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Introduction
Studies have shown associations between 
long-term exposure to particulate matter air 
pollution and mortality, with exposure char-
acterized as the mass concentration of particles 
≤ 10 μm (PM10) or ≤ 2.5 μm (PM2.5) (Brook 
et al. 2010; Brunekreef and Holgate 2002). 
Although these studies have identified associa-
tions between exposure to particulate matter 
mass and mortality, there is still uncertainty 
as to which particle components are the most 
harmful. In addition, particulate matter effect 
estimates for long-term studies on mortality 
have differed among studies, and an expla-
nation for this might be differences in the 
chemical composition of particulate matter 
(Hoek et al. 2013).

Particulate matter is a heterogeneous 
mixture varying spatially and temporally in 
chemical composition related to the sources 
from which it originates (Kelly and Fussell 
2012; Stanek et al. 2011). Components for 
which associations with a range of health end 
points have been reported in epidemiological 
and/or toxicological studies include (tran-
sition) metals, elemental carbon, inorganic 
secondary aerosols (sulfate, nitrate), and 
organic components, but the evidence is not 
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Methods: Mortality and confounder data from 19 European cohort studies were used. Residential exposure 
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vanadium, and zinc within PM size fractions ≤ 2.5 μm (PM2.5) and ≤ 10 μm (PM10) were estimated using 
land-use regression models. Cohort-specific statistical analyses of the associations between mortality and air 
pollution were conducted using Cox proportional hazards models using a common protocol followed by 
meta-analysis.

results: The total study population consisted of 291,816 participants, of whom 25,466 died from a natural 
cause during follow-up (average time of follow-up, 14.3 years). Hazard ratios were positive for almost all 
elements and statistically significant for PM2.5 sulfur (1.14; 95% CI: 1.06, 1.23 per 200 ng/m3). In a two-
pollutant model, the association with PM2.5 sulfur was robust to adjustment for PM2.5 mass, whereas the 
association with PM2.5 mass was reduced.

conclusions: Long-term exposure to PM2.5 sulfur was associated with natural-cause mortality. This association 
was robust to adjustment for other pollutants and PM2.5.
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consistent (Kelly and Fussell 2012; Stanek 
et al. 2011).

Most studies that have assessed mortality 
in association with exposure to elemental 
components have been short-term exposure 
studies, and their results have varied consid-
erably (Kelly and Fussell 2012; Stanek et al. 
2011). Few studies have investigated mortality 
in relation to long-term exposure to particle 
components. A lack of spatially resolved 

elemental composition measurement data and 
exposure models for elemental composition 
partly explains this (De Hoogh et al. 2013). 
The U.S. Six Cities and American Cancer 
Society cohort studies have suggested an 
association between long-term exposure to 
sulfate and mortality (Dockery et al. 1993; 
Health Effects Institute 2000; Pope et al. 
1995, 2002), but no other particle compo-
sition parameters have been evaluated in 
these studies. A cohort study, the California 
Teachers Study, found no statistically signifi-
cant associations between all-cause mortality 
and long-term exposures to PM2.5 and several 
of its constituents, including elemental 
carbon, organic carbon (OC), sulfates, 
nitrates, iron, potassium, silicon, and zinc, 
although statistically significant associations 
were reported for more specific outcomes, 
especially ischemic heart disease mortality 
(Ostro et al. 2011).

In the framework of the multicenter 
ESCAPE (European Study of Cohorts for 
Air Pollution Effects) and TRANSPHORM 
(Transport related Air Pollution and Health 
impacts–Integrated Methodologies for 
Assessing Particulate Matter) projects, we 
added standardized exposure assessment for air 
pollution to mortality data from 19 ongoing 
cohort studies across Europe. Associations 
of particle mass (PM2.5, PM10, PMcoarse, 
and PM2.5 absorbance) and nitrogen oxides 
(NO2 and NOx) with natural-cause mortality 
in the same cohorts have been reported 
previously (Beelen et al. 2014). We found a 
statistically significant elevated hazard ratio 
for PM2.5 of 1.07 [95% confidence interval 
(CI): 1.02, 1.13] per 5 μg/m3. In this paper 
we report associations with particle elemental 
composition in 19 European cohorts to assess 
whether specific components are associated 
with natural-cause mortality. A second aim 
was to assess whether the previously reported 
association with PM2.5 mass was explained 
by specific elements. Associations of particle 
composition and cardiovascular mortality have 
been published separately (Wang et al. 2014).

Methods
As described earlier, the association between 
natural-cause mortality and particle compo-
nents was analyzed in each cohort separately, 
following the analysis protocol of the ESCAPE 
study (Beelen et al. 2014). A common STATA 
script (StataCorp, College Station, TX, USA) 
was used which was explained in a training 
workshop for all local analysts. Cohort-specific 
results were sent to the coordinating institute 
[the Institute for Risk Assessment Sciences 
(IRAS), Utrecht University] for central evalu-
ation. Cohort-specific effect estimates were 
combined by random-effects meta-analysis. 
Pooling of the cohort data was not possible due 
to data transfer and privacy issues.

Study populations. Nineteen cohorts 
from 12 countries across Europe were selected 
(Table 1 and Figure 1; see also Supplemental 
Material “Description of each cohort and 
study area”). The study areas of most cohorts 
consisted of a large city with surrounding 
smaller rural communities. Some cohorts 
included large regions of the country such 
as EPIC-MORGEN (European Prospective 
Investigation into Cancer and Nutrition– 
Monitoring Project on Risk Factors for 
Chronic Diseases) in the Netherlands, and the 
VHM&PP (Vorarlberg Health Monitoring 
& Promotion Programme) cohort in Austria. 
All included cohort studies were approved 
by the institutional medical ethics commit-
tees and undertaken in accordance with the 
Declaration of Helsinki. Each cohort study 
followed the rules for ethics and data protec-
tion set up in the country in which they were 
based. All participants gave consent according 
to national rules.

Mortality outcome definition. In all 
cohorts, follow-up was based upon linkage to 
mortality registries. Natural-cause mortality 
was defined on the basis of the underlying 
cause of death recorded on death certificates 
as ICD-9 (International Classification of 
Diseases, 9th Revision) codes 001–779 and 
ICD-10 (10th Revision) codes A00–R99.

Exposure assessment. Particle composi-
tion concentrations at the baseline residential 
addresses of study participants were estimated 
by land use regression models following a 
standardized procedure described elsewhere 
(Beelen et al. 2013; De Hoogh et al. 2013; 
Eeftens et al. 2012a). Measurements of PM2.5 
and PM10 were performed at 20 sites in each 
of the study areas. Within each study area, 
each of the 20 sites was measured during three 
2-week periods (during summer, winter, and 
an intermediate season) within 1 year. The 
total measurement period over all study areas 
was between October 2008 and May 2011. 
PM filters were weighed before and after 
each measurement centrally at IRAS, Utrecht 
University, and were then sent to Cooper 
Environmental Services (Portland, OR, USA) 
to detect elements. All filters were analyzed 
for elemental composition using X-ray fluo-
rescence (XRF) (De Hoogh et al. 2013). The 
three 2-week measurements were averaged, 
adjusting for temporal trends using data from 
a background monitoring site with continuous 
data (Cyrys et al. 2012; De Hoogh et al. 2013; 
Eeftens et al. 2012b).

In ESCAPE we a priori selected 8 of 
the 48 measured elements for further epide-
miological evaluation based upon evidence of 
health effects (toxicity), representation of major 
anthropogenic sources, a high percentage of 
detected samples (> 75%), and good preci-
sion of measurements [coefficient of varia-
tion < 10% for all elements, except nickel (Ni) 
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and vanadium (V) due to low concentration 
levels]. We selected copper (Cu), iron (Fe), 
and zinc (Zn) mainly for (non-tailpipe) traffic 
emissions; sulfur (S) for long-range transport; 
Ni and V for mixed oil burning/industry; 
silicon (Si) for crustal material; and potassium 
(K) for biomass burning (Viana et al. 2008). 
Elements may have multiple sources, so they 
do not necessarily represent single sources.

Predictor variables for nearby traffic inten-
sity, population/household density, and land 
use were derived from geographic information 
systems (GIS), and were evaluated to explain 
spatial variation of annual average concentra-
tions using land use regression modeling. If 
values of predictor variables for the cohort 
addresses were outside the range of values for 
the monitoring sites, values were truncated 
to the minimum and maximum values at the 
monitoring sites. Truncation was performed 
to prevent unrealistic predictions (e.g., related 
to too small distance to roads in GIS) and 
because we did not want to extrapolate the 
derived model beyond the range for which it 
was developed. Truncation has been shown 
to improve predictions at independent sites 
(Wang et al. 2012).

The results of the land use regression 
models were then used to estimate ambient 
particle composition concentration at the 
participants’ baseline addresses. A detailed 
description of the land use regression models 
for each of the eight elements is presented in 
Supplemental Material, Tables S1–S9.

Statistical analyses. Cohort-specific 
analyses. Cox proportional hazards models 
were used for the cohort specific analyses 
following the analysis protocol in the ESCAPE 
study (Beelen et al. 2014). Age was used as 
the time scale because of evidence of better 
adjustment for potential confounding by age 
(Thiébaut and Bénichou 2004). Censoring 
occurred at the time of death for non-natural 
causes, emigration, loss to follow-up for 
other reasons, or at end of follow-up, which-
ever came first. Air pollution exposure was 
analyzed as a linear time-invariant variable. 
Potential confounders were available from 
questionnaires at baseline. We specified three 
confounder models with increasing levels of 
adjustment a priori. Confounder models were 
selected based on previous cohort studies of air 
pollution and mortality and availability of data 
in a majority of the cohorts. The specific vari-
ables included as model covariates are listed 
for each cohort in Supplemental Material 
Tables S10–S28. Model 1 included only age 
(time axis), sex, and calendar time [year(s) of 
enrollment, continuous for baseline periods 
of ≤ 5 years]. Model 2 added the following 
individual-level variables (as available for the 
individual cohorts): smoking status (never/
former/current), smoking intensity, smoking 
duration, environmental tobacco smoke, fruit 
intake, vegetables intake, alcohol consumption 
(linear and squared term), body mass index 
(BMI; linear and squared term), educational 
level (low, medium, high), occupational class 

(white/blue collar classification), employment 
status, and marital status. Model 3 added area-
level socioeconomic status (SES) variables, 
including mean income, percentage of people 
with a low income, unemployment rate, 
and educational level or deprivation index, 
which were defined for most of the cohorts 
at the neighborhood or municipality level 
(see Supplemental Material, Tables S10–S28, 
for details).

Model 3 was selected as the main 
confounder model. Only subjects with 
complete information for model 3 variables 
were included in the analyses.

Two-pollutant models were conducted for 
each element by adjusting for particle mass 
(PM2.5, PM10, PMcoarse), PM2.5 absorbance, 
NO2, NOx, and other elements in separate 
models. Because two pollutants may reflect 
the same source, two-pollutant models repre-
senting the independent effect of two pollut-
ants may be difficult to interpret. Therefore, 
each two-pollutant model was restricted to 
data from studies for which the correlation 
between the two pollutants was ≤ 0.7.

In sensitivity analyses, we added prevalent 
hypertension and physical activity to model 3, 
and additionally adjusted for the classical 
cardiovascular risk factors prevalent diabetes 
and cholesterol level. Extended confounder 
models were used in sensitivity analyses 
because some potential effects of air pollu-
tion might be mediated (e.g., hypertension) or 
affected (e.g, physical activity) by these factors.

Table 1. Description of the included cohort studies.

Cohorta n Totalb n NMc

Age (years)  
at baseline  
(mean ± SD) Baseline period

Total follow-up time 
in person-years 

(mean follow-up) Study area description
FINRISK, Finland 10,224 602 47.9 ± 13.2 1992; 1997; 2002; 2007 108,434 (10.6) Greater Helsinki Area and Turku city and its rural 

surroundings
HUBRO, Norway 18,102 1,182 48.3 ± 15.2 2000–2001 173,798 (9.6) City of Oslo
SNAC-K, Sweden 2,401 395 70.3 ± 8.1 2001–2004 15,568 (6.5) City of Stockholm
SALT/Twin gene, Sweden 5,473 581 58.0 ± 9.9 1998–2002 47,767 (8.7) Stockholm County
60-y/IMPROVE, Sweden 3,612 303 60.4 ± 0.1 1997–1999 40,612 (11.2) Stockholm County
SDPP, Sweden 7,408 248 47.1 ± 5.0 1992–1998 102,831 (13.9) Stockholm County
DCH, Denmark 35,458 3,770 56.7 ± 4.4 1993–1997 469,571 (13.2) City of Copenhagen and surrounding areas
EPIC-MORGEN, Netherlands 16,446 795 43.9 ± 10.9 1993–1997 217,722 (13.2) Cities of Amsterdam, Maastricht, and Doetinchem 

and surrounding rural areas
EPIC-PROSPECT, Netherlands 15,670 1,269 57.7 ± 6.0 1993–1997 202,809 (12.9) City of Utrecht and surrounding rural areas
SALIA, Germany 4,352 618 54.5 ± 0.6 1985–1987; 1990–1994 81,093 (18.6) Areas in the cities of Dortmund, Duisburg, Essen, 

Gelsenkirchen, and Herne situated in the Ruhr 
Area and the adjacent towns Borken and Dülmen

EPIC-Oxford, UK 8,598 443 45.0 ± 13.1 1993–2001 110,097 (12.6) Urban and rural areas in a buffer of 10 km around 
London–Oxford area

KORA, Germany 8,399 673 49.5 ± 13.8 1994–1995; 1999–2001 88,592 (10.5) City of Augsburg and two adjacent rural counties
VHM&PP, Austria 117,824 13,081 41.9 ± 14.9 1985–2005 2,039,328 (17.3) State of Vorarlberg, excluding high mountain areas 

(> 600 m) and areas within 300 m of state border
SAPALDIA, Switzerland 1,250 65 42.0 ± 11.9 1991 20,294 (16.2) City of Lugano
E3N, France 10,915 516 53.0 ± 6.8 1993–1996 147,021 (13.5) City of Paris and surrounding rural areas
EPIC-Turin, Italy 7,261 302 50.4 ± 7.5 1993–1998 97,549 (13.4) City of Turin
SIDRIA-Turin, Italy 5,054 129 44.2 ± 6.2 1999 55,667 (11.0) City of Turin
SIDRIA-Rome, Italy 9,177 239 44.3 ± 6.0 1999 102,856 (11.2) City of Rome
EPIC-Athens, Greece 4,192 255 49.4 ± 11.7 1994–1999 46,852 (11.2) Greater Athens area

See Supplemental Material, “Description of each cohort and study area,” for full names of cohorts.
aOrder of cohorts is north to south gradient. bTotal study population: number of observations with complete data for all model 3 (main model) covariates. cNumber of deaths from 
natural-cause mortality.
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All cohort-specific analyses were done in 
STATA versions 10–12. 

Meta-analysis. Meta-analyses of cohort-
specific effect estimates were conducted 
using the DerSimonian–Laird method with 
random effects (DerSimonian and Laird 
1986). To keep exposure contrasts broadly 
comparable among pollutants, we estimated 
hazard ratios (HRs) and 95% CIs for fixed 
increments corresponding to the mean differ-
ence between the 10th and 90th percentiles 
of measured pollutant concentrations across 
all study areas. Heterogeneity among cohorts 
was quantified by the I2 statistic and tested by 
the chi-square test from Cochran’s Q-statistic 
(Higgins and Thompson 2002).

We tested whether effect estimates 
differed for cohorts for which the land use 
regression model cross-validation explained 
variance was smaller or larger than 50% by 
computing the chi-square test of hetero-
geneity. In addition, we tested whether 
effect estimates differed by region of Europe 
(North: Sweden, Norway, Finland, Denmark; 
West and Middle: United Kingdom, the 
Netherlands, Germany, France, Austria, and 
Switzerland; South: Italy and Greece). We 
did not perform effect modification analyses 
for individual-level variables because this 
paper focuses on differences in effect estimates 
related to elemental composition. Only sex 
was an effect modifier for the association 
between PM2.5 and natural mortality in the 
same cohorts (Beelen et al. 2014).

All tests were two-sided and p-values of 
< 0.05 were deemed statistically significant.

All meta-analyses were conducted in 
STATA, version 12.1.

Results
Characteristics of the study population. The 
total study population consisted of 291,816 
participants contributing 4,168,461 person-
years at risk (average time of follow-up, 
14.3 years), of whom 25,466 died from a 
natural cause during follow-up (Table 1). 
Cohorts were recruited mostly in the 1990s. 
Cohorts differed in the number of partici-
pants, the mean baseline age, and the avail-
ability of specific covariate data (Table 2; 
see also Supplemental Material, Tables 
S10–S28). Age, sex, smoking status (current, 
former, or never smoker), and an area-level 
SES variable were available for all cohorts. 
Smoking intensity (average cigarettes/day) 
and duration (years of smoking) were avail-
able as continuous variables for all cohorts 
except the VHM&PP (Vorarlberg state) 
and E3N (Etude Epidémiologique auprès 
de femmes de la Mutuelle Générale de 
l’Education Nationale; Paris and surrounding 
rural areas) cohorts, for which only smoking 
status was available. VHM&PP had data on 
occupation and employment status, but not 

on education. On average, we had complete 
model 3 covariate information for > 90% of 
cohort participants.

Air pollution exposure. Substantial varia-
tions of estimated annual mean concentra-
tions at participant addresses were observed 
within and between the majority of cohorts 
and elements [Figure 2 (for PM2.5 elemental 
composition concentrations); see also 
Supplemental Material, Figure S1 (for PM10 
elemental composition concentrations)]. The 
largest within-cohort contrasts were found 
for Cu, Fe, Si, and Zn, with the largest 
contrasts generally found in South European 
study areas. The main exception was Si, for 
which the largest within-area contrast was 
found in the North European study areas 
(see Supplemental Material, Figure S1). 
The smallest within-cohort contrasts were 
found for S. Higher concentrations of most 
elements were observed in southern study 
areas. Estimated annual mean S in PM2.5 
concentrations, for example, show a steady 
increasing north–south gradient with 
averages from 635 ng/m3 for FINRISK, 
Finland, to 1,626 ng/m3 for EPIC-Athens, 
Greece. Correlations between elements and 
particle mass varied considerably among 

elements and cohorts; average correlations 
between elements and mass (in the same 
PM size fraction) were approximately 0.5, 
with a range from about 0.3 to about 0.7 
(see Supplemental Material, Table S29), 
indicating that associations with individual 
elements could be estimated after adjusting 
for PM mass in most cohorts.

Good land use regression exposure models 
were developed for Cu, Fe, and Zn in both 
fractions (PM10 and PM2.5), as indicated by 
average cross-validation explained variances 
(R2) between 55% and 81%, although R2 
values varied between areas (see Supplemental 
Material, Tables S1–S9). Traffic variables 
were the dominant predictors, reflecting non-
tailpipe emissions (De Hoogh et al. 2013). 
In general, models for the other elements 
performed moderately well, with average 
cross-validation R2 values between about 50% 
and about 60%. However, for PM2.5 S 
the average cross-validation R2 was 30% 
(range, 2–67%; see Supplemental Material, 
Table S6), consistent with the relatively low 
spatial variation of S concentrations.

Single-pollutant results. Positive HRs 
were estimated for almost all exposures, 
with a statistically significant association for 

Figure 1. Cohort locations in which elements were measured.
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PM2.5 S (HR = 1.14; 95% CI: 1.06, 1.23 
per 200 ng/m3) (Table 3, Figure 3; see also 
Supplemental Material, Figures S2–S15). 
Borderline statistically significant associa-
tions (p > 0.05 and ≤ 0.10) were found for 
PM2.5 Si (HR = 1.09; 95% CI: 0.99, 1.09 
per 100 ng/m3), PM10 Ni (HR = 1.09; 
95% CI: 1.00, 1.19 per 2 ng/m3), and 
PM10 K (HR = 1.03; 95% CI: 1.00, 1.06 

per 100 ng/m3). The evidence for an associa-
tion was smaller for Zn and V. Estimates did 
not support associations of mortality with the 
non-tailpipe traffic pollutants Cu and Fe. In 
general, HRs based on confounder model 1 
(adjusted for calendar year and sex only) were 
the highest, whereas HRs moved closer to 
the null after adjustment for individual-level 
confounders (model 2). Sensitivity analyses 

showed that smoking variables especially 
were responsible for this decrease (Beelen 
et al. 2014). In contrast, additional adjust-
ment for area-level SES variables (model 3) 
had relatively little influence on HRs 
(Table 3). Cohort-specific HRs for PM2.5 S 
were > 1 for all cohorts, except for SDPP 
(Stockholm Diabetes Prevention Program) 
and KORA (Cooperative Health Research 

Table 2. Population characteristics of the included cohort studies at baseline.

Cohorta
Percent 
women

Percent 
never 

smokers
Cigarettes/

dayb
Years of 
smokingb BMI (kg/m2)b Fruit intakec

Alcohol 
intaked

Percent 
married/living 
with partner

Percent low 
educational 

level

Percent 
employed/

self-employed
FINRISK, Finland 54 45 3.8 ± 7.8 8.6 ± 12.2 26.4 ± 4.6 66 0.9 ± 1.3 70 31 69
HUBRO, Norway 56 46 6.8 ± 8.4 11.6 ± 14.4 25.7 ± 4.1 40 51 50 18 73
SNAC-K, Sweden 60 44 7.1 ± 9.5 9.8 ± 15.2 26.0 ± 4.1 NA 22 54 21 29
SALT/Twin gene, Sweden 56 39 8.5 ± 9.7 16.7 ± 17.3 28.6 ± 4.1 NA NA 68 22 NA
60-y/IMPROVE, Sweden 53 41 8.0 ± 9.1 15.2 ± 16.4 26.8 ± 4.2 64 8.9 ± 9.7 72 28 51
SDPP, Sweden 62 37 8.5 ± 8.8 12.3 ± 12.4 25.6 ± 4.0 92 1.3 ± 1.9 84 26 92
DCH, Denmark 54 36 6.3 ± 10.4 18.7 ± 17.1 26.0 ± 4.1 183.2 ± 151.2 21.7 ± 22.8 69 30 80
EPIC-MORGEN, Netherlands 54 35 10.4 ± 11.1 14.3 ± 13.7 25.2 ± 4.0 171.9 ± 129.2 12.7 ± 18.0 68 12 NA
EPIC-PROSPECT, Netherlands 100 45 5.7 ± 7.4 15.2 ± 16.5 25.5 ± 4.1 231.6 ± 139.2 9.0 ± 12.4 77 22 NA
SALIA, Germany 100 75 2.6 ± 6.6 4.4 ± 10.5 NA NA NA NA 29 NA
EPIC-Oxford, UK 75 60 5.5 ± 8.8 7.3 ± 11.5 24.3 ± 4.3 253.6 ± 216.5 10.0 ± 12.3 67 34 77
KORA, Germany 51 44 9.2 ± 13.3 12.0 ± 14.2 27.2 ± 4.6 60 16.3 ± 22.3 76 13 58
VHM&PP, Austria 56 70 NA NA 24.8 ± 4.3 NA NA 68 NA 69
SAPALDIA, Switzerland 56 45 11.1 ± 14.4 11.1 ± 13.0 23.8 ± 3.9 NA NA 58 11 81
E3N, France 100 49 NA NA 22.8 ± 3.3 236.2 ± 162.5 12.4 ± 15.4 NA 5 NA
EPIC-Turin, Italy 48 43 7.2 ± 8.2 17.6 ± 16.3 25.3 ± 3.8 318.2 ± 182.2 18.1 ± 20.3 86 44 NA
SIDRIA-Turin, Italy 52 38 9.3 ± 10.2 11.3 ± 10.6 NA NA NA 95 18 72
SIDRIA-Rome, Italy 53 35 10.1 ± 10.5 11.7 ± 10.4 NA NA NA 100 45 NA
EPIC-Athens, Greece 55 40 1.7 ± 15.0 10.8 ± 13.1 27.5 ± 4.5 402.6 ± 258.2 9.2 ± 14.5 78 24 67

NA, not available or available with large number of missings (e.g., BMI in SALIA and smoking variables in E3N). See Supplemental Material, “Description of each cohort and study 
area,” for full names of cohorts. A detailed description of each cohort can be found in Supplemental Material, Tables S10–S28.
aOrder of cohorts is north to south gradient. bMean ± SD. cMean ± SD (g/day) or percentage reporting daily fruit consumption. For SDPP it is percentage daily/weekly fruit consumption. 
dMean ± SD (g/day) or percentage reporting daily alcohol consumption. For FINRISK it is number of glasses of alcoholic drink during last week. For SDPP it number of glasses of 
alcoholic drinks per day. For HUBRO it is the percentage reporting weekly alcohol consumption. 

Figure 2. Estimated annual mean PM2.5 elemental composition concentrations (ng/μg3) at participant addresses in each cohort. The solid circle and bars shows 
the median and 25th and 75th percentiles of elemental composition concentrations; the x shows the 5th and 95th percentile values. 
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in the Augsburg Region) (Figure 3). There 
was no statistical evidence of heterogeneity 
among the individual cohort effect estimates 
for PM2.5 S (I 2 = 0, p = 0.94). Average 
correlation between PM2.5 S and PM10 S 
over the different cohorts was 0.56 with a 
range of 0.18–1.00 (data not shown). The 
HR for PM10 S was also positive (HR = 1.09; 
95% CI: 0.99, 1.19 per 200 ng/m3), although 
not statistically significant (Figure 3).

For the other elements there was more 
heterogeneity among individual cohort effect 
estimates, although for most elements hetero-
geneity was low (I 2 < 25%) to moderate 
(I2 = 25–50%) and not statistically significant 

(Table 3; see also Supplemental Material, 
Figures S2–S15).

Two-pollutant results. Results from the 
two-pollutant models suggested that the asso-
ciations of elements were generally robust to 
adjustment for other elements and pollutants 
(see Supplemental Material, Figures S16 and 
S17). We also investigated whether the previ-
ously reported association between natural-
cause mortality and PM2.5 mass (Beelen et al. 
2014) was robust to adjustment for PM2.5 S. 
The median correlation between PM2.5 and 
PM2.5 S over the cohorts was 0.53 (range, 
0.26–0.86) (see Supplemental Material, 
Table S29). The combined effect estimate 

for PM2.5 S from the two-pollutant model 
adjusted for PM2.5 did not differ from the 
single-pollutant model estimate (Table 4). 
However, the HR for PM2.5 was closer to 
the null and statistically nonsignificant when 
adjusted for PM2.5 S (HR = 1.07; 95% CI: 
1.02, 1.13 vs. HR = 1.02; 95% CI: 0.96, 1.09 
per 5 μg/m3). In addition, Table 4 shows the 
two-pollutant model results for PM2.5 Si, 
PM10 K, and PM10 Ni because the single-
pollutant associations for these elements 
were borderline statistically significant. After 
adjustment for PM2.5 S, associations with 
PM10 Ni (HR = 1.09; 95% CI: 0.98, 1.22 vs. 
HR = 1.06; 95% CI: 0.95, 1.18 per 2 ng/m3) 
were slightly reduced (Table 4).

Sensitivity analyses. Additional adjust-
ment for hypertension and physical activity, 
and for diabetes and cholesterol, had little 
effect on combined HRs compared with 
model 3 HRs (see Supplemental Material, 
Table S30).

Because the VHM&PP cohort had a 
weight of approximately 47% in the pooled 
PM2.5 S analyses (Figure 3), we conducted 
a sensitivity analyses without this cohort. 
Confidence intervals became sl ightly 
wider, but PM2.5 S HR remained similar 
after exclusion of the VHM&PP cohort 
(HR = 1.12; 95% CI: 1.01, 1.24 compared 
with HR = 1.14; 95% CI: 1.06, 1.23 before 
exclusion). Effect estimates for all elements 
were similar for the cohorts for which the 
land use regression model cross-validation 
explained variance was < 50% or > 50% (e.g., 
for PM2.5 S, HR = 1.12; 95% CI: 1.01, 1.25; 
n = 14 and HR = 1.16; 95% CI: 1.05, 1.28; 
n = 4, respectively) (p = 0.65). PM2.5 S effect 
estimates were also not statistically different 
between the cohorts in different regions: 1.17 
(95% CI: 0.94, 1.45) for North (n = 7), 1.13 
(95% CI: 1.04, 1.23) for West and Middle 
(n = 7), and 1.27 (95% CI: 0.92, 1.75) 
for South (n = 4) (p = 0.78). For the other 

Table 3. Association between natural-cause mortality and exposure to elemental composition of PM: 
results from random-effects meta-analyses [HR (95% CI)] using main confounder models 1, 2, and 3.a

Exposure
No. of 

cohorts Model 1b Model 2b Model 3b
p-Value 
model 3 I 2 (p-value)c

PM2.5 Cu 19 1.08 (1.00, 1.17) 1.00 (0.94, 1.06) 0.98 (0.92, 1.04) 0.54 16.4 (0.25)
PM10 Cu 19 1.07 (1.00, 1.15) 1.02 (0.95, 1.08) 1.01 (0.95, 1.07) 0.83 43.5 (0.02)
PM2.5 Fe 19 1.12 (1.05, 1.18) 1.04 (0.99, 1.10) 1.03 (0.98, 1.09) 0.20 10.1 (0.33)
PM10 Fe 19 1.08 (1.02, 1.15) 1.03 (0.97, 1.09) 1.02 (0.97, 1.08) 0.44 43.9 (0.02)
PM2.5 Zn 19 1.07 (1.00, 1.15) 1.04 (1.00, 1.08) 1.03 (0.99, 1.08) 0.17 21.4 (0.19)
PM10 Zn 19 1.09 (1.01, 1.17) 1.04 (1.00, 1.09) 1.04 (0.99, 1.09) 0.18 31.5 (0.09)
PM2.5 S 18d 1.29 (1.11, 1.50) 1.16 (1.08, 1.25) 1.14 (1.06, 1.23) 0.003 0.0 (0.94)
PM10 S 18d 1.23 (1.07, 1.42) 1.09 (1.00, 1.19) 1.09 (0.99, 1.19) 0.11 29.8 (0.11)
PM2.5 Ni 14e 1.12 (1.02, 1.22) 1.05 (0.97, 1.15) 1.05 (0.97, 1.13) 0.27 20.3 (0.23)
PM10 Ni 17f 1.22 (1.05, 1.41) 1.09 (1.00, 1.19) 1.09 (1.00, 1.19) 0.08 30.3 (0.12)
PM2.5 V 15g 1.22 (1.03, 1.44) 1.07 (0.95, 1.20) 1.07 (0.93, 1.23) 0.35 32.5 (0.11)
PM10 V 18d 1.07 (0.93, 1.24) 1.04 (0.96, 1.12) 1.03 (0.95, 1.12) 0.46 5.7 (0.39)
PM2.5 Si 16h 1.18 (1.03, 1.34) 1.10 (0.99, 1.21) 1.09 (0.99, 1.09) 0.10 31.6 (0.11)
PM10 Si 18d 1.13 (1.00, 1.28) 1.04 (0.97, 1.11) 1.03 (0.97, 1.11) 0.37 47.6 (0.01)
PM2.5 K 18i 1.06 (0.98, 1.14) 1.05 (0.99, 1.11) 1.07 (0.99, 1.15) 0.12 28.6 (0.13)
PM10 K 18j 1.05 (0.99, 1.12) 1.03 (1.00, 1.06) 1.03 (1.00, 1.06) 0.08 0.0 (0.74)
aHRs are presented for the following increments: 5 ng/m3 PM2.5 Cu, 20 ng/m3 PM10 Cu, 100 ng/m3 PM2.5 Fe, 500 ng/m3 
PM10 Fe, 10 ng/m3 PM2.5 Zn, 20 ng/m3 PM10 Zn, 200 ng/m3 PM2.5 S, 200 ng/m3 PM10 S, 1 ng/m3 PM2.5 Ni, 2 ng/m3 PM10 Ni, 
2 ng/m3 PM2.5 V, 3 ng/m3 PM10 V, 100 ng/m3 PM2.5 Si, 500 ng/m3 PM10 Si, 50 ng/m3 PM2.5 K, and 100 ng/m3 PM10 K. 
bModel 1 was adjusted for sex and calendar time; model 2 was also adjusted for smoking status, smoking intensity, 
smoking duration, environmental tobacco smoke, fruit intake, vegetables intake, alcohol consumption, BMI, educational 
level, occupational class, employment status, marital status; and model 3 was further adjusted for area-level SES. 
cI 2 and Cochran’s Q-test for heterogeneity for model 3. dNo modeled air pollution estimates were available for 
SAPALDIA. eNo modeled air pollution estimates were available for SNAC-K, SALT/Twin gene, 60-y/IMPROVE, SDPP. 
fNo modeled air pollution estimates were available for HUBRO, SAPALDIA. gNo modeled air pollution estimates were 
available for HUBRO, KORA, VHM&PP, SAPALDIA. hNo modeled air pollution estimates were available for HUBRO, 
SAPALDIA, EPIC-Athens. iNo modeled air pollution estimates were available for SALIA. jNo modeled air pollution 
estimates were available for HUBRO.

Figure 3. Adjusted hazard ratio (HR) between natural-cause mortality and (A) a 200-ng/m3 increment in PM2.5 S and (B) a 200-ng/m3 increment in PM10 S (using 
main model 3): results from cohort-specific analyses and from random-effects meta-analyses.
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elements also no significant differences were 
found between effect estimates based on 
 validation R2 or region (data not shown).

Discussion
Long-term exposure to PM2.5 S was positively 
associated with natural-cause mortality, with 
no indication of heterogeneity among indi-
vidual cohort effect estimates.

The association between PM2.5 S and 
mortality was robust to adjustment for 
co-pollutants including PM2.5 mass. The 
PM2.5 mass effect estimate was reduced and 
became statistically nonsignificant when 
adjusted for PM2.5 S.

Comparison of S mortality associations 
with previous studies. Only a few studies 
have estimated associations of mortality with 
long-term exposures to particle components. 
Sulfate has received the most attention in 
epidemiological studies. Elemental sulfur is 
assumed to be present as a marker for sulfate. 
Several cohort studies suggested an association 
between long-term exposure to sulfate and 
mortality. An association between sulfate 
and mortality was reported in the Harvard 
Six Cities study (Dockery et al. 1993). The 
adjusted HR comparing the cities with the 
highest and lowest sulfate concentrations 
(a contrast of 8 μg/m3) was 1.26 (95% CI: 
1.08, 1.47), corresponding to an HR of 1.03 
(95% CI: 1.01, 1.05) per 1 μg/m3. Within 
the initial American Cancer Society (ACS) 
study, the adjusted HR of all-cause mortality 
for areas with the highest and lowest concen-
trations of sulfate (19.9 μg/m3 contrast) 
was 1.15 (95% CI: 1.09, 1.22) (Pope et al. 
1995), resulting in an HR of 1.01 (95% CI: 
1.00, 1.01) per 1 μg/m3. Pope et al. (2002) 
investigated additional years of follow-up 
in the ACS study and estimated an HR for 
sulfate and natural mortality of about 1.01 
(95% CI: 1.00, 1.01) per 1 μg/m3 (Pope et al. 
2002). A recent analysis of the ACS cohort 
reported that sulfate, elemental carbon, and 
ozone all had positive and statistically signifi-
cant associations with all-cause mortality, 
but sulfate had the most robust associa-
tion (HR = 1.01; 95% CI: 1.00, 1.01 per 
1 μg/m3) (Smith et al. 2009). In the recent 
National Particle Component Toxicity 
(NPACT) initiative, a similar risk for the asso-
ciation between sulfur exposure and all-cause 
mortality (HR = 1.09 per 200 ng/m3) was 
estimated using ACS cohort data (Lippmann 
et al. 2013). Within the NPACT initia-
tive also data from the Women’s Health 
Initiative–Observational Study (WHI-OS) 
cohort were used to study the association 
with cardiovascular mortality and (fatal and 
nonfatal) cardiovascular events (Vedal et al. 
2013). Long-term exposure to air pollutant 
concentrations was estimated with a national 
exposure spatial model. No association was 

found with all cardiovascular deaths and 
sulfur (HR = 1.01, 95% CI: 0.92, 1.12 per 
0.25 μg/m3), but the association with cardio-
vascular events was statistically significant (HR 
1.09; 95% CI: 1.05, 1.14 per 0.25 μg/m3). A 
cohort study of approximately 45,000 active 
and former female public school professionals 
in the California Teachers Study investi-
gated the association between mortality and 
long-term exposures to PM2.5 and several of 
its constituents, including elemental carbon, 
organic carbon, sulfates, nitrates, Fe, K, Si, 
and Zn (Ostro et al. 2011). Participants whose 
residential addresses were within 8 or 30 km 
of a monitor collecting PM2.5 constituent 
data were included in the analyses. No statis-
tically significant associations between all-
cause mortality and PM2.5 mass or any of its 
measured constituents were reported. The HR 
for sulfate was 1.06 (95% CI: 0.97, 1.16) for 
an interquartile range contrast of 2.2 μg/m3, 
corresponding to an HR of 1.03 per 1 μg/m3. 
However, the HR for sulfate and ischemic 
heart disease mortality was 1.48 (95% CI: 
1.20, 1.82) for an interquartile range contrast 
of 2.2 μg/m3.

The estimated effect of PM2.5 S on 
natural-cause mortality in our study popula-
tion (HR = 1.14 per 0.2 μg/m3 S) corresponds 
to an HR of 1.24 (95% CI: 1.10, 1.41) per 
1 μg/m3 sulfate, assuming all S is present 
as sulfate (sulfate to S ratio of 3). Our 
effect estimate is thus much larger than the 
estimate from the U.S. cohort studies that 
investigated total mortality. A major differ-
ence between our study and these U.S. studies 
is that our study was based upon contrasts 
within study areas, whereas the U.S. studies 
focused on between-area contrasts. Sulfate is 
mostly formed in the atmosphere by oxida-
tion of gaseous sulfur dioxide (SO2) emis-
sions [U.S. Environmental Protection Agency 
(EPA) 2004]. Sulfate is concentrated in fine 
particles that can be transported over long 
distances, resulting in a high regional back-
ground with typically small spatial variation 
within metropolitan areas (U.S. EPA 2004). 
Most of our study areas comprised a major 
city and smaller surrounding communities, 

with some cohorts covering a larger area 
(e.g., the Vorarlberg region). Consistently, 
the exposure contrast in our study was much 
smaller than in the U.S. studies, both for 
the S measurements (De Hoogh et al. 2013) 
and cohort exposures. Measured urban 
background PM2.5 S concentrations were on 
average 9% higher than regional background 
concentrations. Concentrations at traffic sites 
were only 2% higher than at urban back-
ground sites. Predictor variables in the land 
use regression models for PM2.5 S included 
especially traffic at various scales, population 
or address density, and urban green space 
(see Supplemental Material, Tables S1–S9). 
Presumably because of the small measured 
within-study area contrasts, the average cross-
validation R2 was 30% for PM2.5 S, with a 
range of 7–70%. Because land use regression 
models were developed for each study area 
separately, we could not exploit between-
study area variations in PM2.5 S that would 
have improved the model performance. In 
the ESCAPE study, which focuses on within-
area contrasts in pollution, these models 
reflect a combination of variation in primary 
sulfate emissions and secondary sulfate forma-
tion (De Hoogh et al. 2013). Depending on 
meteoro logical conditions, SO2 to sulfate 
conversion rates of 1–5% per hour have been 
estimated (U.S. EPA 2004), implying that 
some conversion already occurs at scales of 
10–50 km (a typical wind speed is 10 km/hr). 
A study in Berlin, Germany, documented 
measurable sulfate formation within 50 km of 
the source (Lammel et al. 2005).

PM2.5 mass also was associated with 
mortality in the three U.S. studies (Dockery 
et al. 1993; Pope et al. 1995, 2002). 
However, sulfate concentrations were highly 
correlated with PM2.5 mass concentrations 
in the U.S studies, and thus associations 
between mortality and sulfate may be diffi-
cult to distinguish from associations between 
mortality and PM2.5 mass. The median corre-
lation between estimated PM2.5 and PM2.5 S 
over the 19 cohorts in our study was 0.53 
(range, 0.26–0.86), which made it possible 
to estimate mutually adjusted associations 

Table 4. Results from random-effects meta-analyses from single-pollutant and two-pollutant models for 
association with natural-cause mortality (using main model 3) [HR (95% CI)].a

Exposure Adjusted for Single-pollutant Two-pollutant
PM2.5 Sb PM2.5 1.15 (1.06, 1.24) 1.13 (1.03, 1.24)
PM2.5 Sc PM10 Ni 1.14 (1.04, 1.25) 1.14 (1.04, 1.25)
PM2.5 Sd PM2.5 Si 1.14 (1.05, 1.23) 1.13 (1.04, 1.22)
PM2.5 Se PM10 K 1.16 (1.06, 1.27) 1.15 (1.05, 1.26)
PM2.5

b PM2.5 S 1.07 (1.02, 1.13) 1.02 (0.96, 1.09)
PM10 Nic PM2.5 S 1.09 (0.98, 1.22) 1.06 (0.95, 1.18)
PM2.5 Sid PM2.5 S 1.09 (0.98, 1.21) 1.08 (0.97, 1.20)
PM10 Ke PM2.5 S 1.03 (0.99, 1.08) 1.02 (0.98, 1.06)
aLimited to studies for which correlation between two pollutants was < 0.7. HRs are presented for the following 
increments: 200 ng/m3 PM2.5 S, 5 μg/m3 PM2.5, 2 ng/m3 PM10 Ni, 100 ng/m3 PM2.5 Si, 100 ng/m3 PM10 K. bFINRISK and 
SAPALDIA not included. cHUBRO, SALIA, and SAPALDIA not included. dHUBRO, SAPALDIA, and EPIC-Athens not 
included. eFINRISK, HURBO, and SIDRIA-Rome not included.
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with PM2.5 S and PM2.5 mass. The lower 
correlation in our study probably reflects the 
finer spatial resolution at which concentra-
tions were estimated. The median correlation 
of measured within-area contrast in PM2.5 
and S was very similar (0.6) to the median 
correlation within cohorts, suggesting that 
the moderate model R2 values for S did not 
artificially induce the low correlation.

Another study that reported evidence of 
effects of sulfur on mortality was an interven-
tion study in Hong Kong that studied the 
effects of limiting the sulfur content of fuel 
oils used in both power plants and vehicles 
(Hedley et al. 2002). Initial findings indicated 
a decrease in sulfur dioxide that was associ-
ated with prompt and persistent reductions 
in mortality, suggesting that higher mortality 
before the limitation may have been related 
to sulfate and/or SO2. Subsequent analysis, 
however, revealed that the reduction in SO2 
was highly correlated with reductions in both 
V and Ni derived from residual oil emissions 
(Hedley et al. 2006). In our study correlations 
between elements were smaller, suggesting 
that the association between PM2.5 S and 
mortality is not explained by exposure to 
other elements such as V and Ni. This is also 
supported by the robust HRs for PM2.5 S 
after adjustment for co-pollutants. However, 
we cannot rule out the possibility that the 
association with PM2.5 S may be attributable 
to other correlated PM components.

Interpre tat ion  o f  S  a s soc iat ions . 
Toxicological studies have provided little 
support for a causal effect of sulfate, despite 
fairly consistent associations in epidemiolog-
ical studies (Kelly and Fussell 2012). Sulfate 
may indirectly affect health, for example, by 
solubilizing metals and thereby increasing 
their bioavailability, and by catalyzing the 
formation of secondary organic PM (Kelly 
and Fussell 2012). We identified associations 
with small-scale spatial variations in S and we 
speculate that this may reflect an influence of 
primary combustion from S-containing fuels 
and serve as a marker of within-city air pollu-
tion differences, that is, between city centers 
and surrounding areas.

Associations with other elements. None of 
the other elements evaluated in our analysis 
were significantly associated with mortality, 
though HRs were positive for almost all 
elements. There was greater heterogeneity 
among individual cohort effect estimates for 
elements other than PM2.5 S, though for most 
elements the heterogeneity was not statisti-
cally significant. There was little evidence 
of associations with Cu and Fe, which were 
mainly selected as markers of (non-tailpipe) 
traffic emissions. Source apportionment studies 
conducted elsewhere have reported that Fe is 
associated mostly with road dust and brake 
abrasion, whereas Cu is associated with tire 

and brake abrasion (reviewed by Viana et al. 
2008). Our land use regression models had 
the best fit for these elements because traffic 
predictors were available and traffic sites were 
overrepresented in the measurement campaign. 
Therefore, we believe that the lack of an asso-
ciation in our study is unlikely to be attribut-
able to exposure measurement error. In our 
previous analysis of the same set of cohorts, we 
estimated nonsignificant positive HRs for NO2 
(1.01; 95% CI: 0.99, 1.03 per 10 μg/m3), NOx 
(1.02; 95% CI: 1.00, 1.04 per 20 μg/m3), and 
PM2.5 aborbance (1.02; 95% CI: 0.97, 1.07 
per 10–5/m), pollutants affected by tailpipe 
 emissions (Beelen et al. 2014).

In single-pollutant models we found 
borderline statistically significant positive asso-
ciations between natural-cause mortality and Si 
in PM2.5, but not Si in PM10, despite substan-
tially higher Si concentrations in the coarse 
fraction. Source apportionment studies suggest 
that Si is associated primarily with crustal 
material in resuspended soil and road dust 
(Viana et al. 2008). In our previous analyses we 
did not find an association between mortality 
and coarse particles (Beelen et al. 2014).

Source apportionment studies suggest that 
both V and Ni are linked to crude oil and 
derived mainly from shipping emissions, and 
that K is linked to biomass burning (Viana 
et al. 2008). In single-pollutant models we 
found borderline statistically significant associ-
ations for Ni and K in PM10. General industry 
and port land use were the only predictor vari-
ables available for Ni and V in our exposure 
models. A specific predictor variable for wood 
smoke was not available (De Hoogh et al. 
2013). The lack of more specific predictors 
in the V, Ni, and K exposure models may 
have limited our ability to detect element-
specific mortality associations for these 
PM components.

Strengths and limitations. Our study has 
several strengths: large sample size, broad 
European coverage, adjustment for a wide 
range of potential (individual) confounders, 
and multiple elements with a high percentage 
of detected samples (> 75%) and good preci-
sion of measurements in all 19 cohorts (coef-
ficient of variation < 10% for all elements, 
except Ni and V due to low concentration 
levels). An advantage compared with previous 
long-term studies of elemental composition 
that compared between-city variation and 
ignored within-city variation is that we could 
estimate spatial contrasts at much smaller 
spatial scales using land use regression models 
that were developed in a standardized way for 
all 19 cohorts.

We used data from measurements in 
2008–2011 to develop land use regression 
models that were applied to addresses at 
baseline, mostly in the mid-1990s. Emissions 
of S in Europe have been reduced following a 

series of control measures during the last two 
decades (Fowler et al. 2007). However, recent 
studies in the Netherlands; Rome, Italy; the 
United Kingdom; and Vancouver, Canada, 
have reported that the spatial contrast of 
nitrogen dioxide air pollution has been stable 
over ≥ 10 years (Cesaroni et al. 2012; Eeftens 
et al. 2011; Gulliver et al. 2013; Wang et al. 
2013). In addition, spatial models for black 
smoke and sulfur dioxide in the United 
Kingdom provided reasonable predictions, 
even going back to the 1960s, with a correla-
tion between 1962 and 1991 concentrations 
of 0.53 for black smoke and 0.26 for SO2 
(Gulliver et al. 2011). However, we cannot 
rule out the possibility that spatial contrasts 
for specific components may have been less 
stable over time.

We did not account for residential 
mobility during follow-up in the current 
analyses. In our previous analysis of natural-
cause mortality in association with particulate 
matter and NOx in the same cohorts, HRs 
for participants who moved during follow-up 
did not differ significantly from HRs for the 
complete study population, though they were 
slightly higher (Beelen et al. 2014).

We investigated eight a priori–selected 
elements in both the PM2.5 and PM10 frac-
tions, so there might be some spurious asso-
ciations due to multiple comparisons. In 
addition, correlated elements may act as surro-
gates for elements that are the actual causes 
of increased mortality. Although for almost 
all elements HRs were positive, the associa-
tion with PM2.5 S clearly was the strongest. In 
addition, the PM2.5 S mortality associations 
were robust to adjustment for other elements, 
as well as particle mass. In addition, cohort-
specific PM2.5 S HRs were almost all > 1 
(Figure 3), and there was no significant hetero-
geneity among cohort-specific PM2.5 S HRs 
(Table 3), indicating consistency among the 
cohort results. The strength of the association, 
its consistency among cohorts, and its robust-
ness to adjustment decrease the likelihood that 
the association is a spurious finding.

Differences in the accuracy of exposure 
estimates could bias effect estimates and 
standard errors for individual elements. When 
the measurements of two elements are corre-
lated, part of the association between mortality 
and the element with more measurement error 
could be shifted to the estimate of association 
with the element with less measurement error. 
Accuracy of exposure estimates may depend 
on both the precision of the measurements 
and the performance of the exposure models. 
The eight selected elements were detected 
in a large majority (> 75%) of the samples. 
Measurement precision was best for S, Cu, 
and Fe but poorer for Ni and V, especially 
in study areas with low concentration levels 
(De Hoogh et al. 2013).
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Conclusion
In conclusion, long-term exposure to PM2.5 S 
was associated with natural-cause mortality. 
This association was robust to adjustment by 
other pollutants, including particle mass.

Editor’s Note: The Advance Publication of this 
article contained the wrong version of Figure 2. 
The correct version is included in this article. 
EHP regrets the error. 
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