
ADAM — A Database and Information Retrieval System
for Big Multimedia Collections

Ivan Giangreco Ihab Al Kabary Heiko Schuldt
Department of Mathematics and Computer Science

University of Basel, Switzerland
{firstname.lastname}@unibas.ch

Abstract—The past decade has seen the rapid proliferation
of low-priced devices for recording image, audio and video
data in nearly unlimited quantity. Multimedia is Big Data, not
only in terms of their volume, but also with respect to their
heterogeneous nature. This also includes the variety of the
queries to be executed. Current approaches for searching in
big multimedia collections mainly rely on keywords. However,
manually annotating every single object in a large collection
is not feasible. Therefore, content-based multimedia retrieval
–using sample objects as query input– is increasingly becoming
an important requirement for dealing with the data deluge. In
image databases, for instance, effective methods exploit the
use of exemplary images or hand-drawn sketches as query
input. In this paper, we introduce ADAM, a novel multimedia
retrieval system that is tailored to large collections and that is
able to support both Boolean retrieval for structured data and
similarity-based retrieval for feature vectors extracted from
the multimedia objects. For efficient query processing in such
big multimedia data, ADAM allows the distribution of the
indexed collection to multiple shards and performs queries in a
MapReduce style. Furthermore, it supports a signature-based
indexing strategy for similarity search that heavily reduces
the query time. The efficiency of ADAM has been successfully
evaluated in a content-based image retrieval application on the
basis of 14 million images from the ImageNet collection.

I. INTRODUCTION

With the proliferation of ubiquitous devices for digi-
tally capturing and recording image, audio and video data,
multimedia retrieval has entered the Big Data arena. The
tremendous growth of multimedia data has put serious
challenges on the systems handling these data. This includes
the efficiency requirements multimedia retrieval systems are
expected to provide to the user. Moreover, the sheer size
of multimedia collections and the heterogeneous nature of
both the data and the queries make storing, organizing, and
retrieving multimedia data a difficult task to undertake.

A researcher could approach the problem of building
a multimedia retrieval system from two different sides.
One option is the use of a traditional relational database
for storing the data. Traditional databases (DB) provide
excellent support for structured data and queries that adhere
to Boolean predicates. However, they usually do not provide
a viable solution for query paradigms such as similarity
retrieval, not only because DB systems have no notion of

querying unstructured data (such as full texts or multimedia
objects), but particularly because they support similarity
search and partial matches only in a very limited way.
As a second option, the researcher might think of using
an information retrieval (IR) system. IR systems provide
similarity search, for instance by relying on sample objects
to find similar objects. The results to a similarity query
oblige a strict ordering based on a score that represents the
element’s relevance with respect to the query. However, an
IR system lacks valuable database features for exact search
in meta data, such as index structures, query optimization,
etc. Furthermore, multimedia IR systems have not yet en-
tered the field of Big Data. To date, search systems for
multimedia data are mainly built upon monolithic storage
systems that are tailored to the application using the data.

Ultimately, both types of systems have their drawbacks,
especially when considered in settings where a user might
want the combination of various query paradigms at high
efficiency and at a large scale. While a DB system is catered
to structured data and Boolean predicates in large scales,
it is not useful for similarity queries in unstructured data.
IR systems, in contrast, support similarity queries, but often
lack sophisticated index structures for searching in meta data
and, thus, do not scale well.

The contribution of this paper is twofold: First, we intro-
duce ADAM, a novel approach to seamlessly combine data-
base technology and information retrieval for big multimedia
data. ADAM brings the ability to handle and store any type of
multimedia data and their corresponding features. As soon as
a developer has specified an algorithm for extracting intrinsic
features of the multimedia objects, the ADAM system is able
to take over the execution of the extraction task, the storage
and the indexing of the feature data and the multimedia
objects. To this end, ADAM is based both on the relational
database model and the vector space model which considers
multimedia objects as vectors in a high-dimensional feature
space and defines the similarity between two objects by the
distance in the spanned space. For structured data, ADAM
can query using Boolean filtering predicates by making
use of traditional B-tree index structures; for ranking the
elements of a collection according to a similarity score, a
similarity retrieval can be performed. The ADAM system

Author Manuscript
The final publication is available at IEEE Xplore via http://ieeexplore.ieee.org/document/6906809/
and https://doi.org/10.1109/BigData.Congress.2014.66
© ️2014 IEEE

“orange”

“orange”+

similarity
query

structured
query

combined
query collection

result object

query input

Figure 1. Sample retrieval use case for an image retrieval application.

not only combines both query paradigms but also focuses on
big multimedia collections by distributing data over multiple
shards so that they can be queried in a MapReduce style and
by efficiently handling similarity queries in large volumes
of data using a signature-based index structure on the single
shards. Second, the paper introduces a fully working, general
purpose implementation for multimedia data that builds
on these concepts. We demonstrate the effectiveness and
efficiency of ADAM in the context of a content-based image
retrieval application that exploits hand-drawn sketches as
query inputs. The application allows users to search in
image collections using keywords, e.g., for searching in
the tags of an image, and/or hand-drawn sketches, i.e., for
searching in the multimedia objects itself. We summarize
the query paradigms supported by ADAM in the setting of
the exemplary image retrieval application in Figure 1. The
application was used in the evaluation based on 14 million
images from the ImageNet collection. The evaluations have
shown ADAM’s excellent scalability characteristics. Due to
the inherent implementation of feature extraction and search
in a MapReduce style, even collection sizes beyond 14
million objects can be dealt with efficiently.

This paper is structured as follows. Section II discusses
related work. In Section III, we present the components and
the concepts that underly ADAM. Details of the implemen-
tation are given in Section IV. In Section V, we evaluate
ADAM in the context of a content-based image retrieval
application. Section VI concludes this paper.

II. RELATED WORK

Early work in Garlic [1] integrates multiple federated
databases into one distributed system for multimedia data.
The system is based on an object-oriented database model
that is exploited to store the multimedia objects. For
query formulation, the authors extend the object-oriented
query language (OQL). Similarly, [2] introduces the system
Chabot, an IR system using a PostgreSQL database for
storing extracted features. The authors implement complex
types, user-defined indices and user-defined functions into
the database to support IR data types and queries. Chabot
not only supports text-based queries, but also allows to
improve results by providing content-based queries (e.g.,
“images with some orange in it”). Both Garlic and Chabot
only support Boolean predicates rather than similarity-based

search

extraction

collection

user query input
ADAM

on
-li

ne
of

f-l
in

e

“orange”

“orange”+

query

upload
collections

Figure 2. Two phases of an exemplary image retrieval system.

queries. In [3], the authors introduce Mirror, a database
supporting content-based multimedia retrieval. The authors
describe the engineering factors for creating a multimedia
IR-DBMS and introduce Moa, a new relational algebraic
framework based on the non-first normal form (NF2). Mirror
is implemented on top of the object-relational DBMS Monet.
DISIMA DBMS [4] is a DBMS that allows to store syntactic
features (e.g., color, shape) and semantic features (i.e., real
world objects) in an object-oriented data model. The system
supports content-based searches and searches on image se-
mantics. The authors implement an extended version of OQL
for multimedia objects (MOQL) and VisualMOQL, a visual
counterpart to MOQL. To increase the performance of the
system, the authors use three-dimensional extendible hashing
that allows to pre-filter images based e.g., on the average
color. The authors in [5] introduce a system that combines
low-level (syntactic) features with semantic features in an
object-relational Oracle 11g database. The database is ex-
tended by several User Defined Types (UDT) following the
MPEG-7 standard descriptors, and operations implemented
in PL/SQL, e.g., to evaluate similarity measures. Recent
work in [6] makes use of the MapReduce paradigm for
querying large sets of image data in a cloud environment.
The authors use extended Cluster Pruning for indexing and
port it to the MapReduce paradigm on the Hadoop platform.

In the 1980s and 90s, the field of databases has seen a
large variety of indexing methods for vector data. Many tree-
based indexing structures, including the family of R-trees
[7], the M-tree [8], the X-tree [9], etc. were introduced.
However, all tree-based approaches suffer from the curse
of dimensionality: [10] shows that with increasing dimen-
sionality every tree-based search structure degenerates to
a sequential search. The authors claim that for indexing
purposes tree structures are generally outperformed by a
simple sequential scan if the number of dimension exceeds
around 10. [10] introduces the Vector Approximation (VA)
File approach, a method based on signatures for improving
efficiency in processing feature vectors. Similar approaches
can be found, e.g., in iGrid [11] and BitMatrix [12].

Author Manuscript
The final publication is available at IEEE Xplore via http://ieeexplore.ieee.org/document/6906809/
and https://doi.org/10.1109/BigData.Congress.2014.66
© ️2014 IEEE

data
manipu-

lation

data
definition

stored
procedure

data
access

dbADAM

docADAM
feature

extractor

query
generator

result
collector

document
storage

document
retrieval

ADAM

on
-li

ne
of

f-l
in

e
“orange”

“orange”+

similarity
query

structured
query

combined
query

upload
collections

query input

collection

information retrieval

w
sA

D
AM

Figure 3. System view of ADAM.

III. ADAM: SYSTEM MODEL

In the following, we detail the architecture and the con-
cepts that underly ADAM. Information retrieval systems are
often divided into an off-line part, i.e., the feature extraction,
and an on-line part, i.e., the query phase (see Figure 2). In
both phases, we hand over the responsibility for the storage,
organization and retrieval of multimedia objects to ADAM.

Figure 3 gives a broad overview of the system architec-
ture. The middleware wsADAM acts as a gate to all functions
of ADAM. It is responsible for the distribution of new data
(at feature extraction-time) and –in interplay with dbADAM–
the orchestration of queries (at query-time). dbADAM is the
core of the system that stores and retrieves documents from
the database. The ADAM system can be scaled to larger
collection sizes by adding new dbADAM shards that act
as workers for the wsADAM layer. Finally, docADAM is
responsible for storing and retrieving the actual multimedia
documents (or excerpts of it) for display purposes.

A. Components

1) wsADAM: wsADAM constitutes a middleware layer
acting as an entry point for access to any other component of
ADAM. It assumes in both phases of an IR system (on- and
off-line) the role of central orchestrating component. Despite
the orchestrating nature of wsADAM, this component can be
distributed to multiple sites which can all act separately as
a gate to the ADAM system.

At feature extraction-time, i.e., the off-line part of an
information retrieval system, wsADAM is responsible for the
feature extraction and distribution of new multimedia objects
to one or multiple dbADAM shards. The extracted features
are then distributed –ensuring an even distribution– to one or
multiple dbADAM servers and stored there. The multimedia
object itself is stored on the docADAM servers.

At query-time, i.e., the on-line part of an IR system, the
middleware layer wsADAM intercepts incoming queries and
distributes these to all dbADAM shards in a MapReduce

fashion. wsADAM acts as a broker that distributes (map) and
orchestrates the sub-queries running on the separate nodes,
collects their results and combines these to one single, result
set (reduce) that is returned to the query initiator.

2) dbADAM: dbADAM is responsible for storing and
retrieving the extracted feature vectors and additional meta
data. At its core, dbADAM is an adapted relational database
using an extended SQL dialect: It supports a new data
type for storing the features extracted from the multimedia
object. For querying the features, dbADAM provides lan-
guage constructs to support k nearest-neighbour retrieval.
In addition, similarity queries can be enriched to take
Boolean predicates to further limit the results. dbADAM
allows to use union or intersect operations for single-/multi-
feature single-/multi-object queries (as defined by [13])
by applying distance combining functions that are based
on fuzzy logic. To increase the performance of similarity
retrieval in big multimedia collections, dbADAM implements
Vector Approximation indexing. Finally, dbADAM supports
specialized function-creation methods for defining distance
functions that can be used in similarity queries to calculate
the similarity between two multimedia objects.

dbADAM knows the following additional SQL statements:
• FEATURE data type to store extracted features
• adjusted SELECT statement that allows to perform a

similarity-based retrieval
• adjusted UNION and INTERSECT operations with op-

tions CRISP or STANDARD for distance combination
• CREATE VA and DROP VA with option for
EQUIDISTANT and EQUIFREQUENT MARKS

• CREATE, ALTER and DROP commands for DISTANCE
functions to create custom distance functions

The number of dbADAM shards to deploy to the ADAM
system depends largely on the collection size and perfor-
mance requirements. By adding additional dbADAM shards
the local collection size on each shard can be reduced with
overall improvements in efficiency.

Author Manuscript
The final publication is available at IEEE Xplore via http://ieeexplore.ieee.org/document/6906809/
and https://doi.org/10.1109/BigData.Congress.2014.66
© ️2014 IEEE

wsADAMclient dbADAM

SQL
statement

object +
meta data

feature extraction

docADAM

da
ta

 in
se

rti
on

4

6

1

INSERT INTO mm_tbl (f, keyword)
VALUES
 ('<0.74, 0.42, ..., 0.00>',
 'orange')

query string generation query execution52 3

010001 1
100100 2
010101 3
101010 4
000011 5

multimedia object

date: 25/11/13
location: Basel, CH
keyword: orange

meta data

0
BBBBB@

0.74
0.42
0.11

...
0.00

1
CCCCCA

storing in relation and in index
B-treeVA Filerelation

Figure 4. Data insertion process in ADAM.

B. Concepts

1) Data Definition and Data Insertion: The creation of a
collection within ADAM necessitates that the user specifies
various elements: First, one or multiple feature extraction
algorithms have to be added to wsADAM. These could
include extraction algorithms for local features, such as
SIFT [14], and extraction algorithms for global features,
such as the dominant color descriptor. The feature extraction
algorithms are applied in the off-line phase for extracting
features from new multimedia objects added to the collection
and at on-line time for performing the feature extraction
on query objects (e.g., to extract the features from a query
sketch) used for retrieval. Second, the relation that is used to
store the feature data and the corresponding meta data has
to be defined. Optionally, custom distance functions can be
created for use at retrieval time. Finally, indices can be added
to the relation to increase the efficiency of query processing
in the on-line phase of the system.

To insert data into a relation, a new multimedia object
is given together with predefined, structured meta data to
wsADAM (1). wsADAM uses the available feature extraction
algorithms to extract the features of the new object (2).
It generates a query string (3) that is sent to one of the
dbADAM shards (4) to store the extracted feature vector and
the meta data (5). The multimedia object itself is stored on
docADAM (6). Figure 4 summarizes the insertion process.

2) Retrieval: ADAM supports both Boolean retrieval and
approximate similarity search. Boolean retrieval can be ap-
plied on all structured fields, i.e., the meta data correspond-
ing to an object (such as the content creator, the creation
time, etc.). Similarity-based retrieval, on the other hand, can
be used for searching within the extracted feature vectors
for k similar documents (in a k nearest neighbor search).

Text retrieval systems have known the problem of source
selection very well, i.e., how to select only a subset of
shards that is able to answer a given query [15]. Multimedia
retrieval has currently no solution to this problem. Thus,
queries must be posed to all shards in the system, if no other
(Boolean-based) selection mechanism is present. In ADAM,
queries are sent to all available shards and processed in a
MapReduce fashion. Figures 5 and 6 illustrate the processing
of a query in a deployment and a behavior view, respectively.

When a query reaches wsADAM (1), the query extractor
extracts (2) the necessary features from the incoming query
object (e.g., a sketch) and that is used by the query generator
to generate a query string (3). wsADAM sends the generated
query string to all dbADAM shards (4). Considering the
MapReduce paradigm, this step corresponds to the map
part: the query received by the query master in wsADAM
is sent to all dbADAM shards that constitute the workers.
The dbADAM shards use the query string to perform a local
lookup on their content (5) and return their local results
(6) to the orchestrating query master. The result collector
of wsADAM retrieves the results and constructs a single,
coherent result set (7) in a reduce step. For the reduction, the
lists containing the subresults from each shard are merged
and sorted according to the distance measure. The results
are then returned to the query initiator (8). Subsequently,
the client contacts wsADAM to retrieve from docADAM the
documents to display (9).

3) Indexing: For improving query efficiency, ADAM sup-
ports an adapted version of the Vector Approximation (VA)
File as introduced in [10]. The idea of VA indexing is to
compress using a quantization approach feature vectors to
a simple short signature and later query the signatures in a
sequential manner. To create a VA signature, a fixed-length
bit string for each data point is generated. For that purpose,
the data space is divided in 2btot cells, where btot denotes the
total length of the bit-signature, and the cells are enumerated
in a binary way. Each dimension receives bd bits that are
finally concatenated to create the full bit mask [10].

To constitute the cells, ADAM provides the user two
different strategies, i.e., an EQUIDISTANT strategy, in
which all cells have the same size in the feature space,
and an EQUIFREQUENT strategy that builds up the cells by
sampling from the data space and creating cells that contain
approximately the same amount of data points.

At query time, in a first prefiltering phase, the VA index
is used to perform a coarse filtering based on the bit
string. Using the VA signature, an upper and lower bound
of the distance can be calculated with very few simple
calculations. The bounds are used to determine whether
the data object is within boundaries that would make it
come into consideration for the final results. Because of the
compactness of the VA signatures, only a small amount of

Author Manuscript
The final publication is available at IEEE Xplore via http://ieeexplore.ieee.org/document/6906809/
and https://doi.org/10.1109/BigData.Congress.2014.66
© ️2014 IEEE

server

wsADAM

feature
extractor

query
object

result
collector

server

docADAM

server

dbADAM

server

dbADAM

server

dbADAM

query string

result set

5 5 5

4

6

9

7

1

8

reduce

map

client

query
generator

32

Figure 5. Query processing in ADAM with focus on the deployment.

wsADAMclient dbADAM
query formulation

SELECT * FROM mm_tbl
WHERE keyword = 'orange'
USING DISTANCE MINKOWSKI(1)
 (f, '<0.78, ..., 0.00>')
ORDER USING DISTANCE
LIMIT 10

feature extraction query string generation
query
object

SQL
statement

query execution

result
set

result
list

merging independent results

docADAM

result display

qu
er

y
pr

oc
es

si
ng

re
su

lt
pr

oc
es

si
ng

B-tree VA File
1

2

4

5

6

7

8

9

AND

010001 1
100100 2
010101 3
101010 4
000011 5
101011 6

30
BBBBB@

0.74
0.42
0.11

...
0.00

1
CCCCCA

1 0.3 orange
2 0.5 apple
3 0.5 pear
4 0.8 banana

1 0.4 citrus
2 0.9 apple
3 0.9 tomato
4 0.9 kiwi

1 0.3 lime
2 0.4 grapef
3 0.8 fig
4 0.9 mango

1 0.3 orange
2 0.3 lime
3 0.4 citrus
4 0.4 grapef

r dist keyword r dist keyword r dist keyword r dist keyword

1 0.3 orange
2 0.3 lime
3 0.4 citrus
4 0.4 grapef
...

r dist keyword

relation scan

Figure 6. Query processing in ADAM with focus on the system behavior.

pages have to be loaded to read the full index. In the second
phase, the refinement phase, if the multimedia object has not
been filtered out in the first phase already, the exact distance
is calculated by loading the full feature vector. Thus, the full
and exact calculation of the distance has not to be processed
for all data points, avoiding unnecessary data page accesses
and full distance computations while at the same time not
deteriorating the quality of the results [10].

IV. IMPLEMENTATION

A. wsADAM

We have implemented wsADAM as a Java web service
that can be deployed to multiple nodes. On the one hand,
it is responsible for the off-line feature extraction. On the
other hand, at query time, it receives JSON messages from
the clients and builds according to its own rules the query
string to send to the dbADAM instances.

wsADAM uses the MapReduce paradigm to process a
query. Our implementation follows very much the ideas as
suggested in [16]: wsADAM acts as a master that orches-
trates the query executed on all dbADAM shards. Then,
wsADAM is responsible for creating a coherent result set
that is returned to the query initiator.

B. dbADAM

dbADAM is implemented in PostgreSQL 9.3 and is, thus,
based on the object-relational data model. We have extended
PostgreSQL to support the storage of feature vector data
using a new FEATURE data type. Further, we have extended
the SELECT statement to support similarity-based queries
by applying a distance function on the feature vectors. A
SELECT statement in dbADAM generally looks as follows:

SELECT * FROM mm_tbl
WHERE keyword = ‘orange’
USING DISTANCE MINKOWSKI(1)

(f, ‘<0.78,...>’)
ORDER USING DISTANCE
LIMIT 10;

in which the traditional WHERE statement is used for per-
forming a Boolean retrieval and the USING DISTANCE
statement is used to denote a similarity retrieval. We have
adapted the query plan generator to efficiently combine
Boolean and similarity retrieval. Furthermore, we have
added several useful functions to dbADAM such as the calcu-
lation of the Minkowski distances, as shown in the example.
The query vector is denoted in the example using ‘<...>’,
which is the way ADAM specifies feature vectors.

Author Manuscript
The final publication is available at IEEE Xplore via http://ieeexplore.ieee.org/document/6906809/
and https://doi.org/10.1109/BigData.Congress.2014.66
© ️2014 IEEE

V. PERFORMANCE RESULTS

A. Experimental Setup

We have evaluated ADAM in the context of a content-
based image retrieval (CBIR) application that exploits hand-
drawn sketches to search in a collection of images for similar
objects. The application uses angular radial partitioning
(ARP) [17] to constitute 4×4 partitions in an image. Using
the partitions, a feature vector is constructed containing the
first two moments (mean and variance) and the joint moment
(covariance) computed in the CIELAB color space. For each
image in the collection, thus, a feature vector with 144
dimensions (i.e., 16 partitions times 3 moments times 3 color
channels) is stored in dbADAM.

For the evaluation, we have used the ImageNet collec-
tion containing 14 million images [18]. The collection is
organized according to the WordNet ontology. Hence, all
images come with a synset identifier –and, thus, ultimately
with keywords– that denotes a cognitive synonym to which
an image belongs to.

We run ADAM on 28 small Ubuntu instances on Microsoft
Windows Azure (1 core, 1.6 GHz CPU, 1.75 GB RAM).
The full collection is sharded uniformly and randomly to
the 28 instances, such that each shard stores about 500’000
images. The shards are coordinated and orchestrated by
the wsADAM component that runs as well from a machine
within Windows Azure (4 cores, 1.6 GHz CPU, 7 GB RAM).

The extracted features in the dbADAM shards are all
indexed using the equifrequent marks strategy. The process
of creating an index over all features takes in the order of 2-3
minutes. The index uses about 27 MB disk space on 33’810
pages (each 8 KB) per shard making up a total of about 756
MB for the whole collection. It is evident that the size of the
index largely depends on how many bits are assigned to each
dimension. In our current implementation, each dimension
is quantized using 64 marks and, thus, represented by 6 bits.

For the evaluation, we have gathered 66 hand-drawn
sketches of 6 different images that are contained in the
collection. These sketches are used as a basis to measure the
systems’ performance at a fixed collection size when using
various query paradigms and options. Figure 7 displays the
images used in the evaluation and an exemplary choice of
the hand-drawn sketches.

We use the sketches as query input and search in the full
collection of 14 million images while measuring the time to
perform the retrieval. Since our focus is not on the extraction
of features, which is highly dependent on the extraction
algorithm used, we ignore the time to build up the query
string and only consider the time for ADAM to retrieve the
feature vector from the dbADAM shards and combine the
results to a single set. To avoid anomalies in the results due
to network congestions, etc., we have run each experimental
setting 150 times (using the various sketches) and average
over the retrieval times.

lion

bee

sheep

balloon

teddy

orange

id: n02129165_562

id: n02206856_1042

id: n02412080_12492

id: n02782093_4814

id: n04399382_12879

id: n07747607_2382

Known item
to search for

Sample query sketches

Figure 7. Exemplary sketches used in the evaluation of ADAM.

B. Retrieval Task

1) Evaluation of the shards: Table I displays the mean
time of the single shards to answer a query under varying
query parameters, e.g., when making use of VA indexing,
when applying a keyword in the query, or when changing
the number of results returned by each system (LIMIT) at
a fixed collection size of 14 million images.

We display the same data in a box plot in Figure 8 (which
we scale to the interval [0, 5] for better readability of the
query times near 0). Box plots are useful means to display
the distribution of data. Figure 8 shows for the various
sketches the distribution of query times over the different
experimental runs and the different machines. The thick line
within the box denotes the 50% quantile, i.e., the median,
whereas the lower and the upper line of the box represent
the 25% quantile and the 75% quantile, respectively. For the
sketches that represent the “lion” image, for instance, 25% of
the queries returned within 0.23s, in the median the reponse
time was 0.41s and in 75% of the cases the queries were
answered in 0.49s by a dbADAM shard. The dots represent
outliers outside of the ±1.5 interquartile range.

Table I and Figure 8 show that the use of the VA
index structure heavily improves the retrieval time and the
efficiency of answering a query. In all cases the mean
(and the median, as the box plot shows) is lower when
making use of VA indexing compared to when not using
it. The table also shows that the size of the return set has
no influence on the retrieval time. In contrast, the use of

Author Manuscript
The final publication is available at IEEE Xplore via http://ieeexplore.ieee.org/document/6906809/
and https://doi.org/10.1109/BigData.Congress.2014.66
© ️2014 IEEE

lion bee sheep balloon teddy orange

0

1

2

3

4

5

VA index
used

VA index
not used

VA index
used

VA index
not used

VA index
used

VA index
not used

VA index
used

VA index
not used

VA index
used

VA index
not used

VA index
used

VA index
not used

images

qu
er

y
tim

e
(in

 s
)

Figure 8. Box plot of the query time for the single shards scaled to the interval [0, 5].

keywords surprisingly negatively affects the mean retrieval
time when not using the index. We assume that this is due to
many results adhering to the Boolean condition that finally
lead to a large number of pages that need to be loaded
separately. Thus, the combination of both index structures
can only yield higher times, since it requires the loading
of further database pages. Finally, when considering only
the cases using the built-in index structures, very responsive
query times can be achieved.

2) Evaluation of the ADAM system: So far we have
only considered the query time of the single shards. In the
following, we discuss the response time of the whole system.
Since wsADAM waits for all shards to answer a query (up to
a fixed timeout of 150s) and only then returns the results to
the query initiator, the response times of the whole ADAM
system are higher than of the single shards. Table II shows
the query time for the whole ADAM system.

Again, the table shows that the combination of Boolean
retrieval and similarity retrieval compared to using similarity
retrieval only is slower, even though very efficient B-tree
index structures are exploited. In our evaluation using VA
indexing, all similarity-based queries run in less than 0.7s;
on the other hand, all compound queries, i.e., using both

Table I
QUERY TIME OF THE SHARDS IN SECONDS FOR EXPERIMENTS WITH

DIFFERENT PARAMETERS FOR COLLECTION OF 14M IMAGES.

Index Keywords Limit Mean Time

with VA

with kw
10 0.43 s
50 0.41 s
100 0.41 s

without kw
10 0.42 s
50 0.43 s
100 0.46 s

without VA

with kw
10 9.5 s
50 9.5 s
100 9.5 s

without kw
10 2.75 s
50 2.75 s
100 2.75 s

Boolean and similarity retrieval in combination, finished
within 4s. Table II shows again that the use of the VA
index structure largely improves retrieval. The median (not
displayed in the table) of the query time when using VA lies
at 0.66s, whereas when not making use of VA indexing the
median is at 14.60s.

Overall, our evaluation has shown a very good perfor-
mance in big multimedia collections, in particular when
making use of the provided index structures. The behavior
of ADAM with smaller and larger feature vector sizes has
not yet been evaluated, as well as the number of bits per
dimension (bd) used for storing the quantized version of
the feature vector. Furthermore, we have not yet evaluated
the influence of the number of dbADAM shards and the
behaviour of the retrieval system when increasing the num-
ber of parallel queries and the collection size, respectively.
Due to the architecture of ADAM, however, we believe
that it is possible to further increase the collection size by
means of horizontal scaling without experiencing significant
efficiency losses. Considering the mean response time of the
total system for the current setting, we believe to present
with ADAM a retrieval system that is able to handle big
multimedia collections very efficiently.

Table II
TOTAL QUERY TIME IN SECONDS FOR EXPERIMENTS WITH DIFFERENT

PARAMETERS FOR COLLECTION OF 14M IMAGES.

Index Keywords Limit Mean Time

with VA

with kw
10 1.76 s
50 1.71 s
100 1.76 s

without kw
10 0.50 s
50 0.52 s
100 0.55 s

without VA

with kw
10 53.57 s
50 53.86 s
100 53.43 s

without kw
10 3.00 s
50 3.02 s
100 3.01 s

Author Manuscript
The final publication is available at IEEE Xplore via http://ieeexplore.ieee.org/document/6906809/
and https://doi.org/10.1109/BigData.Congress.2014.66
© ️2014 IEEE

VI. CONCLUSION

With ADAM, we have introduced a novel system that
bridges the gap between databases and information retrieval
systems for big multimedia data.

In terms of Big Data, ADAM tackles the aspect of variety
by allowing to jointly store, manage and query structured
and unstructured, heterogeneous data using various query
paradigms, i.e., Boolean retrieval, similarity-based vector
space retrieval and the combination of the two. While ADAM
is evaluated using an image retrieval application, it is not
bound to one specific retrieval problem or content type,
but rather provides a generic solution for a large variety of
search-based applications in the context of big multimedia
retrieval. Since it leaves the implementation of the feature
extraction to the user, while only considering the notion of a
feature vector explicitly, the ADAM system is able to handle
other multimedia data, as well. We are currently developing
a video retrieval application that uses ADAM as the storage
system for storing and retrieving feature vectors.

In terms of volume and velocity, ADAM has been de-
signed and implemented to support efficiency and scalability
of the retrieval process. First, in terms of the supported
index structures, we have implemented vector approximation
indexing within dbADAM to increase the performance of
similarity retrieval in large collections. Second, from a
systems point of view, ADAM uses wsADAM for map and
reduce operations in combination with the dbADAM shards
to distribute the burden at retrieval time.

In our future work, we plan to evaluate ADAM using
even larger collections and applying various –also more-
compute intesive– feature extractions. We plan to further
analyze possible ways of distributing data and to approach
the problem of source selection in the ADAM system, which
is a non-trivial task to solve if no Boolean predicates are
available. Furthermore, we intend to test ADAM in a setting
with a high number of parallel queries. Finally, we plan to
extend our system with mechanisms to handle failures.

ACKNOWLEDGMENTS

This work was partly supported by the Swiss National
Science Foundation, project iMotion, and the Microsoft
Windows Azure research grant, project ADAM+.

REFERENCES

[1] E. L. Wimmers and M. J. Carey, “Towards Heterogeneous
Multimedia Information Systems: The Garlic Approach,” in
Proc. 1995 Research Issues in Data Engineering, Taipei,
1995, pp. 124–131.

[2] V. E. Ogle and M. C. Stonebraker, “Chabot: Retrieval from
a Relational Database of Images,” Computer, vol. 28, no. 9,
pp. 40–48, 1995.

[3] A. P. de Vries, “Content and Multimedia Database Manage-
ment Systems,” Ph.D. dissertation, Centre for Telematics and
Information Technology, Univ. of Twente, 1999.

[4] V. Oria, M. T. Oezsu, and P. Iglinski, “Querying Images in
the DISIMA DBMS,” in Proc. 2001 Multimedia Information
Systems, Capri, 2001, pp. 89–98.

[5] C. E. Alvez and A. R. Vecchietti, “Combining Semantic and
Content Based Image Retrieval in ORDBMS,” in Proc. 2010
Knowledge-based and Intelligent Information and Engineer-
ing Systems, Cardiff, 2010, pp. 43–55.

[6] D. Moise et al., “Terabyte-scale Image Similarity Search:
Experience and Best Practice,” in Proc. 2013 IEEE Big Data,
Santa Clara, 2013, pp. 674–682.

[7] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” in Proc. 1984 ACM SIGMOD Int. Conf. Manage-
ment of Data, Boston, 1984, pp. 47–57.

[8] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An Efficient
Access Method for Similarity Search in Metric Spaces,” in
Proc. 1997 Very Large Data Bases, Athens, 1997, pp. 426–
435.

[9] S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The X-Tree: An
Index Structure for High-Dimensional Data,” in Proc. 1997
Very Large Data Bases, Mumbai, 1997, pp. 28–39.

[10] R. Weber, H.-J. Schek, and S. Blott, “A Quantitative Analysis
and Performance Study for Similarity-Search Methods in
High-Dimensional Spaces,” in Proc. 1998 Very Large Data
Bases, New York, 1998, pp. 194–205.

[11] C. C. Aggarwal and P. S. Yu, “The iGrid Index: Reversing
the Dimensionality Curse for Similarity Indexing in High
Dimensional Space,” in Proc. 2000 ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, Boston, 2000, pp.
119–129.

[12] C. Calistru, C. Ribeiro, and G. David, “Multidimensional
Descriptor Indexing: Exploring the BitMatrix,” in Proc. 2006
Int. Conf. Image and Video Retrieval, Tempe, 2006, pp. 401–
410.

[13] K. Böhm et al., “Fast Evaluation Techniques for Complex
Similarity Queries,” in Proc. 2001 Very Large Data Bases,
Roma, pp. 211–220.

[14] D. G. Lowe, “Object Recognition from Local Scale-Invariant
Features,” in Proc. 1999 IEEE Int. Conf. Computer Vision,
Kerkyra, 1999, pp. 1150–1157.

[15] W. Meng, C. Yu, and K.-L. Liu, “Building Efficient and
Effective Metasearch Engines,” ACM Computing Surveys,
vol. 34, no. 1, pp. 48–89, 2002.

[16] J. Dean and S. Ghemawat, “MapReduce: A Flexible Data
Processing Tool,” Communications of the ACM, vol. 53, no. 1,
pp. 72–77, Jan. 2010.

[17] A. Chalechale, A. Mertins, and G. Naghdy, “Edge Image
Description using Angular Radial Partitioning,” in Vision,
Image and Signal Processing, vol. 151, no. 2, pp. 93–101,
2004.

[18] J. Deng et al., “ImageNet: A Large-Scale Hierarchical Image
Database,” in Proc. 2009 IEEE Conf. Computer Vision and
Pattern Recongition, Miami, pp. 248–255.

Author Manuscript
The final publication is available at IEEE Xplore via http://ieeexplore.ieee.org/document/6906809/
and https://doi.org/10.1109/BigData.Congress.2014.66
© ️2014 IEEE

