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Introduction
Currently, there is an increased interest in 
estimating health effects with individual 
estimates of exposure, taking into account 
intra-urban differences in air pollution levels 
(Brauer et al. 2008; Gehring et al. 2013; 
Mölter et al. 2013), because of potential 
underestimation of health effects based on 
exposure assignment at community level 
(Jerrett et al. 2005b; Miller et al. 2007).

Land use regression (LUR) modeling 
and dispersion modeling have been exten-
sively applied to characterize small-scale 
spatial variability of air pollution (Jerrett 
et al. 2005a). These approaches are based on 
distinctive methodological principles. LUR 
modeling combines data from air pollution 
measurements with data from geographic 
information systems (GIS) and stochastic 
modeling that exploits land use, geographic, 
and traffic characteristics to explain spatial 
concentration variations at measured sites. 
Dispersion modeling relies on deterministic 
(e.g., Gaussian plume) equations and uses 
data on emission, meteorological conditions, 

and topographical data to simulate the 
physicochemical processes of transport and 
atmospheric chemistry when estimating 
outdoor air pollution concentrations (Jerrett 
et al. 2005a). At present, comparisons of the 
prediction ability of LUR and dispersion 
models at cohort addresses are scarce (Beelen 
et al. 2010; Briggs et al. 2000; Cyrys et al. 
2005; Dijkema et al. 2011; Gulliver et al. 
2011; Marshall et al. 2008).

Recent studies have raised the importance 
of comparing alternative exposure metrics 
and relevant health effects in epidemiological 
studies (Baxter et al. 2013; Özkaynak et al. 
2013). The impact of dispersion and LUR 
modeling on health effect estimates has been 
investigated only in a California study and a 
French study on the effects of air pollution on 
pregnancy outcomes. These studies reported 
comparable results for the two modeling 
approaches (Sellier et al. 2014; Wu et al. 
2011). However, only models for nitrogen 
dioxide (NO2) and particulate matter with 
diameter ≤ 10 μm (PM10) were compared in 
these studies.

The aims of this study were a) to 
evaluate the agreement between long-term 
air pollution exposure estimates for NO2, 
particulate matter with diameter ≤ 2.5 μm 
(PM2.5), PM2.5 soot, and PM10 based on 
dispersion modeling and LUR modeling; and 
b) to evaluate whether associations between 
long-term air pollution exposures and lung 
function in children differ depending on the 
exposure modeling approach used.

Methods
Study population. We included participants 
from the Dutch PIAMA (Prevention and 
Incidence of Asthma and Mite Allergy) birth 
cohort study. For the study, pregnant women 
were recruited in 1996–1997 during their 
second trimester of pregnancy from a series 
of areas in the north, west, and center of the 
Netherlands. Nonallergic pregnant women 
were invited to participate in a “natural 
history” study arm. Pregnant women identi-
fied as allergic through a validated screening 
questionnaire were allocated to an interven-
tion arm with a random subset allocated to 
the natural history arm. The study started with 
3,963 newborns. Ethics approval to perform 
the study was obtained from the local autho-
rized institutional review boards, and written 
informed consent was obtained from the 
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Background: There is limited knowledge about the extent to which estimates of air pollution 
effects on health are affected by the choice for a specific exposure model.

oBjectives: We aimed to evaluate the correlation between long-term air pollution exposure estimates 
using two commonly used exposure modeling techniques [dispersion and land use regression (LUR) 
models] and, in addition, to compare the estimates of the association between long-term exposure to 
air pollution and lung function in children using these exposure modeling techniques.

Methods: We used data of 1,058 participants of a Dutch birth cohort study with measured forced 
expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and peak expiratory flow (PEF) 
measurements at 8 years of age. For each child, annual average outdoor air pollution exposure 
[nitrogen dioxide (NO2), mass concentration of particulate matter with diameters ≤ 2.5 and 
≤ 10 μm (PM2.5, PM10), and PM2.5 soot] was estimated for the current addresses of the partici-
pants by a dispersion and a LUR model. Associations between exposures to air pollution and lung 
function parameters were estimated using linear regression analysis with confounder adjustment.

results: Correlations between LUR- and dispersion-modeled pollution concentrations were 
high for NO2, PM2.5, and PM2.5 soot (R = 0.86–0.90) but low for PM10 (R = 0.57). Associations 
with lung function were similar for air pollutant exposures estimated using LUR and dispersion 
modeling, except for associations of PM2.5 with FEV1 and FVC, which were stronger but less 
precise for exposures based on LUR compared with dispersion model.

conclusions: Predictions from LUR and dispersion models correlated very well for PM2.5, NO2, 
and PM2.5 soot but not for PM10. Health effect estimates did not depend on the type of model used 
to estimate exposure in a population of Dutch children.
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parents or legal guardians of all participants. 
More information about the study design 
and population has been reported elsewhere 
(Brunekreef et al. 2002; Wijga et al. 2014). 
The present analysis included participants 
from this cohort with successful lung function 
measurements at 8 years of age; complete 
information on sex, age, height, and weight at 
the time of lung function measurement; and 
information on exposure to air pollution at the 
time of lung function measurement.

Lung function measurements. At age 
8 years, all children of allergic mothers and 
a random sample of children of non-allergic 
mothers (n = 1,552) were invited for a medical 
examination including pulmonary function 
testing; of these, 1,058 children responded 
with a visit to one of the study hospitals. 
Children in the intervention and natural 
history groups were similar at age 8 years, 
and the intervention was shown not to have 
an effect on clinical outcomes (Gehring et al. 
2012). In earlier work, we showed that 
combining these two groups did not affect 
associations between air pollution and lung 
function parameters (Gehring et al. 2013). A 
Jaeger pneumotachograph (Viasys Healthcare) 
was used for pulmonary function testing. 
We investigated the following lung function 
parameters: force expiratory volume in 1 sec 
(FEV1), forced vital capacity (FVC), and peak 
expiratory flow (PEF). Body weight and height 
were measured during the medical examina-
tion by trained research staff using calibrated 
equipment (Gehring et al. 2013).

Air pollution exposure assessment. We 
used a local dispersion and an LUR model to 
estimate annual average air pollution concen-
trations of NO2, PM2.5, PM2.5 soot, and PM10 
at the participants’ home addresses at birth and 
at the time of the lung function tests.
• LUR models were developed using measure-

ment data from the ESCAPE (European 
Study of Cohorts for Air Pollution Effects) 
study collected during 2008–2011. In brief, 
three 2-week measurements within 1 year 
were conducted at 40 (PM) and 80 (NO2) 
locations, respectively, throughout the 
Netherlands. The measurements were tempo-
rally adjusted using data from a continuous 
regional reference site to generate annual 
average concentrations for LUR modeling. 
(For model structures and performances, see 
Supplemental Material, Table S1.) Details 
of the measurements and modeling efforts 
have been published elsewhere (Beelen 
et al. 2013; Cyrys et al. 2012; Eeftens et al. 
2012a, 2012b). Detailed evaluations of 
model performances have been presented in a 
separate publication (Wang et al. 2013).

• The Dutch dispersion model is a combina-
tion of a Gaussian plume model for the local 
scale and a Lagrangian trajectory model for 
long-distance transport (van Jaarsveld 2004), 

which produces estimates of background 
concentrations of NO2, PM2.5, PM2.5 
soot, and PM10 with a spatial resolution 
of 1 × 1 km. Annual average air pollution 
levels at the current address were based on 
updated emission inventory data, actual 
meteorological parameters, and dispersion 
modeling (Velders and Diederen 2009). 
Background concentrations of PM2.5 soot 
were derived from fractions of primary 
PM2.5 in combustion emissions depending 
on the type of fuel (biomass, coal, oil, 
diesel, and petrol) as developed in the 
EUCAARI (European Integrated project on 
Aerosol, Cloud, Climate, and Air Quality 
Interactions) European research project 
(http://www.atm.helsinki.fi/eucaari/). Road 
traffic emissions were estimated by two 
standard Dutch models: “SRM1,” a street 
canyon model for inner urban roads, and 
“SRM2,” a line-source model for motorways. 
In SRM1, a source–receptor relationship has 
been specified as a function of the distance 
to the street axis for five different road types. 
SRM2 is based on a Gaussian plume model 
which takes into account vehicle-induced 
turbulence, the upwind roughness of the 
terrain, the presence of noise screens near 
the motorway, and atmospheric stability. 
Emission factors for road traffic of regulatory 
components (NOx/NO2, PM2.5, and PM10) 
are updated annually in the Netherlands, 
whereas for PM2.5 soot emission factors, frac-
tions of primary PM2.5 exhaust emissions 
have been used for diesel- and petrol-fueled 
vehicles. More details about the applied 
dispersion models can be found elsewhere 
(Keuken et al. 2013; Wesseling 2003).

Statistical analysis. Pearson correlation 
coefficients were calculated to assess the agree-
ment in estimated air pollution levels between 
different exposure modeling approaches and 
the agreement between the measured and 
dispersion-modeled predicted concentrations 
at the ESCAPE sites. Paired t-test was applied 
to investigate the differences between the 
means of the distributions estimated by the 
two different models.

We used linear regression analyses with 
natural log (ln)–transformed lung function 
parameters as the dependent variables to 
estimate associations between continuous lung 
function parameters and air pollution levels at 
the birth address and at the home address at 
the time of the lung function measurement, as 
described elsewhere (Gehring et al. 2013). For 
each pollutant we specified models adjusted for 
sex, ln(age), ln(weight), and ln(height) only; 
and fully adjusted models that also included the 
following individual-level variables: ethnicity; 
parental allergies; parental education; breast-
feeding; maternal smoking during pregnancy; 
smoking, mold/dampness, and furry pets in the 
child’s home; and recent respiratory infections. 

We used fully adjusted models to compare 
associations with exposures estimated using the 
two different approaches. We also estimated 
associations using two-pollutant models that 
included both NO2 and PM2.5 estimated using 
either the dispersion model or the LUR model, 
to determine whether mutually adjusted effect 
estimates differed between the two exposure 
assessment methods. We estimated associa-
tions between air pollutants and lung function 
using fixed increments as used previously in the 
ESCAPE study (Gehring et al. 2013). These 
increments were 10 μg/m3 for NO2 and PM10, 
1 × 10–5/m for PM2.5 soot, and 5 μg/m3 for 
PM2.5. Statistical significance was defined by a 
two-sided α-level ≤ 5%.

Results
Characteristics of the study population. The 
studied population included 1,058 participants 
with an average age of 8 years and with 50.4% 
female (Table 1). Mean (± SD) FEV1, FVC, 
and PEF were 1.80 ± 0.25 L, 2.01 ± 0.30 L, 
and 3.79 ± 0.63 L/sec, respectively.

Air pollution exposure. Table 2 presents 
the distributions of estimated annual average 
concentrations of air pollutants by different 
exposure models for the area of the PIAMA 
cohort. Although t-tests indicated significant 
differences between mean estimates based 
on dispersion and LUR models for all of the 
pollutants (p < 0.01), mean values were similar. 
However, standard deviations (SDs) were larger 
for dispersion model estimates than estimates 
from the LUR models. PM2.5 soot concentra-
tions were not directly comparable between 
LUR and dispersion models because each used 
different measurement techniques, with LUR 
estimates based on optical analysis reported 
as 10–5/m, and dispersion model estimates 
based on thermal analysis of elemental carbon 
reported as micrograms per cubic meter. 

Table 1. Description of the study population and 
lung function measurements.

Variable n
Percent or 
mean ± SD

Female sex 1,058 50.4
Respiratory infections 1,054 24.2
Allergic mother 1,058 66.1
Allergic father 1,055 33.3
Dutch ethnicity 1,044 95.7
High maternal SES 1,055 38.6
High paternal SES 1,043 42.9
Breastfeeding 1,058 52.6
Mother smoked during pregnancy 1,044 15.4
Smoking at child’s homea 990 15.7
Mold/dampness in child’s homea 985 28.8
Furry pets in homea 970 49.9
Height (cm) 1,058 132.90 ± 5.60
Weight (kg) 1,058 28.90 ± 4.80
Age (years) 1,058 8.10 ± 0.30
FEV1 (L) 1,058 1.80 ± 0.25
FVC (L) 1,058 2.01 ± 0.30
PEF (L/sec) 1,058 3.79 ± 0.63
aAt the age of the lung function measurement.
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Performance evaluations of dispersion 
models with the measurements at the ESCAPE 
sites showed that the Pearson correlation coef-
ficient was highest for NO2 (R = 0.85) and 
lowest for PM2.5 (R = 0.54) (Figure 1).

Figure 2 shows the scatter plots of the 
estimates between the dispersion and LUR 
models at the cohort addresses. Overall, the 
LUR model predictions correlated well with 
the estimates of the dispersion models for all 
the pollutants, except for PM10 (R = 0.57).

Table 3 shows strongest correlations of 
concentrations between any pair of pollut-
ants by the dispersion model (R = 0.90–0.99), 
followed by the measurements (R = 0.75–0.93) 

and the LUR model (R = 0.63–0.91). The 
values in the correlation matrix of air pollution 
predicted by the LUR model (LUR panel in 
Table 3) were closest to the values in the corre-
lation matrix between measured air pollutants 
(measured panel in Table 3).

Associations between lung function and 
exposure estimated by different approaches. 
Overall, we found consistent negative asso-
ciations between the lung function parameters 
FEV1 and FVC and long-term exposure to 
air pollution estimated by both dispersion and 
LUR models at the current home addresses 
(Figure 3). The magnitudes of the effect esti-
mates were similar for NO2, PM2.5 soot, and 

PM10, but negative associations with PM2.5 
were stronger for exposure estimates based 
on LUR compared with estimates based on 
dispersion modeling. The 95% confidence 
intervals (CIs) were similar for NO2 and PM2.5 
soot but larger for PM2.5 and PM10 estimates 
by LUR models than for PM2.5 and PM10 
estimates by dispersion models. No significant 
associations were found between air pollution 
estimated by any of the exposure approaches 
and PEF. Effect estimates for concentrations 
estimated at the birth addresses were somewhat 
weaker than for the current addresses (results 
not shown). Associations with FVC remained 
significant based on two-pollutant models for 
NO2 and PM2.5 when exposures were esti-
mated using the localized LUR models (–2.4% 
difference; 95% CI: –4.1, –0.8 and –9.5% 
difference; 95% CI: –18.2, –0.9 for NO2 and 
PM2.5, respectively) but were no longer signifi-
cant when exposures were estimated using the 
dispersion models (–2.0% difference; 95% CI: 
–4.2, 0.3 and –3.0% difference; 95% CI: 
–7.8, 2.0, respectively).

Discussion
Model predictions of LUR and dispersion for 
PM2.5, NO2, and PM2.5 soot correlated very 
well. For PM10 correlations between LUR 
and dispersion models were more moderate. 
For PM2.5 the variability in concentrations 
predicted by the LUR model was smaller than 

Table 2. Estimated annual average air pollution levels (n = 1,058).

Models Mean ± SD Minimum P25 Median P75 Maximum
NO2 (μg/m3)

Dispersion 23.0 ± 8.2 9.8 14.9 23.7 28.1 44.8
LUR 22.1 ± 6.3 9.4 17.5 22.4 26.2 52.1

PM2.5 (μg/m3)
Dispersion 15.9 ± 1.9 12.6 13.6 16.8 17.3 20.0
LUR 16.3 ± 0.6 14.9 15.6 16.5 16.7 19.3

PM2.5 soota
Dispersion 0.7 ± 0.2 0.3 0.4 0.7 0.8 1.6
LUR 1.2 ± 0.2 0.9 1.0 1.2 1.3 2.1

PM10 (μg/m3)
Dispersion 23.8 ± 2.3 19.7 21.1 24.9 25.5 28.6
LUR 24.8 ± 1.0 23.7 24.0 24.5 25.1 29.8

P, percentile. 
aPM2.5 soot was estimated by dispersion model using thermal detection method (μg/m3) and by LUR models using optical 
method (10–5/m).

Figure 1. Pearson correlation coefficients of dispersion-modeled NO2 (n = 80), PM2.5, PM2.5 soot, PM10 (n = 40) with the same pollutants measured at the ESCAPE sites.
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Figure 2. Pearson correlation coefficients of air pollution estimates between localized dispersion and LUR models at the PIAMA addresses (n = 1,058). 
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for the dispersion model, whereas for NO2 and 
PM2.5 soot, variability was similar between 
the two models. LUR and dispersion predic-
tions for PM2.5 soot are expressed in different 
units (PM2.5 absorbance in 10–5/m in the LUR 
model and micrograms per cubic meter in the 
dispersion model). If the average conversion 
factor in a recent review (Janssen et al. 2011) 
is applied (1 unit absorbance = 1.1 μg/m3 
elemental carbon), the dispersion and LUR 
models predict slightly different absolute levels. 
The better agreement for NO2 compared 
with PM mass agrees with a recent compar-
ison between dispersion and LUR models 
(de Hoogh et al. 2014). The explanation 
offered by the authors was that both methods 
perform better for traffic-related pollutants 
than for other pollutants, when appropriate 
input data are available. This interpretation 
is supported by our results for PM2.5 soot, 
which was not evaluated in the previous paper 
(de Hoogh et al. 2014) and is strongly affected 
by traffic emission in the Netherlands.

Previous studies have looked at correla-
tions between LUR and dispersion modeled 
concentrations of NO2 (Beelen et al. 2010; 
Cyrys et al. 2005; Marshall et al. 2008). Only 
the study by Cyrys et al. (2005) documented 
a reasonably high Pearson correlation coef-
ficient of 0.83 between the two models. The 
Pearson correlation coefficient of 0.90 that 
we found compares favorably with this study 
as well as with a recent multicenter study 
published by de Hoogh et al. (2014), who 
found a median Pearson correlation coeffi-
cient of 0.75 in 13 different European study 
areas. The Pearson correlation coefficient of 
0.86 that we found for PM2.5 was higher than 
the median Pearson correlation coefficient 

of 0.28 in de Hoogh et al. (2014), and our 
correlation for PM10 of 0.57 was also higher 
than the correlation of 0.39 in that paper.

Comparison of the effect estimates of the 
association between long-term exposure to air 
pollution and lung function in children using 
LUR and dispersion models. This study shows 
that different exposure approaches revealed 
generally similar estimates of the association 
between long-term exposure to NO2 and 
PM2.5 soot and lung function in a Dutch birth 
cohort. Effect estimates for PM2.5 and PM10 
were larger for the LUR estimates than for the 
dispersion estimates, but with wider confidence 
intervals. One explanation could be that the 
PM2.5 and PM10 dispersion models did not 
predict the measured spatial variation of PM2.5 
and PM10 well (Figure 1). However, effect esti-
mates were expressed over fixed concentration 
ranges. The dispersion models predicted wider 
concentration ranges for PM2.5 and PM10 
than did the LUR models, and as a conse-
quence the 95% CIs of the LUR-modeled 
effect estimates were larger than those of the 
dispersion-modeled effect estimates.

A strength of our study relates to the 
comparisons for PM2.5 and PM2.5 soot in 
addition to NO2 and PM10. Previous studies 
based on dispersion models focused primarily 

on NO2 and PM10 health effects (Downs 
et al. 2007; Jacquemin et al. 2013; Schultz 
et al. 2012; Sellier et al. 2014), with only one 
exception for PM2.5 in Oslo (Oftedal et al. 
2008). Moreover, our study employed well-
validated Dutch dispersion and LUR models 
with fine spatial resolution and reliable 
predictions of air pollution levels.

We estimated effects of a similar magni-
tude on lung function for all the strongly 
correlated air pollutants assessed by the disper-
sion models (Pearson correlation coefficients: 
0.92–0.99; Table 3), probably because the 
sources are assumed to be largely the same: 
The dispersion model used presumed fractions 
of PM emission factors derived from exhaust 
emissions and applied a scaling approach to 
estimate the PM metrics. In contrast, correla-
tions between the air pollutants were weaker 
when estimated using the localized LUR 
models, and very similar to corresponding 
correlations between measured air pollutant 
concentrations, because the LUR input data 
came from real measurements. Predictor vari-
ables in the LUR models frequently included 
population (or residence) density, a surrogate 
for sum of household activities (e.g., cooking 
and heating emissions) that were absent in 
the emission inventory for the dispersion 

Table  3.  Pearson correlation coefficients 
between measured air pollution concentrations 
at the ESCAPE monitoring sites (NO2: n =  40; 
PM: n =  80) or modeled pollutants at PIAMA 
addresses (n = 1,058), respectively.

Models/
pollutants NO2 PM2.5 PM2.5 soot PM10

Measureda
NO2 1
PM2.5 0.75 1
PM2.5 sootb 0.93 0.84 1
PM10 0.86 0.85 0.86 1

Dispersion
NO2 1
PM2.5 0.92 1
PM2.5 sootb 0.95 0.93 1
PM10 0.90 0.99 0.92 1

LUR 
NO2 1
PM2.5 0.75 1
PM2.5 sootb 0.91 0.86 1
PM10 0.78 0.63 0.88 1

aMeasured concentrations at the ESCAPE sites for LUR 
model development in the Netherlands. bPM2.5 soot 
estimated by dispersion model using thermal detection 
method (μg/m3) and by LUR models using optical method 
(10–5/m).

Figure 3. Adjusted associations of annual levels of air pollutants estimated by dispersion and LUR 
modeling approaches with FEV1, FVC, and PEF level (n = 1,058) at the PIAMA current addresses. The incre-
ment of each pollutant is calculated by 10 μg/m3 for NO2 and PM10, 1 × 10–5/m for PM2.5 soot, and 5 μg/m3 
for PM2.5. 
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modeling. Two-pollutant models with NO2 
and PM2.5 indicated more robust and inde-
pendent effects of individual pollutants on 
FVC using the exposure estimates from the 
LUR models than from the dispersion models.

A limitation of this study is that we do 
not know how generalizable the findings of 
our analysis are to other cities and areas. We 
acknowledge that both dispersion and LUR 
models might produce exposure misclassifica-
tions, and the degree of the impact depends 
on a variety of factors differentiating across 
geographical locations. For dispersion models, 
potential measurement errors may be affected 
by local emission inventory, the method of air 
pollution simulation, and the spatial resolu-
tion of grid cells. For LUR models, validity 
depends on the number of sampling sites, the 
quality of GIS variables, and the modeling 
procedures (Basagaña et al. 2012).

In summary, LUR and dispersion model 
predictions for PM2.5, NO2, and PM2.5 soot 
were very well correlated (Pearson correla-
tions, 0.86–0.90). For PM10, correlations 
between LUR and dispersion models were 
more moderate. Health effect estimates did 
not depend on the type of model used to 
estimate exposure in the study population of 
Dutch children.

RefeRences

Basagaña X, Rivera M, Aguilera I, Agis D, Bouso L, 
Elosua  R, et  al. 2012. Effect of the number of 
measurement sites on land use regression models 
in estimating local air pollution. Atmos Environ 
54:634–642.

Baxter LK, Dionisio KL, Burke J, Ebelt Sarnat S, 
Sarnat JA, Hodas N, et al. 2013. Exposure predic-
tion approaches used in air pollution epidemiology 
studies: key findings and future recommendations. 
J Expo Sci Environ Epidemiol 23(6):654–659.

Beelen R,  Hoek G,  Vienneau D,  Eeftens M, 
Dimakopoulou K, Pedeli X, et al. 2013. Development 
of NO2 and NOx land use regression models for 
estimating air pollution exposure in 36 study areas 
in Europe—the ESCAPE project. Atmos Environ 
72:10–23.

Beelen R, Voogt M, Duyzer J, Zandveld P, Hoek G. 
2010. Comparison of the performances of land use 
regression modelling and dispersion modelling in 
estimating small-scale variations in long-term air 
pollution concentrations in a Dutch urban area. 
Atmos Environ 44:4614–4621.

Brauer M, Lencar C, Tamburic L, Koehoorn M, 
Demers P, Karr C. 2008. A cohort study of traffic-
related air pollution impacts on birth outcomes. 
Environ Health Perspect 116:680–686; doi:10.1289/
ehp.10952.

Briggs DJ, de Hoogh C, Guiliver J, Wills J, Elliott P, 
Kingham S, et al. 2000. A regression-based method 
for mapping traffic-related air pollution: applica-
tion and testing in four contrasting urban environ-
ments. Sci Total Environ 253:151–167.

Brunekreef B, Smit J, de Jongste J, Neijens  H, 
Gerritsen J, Postma D, et al. 2002. The Prevention 
and Incidence of Asthma and Mite Allergy (PIAMA) 
birth cohort study: design and first results. Pediatr 
Allergy Immunol 13(suppl 15):55–60.

Cyrys J, Eeftens M, Heinrich J, Ampe C, Armengaud A, 
Beelen R, et al. 2012. Variation of NO2 and NOx 
concentrations between and within 36 European 
study areas: results from the ESCAPE study. 
Atmos Environ 62:374–390.

Cyrys J, Hochadel M, Gehring U, Hoek G, Diegmann V, 
Brunekreef  B, et  al. 2005. GIS-based estima-
tion of exposure to particulate matter and NO2 
in an urban area: stochastic versus dispersion 
modeling. Environ Health Perspect 113:987–992.

de  Hoogh K, Korek M, Vienneau D, Keuken M, 
Kukkonen J, Nieuwenhuijsen M, et  al. 2014. 
Comparing land use regression and dispersion 
modelling to assess residential exposure to ambient 
air pollution for epidemiological studies. Environ Int 
73:382–392.

Dijkema MB, Gehring U, van Strien RT, van der Zee SC, 
Fischer P, Hoek G, et al. 2011. A comparison of 
different approaches to estimate small-scale 
spatial variation in outdoor NO2 concentrations. 
Environ Health Perspect 119:670–675; doi:10.1289/
ehp.0901818.

Downs SH, Schindler C, Liu LJ, Keidel D, Bayer-
Oglesby  L, Brutsche MH, et  al. 2007. Reduced 
exposure to PM10 and attenuated age-related 
decline in lung function. N Engl J Med 357:2338–2347.

Eeftens M, Beelen R, de  Hoogh K, Bellander T, 
Cesaroni G, Cirach M, et al. 2012a. Development of 
land use regression models for PM2.5, PM2.5 absor-
bance, PM10 and PMcoarse in 20 European study 
areas; results of the ESCAPE project. Environ Sci 
Technol 46:11195–11205.

Eeftens M, Tsai MY, Ampe C, Anwander B, Beelen R, 
Cesaroni G, et al. 2012b. Spatial variation of PM2.5, 
PM10, PM2.5 absorbance and PMcoarse concen-
trations between and within 20 European study 
areas and the relationship with NO2—results of 
the ESCAPE project. Atmos Environ 62:303–317.

Gehring U, de Jongste JC, Kerkhof M, Oldewening M, 
Postma D, van Strien RT, et al. 2012. The 8-year 
follow-up of the PIAMA intervention study assessing 
the effect of mite-impermeable mattress covers. 
Allergy 67(2):248–56.

Gehring U, Gruzieva O, Agius RM, Beelen R, Custovic A, 
Cyrys J, et al. 2013. Air pollution exposure and lung 
function in children: the ESCAPE project. Environ 
Health Perspect 121:1357–1364; doi:10.1289/
ehp.1306770.

Gulliver J, de Hoogh K, Fecht D, Vienneau D, Briggs D. 
2011. Comparative assessment of GIS-based 
methods and metrics for estimating long-term expo-
sures to air pollution. Atmos Environ 45:7072–7080.

Jacquemin B, Lepeule J, Boudier A, Arnould C, 
Benmerad M, Chappaz C, et al. 2013. Impact of 
geocoding methods on associations between 
long-term exposure to urban air pollution and lung 
function. Environ Health Perspect 121:1054–1060; 
doi:10.1289/ehp.1206016.

Janssen NAH, Hoek G, Simic-Lawson M, Fischer P, 
van Bree L, ten Brink H, et al. 2011. Black carbon 
as an additional indicator of the adverse health 
effects of airborne particles compared with PM10 
and PM2.5. Environ Health Perspect 119:1691–1699; 
doi:10.1289/ehp.1003369.

Jerrett M, Arain A, Kanaroglou P, Beckerman B, 
Potoglou D, Sahsuvaroglu T, et al. 2005a. A review 
and evaluation of intraurban air pollution exposure 
models. J Expo Anal Environ Epidemiol 15:185–204.

Jerrett M, Burnett RT, Ma R, Pope CA III, Krewski D, 
Newbold KB, et al. 2005b. Spatial analysis of air 
pollution and mortality in Los Angeles. Epidemiology 
16:727–736.

Keuken MP, Zandveld P, Jonkers S, Moerman M, 
Jedynska AD, Verbeek R, et al. 2013. Modelling 
elemental carbon at regional, urban and traffic loca-
tions in the Netherlands. Atmos Environ 73:73–80.

Marshall JD, Nethery E, Brauer M. 2008. Within-urban 
variability in ambient air pollution: comparison of 
estimation methods. Atmos Environ 42:1359–1369.

Miller KA, Siscovick DS, Sheppard L, Shepherd  K, 
Sullivan  JH, Anderson GL, et  al. 2007. Long-
term exposure to air pollution and incidence of 
cardiovascular events in women. N Engl J Med 
356:447–458.

Mölter A, Agius RM, de Vocht F, Lindley S, Gerrard W, 
Lowe L, et al. 2013. Long-term exposure to PM10 and 
NO2 in association with lung volume and airway 
resistance in the MAAS birth cohort. Environ Health 
Perspect 121:1232–1238; doi:10.1289/ehp.1205961.

Oftedal B, Brunekreef B, Nystad W, Madsen C, 
Walker SE, Nafstad P. 2008. Residential outdoor 
air pollution and lung function in schoolchildren. 
Epidemiology 19:129–137.

Özkaynak H, Baxter LK, Dionisio KL, Burke J. 2013. Air 
pollution exposure prediction approaches used 
in air pollution epidemiology studies. J Expo Sci 
Environ Epidemiol 23:566–572.

Schultz ES, Gruzieva O, Bellander T, Bottai M, Hallberg J, 
Kull I, et al. 2012. Traffic-related air pollution and lung 
function in children at 8 years of age: a birth cohort 
study. Am J Respir Crit Care Med 186:1286–1291.

Sellier Y, Galineau J, Hulin A, Caini F, Marquis N, Navel V, 
et al. 2014. Health effects of ambient air pollution: do 
different methods for estimating exposure lead to 
different results? Environ Int 66:165–173.

van Jaarsveld JA. 2004. The Operational Priority 
Substances Model. Report 500045001/2004, 
Bilthoven, the Netherlands:National Institute for 
Public Health and the Environment (RIVM).

Velders GJM, Diederen HSMA. 2009. Likelihood 
of meeting the EU limit values for NO2 and PM10 
concentrations in the Netherlands. Atmos Environ 
43:3060–3069.

Wang M, Beelen R, Basagana X, Becker T, Cesaroni G, 
de Hoogh K, et al. 2013. Evaluation of land use 
regression models for NO2 and particulate matter 
in 20 European study areas: the ESCAPE project. 
Environ Sci Technol 47:4357–4364.

Wesseling JP. 2003. An intercomparison of the TNO 
traffic models, field data and wind tunnel measure-
ments. TNO Report 2003/207. In: Proceedings of the 
PHYSMOD2003 Conference: International Workshop 
on Physical Modelling of Flow and Dispersion 
Phenomena, 3–5 September 2003, Prato, Italy. 

Wijga AH, Kerkhof M, Gehring U, de Jongste JC, 
Postma DS, Aalberse RC, et al. 2014. Cohort profile: 
the Prevention and Incidence of Asthma and 
Mite Allergy (PIAMA) birth cohort. Int J Epidemiol 
43:527–535.

Wu J, Wilhelm M, Chung J, Ritz B. 2011. Comparing 
exposure assessment methods for traffic-related 
air pollution in an adverse pregnancy outcome 
study. Environ Res 111:685–692.


