

H to a vector v 2 R4

J�j

with a complexity of O(2k4J�j), cf. [14,18]. Thus, it
seems reasonable to directly compute the truncated singular value decomposition
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of H up to rank k by means of a sparse eigensolver which only requires matrix-
vector multiplications as for example ARPACK, cf. [25]. Then, we are again in
the situation R

1

+=R
2

. For practical issues in the product of H-matrices, we rather
have to consider the case R+=H

1

H
2

. This situation can analogously be treated by
the indirect singular value decomposition.

5.3 The indirect singular value decomposition (iSVD)

As already pointed out, the complexity of a matrix-vector multiplication of an

H-matrix is O(2k4J�j) for H 2 H(B0, k) ⇢ R4

J�j⇥4

J�j

and v 2 R4

J�j

. There-
fore, the complexity of computing the product (H

1

· · ·Hm)v is obviously of order
O(2k4J�jm).

In the first step, we show how the iSVD can be applied to the (exact) product
of two H-matrices in H(B0, k), i.e. H

1

H
2

, to compute the k largest singular values
and singular vectors of this product. Therefore, let

W :=


0 H

1

H
2

H|
2

H|
1

0

�

be the Jordan-Wielandt matrix with respect to H
1

H
2

. The positive eigenvalues of
this matrix coincide with the singular values of H

1

H
2

, cf. [8,24]. The complexity of

applying W to a vector x 2 R2·4J�j

is of order O(8k4J�j). Thus, the computation
of the k largest singular values of W can be performed within a complexity of
O(8k4J�jncv2), where ncv corresponds to the size of the Krylov subspace used for
the eigenvalue approximation, cf. [25].

Remark 6 The iSVD can directly compute the best approximation of an rk-matrix
R`,`0 resulting from a block inner-product of a row and a column in the product
of two H-matrices H

1

,H
2

2 H(B, k) structured like (17):

R`,`0 = T

✓ pX

i=1

(H
1

)`,i(H2

)i,`0

◆
.

Here, we have either p = M for level 0 or p = 4 for any other level. Then, the
complexity reads O(8k4J�jp · ncv2).

5.4 H-matrix multiplication

Applying recursively the procedure from Remark 6 yields the actual best ap-
proximation of the product H

1

H
2

in H(B, k). This realization of the product
H

1

*H
2

2 H(B, k) is provided by Algorithm 3. Note that the calling sequence
for Algorithm 3 is initiated with p0 = 1.

Unfortunately, although Algorithm 3 provides the best approximation of the H-
matrix product in H(B, k), the numerical computation time is rather bad. We have
reason to believe that this is caused by the slow convergence of the eigensolver in
case of a clustering of the eigenvalues. Therefore, for practical purposes, we rather
refer to the following Algorithm 4 to realize the H-matrix product.

Note that the operation ‘+=’ is overloaded here and depends one the type of
the operands as introduced in Subsections 5.2 and 5.3.
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Algorithm 3 Compute H
3

=
Pp0

i=1

H(i)
1

H(i)
2

function H
3

=BestMultH({H(i)
1

}p0i=1

, {H(i)
2

}p0i=1

)
if H

3

2 H(B0, k) then
for `, `0 = 1, . . . , p do

L = [p0

i=1

{(H(i)
1

)`,1, . . . , (H
(i)
1

)`,p}
C = [p0

i=1

{(H(i)
2

)
1,`0 , . . . , (H

(i)
2

)p,`0}
(H

3

)`,`0 =BestMultH(L, C)
end for

else
Compute H

3

= T
�Pp0

i=1

H
(i)
1

H
(i)
2

�
with iSVD or as full matrix

end if
end function

Algorithm 4 H-matrix multiplication
function H

3

=MultH(H
1

, H
2

)
if H

3

2 H(B0, k) then
for `, `0 = 1, . . . , p do

for i = 1, . . . , p do
(H

3

)`,`0+=MultH((H
1

)`,i, (H2

)i,`0 )
end for

end for
else

H
3

+=H
1

H
2

end if
end function

Remark 7 The implementation of the H-matrix multiplication in Algorithm 4 im-
plicitly employs the fast truncation as proposed in [14].

5.5 H-matrix addition

The realization of the H-matrix addition is based on the assumption that all
operands are H-matrices with respect to a common block-cluster tree, therefore
let H

1

,H
2

,H
3

2 H(B, k). Then, with respect to the truncation operators defined
in Subsection 5.2, the H-matrix addition can be implemented along the lines of
Algorithm 5.

Algorithm 5 H-matrix addition
function H

3

=AddH(H
1

, H
2

)
if H

3

2 H(B0, k) then
for `, `0 = 1, . . . , p do

(H
3

)`,`0 =AddH(H
1

, H
2

)
end for

else
H

3

= T(H
1

+H
2

)
end if

end function
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5.6 H-matrix inversion

The inversion of an H-matrix can be done approximately by a recursive block
Gaussian elimination. Algorithm 6, cf. [14], computes the approximate inverse
Ĥ�1 2 H(B, k) of H 2 H(B, k) where the original matrix H is overwritten during
the computation.

Algorithm 6 H-matrix inversion

function Ĥ�1 = InvertH(H)
if H 2 H(B0, k) then

for ` = 1, . . . , p do . Eliminate lower blocks
(Ĥ�1)`,` = InvertH(H`,`)

{(Ĥ�1)`,`0}`�1

`0=1

= {(Ĥ�1)`,`*(Ĥ�1)`,`0}`�1

`0=1

{H`,`0}p`0=`+1

= {(Ĥ�1)`,`*H`,`0}p`0=`+1

for `0 = `+ 1, . . . , p do
{(Ĥ�1)`0,i}`i=1

+={�H`0,`*(Ĥ
�1)`,i}`i=1

{H`0,i}pi=`+1

+={�H`0,`*H`,i}pi=`+1

end for
end for
for ` = p, . . . , 1 do . Eliminate upper blocks

for `0 = `� 1, . . . , p do
{(Ĥ�1)`0,i)}pi=1

+={�H`0,`*(Ĥ
�1)`,i}pi=1

end for
end for

else
Ĥ�1 = H�1

end if
end function

For the case of symmetric positive definite matrices one can also employ a
moderate modification of the block Gaussian elimination to obtain an inverse
Cholesky decomposition Ĥ�1 = L*L|.

6 Iterative solution

For two H-matrices H
1

,H
2

2 H(B, k), we have defined the addition H
1

+H
2

2
H(B, k) and the product H

1

*H
2

2 H(B, k) as well as the H-matrix inversion in the
previous section.

Now, we will explain how these operations can be used to implement an it-
erative solver for the linear system of equations (15), given that all matrices are
represented in the H-matrix format.

With an approximate inverse of the H-matrix at hand, we may consider an
iterative solver based on the iterative refinement method, cf. [9,27,36].

Let Ŝ�1 2 H(B, k) now be an approximate inverse to S. Starting with the initial

guess C(0)

⇢ = Ŝ�1Cf Ŝ
�|, the solution to (15) can then be approximated via the

iteration

⇥(i) = Cf � SC(i)
⇢ S|, C(i+1)

⇢ = C(i)
⇢ + Ŝ�1⇥(i)Ŝ�|, i = 0, 1, . . .
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This method is known as iterative refinement and has originally been introduced
in [36] for the improvement of solutions to linear systems of equations based on
the LU-factorization, see e.g. [9].

Although we use here an approximate inverse based on the block Gaussian
elimination rather than an LU-factorization, the idea stays the same: The residual
⇥(i) is computed with a higher precision than the correction Ŝ�1⇥(i)Ŝ�|. This
yields an improved approximation to the solution in each step. Note that this
algorithm also coincides with an undamped (preconditioned) Richardson iteration,
see e.g. [32].

Finally, we want to remark that we have also considered a Newton-Schulz itera-

tion, cf. [16,34], in order to compute an approximate inverse for a given H-matrix.
In this context, it has turned out that the inversion with aid of the block Gaussian
elimination is more reliable and much faster.

7 Numerical results

All computations of the following examples have been carried out on a computing
server with 2 Intel(R) Xeon(R) E5-2670 CPUs with a clock rate of 2.60GHz and
a main memory of 256GB. Each of the CPUs provides 8 physical cores, thus with
Hyper-Threading enabled, we may access 32 cores in total. In order to control the
ranks of the far-field, we have previously introduced the bound k

max

. Therefore,
to achieve a preferably data-sparse representation of the H-matrices evolving in
the computations, we set the threshold for the block size in the near-field to the
smallest power of four greater or equal to k

max

.

7.1 Tests for the H-matrix arithmetic

After having adapted the H-matrix arithmetic to the regime of parametric sur-
faces, see e.g. [18], as explained in Section 5, the question arises how the presented
algorithms perform in practical applications. To this end, we provide in this subsec-
tion sample computations for the H-matrix arithmetic on two di↵erent geometries
given as parametric surfaces. On the one hand, we consider the unit sphere S2
parameterized by six patches and, on the other hand, a pierced cube with circular
holes on each face, which we will refer to as “toy” geometry, represented by 48
patches. A visualization of both geometries can be found in Figure 1.

On each of the geometries, we assembled two H-matrices S,T 2 H(B, k
max

).
Namely, S is the discrete and compressed single-layer operator for the Laplace
equation, cf. (5), and T is the discrete and compressed integral operator with
kernel

�(x,y) = exp(�kx� yk
2

).

This kernel is also known as exponential kernel and corresponds to the Matérn
kernel with ⌫ = 1/2 and ` = 1. In order to obtain meaningful results for the
computational times, we have run the respective computations only on a single
core with the rank limited to k

max

= 16 on the sphere and to k
max

= 25 on the
“toy” geometry. In addition to the presented operators + and * for non-symmetric
matrices we also employ their symmetric versions +̂ and *̂. The latter consider
only the lower triangular part of the respective operands and compute only the
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unit sphere

J NJ time S+̂T (s) time S+T (s) time S*̂T (s) time S*T (s) time L (s) time Ŝ�1 (s)
1 24 <1 <1 <1 <1 <1 <1
2 96 <1 <1 <1 <1 <1 <1
3 384 <1 <1 <1 1.26403 1.10483 1.78293
4 1536 <1 <1 11.9248 24.0851 16.6238 27.7649
5 6144 <1 <1 93.2262 193.603 119.235 210.002
6 24576 3.03885 6.06252 521.222 1100.32 652.681 1187.8
7 98304 19.3425 38.5616 2771.35 5940.23 3397.62 6150.32
8 393216 114.049 229.159 14235.1 30512.8 17690.1 31309.4

“toy” geometry

J NJ time S+̂T (s) time S+T (s) time S*̂T (s) time S*T (s) time L (s) time Ŝ�1 (s)
1 192 <1 <1 <1 <1 <1 <1
2 768 <1 <1 <1 <1 <1 <1
3 3072 <1 <1 35.7135 72.2416 63.8146 104.71
4 12288 <1 <1 295.689 609.632 557.688 927.998
5 49152 3.64886 7.27567 1601.64 3342.97 2648.21 4642.44
6 196608 26.0626 51.8281 8024.69 16929.3 12612.5 22213.7

Table 1 Computational times for each particular H-matrix operation on the unit sphere (top)
and the “toy” geometry (bottom).
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Fig. 4 Asymptotic behavior of the computation times on the unit sphere (left) and on the
“toy” geometry (right).

lower triangular part of the result. The computational times consumed for the
operations S+T, S+̂T, S*T , S*̂T and the computation of the inverse Cholesky
decomposition L of S are tabulated in the upper part of Table 1 in case of the unit
sphere and in the lower part of Table 1 in case of the “toy” geometry. We also show
the computational times to compute the approximate inverse L*L| = Ŝ�1 which
consist of the computation time for L and the multiplication of two triangular ma-
trices. Additionally, Figure 4 shows the asymptotic behavior of the computational
times. For sake of simplicity we only show the times for the symmetric addition
and multiplication. It seems that we obtain the rate of NJ (logNJ )

2, which is in
concordance with the complexity estimates proven in [14] and all constants which
appear in these estimates set to 1.

We consider the condition  of SŜ�1 which we compute with ARPACK, cf. [25],
as measure for the quality of the approximate inverse S. Especially, we do actually
not need to compute the product SŜ�1 explicitly, but rather provide the appli-
cation of SŜ�1 to a vector. Figure 5 visualizes the error related to the condition
number, i.e. | � 1|, in dependence on the maximal rank k

max

and the particular
level for the unit sphere and the “toy” geometry. The visualization indicates, that
even on the higher levels for an appropriately chosen rank k

max

, the approximation
of the inverse yields an error which is about 10�5. Qualitatively, we observe on
each particular level the expected decay of the error when the rank increases.
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Fig. 5 Error for the condition of the product SŜ�1 on the unit sphere (left) and on the “toy”
geometry (right) for di↵erent ranks and levels.

7.2 Tests for the iterative solver

Now, with the H-matrix arithmetic at hand, we want to show how it actually
performs in solving the linear system of equations (15). At first, we provide two
simple numerical examples in order to show that our solver indeed works and
provides convergence. Afterwards, we consider a realistic example.

Wherever possible, we employ symmetric versions of the algorithms, especially
we invert symmetric positive definite H-matrices using the inverse block Cholesky
decomposition which is faster than the block Gaussian elimination.

Fig. 6 Visualization of the trace of the density (left) and the trace of the potential (right)
on the unit sphere for NJ = 393216.

On the unit sphere, we consider a tensorized spherical harmonic as right hand
side, i.e. Corf = Y 0

2

⌦ Y 0

2

with Y 0

2

(x) =
p

5/(16⇡)(3x2
3

� 1). This right hand side
is obviously a single dyad and thus of rank 1. Especially, since Y 0

2

is a harmonic
function, we can compute the related approximation error. To this end, we compute
the error in the trace of the tensor product single-layer potential, i.e. (S ⌦S)|

x=y

.
As stopping criterion for the iterative solution, we require the relative error of the
residuals’ Frobenius norm to be smaller than " = 10�5. For the levels J = 1, . . . , 6,
we have chosen k

max

= 16. For the levels J = 7, 8, we had to increase k
max

to k
max

= 25 in order to achieve convergence. The error is measured in 1793
evaluation points which are uniformly distributed within the unit sphere. The left
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plot in Figure 8 indicates that we obtain indeed the expected cubic convergence.
Furthermore, we have tabulated the related errors in the upper part of Table 2. A
visualization of the trace of the density and the trace of the potential on the unit
sphere for NJ = 393216 is found in Figure 6.

Fig. 7 Visualization of the trace of the density (left) and the trace of the potential (right)
on the “toy” geometry for NJ = 196608.

Likewise, we consider a tensor product of a harmonic polynomial, as right
hand side on the “toy” geometry, namely Corf = p⌦p with p(x) = 4x2

1

�3x2
2

�x2
3

.
The computations are performed for the levels J = 1, . . . , 6 where we have always
chosen k

max

= 25. For the “toy” geometry, the error is measured in 1208 evaluation
points which are uniformly distributed within the geometry. The plot on the right
of Figure 8 shows that we obtain cubic convergence for this example, too. The
related errors are given in the lower part of Table 2. A visualization of the trace of
the density and the trace of the potential on the “toy” geometry for NJ = 196608
is found in Figure 7.
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Fig. 8 Errors for the potentials’ traces on the sphere (left) and on the “toy” geometry (right).

Notice that, for both examples, we had to perform at most two steps of the
iterative refinement to achieve the error bound of " = 10�5.
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unit sphere
J 1 2 3 4 5 6 7 8
NJ 24 96 384 1536 6144 24576 98304 393216
l1-error 0.137424 0.0174729 0.000581418 0.000186857 2.31215 · 10�5 4.22958 · 10�6 2.23217 · 10�7 4.53721 · 10�9

“toy” geometry
J 1 2 3 4 5 6
NJ 192 768 3072 12288 49152 196608
l1-error 1.52454 0.324403 0.0450429 0.00544676 0.000769455 0.000120884

Table 2 Errors for the potentials’ traces on the sphere (top) and on the “toy” geometry
(bottom).

7.3 Stochastic application

Having shown that the numerical method works, we shall now apply the method to
an actual stochastic problem. We consider the Laplace equation on a crankshaft
as geometry which is parameterized by 142 patches, see also Figure 1. For the
discretization, we choose J = 5 which corresponds to NJ = 145408 degrees of
freedom. The maximum rank is set to k

max

= 81.

In the subsequent computations, we apply the Matérn kernels with ⌫ = 1/2,
i.e. Corf (x,y) = exp(�kx � yk

2

), and ⌫ = 3/2, i.e. Corf (x,y) = (1 +
p
3kx �

yk
2

) exp(�
p
3kx�yk

2

), as correlation kernels for the right hand side. These kernels
are not of finite rank anymore, but provide asymptotical smoothness and are thus
compressible by means of H-matrices. In particular, according to Section 4, the
related two-point correlations Cor⇢ provide regularity in terms of Hs,s

mix

(�⇥� ) with
s = 0� " if ⌫ = 1/2 and with s = 1� " if ⌫ = 3/2, respectively. As a consequence,
a sparse tensor product approximation in case of ⌫ = 1/2 would su↵er from the
lack of regularity while a sparse tensor product approximation in case of ⌫ = 3/2
would nearly converge with the optimal rate.

Fig. 9 Cross sections of the potentials’ traces on the crankshaft geometry for the Matérn
kernel with ⌫ = 1/2 (left) and ⌫ = 3/2 (right).

For sake of lower computational times, we employ in this example a parallel
version of the H-matrix multiplication and inversion on at most 32 cores. Again,
we employ symmetric versions of the algorithm wherever it is possible. This results
in a computational time of about 8000 seconds for the approximate inversion of
the discretized single-layer operator S. The related error in the condition of SŜ�1

is 4.95 · 10�6. Applying this inverse yields an error of 6.13 · 10�6 in one iteration
in the iterative refinement in case of the Matérn kernel with ⌫ = 1/2 and an error
of 5.74 · 10�6 in case of the Matérn kernel with ⌫ = 3/2. The computation times
were about 24000 seconds and 23000 seconds, respectively. A visualization of the
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Fig. 10 Trace of the density on the crankshaft geometry for the Matérn kernel with ⌫ = 3/2
and NJ = 145408.

potentials’ traces is found in Figure 9. Finally, the density’s trace in case of the
Matérn kernel with ⌫ = 3/2 is found in Figure 10.

8 Conclusion

In this article, we have proposed a new numerical framework to compute the solu-
tion’s two-point correlation of a linear partial di↵erential equation with Dirichlet
boundary data. Instead of considering a sparse tensor product approximation,
which would su↵er from the lack of smoothness, we employ a full tensor product
discretization that is shown to be feasible by means of H-matrices. Our theoretical
considerations imply that this approach provides, in the case of rough correlations,
twice of the rate of convergence compared to the sparse tensor product approach.
Nonetheless, the H-matrix approximation is still scaling log-linear in the number
of boundary elements. Using the H-matrix framework for parametric surfaces, we
end up with special structured H-matrices. The combination of this structure with
a sparse eigensolver results in a very e�cient H-matrix arithmetic. The numeri-
cal examples validate the predicted cost complexity for the H-matrix arithmetic.
Furthermore, the numerical examples confirm that the presented iterative solver is
well suited to numerically solve the correlation equation. Finally, results are given
for roughly correlated stochastic problems with kernels from the Matérn class on
a nontrivial geometry.
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