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Abstract 

Urinary tract infection by uropathogenic Escherichia coli is one of the most frequent 

infectious diseases requiring an antibiotic treatment. Since the recurrent exposure to 

antibiotics leads to the emergence of antibacterial resistance, alternative prevention and 

treatment strategies are urgently needed.  

The interaction of the bacterial lectin FimH with mannosylated glycoproteins on the surface 

of the bladder mucosa is the initial step triggering the infection. Biaryl 

α-D-mannopyranosides were identified as potent FimH antagonists preventing this first 

contact.  

The present thesis describes the development of two biaryl mannosides, that are, the biphenyl 

mannoside bearing a para-carboxylate on the terminal ring of the aglycone and the 

5-nitroindolinyl phenyl mannoside, towards drug-likeness. For this purpose, various 

approaches, such as the introduction of ester or phosphate prodrugs, the replacement of 

essential substituents with bioisosteres, the optimization of the substitution pattern, or the 

introduction of aromatic heterocycles, were explored. Several assays addressing the 

characterization of the physicochemical and in vitro pharmacokinetic properties, i.e. pKa, 

lipophilicity, aqueous solubility, membrane permeability, plasma protein binding, chemical 

and metabolic stability, were implemented for the identification of the most successful 

strategies providing high oral bioavailability, metabolic stability, and sustained renal 

clearance as major route of drug elimination.  

As a result of our thorough studies, two approaches proved most advantageous for the 

development of orally available FimH antagonists: first, the prodrug approach, i.e. the 

introduction of an alkyl promoiety masking the carboxylic acid substituent of the biphenyl 

mannoside or the creation of phosphate monoester prodrugs conferring high aqueous 

solubility, and second, the replacement of the carboxylic acid with bioisosteres providing 

optimal physicochemical properties for oral absorption and renal excretion. 
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Abbreviations 

ABC-transporter ATP-binding cassette transporter 

ADMET absorption, distribution, metabolism, excretion, toxicity 

ALP alkaline phosphatase 

ATP adenosine 5’-triphosphate 

AUC area under the curve 

BBB blood brain barrier 

BChE butyrylcholinesterase 

BNPP bis(4-nitrophenyl) phosphate 

C concentration 

Caco-2 cells human colorectal adenocarcinoma cells 

CES carboxylesterase 

CL’int intrinsic clearance 

CRD carbohydrate recognition domain 

CYP450 cytochrome P450 

D distribution coefficient 

DMEM Dulbecco’s Modified Eagle’s Medium 

DMSO dimethyl sulfoxide 

DPBS Dulbecco’s Phosphate Buffered Saline 

ER endoplasmic reticulum 

FBS fetal bovine serum 

fb fraction bound 

fu fraction unbound 

GFR glomerular filtration rate 

GSE general solubility equation 

hCE1 human carboxylesterase 1 

hCE2 human carboxylesterase 2 

hERG human Ether-à-go-go-Related Gene 

HLM human liver microsomes 

HPLC high-performance liquid chromatography 

IC50 half maximal inhibitory concentration 

J drug flux (mass per area per time) 

Ka acid dissociation constant 
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LC-MS liquid chromatography-mass spectrometry 

MAD maximum absorbable dose 

MDCK cells Madin Darby Canine Kidney cells 

MeCN acetonitrile 

MeOH methanol 

MP melting point 

MTT thiazolyl blue tetrazolium bromide 

NADPH nicotinamide adenine dinucleotide phosphate 

NMR nuclear magnetic resonance 

OAT organic anion transporter 

OCT organic cation transporter 

OD optical density 

P partition coefficient 

PAMPA parallel artificial membrane permeability assay 

PDB protein data bank 

Papp apparent permeability 

Pe effective permeability 

PPB plasma protein binding 

PSA polar surface area 

RLM rat liver microsomes 

S solubility 

S9 fraction supernatant obtained from differential centrifugation at 9000g 

SGA spectral gradient analysis 

SITT small intestinal transit time 

SIWV small intestinal water volume 

SLC solute carrier 

t1/2 half-life 

TEER transepithelial electrical resistance 

TRIS Tris(hydroxymethyl)aminomethane 

UDP uridine 5’-diphosphate 

UDPGA uridine 5’-diphosphoglucuronic acid 

UPEC uropathogenic Escherichia coli 

UTI urinary tract infection 

UV/Vis spectroscopy ultraviolet-visible spectroscopy
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1 Introduction 

1.1 Urinary tract infection 

Urinary tract infection (UTI) is one of the most frequent bacterial infections worldwide, 

which affects millions of people – particularly women – every year and accounts for high 

medical costs.1 As many as 60% of women experience at least one UTI episode during their 

lifetime, and approximately 30-40% of patients suffer from at least one recurrence.2 Acute, 

uncomplicated lower urinary tract infection, commonly referred to as cystitis or bladder 

infection, requires an antibiotic treatment to tackle the symptoms, which are dysuria, frequent 

and urgent urination, bacteriuria, and pyuria, and to prevent more devastating or even life 

threatening complications like pyelonephritis and urosepsis.3 The first-line treatment for 

uncomplicated UTI is a three-day antibiotic treatment with a combination of trimethoprim-

sulfamethoxazole or with fluoroquinolone (e.g. ciprofloxacin).4 However, the repeated use of 

antibacterial chemotherapeutics can lead to the emergence of antimicrobial resistance and, as 

a consequence, to treatment 

failure.5 Increasing resistance 

faces a limited number of 

marketed antiinfectives, which 

manifests the need for novel, 

non-antibiotic strategies to 

prevent and treat UTI.  

1.1.1 Pathogens and the 

infection cycle 

About 80-85% of manifest 

episodes of UTI are caused by 

uropathogenic Escherichia coli 

(UPEC). About 5-15% are 

caused by Staphylococcus 

saprophyticus, whereas 

Klebsiella pneumoniae and 

Proteus mirabilis occur in small 

numbers.6 

 

Figure 1.1. Infection cycle of uropathogenic E. coli (UPEC) in 

the lower urinary tract (adopted from Ref. 9). Initial bacterial 

adhesion (1) to the urothelial cells is mediated by type 1 pili 

binding to mannosylated glycoproteins on the cell surface. UPEC 

consequently invade into the cells (2) where they start replicating 

and forming intracellular biofilms (3), which protect them from 

host defense mechanisms and antibiotic treatment. UPECs are 

released as filamentous structures upon exfoliation of bladder 

epithelial cells (4) and spread in the surrounding tissue where they 

can infect further urothelial cells (5).  
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UPEC undergo a well-defined infection cycle within the host (Figure 1.1).7-9 Bacterial 

adherence to the epithelial cells in the lower urinary tract is the first step of the pathogenesis 

(1). This interaction is mediated by bacterial type 1 pili, which target the mannosylated 

glycoprotein uroplakin Ia on the surface of the urinary bladder mucosa.10 This initial step of 

adhesion prevents UPEC from being removed from the bladder by micturition and, at the 

same time, initiates the invasion into the bladder epithelial cells (2). Once within the host 

cells, UPEC start replicating and forming intracellular biofilms (3), which protect them from 

host defense mechanisms and antibiotic treatment. In response to the infection, the epithelial 

cells start exfoliating (4), whereupon the bacteria leave the cells as filamentous structures and 

spread in the environment (5), where they can infect surrounding urothelial cells.  

1.1.2 Type I pilus – structure and assembly 

The type 1 pilus, mediating the initial contact of the bacterium to the host cell, is composed 

of a helical rod formed by 500 to 3000 copies of the main structural subunit FimA and of a 

linear tip fibrillum formed by 

FimG and FimF and by the 

mannose specific adhesin FimH.11 

The pilus rod is assembled 

through a chaperone-usher 

pathway (Figure 1.2). Each 

subunit has an incomplete 

immunoglobulin-like fold, with a 

missing C-terminal beta strand. 

During the assembly in the 

bacterial periplasm, the subunit is 

bound to the chaperone protein 

FimC, which donates the missing 

beta strand and stabilizes the 

subunit. Upon the delivery to 

FimD – the usher – it is released 

from FimC and linked to the next 

subunit, which itself donates the 

missing beta strand.12 

 
Figure 1.2. Schematic representation of type 1 pili and their 

assembly through the chaperone-usher pathway (adopted from 

Ref. 12). The chaperone protein FimC in the periplasm binds 

pilus subunits, accelerates the folding, and delivers the subunits 

to the transmembrane assembly platform FimD – the usher – for 

their incorporation into the pilus. The bacterial lectin FimH is 

located on the tip of the pilus.  
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1.1.3 The bacterial lectin FimH 

The adhesin FimH located at the tip of the type 1 pilus consists of two immunoglobulin-like 

domains: the N-terminal lectin domain (residues 1 – 156) and – connected by a short linker – 

the C-terminal pilin domain (residues 160 – 279).13 The lectin domain encloses the 

carbohydrate recognition domain (CRD) binding to the oligomannosides present on the cell 

surface, whereas the pilin domain anchors the adhesin into the pilus and regulates the switch 

between the low- and high-affinity states of the lectin domain.14 The CRD, as characterized 

from the crystal structure of FimH with α-D-mannose (PDB code 1KLF),15 consists of a 

deep, negatively charged pocket which accommodates the mannose by means of an extended 

hydrogen bond network. The entrance to the binding site is composed of three hydrophobic 

amino acids (Tyr 48, Tyr 137, and Ile 52) and is therefore referred to as the “tyrosine gate”. 

When FimH was crystallized with n-butyl α-D-mannopyranoside (PDB code 1UWF), the 

butyl moiety provided van der Waals interactions with the tyrosine gate.16 This observations 

sparked the development of α-D-mannopyranosides with hydrophobic aglycones as FimH 

antagonists.  

1.2 FimH antagonists 

The inhibition of the initial bacterial adherence by FimH antagonists is a promising approach 

to tackle the resistance problem of the current antibiotic treatment strategies.17 Besides being 

efficacious, these anti-adhesive compounds should however fulfill a set of requirements: they 

must be orally available, inexpensive, and safe and should not induce antimicrobial resistance 

mechanisms.  

In the late 1970s, Sharon and coworkers identified methyl α-D-mannopyranoside (1) as an 

inhibitor of the bacterial adherence to the epithelial cells.18 However, only weak interactions 

in the milli- to micromolar range were observed. For the further improvement, two different 

approaches were explored. First, multivalent mannosides showing nanomolar affinities to the 

carbohydrate recognition domain (CRD) were identified19-21 and second, the affinity of 

monovalent α-D-mannopyranosides was optimized by modifications of the aglycone portion. 

Bouckaert and coworkers investigated different alkyl α-D-mannopyranosides as potential 

FimH antagonists and identified a length of seven carbon atoms, such as present in n-heptyl 

α-D-mannopyranoside (2), to be optimal for target affinity.16 Otherwise, aromatic glycosides 

were described, such as p-nitrophenyl α-D-mannopyranoside (3) showing a 30 times higher 

inhibitory effect than methyl α-D-mannopyranoside.22-24 Extension of the aromatic agylcone 



Introduction 

 14 

led to squaric acid monoamide derivatives (→ 4),25, 26 biphenyl mannosides modified with a 

carboxylic acid substituent (→ 5a-f),27-30 and indolinyl phenyl mannosides (→ 6).31 These 

structures show a high affinity in the nanomolar range because of additional hydrophobic 

interactions of the aglycone with the aromatic residues of the tyrosine gate. However, the 

binding modes can differ. The aglycones of the alkyl mannosides, for example, reside 

between Tyr48 and Tyr137 of the tyrosine gate.16 By contrast, the bulky aromatic aglycones 

adopt a different conformation, in which the interaction occurs only with Tyr48, as suggested 

by the X-ray crystal structure of FimH co-cristallized with the biphenyl mannoside 5a.27 

Electron withdrawing substituents on the terminal ring of the biaryl aglycone, e.g. the 

carboxylic acid present in the biphenyl derivatives 5a-f27, 28, 30 or the nitro group in antagonist 

631, furthermore enforce the π-π stacking interactions with the electron rich Tyr48. A 

representative set of the most important monovalent FimH antagonists are summarized in 

Figure 1.3.  
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Figure 1.3. Alkyl and aryl α-D-mannopyranosides identified as potent FimH antagonists.  

 

1.3 Drug delivery to the urinary bladder: pharmacokinetic aspects 

For reasons of convenience, oral dosing is basically the preferential route of drug application 

for the treatment of UTI. Oral bioavailability, metabolic stability, and renal excretion are 

therefore key issues for delivering orally dosed FimH antagonists to the urinary bladder.  

1.3.1 Oral bioavailability 

Oral bioavailability, defined by the U.S. Food and Drug Administration as ‘the rate and 

extent to which the active ingredient or active moiety is absorbed from a drug product and 

becomes available at the site of action’,32 relies first on the rapid and quantitative dissolution 
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of the applied dose in the intestine, second on the transfer across the membranes lining the 

intestine by means of passive diffusion or carrier-mediated transport, and third on the 

stability against metabolic modifications during the absorption in the enterocytes and during 

the first pass through the liver.33, 34 This subchapter sets the focus on aqueous solubility and 

membrane permeability, which are the key determinants of absorption in the small intestine.35 

Metabolic stability will be exposed in the subsequent section. 

Aqueous solubility. Since only drug molecules dissolved in the aqueous intestinal fluids are 

available for absorption, rapid and quantitative dissolution of the orally administered dose is 

the first requirement for achieving oral bioavailability. Aqueous solubility, i.e. the maximum 

amount of drug which can remain in solution under equilibrium conditions, primarily 

depends on the cristallinity of the solute, its interaction with the aqueous solvent, and the 

conditions predominant in the medium, e.g. pH, temperature, and the presence of solubilizing 

components.36 Melting point (MP) and lipophilicity as quantified by the octanol-water 

partition coefficient (log P) are key physicochemical determinants of solubility, the former as 

descriptor of the lattice energy lost in the dissolution process, the latter accounting for the 

interaction of the solute with water.37 Combining MP (in degree centigrade) and log P, the 

general solubility equation (GSE, Equation 1) estimates the molar solubility (S) of 

nonelectrolytic solid drug in aqueous medium. 

 

€ 

logSw
solid = 0.5− 0.01(MP − 25) − logP  (1) 

Membrane permeability. Passive diffusion and carrier-mediated transport both contribute to 

the intestinal absorption, with passive diffusion as the primary mechanism.38 Diffusion by 

either the paracellular route or the transcellular pathway is a concentration gradient driven 

mass transport, which is not saturable. The route between the cells is basically reserved for 

small, hydrophilic molecules.33 The ease to permeate the intestinal mucosa on the 

transcellular route (i.e. the membrane permeability) relies on the physicochemical properties 

of the whole molecule. In their seminal publication, Lipinski et al. introduced key 

physicochemical predictors of permeability, that are, molecular weight, number of hydrogen 

bond donor groups, number of hydrogen bond acceptor groups, and lipophilicity as quantified 

by the octanol-water partition coefficient (clog P).39 Moreover, Veber et al. revealed a 

positive influence of increasing molecular rigidity, as measured by the rotatable bond count, 

and a negative impact of increasing polar surface area (PSA) on permeability.40  
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In contrast to passive diffusion, carrier-mediated transcellular permeation is substrate specific 

and saturable. There exist two types of carrier-mediated permeation: facilitated diffusion and 

active transport. Facilitated diffusion means the spontaneous transfer of polar molecules or 

ions through transmembrane carrier proteins along a concentration gradient. Active transport 

means the carrier-mediated transfer of substrate across the membrane against the 

concentration gradient under consumption of energy provided by adenosine-5’-triphosphate 

(ATP). Intestinal epithelial cells express in their apical membrane several transporters of the 

solute carrier (SLC) superfamily supporting drug uptake, as well as ATP-dependent efflux 

pumps interfering with drug absorption.41  

Intestinal absorption. The absorptive flux per time per area (J) is proportional to the product 

of the permeability of the mucosa to the drug and the concentration gradient between the 

intestinal lumen and the portal blood (Equation 2): 

 

€ 

J = Pe × ΔC  (2) 

where Pe is the effective permeability, and ΔC is the concentration gradient across the 

mucosa.34, 42 The maximum drug concentration in the intestinal lumen, in turn, is delimited 

by its aqueous solubility. The concept of maximum absorbable dose (MAD)42 integrates the 

different aspects of drug absorption and is defined as follows (Equation 3): 

 

€ 

MAD = S × ka × SIWV × SITT  (3) 

 
 

Figure 1.4. Minimum acceptable solubility in µg/mL (adapted from Ref. 44). The columns represent the 

minimum solubility for low, medium and high permeability (ka) compounds at a projected clinical dose of 0.1, 

1.0, and 10 mg/kg body weight. The left three columns are for a 0.1 mg/kg dose, the middle three columns are 

for a 1.0 mg/kg dose, and the right three columns are for a 10 mg/kg dose. Within each group, the left column 

represents low permeability, the middle column represents medium permeability, and the right column 

represents high permeability. For the absorption of a 1.0 mg/kg dose of a drug with medium permeability, 

minimum solubility of 52 µg/ml is needed. 
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where S is the aqueous solubility, ka is the intestinal absorption rate constant as determined 

from intestinal perfusion experiments, SIWV is the small intestinal water volume (around 

250 mL), and SITT is the small intestinal transit time (around 270 min).43 By rearranging 

Equation 3, Lipinski defined the minimum solubility required for quantitative intestinal 

absorption of low, medium, and high permeability compounds at projected doses of 0.1, 1.0, 

or 10 mg/kg body weight (Figure 1.4).44  

1.3.2 Metabolic stability 

Drug metabolism includes various enzyme-mediated biotransformation reactions which lead 

towards more hydrophilic and water-soluble molecules than the parent compound.45 Intestinal 

and hepatic first pass metabolism impairs the compound availability in the bloodstream and 

promotes, in case of the FimH antagonists, undesired, non-renal clearance which prevents the 

antagonist from reaching the therapeutic target in the urinary bladder.46 Drug metabolism is 

mediated by phase I (hydrolysis, oxidation, or reduction) or phase II (conjugation) reactions. 

The cytochrome P450 (CYP450) enzyme superfamiliy, which catalyzes mono-oxygenase 

reactions, plays a dominating role in phase I biotransformation. Smith et al. defined three key 

determinants for CYP450 mediated metabolism,47 which are: 

1. The topography of the active site. 

2. The degree of steric hindrance of the access of the iron-oxygen complex to the possible 

sites of metabolism. 

3. The possible ease of electron or hydrogen abstraction from the various carbons or 

heteroatoms of the substrate.  

1.3.3 Renal excretion 

Renal excretion, i.e. the transfer of drug from the bloodstream into the urine, equals the sum 

of different mechanisms including glomerular filtration, tubular secretion and tubular 

reabsorption.48 The rate of glomerular filtration (GFR) corresponds to about 10% of the renal 

blood flow at the glomerulus of the nephron (about 125 mL/min in a 70-kg young male), and 

the primary criterion determining whether a molecule enters the ultrafiltrate is its molecular 

size.49 Consequently, drug molecules bound to plasma proteins are predominantly rejected by 

the glomerular sieve, whereas the fraction of unbound drug enters the ultrafiltrate. Clearance 

by glomerular filtration therefore equals the product of GFR and plasma free fraction (fu).50  

Secretion from the plasma into the proximal tubular lumen is primarily carrier mediated and, 

as a consequence, substrate specific and saturable. Organic cation transporters (OCT) and 
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organic anion transporters (OAT) localized on the basolateral membrane of the proximal 

tubule cells constitute the majority of the key carrier involved in secretion.41 By contrast, 

tubular reabsorption from the primary urine into plasma primarily depends on passive 

permeation. The extensive tubular water reuptake from the ultrafiltrate creates a 

concentration gradient, which drives the diffusion through the membranes.51 The octanol-

water distribution coefficient at pH 7.4 (log D7.4) was identified as key predictor for passive 

tubular reuptake47, 52 and for plasma protein binding,53 which in turn determines the GFR · fu 

factor of the glomerular filtration.  

1.4 Carbohydrate derivatives: absorption and disposition 

In recent years, only few carbohydrate derived drugs have reached the market despite the 

importance of carbohydrate-protein interactions not only for the establishment of UTI but for 

a vast array of biological processes.54 The pharmacokinetic properties inherent in 

carbohydrates and carbohydrate mimetics scarcely fit the requirements for oral bioavailability 

described above. Because of their high polarity, they are barely capable to cross the intestinal 

membranes by the passive transcellular pathway. Moreover, once systemically available, the 

polar carobohydrate derivatives suffer from rapid renal excretion, unless binding to blood 

plasma components is possible. As a consequence, carbohydrate derivatives require a 

parenteral application (e.g. low-molecular weight heparins and fondaparinux55 used as 

coagulants) or they exert their therapeutic effects in the small intestine and do therefore not 

need to be absorbed into circulation upon oral dosing (e.g. voglibose56, miglitol57, acarbose58 

used as α-glycosidase inhibitors).  

1.4.1 Strategies for achieving ‘drug-likeness’ 

For achieving ‘drug-likeness’,59 the pharmacokinetic profile of the carbohydrate derivatives 

needs to be adjusted towards enhanced lipophilicity, which conduces to both membrane 

permeability and plasma protein binding.60 However, these modifications should not 

constrain aqueous solubility, which is basically favored by high polarity, or increase the 

propensity to metabolic biotransformations. Strategies for optimizing the pharmacokinetic 

profile are modifications of the substitution pattern,61 the bioisosteric replacement of crucial 

groups,62 or the prodrug approach.63  
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Bioisosteres. Exploring bioisosteres, i.e. structurally 

distinct moieties that are similarly recognized by the drug 

target, is an appealing strategy for altering the 

physicochemical properties of a lead compound (e.g. 

lipophilicity or pKa).64 Classical bioisosteres include 

structurally simple mono-, di-, trivalent atoms or groups as 

well as ring equivalents, whereas nonclassical bioisosteres 

extend the concept to elements that comprise a different 

number of atoms and exhibit different steric and electronic 

properties compared to the functionality being emulated. 

Meanwell comprehensively reviewed classical and 

nonclassical bioisosteres recently used in the drug 

design.62 The angiotensin receptor II-antagonist Losartan 

(Figure 1.5) is a marketed drug where a bioisosteric replacement was successfully applied to 

optimize the pharmacokinetic properties.65 The replacement of a terminal carboxylic acid 

group with an isosteric tetrazole ring conferred the required oral activity and duration of 

action.  

Prodrugs. Bioreversible derivatives that are enzymatically reconverted to the active parent 

compound have become an established tool for improving the intestinal absorption potential 

by increasing membrane permeability or aqueous solubility.66  

Poor membrane permeability can be overcome by masking polar moieties of the molecule. 

The most common prodrug approach is therefore the esterification of an acid group with an 

alkyl alcohol that, upon absorption from the intestine, is cleaved by hepatic or plasma-borne 

esterases. Beaumont et al. comprehensively reviewed the prerequisites for a successful ester 

prodrug approach.63 One example of a marketed ester prodrug is oseltamivir phosphate used 

as neuraminidase inhibitor in the prevention of influenza virus infections (Figure 1.6a). 

Starting from a carbohydrate lead, the structure was optimized by eliminating polar groups 

and metabolic “soft spots” and by finally designing an ester prodrug to reach oral 

bioavailability.67 Upon absorption, the ester is hydrolyzed to the active carboxylate 

RO64-0802 with an absolute bioavailability of 80%.68 The active principle can be detected in 

the plasma within 30 minutes after application of the prodrug and reaches maximal 

concentrations after 3-4 hours.69  

NHN
N
N

N

NH3C
Cl

OH

Losartan  

Figure 1.5. Bioiososteres. During 

development of the angiotensin 

receptor II-antagonist Losartan, 

oral bioavailability was achieved 

by replacing the terminal 

carboxylic acid group with an 

isosteric tetrazole ring.65 
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Aqueous solubility of a candidate molecule can be enhanced by adding a phosphate 

promoiety, which is rapidly cleaved by the endogenous alkaline phosphatase enzyme in the 

intestinal lumen upon dissolution, but before absorption.70 Although there are many marketed 

phosphate prodrugs for parenteral administration, only few of them have been developed 

exclusively for oral administration.71 Fosamprenavir calcium (Figure 6b), an orally 

administered prodrug, is a phosphate ester of the HIV protease inhibitor Amprenavir. The 

prodrug shows better water solubility and as a consequence higher oral bioavailability than 

the pharmacologically active parent compound.72  
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Figure 1.6. Prodrugs. (a) For improving the permeability through the intestinal membranes, the polar carboxylic 

acid moiety of Oseltamivir was masked by an ethyl ester.67 (b) The aqueous solubility of Amprenavir, an HIV-

protease inhibitor, was improved by a phosphate ester approach (Fosamprenavir calcium).72  

 

1.5 ADME profiling 

A thorough pharmaceutical profiling during the lead identification and optimization process 

supports the identification of the most promising strategies for achieving ‘drug-likeness’ and 

enables the research team to specifically address unfavorable pharmacokinetic properties of 

the lead structure.73 Current profiling methods in silico and in vitro cover specific 

pharmacokinetic aspects of absorption, distribution, metabolism, or excretion and are 

therefore referred to as ADME studies, or they set the focus on the physicochemical 

properties which are the underlying descriptors for these processes. The following section 

summarizes the most common parameters and the corresponding in vitro assays. An excellent 

overview of the concepts can also be gained from Kerns et al.,45 furthermore presenting 

information on in silico and in vivo approaches.  

1.5.1 Phyiscochemical parameters 

Lipophilicity. The tendency of a compound to partition into a nonpolar matrix versus an 

aqueous matrix has been correlated to various drug properties, including permeability, 

absorption, distribution, plasma protein binding, metabolism, elimination, and toxicity.60 
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Traditionally, the partitioning is determined between octanol and aqueous buffer and 

quantified as partition coefficient (log P) or distribution coefficient (log D). The partition 

coefficient describes the partitioning at a pH where all of the compound molecules are in the 

neutral form, whereas log D is determined for ionizable compounds at a specified pH. In 

general, ions have a lower affinity for the nonpolar phase than the unionized portion. Unlike 

the partition coefficient, log D therefore depends on the pH of the aqueous buffer, on the pKa 

of the compound, and on whether the compound is an acid or a base.74 For predicting a 

compound’s lipophilicity, various in silico tools have been developed.75 The CLOGP 

methods predict the log P of a substance by first breaking it up into substructures with 

experimentally determined log P and then calculating the sum of the individual contributions. 

Otherwise, the MLOGP method introduced by Moriguchi estimates the lipophilicity based on 

13 parameters determined for each compound individually.76 The gold standard for the 

experimental determination of log D is the shake-flask approach,77 where an aqueous 

compound solution and n-octanol are brought together and vigorously shaken. Upon 

separation, the concentrations of analyte are determined in both phases and the ratio of the 

concentrations is calculated to obtain the coefficient. Further methods commonly used for 

log D determination include reversed-phase HPLC,78 capillary electrophoresis,79 and pH-

metric approaches.80  

Aqueous solubility. The maximum concentration that a compound reaches in a solvent at 

equilibrium with solid compound is a key property, because low solubility compromises the 

outcome of activity or property assays in vitro as well as the oral bioavailability in vivo (vide 

supra).81 It is important to distinguish between ‘kinetic’ and ‘thermodynamic’ solubility. For 

determining the kinetic solubility, the compound is entirely dissolved in an organic solvent 

(e.g. DMSO) and then titrated to the aqueous buffer until precipitation can be observed. The 

equilibrium between dissolved and solid compound is usually not reached, because the 

precipitates can be in a metastable crystalline form. Typically, the kinetic solubility is 

determined in early drug discovery as a high throughput assay by use of one of the following 

methods: the direct UV method,82 where the concentration of solute upon filtration is 

determined against a single point standard, or the nephelometric and the turbidimetric 

methods,39, 83 which directly measure the precipitation of the added compound from the 

solution once it exceeds the solubility. For determining the thermodynamic solubility,74 solid 

compound is directly added to aqueous buffer and stirred until it reaches an equilibrium 

between dissolved and solid state. Upon filtration, the concentration of solute in the 
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supernatant is determined by LC-MS. The thermodynamic solubility is usually assessed for 

crystalline material at later stages of drug discovery and development and is most relevant for 

formulation and clinical development. 

pKa. The negative logarithm of the acid dissociation constant (Ka) indicates a compound’s 

ionizability, i.e. it defines the fractions of ionized and neutral species of an acid or a base in 

aqueous solution at a given pH. In general, ionized molecules are more polar than neutral 

molecules. Therefore, the pKa of a drug affects various properties, such as the aqueous 

solubility at a given pH, the permeability through biological membranes, the plasma protein 

binding, or the excretion via the bile or the kidney.84 Different in silico tools have been 

developed for pKa prediction. Commercially available software were comprehensively 

reviewed by Balogh et al.85 and Liao and Nicklaus.86 Methods for the experimental pKa 

determination include spectral gradient analysis (SGA),87 NMR spectroscopy,88 capillary 

electrophoresis,89 or potentiometric titration.90  

1.5.2 Absorption 

Along with the concentration gradient through the intesintal mucosa primarily determined by 

the applied dose or the compound’s solubility, permeability is a key factor of the absorptive 

flux. Several assays exist for assessing the ability to permeate the membrane at an early stage 

of drug discovery and development. Currently, two approaches are commonly applied: First, 

artificial membrane permeation methods which model passive diffusion mechanisms; second, 

cell layer methods that consider passive diffusion, active uptake, efflux, and paracellular 

permeation.  

Parallel artificial membrane permeability assay (PAMPA): Introduced by Kansy et al., 

PAMPA is a cost-effective high throughput assay for passive diffusion assessment.91 In brief, 

test compound dissolved in buffer is placed in a 96-well plate - the ‘donor plate’. The filter 

membranes of a 96-well filter plate - the ‘acceptor plate’ - are infused with a phospholipid-

solvent mixture, which soaks into the holes of the filter and forms the artificial membrane. 

Donor and acceptor plate are assembled and blank buffer is placed in the wells of the filter 

plate, on top of the artificial barrier. This ‘sandwich’ is maintained at a constant temperature 

and humidity for a predefined period (1 to 18 h), such that diffusion can occur. The effective 

permeability is calculated from the compound flux, the concentration gradient between the 

donor and acceptor compartments and the filter area. Since the first application, the assay 

parameters have been varied with the aim to better mimic the physiological conditions and to 
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speed up the procedure.92 For example, the lipid composition has been modified to adapt in 

vivo brush-border membrane conditions, additives have been given to the acceptor well 

solution to maintain sink conditions, or stirring plates have been placed in the donor 

compartments in order to compress the thickness of the aqueous boundary layer located next 

to the artificial membrane. 

Cell layer methods. Cell based approaches are more time-consuming than PAMPA but 

consider passive diffusion as well as carrier-mediated transport and therefore provide 

enhanced information on permeability mechanisms. The human colorectal adenocarcinoma 

(Caco-2) cell line is the best-known cell line for the assay.93 Furthermore, the Madin Darby 

Canine Kidney (MDCK) cell line has been used primarily for passive diffusion studies.94 

Caco-2 cells are cultivated on filter-support inlets of multiwell plates, where they grow to 

confluence, develop the microvilli morphology on the apical surface and express transporter 

proteins as well as metabolizing enzymes.95 The compound flux can be studied in the apical 

to basolateral direction or vice versa for modeling membrane diffusion or active transport 

processes (see section 1.5.5 below).  

1.5.3 Distribution 

Drug distribution, as quantified by the volume of distribution, is related to the extent of drug 

binding in tissues vs. the extent of binding in plasma (the central compartment). Binding in 

plasma can easily be determined in vitro by measuring the plasma protein binding (PPB), 

whereas tissue binding has not been accessible in vitro so far. Besides PPB, experimental 

log D and pKa have been identified as key predictors for modeling the volume of distribution 

of neutral and basic small molecules.96 Furthermore, membrane barriers, e.g. the blood brain 

barrier (BBB), determine the compound distribution into specific tissues. Approaches for 

predicting BBB permeation include artificial membrane permeability methods (PAMPA-

BBB),97 cell-based methods,98 or in vivo brain uptake studies, amongst others.  

Plasma protein binding. The fraction bound to plasma proteins is not only a key descriptor 

for drug distribution but also strongly influences the drug clearance because only unbound 

drug is accessible to the enzymatic bioconversion or to the filtration in the renal glomeruli.99 

Different methods have been established to determine the fraction of drug bound to plasma 

proteins in vitro. The equilibrium dialysis method represents the ‘gold standard’.100 In brief, 

two chambers – one filled with plasma with the added test compound, the other filled with 

blank buffer – are separated by a dialysis membrane which is permeable for free drug 
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molecules but impermeable for plasma proteins. The system is incubated for a predefined 

period until the concentrations of free drug on each side of the membrane are in equilibrium. 

To determine the fraction unbound in plasma (fu), the concentration of drug in the buffer 

chamber at equilibrium is divided by the total drug concentration in the plasma chamber. For 

increasing the experimental throughput, the equilibrium dialysis method has been 

miniaturized to a 96-well format.101, 102 Further approaches for the PPB determination include 

ultrafiltration, ultracentrifugation, HPLC, microdialysis, or surface plasmon resonance, 

amongst others.100, 103, 104  

1.5.4 Metabolism 

Metabolic bioconversion is mediated by a vast array of enzymes, which are associated to 

different body tissues and involve various co-factors into the enzymatic reaction.47 The most 

prominent enzymes in phase I reactions are monooxygenases of the cytochrome P450 family, 

which are associated to the endoplasmic reticulum (ER) of different tissues (e.g. hepatocytes 

or enterocytes). Phase II reactions are mediated by, amongst others, UDP-

glucuronosyltransferases to form glucuronide metabolites, sulfotransferases to form sulfate 

metabolites, or glutathione-S-transferases to form glutathione conjugates.  

Different computational tools have been developed to predict the cytochrome P450 mediated 

drug metabolism, i.e. the most likely metabolic labile sites of a drug candidate, CYP substrate 

specificities, the rate and extent of the metabolic turnover, as well as inhibitors and inducers 

of individual isozymes. Tools and commercial software available for the prediction of 

metabolism were comprehensively reviewed by Crivori and Poggesi.105  

Metabolic stability studies. High stability towards phase I modifications and phase II 

conjugations is usually aspired to provide sufficiently high drug levels for the 

pharmacological effect.33 In the case of prodrugs, high susceptibility to the enzyme-mediated 

bioactivation is however desirable.63 Metabolic stability studies are conducted in vitro with 

liver and intestinal microsomes, S9 fraction, hepatocytes, liver slices, or plasma.106, 107 

Microsomes are prepared by differential centrifugation of a liver or intestine tissue 

homogenate and contain the metabolizing enzymes that are bound to the endoplasmic 

reticulum, e.g. the cytochrome P450 oxidizing enzymes, enzymes of the carboxylesterase 

superfamily, or phase II conjugating enzymes such as the UDP-glucuronosyltransferases.45 

The assessment of CYP-mediated monooxygenation requires the addition of NADPH,108 the 

glucuronidation requires uridine diphosphate glucuronic acid (UDPGA),109 whereas the 
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carboxylesterase-activity does not rely on a co-factor.110 Microsomes are most commonly 

used for metabolic stability screenings during early drug discovery. For this purpose, test 

compound is dissolved in a buffered aqueous solution containing microsomes and the 

respective co-factor. Aliquots are removed from the mixture at specific time points for 

determination of remaining parent compound. The metabolic stability is usually reported as 

metabolic half-life (t1/2) or as intrinsic clearance (CL’int).108  

At a later stage of discovery and development, when phase I and II stability are of interest, 

either S9 fraction, hepatocytes, or liver slices are used. The S9 fraction, i.e. the supernatant 

obtained from differential centrifugation of liver homogenate at 9000g, contains both the 

cellular cytosol and the endoplasmatic reticulum with the associated metabolizing enzymes.45 

Hepatocytes – either in suspension or used as ‘sandwich culture hepatocytes’ – are prepared 

from fresh livers and are useful when the interplay of metabolism and cellular uptake is of 

interest. They contain a complete ensemble of metabolizing enzymes of all isotypes, 

co-factors, cellular components, and membrane permeation mechanisms. The most complex 

systems are ‘precision-cut’ liver slices, i.e. sections of the whole liver tissue. They represent 

all of the natural liver metabolizing systems, including transporters, enzymes, and co-factors, 

and are particularly useful for in-depth studies of selected compounds.  

Plasma also contains enzymes that convert drugs, e.g. esterases.111 Metabolic liability studies 

with plasma therefore play an important rule in the development of ester prodrugs. For 

assessing plasma stability, test compound dissolved in aqueous buffer is mixed with plasma 

and incubated at 37°C. Aliquots are removed at specific time points. The parent compound 

remaining after incubation is quantified by LC-MS for the calculation of the metabolic half-

life (t1/2).107  

1.5.5 Excretion 

Renal and hepatobiliary excretion are the two main routes of drug excretion in the human 

body. Polar drugs or metabolites are predominantly renally excreted, whereas apolar 

compounds, which are not susceptible to bioconversion, prefer the hepatobiliary route. The 

rate of renal excretion depends on the glomerular filtration primarily restricted by the PPB as 

well as on the passive or transporter-mediated tubular reabsorption and secretion.50 

Hepatobiliary excretion relies on the compound uptake from the sinusoid into the hepatocytes 

and the subsequent excretion into the bile, either by passive diffusion or active carrier-

mediated transport.47  
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Transporter studies. Given the importance of carrier-mediated mechanisms for absorption, 

distribution, and excretion, various methods to assess transport have been developed. 

Currently applied methods include membrane based assay systems (i.e. ATPase assay, 

membrane vesicle transport assay) and cell-based assays which involve either polarized cell 

lines without recombinant transporters (e.g. Caco-2, MDCK), transfected cell lines, or 

primary cells.112  

The ATPase assay is used to evaluate the interactions of substrates with ABC transporters. 

Substrate-dependent ATPase activity in cell membrane preparations or purified membrane 

proteins is detected by a colorimetric analysis of the inorganic phosphate release during the 

transport process.113 Inverted plasma membrane vesicles are primarily used to study the 

efflux activity by ABC transporters. Inverted membrane vesicles are prepared from cells 

expressing the transport proteins of interest (e.g. baculovirus-infected insect cells). When 

they are added to a compound solution, substrate accumulates within the vesicles and can be 

detected upon washing and lysis.114  

The cell-based assay systems are performed using either a cell suspension or a confluent cell 

monolayer cultured on a permeable membrane support matrix. When cells in suspension are 

exposed to the test compound, transporter substrate accumulates within the cells and can be 

quantified upon washing and lysis.115 Transporter studies involving a cell monolayer are done 

by applying a test compound to either the apical or basolateral side of the confluent cell layer 

and measuring the resulting transmembrane flux.116 Active uptake or efflux can be identified 

by the appearance of bi-directional differences in the apparent permeability.116 Primary 

hepatocytes are furthermore cultured in a sandwich configuration between two layers of 

gelled collagen, where they reestablish a structurally and functionally normal bile canalicular 

network and express sinusoidal and canclicular transporter proteins. Sandwich-cultured 

hepatocytes are used to study hepatic uptake, metabolism, and biliary excretion in one 

assay.117  
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1.6 Aims of the thesis 

The present thesis is embedded in the 

development process of a highly active 

and orally available FimH antagonist. 

The goal of the thesis was the 

physicochemical and in vitro 

pharmacokinetic characterization of 

biaryl α-D-mannopyranosides within a 

development cycle (Figure 1.7) which 

explores several optimization strategies, 

such as prodrug and bioisostere 

approaches. In vitro assays predictive for 

drug absorption, distribution, metabolism, 

and excretion were implemented with the aim to comprehensively characterize the candidate 

molecules and to guide their development towards ‘drug-likeness’.  

 

 
Figure 1.7. Pharmacodynamic and pharmacokinetic 

optimization of biaryl α-D-mannopyranoside FimH 

antagonists.  
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2 Results and discussion 

2.1 Outline 

Optimiziation of the biphenyl mannoside. In line with most carbohydrate-derived 

compounds, the biphenyl α-D-mannopyranoside FimH antagonist 5d is highly hydrophilic, 

which hampers intestinal absorption and promotes rapid clearance of the systemically 

available fraction via the kidneys (for details refer to Paper 1 in the following section). Renal 

excretion as the major route of elimination is basically aspired. However, too fast clearance 

leads to high peak levels in the urine and a rapid decrease beyond antiadhesive 

concentrations, implying the need for a frequent dosing to maintain the therapeutic effect in 

the bladder. The optimization of the lead structure 5d towards higher oral bioavailability and 

sustained excretion relies on diverse modifications summarized in Figure 2.1 and described in 

the following chapters: 
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Figure 2.1. Modifications to the biphenyl α-D-mannopyranoside lead structure 5d by 1) introduction of a 

methyl ester prodrug masking the polar carboxyl acid subistutent on the terminal ring of the biphenyl 

aglycone, 2) optimization of the alkyl promoiety of the ester prodrug, 3) introduction of aromatic 

heterocycles as terminal ring of the biaryl aglycone, 4) optimization of the substitution patterns of ring A and 

B, 5) introduction of bioisosteres replacing the carboxylic acid moiety, and 6) introduction of acyl 

promoieties on the mannose portion.  
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1) Introduction of a methyl ester prodrug which masks the polar carboxylic acid 

substituent on the terminal ring (B) of the biphenyl aglycone (Paper 1). 

2) Optimization of the alkyl promoiety of the ester prodrug (Chapter 2). 

3) Introduction of aromatic heterocycles as terminal ring (B) of the biaryl aglycone 

(Manuscript 3). 

4a) Optimization of the ortho-substituent on ring A of the biphenyl aglycone (Paper 4). 

4b) Optimization of the substitution pattern on the terminal ring (B) of the biphenyl 

aglycone following the Topliss approach (Manuscript 5). 

5) Replacement of the carboxylic acid moiety by bioisosteres (Paper 6). 

6) Introduction of acyl promoieties on the mannose portion (Chapter 7). 

Optimization of the indolinyl phenyl mannoside. In contrast to the biphenyl derivatives, the 

indolinyl phenyl α-D-mannopyranoside FimH antagonist 6 shows elevated lipophilicity, 

promoting the permeation through the membranes lining the small intestine. However low 

aqueous solubility impairs the initial dissolution step in the intestinal fluids and therefore the 

intestinal absorption (for details refer to Paper 8). The optimization of the indolinyl phenyl 

mannoside 6 towards higher aqueous solubility follows a phosphate ester prodrug strategy 

depicted in Figure 2.2 and described in detail in Manuscript 9.  

 

Characterization of diverse aryl mannosides. The physicochemical profiles of diverse FimH 

antagonists with aglycones of increased flexibility, including triazolyl-methyl and -ethyl α-D-

mannopyranosides, N-linked mannosyl triazoles, and triazolyl-methyl-C-mannosides, are 

described in Paper 10.  
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Figure 2.2. Modifications to the indolinyl phenyl α-D-mannopyranoside lead structure 6 by introduction of a 

phosphate promoiety.  
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2.2 Paper 1: FimH antagonists for the oral treatment of urinary tract 

infections: from design and synthesis to in vitro and in vivo 

evaluation 

 

 

This publication describes the identification of biphenyl α-D-mannopyranosides as potent 

FimH-antagonists and the experimental determination of the basic physicochemical and 

pharmacokinetic properties. Furthermore an ester prodrug approach is introduced as an 

appealing strategy for achieving oral bioavailability.  

 

 

Contribution to the project:  
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the determination of the pharmacokinetic properties. 
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Urinary tract infection (UTI) by uropathogenic Escherichia coli (UPEC) is one of the most common
infections, particularly affecting women. The interaction of FimH, a lectin located at the tip of bacterial
pili, with high mannose structures is critical for the ability of UPEC to colonize and invade the bladder
epithelium. We describe the synthesis and the in vitro/in vivo evaluation of R-D-mannosides with the
ability to block the bacteria/host cell interaction. According to the pharmacokinetic properties, a
prodrug approach for their evaluation in the UTI mouse model was explored. As a result, an orally
available, low molecular weight FimH antagonist was identified with the potential to reduce the colony
forming units (CFU) in the urine by 2 orders of magnitude and in the bladder by 4 orders of magnitude.
With FimHantagonist 16b, the great potential for the effective treatment of urinary tract infections with
a new class of orally available antiinfectives could be demonstrated.

Introduction

Urinary tract infection (UTIa) is one of the most common
infections, affecting millions of people each year. Particularly
affected are women, who have a 40-50% risk to experience at
least one symptomatic UTI episode at some time during their
life. In addition,more thanhalf of themexperience a relapse of
the infection within 6 months.1,2

Although UTIs rarely cause severe diseases such as pyelo-
nephritis or urosepsis, they are associated with high incidence
rate and consume considerable healthcare resources.3 Uro-
pathogenic Escherichia coli (UPEC) are the primary cause of
UTIs, accounting for 70-95%of the reported cases. Sympto-
maticUTIs require antimicrobial treatment, often resulting in
the emergence of resistant microbial flora. As a consequence,
treatment of consecutive infections becomes increasingly
difficult because the number of antibiotics is limited and the
resistance of E. coli is increasing, especially in patients with
diabetes, urinary tract anomaly, paraplegy, and those with
permanent urinary catheter. Therefore, a new approach for
the prevention and treatment of UTI with inexpensive, orally

applicable therapeutics with a low potential for resistance
would have a great impact on patient care, public health care,
and medical expenses.

UPEC strains express a number of well-studied virulence
factors used for a successful colonization of their host.3-5 One
important virulence factor is located on type 1 pili, allowing
UPEC to adhere and invade host cells within the urinary tract.
It enablesUPEC to attach to oligomannosides, which are part
of the glycoprotein uroplakin Ia on the urinary bladder
mucosa. This initial step prevents the rapid clearance of E.
coli from the urinary tract by the bulk flow of urine and at the
same time enables the invasion of the host cells.3,6

Type 1 pili are the most prevalent fimbriae encoded by
UPEC, consisting of the four subunits FimA, FimF, FimG,
and FimH, the latter located at the tip of the pili.7 As a part
of the FimH subunit, a carbohydrate-recognizing domain
(CRD) is responsible for bacterial interactions with the host
cells within the urinary tract.6 The crystal structure of the
FimH-CRD was solved8 and its complexes with n-butyl
R-D-mannopyranoside9 and ManR(1-3)[ManR(1-6)]Man10

recently became available.
Previous studies showed that vaccination with FimH ad-

hesin inhibits colonization and subsequentE. coli infection of
the urothelium in humans.11,12 In addition, adherence and
invasion of host cells by E. coli can also be prevented by R-D-
mannopyranosides, which are potent antagonists of interac-
tions mediated by type 1 pili.13 Whereas R-D-mannopyrano-
sides efficiently prevent adhesion of E. coli to human
urothelium, they are not exhibiting a selection pressure to
induce antimicrobial resistance. Furthermore, environmental
contamination is less problematic compared to antibiotics.14

More than two decades ago, Sharon and co-workers have
investigated various mannosides and oligomannosides as

*To whom correspondence should be addressed. Phone: þ41 61 267
1551. Fax: þ41 61 267 1552. E-mail: beat.ernst@unibas.ch.

aAbbreviations: AUC, area under the curve; Caco-2 cells, Caucasian
colon adenocarcinoma cells; CFU, colony forming units; CRD, carbo-
hydrate recognition domain; DC-SIGN, dendritic cell-specific intercel-
lular adhesionmolecule-3-grabbing nonintegrin; CES, carboxylesterase;
IC50, half maximal inhibitory concentration; iv, intravenous; D, dis-
tribution coefficient; GPE, guinea pig erythrocytes; LC-MS, liquid
chromatography-mass spectrometry; MBP, mannose-binding protein;
PAMPA, parallel artificial membrane permeation assay; Papp, apparent
permeability;Pe, effective permeation; po, peroral; PPB, plasma protein
binding; PSA, polar surface area; S, solubility; SAR, structure-activity
relationship; sGF, simulated gastric fluid; sIF, simulated intestinal fluid;
TEER, transepithelial resistance; UPEC, uropathogenic E. coli; UTI,
urinary tract infection.
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potential antagonists for type 1 fimbriae-mediated bacterial
adhesion.15 However, for these mannosides, only weak inter-
actions in the milli- to micromolar range were observed. In
contrast, numerous reports on glycoconjugate dendrimers
with nanomolar affinities have been published.16 However,
on the basis of their large molecular weight and high polarity,
they are predicted to exhibit only poor intestinal absorption
and are therefore not amenable for oral dosing. Recently,
some isolated reports on high affinity monovalent FimH
antagonists were published17 and, in one case, a systematic
structure-activity relationship (SAR) profilewas established.17d

In summary,8,9,15-19 long chain alkyl and aryl mannosides
(selected examples are presented in Figure 1) displayed the
highest affinity, likely due to hydrophobic interactions with
two tyrosines and one isoleucine forming the entrance to the
binding site, the so-called “tyrosine gate”.18 Because binding
affinities were obtained from diverse assay formats,9,17c,20 a
direct comparison of the affinities is difficult. On the basis
of various crystal structures of methyl-8 and n-butyl
R-D-mannoside18 as well as oligomannose-39 bound to FimH,
Han et al. recently presented a rationale for the design of
arylmannosides with increased affinities.17d

To date, a few reports on the in vivo potential of methyl
R-D-mannoside10,21,22 and n-heptyl R-D-mannoside (1)10 are
available. In all cases, the FimH antagonists were directly
instilled into the bladder concomitantly with uropathogenic
E. coli (UPEC). In this communication,wepresent for the first
time nanomolar FimH antagonists exhibiting appropriate
pharmacokinetic properties for iv and oral treatment of
urinary tract infections.

Results and Discussion

Identification of Lead Mannoside. In most of the reported
FimH antagonists, aromatic aglycones have been applied.17

However, only limited information on the optimal spacer
length between the mannose moiety and the aromatic sub-
stituent is available. Generally, the aromatic moiety is directly
fused to theanomericoxygen.17a-dExtendedspacers containing
one17b,d or two17e methylene moieties were also reported,

however, the corresponding antagonists are not really com-
parable to each other because different assay formats were
used for their evaluation. For the identification of the
optimal spacer length, we therefore synthesized mannosides
7a-d (Scheme 1). In a competitive binding assay,23 manno-
side 7a showed a slightly higher affinity (Table 1, entry 2)
compared with 7b-7d (see Table 1, entries 3-5), confirming
recent data for 7a and 7b.17d

From the crystal structure of n-butyl R-D-mannoside
bound to FimH,18 it becomes obvious that the hydrophobic
rim formed by Tyr48, Tyr137, and Ile52 is not reached by an
anomeric phenyl group. An extension by a second aromatic
ring, i.e. a biphenyl R-D-mannoside, however, should be
compatible for π-π staking. Indeed, some recently pub-
lished representatives of this compound class show excellent
affinities.17d

To achieve an optimal fit with the hydrophobic binding
site of FimH, the conformation of the biphenyl aglycone in i
was modified by different substitution patterns on ring A
(Figure 2). Because electron poor aromatic rings substan-
tially improve the binding affinities of FimH antagonists (a
10-fold improvement is reported for 2B vs 2A17c), chloro
substituents on ring A were used for the spatial exploration
of the binding site. With substituents in ortho-position, only
aminor change of thedihedral angleΦ1 is observed (-3.3! to-
0.7!). However, by an increased rotational barrier, the con-
formational flexibility is limited. The dihedral angle Φ2

between the conjugated aromatic rings results from an inter-
play between π-conjugation and steric effects.24,25 By mi-
grating the substituent to themeta-position, the torsion angle
Φ2 is substantially influenced.Whereas unsubstituted biphe-
nyls show a global twisted minimum at a torsion angleΦ2 of
approximately 39!,26 substituents in themeta-position favor
an increase of Φ2 to 60!. Details of the conformational
analyses are summarized in the Supporting Information.

Design Strategy for Intestinal Absorption and Renal Elim-
ination. Besides high affinity, drug-like pharmacokinetic
properties are a prerequisite for a successful in vivo applica-
tion. In the present case, orally available FimH antagonists

Figure 1. Known alkyl (1) and aryl (2-4) R-D-mannosides exhibiting nanomolar affinities.

Scheme 1. Phenyl R-D-Mannosides 7a-7d with Spacers of Different Lengths between the Carbohydrate Moiety and the Phenyl
Substituenta

a (i) Ph(CH2)nOH, Hg(CN)2, HgBr2, DCM, 2 h to 7 d, rt, 57-99%; (ii) NaOMe, MeOH, 6-16 h, rt, 48-91%.
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that, once in circulation, are metabolically stable and under-
go fast renal elimination, are required. This pharmacokinetic
profile results from various serial and/or simultaneous pro-
cesses that include dissolution, intestinal absorption, plasma
protein binding, metabolic clearance, body distribution as
well as renal andother clearancemechanisms.Because intestinal
absorption and renal elimination are related to opposed
properties, i.e. lipophilicity for intestinal absorption and
hydrophilicity for renal elimination, a prodrug approach27

was envisaged (Figure 3). Ester ii is expected to undergo
intestinal absorption28 and, later on, efficient hydrolysis to
carboxylate iii by esterases29 present in enterocytes lining the
small intestine and in the liver.

For renal clearance, the net result of glomerular filtration,
active tubular secretion, and reabsorption, carboxylate iii
should exhibit low lipophilicity (log D7.4) and favorable
polar descriptor values (polar surface area (PSA), H-bond
capacity and rotatable bonds).32 By contrast, lipophilic
compounds are efficiently reabsorbed (as the passive reab-
sorption process occurs throughout the length of the ne-
phron, whereas the secretion predominantly occurs at the
proximal tubule). The estimated negative log D7.4 for an-
tagonists of type iii is expected to fulfill these specifications
for an efficient renal elimination and a low reabsoption. Finally,
once arrived at the site of action in the bladder, the antago-
nist binds to the carbohydrate recognition domain (CRD)
located on the bacterial pili, thus interfering with the adhesion
of E. coli to oligosaccharide structures on urothelial cells.34

To identify antagonists with the pharmacokinetic properties
required for oral absorption and fast renal elimination, it was
planned to determine PK parameters such as log D7.4, pKa,
solubility, plasma protein binding, metabolic stability, and
oral availability using the parallel artificial membrane per-
meation assay (PAMPA)30 and the Caco-2 cell assay.31

Synthesis of FimH Antagonists. The aglycone in the R-1-
position of D-mannose plays a ternary role, i.e. itmediates the
lipophilic contact with the hydrophobic tyrosine gate, con-
tains the elements required for intestinal absorption and, after
metabolic cleavage of the prodrug, for a fast renal elimination.

The syntheses of the para-substituted biphenyls 16a-e and
17a-c,e are outlined in Scheme 2. Lewis acid promoted
glycosylation of the halogenated phenols 13a-e with tri-
chloroacetimidate 1235 yielded the phenyl R-D-mannosides
14a-e. In a palladium-catalyzed Suzuki coupling with
4-methoxycarbonylphenylboronic acid, the biphenyls 15a-e
were obtained. For the deprotection of the mannose moiety,
Zempl!en conditions were applied (f 16a-e). Finally, the
methyl esters were saponified, yielding the sodium salts
17a-c,e.

In a similar approach, two meta-substituted biphenyls in
their ester form (f 21a,b) and as free acids (f 22a,b) were
obtained (see Scheme 3).

Binding Affinities and Activities. For the biological in vitro
evaluation of the FimH antagonists, two assay formats have
been developed. For an initial characterization, a cell-free
competitive binding assay23 and, later on, a cell-based ag-
gregation assay,33 were applied. Whereas in the cell-free
competitive binding assay only the CRDof the pili was used,
the complete pili are present in the cell-based assay format.
Furthermore, both formats are competitive assays, i.e. the
analyzed antagonists compete with mannosides for the
binding site. In the cell-free competitive binding assay, the
competitors are polymer-bound trimannosides, whereas in
the aggregation assay, the antagonist competes with more
potent oligo- and polysaccharide chains present on the sur-
face of erythrocytes.36 Therefore, lower IC50 values are
expected for the cell-free competitive binding assay. In
addition, switching from the cell-free target-based assay to
the function-based assay generally leads to a reduction of
potency by several orders of magnitude. The interaction is
further complicated by the existence of a high- and a low-
affinity state of the CRD of FimH. Aprikian et al. experi-
mentally demonstrated that in full-length fimbriae the pilin
domain stabilizes the CRD domain in the low-affinity state,
whereas the CRD domain alone adopts the high-affinity
state.37 It was recently shown that the pilin domain allos-
terically causes a twist in the β-sandwich fold of the CRD
domain, resulting in a loosening of the binding pocket.38 On

Figure 2. Conformational changes of the biphenyl aglycone by chloro substitutions in ortho- and meta-position of ring A.

Figure 3. FimH antagonists with the pharmacodynamic and pharmacokinetic properties required for a therapeutic application. (1) For the
prediction of oral availability, the PAMPA30 and the Caco-2 cell assay31 are applied. (2) The hydrolysis of ester ii to carboxylate iii is evaluated
by mouse liver microsomes. (3) Renal excretion is estimated based on a positive correlation with polar descriptors (polar surface area, H-bond
donors, H-bond acceptors, rotatable bonds).32 (4) The potential of FimH antagonists is assessed with a target-based assay23 and a function-
based cellular assay.33 For the evaluation of the therapeutic effect, a urinary tract infectionmousemodel (UTImousemodel inC3H/HeNmice)
is applied.
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the basis of these findings, we expect a loss of affinity of our
antagonists toward full-length fimbriae, when compared to
the CRD domain alone.

Cell-Free Competitive Binding Assay. The cell-free inhibi-
tion assay is based on the interaction of a biotinylated
polyacrylamide glycopolymer with the FimH-CRD as pre-
viously reported.23 A recombinant protein consisting of the
carbohydrate recognition domain of FimH linked with a
thrombin cleavage site to a 6His-tag (FimH-CRD-Th-6His)
was expressed in E. coli strain HM125 and purified by
affinity chromatography. The IC50 values of the test com-
pounds were determined in microtiter plates coated with

FimH-CRD-Th-6His. Complexation of the biotinylated
glycopolymer with streptavidin coupled to horseradish per-
oxidase allowed the quantification of the binding properties
of FimH antagonists (Figure 4a). To ensure comparability
with different antagonists, the reference compound n-heptyl
R-D-mannopyranoside (1)33 was tested in parallel in each
individualmicrotiterplate.Theaffinities are reported relative to
n-heptyl R-D-mannopyranoside (1) as rIC50 in Table 1.

The most active representatives from the ester group are
16a (Table 1, entry 6) and 16b (entry 8) with affinities in the
low nanomolar range, which is an approximately 10-fold
improvement compared to reference compound 1. The

Scheme 2a

a (i) TMSOTf, toluene, rt, 5 h (42-77%); (ii) 4-methoxycarbonylphenylboronic acid, Cs2CO3, Pd(PPh3)4, dioxane, 120!C, 8 h (28-85%);
(iii) NaOMe, MeOH, rt, 4-24 h (22-86%); (iv) NaOMe, MeOH, rt, then NaOH/H2O, rt, 16-24 h (63-94%).

Scheme 3a

a (i) TMSOTf, toluene, rt, 5 h (67-70%); (ii) 4-methoxycarbonylphenylboronic acid, Cs2CO3, Pd(PPh3)4, dioxane, 120!C, 8 h or Pd2(dba)3, S-Phos,
dioxane, 80!C, overnight (46-56%); (iii) NaOMe, MeOH, rt, 24 h (52-67%); (iv) NaOMe, MeOH, rt, then NaOH/H2O, rt, 24 h (75-95%).
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Table 1. Pharmacodynamic and Pharmacokinetic Parameters of FimH Antagonistsa,b

a Single determination; Pe,effective permeation; Papp, apparent permeability; np, no permeation; nr, no retention; nd, not determined. bThe IC50s
were determined with the cell-free competitive binding assay.23 The rIC50 of each substance was calculated by dividing the IC50 of the compound of
interest by the IC50 of the reference compound 1 (entry 1). This leads to rIC50 values below 1.00 for derivatives binding better than 1 and rIC50 values
above 1.00 for compounds with a lower affinity than 1. The aggregation of E. coli and GPE were determined in the aggregometry assay.33 Passive
permeation through an artificial membrane and retention therein was determined by PAMPA (parallel artificial membrane permeation assay).30 The
permeation through cell monolayers was assessed by a Caco-2 assay.31 Distribution coefficients (logD values) were measured by a miniaturized shake
flask procedure.44 pKa values were determined by NMR spectroscopy.45 Plasma protein binding (PPB) was assessed by a miniaturized equilibrium
dialysis protocol.46 Thermodynamic solubility (S ) was measured by an equilibrium shake flask approach.47
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corresponding carboxylic acids 17a (entry 7) and 17b (entry 9)
exhibited a small reduction in affinity but are still 5-fold
more active than reference compound 1. All the remaining
antagonists listed in Table 1 are slightly less active. For the in
vivo examination, antagonists 17a and 17b were therefore
foreseen for iv application and the prodrug 16b for oral
application.

Target selectivity is a further important issue.Mammalian
mannose receptors are part of various biological processes, e.g.
in cell-cell adhesion (DC-SIGN, dendritic cell-specific in-
tercellular adhesion molecule-3-grabbing nonintegrin),39 in
the regulation of serum glycoprotein homeostasis (mannose
receptor)40 or in the innate and adaptive immune system by
recognizingmolecular patterns on pathogens (e.g.,mannose-
binding protein, mannose receptor, DC-SIGN).39,41,42 Non-
specific interactions to the various mannose receptors by
FimH inhibitors would have a profound impact on these
processes. We therefore determined the affinity of reference
compound 1 and the two antagonists 17a and 17b for two
additional mannose binding proteins, DC-SIGN,39,43 and
MBP (mannose-binding protein)42 (Figure 5). In both cases,
affinities above 1mM, i.e. a decrease ofmore than 5 orders of
magnitude, was detected.

Aggregometry Assay. The potential of the biphenyl man-
nosides to disaggregate E. coli from guinea pig erythrocytes
(GPE) was determined by a function-based aggregometry
assay.33 Antagonists were measured in triplicates, and the
corresponding IC50 values were calculated by plotting the

area under the curve (AUC) of disaggregation against the
concentration of the antagonists. n-Heptyl R-D-mannopy-
ranoside (1) was used again as reference compound and
exhibits an IC50 of 77.14 ( 8.7 μM. Antagonists 17a and
17b showed IC50 values of 45 ( 8 μM and 10 ( 2.3 μM,
respectively (Figure 4b). In general, the activities obtained
from the aggregometry assay are approximately 1000-fold
lower than the affinities determined in the target-based
competitive assay (discussion see above).

In Vitro Pharmacokinetic Characterization of FimH An-
tagonists. For an application in the UTI mouse model, iv or
po available FimH antagonists are required that, once
absorbed to circulation, are metabolically stable and under-
go fast renal elimination. Sufficient bioavailability requires a
combination of high solubility and permeability tomaximize
absorption and low hepatic clearance to minimize first pass
extraction. Furthermore, for efficient renal elimination,
active and/or passive membrane permeability and low re-
absortion in the renal tubuli is required. From the series of
FimH antagonists with nanomolar in vitro activities (see
Table 1), representatives with appropriate pharmacokinetic
properties were selected for in vivo experiments based on the
parameters shown below.

Oral Absorption and Renal Excretion. For the evaluation
of oral absorption and renal excretion of the esters 16 and 21
as well as the acids 17 and 22 physicochemical parameters
such as pKa values, lipophilicity (distribution coefficients,
log D7.4), solubility, and permeability were determined

Figure 4. Affinities were determined in two different competitive assay formats. (a) a cell-free competitive binding assay23 and (b) a cell-based
aggregometry assay.33 For antagonists 17a, 17b, and the reference compound 1, IC50 values in the nM and μM range, respectively, were
obtained. The 1000-fold difference between the two assay formats is due to the different competitors used as well as the different affinity states
present in FimH, i.e. the high-affinity state present in the CRDused in the cell-free competitive binding assay and the low-affinity state present
in the pili of E. coli used in the aggregometry assay.

Figure 5. Competitive binding assay using FimH-CRD-Th-6His, DC-SIGN-CRD-IgG-Fc,43 and MBP to evaluate the selectivity of
compounds 1, 17a, and 17b. Inhibitory capacities of the compounds were tested at a concentration of 1 mM. As positive control, D-mannose
at a concentration of 50 mM was used.
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(Table 1). Not surprisingly, the acids 17 and 22 showed log
D7.4 values in the range of -1 to -2 and pKa values of
approximately 4. While these parameters are beneficial for
renal excretion,32 oral absorption by passive diffusion seems
unlikely. Indeed, when the permeation through an artificial
membrane (PAMPA30) was studied, neither significant per-
meation (log Pe, Pe: effective permeation) nor membrane
retention could be detected. Whereas for a successful oral
absorption log Pe should be above -5.7 and/or the mem-
brane retention above 80%,48 the corresponding values for
the carboxylic acids 17 and 22 are far frombeing in this range
(see Table 1, e.g. entries 7 and 9). However, log D7.4 values
and PAMPA results were markedly improved for the esters
16 and 21 (Table 1, e.g. entries 6 and 8), suggesting that these
FimH antagonists are orally absorbed. This assumption was
fully confirmed in a cell-based permeation assay with Caco-2
cells.31 For renal excretion, Varma et al.31 correlated low
lipophilicity and the presence of a charged state at physiolog-
ical pH positively with enhanced elimination. On the basis of
logD7.4 and pKa summarized in Table 1, the carboxylates 17
and 22 fulfill these requirements. Overall, these results sup-
port the prodrug approach: (i) oral application of the esters
16 and 21 and (ii) renal elimination of the corresponding
acids 17 and 22.

Solubility.Amajor problem of the antagonists 16 and 21 is
their insufficient solubility, ranging from 4.6 to 37.6 μg/mL.
Even though the solubility issue can be addressed by appro-
priate formulations, further structural modifications to im-
prove solubility are necessary. Opposite to the esters, the
corresponding carboxylates 17 and 22 showed excellent
solubility (>3 mg/mL). This enables their iv application in
physiological solutions (PBS) in the UTI model without
further needs to develop suitable formulations (see below).

Stability in Simulated Gastrointestinal Fluids. To exclude
degradation in the gastrointestinal tract prior to absorption,
the stability of 1, 16b, and 17b in simulated gastric fluid
(sGF) and simulated intestinal fluid (sIF) was determined.
All three antagonists proved to be sufficiently stable with
more than 80% of the initial concentrations found after two
hours.

Metabolic Stability. Because the prodrug approach is only
applicable when the esters 16a and 16b are rapidly metabo-
lically cleaved into the corresponding acids, their propensity
to enzymatic hydrolysis by carboxylesterase (CES) was
studied. Mammalian CESs are localized in the endoplas-
matic reticulumof the liver andmost other organs.29 Because
of the excellent affinity of the corresponding acids 17a and

17b to FimH, we concentrated our metabolic studies on the
ester prodrugs 16a and 16b, which were incubated with
pooled male mouse liver microsomes to study the hydrolysis
and the release of the metabolites. Preliminary experiments
involving low substrate concentrations (2 μM) and a con-
centration of the microsomal protein of 0.25 mg/mL showed
a fast degradation of the ester prodrugs (Figure 6). Addition
of the specific CES inhibitor bis(4-nitrophenyl) phosphate
(BNPP) prevented ester degradation, suggesting that the
metabolic transformation can be attributed to CESs.49

On the basis of these in vitro results, we also expect fast
hydrolysis of the esters in vivo at the first liver passage.
Current studies are focusing on the kinetic parameters of the
enzymatic ester cleavage.

To reach the minimal therapeutic concentration in the
bladder (approximately 1 μg/mL, as estimated from a cell-
based infection assay50), the FimH antagonists 17a and 17b
should be efficiently renally eliminated and not further
metabolically processed. Therefore, the metabolic fate of
the free carboxylic acids 17a and 17b was examined. A
common method to predict a compound’s propensity to
phase I metabolism is its incubation with liver microsomes
in presence of NADPH.51 Under these conditions, in vitro
incubations of the free carboxylic acids 17a and 17b with
pooled male mouse liver microsomes (0.5 mg microsomal
protein/mL) did not show significant compound depletion
over a period of 30 min, suggesting a high stability against
cytochrome P450 mediated metabolism in vivo. However,
phase IImetabolic pathways such as glucuronidation remain
to be studied in details.

Plasma Protein Binding (PPB). Compared to the corre-
sponding esters 16 and 21, the antagonists 17 and 22 exhibit
5-20% lower plasma protein binding, typically in the
range of 73-89%. This rather low PPB beneficially
influences renal excretion because, in line with the free drug
hypothesis,52 molecules bound to plasma proteins evade
metabolism and excretion. However, for a concluding state-
ment, the kinetics of PPB, i.e. association and dissociation
rate constants, have to be determined because PPB alone is
not necessarily predictive for distribution, metabolism, and
clearance.53,54

In Vivo Pharmacokinetics and Treatment Studies. The two
mannose derivatives methyl R-D-mannoside and n-heptyl R-
D-mannoside (1) were previously tested in the UTI mouse
model.10,21,22 In all three studies, the FimH antagonists were
first preincubated with the bacterial suspension, followed by
transurethral inoculation. To efficiently reduce infection,

Figure 6. Incubation of (a) 16a and (b) 16bwith pooledmouse livermicrosomes (0.25mg of protein/mL), in absence (2) and in presence (9) of
the specific carboxylesterase inhibitor bis(4-nitrophenyl) phosphate (BNPP).
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large amounts of methyl R-D-mannoside had to be applied
(upto1M).21Forn-heptylR-D-mannoside (1), anapproximately
one log10 unit reduction of bacterial counts in the bladder
was reachedwith lower, but still millimolar, concentration.10

In the previously presented studies, the FimH antagonists
were exclusively instilled into the bladder, which is obviously
not suitable for a therapeutic application. The aim of our
project was therefore the identification of FimH antagonists
suitable for iv or preferably po applications. Before infec-
tion studies in a mouse disease model could be performed,
the in vivo pharmacokinetic parameters (Cmax, AUC) had to
be determined to ensure the antagonists availability in the
target organ (bladder).

Pharmacokinetics of a Single iv Application in C3H/HeN
Mice. Plasma and urine concentrations of the FimH antago-
nists 1, 17a, and 17b after iv application were determined.
With a single dose of 50 mg/kg, the control compound 1
exhibited availability in the bladder over a period of 6 h after
administration (n=4), whereas at similar doses, 17a and 17b
showed lower urine concentrations over a reduced time
period (max 2 h) (n = 6). In Figure 7, the pharmacokinetic
parameters are summarized. Overall, for all three com-
pounds, higher availability of the antagonists in the urine
was observed compared to the plasma. Because plasma
protein binding is of comparable scale for the three com-
pounds (see Table 1 and Figure 7), it similarly influences
urine concentrations.

Pharmacokinetics of a Single po Application in C3H/HeN
Mice. Aiming for an orally available FimH antagonist, the
prodrug 16b and its metabolite 17b were tested. Because of
the in vitropharmacokinetic properties of17b (Table 1, entry 9),
its loworal bioavailability after the administration of a single
po dose (50 mg/kg) was not surprising. For the determina-
tion of the availability of a similar dose of 16b at the target
organ (bladder), plasma and urine concentrations were
determined over a period of 24 h (n=6) (Figure 8). Because
16b was designed as a prodrug expected to be rapidly

hydrolyzed, plasma and urine samples were analyzed not
only for 16b but also for its metabolite 17b. 16b was present
only in minor concentrations in both plasma and urine.
However, although the AUC of metabolite 17b in urine is
reduced by 90% compared to the iv application, its minimal
therapeutic concentration can bemaintained over a period of
2 to 3 h.

Figure 7. Determination of antagonist concentration in urine and plasma after a single iv application of 50mg/kg. The data (table and graphs)
show time-dependent urine and plasma concentrations of 1, 17a, and 17b.

Figure 8. Determination of antagonist concentration in urine and
plasma after a single po application of 50 mg/kg of antagonists 16b
and 17b. The data (table and graph) show their time-dependent
urine and plasma concentrations. When 17b was orally applied, its
plasma concentration was below the detection level, and only a
small portion was present in the urine. However, after the applica-
tion of the prodrug 16b, metabolite 17bwas predominantly detected
due to fastmetabolic hydrolysis of 16b. However, minor amounts of
16b are still traceable in plasma as well as urine; nd, not detectable.
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UTIMouseModel:TreatmentStudy.Before treatment studies
were started, the optimal infection profile was established. A 3 h
infection exhibited the highest infection level in the C3H/HeN
mouse strain.At longer infection times, e.g. 6h, thecontrolgroup
showed indeed higher bacterial counts in the urine, however, the
bladder and kidney counts already decreased due to self-clear-
ance of the infection in the UTI mouse model.55 For the in vivo
UTI treatment studies (Figure 9), antagonists 1, 17a, 17b, and
16bwereapplied followedby infectionwithUPEC(UTI89).For
each antagonist, a group of six animals was used. The animals
were sacrificed 3 h after inoculation and urine and homogenized
organs (bladder, kidneys) were examined for bacterial counts.
Themeanvalue in theuntreated reference group (n=6) showed
1.8 ! 106 CFU/mL in the urine, 1.4! 108 CFU in the bladder
and 9.7! 106 CFU in the kidneys. The bar diagram in Figure 9
summarizes the bacterial counts after iv (1, 17a , and17b) and po
(16b) treatment. The baseline represents the values obtained for
the control group after 3 h and was used as reference for CFU
reductions. 1 showed the lowest inhibition of growth in the urine
with 1.5 log10 CFU reduction and an approximately 4 log10
reduction of bacterial counts in the bladder. After iv application
of 17a, a substantial decrease in the bacterial countwas obtained
(>2 log10 CFU reduction in the urine and 4.5 log10 reduction
in the bladder). A slightly lower reduction was observed
when 17bwas applied iv (a decrease of 2 log10 CFU in the urine
and 4 log10 for bladder counts). Interestingly, almost the
same reduction of the bacterial count was detected with orally
applied 16b.

In general, urine samples showed higher bacterial counts
compared to the bladder. This could be due to the difficulties
during urine sampling.We observed that infected C3H/HeN
mice void considerably less urine (5-50 μL) compared to
healthymice (50-100 μL). As a consequence, the lower urine
volume leads to a higher concentration of bacteria in the
collected urine and therefore to higher bacterial counts
compared to the bladder.

In all treated animals, bacterial counts were only margin-
ally reduced in the kidneys. This lower response to the
treatment with FimH antagonists is probably due to differ-
ent bacterial adhesion mechanisms in bladder and kidney.
Whereas in the bladder adhesion is mediated by type I pili
(via the CRD of FimH), P pili-dependent interactions are
crucial for the adhesion in the kidneys.6

Summary and Conclusions

With the objective to develop an oral treatment of urinary
tract infections, we have synthesized a series of potent small
molecularweight FimHantagonists. Starting from the known
antagonistphenylR-D-mannopyranoside (7a), twoequallypotent
classes of biphenylR-D-mannopyranoside, those with an ester
function (16 and 21) and those with a carboxylate (17 and 22)
on the terminal aromatic ring, were synthesized. According to
their pharmacokinetic properties, the acids 17 and 22were not
expected to be orally absorbed, a prediction that was also
confirmed by an in vivo PK study. Therefore, a prodrug
approach was envisaged. On the basis of permeation assays
(PAMPA and Caco-2), the esters 16 and 22 were expected to
exhibit oral availability. Moreover, metabolic studies with
mouse liver microsomes proposed fast in vivo hydrolysis of
orally applied16b to the corresponding carboxylate17b. In vivo
PK studies in mice finally confirmed the in vitro prediction of
a fast renal elimination of 17b to the target organ, the bladder.
Whenorally applied 16bwas tested in theUTImousemodel, it
reduced the colony formingunits (CFU) in theurineby2orders
ofmagnitude and in the bladder by4 orders ofmagnitude.Asa
result, a lowmolecular weight FimHantagonist suitable for the
oral treatment of urinary tract infections was identified.

However, a number of parameters remain to be improved.
Because the solubilitiesof theesters16and22are in the lowμg/mL
range, an iv application was impossible and the suspension in
DMSO/1% Tween 80 used for oral dosing is not optimal. In
addition, due to fast renal elimination, the minimal therapeutic
concentration of 17b in the bladder could only be maintained
for 2-3 h. Because high plasmaprotein bindingwas observed,
an unfavorable kinetic of dissociation of the active principle
fromplasmaproteins followedby fast renal eliminationmightbe
the reason for these findings.An improvementof thecorrespond-
ing pharmacokinetic parameters should positively influence
the duration of action. Furthermore, a detailed analysis of
the metabolic pathway of 16b and its metabolite 17b will
elucidate their overallmetabolic fate.Finally, adetailedPK/PD
profile in themousemodelwill elucidate the fullpotentialofFimH
antagonists for the therapy of urinary tract infections (UTI).

Experimental Section

General Methods. NMR spectra were recorded on a Bruker
Avance DMX-500 (500 MHz) spectrometer. Assignment of 1H

Figure 9. Treatment efficacy of the reference compound (1) and three FimH antagonists (17a, 17b, 16b) at a dosage of 50 mg/kg in the UTI
mouse model after 3 h of infection, compared to a 6 h infection study (n=6). 1, 17a, and 17bwere applied iv into the tail vein, whereas 16bwas
applied orally. As baseline (reference), themean counts of the 3 h infectionwere subtracted from the results of the tested antagonists and the 6 h
control group. P values were calculated by comparing the treatment groups with the 3 h control group. (*) P<0.05, (**) P<0.01, (***) P<
0.001, (-) not significant (determined by Mann-Whitney test).
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and 13C NMR spectra was achieved using 2D methods (COSY,
HSQC, TOCSY). Chemical shifts are expressed in ppm using
residual CHCl3, CHD2OD, and HDO as references. Optical
rotations were measured using Perkin-Elmer polarimeter 341.
Electron spray ionization mass spectra (ESI-MS) were obtained
on a Waters micromass ZQ. HRMS analysis were carried out
using a Bruker Daltonics micrOTOF spectrometer equipped
with a TOF hexapole detector. Microanalyses were performed
at the Department of Chemistry, University of Basel, Switzerland.
Microwave-assisted reactions were carried out with a CEM Dis-
cover and Explorer. Reactions were monitored by TLC using
glass plates coated with silica gel 60 F254 (Merck) and visualized
by using UV light and/or by heating to 140 !C for 5 min with a
molybdate solution (a 0.02 M solution of ammonium cerium
sulfate dihydrate and ammonium molybdate tetrahydrate in
aqueous 10%H2SO4). Column chromatographywas performed
on a CombiFlash Companion (Teledyne-ISCO, Inc.) using
RediSep normal phase disposable flash columns (silica gel). Re-
versed phase chromatography was performed on LiChro-
prepRP-18 (Merck, 40-63 μm). Commercially available
reagentswerepurchased fromFluka,Aldrich,Merck,AKSci,ASDI,
or Alfa Aesar. Methanol (MeOH) was dried by refluxing with
sodium methoxide and distilled immediately before use. Toluene
was dried by filtration over Al2O3 (Fluka, type 5016 A basic).
Dioxane was dried by distillation from sodium/benzophenone.

4-Bromophenyl 2,3,4,6-Tetra-O-acetyl-r-D-mannopyranoside
(14a). To a stirred solution of 12 (1.17 g, 3.00 mmol) and
4-bromophenol (13a, 623 mg, 3.60 mmol) in toluene (12 mL),
TMSOTf (65 μL, 0.36 mmol) was added dropwise under
argon. The mixture was stirred at rt for 5 h and then diluted
with toluene (15 mL) and washed with satd aqNaHCO3. The
organic layer was separated, and the aqueous layer was
extracted three times with toluene. The combined organic
layers were dried over Na2SO4 and concentrated in vacuo.
The residue was purified by flash chromatography on silica
(petroleum ether/EtOAc, 19:1 to 1.5:1) to yield 14a (1.17 g,
74%) as a white solid.

1H NMR (500 MHz, CDCl3): δ 2.06 (s, 9H, 3 COCH3), 2.19
(s, 3H, COCH3), 4.06 (m, 2H, H-5, H-6a), 4.27 (dd, J=5.6, 12.4
Hz, 1H, H-6b), 5.36 (t, J=10.2 Hz, 1H, H-4), 5.43 (dd, J=
1.8, 3.5 Hz, 1H, H-2), 5.48 (d, J=1.7 Hz, 1H, H-1), 5.53 (dd, J=
3.5, 10.1 Hz, 1H, H-3), 6.98, 7.41 (AA0, BB0 of AA0BB0, J=
9.0Hz, 4H,C6H4).

13CNMR(125MHz,CDCl3): δ 20.71, 20.73,
20.74, 20.9 (4 COCH3), 62.1 (C-6), 65.9 (C-4), 68.8 (C-3), 69.2
(C-2), 69.3 (C-5), 95.9 (C-1), 115.6, 118.3, 132.6, 154.7 (6C,
C6H4), 170.0 (4C, 4 CO).

4-Bromo-2-chlorophenyl 2,3,4,6-tetra-O-acetyl-r-D-mannopyran-
oside (14b). According to the procedure described for 14a,
compound 12 (2.38 g, 4.84 mmol) and 4-bromo-2-chloro-
phenol (13b, 1.20 g, 5.80 mmol) were treated with TMSOTf
(107 mg, 0.484 mmol) to yield 14b (1.54 g, 59%) as a white solid.

[R]D þ60.6 (c 0.40, CHCl3).
1H NMR (500 MHz, CDCl3):

δ 2.02, 2.04, 2.18 (3s, 12H, 4 COCH3), 4.05 (dd, J=2.3, 12.2 Hz,
1H, H-6a), 4.10 (ddd, J=2.7, 5.3, 9.6 Hz, 1H, H-5), 4.24 (dd, J=
5.4, 12.2 Hz, 1H, H-6b), 5.35 (t, J=10.1 Hz, 1H, H-4), 5.48 (m,
2H, H-1, H-2), 5.56 (dd, J=3.2, 10.1 Hz, 1H, H-3), 7.03 (d, J=
8.8 Hz, 1H, C6H3), 7.30 (dd, J=2.4, 8.8 Hz, 1H, C6H3), 7.53 (d,
J=2.4 Hz, 1H, C6H3).

13C NMR (125 MHz, CDCl3): δ 20.9,
21.1 (4C, 4 COCH3), 62.3 (C-6), 65.9 (C-4), 68.9 (C-3), 69.4
(C-2), 70.1 (C-5), 96.9 (C-1), 115.9, 118.4, 125.7, 130.8, 133.3,
150.6 (C6H3), 169.9, 170.0, 170.1, 170.7 (4 CO). ESI-MS calcd for
C20H22BrClNaO10 [M þ Na]þ 559.0; found 559.0; Anal. Calcd
for C20H22BrClO10: C 44.67, H 4.12.Found: C 45.08, H 4.14.

Methyl 40-(2,3,4,6-Tetra-O-acetyl-r-D-mannopyranosyloxy)-
biphenyl-4-carboxylate (15a). A Schlenk tube was charged with
14a (503 mg, 1.00 mmol), 4-methoxycarbonylphenylboronic
acid (224 mg, 1.24 mmol), S-Phos (20.5 mg, 0.05 mmol), cesium
carbonate (1.17 g, 3.6 mmol), Pd2(dba)3 (10.4 mg, 0.01 mmol),
and a stirring bar. The tubewas closedwith a rubber septum and
was evacuated and flushed with argon. This procedure was

repeated once, and then freshly degassed dioxane (5 mL) was
added under a stream of argon. The reaction tube was quickly
sealed and the contents were stirred at 80 !C overnight. The
reaction mixture was cooled to rt, diluted with EtOAc (10 mL),
washed with satd aq NaHCO3 (5 mL) and brine (5 mL), and
dried overNa2SO4. The solventswere removed in vacuo, and the
residue was purified by flash chromatography on silica
(petroleum ether/EtOAc, 3:1 to 3:2) to give 15a (474 mg, 85%)
as a white solid.

[R]D þ80.8 (c 1.00, CHCl3).
1H NMR (500 MHz, CDCl3):

δ 2.02, 2.03, 2.04, 2.19 (4s, 12H, COCH3), 3.91 (s, 3H, OCH3),
4.08 (m, 2H, H-6a, H-5), 4.27 (dd, J=5.2, 12.2 Hz, 1H, H-6b),
5.37 (t, J=10.1Hz, 1H,H-4), 5.45 (dd, J=1.8, 3.4 Hz, 1H,H-2),
5.56 (m, 2H, H-1, H-3), 7.16 (AA0 of AA0BB0, J=8.7 Hz, 2H,
C6H4), 7.57 (m, 4H, C6H4), 8.07 (BB

0 of AA0BB0, J=8.4Hz, 2H,
C6H4).

13CNMR (125MHz, CDCl3): δ 20.74, 20.75, 20.77, 21.0
(4COCH3), 52.2 (OCH3), 62.1 (C-6), 65.9 (C-4), 68.9 (C-3), 69.3,
69.4 (C-2, C-5), 95.8 (C-1), 116.9, 126.7, 128.5, 128.7, 130.2, 134.8,
144.8, 155.7 (12C, 2C6H4), 167.0, 169.8, 170.0, 170.1, 170.6 (5CO).
ESI-MS calcd for C28H30NaO12 [MþNa]þ 581.2; found 581.0.

Methyl 40-(2,3,4,6-Tetra-O-acetyl-r-D-mannopyranosyloxy)-
30-chlorobiphenyl-4-carboxylate (15b). A microwave tube was
charged with bromide 14b (720 mg, 1.34 mmol), 4-methoxy-
carbonylphenylboronic acid (289 mg, 1.61 mmol), cesium
carbonate (1.31 g, 4.02 mmol), and Pd(PPh3)4 (77.4 mg,
0.067 mmol). The tube was sealed with a Teflon septum,
evacuated through a needle, and flushed with argon. Degassed
dioxane (1.5 mL) was added and the closed tube was degassed
in an ultrasonic bath for 15 min, flushed again with argon for
20 min, and exposed to microwave irradiation at 120 !C for
500 min. The solvent was evaporated in vacuo. The residue was
dissolved in DCM (10 mL), washed with brine (2 " 10 mL),
dried over Na2SO4, and concentrated in vacuo. The residue
was purified by flash chromatography on silica (petroleum
ether/EtOAc, 5:1 to 0.5:1) to yield 15b (333 mg, 42%) as a
white foam.

[R]D þ66.3 (c 1.06, CHCl3).
1H NMR (500 MHz, CDCl3): δ

2.03, 2.06, 2.20 (3s, 12H, COCH3), 3.92 (s, 3H, OCH3), 4.08 (dd,
J=2.4, 12.3 Hz, 1H, H-6a), 4.17 (m, 1H, H-5), 4.28 (dd, J=5.4,
12.3 Hz, 1H, H-6b), 5.39 (t, J=10.6 Hz, 1H, H-4), 5.54 (dd, J=
1.9, 3.4 Hz, 1H, H-2), 5.59 (d, J=1.8 Hz, 1H, H-1), 5.62 (dd, J=
3.5, 10.1 Hz, 1H, H-3), 7.24 (s, 1H, C6H3), 7.44 (dd, J=2.2,
8.5 Hz, 1H, C6H3), 7.57 (AA0 of AA0BB0, J=8.5 Hz, 2H, C6H4),
7.65 (d, J=2.2 Hz, 1H, C6H3), 8.08 (BB

0 of AA0BB0, J=8.5 Hz,
2H, C6H4).

13CNMR (125MHz, CDCl3): δ 20.9, 21.0, 21.1 (4C,
4 COCH3), 52.5 (OCH3), 62.3 (C-6), 66.0 (C-4), 69.0 (C-3), 69.5
(C-2), 70.0 (C-5), 96.8 (C-1), 117.4, 126.7, 126.9, 129.5, 130.5,
136.4, 143.6, 151.3 (12C, C6H3, C6H4), 167.0, 169.9, 170.0,
170.2, 170.7 (5 CO). ESI-MS calcd for C28H29ClNaO12 [M þ
Na]þ 615.1; found 615.2. Anal. Calcd for C28H29ClO12: C 56.71,
H 4.93. Found: C 56.79, H 4.92.

Methyl 40-(r-D-Mannopyranosyloxy)-biphenyl-4-carboxylate
(16a).17d To a solution of 15a (170 mg, 0.304 mmol) in MeOH
(3 mL) was added freshly prepared 1 M NaOMe in MeOH
(100 μL) under argon. The mixture was stirred at rt until the
reaction was complete (monitored by TLC), then neutralized
with Amberlyst-15 (Hþ) ion-exchange resin, filtered, and con-
centrated in vacuo. The residue was purified by reversed-phase
chromatography (RP-18, H2O/MeOH, 1:0-1:1) to give 16a
(90 mg, 76%) as white solid.

[R]D þ82.8 (c 0.2, MeOH). 1H NMR (500 MHz, CD3OD): δ
3.62 (m, 1H, H-5), 3.72 (m, 3H, H-4, H-6a, H-6b), 3.92 (m, 4H,
H-3, OCH3), 4.03 (s, 1H, H-2), 5.55 (s, 1H, H-1), 7.24 (AA0 of
AA0BB0, J= 8.0 Hz, 2H, C6H4), 7.64 (AA0 of AA0BB0, J= 7.5
Hz, 2H, C6H4), 7.71 (BB0 of AA0BB0, J = 8.0 Hz, 2H, C6H4),
8.07 (BB0 of AA0BB0, J = 7.5 Hz, 2H, C6H4).

13C NMR (125
MHz, CD3OD): δ 52.6 (OCH3), 62.7 (C-6), 68.3 (C-4), 72.0 (C-2),
72.4 (C-3), 75.5 (C-5), 100.1 (C-1), 118.2, 127.7, 131.1, 135.1,
146.6, 158.2, 160.3 (12C, 2 C6H4), 166.1 (CO). HR-MS calcd for
C20H22NaO8 [M þ Na]þ 413.1212; found 413.1218.
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Methyl 30-Chloro-40-(r-D-mannopyranosyloxy)-biphenyl-4-car-
boxylate (16b). According to the procedure described for 16a,
compound 16b was prepared from 15b (764 mg, 1.29 mmol).
Yield: 69 mg, 12%.

[R]Dþ97.4 (c 1.01, MeOH). 1HNMR (500MHz, CD3OD): δ
3.64 (m, 1H, H-5), 3.72 (m, 1H, H-6a), 3.78 (m, 2H, H-4, H-6b),
3.91 (s, 3H, OCH3), 4.00 (dd, J=3.4, 9.5 Hz, 1H, H-3), 4.11 (dd,
J=1.8, 3.1 Hz, 1H, H-2), 5.60 (d, J=1.1 Hz, 1H, H-1), 7.46 (d,
J=8.6 Hz, 1H, C6H3), 7.58 (dd, J=2.2, 8.6 Hz, 1H, C6H3), 7.69
(AA0 of AA0BB0, J=8.4 Hz, 2H, C6H4), 7.72 (d, J=2.2 Hz, 1H,
C6H3), 8.08 (BB0 of AA0BB0, J=8.4 Hz, 2H, C6H4).

13C NMR
(125MHz, CD3OD): δ 52.7 (OCH3), 62.8 (C-6), 68.3 (C-4), 71.9
(C-2), 72.5 (C-3), 76.2 (C-5), 100.8 (C-1), 118.7, 125.58, 127.8,
127.9, 129.9, 130.3, 131.3, 136.4, 145.3, 153.5 (12C, C6H3,
C6H4), 168.4 (CO). HR-MS calcd for C20H21ClNaO8 [M þ
Na]þ 447.0823; found 447.082.

Sodium 40-(r-D-Mannopyranosyloxy)-biphenyl-4-carboxylate
(17a).Toasolutionof15a (228mg,0.408mmol) inMeOH(6.0mL)
was added 1 M NaOMe in MeOH (60 μL) at rt. The reaction
mixturewas stirred at rt for 4 h, and thenNaOH (82mg) inwater
(6 mL) was added and stirring was continued at rt overnight.
The reactionmixturewas concentrated in vacuo, and the residue
was purified by reversed-phase chromatography (RP-18, H2O/
MeOH, 1:0-1:1) to afford 17a (96 mg, 63%) as a white solid.

[R]D þ103 (c 0.10, MeOH). 1H NMR (500 MHz, CD3OD): δ
3.60 (m, 1H, H-5), 3.72 (m, 3H, H-6a, H-6b, H-4), 3.89 (dd, J=
3.4, 9.5 Hz, 1H, H-3), 4.00 (dd, J=1.8, 3.3 Hz, 1H, H-2), 5.51 (s,
1H,H-1), 7.19, 7.60 (AA0, BB0 ofAA0BB0, J=8.7Hz, 4H,C6H4),
8.01(d, J=8.2Hz, 2H, C6H4), 8.46 (s, 2H,C6H4).

13CNMR (125
MHz, CD3OD): δ 63.2 (C-6), 68.9 (C-4), 72.6 (C-2), 73.0 (C-3),
76.1 (C-5), 100.7 (C-1), 118.7, 128.0, 129.9, 131.8 (12C, 2 C6H4).
HR-MS calcd for C19H20NaO8 [M þ H]þ 399.1056; found
399.1052.

Sodium30-Chloro-40-(r-D-mannopyranosyloxy)-biphenyl-4-car-
boxylate (17b). To a solution of 15b (380 mg, 0.641 mmol) in
MeOH (10 mL) was added 1 M NaOMe in MeOH (300 μL).
After stirring at rt for 24 h, 0.5 M aq NaOH (18 mL) was
added and stirring continued for another 24 h. The solution
was concentrated in vacuo and the residue was purified by
reversed-phase chromatography (RP-18, H2O/MeOH, 1:0-
1:1) to yield 17b (222 mg, 80%) as a white solid.

[R]D þ61.6 (c 1.00, H2O). 1H NMR (500 MHz, D2O): δ 3.66
(m, 1H, H-5), 3.73 (m, 2H, H-6a, H-6b), 3.79 (t, J=9.8 Hz, 1H,
H-4), 4.07 (dd, J=3.4, 9.8 Hz, 1H, H-3), 4.14 (d, J=1.4 Hz, 1H,
H-2), 5.47 (bs, 1H, H-1), 7.04 (d, J=8.6 Hz, 1H, C6H3), 7.24 (d,
J=8.6 Hz, 1H, C6H3), 7.37 (AA0 of AA0BB0, J=8.1 Hz, 2H,
C6H4), 7.41 (bs, 1H, C6H3), 7.86 (BB

0 ofAA0BB0, J=8.1Hz, 2H,
C6H4).

13CNMR (125MHz,D2O): δ 60.6 (C-6), 66.5 (C-4), 69.0
(C-2), 70.5 (C-3), 73.9 (C-5), 98.6 (C-1), 117.5, 123.9, 126.2,
126.4, 128.4, 129.6, 135.2, 135.3, 141.0, 150.4 (12C, C6H3,
C6H4), 175.0 (CO). HR-MS calcd for C19H18ClNaO8 [M þ
H]þ 433.0666; found 433.0670.

Competitive Binding Assay.A recombinant protein consisting
of the CRD of FimH linked with a thrombin cleavage site to a
6His-tag (FimH-CRD-Th-6His) was expressed in E. coli strain
HM125 and purified by affinity chromatography.23 To deter-
mine the affinity of the various FimH antagonists, a competitive
binding assay described previously23 was applied. Microtiter
plates (F96MaxiSorp, Nunc) were coated with 100 μL/well of a
10 μg/mL solution of FimH-CRD-Th-6His in 20 mM HEPES,
150 mM NaCl, and 1 mM CaCl2, pH 7.4 (assay buffer) over-
night at 4 !C. The coating solution was discarded and the wells
were blockedwith 150 μL/well of 3%BSA in assay buffer for 2 h
at 4 !C. After three washing steps with assay buffer (150 μL/
well), a 4-fold serial dilution of the test compound (50 μL/well)
in assay buffer containing 5% DMSO and streptavidin-perox-
idase coupled Man-R(1-3)-[Man-R(1-6)]-Man-β(1-4)-GlcNAc-
β(1-4)-GlcNAcβ polyacrylamide (TM-PAA) polymer (50 μL/well
of a 0.5 μg/mL solution) were added. On each individual micro-
titer plate, n-heptylR-D-mannopyranoside (1) was tested in parallel.

The plates were incubated for 3 h at 25 !C and 350 rpm and then
carefully washed four times with 150 μL/well assay buffer. After
the addition of 100 μL/well of 2,2’-azino-di-(3-ethylbenzthiazo-
line-6-sulfonic acid) (ABTS)-substrate, the colorimetric reac-
tion was allowed to develop for 4 min and then stopped by the
addition of 2% aqueous oxalic acid before the optical density
(OD) wasmeasured at 415 nmon amicroplate-reader (Spectramax
190, Molecular Devices, California, USA). The IC50 values of
the compounds tested in duplicates were calculated with prism
software (GraphPad Software, Inc., La Jolla, California, USA).
The IC50 defines the molar concentration of the test compound
that reduces the maximal specific binding of TM-PAA polymer
to FimH-CRD by 50%. The relative IC50 (rIC50) is the ratio
of the IC50 of the test compound to the IC50 of n-heptyl R-D-
mannopyranoside (1).

Selectivity for FimH vs Mannose-Binding Protein and DC-
SIGN. Recombinant FimH-CRD-Th-6His (10 μg/mL), DC-
SIGN-CRD-Fc-IgG39 (2.5 μg/mL), and mannose-binding
protein42 (MBP, 10 μg/mL, R&D Systems, Minneapolis, MN)
were each diluted in assay buffer (20 mM HEPES, pH 7.4, 150
mM NaCl, and 10 mM CaCl2) and were coated on microtiter
plates (F96MaxiSorp, Nunc) with 100 μL/well overnight at 4 !C.
The further steps were performed as described above.

Aggregometry Assay. The aggregometry assay was carried out
as previously described.33 In short, the percentage of aggregation
of E. coli UTI89 with guinea pig erythrocytes (GPE) was
quantitatively determined by measuring the optical density at
740 nm and 37 !C under stirring at 1000 rpm using an APACT
4004 aggregometer (Endotell AG, Allschwil, Switzerland). Bac-
teria were cultivated as described below (see in vivo models).
GPE were separated from guinea pig blood (Charles River
Laboratories, Sulzfeld, Germany) using Histopaque (density
of 1.077 g/mL at 24 !C, Sigma-Aldrich, Buchs, Switzerland).
Prior to the measurements, the cell densities of E. coli and GPE
were adjusted to an OD600 of 4, corresponding to 1.9 " 108

CFU/mL and 2.2 " 106 cells/mL, respectively. For the calibra-
tion of the instrument, the aggregation of protein-poor plasma
(PPP) using PBS alone was set as 100% and the aggregation of
protein-rich plasma (PRP) using GPE as 0%. After calibration,
measurements were performedwith 250 μLofGPEand 50 μLof
bacterial suspension and the aggregation monitored over 600 s.
After the aggregation phase of 600 s, 25 μL of antagonist in PBS
was added to each cuvette anddisaggregationwasmonitored for
1400 s. UTI89 ΔfimA-H was used as negative control.

Determination of the Pharmacokinetic Parameters. Materi-
als.Dimethyl sulfoxide (DMSO), 1-octanol, pepsin, pancreatin,
reduced nicotinamide adenine dinucleotide phosphate (NADPH),
Dulbecco’s Modified Eagle’s Medium (DMEM) high glucose,
and bis(4-nitrophenyl) phosphate (BNPP) were purchased from
Sigma-Aldrich (Sigma-Aldrich, St. Louis MO, USA). PAMPA
System Solution, GIT-0 Lipid Solution, and Acceptor Sink
Buffer were ordered from pIon (pIon, Woburn MA, USA).
L-Glutamine-200 mM (100") solution,MEMnonessential ami-
no acid (MEM-NEAA) solution, fetal bovine serum (FBS), and
DMEM without sodium pyruvate and phenol red were bought
from Invitrogen (Invitrogen, Carlsbad CA, USA). Human
plasma was bought from Biopredic (Biopredic, Rennes, France)
and acetonitrile (MeCN) from Acros (Acros Organics, Geel,
Belgium). Pooled male mouse liver microsomes were purchased
from BD Bioscience (BD Bioscience, Woburn, MA, USA).
Magnesium chloride was bought from Fluka (Fluka Chemie
GmbH, Buchs, Switzerland). Tris(hydroxymethyl)-aminomethane
(TRIS) was obtained from AppliChem (AppliChem, Darm-
stadt, Germany). The Caco-2 cells were kindly provided by Prof
G. Imanidis, FHNW, Muttenz, and originated from the Amer-
ican Type Culture Collection (Rockville, MD, USA).

log D7.4 Determination. The in silico prediction tool
ALOGPS 2.156 was used to estimate the log P values of the
compounds. Depending on these values, the compounds were
classified into three categories: hydrophilic compounds (log P
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below zero), moderately lipophilic compounds (log P between
zero and one) and lipophilic compounds (log P above one). For
each category, two different ratios (volume of 1-octanol to
volume of buffer) were defined as experimental parameters
(Table 2):

Equal amounts of phosphate buffer (0.1 M, pH 7.4) and
1-octanol were mixed and shaken vigorously for 5 min to
saturate the phases. The mixture was left until separation of
the two phases occurred, and the buffer was retrieved. Stock
solutions of the test compounds were diluted with buffer to a
concentration of 1 μM.For each compound, six determinations,
i.e., three determinations per 1-octanol:buffer ratio, were per-
formed in different wells of a 96-well plate. The respective
volumes of buffer containing analyte (1 μM) were pipetted to
the wells and covered by saturated 1-octanol according to the
chosen volume ratio. The plate was sealed with aluminum foil,
shaken (1350 rpm, 25 !C, 2 h) on aHeidophTitramax 1000 plate-
shaker (Heidolph Instruments GmbH & Co. KG, Schwabach,
Germany) and centrifuged (2000 rpm, 25 !C, 5 min, 5804 R
Eppendorf centrifuge, Hamburg, Germany). The aqueous
phase was transferred to a 96-well plate for analysis by liquid
chromatography-mass spectrometry (LC-MS).

log D7.4 was calculated from the 1-octanol:buffer ratio (o:b),
the initial concentration of the analyte in buffer (1 μM), and the
concentration of the analyte in buffer (cB) with equilibration:

log D7:4 ¼ log
1 μM- cB

cB
" 1

o : b

! "

The average of the three log D7.4 values per 1-octanol:buffer
ratio was calculated. If the two mean values obtained for a
compound did not differ by more than 0.1 unit, the results were
accepted.

Parallel Artificial Membrane Permeation Assay (PAMPA).
log Pe was determined in a 96-well format with the PAMPA30

permeation assay. For each compound, measurements were
performed at three pH values (5.0, 6.2, 7.4) in quadruplicates.
For this purpose, 12 wells of a deep well plate, i.e., four wells per
pH value, were filled with 650 μL of System Solution. Samples
(150 μL) were withdrawn from each well to determine the blank
spectra by UV-spectroscopy (SpectraMax 190, Molecular De-
vices, Silicon Valley CAa, USA). Then, analyte dissolved in
DMSO was added to the remaining System Solution to yield
50 μM solutions. To exclude precipitation, the optical density
was measured at 650 nm, with 0.01 being the threshold value.
Solutions exceeding this threshold were filtrated. Afterward,
samples (150 μL) were withdrawn to determine the reference
spectra. A further 200 μL were transferred to each well of the
donor plate of the PAMPA sandwich (pIon, Woburn MA,
USA, P/N 110 163). The filter membranes at the bottom of
the acceptor plate were impregnated with 5 μL of GIT-0 Lipid
Solution and 200 μL of Acceptor Sink Buffer were filled into
each acceptor well. The sandwich was assembled, placed in the
GutBox, and left undisturbed for 16 h. Then, it was disas-
sembled and samples (150 μL)were transferred from each donor
and acceptor well to UV-plates. Quantification was performed
by both UV-spectroscopy and LC-MS. log Pe values were
calculated with the aid of the PAMPA Explorer Software
(pIon, version 3.5).

Colorectal Adenocarcinoma Cells (Caco-2 Cells) Permeation
Assay. The cells were cultivated in tissue culture flasks (BD
Biosciences, Franklin Lakes NJ, USA) with DMEM high
glucose medium, containing 1% L-glutamine solution, 1%
MEM-NEAA solution, and 10% FBS. The cells were kept at

37 !C in humidified air containing 8%CO2, and themediumwas
changed every second to third day. When approximately 90%
confluence was reached, the cells were split in a 1:10 ratio and
distributed to new tissue culture flasks. At passage numbers
between 60 and 65, they were seeded at a density of 5.33 " 105

cells per well to Transwell 6-well plates (Corning Inc., Corning
NY, USA) with 2.5 mL of culture medium in the basolateral
compartment and 1.5 mL (days 1-10) or 1.8 mL (from day 10
on) in the basolateral compartment. The medium was renewed
on alternate days. Experiments were performed between days 19
and 21 postseeding. DMEM without sodium pyruvate and
phenol red was used as transport medium for experiments.
Previous to the experiment, the integrity of the Caco-2 mono-
layers was evaluated by measuring the transepithelial resistance
(TEER) in transport medium (37 !C) with an Endohm tissue
resistance instrument (World Precision Instruments Inc., Sarasota,
FL, USA). Only wells with TEER values higher than 300Ωcm2

were used. Experimentswere performed in triplicates. Transport
medium (10 μL) from the apical compartments of three wells
were replaced by the same volume of compound stock solutions
(10 mM). The Transwell plate was then shaken (250 rpm) in the
incubator. Samples (100 μL) were withdrawn after 5, 15, 30, 60,
and 120 min from the basolateral compartment and concentra-
tions were analyzed by HPLC. Apparent permeability coeffi-
cients (Papp) were calculated according to the following
equation

Papp ¼ dQ

dt
" 1

A" c0

where dQ/dt is the permeability rate, A the surface area of the
monolayer, and c0 the initial concentration in the donor
compartment.31 After the experiment, TEER values were as-
sessed again for every well and results from wells with values
below 300 Ωcm2 were discarded.

pKa Values. The pKa values were determined as described
elsewhere.45 Briefly, the pH of a sample solution was gradually
changed and the chemical shift of protons adjacent to ionizable
centers was monitored by 1H nuclear magnetic resonance
(NMR) spectroscopy. The shift was plotted against the pH of
the respective sample, and the pKa was read out from the
inflection point of the resulting sigmoidal curve.

Plasma Protein Binding (PPB). The dialysis membranes
(HTDialysis LCC, Gales Ferry, CT, USA;MWCO12-14K)
were prepared according to company instructions. The hu-
man plasma was centrifuged (5800 rpm, 25 !C, 10 min), the
pH of the centrifugate (without floating plasma lipids) was
adjusted to 7.5, and analyte was added to yield 10 μM
solutions. Equal volumes (150 μL) of phosphate buffer (0.1 M,
pH 7.5) and analyte-containing plasma were transferred to
the separated compartments of the assembled 96-well high
throughput dialysis block (HTDialysis LCC, Gales Ferry,
CT, USA). Measurements were performed in triplicates. The
plate was covered with a sealing film and incubated (5 h, 37 !C).
Buffer and plasma compartment were processed separately.
From the buffer compartments, 90 μL were withdrawn and
10 μL of blank plasma were added. From the plasma
compartments, 10 μL were withdrawn and 90 μL of blank
buffer were added. After protein precipitation with 300 μL
ice-cooled MeCN, the solutions were mixed, centrifuged
(3600 rpm, 4 !C, 11 min), and 50 μL of the supernatant were
retrieved. Analyte concentrations were determined by LC-
MS. The fraction bound (fb) was calculated as follows:

f b ¼ 1-
cb
cp

where cb is the concentration in the buffer and cp the
concentration in the plasma compartment. Values were ac-
cepted if the recovery of analyte was between 80 and 120%.

Thermodynamic Solubility. Microanalysis tubes (Labo-Tech
J. Stofer LTS AG, Muttenz, Switzerland) were charged with

Table 2

compound type log P ratios (1-octanol:buffer)
hydrophilic <0 30:140, 40:130
moderately lipophilic 0-1 70:110, 110:70
lipophilic >1 3:180, 4:180
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1mg of solid substance and 250 μLof phosphate buffer (50mM,
pH 6.5). The samples were briefly shaken by hand and then
sonicated for 15min and vigorously shaken (600 rpm, 25 !C, 2 h)
on a Eppendorf Thermomixer Comfort. Afterward, the samples
were left undisturbed for 24 h. After measuring the pH, the
saturated solutions were filtered through a filtration plate
(MultiScreen HTS, Millipore, Billerica MA, USA) by centrifu-
gation (1500 rpm, 25 !C, 3 min). Prior to concentration deter-
mination by LC-MS, the filtrates were diluted (1:1, 1:10 and
1:100 or, if the results were outside of the calibration range,
1:1000 and 1:10000). The calibration was based on six values
ranging from 0.1 to 10 μg/mL.

Stability in Simulated Gastrointestinal Fluids. Simulated gas-
tric fluid (sGF) and simulated intestinal fluid (sIF) were pre-
pared according to the United States Pharmacopeia (USP 28).
sGF contained sodium chloride (200 mg), pepsin (320 mg), and
37% aq HCl (0.7 mL) in bidistilled water (100 mL). sIF
consisted of monopotassium phosphate (680 mg), 0.2 MNaOH
(7.7 mL), and pancreatin (1 g) in bidistilled water (100 mL). sIF
was adjusted to pH 6 by adding 0.2MNaOH. sGF and sIFwere
preheated (37 !C), and the compounds were added to yield
10 μM solutions. Incubations were performed on a Eppendorf
Thermomixer Comfort (500 rpm, 37 !C). Before starting the
experiment (t = 0 min) and after an incubation time of 15, 30,
60, and 120 min, samples (20 μL) were withdrawn, precipitated
with ice-cooledMeCN, and centrifuged (3600 rpm, 4 !C, 10 min).
The concentrations of analyte in the supernatant were analyzed
by LC-MS. Stability was expressed as percentage remaining
compound relative to the initial concentration.

In Vitro Metabolism: Ester Hydrolysis. Incubations were
performed in a 96-well format on a Eppendorf Thermomixer
Comfort. Each compound was incubated with a reaction mix-
ture (270 μL) consisting of pooled male mouse liver microsomes
in the presence of TRISbuffer (0.1M, pH7.4) andMgCl2 (2mM).
After preheating (37 !C, 500 rpm, 10 min), the incubation was
initiated by adding 30 μL of compound solution (20 μM) in
TRIS buffer. The final concentration of the compounds was
2 μM, and the microsomal concentration was 0.25 mg/mL. At
the beginning of the experiment (t = 0 min) and after an
incubation time of 1, 3, 6, and 15 min, samples (50 μL) were
transferred to 150 μL of ice-cooled MeCN, centrifuged (3600
rpm, 4 !C, 10min), and 80 μLof supernatant were transferred to
a 96-well plate for LC-MS analysis. Metabolic degradation was
assessed as percentage remaining compound versus incubation
time. Control experiments were performed in parallel by pre-
incubating the microsomes with the specific carboxylesterase
inhibitor BNPP (1 mM) for 5 min before addition of the
antagonists.

In Vitro Metabolism: Cytochrome P450-Mediated Metabo-
lism. Incubations consisted of pooled male mouse liver micro-
somes (0.5 mg microsomal protein/mL), compounds (2 μM),
MgCl2 (2mM), andNADPH(1mM) in a total volumeof 300μL
TRIS buffer (0.1 M, pH 7.4) and were performed in a 96-well
plate on a Thermomixer Comfort. Compounds andmicrosomes
were preincubated (37 !C, 700 rpm, 10min) beforeNADPHwas
added. Samples (50 μL) at t = 0 min and after an incubation
time of 5, 10, 20, and 30 min were quenched with 150 μL of ice-
cooled acetonitrile, centrifuged (3600 rpm, 4 !C, 10 min), and
80 μL of each supernatant were transferred to a 96-well plate for
LC-MS analysis. Control experiments without NADPH were
performed in parallel.

LC-MS Measurements. Analyses were performed using a
1100/1200 series HPLC system coupled to a 6410 triple quad-
rupole mass detector (Agilent Technologies, Inc., Santa Clara,
CA, USA) equipped with electrospray ionization. The system
was controlled with the Agilent MassHunter Workstation Data
Acquisition software (version B.01.04). The column usedwas an
Atlantis T3 C18 column (2.1 mm! 50 mm) with a 3 μm particle
size (Waters Corp., Milford, MA, USA). The mobile phase
consisted of two eluents: solvent A (H2O, containing 0.1%

formic acid, v/v) and solvent B (acetonitrile, containing 0.1%
formic acid, v/v), both delivered at 0.6 mL/min. The gradient
was ramped from 95%A/5%B to 5%A/95%Bover 1min, and
then held at 5% A/95% B for 0.1 min. The system was then
brought back to 95% A/5% B, resulting in a total duration of
4 min. MS parameters such as fragmentor voltage, collision
energy, polarity were optimized individually for each drug, and
the molecular ion was followed for each compound in the
multiple reaction monitoring mode. The concentrations of the
analytes were quantified by the Agilent Mass Hunter Quantita-
tive Analysis software (version B.01.04).

In Vivo Pharmacokinetic and Disease Model. Bacteria. The
clinical E. coli isolate UTI8955 (UTI89wt) were kindly provided
by the group of Prof. Urs Jenal, Biocenter, University of Basel.
Microorganisms were stored at -70 !C and before experiment
incubated for 24 h under static conditions at 37 !C in 10 mL of
Luria-Bertani broth (Becton, Dickinson and Company, Le
Pont de Claix, France) using 50 mL tubes. Prior to each
experiment, the microorganisms were washed twice and resus-
pended in phosphate buffered saline (PBS, Hospital Pharmacy
at the University Hospital Basel, Switzerland). Bacterial con-
centrations were determined by plating serial 1:10 dilutions on
blood agar, followed by colony counting with 20-200 colonies
after overnight incubation at 37 !C.

Animals. Female C3H/HeN mice weighting between 19 and
25 g were obtained fromCharles River (Sulzfeld, Germany) and
were housed four to a cage. Mice were kept under specific-
pathogen-free conditions in the Animal House of the Depart-
ment of Biomedicine, University Hospital Basel, and animal
experimentation guidelines according to the regulations of Swiss
veterinary law were followed. After seven days of acclimatiza-
tion, 9- to 10-week old mice were used for the PK and infection
studies.During the studies, animalswereallowed free access to chow
andwater. Three days before infection studies and during infection,
5% D-(þ)-glucose (AppliChem, Baden-D€attwil, Switzerland)
was added to the drinking water to increase the number of
bacterial counts in the urine and kidneys.57

Pharmacokinetic Studies. Single-dose pharmacokinetic stud-
ies were performed by iv and po application of the FimH
antagonists at a concentration of 50 mg/kg followed by urine
and plasma sampling. For iv application, the antagonists (1,
17a, 17b) were diluted in 100 μL of PBS and injected into the tail
vein. For po application, antagonist 1 was diluted in 200 μL of
PBS and antagonists 17b and 16b were first dissolved in DMSO
(20!) and then slowly diluted to the final concentration (1!) in
1% Tween-80/PBS to obtain a suspension. Antagonists were
applied iv by injection into the tail vein and po using a gavage
followed by blood and urine sampling (10 μL) after 6 min, 30
min, 1 h, 2 h, 4 h, 6 h, 8 h, and 24 h. Before analysis, proteins in
blood and urine samples were precipitated using methanol
(Acros Organics, Basel, Switzerland) and centrifuged for 11
min at 13000 rpm. The supernatant was transferred into a 96-
well plate (0.5 mL, polypropylene, Agilent Technologies, Basel,
Switzerland) and analyzed by LC-MS as described above.

UTIMouseModel.Micewere infectedaspreviouslydescribed.57

In brief, before infection, all remaining urinewas depleted form the
bladder by gentle pressure on the abdomen. Mice were anesthe-
tized with 2.5 vol% isoflurane/oxygen mixture (Attane, Minrad
Inc., Buffalo, NY, USA) and placed on their back. Anesthetized
mice were inoculated transurethrally with the bacterial suspension
by use of a 2 cm polyethylene catheter (Intramedic polyethylene
tubing, inner diameter 0.28mm, outer diameter 0.61mm, Beckton
Dickinson, Allschwil, Switzerland), which was placed on a syringe
(Hamilton Gastight Syringe 50 μL, removable 30G needle, BGB
Analytik AG, Boeckten, Switzerland). The catheter was gently
inserted through the urethra until it reached the top of the bladder,
followed by slow injection of 50 μL of bacterial suspension at a
concentration of approximately 109 to 1010 CFU/mL.

AntagonistTreatmentStudies.FimHantagonistswere applied iv
in 100 μLof PBS into the tail vein or po as a suspension by the help



Results and discussion 

 51 

8640 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 24 Klein et al.

of a gavage, 10min (17a,17b, 16b) or 1hbefore infection (1). Three
h after the onset of infection, urine was collected by gentle pressure
on the abdomen and then the mouse was sacrificed with CO2.
Organswere removedaseptically andhomogenized in1mLofPBS
byusing a tissue lyser (Retsch,Haan,Germany). Serial dilutions of
urine, bladder, and kidneys were plated on Levine Eosin Methy-
lene Blue Agar plates (Beckton Dickinson, Le Pont de Claix,
France). CFU counts were determined after overnight incubation
at 37 !Cand expressed asCFU/mL for theurine andCFU/bladder
and CFU/2 kidneys for the organs.
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2.3 Chapter 2: FimH antagonists: ester prodrugs with improved oral 

bioavailability  

 

 

The following chapter extends the ester prodrug strategy for optimizing the oral absorption 

potential of the biphenyl α-D-mannopyranosides. A broad set of simple and functionalized 

alkyl promoieties are introduced and their effects on the oral absorption potential are exposed 

in detail. Particular attention is paid to the characterization of the bioconversion of the 

prodrugs to the parent compound by different microsome-associated and plasma-borne 

hydrolases.  

 

 

Contribution to the project: 

Simon Kleeb performed all experiments regarding the physicochemical and in vitro 

pharmacokinetic characterization of the diverse ester prodrugs. In particular, he implemented 

various assays for exploring the enzyme-mediated transformation of the prodrugs to the 

pharmacologically active parent compound. Overall, he was responsible for the writing of the 

entire chapter with the exception of the synthesis section.  

Wojciech Schönemann synthesized all the tested compounds and was responsible for the 

writing of the synthesis section.  

 

 

Abbreviations: BChE, butyrylcholinesterase; BNPP, bis(4-nitrophenyl) phosphate; Caco-2 

cells, colorectal adenocarcinoma cells; CES, carboxylesterase; CRD, carbohydrate-

recognition domain; D, octanol-water distribution coefficient; ER, endoplasmic reticulum; 

hCE1, human carboxylesterase isotype 1; hCE2, human carboxylesterase isotype 2; HLM, 

human liver microsomes; P, octanol-water partition coefficient; Papp, apparent permeability; 

Pe, effective permeability; PAMPA, parallel artificial membrane permeability assay; RLM, 

rat liver microsomes, UPEC, uropathogenic Escherichia coli; UTI, urinary tract infection. 
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Introduction 

Urinary tract infection (UTI), which is characterized by dysuria, frequent and urgent 

urination, bacteriuria, or pyuria, is one of the most common bacterial infections. Around 60% 

of women have at least one UTI in their lifetime and most episodes are caused by 

uropathogenic Escherichia coli (UPEC).[1] UTI requires an antibiotic treatment to tackle the 

symptoms and to prevent potentially devastating complications like pyelonephritis and 

urosepsis.[2] However, recurrent infections with subsequent antibiotic exposure can result in 

antimicrobial resistance. This often leads to treatment failure and reduces the range of 

therapeutic options.[3] Therefore, efficient non-antibiotic treatment strategies are urgently 

needed. 

The pathogenesis of UTI relies on bacterial lectins which recognize carbohydrate ligands 

located on the endothelial cells of the urinary tract.[4] P-piliated UPEC cause pyelonephritis 

by binding to galabiose-containing ligands on the kidney epithelium, while mannose-binding 

type 1 pili promote cystitis by targeting uroplakin Ia on the mucosal surface of the urinary 

bladder.[5] The bacterial adhesion prevents rapid clearance of UPEC from the urinary tract by 

the bulk flow of urine and enables the colonization of the host cells.[6] The bacterial lectin 

FimH expressed at the tip of type I pili encloses a carbohydrate recognition domain (CRD) 

which targets the mannosylated glycoproteins on the cell surface, and a pilin domain 

regulating the switch between the low and high affinity states of the CRD.[7, 8]  

The inhibition of the bacteria-cell interaction by FimH antagonists is a promising approach 

tackling the resistance problem of the current antibiotic treatment strategies. More than two 

decades ago, Sharon and coworkers investigated various mannosides as antagonists for type 1 

fimbriae-mediated specific bacterial adhesion.[9-11] Since then, two different approaches have 

been explored for the further improvement of the antiadhesive effects. First, multivalent 

mannosides[12-14] were investigated and second, monovalent high-affinity antagonists[15-21] 

were designed based on the structural information obtained from crystal structures of FimH 

co-crystallized with alkyl and aryl α-D-mannopyranosides.[15, 22-25] Only recently, the first in 

vivo studies performed in a mouse model were published, describing antibacterial effects in 

the bladder upon oral administration of biphenyl α-D-mannopyranosides.[18, 26] In either of the 

reported cases, high dose (≥ 50 mg/kg body weight) was however necessary to maintain the 

minimal therapeutic concentration in the urine due to unfavorable physicochemical properties 

of the antagonists for an oral treatment.[18, 21]  
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In order to reach the urinary bladder, an orally applied FimH antagonist needs to be absorbed 

from the intestinal lumen into the bloodstream and subsequently excreted via the kidneys. 

Permeability through the intestinal mucosa usually improves with an increase in 

lipophilicity.[27, 28] By contrast, renal excretion is favored in the case of hydrophilic 

molecules, the polar character of which limits the reabsorption from the primary urine in the 

renal tubules and reduces the propensity to non-renal elimination pathways.[29, 30] This 

chapter presents an ester prodrug concept (Figure 1) combining lipophilicity, conferred by an 

alkyl promoiety, and hydrophilicity, provided by the free carboxylate upon enzyme-mediated 

hydrolysis of the ester in hepatocytes or in plasma.[31, 32]  

O
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OH
HO

HO 1. Intestinal absorption

2. Hydrolysis in hepatocytes
    or in plasma

3. Renal excretion

COO

O

O

OH
HO

HO

COOH
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Cl Cl
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Alkyl

OH OH

 
Figure 1. Ester prodrug concept enabling oral bioavailability and renal excretion for the biphenyl 

α-D-mannopyranoside FimH antagonist 1.  

Results and Discussion 

In a recent publication, we described the biphenyl α-D-mannopyranoside 1 exhibiting 

nanomolar affinity towards the isolated FimH-CRD and treatment efficacy in a mouse 

disease model.[18] Moreover, we showed that esterification of the polar carboxylate with a 

methyl promoiety (→ 2) is a promising approach for achieving oral bioavailability. 

Nevertheless, the levels of the parent compound in plasma detected upon oral administration 

of the prodrug were moderate when compared to the concentrations reached by intravenous 

application. Therefore, we expanded the ester prodrug strategy in order to optimize the oral 

absorption potential. In a first step, we synthesized a set of simple alkyl esters (→ 3a-e, Table 

1) and characterized their intestinal absorption potential. Based on these findings we then 

optimized the prodrug by (a) introducing alkyl promoieties functionalized with oxygenated or 

nitrogenated substituents (→ 3f-i, k-n) and by (b) replacing the ortho-chloro substituent of 

the biphenyl aglycone with a trifluoromethyl group (→ 4, 5l).  
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Table 1. Ester prodrugs for optimizing oral bioavailability of the biphenyl α-D-mannopyranosides 1 and 4.  
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4[21] 

5l 
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H 

CH2CH2N(CH3)2 

 

Synthesis 

The synthesis of alkyl and oxygen-containing heteroalkyl esters is depicted in Scheme 1. The 

glycosylation between commercially available 8 and phenol 9 was performed in presence of 

Lewis acid affording α-D-mannoside 10. The boronate ester intermediates 7a-d, f, g were 

obtained by treating 6 with thionyl chloride and excess of corresponding alcohol. The 

alcohols applied in the case of 7h-j were coupled with carboxylic acid by Steglich 

esterification.[33] All boronate ester intermediates were purified by MPLC on silica gel and 

characterized except 7f, 7g and 7i, from which only major impurities were removed before 

using them in the next step. The compound 7e was purchased from Frontier Scientific, Inc. 

chemical company. The compound 10 underwent palladium-mediated Suzuki coupling 

reaction[34] together with 7a-j yielding biphenyls 11a-j. In order to avoid transesterification, 

deacetylation was done in a mixture of chloroform and corresponding alcohol together with 

its alkoxide. In the case of more complex alcohols, bulky tert-butanol with potassium tert-

butoxide was applied. 
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Scheme 1. a) R1-OH, SOCl2, 60 °C, 2-6 h, 42-65% (7a-c); b) R1-OH, DIC, DMAP, CH2Cl2, 0 °C → rt, 1-4 h, 

43-69% (7h, j); c) iPrOH, SOCl2, Et3N, CHCl3, 60 °C, 5 h, 32% (7d); d) BF3⋅Et2O, CH2Cl2, 4Å MS, 40 °C, 76 

h, 62%; e) 7a-e, 7h or 7j, PdCl2(dppf)⋅CH2Cl2, K3PO4, DMF, 80 °C, 2-6 h, 55-81% (11a-e, h, j); f) i. 6, R1-OH, 

SOCl2, 60 °C, 4-6 h; ii. PdCl2(dppf)⋅CH2Cl2, K3PO4, DMF, 80 °C, 4-5.5 h, 47-52% (11f, g); g) i. 6, R1-OH, 

DIC, DMAP, CH2Cl2, 0 °C → rt, 3.5 h; ii. PdCl2(dppf)⋅CH2Cl2, K3PO4, DMF, 80 °C, 5 h, 44% (11i); h) R1-

ONa/R1-OH or t-BuOK/t-BuOH, CHCl3, rt, 2-25 h, 25-69%. 

 

The synthesis of nitrogen-containing ester analogs was performed in a different manner to 

avoid possible deactivation of the catalyst[35] during Suzuki coupling reaction. Esterification 

was performed directly on compound 1 or 4 (Scheme 2). The crude products 3l-n and 5l were 

purified by means of preparative HPLC resulting in moderate yields. 
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Scheme 2. a) R1-OH, COMU, DIPEA, DMF, rt, 4-31 h, 14-53%. 
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Physicochemical and in vitro pharmacokinetic characterization 

For estimating the oral absorption potential of the various ester prodrugs as well as their 

propensity to enzyme-mediated bioactivation, we conducted aqueous solubility, lipophilicity, 

permeability, and metabolic stability studies (for experimental data refer to Table 2). 

Aqueous solubility was of interest because the orally applied dose needs to be dissolved in 

the intestinal fluids prior to absorption.[36] Lipophilicity was quantified by means of the 

octanol-water distribution coefficient at pH 7.4 (log D7.4).[37] The parallel artificial membrane 

permeability assay (PAMPA) was performed to estimate the prodrugs’ ability to diffuse 

through the intestinal membranes,[38] while bi-directional permeation studies across a 

colorectal adenocarcinoma (Caco-2) cell monolayer were implemented to reveal active influx 

and efflux processes.[39] Furthermore, the prodrugs were incubated with rat and human liver 

microsomes (RLM, HLM) for estimating their susceptibility to hydrolases localized in the 

endoplasmic reticulum of hepatocytes,[40] while incubations with human plasma were 

performed to investigate the involvement of plasma-borne enzymes in ester hydrolysis.[41] 

Table 2. Pharmacokinetic parameters of different ester prodrugs of the FimH antagonists 1 and 4. PAMPA, 

parallel artificial membrane permeability assay; Pe, effective permeability; Papp, apparent permeability; RLM, 

rat liver microsomes; HLM, human liver microsomes; n.d., not determined. The Caco-2 assay was performed at 

an initial compound concentration (c0) of 62.5 µM. Microsomal stability was determined with pooled male rat 

liver microsomes (0.125 mg/mL) and pooled human liver microsomes (0.125 mg/mL) at pH 7.4 and 37 °C. 

Plasma stability was determined with human plasma (50%) at pH 7.4 and 37 °C. 

Caco-2 
Papp [10-6 cm/s] 

cpd PAMPA 
log Pe 
[cm/s]/pH a→b b→a 

log D7.4 Solubility 
[µg/mL]/pH 

RLM 
t1/2 
[min] 

HLM 
t1/2 
[min] 

Plasma 
t1/2 
[min] 

1[18] no permeation 0.2±0.0 0.4±0.0 < -1.5 >3000 / 6.61 --- --- --- 

2[18] -4.6 5.3±0.6 18±1 2.32 11.9 / 6.53 3.1 36 >120 

3a -4.5±0.1 / 7.4 n.d. n.d. n.d. 3.9±0.1 / 7.4 n.d. n.d. n.d. 

3b -4.5±0.1 / 7.4 n.d. n.d. n.d. 2.2±0.5 / 7.4 n.d. n.d. n.d. 

3c -4.6       / 7.4 n.d. n.d. n.d. 0.8±0.2 / 7.4 n.d. n.d. n.d. 

3d -4.4±0.1 / 7.4 n.d. n.d. n.d. 14±1 / 7.4 n.d. n.d. n.d. 

3e -4.4±0.1 / 7.4 n.d. n.d. n.d. 3.8±0.6 / 7.4 n.d. n.d. n.d. 

3k -6.6±0.1 / 7.4 0.6±0.1 9.6±0.6 1.8±0.1 >160     / 7.4 >120 >120 >120 
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3f -4.9±0.0 / 7.4 4.5±0.4 18±1 2.3±0.0 121±4    / 7.4 4.1 47 57 

3g -4.9±0.2 / 7.4 11±1 19±1 2.7±0.0 137±14 / 7.4 5.9 101 66 

3h -4.5±0.1 / 7.4 8.3±0.7 36±4 3.1±0.1 90±6 / 7.4 1.9 16 57 

3i -5.1±0.1 / 7.4 4.6±0.6 36±7 2.1±0.1 147±6 / 7.4 5.1 33 33 

3l -6.4±0.0 / 5.0 
-6.2±0.1 / 7.4 0.9±0.1 27±0 1.6±0.0 >160 / 3.0 

>160 / 7.4 >120 >120 6.2 

3m -5.5±0.0 / 5.0 
-5.1±0.0 / 7.4 1.0±0.3 33±2 2.4±0.1 79±8 / 3.0 

57±4 / 7.4 49 >120 3.7 

3n -6.3±0.2 / 5.0 
-5.6±0.0 / 7.4 0.6±0.2 35±5 2.2±0.1 >120 / 3.0 

>120 / 7.4 32 >120 86 

4 -8.4±1.3 / 5.0 
-8.6±1.6 / 7.4 n.d. n.d. -0.8±0.1 15±1 / 3.0 

>200 / 7.4 --- --- --- 

5l -6.7±0.2 / 5.0 
-6.4±0.0 / 7.4 1.6 37 1.7±0.0 >160 / 3.0 

>160 / 7.4 80 n.d. 17 

 

Oral absorption. As previously reported, low aqueous solubility (< 20 µg/mL) is a primary 

drawback constraining oral absorption of the methyl ester 2.[18, 42] Moreover, carrier-mediated 

efflux at the apical enterocyte membrane – revealed by the bi-directional Caco-2 permeation 

assay – probably interferes with the intestinal uptake of the prodrug, in spite of promising 

membrane permeability suggested by PAMPA (log Pe = -4.6).[43, 44] Therefore, we expanded 

the alkyl promoiety with the aim to increase solubility and permeability.  

In the first step, esters with simple alkyl promoieties (3a-e) were introduced, trending 

towards slightly higher effective permeability (log Pe), as determined by PAMPA. 

Nevertheless, replacing the methyl promoiety with an ethyl, propyl, butyl, isopropyl, or tert-

butyl group further reduced the aqueous solubility of the prodrug and, as a consequence, its 

intestinal absorption potential.[36]  

In order to counteract decreasing aqueous solubility, we introduced in the next step ethyl 

promoieties functionalized with oxygenated or nitrogenated substituents.[45] These esters 

(3f-i, k-n) were indeed more soluble than the initial methyl ester 2 and the prodrugs 3a-e. 

Moreover, the 2-ethoxyethyl ester 3g and the 2-isopropoxyethyl ester 3h displayed a higher 

log D7.4 than the methyl ester, suggesting an increase in membrane permeability. On the other 

hand, the tertiary amines present in the compounds 3l and 3n induced a decrease in log D7.4 

but a strong increase in aqueous solubility. The moderate lipophilicity of the 

2-(dimethylamino)ethyl ester 3l could in turn be slightly raised by replacing the ortho-chloro 
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substituent on the first aromatic ring of the biphenyl aglycone with a trifluoromethyl moiety 

(→ 5l). Effective permeability deduced from PAMPA (log Pe) correlated with log D7.4, such 

that the most lipophilic ester 3h showed optimal log Pe for membrane permeation (-4.5).[43] In 

the case of the esters 3l-n and 5l bearing an amine functional group, we observed, moreover, 

a strong dependence of log Pe on the pH of the compound solution in the donor compartment 

of the PAMPA.  

A bi-directional Caco-2 permeability screening at low initial compound concentrations in the 

donor chamber (c0 = 62.5 µM) classified all heteroalkyl esters as apparent substrates of efflux 

transporters.[44] Passive diffusion driven by the concentration gradient across the cell 

monolayer and active efflux given for intrinsic carrier substrates are considered as key 

determinants of the apparent net flux.[46] Accordingly, the moderately permeable aminoalkyl 

esters, such as compound 3l, diffused slowly but were strongly recognized by the efflux 

carriers, resulting in a high efflux ratio (b→a/a→b). Since 3l is well soluble in aqueous 

medium, the initial concentration (c0) in the donor chambers could, however, be expanded to 

825 µM, which increased the gradient and apparently saturated the transporter activity 

(Figure 2). As a result, apparent permeability (Papp, a→b) in the range for successful oral 

absorption was achieved. 

In contrast to the 2-aminoethyl esters, the highly permeable esters 3f-h diffused more rapidly, 

which led to a lower efflux ratio and promising Papp, a→b under the screening conditions 

(c0 = 62.5 µM). However, for the ester 3h exhibiting the least favorable efflux ratio among 

those esters, the attempt to saturate the transporters was not successful due to insufficient 

aqueous solubility (90 µg/mL).  

 
Figure 2. Apparent permeability (Papp) of ester 3l through a Caco-2 cell monolayer. The assay was performed at 

different initial compound concentrations in the donor compartment (c0), ranging from 100 µM to 825 µM. Papp 

(a→b), permeability in the absorptive direction; Papp (b→a), permeability in the secretory direction.  
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Enzyme-mediated bioactivation. Besides solubility and permeability, propensity to enzyme-

mediated bioactivation was a key feature of our ester prodrug concept.[31] Hydrolysis of the 

ester bond can be mediated by plasma-borne enzymes or by isozymes of the carboxlyesterase 

(CES) superfamily associated to the endoplasmic reticulum of various tissues.[41, 47] The 

isozyme hCE1, highly expressed in hepatocytes but scarcely observed in enterocytes, and the 

isozyme hCE2, present in both hepatocytes and enterocytes, have been identified as major 

human CES.[40] Since the prodrug approach might only be successful if hydrolysis takes place 

in the bloodstream or in the liver and not in the intestine during absorption, high chemical 

stability of the ester bond and substrate specificity for plasma-borne hydrolases or hCE1 was 

aspired. 

Incubations of the esters 3f-i, k-n, and 5l in buffer without active enzyme (pH 7.4, 37 °C) 

showed a negligible degradation within one hour, suggesting high chemical stability of the 

ester bond. With regard to the enzyme-mediated bioactivation, we identified different 

esterases to be involved in the conversion of the oxygen-containing esters 3f-i, k and the 

amine-bearing esters 3l-n and 5l to the active parent compounds.  

When we incubated the oxyethyl esters 3f-h, k (initial concentration, c0 = 2 µM in TRIS-HCl 

0.1 M, pH 7.4) with RLM (0.125 mg/mL, total incubation time = 60 min), we observed the 

previously described relationship between the lipophilicity of the ester and its propensity to 

hydrolysis by microsome-associated hydrolases.[48, 49] The 2-hydroxyethyl ester 3k, i.e. the 

least lipophilic compound among the oxyethyl esters, remained stable during the entire 

incubation (t1/2 > 120 min). By contrast, the 2-methoxyethyl 3f, 2-ethoxyethyl 3g, and 

2-isopropoxyethyl 3h esters were all susceptible to degradation by microsome-associated 

enzymes, with the most lipophilic 3h showing the shortest metabolic half-life. Nonetheless, 

the observed high rates of biotransformation by murine hydrolases did not correlate with the 

turnover by human enzymes. In fact, the incubations with HLM under similar assay 

conditions revealed important species differences in the observed half-lives (see Table 2), 

which need to be considered when predicting the rates of bioconversion in human from in 

vivo animal experiments.[50]  
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Figure 3. Human liver microsome mediated hydrolysis of ester prodrug 2, 3f, 3g, and 3h in presence of 

Loperamide hydrochloride, a specific inhibitor of the human carboxylesterase isotype 2 (hCE2). The bars 

represent the accumulation of the parent compound 1 in the incubation with inhibitor (1 µM, 10 µM, 100 µM) 

relative to the accumulation in the control experiment without Loperamide (blank). 

When bis(4-nitrophenyl) phosphate (BNPP, 1 mM) – an inhibitor of all CES isozymes – was 

added to the microsomal incubations of the esters 3f-h, a strong decrease in the rates of 

hydrolysis was observed. These results suggest that enzymes of the CES superfamily are the 

main contributors to the bioactivation of these prodrugs.[40] Otherwise, treating the HLM with 

Loperamide (1 – 100 µM) – a specific inhibitor of the human CES isotype 2 (hCE2) – did not 

affect the rates of hydrolysis (Figure 3), which attributes the observed enzymatic turnover 

primarily to the hCE1 isozyme.[51]  

In contrast to the 2-oxyethyl esters, all 2-aminoethyl prodrugs 3l-n and 5l showed low 

susceptibility to hydrolysis by microsome-associated esterases. Indeed, the cationic tertiary 

amine present in these esters is supposed to establish strong interactions with negatively 

charged residues in the active site gorge of the CES and, as a consequence, to inhibit the 

hydrolytic activity.[49] By contrast, the 2-(dimethylamino)ethyl esters 3l, 5l, and the 

2-(piperidin-1-yl)ethyl ester 3m were rapidly cleaved by plasma-borne enzymes. Since the 

2-aminoethyl carboxylate present in these prodrugs is structurally related to choline esters, 

we postulated that they were recognized by the butyrylcholinesterase (BChE) present in 

human plasma.[52, 53] The metabolic turnover could indeed be inhibited by the specific 

cholinesterase inhibitor Neostigmine bromide (Figure 4), which confirms the strong 

contribution of BChE to the observed hydrolysis.[54] Against our expectations, the 

2-morpholinoethyl promoiety in 3n, known from marketed ester prodrugs (e.g. 

Micophenolate mofetil),[55] was scarcely cleaved by microsomal or plasma-associated 

enzymes. 
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Figure 4. Hydrolysis of the 2-(dimethylamino)ethyl ester 3l and the 2-(piperidin-1-yl)ethyl ester 3m by plasma-

associated esterases in presence of the specific butyrylcholinesterase inhibitor Neostigmine bromide 

(0.01 - 10 µM). The activity was calculated by dividing the metabolic t1/2 observed in presence of inhibitor by 

the metabolic t1/2 of the control experiment without inhibitor. 

In summary, the prodrug approach proved successful to mask the polar character of the 

carboxylic acid and hence to increase permeability of the biphenyl α-D-mannopyranoside 1. 

As opposed to merely aliphatic motifs present in 3a-e, the oxyalkyl promoieties in 3f-h 

enhanced both permeability and solubility. Nonetheless, aqueous solubility was still 

insufficient to reach concentrations necessary for efflux transporter saturation. Moreover, we 

suspect that, despite hydrolysis by hepatic CES, further metabolic modifications within the 

hepatocytes (e.g. glucuronidation of the free acid) or hepatobiliary excretion may take place 

and constrain the systemic availability of the active principle.[31] Otherwise, the 2-aminoethyl 

derivatives showed high aqueous solubility, compensating for moderate permeability and 

providing a promising overall absorption potential. Furthermore, the well soluble esters 3l 

and 5l displayed high propensity to hydrolysis by plasma-borne enzymes, which suggests 

rapid and quantitative conversion of the prodrug to the polar active principle within the 

bloodstream and thus low compound loss during the first pass through the liver.[31] 

With regard to the rate of enzyme-mediated bioactivation, rapid conversion, such as observed 

for the prodrugs 3h, 3l or 5l, is not necessarily advantageous since it favors rapid compound 

clearance from circulation, i.e. high initial concentrations in the bladder but only short-acting 

therapeutic effects. We therefore hypothesize that the slightly prolonged metabolic t1/2 of the 

prodrug 3g would allow to maintain the minimal therapeutic concentration in the urine for a 

longer period of time, thus reducing the dosing frequency.  
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Summary and Conclusion 

The physicochemical profile of most biaryl α-D-mannosides described as potent and selective 

FimH antagonists is unfavorable for an oral therapy. In a former publication, we introduced 

an ester prodrug approach rendering the biphenyl mannoside 1 orally available. The goal of 

the present study was to optimize the properties of the promoiety in order to enhance the 

intestinal uptake and the delivery of the pharmacologically active parent compound to the 

therapeutic target in the urinary bladder.  

Introducing alkyl promoieties (i.e. ethyl, propyl, isopropyl, butyl, isopropyl, or tert-butyl) 

was little successful due to markedly reduced aqueous solubility of the final molecules. By 

contrast, alkyl promoieties functionalized with oxygenated or nitrogenated substituents 

proved advantageous for masking the polar carboxylic acid substituent of the biphenyl 

aglycone and for raising the aqueous solubility of the prodrug. With regard to the enzymatic 

bioactivation, we identified different esterases responsible for the hydrolysis of the 

alkoxyethyl esters and the aminoethyl derivatives. The first mentioned class of esters was 

recognized by the ER-associated CES expressed in hepatocytes. The latter group of prodrugs 

was rapidly cleaved by the plasma-borne BChE, which implies immediate availability of the 

active principle in the bloodstream and lower non-renal clearance by phase II metabolic 

reactions or hepatobiliary excretion.  

With respect to all ADME parameters determined in vitro, the prodrugs 3g and 5l showed the 

most promising profiles. The 2-(dimethylamino)ethyl ester derivative 5l displayed high 

solubility, moderate permeability, and rapid hydrolysis mediated by the cholinesterase, which 

can lower the risk of non-renal clearance but also shorten the dosing interval of the treatment. 

On the other hand, the 2-ethoxyethyl ester derivative 3g exhibited moderate solubility, high 

permeability, and slightly prolonged t1/2, which may be beneficial in terms of dose regimen 

but also may increase the propensity to hepatic clearance. In order to prove the advantages 

and drawbacks of the optimized structures, in vivo pharmacokinetic studies in mice should be 

conducted as a next step. 
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Experimental Section 

Synthesis 

General methods. NMR spectra were recorded on a Bruker Avance DMX-500 (500 MHz) 

spectrometer. Assignment of 1H and 13C NMR spectra was achieved using 2D methods (COSY, 

HSQC, HMBC). Chemical shifts are expressed in ppm using residual CHCl3, CHD2OD or HDO as 

references. Optical rotations were measured using Perkin-Elmer Polarimeter 341. Electron spray 

ionization mass spectra (ESI-MS) were obtained on a Waters micromass ZQ Mass Spectrometer. The 

LC-HRMS analysis were carried out using a Agilent 1100 LC equipped with a photodiode array 

detector and a Micromass QTOF I equipped with a 4 GHz digital-time converter. Reactions were 

monitored by TLC using glass plates coated with silica gel 60 F254 (Merck) and visualized by using 

UV light and/or by charring with a molybdate solution (a 0.02 M solution of ammonium cerium 

sulfate dihydrate and ammonium molybdate tetrahydrate in aqueous 10% H2SO4). MPLC separations 

were carried out on a CombiFlash Companion or Rf from Teledyne Isco equipped with RediSep 

normal-phase. LC-MS separations were carried out on a Waters system equipped with sample 

manager 2767, pump 2525, PDA 2996, column SunFireTM Prep C18 OBDTM (5 µm, 19 x 150 mm), 

and Micromass ZQ. All compounds used for biological assays are at least of 95% purity based on 

HPLC analytical results. Commercially available reagents were purchased from Aldrich, Alfa Aesar, 

Acros Organics or Frontier Scientific. Solvents were purchased from Sigma-Aldrich or Acros and 

were dried prior to use where indicated. Methanol (MeOH), ethanol (EtOH), n-propanol (PrOH), 

isopropanol (i-PrOH), n-butanol (BuOH) and tert-butanol (t-BuOH) were dried by storing with 

activated molecular sieves 3Å or 4Å for at least one day. Dichloromethane (DCM) was dried by 

filtration over Al2O3 (Fluka, type 5016 A basic) and stored over activated molecular sieves 4Å . 

Molecular sieves 3Å and 4Å were activated in vacuo at 200 °C for 30 min immediately before use. 

General procedure A for Suzuki coupling reaction. A round-bottom flask was charged with 10, 

boronate 6 or 7 and K3PO4, then evacuated and flushed with argon. Anhydrous DMF (0.5-4 mL) was 

added and the mixture was degassed in an ultrasonic bath for 10 min followed by the addition of 

PdCl2(dppf)⋅CH2Cl2. The reaction was stirred at 80 °C under argon until completion (2-6 h). After 

cooling to rt, the mixture was diluted with EtOAc (30-50 mL) and washed with satd aq NaHCO3 (2 x 

20 mL) and H2O (2 x 20 mL). The organic layer was dried over Na2SO4, concentrated in vacuo and 

purified by MPLC on silica gel to afford 11a-j. 

General procedure B for deacetylation. To a solution of protected mannoside 11 in a mixture of dry 

alcohol and chloroform, freshly prepared sodium alkoxide or potassium tert-butoxide was added. The 

mixture was stirred at rt under argon until completion (2-25 h). Then, the mixture was neutralized 

with Amberlyst-15 (H+) ion-exchange resin, filtered and concentrated in vacuo. The crude product 

was purified by MPLC on silica gel to afford 3a-i, k. 
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General procedure C for esterification of compounds 1 and 4. To a solution of 1 or 4, the 

corresponding alcohol and DIPEA in DMF, was added COMU. The mixture was stirred at rt under 

argon until completion (4-31 h) and then concentrated in vacuo. The residue was dissolved in MeOH 

(1 mL) or MeCN (1 mL), passed through a nylon membrane syringe filter (pore size 0.45 µm) and 

purified by LC-MS (H2O/MeCN + 0.2% HCO2H) to afford 3l-n and 5l as solids after lyophilization 

from H2O. 

4-Ethoxycarbonylphenylboronic acid pinacol ester (7a). A round-bottom flask was charged with 6 

(60 mg, 0.235 mmol), evacuated and flushed with argon. Then, dry EtOH (0.6 mL) and SOCl2 (41 

µL, 0.282 mmol, 2.4 eq) were added. The mixture was stirred at 60 °C for 2 h. The reaction mixture 

was concentrated in vacuo and purified by MPLC on silica gel (petroleum ether/EtOAc, 9:1) to afford 

7a (43 mg, 66%) as a colorless oil. Analytical data are in accordance with literature data.[56] 

4-Propoxycarbonylphenylboronic acid pinacol ester (7b). Prepared according to the procedure for 

7a from 6 (39 mg, 0.152 mmol) with SOCl2 (12 µL, 0.152 mmol, 1.0 eq) in dry PrOH (0.3 mL). After 

stirring for 6 h, the reaction mixture was diluted with EtOAc (40 mL) and washed with satd aq 

NaHCO3 (20 mL). The organic layer was dried over Na2SO4, concentrated in vacuo and purified by 

MPLC on silica gel (petroleum ether/EtOAc, 9:1) to afford 7b (23 mg, 52%) as a colorless oil. 1H 

NMR (500 MHz, CDCl3): δ = 7.95 (d, J = 8.2 Hz, 2H, Ar-H), 7.79 (d, J = 8.2 Hz, 2H, Ar-H), 4.21 (t, 

J = 6.7 Hz, 2H, OCH2), 1.76-1.69 (m, 2H, CH2), 1.28 (s, 12H, 2 C(CH3)2), 0.96 (t, J = 7.4 Hz, 3H, 

CH3); 13C NMR (125 MHz, CDCl3): δ = 166.92 (CO), 134.84, 132.91, 128.76 (6C, Ar-C), 84.36 (2C, 

2 C(CH3)2), 66.82 (OCH2), 25.08 (4C, 2 C(CH3)2), 22.31 (CH2), 10.72 (CH3); elemental analysis: 

Calcd (%) for C16H23BO4: C 66.23, H 7.99, found: C 66.15, H 8.01. 

4-Butoxycarbonylphenylboronic acid pinacol ester (7c). Prepared according to the procedure for 

7a from 6 (47 mg, 0.188 mmol) with SOCl2 (17 µL, 0.232 mmol, 1.2 eq) in dry BuOH (0.4 mL). 

After stirring for 6 h, the mixture was concentrated in vacuo and purified by MPLC on silica gel 

(petroleum ether/EtOAc, 9:1) to afford 7c (37 mg, 65%) as a colorless oil. 1H NMR (500 MHz, 

CDCl3): δ = 7.94 (d, J = 8.2 Hz, 2H, Ar-H), 7.79 (d, J = 8.1 Hz, 2H, Ar-H), 4.25 (t, J = 6.7 Hz, 2H, 

OCH2), 1.71-1.66 (m, 2H, CH2), 1.44-1.37 (m, 2H, CH2), 1.28 (s, 12H, 2 C(CH3)2), 0.91 (t, J = 7.4 

Hz, 3H, CH3); 13C NMR (125 MHz, CDCl3): δ = 166.93 (CO), 134.84, 132.91, 128.75 (6C, Ar-C), 

84.36 (2C, 2 C(CH3)2), 65.13 (OCH2), 30.97 (CH2), 25.08 (4C, 2 C(CH3)2), 19.47 (CH2), 13.97 (CH3); 

ESI-MS: m/z: Calcd for C17H25BNaO4 [M+Na]+: 327.17, found: 326.98. 

4-Isopropoxycarbonylphenylboronic acid pinacol ester (7d). To a solution of 6 (39 mg, 0.152 

mmol) in CHCl3 (1 mL) was added SOCl2 (28 µL, 0.380 mmol, 2.5 eq). The reaction mixture was 

stirred at 60 °C under argon. Dry i-PrOH (1 mL) and Et3N (23 µL, 0.167 mmol, 1.1 eq) were added 

after 2 h. When the reaction was complete (2.5 h), the mixture was concentrated in vacuo and the 

residue purified by MPLC on silica gel (petroleum ether/EtOAc, 9:1) to afford 7d (14 mg, 32%) as a 
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colorless oil. 1H NMR (500 MHz, CDCl3): δ = 7.94 (d, J = 8.2 Hz, 2H, Ar-H), 7.78 (d, J = 8.1 Hz, 

2H, Ar-H), 5.18 (hept, J = 6.3 Hz, 1H, OCH), 1.71-1.66 (m, 2H, CH2), 1.44-1.37 (m, 2H, CH2), 1.31-

1.29 (m, 18H, 2 C(CH3)2, CH(CH3)2); 13C NMR (125 MHz, CDCl3): δ = 166.37 (CO), 134.79, 133.33, 

128.74 (6C, Ar-C), 84.36 (2C, 2 C(CH3)2), 68.67 (OCH), 25.10 (4C, 2 C(CH3)2), 22.16 (2C, 

CH(CH3)2); ESI-MS: m/z: Calcd for C16H23BNaO4 [M+Na]+: 313.16, found: 312.99. 

4-(2-Isopropoxyethoxycarbonyl)phenylboronic acid pinacol ester (7h). To a solution of 6 (100 

mg, 0.391 mmol) in dry DCM (2 mL) under argon were added 2-isopropoxyethanol (91 µL, 0.782 

mmol, 2.0 eq) and a catalytic amount of DMAP (4 mg, 0.033 mmol, 0.08 eq). Then, DIC (91 µL, 

0.587 mmol, 1.5 eq) was added at 0 °C, the reaction was allowed to reach rt and stirred for 1 h. The 

reaction mixture was diluted with EtOAc (40 mL) and washed with 0.1 N HCl (10 mL), satd aq 

NaHCO3 (20 mL) and H2O (20 mL). The organic layer was dried over Na2SO4, concentrated in vacuo 

and purified by MPLC on silica gel (DCM/MeOH, 99:1) to afford 7h (70 mg, 53%) as a colorless oil. 
1H NMR (500 MHz, CDCl3): δ = 8.03 (d, J = 8.3 Hz, 2H, Ar-H), 7.86 (d, J = 8.1 Hz, 2H, Ar-H), 4.46-

4.43 (m, 2H, COCH3), 3.77-3.75 (m, 2H, CH2O), 3.66 (hept, J = 6.1 Hz, 1H, OCH), 1.35 (s, 12H, 2 

C(CH3)2), 1.18 (d, J = 6.1 Hz, 6H, CH(CH3)2); 13C NMR (125 MHz, CDCl3): δ = 166.78 (CO), 

134.76, 132.52, 128.82 (6C, Ar-C), 84.30 (2C, 2 C(CH3)2), 72.20 (OCH), 66.09 (CH2O), 64.71 

(COCH2), 25.02 (4C, 2 C(CH3)2), 22.19 (2C, CH(CH3)2); elemental analysis: Calcd (%) for 

C18H27BO5: C 64.69, H 8.14, found: C 65.05, H 8.21. 

4-(2-Acetoxyethoxycarbonyl)phenylboronic acid pinacol ester (7j). Prepared according to the 

procedure for 7h from 6 (100 mg, 0.403 mmol) and 2-hydroxyethyl acetate[57] (0.150 mL) with DIC 

(94 µL, 0.605 mmol, 1.5 eq) and DMAP (4 mg, 0.033 mmol, 0.08 eq) in dry DCM (2 mL) to afford 7j 

(71 mg, 53%) as a colorless oil. 1H NMR (500 MHz, CD3OD): δ = 8.00 (d, J = 8.2 Hz, 2H, Ar-H), 

7.84 (d, J = 8.2 Hz, 2H, Ar-H), 4.53-4.51 (m, 2H, CH2), 4.43-4.41 (m, 2H, CH2), 2.06 (s, 3H, 

COCH3), 1.36 (s, 12H, 2 C(CH3)2); 13C NMR (125 MHz, CD3OD): δ = 172.63, 167.70 (2 CO), 

135.69, 129.64 (6C, Ar-C), 85.53 (2C, 2 C(CH3)2), 64.17, 63.44 (2 OCH2), 25.20 (4C, 2 C(CH3)2), 

20.66 (COCH3); ESI-MS: m/z: Calcd for C17H23BNaO6 [M+Na]+: 357.15, found: 357.04. 

Ethyl 4’-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)-3’-chlorobiphenyl-4-carboxylate 

(11a). Prepared according to general procedure A from 10 (83 mg, 0.142 mmol) and 7a (43 mg, 0.156 

mmol, 1.1 eq) with K3PO4 (93 mg, 0.411 mmol, 3.0 eq) and PdCl2(dppf)⋅CH2Cl2 (3.4 mg, 4.2 µmol, 

0.03 eq) in anhydrous DMF (0.5 mL). Purified by MPLC on silica gel (petroleum ether/EtOAc, 7:3). 

Yield: 62 mg (62%) as colorless oil. [α]

€ 

D
20  +66.4 (c 1.00, CHCl3); 1H NMR (500 MHz, CDCl3): δ = 

8.02 (d, J = 8.4 Hz, 2H, Ar-H), 7.59 (d, J = 2.2 Hz, 1H, Ar-H), 7.51 (d, J = 8.4 Hz, 2H, Ar-H), 7.39 

(dd, J = 2.2, 8.6 Hz, 1H, Ar-H), 7.18 (d, J = 8.6 Hz, 1H, Ar-H), 5.58-5.54 (m, 2H, H-1, H-3), 5.48 

(dd, J = 1.8, 3.4 Hz, 1H, H-2), 5.33 (t, J = 10.1 Hz, 1H, H-4), 4.32 (q, J = 7.1 Hz, 2H, OCH2), 4.22 

(dd, J = 5.3, 12.3 Hz, 1H, H-6a), 4.12 (ddd, J = 2.1, 5.2, 10.1 Hz, 1H, H-5), 4.03 (dd, J = 2.2, 12.4 Hz, 
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1H, H-6b), 2.14, 2.00, 1.97, 1.96 (4 s, 12H, 4 COCH3), 1.34 (t, J = 7.1 Hz, 3H, CH3); 13C NMR (125 

MHz, CDCl3): δ = 170.61, 170.10, 169.92, 169.91, 166.45 (5 CO), 151.27, 143.48, 136.33, 130.36, 

129.79, 129.44, 126.83, 126.64, 125.03, 117.39 (12C, Ar-C), 96.79 (C-1), 69.99 (C-5), 69.47 (C-2), 

68.92 (C-3), 65.96 (C-4), 62.25 (C-6), 61.22 (OCH2), 21.02, 20.86, 20.84, 20.82 (4 COCH3), 14.51 

(CH3); elemental analysis: Calcd (%) for C29H31ClO12: C 57.38, H 5.15, found: C 57.62, H 5.32. 

Propyl 4’-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)-3’-chlorobiphenyl-4-carboxylate 

(11b). Prepared according to general procedure A from 10 (35 mg, 0.060 mmol) and 7b (19 mg, 0.065 

mmol, 1.1 eq) with K3PO4 (39 mg, 0.179 mmol, 3.0 eq) and PdCl2(dppf)⋅CH2Cl2 (2.3 mg, 2.8 µmol, 

0.05 eq) in DMF (0.5 mL). Purified by MPLC on silica gel (petroleum ether/EtOAc, 1:0-0:1). Yield: 

26 mg (70%) as colorless oil. [α]

€ 

D
20  +68.2 (c 0.87, CHCl3); 1H NMR (500 MHz, CDCl3): δ = 8.03 (d, J 

= 8.4 Hz, 2H, Ar-H), 7.60 (d, J = 2.2 Hz, 1H, Ar-H), 7.52 (d, J = 8.4 Hz, 2H, Ar-H), 7.39 (dd, J = 2.2, 

8.6 Hz, 1H, Ar-H), 7.19 (d, J = 8.5 Hz, 1H, Ar-H), 5.57 (dd, J = 3.5, 10.1 Hz, 1H, H-3), 5.54 (d, J = 

1.5 Hz, 1H, H-1), 5.49 (dd, J = 1.9, 3.4 Hz, 1H, H-2), 5.34 (t, J = 10.1 Hz, 1H, H-4), 4.25-4.21 (m, 

3H, H-6a, OCH2), 4.12 (ddd, J = 2.1, 5.2, 10.1 Hz, 1H, H-5), 4.03 (dd, J = 2.2, 12.3 Hz, 1H, H-6b), 

2.15, 2.01, 1.98, 1.97 (4 s, 12H, 4 COCH3), 1.78-1.71 (m, 2H, CH2), 0.98 (t, J = 7.4 Hz, 3H, CH3); 13C 

NMR (125 MHz, CDCl3): δ = 170.66, 170.16, 169.97, 169.96, 166.57 (5 CO), 151.32, 143.54, 

136.40, 130.41, 129.86, 129.49, 126.90, 126.68, 125.09, 117.43 (12C, Ar-C), 96.84 (C-1), 70.03 (C-

5), 69.52 (C-2), 68.96 (C-3), 66.85 (OCH2), 66.01 (C-4), 62.29 (C-6), 22.33 (CH2), 21.07, 20.90, 

20.88, 20.86 (4 COCH3), 10.72 (CH3); ESI-MS: m/z: Calcd for C30H37ClNO12 [M+NH4]+: 638.20, 

found: 638.07. 

Butyl 4’-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)-3’-chlorobiphenyl-4-carboxylate 

(11c). Prepared according to general procedure A from 10 (52 mg, 0.090 mmol) and 7c (30 mg, 0.099 

mmol, 1.1 eq) with K3PO4 (59 mg, 0.270 mmol, 3.0 eq) and PdCl2(dppf)⋅CH2Cl2 (3.9 mg, 4.5 µmol, 

0.05 eq) in DMF (0.5 mL). Purified by MPLC on silica gel (petroleum ether/EtOAc, 7:3). Yield: 33 

mg (58%) as pink oil. [α]

€ 

D
20  +105.1 (c 1.10, CHCl3); 1H NMR (500 MHz, CDCl3): δ = 8.03 (d, J = 8.4 

Hz, 2H, Ar-H), 7.61 (d, J = 2.2 Hz, 1H, Ar-H), 7.54 (d, J = 8.4 Hz, 2H, Ar-H), 7.41 (dd, J = 2.2, 8.6 

Hz, 1H, Ar-H), 7.19 (d, J = 8.6 Hz, 1H, Ar-H), 5.57 (dd, J = 3.5, 10.1 Hz, 1H, H-3), 5.54 (d, J = 1.6 

Hz, 1H, H-1), 5.49 (dd, J = 1.9, 3.4 Hz, 1H, H-2), 5.34 (t, J = 10.1 Hz, 1H, H-4), 4.28 (t, J = 6.6 Hz, 

2H, OCH2), 4.22 (dd, J = 5.3, 12.3 Hz, 1H, H-6a), 4.12 (ddd, J = 2.2, 5.2, 10.1 Hz, 1H, H-5), 4.04 

(dd, J = 2.2, 12.3 Hz, 1H, H-6b), 2.15, 2.01, 1.98, 1.97 (4 s, 12H, 4 COCH3), 1.73-1.67 (m, 2H, CH2), 

1.46-1.39 (m, 2H, CH2), 0.92 (t, J = 7.4 Hz, 3H, CH3); 13C NMR (125 MHz, CDCl3): δ = 170.67, 

170.17, 169.98, 169.97, 166.58 (5 CO), 151.33, 143.54, 136.41, 130.42, 129.87, 129.50, 126.90, 

126.68, 125.09, 117.44 (12C, Ar-C), 96.85 (C-1), 70.04 (C-5), 69.53 (C-2), 68.96 (C-3), 66.02 (C-4), 

65.16 (OCH2), 62.30 (C-6), 31.00 (CH2), 21.07, 20.91, 20.88, 20.87 (4 COCH3), 19.49 (CH2),  13.98 

(CH3); HRMS: m/z: Calcd for C31H35ClNaO12 [M+Na]+: 657.1715, found: 657.1711. 
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Isopropyl 4’-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)-3’-chlorobiphenyl-4-carboxylate 

(11d). Prepared according to general procedure A from 10 (26 mg, 0.044 mmol) and 7d (14 mg, 0.048 

mmol, 1.1 eq) with K3PO4 (29 mg, 0.132 mmol, 3.0 eq) and PdCl2(dppf)⋅CH2Cl2 (1.5 mg, 1.8 µmol, 

0.04 eq) in DMF (0.5 mL). Purified by MPLC on silica gel (petroleum ether/EtOAc, 7:3). Yield: 22 

mg (81%) as colorless oil. [α]

€ 

D
20  +57.5 (c 1.05, CHCl3); 1H NMR (500 MHz, CDCl3): δ = 8.02 (d, J = 

8.5 Hz, 2H, Ar-H), 7.61 (d, J = 2.2 Hz, 1H, Ar-H), 7.53 (d, J = 8.5 Hz, 2H, Ar-H), 7.40 (dd, J = 2.2, 

8.6 Hz, 1H, Ar-H), 7.19 (d, J = 8.3 Hz, 1H, Ar-H), 5.57 (dd, J = 3.5, 10.1 Hz, 1H, H-3), 5.54 (d, J = 

1.6 Hz, 1H, H-1), 5.49 (dd, J = 1.9, 3.4 Hz, 1H, H-2), 5.34 (t, J = 10.1 Hz, 1H, H-4), 5.20 (hept, J = 

6.3 Hz, 1H, OCH), 4.22 (dd, J = 5.3, 12.3 Hz, 1H, H-6a), 4.12 (ddd, J = 2.2, 5.2, 10.1 Hz, 1H, H-5), 

4.03 (dd, J = 2.3, 12.2 Hz, 1H, H-6b), 2.15, 2.01, 1.98, 1.97 (4 s, 12H, 4 COCH3), 1.38 (d, J = 6.3 Hz, 

6H, CH(CH3)2); 13C NMR (125 MHz, CDCl3): δ = 170.67, 170.17, 169.98, 169.97, 166.00 (5 CO), 

151.30, 143.44, 136.46, 130.39, 130.26, 129.49, 126.84, 126.68, 125.08, 117.43 (12C, Ar-C), 96.84 

(C-1), 70.03 (C-5), 69.52 (C-2), 68.97 (C-3), 68.71 (OCH), 66.02 (C-4), 62.30 (C-6), 22.17 (2C, 

CH(CH3)2), 21.07, 20.91, 20.88, 20.87 (4 COCH3); HRMS: m/z: Calcd for C30H33ClNaO12 [M+Na]+: 

643.1558, found: 643.1554. 

tert-Butyl 4’-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)-3’-chlorobiphenyl-4-carboxylate 

(11e). Prepared according to general procedure A from 10 (27 mg, 0.047 mmol) and 4-tert-

butyloxycarbonylphenyl boronic pinacol ester (7e, 16 mg, 0.052 mmol, 1.1 eq) with K3PO4 (31 mg, 

0.141 mmol, 3.0 eq) and PdCl2(dppf)⋅CH2Cl2 (1.6 mg, 1.9 µmol, 0.04 eq) in DMF (0.5 mL). Purified 

by MPLC on silica gel (petroleum ether/EtOAc, 7:3). Yield: 22 mg (74%) as colorless oil. [α]

€ 

D
20  +64.9 

(c 1.09, CHCl3); 1H NMR (500 MHz, CDCl3): δ = 7.97 (d, J = 8.4 Hz, 2H, Ar-H), 7.59 (d, J = 2.2 Hz, 

1H, Ar-H), 7.49 (d, J = 8.4 Hz, 2H, Ar-H), 7.38 (dd, J = 2.2, 8.6 Hz, 1H, Ar-H), 7.18 (d, J = 8.8 Hz, 

1H, Ar-H), 5.57 (dd, J = 3.5, 10.1 Hz, 1H, H-3), 5.55 (d, J = 1.5 Hz, 1H, H-1), 5.49 (dd, J = 1.9, 3.4 

Hz, 1H, H-2), 5.34 (t, J = 10.1 Hz, 1H, H-4), 4.22 (dd, J = 5.3, 12.3 Hz, 1H, H-6a), 4.12 (ddd, J = 2.1, 

5.3, 10.1 Hz, 1H, H-5), 4.03 (dd, J = 2.2, 12.3 Hz, 1H, H-6b), 2.15, 2.01, 1.98, 1.97 (4 s, 12H, 4 

COCH3), 1.54 (s, 9H, C(CH3)3); 13C NMR (125 MHz, CDCl3): δ = 170.68, 170.18, 169.99, 169.98, 

165.68 (5 CO), 151.26, 143.16, 136.55, 131.39, 130.30, 129.48, 126.77, 126.67, 125.08, 117.45 (12C, 

Ar-C), 96.86 (C-1), 81.40 (C(CH3)3), 70.04 (C-5), 69.54 (C-2), 68.98 (C-3), 66.04 (C-4), 62.31 (C-6), 

28.43 (3C, C(CH3)3), 21.09, 20.92, 20.90, 20.88 (4 COCH3); ESI-MS: m/z: Calcd for C31H35ClNaO12 

[M+Na]+: 657.17, found: 657.13. 

2-Methoxyethyl 4’-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)-3’-chloro-biphenyl-4-

carboxylate (11f). 4-(2-Methoxyethoxycarbonyl)phenylboronic acid pinacol ester (7f) was prepared 

according to the procedure for 7a from 6 (25 mg, 0.104 mmol) with SOCl2 (11 µL, 0.151 mmol, 1.5 

eq) in 2-methoxyethanol (0.4 mL). The reaction mixture was concentrated in vacuo after 4 h. The 

crude product was used directly for the coupling reaction according to general procedure A with 10 
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(55 mg, 0.095 mmol), K3PO4 (61 mg, 0.285 mmol, 3.0 eq) and PdCl2(dppf)⋅CH2Cl2 (3.1 mg, 3.8 

µmol, 0.04 eq) in DMF (1 mL). Purified by MPLC on silica gel (petroleum ether/EtOAc, 3:2). Yield: 

32 mg (52% over two steps) as colorless oil. [α]

€ 

D
20  +60.9 (c 1.26, CHCl3); 1H NMR (500 MHz, 

CDCl3): δ = 8.05 (d, J = 8.4 Hz, 2H, Ar-H), 7.60 (d, J = 2.2 Hz, 1H, Ar-H), 7.52 (d, J = 8.4 Hz, 2H, 

Ar-H), 7.39 (dd, J = 2.2, 8.6 Hz, 1H, Ar-H), 7.19 (d, J = 8.9 Hz, 1H, Ar-H), 5.56 (dd, J = 3.5, 10.1 

Hz, 1H, H-3), 5.54 (d, J = 1.5 Hz, 1H, H-1), 5.49 (dd, J = 1.9, 3.4 Hz, 1H, H-2), 5.34 (t, J = 10.1 Hz, 

1H, H-4), 4.43-4.42 (m, 2H, CH2), 4.22 (dd, J = 5.3, 12.3 Hz, 1H, H-6a), 4.12 (ddd, J = 2.2, 5.2, 10.1 

Hz, 1H, H-5), 4.03 (dd, J = 2.2, 12.3 Hz, 1H, H-6b), 3.68-3.67 (m, 2H, CH2), 3.37 (s, 3H, OCH3), 

2.14, 2.01, 1.98, 1.97 (4 s, 12H, 4 COCH3); 13C NMR (125 MHz, CDCl3): δ = 170.58, 170.07, 169.89, 

169.88, 166.39 (5 CO), 151.26, 143.64, 136.25, 130.51, 129.41, 129.30, 126.81, 126.60, 125.00, 

117.34 (12C, Ar-C), 96.74 (C-1), 70.69 (CH2), 69.95 (C-5), 69.42 (C-2), 68.87 (C-3), 65.92 (C-4), 

64.24 (CH2), 62.20 (C-6), 59.19 (OCH3), 20.98, 20.82, 20.79, 20.78 (4 COCH3); ESI-MS: m/z: Calcd 

for C30H33ClNaO13 [M+Na]+: 659.15, found: 659.12. 

2-Ethoxyethyl 4’-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)-3’-chloro-biphenyl-4-

carboxylate (11g). 4-(2-Ethoxyethoxycarbonyl)phenylboronic acid pinacol ester (7g) was prepared 

according to the procedure for 7a from 6 (40 mg, 0.161 mmol) with SOCl2 (35 µL, 0.484 mmol, 3.0 

eq) in 2-ethoxyethanol (0.6 mL). After 6 h, the reaction mixture was diluted with DCM (40 mL) and 

washed with H2O (4 x 30 mL). The organic layer was dried over Na2SO4 and concentrated in vacuo. 

The crude product was used directly in the coupling reaction according to general procedure A with 

10 (47 mg, 0.081 mmol), K3PO4 (53 mg, 0.242 mmol, 3.0 eq) and PdCl2(dppf)⋅CH2Cl2 (3.3 mg, 4.1 

µmol, 0.05 eq) in DMF (2 mL). Purified by MPLC on silica gel (petroleum ether/EtOAc, 1:0-0:1). 

Yield: 25 mg (47% over two steps) as colorless oil. [α]

€ 

D
20  +54.5 (c 1.15, CHCl3); 1H NMR (500 MHz, 

CDCl3): δ = 8.12 (d, J = 8.4 Hz, 2H, Ar-H), 7.67 (d, J = 2.2 Hz, 1H, Ar-H), 7.59 (d, J = 8.4 Hz, 2H, 

Ar-H), 7.46 (dd, J = 2.2, 8.6 Hz, 1H, Ar-H), 7.27-7.25 (m, 1H, Ar-H), 5.64 (dd, J = 3.5, 10.1 Hz, 1H, 

H-3), 5.62 (d, J = 1.7 Hz, 1H, H-1), 5.56 (dd, J = 1.9, 3.4 Hz, 1H, H-2), 5.41 (t, J = 10.1 Hz, 1H, H-

4), 4.50-4.48 (m, 2H, CH2), 4.30 (dd, J = 5.3, 12.3 Hz, 1H, H-6a), 4.20 (ddd, J = 2.2, 5.2, 10.1 Hz, 

1H, H-5), 4.11 (dd, J = 2.2, 12.2 Hz, 1H, H-6b), 3.80-3.78 (m, 2H, CH2), 3.60 (q, J = 7.0 Hz, 2H, 

OCH2CH3), 2.22, 2.08, 2.05, 2.04 (4 s, 12H, 4 COCH3), 1.24 (t, J = 7.0 Hz, 3H, CH3); 13C NMR (125 

MHz, CDCl3): δ = 170.59, 170.09, 169.91, 169.89, 166.43 (5 CO), 151.28, 143.62, 136.29, 130.52, 

129.43, 129.42, 126.83, 126.62, 125.02, 117.35 (12C, Ar-C), 96.77 (C-1), 69.96 (C-5), 69.45 (C-2), 

68.89 (C-3), 68.56 (CH2), 66.85 (OCH2CH3), 65.94 (C-4), 64.49 (CH2), 62.22 (C-6), 21.00, 20.84, 

20.81, 20.80 (4 COCH3), 15.30 (CH3); ESI-MS: m/z: Calcd for C31H35ClNaO13 [M+Na]+: 673.17, 

found: 673.19. 

2-Isopropoxyethyl 4’-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)-3’-chloro-biphenyl-4-

carboxylate (11h). Prepared according to general procedure A from 10 (105 mg, 0.180 mmol) and 7h 
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(60 mg, 0.180 mmol, 1.0 eq) with K3PO4 (118 mg, 0.540 mmol, 3.0 eq) and PdCl2(dppf)⋅CH2Cl2 (7.3 

mg, 9.0 µmol, 0.05 eq) in DMF (2 mL). Purified by MPLC on silica gel (petroleum ether/EtOAc, 1:0-

0:1). Yield: 67 mg (56%) as colorless oil. [α]

€ 

D
20  +55.6 (c 1.10, CHCl3); 1H NMR (500 MHz, CDCl3): δ 

= 8.11 (d, J = 8.4 Hz, 2H, Ar-H), 7.67 (d, J = 2.2 Hz, 1H, Ar-H), 7.59 (d, J = 8.4 Hz, 2H, Ar-H), 7.46 

(dd, J = 2.2, 8.6 Hz, 1H, Ar-H), 7.26 (d, J = 8.4 Hz, 1H, Ar-H), 5.63 (dd, J = 3.5, 10.1 Hz, 1H, H-3), 

5.61 (d, J = 1.3 Hz, 1H, H-1), 5.55 (dd, J = 1.8, 3.3 Hz, 1H, H-2), 5.40 (t, J = 10.1 Hz, 1H, H-4), 4.47-

4.45 (m, 2H, CH2), 4.29 (dd, J = 5.3, 12.3 Hz, 1H, H-6a), 4.20 (ddd, J = 2.1, 5.2, 10.0 Hz, 1H, H-5), 

4.10 (dd, J = 2.1, 12.2 Hz, 1H, H-6b), 3.78-3.76 (m, 2H, CH2), 3.67 (hept, J = 6.1 Hz, 1H, OCH), 

2.21, 2.07, 2.05, 2.04 (4 s, 12H, 4 COCH3), 1.22 (d, J = 6.1 Hz, 6H, CH(CH3)2); 13C NMR (125 MHz, 

CDCl3): δ = 170.59, 170.09, 169.91, 169.89, 166.43 (5 CO), 151.28, 143.59, 136.30, 130.49 129.49, 

129.44, 126.83, 126.61, 125.03, 117.36 (12C, Ar-C), 96.78 (C-1), 72.20 (OCH), 69.97 (C-5), 69.45 

(C-2), 68.89 (C-3), 66.12 (CH2), 65.95 (C-4), 64.76 (CH2), 62.22 (C-6), 22.21 (2C, CH(CH3)2), 21.00, 

20.84, 20.81, 20.80 (4 COCH3); ESI-MS: m/z: Calcd for C32H37ClNaO13 [M+Na]+: 687.18, found: 

687.23. 

2-(2-Ethoxyethoxy)ethyl 4’-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)-3’-chlorobiphenyl-

4-carboxylate (11i). 4-(2-(2-Ethoxyethoxy)ethoxycarbonyl)phenyl-boronic acid pinacol ester (7i) 

was prepared according to the procedure for 7h from 6 (75 mg, 0.196 mmol) and 2-(2-

ethoxyethoxy)ethanol (40 µL, 0.196 mmol, 1.0 eq) with DIC (54 µL, 0.235 mmol, 1.2 eq) and DMAP 

(2 mg, 0.016 mmol, 0.08 eq) in DCM (2 mL). The crude product was pre-purified by MPLC on silica 

gel (DCM/MeOH, 99:1) and used directly in the coupling reaction according to general procedure A 

with 10 (79 mg, 0.135 mmol), K3PO4 (89 mg, 0.405 mmol, 3.0 eq) and PdCl2(dppf)⋅CH2Cl2 (5.5 mg, 

6.8 µmol, 0.05 eq) in DMF (2 mL). Purified by MPLC on silica gel (petroleum ether/EtOAc, 3:2). 

Yield: 60 mg (44% over two steps) as colorless oil. [α]

€ 

D
20  +58.6 (c 1.15, CHCl3); 1H NMR (500 MHz, 

CDCl3): δ = 8.06-8.04 (m, 2H, Ar-H), 7.60 (d, J = 2.2 Hz, 1H, Ar-H), 7.53-7.51 (m, 2H, Ar-H), 7.39 

(dd, J = 2.3, 8.6 Hz, 1H, Ar-H), 7.19 (m, 1H, Ar-H), 5.57 (dd, J = 3.5, 10.1 Hz, 1H, H-3), 5.54 (d, J = 

1.7 Hz, 1H, H-1), 5.49 (dd, J = 1.9, 3.4 Hz, 1H, H-2), 5.34 (t, J = 10.1 Hz, 1H, H-4), 4.45-4.43 (m, 

2H, CH2), 4.22 (dd, J = 5.3, 12.3 Hz, 1H, H-6a), 4.12 (ddd, J = 2.2, 5.2, 10.1 Hz, 1H, H-5), 4.03 (dd, J 

= 2.2, 12.3 Hz, 1H, H-6b), 3.80-3.78 (m, 2H, CH2), 3.65-3.63 (m, 2H, CH2), 3.56-3.54 (m, 2H, CH2), 

3.47 (q, J = 7.0 Hz, 2H, OCH2CH3), 2.15, 2.01, 1.98, 1.97 (4 s, 12H, 4 COCH3), 1.14 (t, J = 7.0 Hz, 

3H, CH3); 13C NMR (125 MHz, CDCl3): δ = 170.60, 170.10, 169.91, 169.90, 166.40 (5 CO), 151.28, 

143.63, 136.28, 130.52, 129.44, 129.40, 126.83, 126.62, 125.02, 117.35 (12C, Ar-C), 96.77 (C-1), 

70.92, 70.00 (2C, 2 CH2), 69.96 (C-5), 69.45 (C-2), 69.39 (CH2), 68.89 (C-3), 66.86 (OCH2CH3), 

65.94 (C-4), 64.37 (CH2), 62.22 (C-6), 21.00, 20.84, 20.82, 20.80 (4 COCH3), 15.29 (CH3); ESI-MS: 

m/z: Calcd for C33H39ClNaO14 [M+Na]+: 717.19, found: 717.27. 
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2-Acetoxyethyl 4’-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)-3’-chloro-biphenyl-4-

carboxylate (11j). Prepared according to general procedure A from 10 (120 mg, 0.205 mmol) and 7j 

(69 mg, 0.205 mmol, 1.0 eq) with K3PO4 (135 mg, 0.618 mmol, 3.0 eq) and PdCl2(dppf)⋅CH2Cl2 (8.4 

mg, 10.3 µmol, 0.05 eq) in DMF (2 mL). Purified by MPLC on silica gel (petroleum ether/EtOAc, 

3:2). Yield: 79 mg (58%) as colorless oil. [α]

€ 

D
20  +43.9 (c 0.75, CHCl3); 1H NMR (500 MHz, CDCl3): δ 

= 8.11 (d, J = 8.4 Hz, 2H, Ar-H), 7.67 (d, J = 2.2 Hz, 1H, Ar-H), 7.60 (d, J = 8.4 Hz, 2H, Ar-H), 7.46 

(dd, J = 2.3, 8.6 Hz, 1H, Ar-H), 7.27 (m, 1H, Ar-H), 5.64 (dd, J = 3.5, 10.1 Hz, 1H, H-3), 5.62 (d, J = 

1.7 Hz, 1H, H-1), 5.56 (dd, J = 1.9, 3.4 Hz, 1H, H-2), 5.41 (t, J = 10.1 Hz, 1H, H-4), 4.54-4.53 (m, 

2H, CH2), 4.45-4.43 (m, 2H, CH2), 4.30 (dd, J = 5.3, 12.3 Hz, 1H, H-6a), 4.19 (ddd, J = 2.2, 5.2, 10.1 

Hz, 1H, H-5), 4.11 (dd, J = 2.2, 12.3 Hz, 1H, H-6b), 2.22, 2.11, 2.08, 2.05, 2.04 (5 s, 15H, 5 COCH3); 
13C NMR (125 MHz, CDCl3): δ = 171.01, 170.61, 170.12, 169.93, 169.90, 166.19 (6 CO), 151.35, 

143.86, 136.21, 130.53, 129.46, 129.05, 126.93, 126.64, 125.07, 117.37 (12C, Ar-C), 96.79 (C-1), 

69.99 (C-5), 69.46 (C-2), 68.90 (C-3), 65.95 (C-4), 62.97, 62.33 (2C, 2 CH2), 62.23 (C-6), 21.02, 

21.00, 20.85, 20.83, 20.82 (5 COCH3); HRMS: m/z: Calcd for C31H33ClNaO14 [M+Na]+: 687.1457, 

found: 687.1450. 

Ethyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3a). Prepared according to 

general procedure B from 11a (18 mg, 0.030 mmol) with 1 M EtONa/EtOH (160 µL) in EtOH/CHCl3 

(4 mL, 1:1). Purified by MPLC on silica gel (DCM/MeOH, 17:3). Yield: 9 mg (69%) as a white solid. 

[α]

€ 

D
20  +105.0 (c 0.60, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.07 (d, J = 8.5 Hz, 2H, Ar-H), 7.73 

(d, J = 2.3 Hz, 1H, Ar-H), 7.70 (d, J = 8.5 Hz, 2H, Ar-H), 7.59 (dd, J = 2.3, 8.6 Hz, 1H, Ar-H), 7.49 

(d, J = 8.7 Hz, 1H, Ar-H), 5.61 (d, J = 1.6 Hz, 1H, H-1), 4.38 (q, J = 7.1 Hz, 2H, OCH2), 4.12 (dd, J = 

1.8, 3.3 Hz, 1H, H-2), 4.00 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.80-3.71 (m, 3H, H-4, H-6a, H-6b), 3.65 

(ddd, J = 2.4, 5.4, 9.8 Hz, 1H, H-5), 1.40 (t, J = 7.1 Hz, 3H, CH3); 13C NMR (125 MHz, CD3OD): δ = 

167.86 (CO), 153.35, 145.15, 136.26, 131.15, 130.50, 129.76, 127.79, 127.74, 125.38, 118.61 (12C, 

Ar-C), 100.73 (C-1), 76.02 (C-5), 72.40 (C-3), 71.84 (C-2), 68.22 (C-4), 62.66 (C-6), 62.19 (OCH2), 

14.61 (CH3); HRMS: m/z: Calcd for C21H23ClNaO8 [M+Na]+: 461.0979, found: 461.0972. 

Propyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3b). Prepared according to 

general procedure B from 11b (22 mg, 0.035 mmol) with 1 M PrONa/PrOH (150 µL) in PrOH/CHCl3 

(2 mL, 1:1). Purified by MPLC on silica gel (DCM/MeOH, 17:3). Yield: 9 mg (56%) as a white solid. 

[α]

€ 

D
20  +90.0 (c 0.90, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.08 (d, J = 8.5 Hz, 2H, Ar-H), 7.74 

(d, J = 2.3 Hz, 1H, Ar-H), 7.72 (d, J = 8.5 Hz, 2H, Ar-H), 7.59 (dd, J = 2.3, 8.6 Hz, 1H, Ar-H), 7.47 

(d, J = 8.7 Hz, 1H, Ar-H), 5.61 (d, J = 1.5 Hz, 1H, H-1), 4.29 (t, J = 6.6 Hz, 2H, OCH2), 4.12 (dd, J = 

1.8, 3.3 Hz, 1H, H-2), 4.02 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.81-3.71 (m, 3H, H-4, H-6a, H-6b), 3.65 

(ddd, J = 2.4, 5.5, 9.9 Hz, 1H, H-5), 1.85-1.78 (m, 2H, CH2), 1.06 (t, J = 7.4 Hz, 3H, CH3); 13C NMR 

(125 MHz, CD3OD): δ = 167.91 (CO), 153.35, 145.16, 136.28, 131.14, 130.47, 129.76, 127.80, 
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127.76, 125.37, 118.61 (12C, Ar-C), 100.73 (C-1), 76.02 (C-5), 72.40 (C-3), 71.84 (C-2), 68.22 (C-4), 

67.74 (OCH2), 62.66 (C-6), 23.18 (CH2), 10.80 (CH3); HRMS: m/z: Calcd for C22H25ClNaO8 

[M+Na]+: 475.1136, found: 475.1131. 

Butyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3c). Prepared according to 

general procedure B from 11c (33 mg, 0.052 mmol) with 1 M BuONa/BuOH (200 µL) in 

BuOH/CHCl3 (3 mL, 2:1). An additional portion of 1 M BuONa/BuOH (200 µL) was added after 2 h. 

Purified by MPLC on silica gel (DCM/MeOH, 9:1). Yield: 9 mg (37%) as a white solid. [α]

€ 

D
20  +78.5 

(c 0.95, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.07 (d, J = 8.5 Hz, 2H, Ar-H), 7.74 (d, J = 2.2 

Hz, 1H, Ar-H), 7.71 (d, J = 8.5 Hz, 2H, Ar-H), 7.60 (dd, J = 2.3, 8.6 Hz, 1H, Ar-H), 7.47 (d, J = 8.7 

Hz, 1H, Ar-H), 5.61 (d, J = 1.3 Hz, 1H, H-1), 4.34 (t, J = 6.5 Hz, 2H, OCH2), 4.12 (dd, J = 1.8, 3.3 

Hz, 1H, H-2), 4.00 (dd, J = 3.5, 9.5 Hz, 1H, H-3), 3.80-3.71 (m, 3H, H-4, H-6a, H-6b), 3.65 (ddd, J = 

2.4, 5.5, 9.8 Hz, 1H, H-5), 1.81-1.75 (m, 2H, CH2), 1.55-1.48 (m, 2H, CH2), 1.01 (t, J = 7.4 Hz, 3H, 

CH3); 13C NMR (125 MHz, CD3OD): δ = 167.91 (CO), 153.36, 145.17, 136.29, 131.15, 130.48, 

129.77, 127.80, 127.76, 125.38, 118.61 (12C, Ar-C), 100.73 (C-1), 76.02 (C-5), 72.40 (C-3), 71.84 

(C-2), 68.22 (C-4), 65.99 (OCH2), 62.66 (C-6), 31.94, 20.33 (2 CH2), 14.08 (CH3); HRMS: m/z: Calcd 

for C23H27ClNaO8 [M+Na]+: 489.1292, found: 489.1291. 

Isopropyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3d). Prepared 

according to general procedure B from 11d (21 mg, 0.034 mmol) with 1 M i-PrONa/i-PrOH (200 µL) 

in i-PrOH/CHCl3 (1.5 mL, 2:1). An additional portion of 0.5 M i-PrONa/i-PrOH (500 µL) was added 

after 6.5 h. Purified by MPLC on silica gel (DCM/MeOH, 9:1). Yield: 9.5 mg (62%) as a white solid. 

[α]

€ 

D
20  +89.4 (c 0.90, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.06 (d, J = 8.5 Hz, 2H, Ar-H), 7.73 

(d, J = 2.3 Hz, 1H, Ar-H), 7.70-7.69 (m, 2H, Ar-H), 7.61 (dd, J = 2.3, 8.7 Hz, 1H, Ar-H), 7.47 (d, J = 

8.7 Hz, 1H, Ar-H), 5.61 (d, J = 1.6 Hz, 1H, H-1), 5.23 (hept, J = 6.3 Hz, 1H, OCH), 4.12 (dd, J = 1.8, 

3.3 Hz, 1H, H-2), 4.00 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.81-3.71 (m, 3H, H-4, H-6a, H-6b), 3.64 (ddd, 

J = 2.4, 5.4, 9.8 Hz, 1H, H-5), 1.38 (d, J = 6.3 Hz, 6H, CH(CH3)2); 13C NMR (125 MHz, CD3OD): δ = 

167.38 (CO), 153.34, 145.07, 136.31, 131.10, 130.85, 129.76, 127.78, 127.70, 125.37, 118.61 (12C, 

Ar-C), 100.73 (C-1), 76.02 (C-5), 72.40 (C-3), 71.84 (C-2), 69.87 (OCH), 68.22 (C-4), 62.66 (C-6), 

22.14 (2C, CH(CH3)2); HRMS: m/z: Calcd for C22H25ClNaO8 [M+Na]+: 475.1136, found: 475.1132. 

tert-Butyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3e). Prepared according 

to general procedure B from 11e (17 mg, 0.027 mmol) with t-BuOK (49 mg, 0.441 mmol, 16 eq) in t-

BuOH/CHCl3 (2 mL, 3:1). Purified by MPLC on silica gel (DCM/MeOH, 9:1). Yield: 8 mg (63%) as 

a colorless solid. [α]

€ 

D
20  +82.4 (c 0.40, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.01 (d, J = 8.5 Hz, 

2H, Ar-H), 7.73 (d, J = 2.2 Hz, 1H, Ar-H), 7.67 (d, J = 8.5 Hz, 2H, Ar-H), 7.59 (dd, J = 2.3, 8.6 Hz, 

1H, Ar-H), 7.47 (d, J = 8.7 Hz, 1H, Ar-H), 5.61 (d, J = 1.3 Hz, 1H, H-1), 4.12 (dd, J = 1.8, 3.2 Hz, 

1H, H-2), 4.00 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.81-3.71 (m, 3H, H-4, H-6a, H-6b), 3.64 (ddd, J = 2.4, 
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5.4, 9.6 Hz, 1H, H-5), 1.61 (s, 9H, C(CH3)3); 13C NMR (125 MHz, CD3OD): δ = 167.13 (CO), 

153.29, 144.78, 136.39, 131.99, 131.02, 129.74, 127.76, 127.60, 125.36, 118.61 (12C, Ar-C), 100.74 

(C-1), 82.35 (C(CH3)3), 76.01 (C-5), 72.40 (C-3), 71.84 (C-2), 68.22 (C-4), 62.66 (C-6), 28.43 (3C, 

C(CH3)3); HRMS: m/z: Calcd for C23H27ClNaO8 [M+Na]+: 489.1292, found: 489.1286. 

2-Methoxyethyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3f). Prepared 

according to general procedure B from 11f (16 mg, 0.025 mmol) with t-BuOK (56 mg, 0.502 mmol, 

20 eq) in t-BuOH/CHCl3 (6 mL, 5:1). An additional portion of t-BuOH (3 mL) was added after 17 h 

and additional portions of t-BuOK were added after 17 h (40 eq) and 22 h (8 eq). Purified by MPLC 

on silica gel (DCM/MeOH, 9:1). Yield: 3 mg (25%) as a white wax. [α]

€ 

D
20  +92.3 (c 0.30, MeOH); 1H 

NMR (500 MHz, CD3OD): δ = 8.10 (d, J = 8.5 Hz, 2H, Ar-H), 7.75 (d, J = 2.3 Hz, 1H, Ar-H), 7.72 

(d, J = 8.5 Hz, 2H, Ar-H), 7.61 (dd, J = 2.3, 8.6 Hz, 1H, Ar-H), 7.48 (d, J = 8.7 Hz, 1H, Ar-H), 5.61 

(d, J = 1.6 Hz, 1H, H-1), 4.48-4.46 (m, 2H, CH2), 4.12 (dd, J = 1.8, 3.3 Hz, 1H, H-2), 4.00 (dd, J = 

3.4, 9.5 Hz, 1H, H-3), 3.80-3.71 (m, 5H, CH2, H-4, H-6a, H-6b), 3.64 (ddd, J = 2.3, 5.4, 9.7 Hz, 1H, 

H-5), 3.43 (s, 3H, OCH3); 13C NMR (125 MHz, CD3OD): δ = 167.75 (CO), 153.38, 145.30, 136.27, 

131.29, 130.19, 129.78, 127.82, 127.77, 125.39, 118.62 (12C, Ar-C), 100.73 (C-1), 76.03 (C-5), 72.40 

(C-3), 71.84 (C-2), 71.65 (CH2), 68.22 (C-4), 65.17 (CH2), 62.66 (C-6), 59.18 (OCH3); HRMS: m/z: 

Calcd for C22H25ClNaO9 [M+Na]+: 491.1085, found: 491.1080. 

2-Ethoxyethyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3g). Prepared 

according to general procedure B from 11g (12.5 mg, 0.019 mmol) with t-BuOK (51 mg, 0.432 mmol, 

23 eq) in t-BuOH/CHCl3 (6 mL, 5:1). An additional portion of t-BuOK (23 eq) was added after 19 h. 

Purified by MPLC on silica gel (DCM/MeOH, 9:1). Yield: 6 mg (67%) as a colorless solid. [α]

€ 

D
20  

+70.1 (c 0.55, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.11-8.09 (m, 2H, Ar-H), 7.74 (d, J = 2.3 

Hz, 1H, Ar-H), 7.72-7.71 (m, 2H, Ar-H), 7.60 (dd, J = 2.3, 8.6 Hz, 1H, Ar-H), 7.47 (d, J = 8.7 Hz, 

1H, Ar-H), 5.61 (d, J = 1.6 Hz, 1H, H-1), 4.47-4.45 (m, 2H, CH2), 4.12 (dd, J = 1.8, 3.4 Hz, 1H, H-2), 

4.00 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.81-3.71 (m, 5H, H-4, H-6a, H-6b, CH2), 3.65 (m, 1H, H-5), 3.61 

(q, J = 7.0 Hz, 2H, OCH2CH3), 1.22 (t, J = 7.0 Hz, 3H, CH3); 13C NMR (125 MHz, CD3OD): δ = 

167.77 (CO), 153.37, 145.27, 136.27, 131.28, 130.22, 129.78, 127.82, 127.76, 125.38, 118.61 (12C, 

Ar-C), 100.73 (C-1), 76.02 (C-5), 72.40 (C-3), 71.84 (C-2), 69.56 (CH2), 68.22 (C-4), 67.67 

(OCH2CH3), 65.40 (CH2), 62.22 (C-6), 15.44 (CH3); ESI-MS: m/z: Calcd for C23H27ClNaO9 [M+Na]+: 

505.1241, found: 505.1234. 

2-Isopropoxyethyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3h). Prepared 

according to general procedure B from 11h (48 mg, 0.072 mmol) with t-BuOK (42 mg, 0.361 mmol, 

5.0 eq) in t-BuOH/CHCl3 (5.5 mL, 10:1). Additional portions of t-BuOK were added every 30 min 

(5.0 eq, 5.0 eq and 1.0 eq). Purified by MPLC on silica gel (DCM/MeOH, 9:1). Yield: 24 mg (67%) 

as a white solid. [α]

€ 

D
20  +74.6 (c 0.30, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.09 (d, J = 8.5 Hz, 
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2H, Ar-H), 7.74 (d, J = 2.2 Hz, 1H, Ar-H), 7.71 (d, J = 8.5 Hz, 2H, Ar-H), 7.60 (dd, J = 2.3, 8.6 Hz, 

1H, Ar-H), 7.47 (d, J = 8.7 Hz, 1H, Ar-H), 5.61 (d, J = 1.4 Hz, 1H, H-1), 4.45-4.43 (m, 2H, CH2), 

4.12 (dd, J = 1.8, 3.2 Hz, 1H, H-2), 4.00 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.81-3.69 (m, 6H, CH2, H-4, 

H-6a, H-6b, OCH), 3.65 (ddd, J = 2.3, 5.4, 9.7 Hz, 1H, H-5), 1.08 (d, J = 6.1 Hz, 6H, CH(CH3)2); 13C 

NMR (125 MHz, CD3OD): δ = 167.79 (CO), 153.37, 145.26, 136.26, 131.26, 130.62, 129.77, 127.81, 

127.76, 125.38, 118.61 (12C, Ar-C), 100.73 (C-1), 76.02 (C-5), 73.45 (OCH), 72.40 (C-3), 71.83 (C-

2), 68.21 (C-4), 67.22 (CH2), 65.70 (CH2), 62.66 (C-6), 22.38 (2C, CH(CH3)2); HRMS: m/z: Calcd for 

C24H29ClNaO9 [M+Na]+: 519.1398, found: 519.1395. 

2-(2-Ethoxyethoxy)ethyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3i). 

Prepared according to general procedure B from 11i (14 mg, 0.020 mmol) with t-BuOK (4 mg, 0.034 

mmol, 1.7 eq) in t-BuOH (2 mL). An additional portion of t-BuOK (1.7 eq) was added after 2.5 h. 

Purified by MPLC on silica gel (DCM/MeOH, 9:1). Yield: 4.2 mg (40%) as a white wax. [α]

€ 

D
20  +76.4 

(c 0.40, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.11-8.09 (m, 2H, Ar-H), 7.74 (d, J = 2.3 Hz, 1H, 

Ar-H), 7.72-7.70 (m, 2H, Ar-H), 7.60 (dd, J = 2.3, 8.6 Hz, 1H, Ar-H), 7.48 (d, J = 8.7 Hz, 1H, Ar-H), 

5.61 (d, J = 1.7, 1H, H-1), 4.49-4.46 (m, 2H, CH2), 4.12 (dd, J = 1.8, 3.4 Hz, 1H, H-2), 4.00 (dd, J = 

3.4, 9.5 Hz, 1H, H-3), 3.86-3.84 (m, 2H, CH2), 3.80-3.69 (m, 5H, H-6a, H-6b, H-4, OCH2), 3.65 (ddd, 

J = 2.4, 5.4, 9.8 Hz, 1H, H-5), 3.62-3.60 (m, 2H, CH2), 3.53 (q, J = 7.0 Hz, 2H, OCH2CH3), 1.17 (t, J 

= 7.0 Hz, 3H, CH3); 13C NMR (125 MHz, CD3OD): δ = 167.76 (CO), 153.37, 145.27, 136.26, 131.30, 

130.24, 129.77, 127.81, 127.75, 125.38, 118.61 (12C, Ar-C), 100.73 (C-1), 76.02 (C-5), 72.40 (C-3), 

71.84 (C-2), 71.68, 70.92, 70.22 (3C, CH2), 68.22 (C-4), 67.62 (CH2),  65.35 (OCH2CH3), 62.66 (C-

6), 15.41 (CH3); HRMS: m/z: Calcd for C25H31ClNaO10 [M+Na]+: 549.1503, found: 549.1498. 

2-Hydroxyethyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3k). Prepared 

according to general procedure B from 11j (36 mg, 0.054 mmol) with t-BuOK (32 mg, 0.271 mmol, 

5.0 eq) in t-BuOH/CHCl3 (5.5 mL, 10:1). Additional portions of t-BuOK (10 eq) were added after 2 h 

and 24 h. Purified by MPLC on silica gel (DCM/MeOH, 9:1). Yield: 8 mg (32%) as a white wax. 

[α]

€ 

D
20  +79.5 (c 0.65, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.13 (d, J = 8.5 Hz, 2H, Ar-H), 7.74 

(d, J = 2.3 Hz, 1H, Ar-H), 7.71 (d, J = 8.5 Hz, 2H, Ar-H), 7.60 (dd, J = 2.3, 8.6 Hz, 1H, Ar-H), 7.47 

(d, J = 8.7 Hz, 1H, Ar-H), 5.61 (d, J = 1.6 Hz, 1H, H-1), 4.41-4.39 (m, 2H, CH2), 4.12 (dd, J = 1.8, 

3.3 Hz, 1H, H-2), 4.00 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.89-3.87 (m, 2H, CH2), 3.80-3.71 (m, 3H, H-4, 

H-6a, H-6b), 3.65 (ddd, J = 2.4, 5.4, 9.7 Hz, 1H, H-5); 13C NMR (125 MHz, CD3OD): δ = 167.93 

(CO), 153.36, 145.23, 136.29, 131.35, 130.29, 129.77, 127.80, 127.72, 125.38, 118.62 (12C, Ar-C), 

100.73 (C-1), 76.02 (C-5), 72.40 (C-3), 71.83 (C-2), 68.22 (C-4), 67.63 (CH2), 62.66 (C-6), 61.16 

(CH2); HRMS: m/z: Calcd for C21H23ClNaO9 [M+Na]+: 477.0928, found: 477.0921. 

2-(Dimethylamino)ethyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3l). 

Prepared according to general procedure C from 1 (19 mg, 0.044 mmol) and 2-
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(dimethylamino)ethanol (13 µL, 0.132 mmol, 3.0 eq) with DIPEA (23  µL, 0.132 mmol, 3.0 eq) and 

COMU (39 mg, 0.088 mmol, 2.0 eq) in DMF (2 mL). Purified by preparative LC-MS (RP-18, 

H2O/MeCN, 19:1-3:7, + 0.2% HCOOH). Yield: 8.2 mg (39%) as a white solid. [α]

€ 

D
20  +62.7 (c 0.75, 

MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.15 (d, J = 8.4 Hz, 2H, Ar-H), 7.75-7.73 (m, 3H, Ar-H), 

7.60 (dd, J = 2.2, 8.6 Hz, 1H, Ar-H), 7.48 (d, J = 8.7 Hz, 1H, Ar-H), 5.61 (d, J = 1.5 Hz, 1H, H-1), 

4.69-4.67 (m, 2H, CH2), 4.11 (dd, J = 1.8, 3.3 Hz, 1H, H-2), 4.00 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.80-

3.71 (m, 3H, H-4, H-6a, H-6b), 3.64 (ddd, J = 2.4, 5.5, 9.7 Hz, 1H, H-5), 3.57-3.55 (m, 2H, CH2), 

2.97 (s, 6H, N(CH3)2); 13C NMR (125 MHz, CD3OD): δ = 167.18 (CO), 153.46, 145.69, 136.03, 

131.54, 129.77, 129.38, 127.83, 125.41, 118.61 (12C, Ar-C), 100.69 (C-1), 76.03 (C-5), 72.39 (C-3), 

71.82 (C-2), 68.21 (C-4), 62.66 (C-6), 60.42, 57.65 (2 CH2), 44.16 (2C, N(CH3)2); HRMS: m/z: Calcd 

for C23H29ClNO8 [M+H]+: 482.1582, found: 482.1578. 

2-Piperidinoethyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3m). Prepared 

according to general procedure C from 1 (46 mg, 0.112 mmol) and 1-(2-hydroxyethyl)piperidine (59 

µL, 0.448 mmol, 4.0 eq) with DIPEA (58  µL, 0.336 mmol, 3.0 eq) and COMU (99 mg, 0.224 mmol, 

2.0 eq) in DMF (4 mL). Purified by preparative LC-MS (RP-18, H2O/MeCN, 19:1-1:19, + 0.2% 

HCOOH). Yield: 7.8 mg (13%) as a yellowish solid. [α]

€ 

D
20  +64.3 (c 0.25, MeOH); 1H NMR (500 

MHz, CD3OD): δ = 8.12 (d, J = 8.4 Hz, 2H, Ar-H), 7.75-7.73 (m, 3H, Ar-H), 7.61 (dd, J = 2.2, 8.6 

Hz, 1H, Ar-H), 7.48 (d, J = 8.7 Hz, 1H, Ar-H), 5.62 (d, J = 1.4 Hz, 1H, H-1), 4.62-4.60 (m, 2H, CH2), 

4.12 (dd, J = 1.8, 3.2 Hz, 1H, H-2), 4.00 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.81-3.71 (m, 3H, H-4, H-6a, 

H-6b), 3.64 (ddd, J = 2.4, 5.5, 9.6 Hz, 1H, H-5), 3.23 (m, 2H, CH2N), 3.02 (br s, 4H, 2 NCH2), 1.81-

1.76 (m, 4H, 2 CH2), 1.62-1.60 (m, 2H, (CH2)2CH2); 13C NMR (125 MHz, CD3OD): δ = 167.23 (CO), 

153.47, 145.69, 136.03, 131.49, 129.78, 129.44, 127.86, 127.83, 125.42, 118.62 (12C, Ar-C), 100.70 

(C-1), 76.04 (C-5), 72.40 (C-3), 71.82 (C-2), 68.22 (C-4), 62.67 (C-6), 60.19 (CH2), 57.01 (CH2N), 

54.93 (2 NCH2), 24.31 (2C, 2 CH2), 22.65 ((CH2)2CH2); HRMS: m/z: Calcd for C26H33ClNO8 

[M+H]+: 522.1895, found: 522.1889. 

2-Morpholinoethyl 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carboxylate (3n). Prepared 

according to general procedure C from 1 (20 mg, 0.049 mmol) and 4-(2-hydroxyethyl)morpholine (18 

µL, 0.147 mmol, 3.0 eq) with DIPEA (25 µL, 0.146 mmol, 3.0 eq) and COMU (42 mg, 0.095 mmol, 

2.0 eq) in DMF (2 mL). Pre-purified by MPLC on silica gel (DCM/MeOH, 8:2) followed by 

purification by preparative LC-MS (RP-18, H2O/MeCN, 19:1-1:19, + 0.2% HCOOH). Yield: 3.2 mg 

(13%) as a yellowish solid. [α]

€ 

D
20  +72.5 (c 0.35, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.12 (d, J 

= 8.4 Hz, 2H, Ar-H), 7.75-7.72 (m, 3H, Ar-H), 7.61 (dd, J = 2.2, 8.6 Hz, 1H, Ar-H), 7.48 (d, J = 8.7 

Hz, 1H, Ar-H), 5.61 (d, J = 1.4 Hz, 1H, H-1), 4.59-4.57 (m, 2H, OCH2), 4.12 (dd, J = 1.8, 3.3 Hz, 1H, 

H-2), 4.00 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.81-3.71 (m, 7H, 2 CH2O, H-4, H-6a, H-6b), 3.64 (ddd, J = 

2.3, 5.4, 9.6 Hz, 1H, H-5), 3.13-3.11 (m, 2H, CH2N), 2.92 (m, 4H, 2 NCH2); 13C NMR (125 MHz, 
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CD3OD): δ = 167.53 (CO), 153.43, 145.47, 136.17, 131.37, 129.93, 129.78, 127.81, 125.41, 118.62 

(12C, Ar-C), 100.72 (C-1), 76.04 (C-5), 72.40 (C-3), 71.83 (C-2), 68.22 (C-4), 66.78 (2C, 2 CH2O), 

62.67 (C-6), 61.95 (OCH2), 57.94 (CH2N), 54.55 (2C, 2 NCH2); HRMS: m/z: Calcd for C25H31ClNO9 

[M+H]+: 524.1687, found: 524.1684. 

2-(Dimethylamino)ethyl 3’-trifluoromethyl-4’-(α-D-mannopyranosyloxy)-biphenyl-4-

carboxylate (5l). Prepared according to general procedure C from 4[21] (60 mg, 0.135 mmol) and 2-

(dimethylamino)ethanol (82 µL, 0.810 mmol, 6.0 eq) with DIPEA (69 µL, 0.405 mmol, 3.0 eq) and 

COMU (119 mg, 0.270 mmol, 2.0 eq) in DMF (4 mL). Purified by preparative LC-MS (RP-18, 

H2O/MeCN, 19:1-1:19, + 0.2% HCOOH). Yield: 37 mg (53%) as a white solid. [α]

€ 

D
20  +80.9 (c 1.00, 

MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.17 (d, J = 8.4 Hz, 2H, Ar-H), 7.91-7.89 (m, 2H, Ar-H), 

7.76 (d, J = 8.4 Hz, 2H, Ar-H), 7.61 (d, J = 8.4 Hz, 1H, Ar-H), 5.66 (d, J = 1.2 Hz, 1H, H-1), 4.66-

4.64 (m, 2H, OCH2), 4.06 (dd, J = 1.8, 3.3 Hz, 1H, H-2), 3.94 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.81-

3.71 (m, 3H, H-4, H-6a, H-6b), 3.58 (ddd, J = 2.3, 5.6, 9.6 Hz, 1H, H-5), 3.45-3.43 (m, 2H, CH2N), 

2.87 (s, 6H, N(CH3)2); 13C NMR (125 MHz, CD3OD): δ = 167.23 (CO), 155.61, 145.55, 134.59, 

133.46, 131.58, 129.67, 127.89, 126.46, 126.41, 126.07, 123.90, 121.00, 120.76, 120.51, 117.83 

(13C, Ar-C, CF3), 100.27 (C-1), 76.13 (C-5), 72.24 (C-3), 71.73 (C-2), 68.11 (C-4), 62.68 (C-6), 

60.95 (OCH2), 57.79 (CH2N), 44.41 (2C, N(CH3)2); HRMS: m/z: Calcd for C24H29F3NO8 [M+H]+: 

516.1845, found: 516.1840. 

Physicochemical and in vitro pharmacokinetic studies 

Materials: Dimethyl sulfoxide (DMSO), 1-propanol, 1-octanol, Dulbecco’s Modified Eagle’s 

Medium (DMEM) high glucose, Penicillin-Streptomycin (solution stabilized, with 10’000 units 

Penicillin and 10 mg Streptomycin/mL), L-glutamine solution (200 mM), magnesium chloride, bis(4-

nitrophenyl) phosphate (BNPP), Loperamide hydrochloride, and Neostigmine bromide were 

purchased from Sigma-Aldrich (St. Louis, MI, USA). PRISMA HT universal buffer, GIT-0 Lipid 

Solution, and Acceptor Sink Buffer were ordered from pIon (Woburn, MA, USA). MEM non-

essential amino acids solution 10 mM (100X), fetal bovine serum (FBS), and DMEM without sodium 

pyruvate and phenol red were bought from Invitrogen (Carlsbad, CA, USA). Acetonitrile (MeCN) and 

methanol (MeOH) were ordered from Acros Organics (Geel, Belgium). Human plasma was purchased 

from Biopredic (Rennes, France). Pooled male rat liver microsomes (Sprague Dawley), and pooled 

human liver microsomes were ordered from BD Bioscience (Woburn, MA, USA). The Caco-2 cells 

were kindly provided by Prof G. Imanidis, FHNW, Muttenz, Switzerland and originated from the 

American Type Culture Collection (Rockville, MD, USA).  

Aqueous solubility. Solubility was determined in a 96-well format using the µSOL Explorer 

solubility analyzer (pIon, version 3.4.0.5). For each compound, measurements were performed at two 

pH values (3.0, 7.4) in triplicate. Six wells of a deep well plate, i.e. three wells per pH value, were 
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filled with 300 µL of PRISMA HT universal buffer adjusted to pH 3.0 or 7.4 by adding the requested 

amount of NaOH (0.5 M). Aliquots (3 µL) of a compound stock solution (40-100 mM in DMSO) 

were added and thoroughly mixed. The final sample concentration was 0.4-1.0 mM, the residual 

DMSO concentration was 1.0% (v/v) in the buffer solutions. After 15 h, the solutions were filtrated 

(0.2 µm 96-well filter plates) using a vacuum to collect manifold (Whatman Ltd., Maidstone, UK) to 

remove any precipitates. Equal amounts of filtrate and 1-propanol were mixed and transferred to a 96-

well plate for UV/Vis detection (190 to 500 nm, SpectraMax 190, Molecular Devices, Silicon Valley, 

CA, USA). The amount of material dissolved was calculated by comparison with UV/Vis spectra 

obtained from reference samples, which were prepared by dissolving compound stock solution in a 

1:1 mixture of buffer and 1-propanol (final concentrations 0.067-0.167 mM).  

log D7.4 determination. The in silico prediction tool ALOGPS[58] was used to estimate the log P 

values of the compounds. Depending on these values, the compounds were classified into three 

categories: hydrophilic compounds (log P below zero), moderately lipophilic compounds (log P 

between zero and one) and lipophilic compounds (log P above one). For each category, two different 

ratios (volume of 1-octanol to volume of buffer) were defined as experimental parameters (Table 3).  

Table 3. Compound classification based on estimated log P values. 

compound type log P ratios (1-octanol: buffer) 

hydrophilic  < 0 30:140, 40:130 

moderately lipophilic 0 - 1 70:110, 110:70 

lipophilic > 1 3:180, 4:180 
 

Equal amounts of phosphate buffer (0.1 M, pH 7.4) and 1-octanol were mixed and shaken vigorously 

for 5 min to saturate the phases. The mixture was left until separation of the two phases occurred, and 

the buffer was retrieved. Stock solutions of the test compounds were diluted with buffer to a 

concentration of 1 µM. For each compound, six determinations, i.e. three determinations per 1-

octanol:buffer ratio, were performed in different wells of a 96-well plate. The respective volumes of 

buffer containing analyte (1 µM) were pipetted to the wells and covered by saturated 1-octanol 

according to the chosen volume ratio. The plate was sealed with aluminium foil, shaken (1350 rpm, 

25 °C, 2 h) on a Heidoph Titramax 1000 plate-shaker (Heidolph Instruments GmbH & Co. KG, 

Schwabach, Germany) and centrifuged (2000 rpm, 25 °C, 5 min, 5804 R Eppendorf centrifuge, 

Hamburg, Germany). The aqueous phase was transferred to a 96-well plate for analysis by liquid 

chromatography-mass spectrometry (LC-MS, see below).  

The log D7.4 coefficients were calculated from the 1-octanol:buffer ratio (o:b), the initial concentration 

of the analyte in buffer (1 µM), and the concentration of the analyte in buffer (cB) with Equation 1:  
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The average of the three log D7.4 values per 1-octanol:buffer ratio was calculated. If the two means 

obtained for a compound did not differ by more than 0.1 units, the results were accepted.  

Parallel artificial membrane permeability assay (PAMPA). Effective permeability (log Pe) was 

determined in a 96-well format with the PAMPA.[38] For each compound, measurements were 

performed at two pH values (5.0, 7.4) in quadruplicate. Eight wells of a deep well plate, i.e. four wells 

per pH-value, were filled with 650 µL of PRISMA HT universal buffer adjusted to pH 5.0 or 7.4 by 

adding the requested amount of NaOH (0.5 M). Samples (150 µL) were withdrawn from each well to 

determine the blank spectra by UV-spectroscopy (190 to 500 nm, SpectraMax 190). Then, analyte 

dissolved in DMSO (10 mM) was added to the remaining buffer to yield 50 µM solutions. To exclude 

precipitation, the optical density was measured at 650 nm, with 0.01 being the threshold value. 

Solutions exceeding this threshold were filtrated. Afterwards, samples (150 µL) were withdrawn to 

determine the reference spectra. Further 200 µL was transferred to each well of the donor plate of the 

PAMPA sandwich (pIon, P/N 110 163). The filter membranes at the bottom of the acceptor plate were 

infused with 5 µL of GIT-0 Lipid Solution and 200 µL of Acceptor Sink Buffer was filled into each 

acceptor well. The sandwich was assembled, placed in the GutBoxTM, and left undisturbed for 16 h. 

Then, it was disassembled and samples (150 µL) were transferred from each donor and acceptor well 

to UV-plates. Quantification was done by UV/Vis-spectroscopy. Effective permeability (log Pe) was 

calculated from the compound flux deduced from the UV/Vis spectra, the filter area, and the initial 

sample concentration in the donor well with the aid of the PAMPA Explorer Software (pIon, version 

3.5). 

Colorectal adenocarcinoma (Caco-2) cell permeation assay. Caco-2 cells were cultivated in tissue 

culture flasks (BD Biosciences, Franklin Lakes, NJ, USA) with DMEM high glucose medium, 

containing L-glutamine (2 mM), nonessential amino acids (0.1 mM), Penicillin (100 U/mL), 

Streptomycin (100 µg/mL), and fetal bovine serum (10%). The cells were kept at 37 °C in humidified 

air containing 5% CO2, and the medium was changed every second day. When approximately 90% 

confluence was reached, the cells were split in a 1:10 ratio and distributed to new tissue culture flasks. 

At passage numbers between 60 and 65, they were seeded at a density of 5.3 x 105 cells per well to 

Transwell 6-well plates (Corning Inc., Corning, NY, USA) with 2.5 mL of culture medium in the 

basolateral and 2 mL in the apical compartment. The medium was renewed on alternate days. 

Permeation experiments were performed between days 19 and 21 post seeding. Previously to the 

experiment, the integrity of the Caco-2 monolayers was evaluated by measuring the transepithelial 

electrical resistance (TEER) with an Endohm tissue resistance instrument (World Precision 

Instruments Inc., Sarasota, FL, USA). Only wells with TEER values higher than 250 Ω cm2 were 

used. To inhibit carboxylesterase activity, the Caco-2 cell monolayers were pre-incubated with bis(4-
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nitrophenyl) phosphate (BNPP, 200 µM) dissolved in transport medium (DMEM without sodium 

pyruvate and phenol red) for 40 min.[59] Experiments were performed in the apical-to-basolateral 

(absorptive) and basolateral-to-apical (secretory) directions in triplicate. Transport medium was 

withdrawn from the donor compartments of three wells and replaced by the same volume of 

compound stock solutions (in DMSO) to reach an initial sample concentration of 62.5 µM, 100 µM, 

200 µM, 400 µM, or 825 µM. The Transwell plate was shaken (600 rpm, 37 °C) on a Heidolph 

Titramax 1000 plate-shaker. Samples (40 µL) were withdrawn from the donor and acceptor 

compartments 30 min after initiation of the experiment and the concentrations were determined by 

LC-MS (see below). Apparent permeability (Papp) was calculated according to Equation 2: 

 

€ 

Papp =
dQ
d t

×
1

A × c0  (2) 

where dQ/dt is the compound flux (mol s-1), A the surface area of the monolayer (cm2), and c0 the 

initial concentration in the donor compartment (mol cm-3).[44] After the experiment, TEER values were 

assessed again for each well and results from wells with values below 250 Ω cm2 were discarded.  

In vitro metabolism: microsomal stability  

Metabolic stability study. Incubations were performed in triplicate in a 96-well format on an 

Eppendorf Thermomixer Comfort. The reaction mixture (270 µL) consisting of liver microsomes 

(0.139 µg/mL), TRIS-HCl buffer (0.1 M, pH 7.4) and MgCl2 (2 mM) was preheated (37 °C, 500 rpm, 

10 min), and the incubation was initiated by adding 30 µL of compound solution (20 µM) in TRIS-

HCl buffer. The final concentration of the compound was 2 µM, and the microsomal concentration 

was 0.125 mg/mL. At the beginning of the experiment (t = 0 min) and after an incubation time of 5, 

10, 20, 40, and 60 min, samples (40 µL) were transferred to 120 µL of ice-cooled MeCN or MeOH 

and centrifuged (3600 rpm, 4 °C, 10 min). Then, 80 µL of supernatant was transferred to a 96-well 

plate for LC-MS analysis (see below). The metabolic half-life (t1/2) was calculated from the slope of 

the linear regression from the log percentage remaining compound versus incubation time 

relationship. Control experiments were performed in parallel by preincubating the microsomes with 

the specific carboxylesterase inhibitor BNPP (1 mM) for 5 min before addition of the compound 

solution.[40]  

Inhibition study. Test compounds were dissolved in DMSO to 1 mM and then diluted with TRIS-

HCl buffer (0.1 M, pH 7.4) containing MgCl2 (2 mM) to a concentration of 6 µM. Loperamide 

hydrochloride was dissolved in DMSO to 20 mM, 2 mM, and 0.2 mM and then diluted with TRIS-

HCl buffer containing MgCl2 to a concentration of 750 µM, 75 µM, and 7.5 µM. Human liver 

microsomes were suspended in TRIS-HCl buffer containing MgCl2 to a concentration of 30 µg/mL. 

Compound solution (100 µL) and microsome suspension (200 µL) mixed with Loperamide solution 

or blank buffer (50 µL) were preheated (37 °C, 500 rpm, 15 min) in separate wells of a 96-well plate. 
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The incubation was initiated by transferring 200 µL of microsome suspension containing Loperamide 

to the compound solution. The final compound concentration was 2 µM, the microsomal 

concentration was 20 µg/ml, and the Loperamide concentration was 100 µM, 10 µM, 1 µM, and 0 µM 

(blank). At the beginning of the experiment (t = 0 min) and after an incubation time of 10, 20, 30, 45, 

and 60 min, samples (20 µL) were transferred to 60 µL of ice-cooled MeOH and analysed by LC-MS 

(see below). The metabolic turnover was assessed as accumulation of product 1 versus incubation 

time.  

In vitro metabolism: plasma stability 

Metabolic stability study. Incubations were performed in triplicates in a 96-well format according to 

the procedure described by Di et al.[58] Human plasma was centrifuged (4 °C, 3000 rpm, 10 min) to 

remove particulates before use. Compounds were dissolved in DMSO to 80 µM and then diluted with 

phosphate buffer (0.1 M, pH 7.4) to a concentration of 8 µM. Plasma (156 µL) was mixed with 

phosphate buffer (84 µL) and preheated (37 °C, 500 rpm, 10 min). The incubation was initiated by 

adding 80 µL of compound solution. The final compound concentration was 2 µM and the plasma 

concentration was 50% in buffer pH 7.4. At the beginning of the experiment (t = 0 min) and after an 

incubation time of 15, 30, 60, and 120 min, samples (50 µL) were transferred to 150 µL of ice-cooled 

MeOH, frozen (-20 °C, 10 min) and centrifuged (3600 rpm, 4 °C, 10 min). The supernatant (80 µL) 

was transferred to a 96-well plate for LC-MS analysis (see below). The metabolic half-life (t1/2) was 

calculated from the slope of the linear regression from the log percentage remaining compound versus 

incubation time relationship. To monitor non-enzymatic compound degradation, incubations in 

absence of human plasma were run in parallel.  

Inhibition study. Human plasma and test compound were processed as described above. Neostigmine 

bromide was dissolved in DMSO to 10 mM, 3 mM, 1 mM, 0.3 mM, 0.1 mM, 0.03 mM, and 0.01 mM 

and then diluted with phosphate buffer (0.1 M, pH 7.4) to a concentration of 80 µM, 24 µM, 8 µM, 

2.4 µM, 0.8 µM, 0.24 µM, and 0.08 µM. Human plasma (156 µL) mixed with phosphate buffer 

(44 µL) was preheated (37 °C, 500 rpm, 10 min). Then, Neostigmine bromide solution or blank buffer 

(40 µL) was added for preincubation (37 °C, 500 rpm, 5 min). The incubation was initiated by adding 

80 µL of compound solution. The final compound concentration was 2 µM, the plasma concentration 

was 50% in buffer pH 7.4, and the Neostigmine bromide concentration was 10 µM, 3 µM, 1 µM, 

0.3 µM, 0.1 µM, 0.03 µM, 0.01 µM, and 0 µM (blank). At the beginning of the experiment (t = 0 

min) and after an incubation time of 5, 10, 30, and 60 min, samples (50 µL) were transferred to 

150 µL of ice-cooled MeOH, frozen (-20 °C, 10 min), and centrifuged (3600 rpm, 4 °C, 10 min). The 

supernatant (80 µL) was transferred to a 96-well plate for LC-MS analysis (see below). Metabolic 

activity was calculated from the slope of the linear regression from the log percentage remaining 

compound versus incubation time relationship. 
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LC-MS measurements. Analyses were performed using a 1100/1200 Series HPLC System coupled 

to a 6410 Triple Quadrupole mass detector (Agilent Technologies, Inc., Santa Clara, CA, USA) 

equipped with electrospray ionization. The system was controlled with the Agilent MassHunter 

Workstation Data Acquisition software (version B.01.04). The column used was an Atlantis® T3 C18 

column (2.1 x 50 m) with a 3-µm particle size (Waters Corp., Milford, MA, USA). The mobile phase 

consisted of eluent A: H2O containing 0.1% formic acid (for 1, 3f-i, 3l-n, 4, and 5l), or 10 mM 

ammonium acetate, pH 5.0 in 95:5 H2O:MeCN (for 2, 3a-e, 3k); and eluent B: MeCN containing 

0.1% formic acid. The flow rate was maintained at 0.6 mL/min. The gradient was ramped from 95% 

A/5% B to 5% A/95% B over 1 min, and then hold at 5% A/95% B for 0.1 min. The system was then 

brought back to 95% A/5% B, resulting in a total duration of 4 min. MS parameters such as 

fragmentor voltage, collision energy, polarity were optimized individually for each drug, and the 

molecular ion was followed for each compound in the multiple reaction monitoring mode. The 

concentrations of the analytes were quantified by the Agilent Mass Hunter Quantitative Analysis 

software (version B.01.04).  
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2.4 Manuscript 3: FimH antagonists – solubility vs. oral availability 

 

 

This manuscript addresses the low aqueous solubility of the methyl ester prodrugs by two 

approaches: First, by disrupting the molecular planarity and symmetry with modified 

subsitution pattern on the biphenyl moiety and, second, by increasing the polar surface area 

with htereocyclic biaryl aglycones. Solubility and in vitro permeability studies were 

performed to identify ester prodrugs with oral availability; and microsomal stability studies 

were done to estimate the propensity to enzyme-mediated bioactivation. Surprisingly, those 

esters containing a phenyl-1H-pyrrole aglycone show high microsomal stability and therefore 

do not act as prodrugs but are renally excreted unchanged. 
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Simon Kleeb was responsible for the characterization of the physicochemical and in vitro 

pharmacokinetic properties of the diverse biaryl α-D-mannopyranosides. Moreover, he 

contributed to the writing of the manuscript except for the sections about synthesis and the in 

vivo pharmacokinetic study. 
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Abstract 

Urinary tract infections (UTI) caused by uropathogenic Escherichia coli are frequent 

infectious diseases requiring antibiotic treatment. Since recurrent antibiotic exposure can 

induce antimicrobial resistance, efficient non-antibiotic prevention and treatment strategies 

are urgently needed. The first step of the pathogenesis of UTI is the bacterial adherence to the 

urothelial host cell, mediated by the mannose-binding adhesin FimH, which is located at the 

tip of bacterial pili. Biphenyl α-D-mannopyranosides with an electron-withdrawing 

carboxylate on the terminal aromatic ring of the aglycone were identified as potent FimH 

antagonists. In a preliminary study, oral availability of these charged FimH antagonists could 

be established by an ester prodrug approach, although for the price of a dramatically reduced 

solubility. In this article, the solubility problem of the ester prodrug is addressed by 

disrupting the molecular planarity and symmetry of the biphenyl aglycone by means of the 

substitution pattern and by introducing heteroatoms. With the parallel artificial membrane 

permeability assay (PAMPA) and the Caco-2 assay ester prodrugs with oral availability were 

identified. Surprisingly, those containing a phenyl-1H-pyrrole aglycone show high 

microsomal stability and therefore do not act as prodrugs but are renally excreted unchanged. 

Their potential for passive reabsorption leads to elevated urine concentration for up to 6 h. 

The best candidate, the nanomolar FimH antagonist 41f therefore represents a promising 

candidate for oral application in UTI treatment. 

Introduction 

Urinary tract infections (UTIs) – also known as acute cystitis or bladder infections – are 

among the most prevalent infectious diseases worldwide. UTIs affect millions of people 

every year and account for significant morbidity and high medical costs.[1] Complicated UTIs 

require antibiotic treatment. Since recurrent antibiotic exposure leads to the ubiquitous 

problem of antimicrobial resistance, efficient non-antibiotic prevention and treatment 

strategies are urgently needed.[2] More than 70% of UTIs are caused by uropathogenic 

Escherichia coli (UPEC).[1a,3] The first step of the infection cycle is the bacterial adherence to 

the urothelial cell surface, which prevents UPEC from being cleared by micturition but also 

triggers the invasion into the cells.[4] This initial contact is mediated by the bacterial adhesin 

FimH which is located at the tip of type 1 pili.[5] FimH consists of an N-terminal 

carbohydrate recognition domain (CRD) and a C-terminal pilin domain. The CRD 

specifically recognizes mannosylated uroplakin Ia glycoproteins located on the urinary 
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bladder mucosa, whereas the pilin domain regulates the switch between the low- and high-

affinity states of the CRD.[6] Blocking the FimH-CRD with carbohydrates or mimetics 

thereof prevents the bacterial adherence as well as the subsequent infection and therefore is 

regarded as a potential opportunity for prevention and/or treatment of UTIs.[7] 

Over the last three decades, various mannosides and oligomannosides have been tested as 

potential antagonists for type 1 pili-mediated bacterial adhesion.[8] The crystal structure of 

FimH was first solved in 1999,[9] and since then, numerous crystallographic studies have been 

published, greatly facilitating the rational design of high-affinity ligands.[10] As deduced from 

these studies, the FimH-CRD consists of a deep, negatively charged pocket which 

accommodates the mannopyranose moiety by an extended hydrogen bond network. At the 

entrance to this cavity, the amino acids Tyr48, Tyr137, and Ile52 form a hydrophobic rim, the 

‘tyrosine gate’, perfectly suited to host aliphatic and aromatic aglycones.[10a] As a 

consequence of these hydrophobic contacts, n-heptyl α-D-mannopyranoside (1, Figure 1) 

exhibits nanomolar affinity.[10b] With aromatic aglycones, such as present in the antagonists 

2-5, further improvements were achieved.[11] The high affinity of α-D-mannopyranosides 

with biphenyl (→ 3 & 4) and indolinyl phenyl (→ 5) aglycones could be rationalized by 

optimal π-π stacking interactions between the biaryl aglycone and the tyrosine gate.[11d,e,i] 

Depending on the aglycone, different binding modes have been observed. The alkyl aglycone 

of n-butyl α-D-mannopyranoside interacts with both Tyr48 and Tyr137 of the tyrosine 

gate.[10b] By contrast, the biphenyl aglycone present in antagonist 3 was shown to adopt an 

‘out-docking mode’,[11d] that means, it interacts only with Tyr48, probably due to limited 

flexibility of the biphenyl moiety. Moreover, ortho-substituents on ring A of the biphenyl 

aglycone, such as the ortho-chloro substituent in compound 4b, proved beneficial to binding 

because of high shape complementarity within the binding pocket and therefore better van 

der Waals contacts.[11j] 
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Figure 1. FimH antagonists: n-heptyl α-D-mannopyranoside (1) is used as reference compound; the squaric acid 

derivative 2, the biphenyl derivatives 3-4, and the indolinylphenyl derivative 5 exhibit nanomolar affinities. 

For numerous diseases as e.g. UTI, oral administration of therapeutics is the standard care, 

because daily therapy is required. As described in our previous publication,[11e] the carboxylic 

acid moiety in biphenyl α-D-mannoside 4b – its electron-withdrawing potential is essential 

for an enhanced π-π stacking interaction – impairs the membrane permeability and, as a 

consequence, the potential for oral absorption. Otherwise, ester prodrug 4a was shown to 

have markedly increased membrane permeability and to provide – upon absorption and 

enzyme-mediated hydrolysis – antagonist 4b, which is perfectly suited for rapid renal 

excretion. Nonetheless, low aqueous solubility (12 µg/mL) was identified as a major 

drawback of prodrug 4a, limiting the absorptive flux of the prodrug through the intestinal 

mucosa. According to the maximum absorbable dose (MAD) concept,[12] aqueous solubility 

of at least 50 µg/mL is required to achieve quantitative absorption of a 1 mg/kg dose of 

prodrug with medium permeability. 

Results and Discussion 

In the present study, the solubility issue of the ester prodrugs was addressed by two 

approaches: First, by disrupting the molecular planarity and symmetry with modified 

substitution pattern on the biphenyl moiety (Figure 2a) and second by increasing the polar 

surface area (PSA) with heterocyclic biaryl aglycones (Figure 2b).[13] For improving oral 

availability, the carboxylic acid was replaced by the bioisosteric cyano group (Figure 2c).[14] 
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Figure 2. Modifications of the aglycone of FimH antagonists by (a) modifying the substitution pattern, (b) 

introducing heteroaryl aglycones and (c) replacing the carboxylate moiety with a bioisosteric cyano group. 

To evaluate the impact of these modifications on PK/PD properties, binding affinity to the 

FimH-CRD as well as the in vitro/in vivo pharmacokinetic properties predictive for oral 

bioavailability and metabolic stability were studied. 

Synthesis 

Biphenyl mannosides. Compounds 6a,b, 7a,b and 8a,b (Figure 2a) were synthesized 

according to a previously described procedure (for synthesis and compound characterization 

see Supporting Information).[11e] 

Synthesis of heteroaromatic building blocks (Scheme 1). Starting with the commercial 

aminophenols 9a,b, the azidophenols 10a,b were obtained via a diazotransfer reaction using 

freshly prepared triflyl azide in pyridine and copper (II) sulfate as catalyst.[15] Because of 

instability, 10a,b were used without purification in a subsequent copper (I)-catalyzed 

Huisgen cycloaddition[16] with ethyl propiolate, yielding the triazolylphenols 11a,b with high 

1,4-regioselectivity (Scheme 1A). By using an Ullmann-type copper-diamine-catalyzed N-

arylation,[17] 1H-pyrazole-4-carboxylate was coupled with 4-iodoanisole (12) in N-methyl-2-

pyrrolidone (NMP) to furnish 13a. Because of the low reactivity of the trifluoromethyl-

substituted pyrazole, the coupling reaction was carried out under solvent-free condition to 

give 13b in quantitative yield. Demethylation of 13a,b with AlCl3 gave the pyrazolylphenol 
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derivatives 14a,b. Due to the instability of 14b under AlCl3/nBu4NI conditions, a AlCl3/thiol 

combination was used to accelerate the reaction and to suppress byproduct formation 

(Scheme 1B).[18] The pyrimidinyl derivative 17 was prepared via a nBuLi-mediated 

carboxylation with CO2 followed by esterification (Scheme 1C).[19] To synthesize the cyano-

substituted pyrroles 20a,b, benzotriazol-1-ylmethyl isocyanide (BetMIC, 18) was treated 

with the electron-deficient alkenes 19a,b under basic heterocyclization conditions (Scheme 

1D).[20] 
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Scheme 1. a) TfN3, CuSO4, triethylamine, pyridine, 0 °C to rt, 2 h; b) ethyl propiolate, CuSO4⋅5H2O, sodium 

ascorbate, tBuOH/H2O (1:1), rt, 30 min (yield for two steps: 77% for 11a, 48% for 11b); c) ethyl 1H-pyrazole-

4-carboxylate or ethyl 3-trifluoromethyl-1H-pyrazole-4-carboxylate, CuI, trans-N,N’-dimethyl-1,2-

cyclohexanediamine, K2CO3, NMP as solvent for 13a and solvent free for 13b, 110 °C, 24 h (80% for 13a, 

quant. for 13b); d) AlCl3, cat. nBu4NI, DCE (for 14a), or 1-dodecanethiol without catalyst (for 14b), 0 °C to rt 

(60% for 14a, 26% for 14b); e) i. nBuLi, hexane, toluene, -78 °C, 1 h; ii. CO2 (g), -78 °C to rt, 7 h; f) conc. 

H2SO4 (0.8 eq), MeOH, reflux, overnight (37% for two steps); g) nitrile 19a,b, tBuOK, THF, 0 °C to reflux, 2 h 

(60% for 20a, 54% for 20b). 
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Triazolylphenyl and pyrazolylphenyl mannosides (Schemes 2). Mannosylation of the phenols 

11a,b and 14a,b (see Scheme 1A & B) with mannosyl fluoride 21[21] and BF3·Et2O as 

promoter, yielded exclusively the α-mannosides 22a,b and 25a,b. Deacetylation (→ 23a-c 

and 26a,b) followed by ester hydrolysis gave the test compounds 24a,b and 27a,b. 
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Scheme 2. a) BF3⋅Et2O, DCM, mol. sieves 4 Å, 0 °C to rt, overnight (79% for 22a, 76% for 22b, 98% for 25a, 

64% for 25b); b) NaOMe, MeOH, rt, 4 h (74% for 23a, 80% for 23b); c) NaOEt, EtOH, rt, overnight (74% for 

23c, 95% for 26a, 82% for 26b); d) 0.2 N aq. NaOH, MeOH, rt, overnight (30% for 24a, 90% for 24b, 70% for 

27a, 79% for 27b). 

Pyridinylphenyl, pyrazinylphenyl, and pyrimidinylphenyl mannosides (Scheme 3). Mannosyl 

fluoride 21 was treated with 4-iodophenol or 4-bromo-2-trifluoromethylphenol in the 

presence of BF3·Et2O. The resulting iodide 28[11j] and bromide 34[11j] were transformed into 

the boronic acid pinacol esters 29[11j] and 35 under Miyaura-borylation conditions. In a 

palladium-catalyzed Miyaura-Suzuki coupling[22] of the heteroaryl halides 17 (see Scheme 

1C) and 30a-c (commercially available) with boronic acid ester 29, heteroarylphenyl 

mannosides 31a-d were obtained in good to excellent yields. Similarly, mannoside 36 was 

prepared by coupling of ester 35 and pyridinylchoride 30a. Deacetylation under Zemplén 

conditions (→ 32a-d, 37) followed by saponification of the methyl ester yielded the sodium 

salts 33a-d and 38. 
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Scheme 3. a) 4-iodophenol or 4-bromo-2-trifluoromethylphenol, BF3⋅Et2O, DCM, mol. sieves 4 Å, 0 °C to rt, 

overnight (70% for 28, 80% for 34); b) bis(pinacolato)diborone, Pd(Cl2)dppf⋅CH2Cl2, KOAc, DMF, 85 °C, 

overnight (80% for 29, 83% for 35); c) Pd(Cl2)dppf⋅CH2Cl2, K3PO4, DMF, 85 °C, overnight (60% for 31a, 80% 

for 31b, 68% for 31c, 40% for 31d, 57% for 36); d) NaOMe, MeOH, rt, 4 h (36% for 32a, 24% for 32b, 36% 

for 32c, 89% for 32d, 60% for 37); e) 0.2 N aq. NaOH, MeOH, rt, overnight (32% for 33a, 48% for 33b, 44% 

for 33c, 60% for 33d, 90% for 38). 

Pyrrolylphenyl mannosides (Schemes 4 & 5). In a copper catalyzed N-arylation, pyrroles 

20a,b (see Scheme 1D) and 20c-f (commercial) were coupled with mannoside 39[11i] (ortho-

Cl) to yield the pyrrolylphenyl mannosides 40a-f (Scheme 4).[18] Under similar conditions, 

mannosides 28 (without ortho-substituent) and 34 (ortho-CF3) were coupled with pyrrole 20f 

to yield 46 and 47 (Scheme 5). Because of partial deacetylation of the sugar moiety during N-

arylation, the crude products were reacetylated to facilitate purification. Deacetylation of the 

mannose moiety (→ 41a-f, 48 and 49) followed by saponification of the alkyl esters gave the 

test compounds 42-45, 50 and 51. 
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Scheme 4. a) i. CuI, (±)-trans-1,2-diaminocyclohexane, K3PO4, 1,4-dioxane, 110 °C, overnight; ii. Ac2O, 

DMAP, pyridine, rt, overnight (44% for 40a, 92% for 40b, 33% for 40c, 64% for 40d, 99% for 40e, 77% for 

40f); b) NaOMe, MeOH, rt, 4 h (65% for 41a, 38% for 41b, 83% for 41e); c) NaOEt, EtOH, rt, overnight (91% 

for 41c, 61% for 41d, 93% for 41f); d) NaOH, MeOH/H2O (1:2), rt, 12-48 h (58% for 42, 40% for 43, 20% for 

44, 57% for 45). 
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Scheme 5. a) i. CuI, (±)-trans-1,2-diaminocyclohexane, K3PO4, 1,4-dioxane, 110 °C, overnight; ii. Ac2O, 

DMAP, pyridine, rt, overnight (94% for 46, 49% for 47); b) NaOEt, EtOH, rt, overnight (46% for 48, 85% for 

49); c) NaOH, MeOH/H2O (1:2), rt, 48 h (99% for 50, 35% for 51).  

In vitro binding affinities  

The hydrolyzed prodrugs, i.e. the free carboxylates (6-8b, 24a-b, 27a-b, 33a-d, 38, 42-45, 50 

and 51) as well as the bioisosteric cyanides (41a-b), were evaluated in a cell-free competitive 

binding assay (Table 1).[23] 
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Cell-free competitive binding assay.[23] The cell-free competitive binding assay is based on 

the competitive interaction of the compound of interest and the biotinylated polyacrylamide 

glycopolymer TM-PAA (Manα1-3(Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-PAA) with the 

isolated CRD of FimH. Complexation of the biotinylated glycopolymer with streptavidin 

coupled to horseradish peroxidase allows for quantification of the binding affinity of the 

antagonists. For every compound the assay was performed twice with each concentration in 

duplicate. To ensure comparability between various antagonists, the reference compound n-

heptyl α-D-mannopyranoside (1) was tested each time in parallel. The affinities are reported 

relative to 1 as rIC50 in Table 1. 

A comparison of the biphenyl mannoside antagonist 4b (entry 2) with the regioisomers 6b, 

7b, and 8b (entries 3-5) indicates that changing the position of the carboxylic acid on the 

terminal ring B of the biphenyl aglycone as well as modifying the substitution pattern on ring 

A substantially reduced affinity. As previously reported, the ortho-chloro substituent present 

in the antagonists 4b and 7b provides additional van der Waals contacts leading to binding 

affinity in the low nanomolar range.[11j] 

Table 1. Pharmacodynamic parameters of FimH antagonists. The IC50 values were determined with a cell-free 

competitive binding assay.[23] The rIC50 values were calculated by dividing the IC50 of the compound of interest 

by the IC50 of reference compound 1. This leads to rIC50 values below 1.0 for derivatives with higher affinity 

than reference 1 and rIC50 above 1.0 for compounds with lower affinity than 1. 

O
OH

HO
HO

OH

R  

O
OH

HO
HO

OH

R  
Entry Cpd 

R 

IC50 

[nM] 
rIC50 Entry Cpd 

R 

IC50 

[nM] 
rIC50 

1 1[10b] O  54.9 1 12 33c 
O

N

N

COONa  

39 0.73 

2 4b[11e] 
O

COONa

Cl

 

6.7 0.09 13 33d 
O

N

N

COONa  

35 0.60 

3 6b[11e] O

COONa

Cl  
29 0.40 14 38 

O

N

COONa

CF3

 

20 0.39 

4 7b 
O

COONa

Cl

 
12 0.19 15 41a 

O

N

Cl

CN
 

29 0.50 
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5 8b 
O

COONa

Cl

 
53 0.97 16 41b 

O

N

CN

Cl

 

25 0.43 

6 24a 
O

N N
N

COONa  

16 0.30 17 42 
O

N

Cl

COONa

 
75 1.37 

7 24b 
O

N N
N

COONa

Cl

 

21 0.35 18 43 
O

N

Cl
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23 0.41 

8 27a 
O

N
N

COONa  

111 2.02 19 44 
O

N

Cl

COONa  

25 0.45 

9 27b 
O

N
N

COONa

CF3

 

112 2.02 20 45 
O

N

COONa

Cl

 

25 0.44 

10 33a 
O

N

COONa  

16 0.30 21 50 
O

N

COONa  

65 1.18 

11 33b 
O

N

COONa  

46 0.71 22 51 
O

N

COONa

CF3

 

19 0.33 

 

All heteroaryl mannosides (entries 6-22) showed IC50 values in the nanomolar range as well. 

Nonetheless, they were weaker binders than the optimized biphenyl mannoside 4b, although 

in silico studies obtained with flexible docking (Glide software package[24]) to the FimH-

CRD suggested a similar ‘out-docking mode’ (Figure 3). 

In comparison with the triazolylphenyl mannosides 24a,b (entries 6 & 7) and the 

pyrrolylphenyl mannosides 41a,b, 42-45, 50 and 51 (entries 15-22), the pyrazolylphenyl 

analogues 27a,b (entries 8 & 9) showed markedly lower affinity, even though we expected a 

similar conformation for all biaryl mannosides containing a five-membered aromatic 

heterocycle. Furthermore, a high impact of the substitution pattern on the binding affinity was 

observed for the various pyrrolylphenyl mannosides (entries 15-22). In agreement with 

previous observations,[11g,j] the ortho-chloro and the ortho-trifluoromethyl substituents on 

ring A were beneficial to affinity (50 vs. 45 & 51, entries 20-22). The position of the 

electron-withdrawing carboxylic acid moiety in the heteroaromatic ring furthermore affected 

the binding affinity. In the 3-position (→ 44, entry 19) it conferred three times higher affinity 
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than in the 2-position (→ 42, entry 17). In silico docking studies indeed suggest that the 2-

carboxylate forces the two rings of the aglycone in an orthogonal orientation and therefore 

disrupts the π-π stacking interactions between the heteroaromatic ring and Tyr48 of the 

tyrosine gate (→ 45, Figure 3B). Otherwise, the additional 4-methyl substituent present in 43 

(entry 18) could presumably provide an additional hydrophobic contact (Figure 3A). 

  
Figure 3. In silico docking studies obtained with flexible docking (Glide software package[24]) to the FimH-

CRD (PDB ID: 3MCY); top-scored binding modes of A) 43 (Table 1, entry 18) and B) 45 (entry 20).  

Physicochemical properties and in vitro pharmacokinetics 

For assessing the potential for intestinal absorption, lipophilicity (log P), aqueous solubility, 

and permeability through an artificial membrane (PAMPA, log Pe) as well as a Caco-2 cell 

monolayer (Papp) were determined (Table 2).[25-29] Furthermore, the esters were incubated 

with rat liver microsomes (RLM) for estimating their susceptibility to carboxylesterase 

(CES)-mediated hydrolysis.[30] Mammalian CESs are localized in the endoplasmatic 

reticulum of the liver and most other organs. Table 2 indicates the metabolic half lives (t1/2) 

as determinants of the rate of bioconversion to the respective acid. 

Table 2. Physicochemical and pharmacokinetic parameters of FimH antagonists. 

O
OH

HO
HO

OH

R  

Caco-2 

Papp [10-6 cm/s]d Entry Cpd 

R 

log P a 
Solubility 

[µg/mL]b 

PAMPA 

log Pe 

[cm/s]c a→b b→a 

Microsomal 

stability 

t1/2 [min]e 

1 4a[11e] 
O

Cl

COOMe  

2.3 11.9 -4.6 5.3 ± 0.6 17.5 ± 1.3 2.1 

2 6a[11e] O

COOMe

Cl  
1.7 ± 0.1 14 ± 0 -4.7 6.1 ± 1.2 21.1 ± 1.2 22 
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3 7a 
O

Cl

COOMe

 

2.7 ± 0.1 41 ± 3 -4.6 ± 0.2 6.7 ± 0.4 20.7 ± 2.5 84 

4 8a 
O

COOMe

Cl

 
2.7 ± 0.1 134 ± 6 -4.5 ± 0.1 4.5 ± 0.3 10.8 ± 0.7 13 

5 23a 
O

N N
N

COOMe  

-0.6 ± 0.0 > 180 -9.4 ± 0.3 n.d. n.d. 38 

6 23b 
O

N N
N

COOMe

Cl

 

0.0 ± 0.0 > 150 -9.1 ± 1.8 n.d. n.d. 32 

7 23c 
O

N N
N

COOEt

Cl

 

0.7 ± 0.0 > 150 -10 n.d. n.d. 42 

8 26a 
O

N
N

COOEt  

0.9 ± 0.0 > 180 -6.6 ± 0.1 n.d. n.d. > 120 

9 26b 
O

N
N

COOEt

CF3

 

2.1± 0.0 > 180 -5.7 ± 0.1 1.3 ± 0.1 12.4 ± 2.4 113 

10 32a 
O

N

COOMe  

0.2 ± 0.0 > 130 -7.5 ± 0.2 0.22 ± 0.05 2.3 ± 0.1 10 

11 32b 
O

N

COOMe  
1.0 ± 0.0 59 ± 6 -6.3 ± 0.0 0.64 ± 0.06 8.3 ± 0.4 11 

12 32c 
O

N

N

COOMe  
0.1 ± 0.1 > 150 -7.6 ± 0.0 0.24 ± 0.01 1.8 ± 0.2 11 

13 32d 
O

N

N

COOMe  
< -1.0 95 ± 6 -8.5 ± 0.1 0.16 ± 0.03 0.22 ± 0.05 24 

14 37 
O

N

COOMe

CF3

 

1.3 ± 0.1 > 180 -8.6 ± 1.7 0.33 ± 0.04 7.2 ± 0.7 8.2 

15 41a 
O

N

Cl

CN  

1.5±0.1 >350 -8.8± 2.0 n.d. n.d. n.d. 

16 41b 
O

N

CN

Cl

 

2.0±0.1 69 ± 20 -6.3 ± 0.1 n.d. n.d. n.d. 
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17 41c 
O

N

Cl

COOEt

 
2.0 ± 0.0 > 180 -5.2 ± 0.0 n.d. n.d. > 120 

18 41d 
O

N

Cl

COOEt

 

2.7 ± 0.0 34 ± 4 -4.8 ± 0.1 5.0 ± 0.2 35.6 ± 1.0 84 

19 41e 
O

N

Cl

COOMe  

2.1 ± 0.2 > 180 -6.0 ± 0.1 n.d. n.d. > 120 

20 41f 
O

N

COOEt

Cl

 

2.8 ± 0.1 > 180 -4.8 ± 0.1 6.4 ± 0.7 30.0 ± 2.9 > 120 

21 48 
O

N

Me

COOEt

 

2.3 ± 0.0 > 180 -5.1 ± 0.1 1.5 ± 0.5 17.2 ± 0.6 > 120 

22 49 
O

N

Me

COOEt

CF3

 

3.0 ± 0.1 135 ± 6 -5.0 ± 0.2 5.0 ± 0.3 26.1 ± 1.5 > 120 

[a] Octanol-water partition coefficients (log P) were determined by a miniaturized shake flask procedure. The 

values are indicated as mean ± SD of sextuplicate determinations.[25] [b] Kinetic solubility was measured in a 

96-well format in triplicate using the µSOL Explorer solubility analyzer.[26] [c] Permeation through an artificial 

membrane (log Pe, effective permeability) was determined by PAMPA (parallel artificial membrane 

permeability assay) in quadruplicate.[27] [d] Permeation through a Caco-2 cell monolayer (Papp, apparent 

permeability) was assessed in the absorptive (a→b) and secretory (b→a) directions in triplicate.[28] [e] 

Microsomal stability was determined with pooled male rat liver microsomes (0.125 mg/mL) at pH 7.4 and 

37 °C.[29] n.d., not determined. 

Biphenyl mannosides: Solubility, permeability, and metabolic stability. As observed in our 

previous study,[11e] the biphenyl derivatives 4a and 6a (Table 2, entries 1 & 2) showed low 

aqueous solubility probably due to the symmetrical para-para substitution pattern. In order to 

disrupt this symmetry, the carboxylic acid moiety in 4a was moved from the para- to the 

meta-position (→ 7a, Table 2, entry 3), leading however only to moderately improved 

aqueous solubility. Moving the chloro substituent on ring A from the ortho- to the meta-

position (→ 8a, Table 2, entry 4) increased the dihedral angle (60.3° for 8a vs. 39.6° for 7a, 

Figure 4A; values calculated with MacroModel, version 9.9[31]), resulting in the disruption of 

the molecular planarity and markedly enhanced aqueous solubility. Given the elevated 

solubility (134 µg/mL) and the high effective permeability (log Pe -4.5), the prodrug 8a was 

identified as the most promising biphenyl derivative for oral administration. 
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Incubation with rat liver microsomes induced a fast degradation of prodrug 4a (t1/2 2.1 min, 

Table 2, entry 1). The esters of the biphenyl mannosides 6a (t1/2 22 min, entry 2), 7a (t1/2 84 

min, entry 3), and 8a (t1/2 13 min, entry 4) were less susceptible to the carboxylesterase 

(CES)-mediated metabolic turnover. The differing rates of hydrolysis may result from 

various reasons, i.e. the change in the molecular geometry and therefore in the accessibility of 

the ester by the serine hydrolase CES[30] or differing electron-density on the carbonyl carbon. 

Since the first step of the catalytic mechanism relies on the nucleophilic attack by the 

hydroxyl group of the serine moiety,[32] increasing electron-deficiency of the carbonyl carbon 

should lead to a higher propensity for hydrolysis. However, the calculated partial charges (δ) 

on the carbonyl carbons (AMSOL, Version 7.1[33], data not shown) do not correlate with the 

propensities of the corresponding esters to hydrolysis. We therefore attributed the rate 

differences of the CES-mediated hydrolysis primarily to the differing geometry of the 

aglycones, which, in case of 4a, orients the ester bond within the active site in an optimal 

position. 

 

Figure 4. Dihedral angles between the aromatic rings of prominent biaryl α-D-mannopyranosides, A) biphenyl 

aglycones and B) heteroaryl aglycones. The values were calculated with MacroModel (version 9.9).[31] 

Heteroaryl mannosides: Solubility, permeability, and metabolic stability. In general, 

heterobiaryl mannosides (Table 2, entries 5-22) exhibited markedly higher aqueous solubility 

than biphenyl α-D-mannoside 4a. When the nitrogen atom in ring B is moved from the ortho- 

(→ 32b, entry 11) to the meta-position (→ 32a, entry 10), the increase in steric hindrance 

(lone pair of N vs. C-H) leads to a larger internal dihedral angle (32.5° for 32b vs. 38.0° for 

32a, Figure 4B), causing a disruption of the molecular planarity and hence to improved 
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solubility. A similar effect was observed for the antagonists 32d (36.2°, entry 13) and 32c 

(30.9°, entry 12). The five-membered heteroaryl mannosides in general excel in high 

solubility, either because of the increased polarity [→ triazoles 23a-c (entries 5-7) and 

pyrazoles 26a,b (entries 8 & 9)] or because of the disruption of molecular symmetry (→ 

pyrroles 41a-f, 48, 49, entries 15-22). 

As expected, the increase in polarity and solubility (→ 23a, log P -0.6, entry 5) induces 

reduced permeability (log Pe -9.4), i.e. poor oral absorption.[34] To enhance lipophilicity two 

strategies were followed: First, an ortho-chloro substituent was added to ring A of the biaryl 

aglycone (→ 23b, entry 6) and, second, the methyl ester was replaced by an ethyl ester (→ 

23c, entry 7). However, both strategies were insufficient to substantially improve the oral 

absorption potential. For the pyrazolylphenyl derivative 26a (entry 8), although slightly more 

lipophilic than the triazolylphenyl 23c (entry 7), only low effective permeability (log Pe -6.6) 

was observed. Introduction of a trifluoromethyl substituent on the pyrazole moiety (→ 26b, 

entry 9) further increased both lipophilicity and permeability but was still not sufficient for 

successful intestinal uptake. 

By contrast, the pyrrolylphenyl mannosides 41a-f, 48 and 49 (Table 2, entries 15-22) are 

among the most lipophilic and permeable biaryl derivatives. Starting from antagonist 41e 

(entry 19), both parameters could be successively enhanced by introducing a methyl 

substituent in the 4-position of the pyrrole moiety (→ 48, entry 21) and by modifying the 

ortho-substituent on ring A of the biaryl aglycone (→ 41f and 49, entries 20 & 22). For 

antagonists 41f and 49, effective permeability resulting from PAMPA (log Pe -4.8 and -5.0, 

respectively) suggested a high oral absorption potential. Moreover, the absorptive flux (apical 

→ basal) through the Caco-2 cell monolayer was outstandingly high. Although the ratio 

Papp,b→a/Papp,a→b implied efflux-carrier activity, we expected high systemic availability of 41f 

and 49 in vivo, notably because efflux transporters at human intestines are considered easily 

saturable when compounds are administered at elevated doses (e.g. > 100 mg).[35] In the case 

of the pyrrolylphenyl derivatives 41c and 41d (entries 17 & 18), introducing a 4-methyl 

substituent increased permeability as well. In turn, it made 41d the least soluble compound 

among all assessed heteroaryl mannosides. The bioisosteric replacement of the carboxylic 

moiety by a cyano group (→ 41a-b, entries 15 & 16) resulted in PAMPA data indicating low 

permeability for both derivatives (log Pe -8.8 and -6.3, respectively). 
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All heteroaryl derivatives with ester functions (Table 2, entries 5-14 and 17-22) were found 

to be less susceptible to CES-mediated bioconversion than the initial biphenyl mannoside 4a. 

Nonetheless, the experimental half-lifes suggest a strong relationship between the molecular 

structure of the heteroaryl moiety and the propensity to hydrolysis. All biphenyl and 

heterobiphenyl derivatives exhibit considerable propensity to enzyme-mediated hydrolysis. 

By contrast, the pyrrolylphenyl esters 41e,f, 48, and 49, which were originally designed as 

prodrugs, surprisingly proved to be metabolically stable and not hydrolizable by the 

carboxylesterases.  

Binding affinity of selected esters 

Since their lipophilicity (log P), solubility, membrane permeation (log Pe and Papp) fulfill the 

requirements for an oral uptake, the binding affinities of these antagonists were determined in 

the cell-free competitive assay (see above) as well as in a competitive fluorescence 

polarization assay (Table 3). In both assays, n-heptyl mannoside (1) was used as a reference 

compound. 

Competitive Fluorescence Polarization Assay.[11k] For the rapid evaluation of binding 

affinity, a previously developed competitive binding assay based on fluorescence polarization 

(FP) was applied. A FimH variant consisting of the CRD linked to a His-tag by a thrombin 

cleaving site (FimH-CRD-Th-His6, expressed and purified as previously described)[23] was 

used. The antagonist of interest displaces the fluorescent-labeled competitor 52[11k] from the 

binding site, thereby reducing fluorescence polarization.[36] Due to the long residence time of 

FimH antagonists (t1/2 > 3.5 h),[37] a 24 h incubation time was applied before measurement of 

fluorescence polarization. IC50 values were obtained by nonlinear least-squares regression 

(standard four-parameter IC50 equation) and converted to KD using a modified Cheng-Prusoff 

equation.[36] The KD values observed for the test compounds 41e,f, 48 and 49 are summarized 

in Table 3. In general, the pyrrolylphenyl mannosides  (entries 2-5) showed higher affinity 

than the reference compound 1. The improved affinity for the ortho-substituted biaryls (Cl, 

41f and CF3, 49) was confirmed. 
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Table 3. Affinity of FimH antagonists to FimH-CRD-Th-His6.a The IC50 values were determined with a cell-

free competitive binding assay.[23] The rIC50 values were calculated by dividing the IC50 of the compound of 

interest by the IC50 of reference compound 1. Dissociation constants (KD) were determined in a competitive 

fluorescence polarization assay.[11k,36] n.d., not determined. 

Binding Assay 
Entry Cpd O

OH
HO
HO

OH

R  IC50 [nM] rIC50 

FP-Assay 

KD [nM] 

1 1 O  54.9 1.0 28.3 

2 41e 
O

N

Cl

COOMe  

18.5 0.33 4.3 

3 41f 
O

N

Cl

COOEt  

25.2 0.46 7.5 

4 48 
O

N

COOEt  

24.9 0.45 24.6 

5 49 
O

N

COOEt

CF3

 

36.9 0.72 6.0 

6 52[11k] 
O

NH

O

NH

HN

S

O

O

OHO OH

Cl

 

n.d. n.d. 1.7 

 

In vivo pharmacokinetic study. Antagonist 41f exhibiting the best in vitro PK/PD profile was 

selected for an in vivo pharmacokinetic study. It was orally applied to three mice at a dose of 

10 mg/kg. The concentration-time profiles are shown in Figure 5. 
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Figure 5.!Urine (dashed line) and plasma (continuous line) concentration over time after an application of 10 

mg/kg of 41f. The detection limit for plasma samples was at 0.02 µg/ml, urine samples could be detected down 

to 0 µg/ml. 

 

Generally, plasma concentrations of 41f were low, barely exceeding the detection limit (0.02 

µg/ml), with a peak between 40 min and 1.5 h after application and a Cmax of only 0.04 

µg/ml. Subsequently it dropped below the detection limit. In contrast, antagonist 41f rapidly 

accumulates in the urine with a Cmax ranging from 10 to 16 µg/ml at 1 to 3 h post application. 

After a stable concentration plateau, which is slightly shifted in time compared to plasma 

peak levels, 41f was not detectable in urine 7 h post application. The total dose detected in 

urine corresponds to approximately 30% of the oral dose. 

The accumulation in the urine, resulting in a relatively constant plateau concentration over a 

time-period of about 3 h, is related to several important interplaying mechanisms. Both, 

PAMPA[27] and transport through a Caco-2 cell layer predict permeability for 41f (log Pe -4.8 

cm/s, and Papp,a-b 6.4 × 10-6 cm/s, Table 2).[38,39] However, absorption of 41f is slowed down 

by the simultaneous efflux (Papp,b-a 30 × 10-6 cm/s) by P-glycoprotein (P-gp),[40] exceeding the 

uptake rate by a factor of approx. 5. Therefore, 41f accumulates in the intestinal fluids, 

leading to P-gp saturation and, consequently, to a prolonged, but slow uptake. As this effect 

can influence plasma and urine drug levels only for a limited time, further mechanisms come 

into play. After absorption, antagonist 41f remains in circulation only for a short period of 

time before it is filtered through the renal glomeruli in the kidneys. Its log P value (log P 2.8, 

entry 20, Table 2) implies a high reabsorption potential from the filtrate in the proximal 

tubuli, resulting in a delayed renal excretion.[38,39,41] In summary, the observed PK profile of 
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41f results from a prolonged absorption due to P-gp mediated efflux combined with a delayed 

elimination via the kidneys due to reabsorption. These PK properties are beneficial for 

prevention or treatment of UTI, as high urine drug levels over an extended period of time 

limit the dosing frequency to few or even only one application a day. 

Conclusions 

Starting from prodrug 4a, the present study aimed to optimize the pharmacokinetic properties 

of the biaryl mannoside in order to achieve high oral absorption of the ester prodrug and 

rapid enzyme-mediated release of the active principle. In this regard, our first approach, i.e. 

disruption of the molecular planarity and symmetry of the biphenyl mannoside by modifying 

the substitution pattern, proved successful. Compared to compound 4a, the ester prodrug 8a 

showed a tenfold increased solubility whereas membrane permeability remained unchanged. 

Moreover, hepatic esterases were shown to rapidly convert the ester to the polar parent 

compound 8b. However, shifting the substituents on the aglycone markedly decreased the 

affinity to the FimH-CRD, overriding the gain in the intestinal uptake potential. 

In a second approach, the improvement of the physicochemical properties by heterocyclic 

aglycones was studied. Thereby, triazole (23a-c), pyrazole (26a,b), and six-membered 

heterocyclic moieties (32a-d and 37) proved highly beneficial to the aqueous solubility but in 

turn reduced lipophilicity and membrane permeability, which leads, overall, to poor oral 

absorption. By contrast, the pyrrolylphenyl mannosides – optimized by the introduction of a 

chloro or trifluoromethyl substituent on ring A and a methyl group on the heterocycle (41f 

and 49) – exhibited sufficient permeability and aqueous solubility. However, incubations 

with rat liver microsomes, revealed low propensity to enzyme-mediated hydrolysis. Despite 

their high intestinal uptake potential, these esters therefore scarcely act as prodrugs 

facilitating the delivery of the active principles to the urinary bladder. Nonetheless, the 

introduction of a pyrrole moiety appears as a promising strategy for optimizing the oral 

absorption of biaryl mannoside analogues, which do not rely on an ester prodrug approach. 

In summary, our study exemplifies the benefits of two approaches - rearrangement of the 

substitution pattern and introduction of aromatic heterocycles - on aqueous solubility. The 

high microsomal stability of the pyrrole derivatives indicates an action mode rather than a 

prodrug approach. For the esters 41f and 49, an optimal balance of pharmacodynamic, 

physicochemical and pharmacokinetic properties was obtained. According to the in vivo PK 

studies (see Figure 5), 41f is a promising candidate to be tested in a UTI disease model. 
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Experimental Section 

Synthesis. The synthesis of compounds 7a,b, 8a,b 11a,b, 13a,b, 14a,b, 17, 20a,b, 22b, 23b,c, 24b, 

25a,b, 26a,b, 27a,b, 31b-d, 32b-d, 33b-d, 40a-e, 41a-e, 42-44, 47, 49, and 51, including compound 

characterization data, can be found in the Supporting Information. 

General Methods. NMR spectra were recorded on a Bruker Avance DMX-500 (500.1 MHz) 

spectrometer. Assignment of 1H and 13C NMR spectra was achieved using 2D methods (COSY, 

HSQC, HMBC). Chemical shifts are expressed in ppm using residual CHCl3, CHD2OD or HDO as 

references. Optical rotations were measured using Perkin-Elmer Polarimeter 341. Electron spray 

ionization mass spectra (ESI-MS) were obtained on a Waters micromass ZQ. The LC/HRMS analysis 

were carried out using a Agilent 1100 LC equipped with a photodiode array detector and a Micromass 

QTOF I equipped with a 4 GHz digital-time converter. Microwave-assisted reactions were carried out 

with a CEM Discover and Explorer. Reactions were monitored by TLC using glass plates coated with 

silica gel 60 F254 (Merck) and visualized by using UV light and/or by charring with a molybdate 

solution (a 0.02 M solution of ammonium cerium sulfate dihydrate and ammonium molybdate 

tetrahydrate in aqueous 10% H2SO4). MPLC separations were carried out on a CombiFlash 

Companion or Rf from Teledyne Isco equipped with RediSep normal-phase or RP-18 reversed-phase 

flash columns. LC-MS separations were done on a Waters system equipped with sample manager 

2767, pump 2525, PDA 2525 and micromass ZQ. Size-exclusion chromatography was performed on 

Bio-Gel® P-2 Gel (45-90 mm) from Bio-Rad (Reinach, Switzerland). All compounds used for 

biological assays are at least of 98% purity based on HPLC analytical results. Commercially available 

reagents were purchased from Fluka, Aldrich, Alfa Aesar or Iris Biotech (Germany). Solvents were 

purchased from Sigma-Aldrich (Buchs, Switzerland) or Acros Organics (Geel, Belgium) and were 

dried prior to use where indicated. Methanol (MeOH) and ethanol (EtOH) were dried by refluxing 

with sodium methoxide or ethoxide and distilled immediately before use. Dichloromethane (DCM) 

was dried by filtration over Al2O3 (Fluka, type 5016 A basic). Molecular sieves 4Å were activated in 

vacuo at 500 °C for 1 h immediately before use. 

General procedure A for the synthesis of mannosides 22a,b and 25a,b. To an ice-cold suspension 

of 21[21] (1.1 equiv), phenol 11a,b or 14a,b (1.0 equiv) and molecular sieves 4 Å (600 mg) in dry 

DCM (5 mL), BF3⋅Et2O (4.7 equiv) was added dropwise under argon. The mixture was stirred at 0 °C 

for 3 h, and then at rt overnight. The reaction mixture was filtered over Celite and the filtrate was 

diluted with DCM (50 mL), extracted with 0.5 N aq. NaOH (50 mL), water (50 mL) and brine (50 

mL). The organic layer was dried over Na2SO4 and concentrated in vacuo. The residue was purified 

by MPLC on silica gel (petrol ether/EtOAc) to yield 22a,b or 25a,b. 

General procedure B for the coupling of mannosylated phenyls with six-membered heterocyclic 

halides. A Schlenk tube was charged with heterocyclic halide 30a-c or 17 (1.0 eq), boronate 29[11j] or 
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35 (1.1 eq), Pd(dppf)Cl2⋅CH2Cl2 (0.03 eq), K3PO4 (1.5 eq) and a stirring bar. The tube was closed with 

a rubber septum and was evacuated and flushed with argon. This procedure was repeated once, then 

anhydrous DMF (2 mL) was added under a stream of argon. The mixture was degassed in an 

ultrasonic bath and flushed with argon for 5 min, and then stirred at 80-85 °C overnight. The reaction 

mixture was cooled to rt, diluted with EtOAc (50 mL), and washed with water (50 mL) and brine (50 

mL). The organic layer was dried over Na2SO4 and concentrated in vacuo. The residue was purified 

by MPLC on silica gel (petrol ether/EtOAc) to afford heteroarylphenyls 31a-d or 36. 

General procedure C for the coupling of mannosylated phenyls with substituted pyrrolyl 

halides. A Schlenk tube was charged with phenyl halide 28,[11j] 34[11j] or 39[11i] (1.0 eq), pyrrolyl 

halide 20a-f (1.2 eq), CuI (0.05 eq), (±)-trans-1,2-diaminocyclohexane (0.11 eq), K3PO4 (2.1 eq) and 

a stirring bar. The tube was closed with a rubber septum and was evacuated and flushed with argon. 

This procedure was repeated once, then anhydrous 1,4-dioxane (ca. 0.5 mL, 1 M to phenyl halide) 

was added under a stream of argon. The mixture was degassed in an ultrasonic bath and flushed with 

argon for 5 min, and then stirred at 110 °C for 24 h. The reaction mixture was cooled to rt, diluted 

with EtOAc (50 mL), and filtered through Celite. The filtrate was concentrated in vacuo and co-

evaporated with toluene. The residue was acetylated with pyridine/acetic anhydride/DMAP, 

concentrated and purified by MPLC on silica gel (petrol ether/EtOAc) to afford pyrrolylphenyls 40a-

f, 46 or 47. 

General procedure D for deacetylation: To a solution of 22a,b, 25a,b, 31a-d, 36, 40a-f, 46 or 47 

(1.0 eq) in dry MeOH (5 mL) for producing methyl ester or in dry EtOH (5 mL) for producing ethyl 

ester, was added freshly prepared 1 M NaOMe/MeOH or NaOEt/EtOH (0.1 eq) under argon. The 

mixture was stirred at rt until the reaction was complete (monitored by TLC), then neutralized with 

Amberlyst-15 (H+) ion-exchange resin, filtered and concentrated in vacuo. The residue was purified 

by MPLC on silica gel (DCM/MeOH, 10:1 to 8:1 for methyl esters or DCM/EtOH, 3:1 for ethyl 

esters) to afford 23a-c, 26a-b, 32a-d, 37, 41a-f, 48 or 49. 

General procedure E for saponification: To a solution of 22a,b, 25a,b, 31a-d, 36, 40a-f, 46 or 47 

(1.0 eq) in MeOH (5 mL) was added 1 M NaOMe/MeOH (0.1 eq) at rt. The reaction mixture was 

stirred at rt for 4 h and concentrated. The residue was treated with 0.5 M aq. NaOH (1 mL) for 24 h at 

rt. Then the pH was adjusted to 3-4 with Amberlyst-15 (H+) and the mixture was filtered and 

concentrated. The crude product was transformed into the sodium salt by passing through a small 

column of Dowex 50X8 (Na+ form) ion-exchange resin. After concentration the residue was purified 

by MPLC (RP-18, H2O/MeOH, 1:0 to 2:1) followed by size-exclusion chromatography (P-2 gel, H2O) 

to yield 24a,b, 27a,b, 33a-d, 38, 42-45, 50 or 51 as white solids after final lyophilization from water. 

Ethyl 1-[4-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)phenyl]-1H-1,2,3-triazole-4-

carboxylate (22a). Prepared according to general procedure A from 21 and 11a. Yield: 341 mg 
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(79%) as colorless oil. Rf 0.30 (petrol ether/EtOAc, 1:1); [α]D
20 +76.7 (c 0.90, MeOH); 1H NMR (500 

MHz, CDCl3): δ = 8.47 (s, 1H, triazole), 7.72-7.70 (m, 2H, Ar-H), 7.29-7.27 (m, 2H, Ar-H), 5.60 (d, J 

= 1.7 Hz, 1H, H-1), 5.56 (dd, J = 3.0, 10.0 Hz, 1H, H-3), 5.48 (dd, J = 1.9, 3.0 Hz, 1H, H-2), 5.40 (t, J 

= 10.0 Hz, 1H, H-4), 4.47 (dd, J = 7.2, 14.2 Hz, 2H, OCH2), 4.29 (dd, J = 5.4, 12.4 Hz, 1H, H-6a), 

4.11-4.07 (m, 2H, H-5, H-6b), 2.22, 2.07, 2.06, 2.05 (4 s, 12H, 4 COCH3), 1.44 (t, J = 7.2 Hz, 3H, 

CH3); 13C NMR (126 MHz, CDCl3): δ = 170.48, 170.01, 169.99, 169.69, 160.61 (5 CO), 156.17, 

140.87, 131.60, 125.52, 122.46, 117.62 (8C, Ar-C), 95.89 (C-1), 69.54 (C-5), 69.14 (C-2), 68.66 (C-

3), 65.71 (C-4), 62.03 (C-6), 61.55 (OCH2), 20.88, 20.71, 20.70 (4C, 4 COCH3), 14.34 (CH3); ESI-

MS: m/z: Calcd for C25H30N3O12 [M+H]+: 564.18, found: 564.20. 

Methyl 1-[4-(α-D-mannopyranosyloxy)phenyl]-1H-1,2,3-triazole-4-carboxylate (23a). Prepared 

according to general procedure D from 22a. Yield: 28 mg (74%) as white solid. Rf 0.20 

(DCM/MeOH, 8:1); [α]D
20 +99.8 (c 0.30, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.94 (s, 1H, Ar-

H), 7.72-7.69 (m, 2H, Ar-H), 7.25-7.23 (m, 2H, Ar-H), 5.48 (d, J = 1.7 Hz, 1H, H-1), 3.94 (dd, J = 

1.9, 3.4 Hz, 1H, H-2), 3.85 (s, 3H, OCH3), 3.81 (dd, J = 3.5, 9.5 Hz, 1H, H-3), 3.70-3.60 (m, 3H, H-4, 

H-6), 3.48 (ddd, J = 2.4, 5.5, 9.7 Hz, 1H, H-5); 13C NMR (126 MHz, CD3OD): δ = 162.33 (CO), 

158.64, 141.14, 132.38, 127.77, 123.47, 118.81 (8C, Ar-C), 100.26 (C-1), 75.77 (C-5), 72.34 (C-3), 

71.82 (C-2), 68.27 (C-4), 62.68 (C-6), 52.66 (OCH3); HRMS: m/z: Calcd for C16H19N3NaO8 [M+Na]+: 

404.1064, found: 404.1068. 

Sodium 1-[4-(α-D-mannopyranosyloxy)phenyl]-1H-1,2,3-triazole-4-carboxylate (24a). Prepared 

according to general procedure E from 22a. Yield: 5 mg (30%) as white solid. [α]D
20 +92.0 (c 0.20, 

MeOH/H2O, 1:1); 1H NMR (500 MHz, D2O): δ = 8.40 (s, 1H, Ar-H), 7.58-7.56 (m, 2H, Ar-H), 7.18-

7.16 (m, 2H, Ar-H), 5.55 (d, J = 1.4 Hz, 1H, H-1), 4.08 (dd, J = 1.9, 3.4 Hz, 1H, H-2), 3.95 (dd, J = 

3.5, 9.5 Hz, 1H, H-3), 3.73-3.57 (m, 4H, H-4, H-5, H-6); 13C NMR (126 MHz, D2O): δ = 167.44 

(CO), 156.00, 145.08, 131.02, 125.53, 122.73, 117.65 (8C, Ar-C), 97.98 (C-1), 73.41 (C-5), 70.26, 

69.72, 66.51 (C-2, C-3, C-4), 60.60 (C-6); HRMS: m/z: Calcd for C15H17N3NaO8 [M+H]+: 390.0908, 

found: 390.0905. 

Methyl 5-[4-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)phenyl]-picolinate (31a). Prepared 

according to general procedure B from 29[11j] (120 mg, 0.21 mmol) and methyl 5-bromopicolinate 

(30a, 40 mg, 0.19 mmol). Yield: 62 mg (60%) as white solid. Rf 0.33 (petrol ether/EtOAc, 2:3); [α]D
20 

+47.3 (c 0.60, MeOH); 1H NMR (500 MHz, CDCl3): δ = 8.93 (dd, J = 0.5, 2.2 Hz, 1H, Ar-H), 8.20 

(dd, J = 0.6, 8.2 Hz, 1H, Ar-H), 7.99 (dd, J = 2.4, 8.2 Hz, 1H, Ar-H), 7.61-7.58 (m, 2H, Ar-H), 7.25-

7.23 (m, 2H, Ar-H), 5.60 (d, J = 1.8 Hz, 1H, H-1), 5.59 (dd, J = 3.6, 10.1 Hz, 1H, H-3), 5.48 (dd, J = 

1.9, 3.5 Hz, 1H, H-2), 5.41 (t, J = 10.1 Hz, 1H, H-4), 4.30 (dd, J = 5.0, 12.4 Hz, 1H, H-6a), 4.11-4.08 

(m, 2H, H-5, H-6b), 4.04 (s, 3H, OCH3), 2.23, 2.07, 2.06, 2.05 (4 s, 12H, 4 COCH3); 13C NMR (126 

MHz, CDCl3): δ = 170.49, 170.01, 169.99, 169.70, 165.61 (5 CO), 156.25, 147.93, 146.20, 138.97, 
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134.70, 131.35, 128.69, 125.25, 117.22 (11C, Ar-C), 95.71 (C-1), 69.34 (C-2), 69.25 (C-5), 68.78 (C-

3), 65.79 (C-4), 62.02 (C-6), 52.94 (OCH3), 20.89, 20.71, 20.69, 20.68 (4 COCH3); ESI-MS: m/z: 

Calcd for C27H30NO12 [M+H]+: 560.18, found: 560.27. 

Methyl 5-[4-(α-D-mannopyranosyloxy)phenyl]-picolinate (32a). Prepared according to general 

procedure D from 31a. Yield: 15 mg (36%) as white solid. Rf 0.13 (DCM/MeOH, 8:1); [α]D
20 +113.4 

(c 0.20, MeOH); 1H NMR (500 MHz, DMSO-d6): δ = 9.18 (d, J = 2.2 Hz, 1H, Ar-H), 8.37 (dd, J = 

2.2, 8.4 Hz, 1H, Ar-H), 8.20 (d, J = 8.9 Hz, 2H, Ar-H), 8.14 (d, J = 8.4 Hz, 1H, Ar-H), 7.29 (t, J = 5.8 

Hz, 2H, Ar-H), 5.55 (d, J = 1.6 Hz, 1H, H-1), 5.15 (d, J = 4.2 Hz, 1H), 4.93 (d, J = 5.7 Hz, 1H), 4.87 

(d, J = 5.6 Hz, 1H), 4.54 (t, J = 6.0 Hz, 1H), 3.96 (s, 3H, OCH3), 3.92 (s, 1H), 3.76 (m, 1H), 3.66 

(ddd, J = 1.9, 5.8, 11.6 Hz, 1H), 3.61-3.49 (m, 2H), 3.45 (m, 1H); 13C NMR (126 MHz, DMSO-d6): δ 

= 165.20 (CO), 159.29, 158.04, 150.07, 137.81, 130.95, 128.57, 123.30, 119.25, 116.83 (11C, Ar-C), 

98.55 (C-1), 75.10 (C-5), 70.59, 69.94, 66.59 (C-2, C-3, C-4), 60.94 (C-6), 52.32 (OCH3); HRMS: 

m/z: Calcd for C19H21NNaO8 [M+Na]+: 414.1159, found: 414.1162. 

Sodium 5-[4-(α-D-mannopyranosyloxy)phenyl]-picolinate (33a). Prepared according to general 

procedure E from 31a. Yield: 3 mg (32%) as white solid. [α]D
20 +99.3 (c 0.20, MeOH/H2O, 1:1); 1H 

NMR (500 MHz, D2O): δ = 8.63 (s, 1H, Ar-H), 7.96 (d, J = 8.0 Hz, 1H, Ar-H), 7.82 (d, J = 6.6 Hz, 

1H, Ar-H), 7.56-7.54 (m, 2H, Ar-H), 7.13-7.11 (m, 2H, Ar-H), 5.54 (d, J = 1.4 Hz, 1H, H-1), 4.07 (m, 

1H, H-2), 3.96 (dd, J = 3.5, 9.2 Hz, H-3), 3.70-3.58 (m, 4H, H-4, H-5, H-6); 13C NMR (126 MHz, 

D2O): δ = 155.75, 146.29, 135.43, 131.05, 128.42, 123.82, 117.39 (11C, Ar-C), 97.91 (C-1), 73.33 

(C-5), 70.31, 69.80, 66.51 (C-2, C-3, C-4), 60.59 (C-6); HRMS: m/z: Calcd for C18H19NNaO8 

[M+Na]+: 400.1003, found: 400.1003. 

Methyl 5-[4-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)-3-trifluoromethyl-phenyl]-

picolinate (36). A Schlenk tube was charged with 34[10j] (394 mg, 0.69 mmol), KOAc (203 mg, 2.07 

mmol), bis(pinacolato)diborone (193 mg, 0.76 mmol) and Pd(dppf)Cl2⋅CH2Cl2 (17 mg, 0.021 mmol). 

The tube was closed, evacuated and flushed with argon. Then anhydrous DMF (4 mL) was added 

under a stream of argon. The mixture was degassed in an ultrasonic bath and flushed with argon for 5 

min, and then stirred at 85 °C overnight. The reaction mixture was cooled to rt and diluted with 

DCM/H2O (100 mL, 1:1). The organic layer was washed with H2O (50 mL) and brine (50 mL), dried 

over Na2SO4 and concentrated. The residue was passed through a short silica gel column (petrol 

ether/EtOAc, 2:1) to afford crude 35 (352 mg), which was used directly in the next step. Compound 

36 was prepared according to general procedure B from crude 35 (352 mg, 0.57 mmol) and methyl 5-

chloropyrazine-2-carboxylate (30a, 108 mg, 0.63 mmol). Yield: 205 mg (57%) as colorless oil. Rf 

0.38 (petrol ether/EtOAc, 2:3); [α]D
20 +64.5 (c 1.00, EtOAc); 1H NMR (500 MHz, CDCl3): δ = 8.92 

(d, J = 2.1 Hz, 1H, Ar-H), 8.23 (d, J = 8.1 Hz, 1H, Ar-H), 8.00 (dd, J = 2.3, 8.1 Hz, 1H, Ar-H), 7.87 

(d, J = 2.1 Hz, 1H, Ar-H), 7.77 (dd, J = 2.2, 8.6 Hz, 1H, Ar-H), 7.41 (d, J = 8.7 Hz, 1H, Ar-H), 5.72 
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(d, J = 1.7 Hz, 1H, H-1), 5.56 (dd, J = 3.4, 10.1 Hz, 1H, H-3), 5.50 (dd, J = 1.9, 3.4 Hz, 1H, H-2), 

5.43 (t, J = 10.1 Hz, 1H, H-4), 4.30 (dd, J = 5.1, 12.5 Hz, 1H, H-6a), 4.16-4.02 (m, 6H, H-6b, H-5, 

OCH3), 2.23, 2.06 (2s, 12H, 4 COCH3); 13C NMR (126 MHz, CDCl3): δ = 170.40, 169.94, 169.73, 

169.62, 165.41 (5 CO), 153.59, 147.93, 146.98, 137.80, 134.99, 132.06, 131.21, 126.32, 125.33, 

116.15 (12C, Ar-C, CF3), 95.71 (C-1), 70.06 (C-5), 69.10 (C-2), 68.52 (C-3), 65.48 (C-4), 61.95 (C-

6), 53.03 (OCH3), 20.85, 20.68 (4C, 4 COCH3); ESI-MS: m/z: Calcd for C28H29F3NO12 [M+H]+: 

628.16, found: 628.19. 

Methyl 5-[4-(α-D-mannopyranosyloxy)-3-trifluoromethyl-phenyl]-picolinate (37). Prepared 

according to general procedure D from 36. Yield: 15 mg (60%) as white solid. Rf 0.20 (DCM/MeOH, 

8:1); [α]D
20 +104.9 (c 0.40, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.95 (dd, J = 0.7, 2.1 Hz, 1H, 

Ar-H), 8.25 (qd, J = 1.5, 8.2 Hz, 2H, Ar-H), 8.06-7.92 (m, 2H, Ar-H), 7.68 (m, 1H, Ar-H), 5.72 (d, J 

= 1.6 Hz, 1H, H-1), 4.09 (dd, J = 1.8, 3.4 Hz, 1H, H-2), 4.02 (s, 3H, OCH3), 3.96 (dd, J = 3.4, 9.5 Hz, 

1H, H-3), 3.86-3.69 (m, 3H, H-4, H-6), 3.60 (ddd, J = 2.3, 5.7, 9.7 Hz, 1H, H-5); 13C NMR (126 

MHz, CD3OD): δ = 166.43 (CO), 156.19, 148.61, 147.34, 139.82, 136.84, 133.76, 131.17, 126.81, 

126.58, 118.09 (12C, Ar-C, CF3), 100.31 (C-1), 76.24 (C-5), 72.25 (C-3), 71.71 (C-2), 68.11 (C-4), 

62.70 (C-6), 53.28 (OCH3); HRMS: m/z: Calcd for C20H20F3NNaO8 [M+Na]+: 482.1033, found: 

482.0135. 

Sodium 5-[4-(α-D-mannopyranosyloxy)-3-trifluoromethyl-phenyl]-picolinate (38). Prepared 

according to general procedure E from 36. Yield: 40 mg (90%) as white solid. [α]D
20 +71.4 (c 0.50, 

MeOH/H2O, 1:1); 1H NMR (500 MHz, CD3OD): δ = 8.70 (s, 1H, Ar-H), 8.00 (s, 2H, Ar-H), 7.86-

7.77 (m, 2H, Ar-H), 7.53 (m, 1H, Ar-H), 5.58 (d, J = 1.3 Hz, 1H, H-1), 3.97 (dd, J = 1.8, 3.3 Hz, 1H, 

H-2), 3.85 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.73-3.59 (m, 3H, H-4, H-6), 3.49 (m, 1H, H-5); 13C NMR 

(126 MHz, CD3OD): δ = 172.52 (CO), 155.69, 155.16, 147.65, 137.21, 136.17, 133.48, 132.31, 

132.21, 126.48, 125.22, 118.01, 101.40 (12C, Ar-C, CF3), 100.33 (C-1), 76.15 (C-5), 72.26 (C-3), 

71.75 (C-2), 68.12 (C-4), 62.66 (C-6); HRMS: m/z: Calcd for C19H18F3NNa2O8 [M+Na]+: 490.0696, 

found: 490.0713. 

Ethyl 1-[4-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)-3-chlorophenyl]-4-methyl-1H-

pyrrole-3-carboxylate (40f). Prepared according to general procedure C from 39 and methyl 4-

methyl-1H-pyrrole-3-carboxylate (20f). Yield: 240 mg (77%) as colorless oil. Rf 0.34 (petrol 

ether/EtOAc, 3:2); [α]D
20 +64.5 (c 1.00, EtOAc); 1H NMR (500 MHz, CDCl3): δ = 7.55 (d, J = 2.5 

Hz, 1H, Ar-H), 7.46 (m, 1H, Ar-H), 7.28-7.20 (m, 2H, Ar-H), 6.76 (dd, J = 1.0, 2.4 Hz, 1H, Ar-H), 

5.61 (dd, J = 3.4, 10.0 Hz, 1H, H-3), 5.57 (d, J = 1.7 Hz, 1H, H-1), 5.54 (dd, J = 1.9, 3.4 Hz, 1H, H-

2), 5.41 (t, J = 10.1 Hz, 1H, H-4), 4.33-4.26 (m, 3H, H-6b, OCH2), 4.19 (ddd, J = 2.2, 5.3, 10.1 Hz, 

1H, H-5), 4.12 (m, 1H, H-6a), 2.31 (d, J = 0.8 Hz, 3H, CH3), 2.21, 2.08, 2.05 (3 s, 12H, 4 COCH3), 

2.04 (s, 1H), 1.36 (t, J = 7.1 Hz, 3H, CH3); 13C NMR (126 MHz, CDCl3): δ = 170.41, 169.93, 169.77, 
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169.73, 164.95 (5 CO), 149.71, 135.88, 125.46, 124.71, 123.48, 122.80, 119.68, 118.99, 117.93, 

117.13 (Ar-C), 96.98 (C-1), 69.92 (C-5), 69.26 (C-2), 68.71 (C-3), 65.79 (C-4), 62.13 (C-6), 59.58 

(OCH2), 21.03, 20.85, 20.70, 20.68 (4 COCH3), 14.51 (CH3), 11.72 (CH3); ESI-MS: m/z: Calcd for 

C28H32ClNNaO12 [M+Na]+: 632.15, found: 632.15. 

Ethyl 1-[3-chloro-4-(α-D-mannopyranosyloxy)phenyl]-4-methyl-1H-pyrrole-3-carboxylate 

(41f). Prepared according to general procedure D from 40f. Yield: 55 mg (93%) as white solid. Rf 

0.29 (DCM/MeOH, 9:1); [α]D
20 +89.1 (c 0.50, MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.68 (d, J 

= 2.5 Hz, 1H, Ar-H), 7.58 (d, J = 2.7 Hz, 1H, Ar-H), 7.47 (d, J = 8.9 Hz, 1H, Ar-H), 7.39 (dd, J = 2.7, 

8.9 Hz, 1H, Ar-H), 6.95 (d, J = 1.0 Hz, 1H, Ar-H), 5.58 (d, J = 1.4 Hz, 1H, H-1), 4.28 (q, J = 7.1 Hz, 

2H, OCH2), 4.14 (dd, J = 1.8, 3.2 Hz, 1H, H-2), 4.01 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.86-3.72 (m, 3H, 

H-4, H-6), 3.67 (m, 1H, H-5), 2.29 (s, 3H, CH3), 1.37 (t, J = 7.1 Hz, 3H, CH3); 13C NMR (126 MHz, 

CD3OD): δ = 166.98 (CO), 151.75, 136.28, 126.11, 125.75, 124.16, 123.19, 120.88, 120.51, 119.26, 

117.60 (Ar-C), 101.01 (C-1), 76.04 (C-5), 72.36 (C-3), 71.78 (C-2), 68.19 (C-4), 62.66 (C-6), 60.74 

(OCH2), 14.77 (CH3), 11.96 (CH3); HRMS: m/z: Calcd for C20H24ClNNaO8 [M+Na]+: 464.1083, 

found: 464.1086. 

Sodium 1-[3-chloro-4-(α-D-mannopyranosyloxy)phenyl]-4-methyl-1H-pyrrole-3-carboxylate 

(45). Prepared according to general procedure E from 40f. Yield: 30 mg (57%) as white solid. 1H 

NMR (500 MHz, CD3OD): δ = 7.69 (d, J = 2.5 Hz, 1H, Ar-H), 7.60 (d, J = 2.6 Hz, 1H, Ar-H), 7.48 

(d, J = 8.9 Hz, 1H, Ar-H), 7.42 (dd, J = 2.7, 8.9 Hz, 1H, Ar-H), 6.97 (d, J = 1.2 Hz, 1H, Ar-H), 5.57 

(d, J = 1.4 Hz, 1H, H-1), 4.13 (dd, J = 1.8, 3.2 Hz, 1H, H-2), 4.00 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.87-

3.70 (m, 3H, H-4, H-6), 3.66 (ddd, J = 2.2, 5.5, 9.6 Hz, 1H, H-5), 2.30 (s, 3H, CH3); 13C NMR (126 

MHz, CD3OD): δ = 168.95 (CO), 151.77, 136.47, 126.41, 125.80, 124.42, 123.25, 120.95, 120.51, 

119.34, 118.09 (Ar-C), 101.08 (C-1), 76.08 (C-5), 72.39 (C-3), 71.82 (C-2), 68.23 (C-4), 62.69 (C-6), 

11.92 (CH3); HRMS: m/z: Calcd for C18H20ClNNaO8 [M+H]+: 436.0770, found: 436.0773. 

Ethyl 1-[4-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyloxy)phenyl]-4-methyl-1H-pyrrole-3-

carboxylate (46). Prepared according to general procedure C from 28 and methyl 4-methyl-1H-

pyrrole-3-carboxylate (20f). Yield: 293 mg (94%) as colorless oil. Rf 0.47 (petrol ether/EtOAc, 3:2); 

[α]D
20 +63.7 (c 2.20, EtOAc); 1H NMR (500 MHz, CDCl3): δ = 7.36 (d, J = 2.4 Hz, 1H, Ar-H), 7.20 

(d, J = 8.8 Hz, 1H, Ar-H), 7.15 (dd, J = 2.5, 8.7 Hz, 1H, Ar-H), 6.91 (d, J = 1.6 Hz, 1H, Ar-H), 6.67 

(d, J = 0.9 Hz, 1H, Ar-H), 5.62 (dd, J = 3.5, 10.0 Hz, 1H, H-3), 5.57 (d, J = 1.6 Hz, 1H, H-1), 5.53 

(dd, J = 1.9, 3.4 Hz, 1H, H-2), 5.40 (t, J = 10.1 Hz, 1H, H-4), 4.31 (dd, J = 5.3, 12.3 Hz, 1H, H-6a), 

4.20 (ddd, J = 2.2, 5.2, 10.1 Hz, 1H, H-5), 4.18-4.08 (m, 3H, OCH2, H-6b), 2.21, 2.11, 2.08, 2.07, 

2.05 (5 s, 15H, 4 COCH3, CH3), 1.23 (t, J = 7.1 Hz, 3H, CH3); 13C NMR (126 MHz, CDCl3): δ = 

170.52, 169.91, 169.75, 160.32 (5C, 5 CO), 150.69, 136.26, 128.55, 128.10, 125.80, 123.86, 123.18, 

120.00, 119.90, 116.17 (Ar-C), 96.86 (C-1), 69.83 (C-5), 69.32 (C-2), 68.75 (C-3), 65.81 (C-4), 62.08 
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(C-6), 59.90 (OCH2), 20.85, 20.71, 20.68, 14.27, 11.43 (6C, 4 COCH3, 2 CH3); ESI-MS: m/z: Calcd 

for C28H33NNaO12 [M+Na]+: 598.19, found: 598.16. 

Ethyl 1-[4-(α-D-mannopyranosyloxy)phenyl]-4-methyl-1H-pyrrole-3-carboxylate (48). Prepared 

according to general procedure D from 46. Yield: 87 mg (46%) as white solid. Rf 0.30 (DCM/MeOH, 

8:1); [α]D
20 +109.7 (c 0.80, MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.67 (d, J = 2.5 Hz, 1H, Ar-

H), 7.46-7.41 (m, 2H, Ar-H), 7.27-7.22 (m, 2H, Ar-H), 6.95 (dd, J = 1.0, 2.4 Hz, 1H, Ar-H), 5.52 (d, J 

= 1.6 Hz, 1H, H-1), 4.29 (q, J = 7.1 Hz, 2H, OCH2), 4.04 (dd, J = 1.8, 3.4 Hz, 1H, H-2), 3.92 (dd, J = 

3.4, 9.4 Hz, 1H, H-3), 3.84-3.70 (m, 3H, H-4, H-6), 3.62 (ddd, J = 2.4, 5.4, 9.7 Hz, 1H, H-5), 2.30 (d, 

J = 0.9 Hz, 3H, CH3), 1.37 (t, J = 7.1 Hz, 3H, CH3); 13C NMR (126 MHz, CD3OD): δ = 167.22 (CO), 

156.53, 135.97, 126.23, 123.86, 122.85, 120.73, 118.92, 117.13 (8C, Ar-C), 100.47 (C-1), 75.57 (C-

5), 72.41 (C-3), 71.95 (C-2), 68.35 (C-4), 62.72 (C-6), 60.68 (OCH2), 14.80, 11.98 (2 CH3); HRMS: 

m/z: Calcd for C20H25NNaO8 [M+Na]+: 430.1472, found: 430.1474. 

Sodium 1-[4-(α-D-mannopyranosyloxy)phenyl]-4-methyl-1H-pyrrole-3-carboxylate (50). 

Prepared according to general procedure E from 46. Yield: 93 mg (99%) as white solid. [α]D
20 +97.0 

(c 0.70, MeOH/H2O, 1:2); 1H NMR (500 MHz, D2O): δ = 7.51 (d, J = 2.4 Hz, 1H, Ar-H), 7.42 (d, J = 

8.9 Hz, 2H, Ar-H), 7.22 (d, J = 8.9 Hz, 2H, Ar-H), 6.93 (s, 1H, Ar-H), 5.60 (s, 1H, H-1), 4.19 (m, 1H, 

H-2), 4.07 (dd, J = 3.4, 8.9 Hz, 1H, H-3), 3.90-3.68 (m, 4H, H-4, H-5, H-6), 2.27 (s, 3H, CH3); 13C 

NMR (125 MHz, D2O): δ = 174.29 (CO), 153.52, 135.00, 123.89, 121.84, 121.78, 121.56, 119.09, 

118.07 (10C, Ar-C), 98.45 (C-1), 73.40 (C-5), 70.39 (C-3), 69.88 (C-2), 66.58 (C-4), 60.65 (C-6), 

10.97 (CH3); HRMS: m/z: Calcd for C18H21NNaO8 [M+Na]+: 402.1159, found: 402.1159. 

Cell-free competitive binding assay. 

A recombinant protein consisting of the CRD of FimH linked with a thrombin cleavage site to a 6His-

tag (FimH-CRD-Th-6His) was expressed in E. coli strain HM125 and purified by affinity 

chromatography.[23] To determine the affinity of the various FimH antagonists, a competitive binding 

assay as described previously was applied.[23] Microtiter plates (F96 MaxiSorp, Nunc) were coated 

with 100 µL/well of a 10 µg/mL solution of FimH-CRD-Th-6His in 20 mM HEPES, 150 mM NaCl, 

and 1 mM CaCl2, pH 7.4 (assay buffer) overnight at 4 °C. The coating solution was discarded and the 

wells were blocked with 150 µL/well of 3% BSA in assay buffer for 2 h at 4 °C. After three washing 

steps with assay buffer (150 µL/well), a 4-fold serial dilution of the test compound (50 µL/well) in 

assay buffer containing 5% DMSO and streptavidin-peroxidase coupled to Man-α(1-3)[Man-α(1-6)]-

Man-β(1-4)-GlcNAc-β(1-4)-GlcNAcβ polyacrylamide (TM-PAA) polymer (50 µL/well of a 0.5 

µg/mL solution) were added. On each individual microtiter plate, n-heptyl α-D-mannopyranoside (1) 

was tested in parallel. The plates were incubated for 3 h at 25 °C and 350 rpm and then carefully 

washed four times with 150 µL/well assay buffer. After the addition of 100 µL/well of 2,2’-azino-di-
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(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)-substrate, the colorimetric reaction was allowed to 

develop for 4 min and then was stopped by the addition of 2% aq. oxalic acid before the optical 

density (OD) was measured at 415 nm on a microplate-reader (Spectramax 190, Molecular Devices, 

Silicon Valley, CA, USA). The IC50 values of the compounds tested in duplicates were calculated with 

prism software (GraphPad Software, Inc., La Jolla, CA, USA). The IC50 defines the molar 

concentration of the test compound that reduces the maximal specific binding of TM-PAA polymer to 

FimH-CRD by 50%. The relative IC50 (rIC50) is the ratio of the IC50 of the test compound to the IC50 

of n-heptyl α-D-mannopyranoside (1). 

KD determination with fluorescence polarization assay.  

The fluorescently labeled ligand 52[11k] was used for the competitive fluorescence polarization assay. 

A serial dilution of non-labeled FimH antagonist with final concentrations ranging from 0-10 µM was 

titrated into 96-well NBSTM plates to a final volume of 200 µL containing a constant concentration of 

protein (final concentration 25 nM) and FITC-labeled ligand 52 which was fixed at a higher 

concentration in competitive binding assays to obtain higher fluorescence intensities (final 

concentration 20 nM). Prior to measuring the fluorescence polarization, the plates were incubated on a 

shaker for 24 h at rt until the reaction reached its equilibrium. The IC50 value was determined with 

Prism (GraphPad Software Inc., La Jolla, CA, USA) by applying a standard four-parameter IC50 

function. The obtained IC50 values were converted into their corresponding KD values using the 

following derivation of the Cheng-Prusoff equation (Equation 1):[36] 

 

€ 

KD =
I 50

L50
KD

+
P0
K D

+1
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where I50 and L50 are the concentrations of inhibitor and ligand at half-maximal inhibition, 

respectively, and P0 is the free concentration of protein in the absence of inhibitor. This variation of 

the Cheng-Prusoff equation is applied to competition assays with tight-binding inhibitors. However, 

the KD for antagonists, which have a higher affinity towards FimH than the labeled ligand could not 

be accurately determined with this equation.[36] 

Physicochemical properties and in vitro pharmacokinetics 

Materials. Dimethyl sulfoxide (DMSO), 1-propanol, 1-octanol, Dulbecco’s Modified Eagle’s 

Medium (DMEM) high glucose, penicillin-streptomycin (solution stabilized, with 10’000 units 

penicillin and 10 mg streptomycin/mL), L-glutamine solution (200 mM), magnesium chloride, 

ammonium acetate, and bis(4-nitrophenyl) phosphate (BNPP) were purchased from Sigma-Aldrich 

(Buchs, Switzerland). PRISMA HT universal buffer, GIT-0 Lipid Solution, and Acceptor Sink Buffer 

were ordered from pIon (Woburn, MA, USA). MEM non-essential amino acids solution 10 mM 

(100X), fetal bovine serum (FBS), and DMEM without sodium pyruvate and phenol red were bought 
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from Invitrogen (Carlsbad, CA, USA). Acetonitrile (MeCN) and methanol (MeOH) were ordered 

from Acros Organics (Geel, Belgium). Pooled male rat liver microsomes (Sprague Dawley) were 

ordered from BD Bioscience (Franklin Lakes, NJ, USA). The Caco-2 cells were kindly provided by 

Prof G. Imanidis, FHNW, Muttenz, Switzerland and originated from the American Type Culture 

Collection (Rockville, MD, USA). 

log P determination. The in silico prediction tool ALOGPS[42] was used to estimate the octanol-water 

partition coefficient (log P) of the compounds. Depending on these values, the compounds were 

classified into three categories: hydrophilic compounds (log P < 0), moderately lipophilic compounds 

(log P between 0 and 1) and lipophilic compounds (log P > 1). For each category, two different ratios 

(volume of 1-octanol to volume of buffer) were defined as experimental parameters (Table 4). 

Table 4. Parameters for the experimental determination of lipophilicty. 

Compound type log P ratios (1-octanol: buffer) 

hydrophilic  < 0 30:140, 40:130 

moderately lipophilic 0 - 1 70:110, 110:70 

lipophilic > 1 3:180, 4:180 
 

Equal amounts of phosphate buffer (0.1 M, pH 7.4) and 1-octanol were mixed and shaken vigorously 

for 5 min to saturate the phases. The mixture was left until separation of the two phases occurred, and 

the buffer was retrieved. Stock solutions of the test compounds were diluted with buffer to a 

concentration of 1 µM. For each compound, six determinations, i.e. three determinations per 1-

octanol:buffer ratio, were performed in different wells of a 96-well plate. The respective volumes of 

buffer containing analyte (1 µM) were pipetted to the wells and covered by saturated 1-octanol 

according to the chosen volume ratio. The plate was sealed with aluminium foil, shaken (1350 rpm, 

25 °C, 2 h) on a Heidolph Titramax 1000 plate-shaker (Heidolph Instruments GmbH & Co. KG, 

Schwabach, Germany) and centrifuged (2000 rpm, 25 °C, 5 min, 5804R Eppendorf centrifuge, 

Hamburg, Germany). The aqueous phase was transferred to a 96-well plate for analysis by liquid 

chromatography-mass spectrometry (LC-MS, see below). The partition coefficient (log P) was 

calculated from the 1-octanol:buffer ratio (o:b), the initial concentration of the analyte in buffer (1 

µM), and the concentration of the analyte in buffer (cB) according to Equation 2:  
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The average of the three log P values per 1-octanol:buffer ratio was calculated. If the two means 

obtained for a compound did not differ by more than 0.1 units, the results were accepted. 

Aqueous solubility. Solubility was determined in a 96-well format using the µSOL Explorer 

solubility analyzer (pIon, version 3.4.0.5). For each compound, measurements were performed in 
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triplicate. Three wells of a deep well plate were filled with 300 µL of PRISMA HT universal buffer, 

adjusted to pH 7.4 by adding the requested amount of NaOH (0.5 M). Aliquots (3 µL) of a compound 

stock solution (40-100 mM in DMSO) were added and thoroughly mixed. The final sample 

concentration was 0.4-1.0 mM, the residual DMSO concentration was 1.0% (v/v). Fifteen hours after 

initiation of the experiment, the solutions were filtrated (0.2 µm 96-well filter plates) using a vacuum 

to collect manifold (Whatman Ltd., Maidstone, UK) and to remove any precipitates. Equal amounts of 

filtrate and 1-propanol were mixed and transferred to a 96-well plate for UV/Vis detection (190 to 500 

nm, SpectraMax 190, Molecular Devices, Silicon Valley, CA, USA). The amount of material 

dissolved was calculated by comparison with the spectra obtained from reference samples, which 

were prepared by dissolving the compound stock solution in a 1:1 mixture of buffer and 1-propanol 

(final concentrations 0.067-0.167 mM). 

Parallel artificial membrane permeability assay (PAMPA). Effective permeability (log Pe) was 

determined in a 96-well format with PAMPA.[27] For each compound, measurements were performed 

in quadruplicate. Four wells of a deep well plate were filled with 650 µL of PRISMA HT universal 

buffer, adjusted to pH 7.4 by adding the requested amount of NaOH (0.5 M). Samples (150 µL) were 

withdrawn from each well to determine the blank spectra by UV/Vis-spectroscopy (190 to 500 nm, 

SpectraMax 190). The analyte dissolved in DMSO was added to the remaining buffer to yield 50 µM 

solutions. To exclude precipitation, the optical density (OD) was measured at 650 nm, and solutions 

exceeding OD 0.01 were filtrated. Afterwards, samples (150 µL) were withdrawn to determine the 

reference spectra. Further 200 µL were transferred to each well of the donor plate of the PAMPA 

sandwich (pIon, P/N 110 163). The filter membranes at the bottom of the acceptor plate were infused 

with 5 µL of GIT-0 Lipid Solution, and 200 µL of Acceptor Sink Buffer were filled into each 

acceptor well. The sandwich was assembled, placed in the GutBoxTM, and left undisturbed for 16 h. 

Then, it was disassembled and samples (150 µL) were withdrawn from each donor and acceptor well 

for detection of the UV/Vis spectra. Effective permeability (log Pe) was calculated from the 

compound flux deduced from the spectra, the filter area, and the initial sample concentration in the 

donor well with the aid of the PAMPA Explorer Software (pIon, version 3.5). 

Colorectal adenocarcinoma (Caco-2) cell permeation assay. Caco-2 cells were cultivated in tissue 

culture flasks (BD Biosciences, Franklin Lakes, NJ, USA) with DMEM high glucose medium, 

containing L-glutamine (2 mM), non-essential amino acids (0.1 mM), penicillin (100 U/mL), 

streptomycin (100 µg/mL), and fetal bovine serum (10%). The cells were kept at 37 °C in humidified 

air containing 5% CO2, and the medium was changed every second day. When approximately 90% 

confluence was reached, the cells were split in a 1:10 ratio and distributed to new tissue culture flasks. 

At passage numbers between 60 and 65, they were seeded at a density of 5.3 × 105 cells per well to 

Transwell 6-well plates (Corning Inc., Corning, NY, USA) with 2.5 mL of culture medium in the 

basolateral and 2 mL in the apical compartment. The medium was renewed on alternate days. 
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Permeation experiments were performed between days 19 and 21 post seeding. Previously to the 

experiment, the integrity of the Caco-2 monolayers was evaluated by measuring the transepithelial 

electrical resistance (TEER) with an Endohm tissue resistance instrument (World Precision 

Instruments Inc., Sarasota, FL, USA). Only wells with TEER values higher than 250 Ω cm2 were 

used. To inhibit carboxylesterase activity, the Caco-2 cell monolayers were pre-incubated with bis(4-

nitrophenyl) phosphate (BNPP, 200 µM) dissolved in transport medium (DMEM without sodium 

pyruvate and phenol red) for 40 min.[43] Experiments were performed in the apical-to-basolateral 

(absorptive) and basolateral-to-apical (secretory) directions in triplicates. Transport medium was 

withdrawn from the donor compartments and replaced by the same volume of compound stock 

solution (10 mM in DMSO) to reach an initial sample concentration of 62.5 µM. The Transwell plate 

was shaken (600 rpm, 37 °C) on a Heidolph Titramax 1000 plate-shaker. Samples (40 µL) were 

withdrawn from the donor and acceptor compartments 30 min after initiation of the experiment and 

the concentrations were determined by LC-MS (see below). Apparent permeability (Papp) was 

calculated according to Equation 3: 
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where dQ/dt is the compound flux (in mol s-1), A is the surface area of the monolayer (in cm2), and c0 

is the initial concentration in the donor compartment (in mol cm-3).[44] After the experiment, TEER 

values were assessed again and results from wells with values below 250 Ω cm2 were discarded. 

Microsomal stability assay. Incubations were performed in duplicate in a 96-well format on an 

Eppendorf Thermomixer Comfort. The reaction mixture (270 µL) consisting of liver microsomes 

(0.139 µg/mL), TRIS-HCl buffer (0.1 M, pH 7.4) and MgCl2 (2 mM) was preheated (37 °C, 500 rpm, 

10 min), and the incubation was initiated by adding 30 µL of compound solution (20 µM in TRIS-

HCl buffer). The final concentration of the compound was 2 µM, and the microsomal concentration 

was 0.125 mg/mL. At the beginning of the experiment (t = 0 min) and after an incubation time of 5, 

10, 20, 40, and 60 min, samples (40 µL) were transferred to 120 µL of ice-cooled MeOH and 

centrifuged (3600 rpm, 4 °C, 10 min, 5804 R Eppendorf centrifuge). Then, 80 µL of supernatant was 

transferred to a 96-well plate for analysis by LC-MS (see below). The metabolic half-life (t1/2) was 

calculated from the slope of the linear regression from the log percentage remaining compound versus 

incubation time relationship. Control experiments were performed in parallel by preincubating the 

microsomes with the specific carboxylesterase inhibitor BNPP (1 mM) for 5 min before addition of 

the compound solution.[45] 

LC-MS measurements. Analyses were performed using an 1100/1200 Series HPLC System coupled 

to a 6410 Triple Quadrupole mass detector (Agilent Technologies, Inc., Santa Clara, CA, USA) 

equipped with electrospray ionization. The system was controlled with the Agilent MassHunter 

Workstation Data Acquisition software (version B.01.04). The column used was an Atlantis® T3 C18 
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column (2.1 × 50 mm) with a 3 µm particle size (Waters Corp., Milford, MA, USA). The mobile 

phase consisted of eluent A: H2O containing 0.1% formic acid (for 23a-c, 26a, 32a-d, 37, 42a-f) or 10 

mM ammonium acetate, pH 5.0 in 95:5, H2O:MeCN (for 4a, 6-8a, 26b); and eluent B: MeCN, 

containing 0.1% formic acid. The flow rate was maintained at 0.6 mL/min. The gradient was ramped 

from 95% A/5% B to 5% A/95% B over 1 min, and then hold at 5% A/95% B for 0.1 min. The 

system was then brought back to 95% A/5% B, resulting in a total duration of 4 min. MS parameters 

such as fragmentor voltage, collision energy, polarity were optimized individually for each drug, and 

the molecular ion was followed for each compound in the multiple reaction monitoring mode. The 

concentrations of the analytes were quantified by the Agilent Mass Hunter Quantitative Analysis 

software (version B.01.04). 

In vivo pharmacokinetic studies. 

Eight-week-old female C3H/HeN mice from Harlan (Venray, The Netherlands) weighing between 19 

and 25 g were used for the PK study. Three mice were put in one cage and kept under specific 

pathogen-free conditions in the Animal House of the Department of Biomedicine, University Hospital 

of Basel. All animal experimentation guidelines according to the regulations of the Swiss veterinary 

law were followed. The animals had free access to chow and water ad libitum and were kept in a 12 

h/12 h light/dark cycle. After one week of acclimatization, the mice were used for the 

pharmacokinetic study. Compound 41f was diluted in 5% DMSO in 1% Tween 80 in PBS and applied 

using an oral gavage at a dose of 10 mg/kg. Blood and urine samples (10 µL) were taken before the 

experiment (0 min) and at 6, 13, 20, 40 min, 1, 1.5, 2, 3, 4, 6, 8, and 24 h after administration. 

Samples were diluted in MeOH directly after sampling in a ratio of 1:5 to precipitate proteins. After 

centrifugation (11 min, 13000 rpm) the supernatant was transferred to a 96-well plate and analyzed by 

LC-MS as described before. The samples at 0 min were used to define the detection limit in plasma 

and urine. 
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2.5 Paper 4: FimH antagonists: structure-activity and structure-

property relationships for biphenyl α-D-mannopyranosides 

 

 

The following report explores diverse modifications of the biphenyl α-D-mannopyranoside, 

notably the introduction of ortho-substituents on the inner ring (A) of the biphenyl aglycone, 

the introduction of a methylene spacer between the anomeric oxygen and the biphenyl 

moiety, as well as the extension of the para-substituent on the terminal ring (B). The benefits 

of these approaches on the pharmacological activity and the physicochemical profile are 

thoroughly exposed. 
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FimH Antagonists: Structure–Activity and Structure–
Property Relationships for Biphenyl a-d-
Mannopyranosides
Lijuan Pang, Simon Kleeb, Katrin Lemme, Said Rabbani, Meike Scharenberg, Adam Zalewski,
Florentina Sch!dler, Oliver Schwardt, and Beat Ernst*[a]

Introduction

Urinary tract infections (UTIs), the most prevalent series of in-
fectious diseases worldwide, affect millions of people and ac-
count for significant morbidity as well as high medical costs.[1]

The primary cause of UTIs are strains of uropathogenic Escheri-
chia coli (UPEC), which make up 70–95% of reported cases.[1a,2]

UTIs are treated with antibiotics; however, recurrent infections
by UPEC with subsequent antibiotic exposure can lead to the
emergence of antimicrobial resistance.[3]

Adhesion to host cells is the initial step of microbial infec-
tion. To gain an initial foothold within the bladder, UPEC strains
encode filamentous surface-adhesive organelles called type 1
pili (fimbriae).[4] They mediate bacterial attachment to uropla-
kin Ia, a glycoprotein located on urothelial cells. This initial
step prevents the clearance of E. coli by the bulk flow of urine
and facilitates the invasion of host cells.[1b,5] A bacterial lectin
known as FimH is located at the tips of type 1 pili. The carbo-
hydrate recognition domain (CRD) of this lectin is responsible
for binding to the complementary carbohydrate epitope of the
host tissue. Blocking this lectin by a carbohydrate or a glycomi-
metic thereof offers a potential therapeutic approach for pre-
vention and/or treatment of UTIs.[6]

More than two decades ago, Sharon and co-workers ex-
plored various mannosides and oligomannosides as potential
antagonists for type 1 pili-mediated bacterial adhesion and ob-
served interactions in the micro- to millimolar range.[7] The first
crystal structure of FimH was solved in 1999,[8] and since then,
numerous crystallographic studies have been reported, greatly
facilitating the design of high-affinity ligands.[9] In summary,

the reported affinities can be rationalized on the basis of the
structure of FimH: First, the binding pocket accommodates the
mannose with the hydroxy groups forming an extended hy-
drogen bond network. Second, the entrance to the binding
site, referred to as the “tyrosine gate”, is formed by three hy-
drophobic amino acids (Tyr48, Tyr137, and Ile52)[9a] and can
host aliphatic and aromatic aglycones.

As a consequence of hydrophobic contacts of the alkyl agly-
cone, n-heptyl a-d-mannopyranoside (1) exhibits nanomolar
affinity.[9b] With aromatic aglycones such as 2–5 (Figure 1), fur-
ther improvements in affinity were observed.[10] To explore the
binding mode and to improve affinity as well as ADME proper-
ties, a series of biphenyl FimH antagonists were synthesized.

Results and Discussion

An unexpected docking mode was discovered upon co-crystal-
lization of biphenyl mannoside 3 with the FimH CRD.[10d]

Whereas the alkyl aglycone of n-butyl a-d-mannopyranoside[9b]

[a] L. Pang,+ S. Kleeb,+ Dr. K. Lemme,+ Dr. S. Rabbani,+ Dr. M. Scharenberg,
A. Zalewski, F. Sch!dler, Dr. O. Schwardt, Prof. Dr. B. Ernst
Institute of Molecular Pharmacy, Pharmacenter, University of Basel
Klingelbergstrasse 50, 4056 Basel (Switzerland)
E-mail : beat.ernst@unibas.ch

[+] These authors contributed equally to this work.

Supporting information for this article is available on the WWW under
http://dx.doi.org/10.1002/cmdc.201200125.

Urinary tract infections (UTIs) are caused primarily by uropa-
thogenic Escherichia coli (UPEC), which encode filamentous sur-
face-adhesive organelles called type 1 pili. FimH is located at
the tips of these pili. The initial attachment of UPEC to host
cells is mediated by the interaction of the carbohydrate recog-
nition domain (CRD) of FimH with oligomannosides on urothe-
lial cells. Blocking these lectins with carbohydrates or ana-
logues thereof prevents bacterial adhesion to host cells and
therefore offers a potential therapeutic approach for preven-
tion and/or treatment of UTIs. Although numerous FimH an-
tagonists have been developed so far, few of them meet the
requirement for clinical application due to poor pharmacoki-
netics. Additionally, the binding mode of an antagonist to the

CRD of FimH can switch from an in-docking mode to an out-
docking mode, depending on the structure of the antagonist.
In this communication, biphenyl a-d-mannosides were modi-
fied to improve their binding affinity, to explore their binding
mode, and to optimize their pharmacokinetic properties. The
inhibitory potential of the FimH antagonists was measured in
a cell-free competitive binding assay, a cell-based flow cytome-
try assay, and by isothermal titration calorimetry. Furthermore,
pharmacokinetic properties such as logD, solubility, and mem-
brane permeation were analyzed. As a result, a structure–activi-
ty and structure–property relationships were established for
a series of biphenyl a-d-mannosides.
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interacts with both Tyr48 and Tyr137 of the tyrosine gate (in-
docking mode),[10f] the biphenyl aglycone adopts the out-dock-
ing mode; that is, it interacts only with Tyr48 (Figure 2A), prob-
ably due to insufficient flexibility; p–p stacking of the outer ar-
omatic ring of the biphenyl aglycone (ring B) with Tyr48 is ef-
fected by induced fit : a substantial move of Tyr48. Moreover,
further stabilization of the protein–ligand complex by polar in-
teraction between the ester in the meta position of 3 and the
side chain of Arg98 was proposed.[10d]

In silico docking studies with biphenyl derivative 4a[10e] sug-
gested a similar out-docking mode (Figure 2B). A close inspec-
tion revealed empty space between the ortho position of the
aromatic ring adjacent to the anomeric center (ring A) and the
protein surface. Indeed, with an ortho-chloro substituent (!
5a, Figure 1), affinity was substantially improved. Further stud-
ies with FimH antagonists that exhibit enhanced flexibility
(e.g. , compound 6; Figure 2C and Figure 3) indicated a switch
from the out-docking mode to the in-docking mode. However,
whether an optimal p–p stacking within the tyrosine gate can
be realized remains to be determined. Finally, docking studies
also indicated that elongation of the carboxylate-bearing para
substituent enables a polar interaction between the carboxyl-
ate and Arg98 (e.g. , compound 7; Figure 2D and Figure 3).

Starting from antagonist 4, we explored three types of
modifications (Figure 3):

1) For optimizing the van der Waals contact between the
ortho position of ring A and the binding pocket, a series of
substituents — F, CH3, CF3, OCH3, cyclopropyl, and CN —
were introduced as depicted in Scheme 1.

2) To determine whether the out-docking mode reported for
3[10d] results from insufficient flexibility, we increased the
aglycone flexibility by introducing a methylene spacer be-
tween the anomeric oxygen and ring A of the biphenyl
moiety (Scheme 2). This should decrease the conformation-
al constraints to allow an optimized spatial arrangement of
the aglycone in the tyrosine gate (!6, Figure 2C); at the

same time, water solubility
should be improved as
a result of the decreased
stacking tendency derived
from disruption of the sym-
metry of the aglycone.[15]

3) To enable a polar interaction
between the carboxylate
substituent on ring B with
Arg98 of FimH, we extended
the para substituent of 4,
that is, we replaced it with
either a flexible methyl etha-
nolate or a rigid methyl cy-
clopropanecarboxylate
(Scheme 3). Biphenyl a-d-
mannoside 24[10d] shows
a three- to eightfold lower af-
finity for FimH than its coun-
terparts with a methoxycar-
bonyl substituent at the
meta (!3)[10d] or para posi-
tions (!4)[10e] of ring B
(Table 1). Han et al. assigned
the increased affinity of com-
pound 3 to a polar interac-
tion of the ester with Arg98
of FimH.[10d] Because for spa-
tial reasons the ester in the

Figure 1. FimH antagonists : n-heptyl a-d-mannopyranoside (1) is used as
reference compound; the squaric acid derivative 2 and biphenyl derivatives
3–5 exhibit nanomolar affinities.

Figure 2. A) Crystal structure of biphenyl 3 (PDB ID: 3MCY)[10d] bound to the FimH CRD. B–D) In silico docking
studies obtained with flexible docking (Glide software package)[11] to the same FimH CRD structure; top-scored
binding mode of B) 4a, C) 6, and D) 7.
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para-substituted derivative 4 cannot establish a similar in-
teraction with Arg98, the substantial improvement in affini-
ty may result from solvation effects.

Synthesis

Optimization of ortho substituents (Scheme 1)

Mannosylation of phenols 9a–f with mannosyl fluoride 8 and
BF3·OEt2 as promoter yielded a-mannosides 10a–f stereospe-
cifically.[12] Whereas the phenols 9a–d and 9 f are commercially
available, the cyclopropyl derivative 9e was prepared via
tandem carbolithiation/1,3-elimination according to Ocasio
and Scanlan.[13] In a palladium-catalyzed Miyaura–Suzuki cou-
pling[14] of 10a–f with 4-methoxycarbonylphenylboronic acid
(11), biphenyls 12a–f were obtained in good to excellent
yields. Deacetylation using Zempl!n conditions (!13a–f) fol-
lowed by saponification of the methyl esters gave the test
compounds 14a–e. Owing to the instability of the cyano
group under aqueous basic conditions, 14 f was synthesized
by coupling 10 f with 4-carboxyphenylboronic acid pinacol
ester (15) followed by transesterification under Zempl!n condi-
tions to avoid the final saponification with aqueous sodium hy-
droxide.

Increase in aglycone flexibility (Scheme 2)

Benzyl alcohols 16a–c were first mannosylated with donor 8[12]

to yield the benzyl mannosides 17a–c. Subsequent cross-cou-
pling with 4-methoxycarbonylphenylboronic acid (11) afforded
acetates 18a,b and 21. Deacetylation of the mannose moiety

(!19a,b and 22) followed by
saponification of the methyl
esters gave compounds 6, 20,
and 23.

Elongation of the carboxylate-
bearing para substituent
(Scheme 3)

Peracetylated mannose 25 was
treated with 4-iodophenol in the
presence of BF3·Et2O. The result-
ing iodide 26 was transformed
into boronic acid pinacol ester
27, which was coupled with 4-
bromophenylacetic acid methyl
ester (28) and 4-bromophenylcy-
clopropylcarboxylic acid methyl
ester (32) under Miyaura–Suzuki
coupling conditions[14] to yield
biphenyls 29 and 33. Deacetyla-
tion with sodium methoxide (!

30 and 34) followed by saponification of the methyl ester
yielded the sodium salts 31 and 35.

Figure 3. Modifications to the aglycone of FimH antagonists by 1) optimization of the ortho substituent, 2) an in-
crease in the flexibility of the aglycone, and 3) elongation of the carboxylate-bearing para substituent.

Scheme 1. Reagents and conditions: a) BF3·Et2O, CH2Cl2, 0 8C, 3 h (10a–f, 73-
86%); b) Pd(Cl2)dppf·CH2Cl2, K3PO4, DMF, 80 8C, overnight (12a–f, 55–91%);
c) NaOMe, MeOH, RT, 4 h (13a–e, 14 f, 52–73%); d) 1. 0.2n NaOH(aq), MeOH,
RT, overnight; 2. Dowex (Na+), size-exclusion chromatography (P-2 gel)
(14a–e, 15–74%).
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Binding affinity and activity

The biphenyl a-d-mannosides with varying ortho substituents
(5a–b, 13a–f, 14a–f), increased aglycone flexibility (6, 19, 20,
22, 23), and elongated carboxylate-bearing para substituents
(30, 31, 34, 35) were evaluated in vitro by two competitive
assay formats (Table 1). All antagonists were tested in a cell-
free competitive binding assay.[16] Subsequently, the best candi-
dates were investigated in a cell-based flow cytometry assay.[17]

The cell-free competitive binding assay is based on the inter-
action of a biotinylated polyacrylamide glycopolymer as com-
petitor with the isolated CRD of FimH. In contrast, the cell-
based flow cytometry assay involves the infection of human
urinary bladder epithelial carcinoma cells with GFP-labeled
UPECs expressing the complete type 1 pili (see the Experimen-
tal Section below for details). The competitors in the former
assay are thus polymer-bound trimannosides, whereas in the
latter the antagonists compete with more potent high-man-
nose oligosaccharides present on uroplakin Ia, which is located
on the surface of human urinary bladder cells.[18,19] The interac-
tion is further affected by the presence of high- and low-affini-
ty states of the CRD of FimH. Aprikian et al. experimentally
demonstrated that in full-length fimbriae, the pilin domain sta-
bilizes the CRD domain in the low-affinity state, whereas the
CRD domain alone adopts the high-affinity state.[20] Further-
more, it was recently shown that shear stress can induce a con-
formational switch (twist in the b-sandwich fold of the CRD
domain), resulting in improved affinity.[21] Therefore, differing
affinities were expected in the cell-based flow cytometry assay,
in which full-length fimbriae are present, relative to the cell-
free competitive binding assay.

Cell-free competitive binding assays[16]

These assays were performed twice for every com-
pound with each concentration in duplicate. To
ensure comparability between various antagonists,
the reference compound n-heptyl a-d-mannopyrano-
side 1[22] was tested each time in parallel. The affini-
ties are reported relative to 1 as rIC50 in Table 1. A
comparison of the affinities of compounds 4a and
4b with the ortho-substituted analogues 5a, 13a–f
and 5b, 14a–f clearly demonstrates that ortho sub-
stituents on ring A indeed improve binding. However,
the differences between the various substituted
FimH antagonists are small. For a better understand-
ing of these results, a more detailed analysis of the
thermodynamic profile by isothermal titration calo-
rimetry (ITC) was performed (see below). By increas-
ing the flexibility of the aglycone, we expected
a switch from the out-docking mode as present for
antagonists 3 and 4 (Figure 2A,B) to the in-docking
mode (represented by antagonist 6 in Figure 2C).[10f]

However, affinities for all six representatives with in-
creased spacer length between carbohydrate and
aglycone (Table 1: 6—, 19, 20, 22, and 23) were dra-
matically decreased. A similar tendency was observed

Scheme 2. Reagents and conditions: a) BF3·Et2O, CH2Cl2, 0 8C, 3 h (17a–c, 34–
48%); b) 4-methoxycarbonylphenylboronic acid (11), Pd(Cl2)dppf·CH2Cl2,
K3PO4, DMF, 80 8C, overnight (18a,b and 21, 73–94%); c) NaOMe, MeOH, RT,
4 h (19a,b and 22, 47–90%); d) 1. 0.2n NaOH(aq), MeOH, RT, overnight;
2. Dowex (Na+), size-exclusion chromatography (P-2 gel) (6, 20 and 23, 10–
96%).

Scheme 3. Reagents and conditions: a) 4-iodophenol, BF3·Et2O, CH2Cl2, 40 8C, overnight
(70%); b) bis(pinacolato)diborone, Pd(Cl2)dppf·CH2Cl2, KOAc, DMF, MW 120 8C, 2 h (50%);
c) Pd(Cl2)dppf·CH2Cl2, K3PO4, DMF, 80 8C, overnight (34–56%); d) NaOMe, MeOH, RT, 4 h
(33–95%); e) 1. 0.2n NaOH(aq), MeOH, RT, overnight; 2. Dowex (Na+), size-exclusion chro-
matography (P-2 gel) (31: 40%; 35 : 23%).
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Table 1. Pharmacodynamic parameters of FimH antagonists.

Compd Binding assay Flow cytometry

R IC50 [nm][a] rIC50
[b] IC50 [mm][a,c]

1[10e] 73!7.9 1 3.9!1.6

24[10d] 84.9 1.47 n.d.

3[10d] 28.6 0.55 n.d.

4a[10e] 10.4!1.2 0.14 n.d.

4b[10e] 17.1!2.2 0.15 n.d.

5a 4.8!1.2 0.06 n.d.

5b 6.7!2.1 0.09 0.33!0.05

13a 8.0 0.14 n.d.

14a 33.5 0.58 1.54!0.31

13b 23.3 0.40 n.d.

14b 9.2 0.16 1.83!0.14

13c 2.6 0.04 n.d.

14c 8.9 0.15 0.89!0.10

Table 1. (Continued)

Compd Binding assay Flow cytometry

R IC50 [nm][a] rIC50
[b] IC50 [mm][a,c]

13d 3.5 0.06 n.d.

14d 4.8 0.08 1.95!0.36

13e 31.7 0.55 n.d.

14e 63.0 1.09 4.85!0.79

13 f 22.5 0.39 n.d.

14 f 33.9 0.58 n.d.

19a 56.1 0.97 n.d.

6 107.9 1.87 n.d.

19b 98.9 1.7 n.d.

20 142.2 2.44 n.d.

22 85.8 1.49 n.d.

23 642.0 11.14 n.d.
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for the biphenyls with an elongated carboxylate-bearing para
substituent (Table 1: 30, 31, 34, and 35). It was previously de-
scribed that the ester of 3 is placed within hydrogen bonding
distance to form a polar interaction with Arg98 and Glu50.[10d]

However, an improvement of affinity provided by a similar
polar interaction between Arg98 and the antagonists 31 and
35 could not be achieved, probably due to the high desolva-
tion penalty of Arg98. Finally, it is important to note that the
free acids (sodium salt) of the antagonists in general showed
slightly lower affinities than their methyl ester counterparts,
with the only exceptions of 13b and 14b (Table 1). However,
because the esters are thought to act as prodrugs and to be
rapidly cleaved after oral application,[10e] the affinities of the
carboxylates are relevant with regard to the therapeutic poten-
tial of the present FimH antagonists.

Cell-based flow cytometry assay[17]

These assays were performed in duplicate/triplicate, and n-
heptyl a-d-mannopyranoside 1 was used as reference com-
pound with an IC50 value of 3.9!1.6 mm. The most potent an-
tagonists 5b and 14c (Table 1) showed respective IC50 values
of 0.33!0.05 and 0.89!0.10 mm. In general, the activities ob-
tained from the flow cytometry assay were ~50-fold lower
than the affinities determined in the target-based competitive
assay (see above).

Isothermal titration calorimetry

Because the biological in vitro evaluation only revealed small
differences between affinities, ITC experiments were carried
out to study the thermodynamic profile of the variously ortho-
substituted biphenyl compounds 5b and 14a–f in binding to
FimH. ITC directly measures the heat of interaction (change in
enthalpy, DH) at a constant temperature on titrating two com-
pounds of known concentration that form an equilibrium com-
plex.[23] It includes contributions from all equilibria that occur
as the interacting molecules go from the free to the bound
state, including those associated with solvent interactions and
macromolecular conformational changes. The noncovalent in-
teraction between a protein and a ligand can be quantified by
the change in free energy (DG), consisting of the change in en-
thalpy (DH) and change in entropy (DS) [Eq. (1)] .[24] The bind-
ing energy under standard conditions (DG8), in which all reac-
tants and products are at a concentration of 1m, can be calcu-
lated from the dissociation constant, KD [Eq. (2)] . With ITC, KD

and DH can be measured directly, whereas DG and the entro-
py term TDS are calculated according to Equations (1) and (2).

DG ¼ DH#TDS ð1Þ

DG ¼ RT lnKD ð2Þ

A favorable enthalpy term DH is associated with hydrogen
bond formation, electrostatic, and dipole–dipole interactions at
the overcompensation of the desolvation penalty.[25] The entro-
py term DS reflects the overall change in the degrees of free-
dom of a system. It can be dissected into translational and
rigid body rotational entropy,[26] solvation entropy,[27] and en-
tropy costs related to conformational changes of protein and
ligand [Eq. (3)] .[28] Whereas the formation of a protein–ligand
complex is always associated with a decrease in translational
and rotational freedom and therefore with entropy costs, the
entropic contribution involving changes in solvation (DSsolv)
and changes in rotational and vibrational entropy due to the
loss of conformational flexibility (DSconf) can differ both in sign
and magnitude.[29]

DS ¼ DSsolv þ DStrans=rot þ DSconf ð3Þ

The FimH CRD was used for the ITC experiments. It was pre-
pared from FimH-CRD-Th-His6 (see Competitive binding assay,
Experimental Section below) by incubation with thrombin, as
described earlier.[16]

The thermodynamic fingerprints of the various biphenyl de-
rivatives (Table 2, Figure 4) reveal a significant improvement in
the enthalpic term (DDH #4.3 to #11.2 kJmol#1) for all substi-
tuted biphenyls (5b, 14a–f) in comparison with the unsubsti-
tuted derivative 4b. The largest enthalpy improvement was
observed for the trifluoromethyl group (14c ; Table 2). Interest-
ingly, these largely improved enthalpic contributions are
mostly compensated by entropic penalties (#TDDS +3.2 to
+7.5 kJmol#1), resulting in only marginally improved KD values.
In the best case, the trifluoromethyl derivative 14c, a fourfold
improvement in KD was measured. Similar, but less pronounced

Table 1. (Continued)

Compd Binding assay Flow cytometry

R IC50 [nm][a] rIC50
[b] IC50 [mm][a,c]

30 63.2 1.09 n.d.

31 70.5 1.21 n.d.

34 49.5 0.85 n.d.

35 62.5 1.07 n.d.

[a] IC50 values were determined in a cell-free competitive binding assay.[16]

[b] The rIC50 values were calculated by dividing the IC50 of the compound
of interest by that of reference compound 1; this leads to rIC50 values <1
for derivatives that bind better than reference 1, and rIC50 values >1 for
compounds with lower affinity than 1. [c] The anti-adhesion potential to
human epithelial bladder cells was determined in the flow cytometry
assay;[17] n.d.=not determined.
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effects were observed for most other ortho substituents. This
trend was broken only by the cyclopropyl derivative 14e (DDH
+0.7 kJmol!1, !TDDS !2.4 kJmol!1; Table 2).

The influence of the ortho substituent on binding can be at-
tributed to three factors. First, ortho substituents of appropri-
ate volume establish an improved shape complementarity
within the binding pocket, leading to a better van der Waals
(vdW) contact and therefore an improvement in the enthalpy
term DH. The improvement in enthalpy (DDH) correlates well
with increasing vdW volumes of spherical ortho substituents
(5b, 14a–c ; Figure 5). For non-spherical substituents (OMe,
14d ; cyclopropyl, 14e ; and CN, 14 f), the shape complemen-
tarity is not optimal, leading to only a decreased enthalpy con-
tribution. However, better vdW contacts also lead to decreased
conformational flexibility and therefore an entropic compensa-
tion by a less favorable DSconf value. A second parameter is the
desolvation enthalpy, which depends on the polarity of a spe-

cific ortho substituent and varies
between !2.39 kJmol!1 for CH3

and 19.31 kJmol!1 for CN.[25] Fi-
nally, depending on the surface
area of the ortho substituent,
the entropy of solvation may
change. In summary, the various
effects are superimposed and of
opposing contributions to the
free binding energy DG.

Physicochemical and in vitro
pharmacokinetic characteriza-
tion

To estimate the oral bioavailabil-
ity and renal elimination of acids
4b, 5b, 6, 14a–f, 20, 23, 31, 35,
and the methyl esters 4a, 5a,

13a–f, 19a–b, 22, 30 and 34, several physicochemical parame-
ters (lipophilicity, solubility) as well as permeability through an
artificial membrane and a cell monolayer were determined
(Table 3). The free acids of the antagonists assessed in this
study (4b, 5b, 6, 14a–f, 20, 23, 31, and 35) are generally hy-
drophilic and soluble at pH values >5. All acids showed
logD7.4 values below zero and are therefore thought to under-
go considerable renal clearance,[32] a prerequisite for FimH an-
tagonists to reach their target in the urinary bladder. Permea-
tion studies through an artificial membrane (PAMPA[33]) indicat-
ed for all acids except 14a effective permeation values (logPe)
below !6.7, suggesting low absorption in the small intestine
by passive permeation.[34] However, the high absorption poten-
tial of the fluoro-substituted biphenyl 14a predicted by

Table 2. Binding thermodynamics of FimH antagonists determined by ITC.

Compd R KD [nm] DG8 [kJmol!1] DH8 [kJmol!1] !TDS8 [kJmol!1] N[a] VvdW [!3][b]

4b H 14.1 !44.8 !47.3 +2.5 1.00 7.2
5b Cl 3.7 !48.1 !55.5 +7.4 1.01 22.4
14a F 9.2 !45.9 !51.6 +5.7 1.00 13.3
14b Me 4.8 !47.5 !56.2 +8.7 1.01 26.7
14c CF3 3.2 !48.5 !58.5 +10.0 1.02 41.4
14d OMe 7.7 !46.3 !52.5 +6.2 1.02 34.8
14e cPr 6.9 !46.6 !46.7 +0.1 1.01 52.5
14 f CN 7.4 !46.4 !55.0 +8.6 1.01 29.7

[a] Molar ratio of protein/ligand. [b] van der Waals volumes (VvdW) of the ortho substituent were calculated with
the Phase volCalc utility.[30]

Figure 4. Enthalpy–entropy compensation, a property often reported for car-
bohydrate–lectin interactions,[31] for ortho-substituted biphenyl a-d-manno-
pyranosides; DDG, DDH, and TDDS values for 5b and 14a–f are plotted rel-
ative to the unsubstituted derivative 4b.

Figure 5. Correlation of DDH (relative to antagonist 4b) with the van der
Waals volumes[30] of ortho substituents.
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Table 3. Physicochemical and in vitro pharmacokinetic parameters of FimH antagonists.

Compd PAMPA logPe [log10
!6 cms!1]/pH[a] Caco-2 Papp [10

!6 cms!1][b] logD7.4
[c] Solubility [mgmL!1]/pH[d]

a!b b!a (b!a)/(a!b)

1 !4.9 7.0"0.6 9.4"0.2 1.3 1.7 >3000/6.5
24 !5.0"0.1/5.0

!4.9"0.1/6.2
!4.7"0.1/7.4

10.0"0.9 19.0"1.2 1.9 2.1"0.1 22"0/3.0
22"1/5.0
21"1/7.4

3 !4.9"0.0/5.0
!4.9"0.0/6.2
!4.9"0.0/7.4

2.2"0.2 17.6"0.4 8.0 2.0"0.0 >150/3.0
>150/5.0
>150/7.4

4a !4.7 1.5"0.0 6.4"0.4 4.3 2.1 14"1/3.0
13"1/5.0
12"1/7.4

4b n.p. n.d. n.d. n.d. <!1.5 >3000/6.6
5a !4.6 5.3"0.6 17.5"1.3 3.3 2.3 16"2/3.0

15"0/5.0
17"2/7.4

5b n.p. 0.2"0.0 0.4"0.0 1.6 !0.8 >3000/6.5
13a !4.8"0.0/5.0

!4.8"0.0/6.2
!4.8"0.0/7.4

5.6"0.7 22.0"0.6 4.0 2.7"0.1 22"1/3.0
24"3/5.0
17"6/7.4

14a !5.8"0.1/5.0
!6.3"0.1/6.2
!7.4"0.1/7.4

0.2"0.1 0.2"0.0 0.8 <!1.5 30"3/3.0
>100/5.0
>100/7.4

13b !4.5"0.1/5.0
!4.5"0.0/6.2
!4.6"0.1/7.4

6.2"1.3 22.7"1.2 3.6 2.4"0.2 7"0/3.0
7"0/5.0
7"0/7.4

14b !8.6"1.7/5.0
!8.8"1.4/6.2
!8.7"1.5/7.4

n.d. n.d. n.d. !0.6"0.1 34"3/3.0
>200/5.0
>200/7.4

13c !4.4"0.0/5.0
!4.4"0.0/6.2
!4.5"0.1/7.4

9.2"0.1 16.9"1.5 1.8 2.8"0.1 17"1/3.0
15"1/5.0
16"1/7.4

14c !8.4"1.3/5.0
!9.3"1.4/6.2
!8.6"1.6/7.4

n.d. n.d. n.d. !0.8"0.1 15"1/3.0
140"6/5.0
>200/7.4

13d !5.4"0.0/5.0
!5.4"0.0/6.2
!5.4"0.0/7.4

4.2"0.7 16.4"1.2 3.9 1.8"0.1 24"0/3.0
24"1/5.0
26"1/7.4

14d !8.5"0.6/5.0
!9.1"0.2/6.2
!9.2"0.4/7.4

n.d. n.d. n.d. <!1.5 127"4/3.0
>200/5.0
>200/7.4

13e !4.5"0.2/5.0
!4.4"0.0/6.2
!4.4"0.1/7.4

6.1"0.6 17.9"1.2 3.0 2.9"0.1 14"2/3.0
13"0/5.0
14"1/7.4

14e !9.3"1.3/5.0
!8.7"1.5/6.2
!8.7"1.5/7.4

n.d. n.d. n.d. !0.8"0.1 31"2/3.0
>200/5.0
>200/7.4

13 f !6.5"0.0/5.0
!6.5"0.1/6.2
!6.3"0.1/7.4

0.9"0.7 18.1"0.6 19.7 1.7"0.0 22"2/3.0
24"1/5.0
23"1/7.4

14 f !8.5"1.7/5.0
!7.3"0.3/6.2
!7.8"1.5/7.4

n.d. n.d. n.d. <!1.5 35"11/3.0
>200/5.0
>200/7.4

19a !4.9"0.0/5.0
!4.9"0.0/6.2
!4.9"0.1/7.4

4.4"0.1 18.8"1.7 4.3 1.9"0.1 103"8/3.0
100"6/5.0
95"5/7.4

6 !8.6"1.6/5.0
!9.3"1.4/6.2
!8.7"1.5/7.4

n.d. n.d. n.d. <!1.5 >130/3.0
>130/5.0
>130/7.4

19b !5.3"0.1/5.0
!5.6"0.1/6.2
!5.1"0.2/7.4

n.d. n.d. n.d. 2.4"0.1 30"0/3.0
29"1/5.0
31"1/7.4

20 !8.6"1.6/5.0
!9.3"1.4/6.2
!10/7.4

n.d. n.d. n.d. !1.2"0.2 >130/3.0
>130/5.0
>130/7.4
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PAMPA could not be confirmed by the colorectal adenocarci-
noma (Caco-2) cell permeation assay. In contrast, the methyl
esters (3, 4a, 5a, 13a–f, 19a–b, 22, 30, and 34) showed
logD7.4 values >1.5, that is, they are more lipophilic and hence
more permeable than the corresponding acids, as shown by
the PAMPA and Caco-2 permeation assay. Despite this high ab-
sorption potential, the ratios between the apparent permeabil-
ity coefficients (Papp) in the basolateral-to-apical (b!a, secreto-
ry) and apical-to-basolateral (a!b, absorptive) directions re-
vealed active efflux processes as an additional issue of all the
assessed compounds. Moreover, the methyl esters must be
readily hydrolyzed after absorption to become more polar and
to be renally eliminated. Rapid metabolic turnover by the
enzyme carboxylesterase was previously shown for the methyl
esters 4a and 5a.[10e]

The different substituents at the ortho position of ring A (5a,
5b, 13a–f, 14a–f ; Table 3) only have a minor influence on the
physicochemical properties. The addition of chloro, fluoro,
methyl, trifluoromethyl, or cyclopropyl substituents slightly in-
creases the lipophilicity of the respective acids and methyl
esters, whereas methoxy and cyano substituents render the
compounds more hydrophilic and less permeable. Moreover,
the substituents at the ortho position have negligible effects
on the low aqueous solubility, which is a major drawback of all
methyl esters.[35] In contrast, the modifications with increased
spacer length between carbohydrate and aglycone (6, 19a–b,
20, 22, and 23 ; Table 3) show higher aqueous solubility. Ex-
tending the spacer and linking it at the ortho or meta positions
of the biaryl moiety disrupts the symmetry of the molecular
structure, leading to increased solubility.[15,36] However, an addi-
tional chloro substituent at the 4-position (19b, 20 ; Table 3) re-
stores the symmetrical character of the structure, which in turn

lowers the solubility of the compound. Disrupted structural
symmetry might also hold true for the enhanced solubility of
the biphenyls with an elongated carboxylate-bearing para sub-
stituent (30, 31, 34, and 35 ; Table 3). The introduction of
a methylene or cyclopropylene group between the biphenyl
and the carboxylate moiety markedly improved the aqueous
solubility of the methyl esters, whereas the absorption poten-
tial was only slightly decreased.

Summary and Conclusions

In this study, we investigated the structure–affinity relationship
for ortho substituents on ring A of the biphenyl aglycone of
the FimH antagonists 13 and 14. The correlation between vdW
volumes of these substituents and the enthalpy term clearly in-
dicates the importance of shape complementary. This interpre-
tation is further supported by the fact that the electronic char-
acter of the substituent [Cl in 5a (Table 2), CF3 in 14c versus
CH3 in 14b] is less important. The correlation of enthalpic im-
provements (DDH) with vdW volumes offers a potent tool for
guiding further structural optimization.

The successful oral application using a prodrug approach
was recently demonstrated with the ester 5a.[10e] A major
drawback of the biphenyl methyl esters is their insufficient sol-
ubility, which is mostly in the range of 15–35 mgmL!1. As ex-
pected,[15] solubility could be substantially improved when the
symmetry of the aglycone was disrupted. Thus, the solubility
of 3 (>150 mgmL!1; Table 3), 19a (100 mgmL!1), and 22 (>
130 mgmL!1) was improved by a factor of ~10. However, for
these more flexible derivatives, the expected optimized fit
leading to improved affinities in the in-docking mode could
not be observed. In fact, the affinities for the members of this

Table 3. (Continued)

Compd PAMPA logPe [log10
!6 cms!1]/pH[a] Caco-2 Papp [10

!6 cms!1][b] logD7.4
[c] Solubility [mgmL!1]/pH[d]

a!b b!a (b!a)/(a!b)

22 !5.1"0.0/5.0
!5.1"0.0/6.2
!5.1"0.0/7.4

n.d. n.d. n.d. 1.7"0.1 >130/3.0
>130/5.0
>130/7.4

23 !7.3"1.8/5.0
!8.1"2.2/6.2
!10/7.4

n.d. n.d. n.d. <!1.5 >130/3.0
>130/5.0
>130/7.4

30 !5.5"0.0/5.0
!5.5"0.0/6.2
!5.4"0.1/7.4

n.d. n.d. n.d. 1.6"0.1 >130/3.0
>130/5.0
>130/7.4

31 !7.7"1.6/5.0
!8.1"1.3/6.2
!10/7.4

n.d. n.d. n.d. <!1.5 >130/3.0
>130/5.0
>130/7.4

34 !5.3"0.1/5.0
!5.6"0.0/6.2
!5.3"0.2/7.4

n.d. n.d. n.d. 2.2"0.1 >130/3.0
>130/5.0
>130/7.4

35 !8.0"1.3/5.0
!8.6"1.6/6.2
!10/7.4

n.d. n.d. n.d. n.d. 63"8/3.0
>130/5.0
>130/7.4

[a] Pe=effective permeation: passive permeation through an artificial membrane was determined by parallel artificial membrane permeation assay
(PAMPA); values represent the mean "SD of quadruplicate measurements taken at three pH values (pH 5.0, 6.2, and 7.4).[33] [b] Papp=apparent permeabili-
ty: permeation through cell monolayers was assessed by a Caco-2 assay in the absorptive (a!b) and secretory (b!a) directions in triplicate;[42] n.p.=no
permeation, n.d.=not determined. [c] Distribution coefficients (logD) were measured by a miniaturized shake-flask procedure at pH 7.4. [d] Kinetic solubili-
ty was measured in a 96-well format using the mSOL Explorer solubility analyzer at three pH values (pH 3.0, 5.0, and 7.4) in triplicate.
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family of compounds are drastically decreased, for example,
compounds 20 or 23 (Table 1).

Finally, the elongation of the ester-bearing para substituent
(Table 1; compounds 31 and 35) did not lead to the expected
additional polar interaction with Arg98. Instead, a five- to sev-
enfold decrease in affinity was observed. Clearly, the desolva-
tion penalty for the guanidinium group could not be matched
by the geometrically possible salt bridge with the carboxylate
of the antagonists 31 and 35.

In summary, our study confirms the earlier selection of the
FimH antagonists 5a for oral and 5b for intravenous applica-
tion. However, the methoxy derivative 13d (Table 1) shows
slightly improved pharmacokinetic properties and therefore
represents an additional candidate for future in vivo studies.

Experimental Section

General methods : NMR spectra were recorded on a Bruker Avance
DMX-500 (500.1 MHz) spectrometer. Assignment of 1H and 13C NMR
spectra was achieved using 2D methods (COSY, HSQC, HMBC).
Chemical shifts are expressed in ppm using residual CHCl3,
CHD2OD, or HDO as references. Optical rotations were measured
with a PerkinElmer Polarimeter 341. Electrospray ionization mass
spectrometry (ESI-MS) data were obtained on a Waters Micromass
ZQ instrument. LC–HRMS analyses were carried out using an Agi-
lent 1100 LC equipped with a photodiode array detector and a Mi-
cromass QTOF I equipped with a 4 GHz digital time converter. Mi-
crowave-assisted reactions were carried out with a CEM Discover
and Explorer. Reactions were monitored by TLC using glass plates
coated with silica gel 60 F254 (Merck) and visualized by UV light
and/or by charring with a molybdate solution (0.02m solution of
ammonium cerium sulfate dihydrate and ammonium molybdate
tetrahydrate in aqueous 10% H2SO4). MPLC separations were car-
ried out on a CombiFlash Companion or Rf from Teledyne Isco
equipped with RediSep normal-phase or RP-18 reversed-phase
flash columns. LC–MS separations were carried out on a Waters
system equipped with sample manager 2767, pump 2525, PDA
2525, and Micromass ZQ. Size-exclusion chromatography was per-
formed on Bio-Gel P-2 Gel (45–90 mm) from Bio-Rad (Reinach,
Switzerland). All compounds used for biological assays are at least
of 98% purity based on analytical HPLC results. Commercially avail-
able reagents were purchased from Fluka, Aldrich, Alfa Aesar or Iris
Biotech (Germany). Solvents were purchased from Sigma–Aldrich
(Buchs, Switzerland) or Acros Organics (Geel, Belgium) and were
dried prior to use where indicated. MeOH was dried by reflux with
sodium methoxide and distilled immediately before use. CH2Cl2
was dried by filtration over Al2O3 (Fluka, type 5016 A basic). Molec-
ular sieves (4 !) were activated in vacuo at 500 8C for 1 h immedi-
ately before use.

General procedure A for the synthesis of mannosides 10a–f and
17a–c : To an ice-cold suspension of 8[12] (200 mg, 0.57 mmol,
1.1 equiv), phenol 9a–f or benzyl alcohol 16a–c (0.52 mmol,
1.0 equiv), and molecular sieves (4 !, 600 mg) in dry CH2Cl2 (5 mL),
BF3·Et2O (0.3 mL, 2.44 mmol, 4.7 equiv) was added dropwise under
argon. The mixture was stirred at 0 8C for 3 h, and then at RT over-
night. The reaction mixture was filtered over Celite, and the filtrate
was diluted with CH2Cl2 (50 mL), extracted with 0.5n NaOH(aq)

(50 mL), H2O (50 mL), and brine (50 mL). The organic layer was
dried over Na2SO4 and concentrated in vacuo. The residue was pu-
rified by MPLC on silica gel (petroleum ether (PE)/EtOAc) to yield
10a–f or 17a–c.

General procedure B for the synthesis of mannosylated biphen-
yls : A Schlenk tube was charged with aryl bromide (1.0 equiv), bor-
onic acid or boronate (1.1 equiv), Pd(dppf)Cl2·CH2Cl2 (0.03 equiv),
K3PO4 (1.5 equiv) and a stirring bar. The tube was closed with
a rubber septum and was evacuated and flushed with argon. This
procedure was repeated once, then anhydrous DMF (2 mL) was
added under a stream of argon. The mixture was degassed in an
ultrasonic bath and flushed with argon for 5 min, and then stirred
at 80 8C overnight. The reaction mixture was cooled to RT, diluted
with EtOAc (50 mL), and washed with H2O (50 mL) and brine
(50 mL). The organic layer was dried over Na2SO4 and concentrated
in vacuo. The residue was purified by MPLC on silica gel (PE/EtOAc)
to afford biphenyls 12a–f, 18a,b, 21, 29 or 33.

General procedure C for deacetylation : To a solution of 12a–f,
18a,b, 21, 29 or 33 (1.0 equiv) in dry MeOH (5 mL) was added
freshly prepared 1m NaOMe/MeOH (0.1 equiv) under argon. The
mixture was stirred at RT until the reaction was complete (moni-
tored by TLC), then neutralized with Amberlyst-15 (H+) ion-ex-
change resin, filtered and concentrated in vacuo. The residue was
purified by MPLC on silica gel (CH2Cl2/MeOH, 10:1–8:1) to afford
13a–f, 19a,b, 22, 30 or 34 as white solids.

General procedure D for saponification : To a solution of 12a–e,
18a,b, 21, 29 or 33 (1.0 equiv) in MeOH (5 mL) was added 1m
NaOMe/MeOH (0.1 equiv) at RT. The reaction mixture was stirred at
RT for 4 h and concentrated. The residue was treated with 0.5m
NaOH(aq) (1 mL) for 24 h at RT. The solution was then adjusted to
pH 3–4 with Amberlyst-15 (H+), and the mixture was filtered and
concentrated. The crude product was transformed into the sodium
salt by passing through a small column of Dowex 50X8 (Na+ form)
ion-exchange resin. After concentration, the residue was purified
by MPLC (RP-18, H2O/MeOH, 1:0–2:1) followed by size-exclusion
chromatography (P-2 gel, H2O) to give 14a–e, 6, 20, 23, 31 or 35
as white solids after final lyophilization from H2O.

4-Bromo-2-fluorophenyl 2,3,4,6-tetra-O-acetyl-a-d-mannopyra-
noside (10a): Prepared according to general procedure A from
8[12] and 4-bromo-2-fluorophenol (9a). Yield: 220 mg (74%) as
white solid. Rf=0.48 (PE/EtOAc, 2:1) ; [a]20D +83.0 (c=0.70, EtOAc);
1H NMR (500 MHz, CDCl3): d=7.30 (dd, J=2.3, 10.1 Hz, 1H, Ar-H),
7.21 (dt, J=1.7, 8.8 Hz, 1H, Ar-H), 7.08 (t, J=8.6 Hz, 1H, Ar-H), 5.54
(dd, J=3.5, 10.0 Hz, 1H, H-3), 5.50 (dd, J=1.8, 3.4 Hz, 1H, H-2),
5.46 (d, J=1.5 Hz, 1H, H-1), 5.36 (t, J=10.0 Hz, 1H, H-4), 4.26 (dd,
J=5.5, 12.2 Hz, 1H, H-6a), 4.17 (ddd, J=2.1, 5.5, 10.0 Hz, 1H, H-5),
4.10 (dd, J=2.2, 12.2 Hz, 1H, H-6b), 2.20, 2.07, 2.05, 2.04 ppm (4 s,
12H, 4 OAc); 13C NMR (125 MHz, CDCl3): d=170.51, 169.95, 169.82,
169.76 (4 CO), 153.28 (d, J=251.4 Hz, Ar-C), 142.64 (d, J=11.1 Hz,
Ar-C), 127.58 (d, J=4.0 Hz, Ar-C), 120.4 (d, J=21.5 Hz, Ar-C), 120.28
(d, J=0.9 Hz, Ar-C), 115.73 (d, J=8.1 Hz, Ar-C), 97.49 (C-1), 69.76 (C-
5), 69.15 (C-2), 68.60 (C-3), 65.76 (C-4), 62.09 (C-6), 20.87, 20.71,
20.69, 20.67 ppm (4 COCH3); elemental analysis calcd (%) for
C20H22BrFO10: C 46.08, H 4.25, found: C 46.11, H 4.26.

4-Bromo-2-methylphenyl 2,3,4,6-tetra-O-acetyl-a-d-mannopyra-
noside (10b): Prepared according to general procedure A from
8[12] and 4-bromo-2-methylphenol (9b). Yield: 254 mg (86%) as
white solid. Rf=0.60 (PE/EtOAc, 2:1) ; [a]20D +61.8 (c=1.00, EtOAc);
1H NMR (500 MHz, CDCl3): d=7.31 (d, J=1.9 Hz, 1H, Ar-H), 7.24
(dd, J=2.3, 8.7 Hz, 1H, Ar-H), 6.97 (d, J=8.8 Hz, 1H, Ar-H), 5.53 (dd,
J=3.4, 10.0 Hz, 1H, H-3), 5.47 (d, J=1.7 Hz, 1H, H-1), 5.45 (dd, J=
2.0, 3.4 Hz, 1H, H-2), 5.37 (t, J=10.0 Hz, 1H, H-4), 4.28 (dd, J=5.6,
12.3 Hz, 1H, H-6a), 4.10–4.03 (m, 2H, H-5, H-6b), 2.27 (s, 3H, CH3),
2.20, 2.06, 2.05, 2.04 ppm (4 s, 12H, 4 OAc); 13C NMR (125 MHz,
CDCl3): d=170.53, 170.04, 169.96, 169.73 (4 CO), 152.96, 133.78,
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129.88, 129.61, 115.81, 115.23 (Ar-C), 95.91 (C-1), 69.39 (C-5), 69.38
(C-2), 68.88 (C-3), 65.76 (C-4), 62.12 (C-6), 20.88, 20.70, 20.68 (4C, 4
COCH3), 16.07 ppm (CH3); elemental analysis calcd (%) for
C21H25BrO10: C 48.76, H 4.87, found: C 48.84, H 4.91.

4-Bromo-2-trifluoromethyl-phenyl 2,3,4,6-tetra-O-acetyl-a-d-
mannopyranoside (10c): Prepared according to general procedure
A from 8[12] and 4-bromo-2-trifluoromethylphenol (9c). Yield:
260 mg (80%) as white solid. Rf=0.50 (PE/EtOAc, 2:1) ; [a]20D +64.6
(c=1.00, EtOAc); 1H NMR (500 MHz, CDCl3): d=7.74 (d, J=2.3 Hz,
1H, Ar-H), 7.61 (dd, J=2.4, 8.9 Hz, 1H, Ar-H), 7.15 (d, J=8.9 Hz, 1H,
Ar-H), 5.60 (d, J=1.6 Hz, 1H, H-1), 5.51 (dd, J=3.5, 10.1 Hz, 1H, H-
3), 5.45 (dd, J=2.0, 3.3 Hz, 1H, H-2), 5.39 (t, J=10.1 Hz, 1H, H-4),
4.27 (dd, J=5.3, 12.4 Hz, 1H, H-6a), 4.08–4.00 (m, 2H, H-5, H-6b),
2.21, 2.06, 2.05, 2.04 ppm (4 s, 12H, 4 OAc); 13C NMR (125 MHz,
CDCl3): d=170.41, 169.91, 169.74, 169.62 (4 CO), 152.16 (d, J=
1.7 Hz, Ar-C), 136.07 (Ar-C), 130.35 (t, J=5.3 Hz, Ar-C), 122.30 (d, J=
271.4 Hz, CF3), 121.72 (d, J=31.7 Hz, Ar-C), 117.08, 114.88 (Ar-C),
95.75 (C-1), 69.96 (C-5), 69.02 (C-2), 68.45 (C-3), 65.44 (C-4), 61.95
(C-6), 20.84, 20.70, 20.67, 20.63 ppm (4 COCH3); elemental analysis
calcd (%) for C21H22BrF3O10: C 44.15, H 3.88, found: C 44.10, H 3.88.

4-Bromo-2-methoxyphenyl 2,3,4,6-tetra-O-acetyl-a-d-mannopyr-
anoside (10d): Prepared according to general procedure A from
8[12] and 4-bromo-2-methoxyphenol (9d). Yield: 234 mg (77%) as
white solid. Rf=0.32 (PE/acetone, 4:1) ; [a]20D +70.3 (c=0.70,
EtOAc); 1H NMR (500 MHz, CDCl3): d=7.03–6.95 (m, 3H, Ar-H), 5.58
(dd, J=3.5, 10.0 Hz, 1H, H-3), 5.52 (dd, J=1.8, 3.4 Hz, 1H, H-2),
5.42 (d, J=1.8 Hz, 1H, H-1), 5.34 (t, J=10.0 Hz, 1H, H-4), 4.28–4.24
(m, 2H, H-5, H-6a), 4.10 (m, 1H, H-6b), 3.84 (s, 3H, OCH3), 2.19,
2.07, 2.05, 2.04 ppm (4 s, 12H, 4 OAc); 13C NMR (125 MHz, CDCl3):
d=170.58, 169.98, 169.89, 169.80 (4 CO), 151.52, 143.91, 123.49,
120.37, 116.69, 115.94 (Ar-C), 97.52 (C-1), 69.45 (C-5), 69.36 (C-2),
68.80 (C-3), 66.06 (C-4), 62.27 (C-6), 56.04 (OCH3), 20.91, 20.73,
20.71, 20.69 ppm (4 COCH3); elemental analysis calcd (%) for
C21H25BrO11: C 47.29, H 4.72, found: C 47.20, H 4.70.

4-Bromo-2-cyclopropylphenyl 2,3,4,6-tetra-O-acetyl-a-d-manno-
pyranoside (10e): Prepared according to general procedure A
from 8[12] and 4-bromo-2-cyclopropylphenol (9e). Yield: 235 mg
(76%) as white solid. Rf=0.30 (PE/EtOAc, 3:1) ; [a]20D +64.7 (c=0.40,
EtOAc); 1H NMR (500 MHz, CDCl3): d=7.20 (d, J=8.7 Hz, 1H, Ar-H),
7.00–6.69 (m, 2H, Ar-H), 5.58 (d, J=10.1 Hz, 1H, H-3), 5.50 (s, 2H,
H-1, H-2), 5.39 (t, J=10.1 Hz, 1H, H-4), 4.28 (dd, J=5.4, 12.2 Hz, 1H,
H-6a), 4.14–4.08 (m, 2H, H-5, H-6b), 2.21, 2.09, 2.04 (3 s, 12H, 4
OAc), 1.02 (d, J=8.1 Hz, 2H, CH2-cPr), 0.65 ppm (d, J=4.6 Hz, 2H,
CH2-cPr) ;

13C NMR (125 MHz, CDCl3): d=170.54, 170.03, 170.15,
169.75 (4 CO), 153.64, 135.64, 129.11, 128.94, 116.29, 115.79 (Ar-C),
96.15 (C-1), 69.46 (C-5), 69.39 (C-2), 68.93 (C-3), 65.78 (C-4), 62.16
(C-6), 21.07, 20.89, 20.70 (4C, 4COCH3), 9.73, 7.88, 7.82 ppm (cPr);
elemental analysis calcd (%) for C23H27BrFO10: C 50.84, H 5.01,
found: C 50.82, H 5.00.

4-Bromo-2-cyanophenyl 2,3,4,6-tetra-O-acetyl-a-d-mannopyra-
noside (10 f): Prepared according to general procedure A from 8[12]

and 4-bromo-2-cyanophenol (9 f). Yield: 220 mg (73%) as white
solid. Rf=0.51 (PE/EtOAc, 2:3) ; [a]20D +54.3 (c=0.60, EtOAc); IR
(KBr): ñ=2232 (s, C!N), 1749 cm"1 (vs, C=O); 1H NMR (500 MHz,
CDCl3): d=7.73 (d, J=2.5 Hz, 1H, Ar-H), 7.66 (dd, J=2.5, 9.0 Hz,
1H, Ar-H), 7.15 (d, J=9.0 Hz, 1H, Ar-H), 5.62 (d, J=1.7 Hz, 1H, H-1),
5.56 (dd, J=3.5, 10.0 Hz, 1H, H-3), 5.51 (dd, J=2.0, 3.4 Hz, 1H, H-
2), 5.41 (t, J=10.0 Hz, 1H, H-4), 4.28 (dd, J=4.9, 12.1 Hz, 1H, H-6a),
4.13–4.08 (m, 2H, H-5, H-6b), 2.21, 2.07, 2.05, 2.04 ppm (4 s, 12H, 4
OAc); 13C NMR (125 MHz, CDCl3): d=169.37, 168.93, 168.71, 168.48
(4CO), 155.18, 136.28, 135.00, 116.12, 114.41, 112.97, 104.62 (Ar-C,

CN), 95.68 (C-1), 69.26 (C-5), 68.02 (C-2), 67.35 (C-3), 64.38 (C-4),
60.85 (C-6), 19.81, 19.67, 19.64, 19.58 ppm (4 COCH3); elemental
analysis calcd (%) for C21H22BrNO10: C 47.74, H 4.02, N 2.65, found:
C 47.78, H 4.29, N 2.67.

Methyl 4’-(2,3,4,6-tetra-O-acetyl-a-d-mannopyranosyloxy)-3’-flu-
orobiphenyl-4-carboxylate (12a): Prepared according to general
procedure B from 10a (100 mg, 0.192 mmol), 4-methoxycarbonyl-
phenylboronic acid (11, 38.0 mg, 0.211 mmol), Pd(dppf)Cl2·CH2Cl2
(4.7 mg, 5.8 mmol) and K3PO4 (61.1 mg, 0.288 mmol). Yield: 83 mg
(75%) as white solid. Rf=0.26 (PE/EtOAc, 2:1) ; [a]20D +93.0 (c=0.60,
EtOAc); 1H NMR (500 MHz, CDCl3): d=8.03–8.02 (m, 2H, Ar-H),
7.53–7.52 (m, 2H, Ar-H), 7.33 (dd, J=2.1, 11.8 Hz, 1H, Ar-H), 7.27
(dd, J=1.5, 8.9 Hz, 1H, Ar-H), 7.20 (t, J=8.3 Hz, 1H, Ar-H), 5.53 (dd,
J=3.4, 10.0 Hz, 1H, H-3), 5.49–5.47 (m, 2H, H-1, H-2), 5.32 (t, J=
10.0 Hz, 1H, H-4), 4.22 (dd, J=5.4, 12.1 Hz, 1H, H-6a), 4.17 (m, 1H,
H-5), 4.05 (dd, J=1.8, 12.1 Hz, 1H, H-6b), 3.87 (s, 3H, OCH3), 2.15,
2.01, 1.98, 1.97 ppm (4 s, 12H, 4OAc); 13C NMR (125 MHz, CDCl3):
d=170.54, 170.00, 169.86, 169.79, 166.82 (5 CO), 153.50 (d, J=
247.0 Hz, Ar-C), 143.56 (d, J=1.8 Hz, Ar-C), 143.22 (d, J=11.2 Hz,
Ar-C), 136.48 (d, J=6.7 Hz, Ar-C), 130.27, 129.29, 126.75 (5C, Ar-C),
123.16 (d, J=3.4 Hz, Ar-C), 119.32 (Ar-C), 115.64 (d, J=19.4 Hz, Ar-
C), 97.42 (C-1), 69.71 (C-5), 69.26 (C-2), 68.70 (C-3), 65.83 (C-4),
62.10 (C-6), 52.24 (OMe), 20.91, 20.74, 20.72, 20.70 ppm (4 COCH3);
HRMS: m/z : calcd for C28H29FNaO12 [M+Na]+ : 599.1535, found:
599.1536.

Methyl 4’-(2,3,4,6-tetra-O-acetyl-a-d-mannopyranosyloxy)-3’-
methylbiphenyl-4-carboxylate (12b): Prepared according to gen-
eral procedure B from 10b (100 mg, 0.193 mmol), 11 (38.2 mg,
0.212 mmol), Pd(dppf)Cl2·CH2Cl2 (4.7 mg, 5.8 mmol) and K3PO4

(61.5 mg, 0.290 mmol). Yield: 87 mg (79%) as white solid. Rf=0.41
(PE/EtOAc, 1:0.9) ; [a]20D +85.4 (c=0.80, EtOAc); 1H NMR (500 MHz,
CDCl3): d=8.09–8.07 (m, 2H, Ar-H), 7.61 (m, 2H, Ar-H), 7.46 (d, J=
1.8 Hz, 1H, Ar-H), 7.40 (dd, J=2.3, 8.5 Hz, 1H, Ar-H), 7.18 (d, J=
8.5 Hz, 1H, Ar-H), 5.61–5.58 (m, 2H, H-1, H-3), 5.50 (dd, J=2.0,
3.5 Hz, 1H, H-2), 5.41 (t, J=10.0 Hz, 1H, H-4), 4.31 (dd, J=5.9,
12.8 Hz, 1H, H-6a), 4.14–4.09 (m, 2H, H-5, H-6b), 3.94 (s, 3H, OCH3),
2.37 (s, 3H, CH3), 2.22, 2.08, 2.05, 2.04 ppm (4 s, 12H, 4 OAc);
13C NMR (125 MHz, CDCl3): d=170.55, 170.06, 169.98, 169.75,
167.00 (5 CO), 154.05, 144.94, 134.54, 130.10, 130.02, 128.54,
128.05, 126.66, 125.76, 114.46 (12C, Ar-C), 95.84 (C-1), 69.48 (C-5),
69.37 (C-2), 68.98 (C-3), 65.81 (C-4), 62.13 (C-6), 52.12 (OCH3), 21.06,
20.91, 20.72, 20.70 (4 COCH3), 16.40 ppm (CH3); HRMS: m/z : calcd
for C29H32NaO12 [M+Na]+ : 595.1786, found: 595.1786; elemental
analysis calcd (%) for C29H32O12: C 60.84, H 5.63, found: C 60.76, H
5.80.

Methyl 4’-(2,3,4,6-tetra-O-acetyl-a-d-mannopyranosyloxy)-3’-tri-
fluoromethylbiphenyl-4-carboxylate (12c): Prepared according to
general procedure B from 10c (100 mg, 0.175 mmol), 11 (34.6 mg,
0.193 mmol), Pd(dppf)Cl2·CH2Cl2 (4.3 mg, 5.3 mmol) and K3PO4

(55.7 mg, 0.263 mmol). Yield: 100 mg (91%) as white solid. Rf=0.25
(PE/EtOAc, 2:1) ; [a]20D +43.3 (c=1.00, EtOAc); 1H NMR (500 MHz,
CDCl3): d=8.13–8.11 (m, 2H, Ar-H), 7.87 (d, J=2.1 Hz, 1H, Ar-H),
7.75 (dd, J=2.2, 8.7 Hz, 1H, Ar-H), 7.63–7.61 (m, 2H, Ar-H), 7.35 (d,
J=8.7 Hz, 1H, Ar-H), 5.70 (d, J=1.7 Hz, 1H, H-1), 5.57 (dd, J=3.5,
10.1 Hz, 1H, H-3), 5.50 (dd, J=2.0, 3.4 Hz, 1H, H-2), 5.43 (t, J=
10.0 Hz, 1H, H-4), 4.30 (dd, J=5.6, 12.8 Hz, 1H, H-6a), 4.11–4.08 (m,
2H, H-5, H-6b), 3.95 (s, 3H, OCH3), 2.24, 2.07, 2.06, 2.05 ppm (4 s,
12H, 4 OAc); 13C NMR (125 MHz, CDCl3): d=170.45, 169.96, 169.78,
169.65, 166.76 (5 CO), 152.94, 143.37, 134.59, 130.34, 129.40,
126.79, 126.14, 115.79 (12C, Ar-C), 95.67 (C-1), 69.91 (C-5), 69.15 (C-
2), 68.56 (C-3), 65.50 (C-4), 61.97 (C-6), 52.25 (OCH3), 20.88, 20.71,
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20.66 ppm (4C, 4 COCH3); HRMS: m/z : calcd for C29H29F3NaO12 [M+
Na]+ : 649.1503, found: 649.1503.

Methyl 4’-(2,3,4,6-tetra-O-acetyl-a-d-mannopyranosyloxy)-3’-me-
thoxybiphenyl-4-carboxylate (12d): Prepared according to gener-
al procedure B from 10d (100 mg, 0.188 mmol), 11 (37.1 mg,
0.206 mmol), Pd(dppf)Cl2·CH2Cl2 (4.6 mg, 5.6 mmol) and K3PO4

(59.9 mg, 0.282 mmol). Yield: 91 mg (83%) as white solid. Rf=0.25
(PE/EtOAc, 1:0.9) ; [a]20D +50.7 (c=1.40, EtOAc); 1H NMR (500 MHz,
CDCl3): d=8.10–8.08 (m, 2H, Ar-H), 7.62–7.60 (m, 2H, Ar-H), 7.19–
7.13 (m, 3H, Ar-H), 5.64 (dd, J=3.5, 10.0 Hz, 1H, H-3), 5.58 (dd, J=
1.8, 3.5 Hz, 1H, H-2), 5.53 (d, J=1.7 Hz, 1H, H-1), 5.38 (t, J=
10.0 Hz, 1H, H-4), 4.34–4.28 (m, 2H, H-5, H-6a), 4.12 (m, 1H, H-6b),
3.94 (2 s, 6H, 2 OCH3), 2.21, 2.08, 2.05, 2.04 ppm (4 s, 12H, 4 OAc);
13C NMR (125 MHz, CDCl3): d=170.61, 170.02, 169.92, 169.83,
166.94 (5 CO), 151.01, 145.06, 144.92, 136.51, 130.13, 128.86,
126.87, 119.72, 119.32, 111.60 (12C, Ar-C), 97.50 (C-1), 69.48 (C-5),
69.43 (C-2), 68.91 (C-3), 66.12 (C-4), 62.29 (C-6), 56.01 (OCH3), 52.18
(CO2CH3), 20.95, 20.76, 20.74, 20.72 ppm (4 COCH3); HRMS: m/z :
calcd for C29H32NaO13 [M+Na]+ : 611.1735, found: 611.1736.

Methyl 4’-(2,3,4,6-tetra-O-acetyl-a-d-mannopyranosyloxy)-3’-cy-
clopropylbiphenyl-4-carboxylate (12e): Prepared according to
general procedure B from 10e (100 mg, 0.184 mmol), 11 (36.4 mg,
0.202 mmol), Pd(dppf)Cl2·CH2Cl2 (4.5 mg, 5.5 mmol) and K3PO4

(58.6 mg, 0.276 mmol). Yield: 60 mg (55%) as white solid. Rf=0.48
(PE/EtOAc, 2:1) ; [a]20D +53.0 (c=0.70, EtOAc); 1H NMR (500 MHz,
CDCl3): d=8.08–8.07 (m, 2H, Ar-H), 7.59–7.57 (m, 2H, Ar-H), 7.37
(dd, J=2.4, 8.5 Hz, 1H, Ar-H), 7.19–7.17 (m, 2H, Ar-H), 5.64 (dd, J=
3.5, 10.1 Hz, 1H, H-3), 5.61 (d, J=1.6 Hz, 1H, H-1), 5.54 (dd, J=1.9,
3.4 Hz, 1H, H-2), 5.42 (t, J=10.1 Hz, 1H, H-4), 4.31 (dd, J=5.3,
12.2 Hz, 1H, H-6a), 4.19–4.10 (m, 2H, H-5, H-6b), 3.94 (s, 3H, OCH3),
2.22 (s, 3H, OAc), 2.17 (m, 1H, H-cPr), 2.08–2.05 (m, 9H, 3 OAc),
1.06–1.05 (m, 2H, CH2-cPr), 0.74–0.73 ppm (m, 2H, CH2-cPr) ;
13C NMR (125 MHz, CDCl3): d=170.55, 170.06, 170.02, 169.75,
166.98 (5 CO), 154.76, 145.12, 134.83, 133.56, 130.08, 128.58,
126.71, 125.33, 125.06, 114.84 (12C, Ar-C), 96.04 (C-1), 69.49 (C-5),
69.42 (C-2), 69.02 (C-3), 65.81 (C-4), 62.15 (C-6), 52.12 (OCH3), 20.91,
20.71 (4C, 4 COCH3), 9.78, 7.58 ppm (3C, cPr) ; elemental analysis
calcd (%) for C29H32O12: C 62.20, H 5.72, found: C 62.00, H 5.86.

Methyl 4’-(2,3,4,6-tetra-O-acetyl-a-d-mannopyranosyloxy)-3’-cya-
nobiphenyl-4-carboxylate (12 f): Prepared according to general
procedure B from 10 f (100 mg, 0.189 mmol), 11 (37.5 mg,
0.208 mmol), Pd(dppf)Cl2·CH2Cl2 (4.6 mg, 5.7 mmol) and K3PO4

(60.2 mg, 0.284 mmol). Yield: 92 mg (84%) as white solid. Rf=0.18
(PE/EtOAc, 2:1) ; [a]20D +61.4 (c=0.80, EtOAc); 1H NMR (500 MHz,
CDCl3): d=8.06–8.05 (m, 2H, Ar-H), 7.80 (d, J=2.3 Hz, 1H, Ar-H),
7.72 (dd, J=2.3, 8.8 Hz, 1H, Ar-H), 7.53–7.51 (m, 2H, Ar-H), 7.28 (d,
J=8.8 Hz, 1H, Ar-H), 5.64 (d, J=1.7 Hz, 1H, H-1), 5.55 (dd, J=3.5,
10.0 Hz, 1H, H-3), 5.49 (dd, J=1.9, 3.4 Hz, 1H, H-2), 5.37 (t, J=
10.0 Hz, 1H, H-4), 4.24 (dd, J=5.0, 12.4 Hz, 1H, H-6a), 4.12 (ddd,
J=2.2, 4.9, 10.0 Hz, 1H, H-5), 4.05 (dd, J=2.2, 12.4 Hz, 1H, H-6b),
3.88 (s, 3H, OCH3), 2.16, 2.01, 1.99, 1.98 ppm (4 s, 12H, 4 OAc);
13C NMR (125 MHz, CDCl3): d=170.45, 170.01, 169.78, 169.54,
166.65 (5 CO), 156.84, 142.44, 135.67, 132.36, 129.77, 126.76,
115.99, 115.18, 104.47 (13C, Ar-C, CN), 96.63 (C-1), 70.24 (C-5), 69.17
(C-2), 68.49 (C-3), 65.48 (C-4), 60.85 (C-6), 20.88, 20.73, 20.71,
20.64 ppm (4 COCH3); HRMS: m/z : calcd for C29H29NNaO12 [M+
Na]+ : 606.1582, found: 606.1583.

Methyl 3’-fluoro-4’-(a-d-mannopyranosyloxy)biphenyl-4-carbox-
ylate (13a): Prepared according to general procedure C from 12a
(33 mg, 0.057 mmol). Yield: 15 mg (65%). [a]20D +114.3 (c=0.30,
MeOH); 1H NMR (500 MHz, CD3OD): d=7.98–7.97 (m, 2H, Ar-H),

7.63–7.61 (m, 2H, Ar-H), 7.42–7.36 (m, 3H, Ar-H), 5.45 (d, J=1.7 Hz,
1H, H-1), 3.99 (dd, J=1.9, 3.4 Hz, 1H, H-2), 3.82–3.84 (m, 4H, H-3,
OCH3), 3.71–3.56 ppm (m, 4H, H-4, H-5, H-6); 13C NMR (125 MHz,
CD3OD): d=168.34 (CO), 154.75 (d, J=243.8 Hz, Ar-C), 145.6 (2C,
Ar-C), 136.37 (d, J=6.9 Hz, Ar-C), 130.20, 129.20, 127.80, 124.33,
120.33 (7C, Ar-C), 116.00 (d, J=20.0 Hz, Ar-C), 101.40 (C-1), 75.97
(C-5), 72.31 (C-3), 71.82 (C-2), 68.18 (C-4), 62.65 (C-6), 52.65 ppm
(OCH3); HRMS: m/z : calcd for C20H21FNaO8 [M+Na]+ : 431.1113,
found: 431.1112.

Methyl 4’-(a-d-mannopyranosyloxy)-3’-methylbiphenyl-4-carbox-
ylate (13b): Prepared according to general procedure C from 12b
(31 mg, 0.054 mmol). Yield: 16 mg (73%). [a]20D +110.5 (c=0.35,
MeOH); 1H NMR (500 MHz, CD3OD): d=7.96–7.94 (m, 2H, Ar-H),
7.60–7.58 (m, 2H, Ar-H), 7.40–7.37 (m, 2H, Ar-H), 7.22 (d, J=8.5 Hz,
1H, Ar-H), 5.47 (d, J=1.6 Hz, 1H, H-1), 3.97 (dd, J=1.9, 3.4 Hz, 1H,
H-2), 3.87 (dd, J=3.4, 9.5 Hz, 1H, H-3), 3.82 (s, 3H, OMe), 3.67–3.52
(m, 3H, H-4, H-6), 3.46 (m, 1H, H-5), 2.21 ppm (s, 3H, Me); 13C NMR
(125 MHz, CD3OD): d=168.56 (CO), 156.20, 146.86, 134.70, 131.07,
130.07, 130.54, 129.45, 128.92, 127.63, 126.85, 115.83 (12C, Ar-C),
99.76 (C-1), 75.55 (C-5), 72.64 (C-3), 72.11 (C-2), 68.31 (C-4), 62.68
(C-6), 52.59 ppm (OCH3), 16.54 (CH3); HRMS: m/z : calcd for
C21H24NaO8 [M+Na]+ : 427.1363, found: 427.1370.

Methyl 3’-trifluoromethyl-4’-(a-d-mannopyranosyloxy)biphenyl-
4-carboxylate (13c): Prepared according to general procedure C
from 12c (30 mg, 0.048 mmol). Yield: 14 mg (64%). [a]20D +113.1
(c=0.40, MeOH); 1H NMR (500 MHz, CD3OD): d=8.11–8.10 (m, 2H,
Ar-H), 7.92–7.90 (m, 2H, Ar-H), 7.75–7.73 (m, 2H, Ar-H), 7.63 (d, J=
8.4 Hz, 1H, Ar-H), 5.69 (d, J=1.5 Hz, 1H, H-1), 4.09 (dd, J=1.8,
3.3 Hz, 1H, H-2), 3.98–3.94 (m, 4H, H-3, OMe), 3.79–3.73 (m, 3H, H-
4, H-6), 3.61 ppm (ddd, J=2.3, 5.7, 9.6 Hz, 1H, H-5); 13C NMR
(125 MHz, CD3OD): d=168.29 (CO), 155.54, 145.13, 134.74, 133.45,
131.36, 131.29, 130.32, 127.91, 127.85, 126.44, 117.80 (Ar-C), 100.27
(C-1), 76.13 (C-5), 72.24 (C-3), 71.74 (C-2), 68.09 (C-4), 62.67 ppm (C-
6), 52.69 (OMe); HRMS: m/z : calcd for C21H21F3NaO8 [M+Na]+ :
481.1081, found: 481.1082.

Methyl 4’-(a-d-mannopyranosyloxy)-3’-methoxybiphenyl-4-car-
boxylate (13d): Prepared according to general procedure C from
12d (32 mg, 0.055 mmol). Yield: 12 mg (52%). [a]20D +133.1 (c=
0.20, MeOH); 1H NMR (500 MHz, CD3OD): d=7.97–7.96 (m, 2H, Ar-
H), 7.63–7.61 (m, 2H, Ar-H), 7.21–7.11 (m, 3H, Ar-H), 5.37 (d, J=
1.7 Hz, 1H, H-1), 4.00 (dd, J=1.8, 3.4 Hz, 1H, H-2), 3.86 (dd, J=3.5,
8.8 Hz, 1H, H-3), 3.82 (s, 6H, 2 CH3), 3.70–3.63 ppm (m, 4H, H-4, H-
5, H-6); 13C NMR (125 MHz, CD3OD): d=168.50 (CO), 152.33, 147.40,
146.83, 136.56, 131.08, 129.76, 127.87, 120.86, 120.10, 112.54 (Ar-C),
101.51 (C-1), 75.66 (C-5), 72.40 (C-2), 72.00 (C-3), 68.34 (C-4), 62.70
(C-6), 56.61 (OMe), 52.63 ppm (OMe); HRMS: m/z : calcd for
C21H24NaO9 [M+Na]+ : 443.1313, found: 443.1315.

Methyl 3’-cyclopropyl-4’-(a-d-mannopyranosyloxy)biphenyl-4-
carboxylate (13e): Prepared according to general procedure C
from 12e (21 mg, 0.035 mmol). Yield: 10 mg (67%). [a]20D +101.6
(c=0.24, MeOH); 1H NMR (500 MHz, CD3OD): d=8.07–8.05 (m, 2H,
Ar-H), 7.68–7.67 (m, 2H, Ar-H), 7.46 (dd, J=2.4, 8.5 Hz, 1H, Ar-H),
7.33 (d, J=8.5 Hz, 1H, Ar-H), 7.21 (d, J=2.4 Hz, 1H, Ar-H), 5.60 (d,
J=1.7 Hz, 1H, H-1), 4.13 (dd, J=1.9, 3.3 Hz, 1H, H-2), 4.02 (dd, J=
3.4, 9.5 Hz, 1H, H-3), 3.93 (s, 3H, OMe), 3.81–3.74 (m, 3H, H-4, H-6),
3.69 (m, 1H, H-5), 2.19 (m, 1H, H-cPr), 1.01–0.99 (m, 2H, CH2-cPr),
0.76–0.74 ppm (m, 2H, CH2-cPr);

13C NMR (125 MHz, CD3OD): d=
168.54 (CO), 156.92, 146.98, 135.00, 134.59, 131.07, 127.34, 127.67,
126.39, 125.34, 116.29 (12C, Ar-C), 100.14 (C-1), 75.61 (C-5), 72.64
(C-3), 72.14 (C-2), 68.33 (C-4), 62.71 (C-6), 52.60 (OCH3), 10.93,
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8.06 ppm (3C, cPr) ; HRMS: m/z : calcd for C23H26NaO8 [M+Na]+ :
453.1520, found: 453.1519.

Methyl 3’-cyano-4’-(a-d-mannopyranosyloxy)biphenyl-4-carbox-
ylate (13 f): Prepared according to general procedure C from 12 f
(37 mg, 0.063 mmol). Yield: 19 mg (73%). [a]20D +101.1 (c=0.30,
MeOH); 1H NMR (500 MHz, CD3OD): d=8.00–7.99 (m, 2H, Ar-H),
7.90–7.85 (m, 2H, Ar-H), 7.65–7.63 (m, 2H, Ar-H), 7.50 (d, J=8.8 Hz,
1H, Ar-H), 5.63 (s, 1H, H-1), 4.03 (m, 1H, H-2), 3.91 (dd, J=2.8,
9.4 Hz, 1H, H-3), 3.83 (s, 3H, OMe), 3.69–3.60 (m, 3H, H-4, H-6),
3.50 ppm (m, 1H, H-5); 13C NMR (125 MHz, CD3OD): d=168.22
(CO), 159.29, 144.38, 135.61, 134.50, 133.08, 131.31, 130.56, 127.87,
117.36, 116.75, 104.35 (13C, Ar-C, CN), 100.62 (C-1), 76.39 (C-5),
72.27 (C-2), 71.62 (C-3), 68.07 (C-4), 62.64 (C-6), 52.71 ppm (OMe);
HRMS: m/z : calcd for C21H21NNaO8 [M+Na]+ : 438.1159, found:
438.1162.

Sodium 3’-fluoro-4’-(a-d-mannopyranosyloxy)biphenyl-4-carbox-
ylate (14a): Prepared according to general procedure D from 12a
(50 mg, 0.087 mmol). Yield: 21 mg (58%). [a]20D +112.7 (c=0.40,
MeOH); 1H NMR (500 MHz, D2O): d=7.78–7.77 (m, 2H, Ar-H), 7.46–
7.45 (m, 2H, Ar-H), 7.30–7.15 (m, 3H, Ar-H), 5.43 (s, 1H, H-1), 4.07
(s, 1H, H-2), 3.93 (d, J=3.3 Hz, 1H, H-3), 3.68–3.62 ppm (m, 4H, H-
4, H-5, H-6); 13C NMR (125 MHz, D2O): d=175.19 (CO), 153.02 (d,
J=242.6 Hz, Ar-C), 142.52 (d, J=10.8 Hz, Ar-C), 141.23 (Ar-C),
135.53 (d, J=6.4 Hz, Ar-C), 135.07, 129.43, 126.25, 126.01, 122.96,
119.13 (Ar-C), 114.83 (d, J=19.4 Hz, Ar-C), 99.32 (C-1), 73.65 (C-5),
70.23 (C-3), 69.67 (C-2), 66.35 (C-4), 60.52 ppm (C-6); HRMS: m/z :
calcd for C19H19FNaO8 [M+Na]+ : 417.0956, found: 417.0957.

Sodium 4’-(a-d-mannopyranosyloxy)-3’-methylbiphenyl-4-car-
boxylate (14b): Prepared according to general procedure D from
12b (46 mg, 0.081 mmol). Yield: 5 mg (15%). [a]20D +85.7 (c=0.20,
MeOH); 1H NMR (500 MHz, D2O): d=7.78–7.76 (m, 2H, Ar-H), 7.53–
7.52 (m, 2H, Ar-H), 7.43–7.37 (m, 2H, Ar-H), 7.10 (d, J=8.6 Hz, 1H,
Ar-H), 5.52 (d, J=1.6 Hz, 1H, H-1), 4.07 (dd, J=1.9, 3.4 Hz, 1H, H-2),
3.95 (dd, J=3.5, 9.6 Hz, 1H, H-3), 3.63–3.50 (m, 4H, H-4, H-5, H-6),
2.14 ppm (s, 3H, CH3);

13C NMR (125 MHz, D2O): d=153.33, 142.57,
134.59, 133.97, 129.47, 128.42, 126.25, 125.43, 114.99 (12C, Ar-C),
97.46 (C-1), 73.39 (C-5), 70.54 (C-3), 69.88 (C-2), 66.53 (C-4), 60.60
(C-6), 15.31 ppm (CH3); HRMS: m/z : calcd for C20H22NaO8 [M+Na]+ :
413.1207, found: 413.1209.

Sodium 3’-trifluoromethyl-4’-(a-d-mannopyranosyloxy)biphenyl-
4-carboxylate (14c): Prepared according to general procedure D
from 12c (45 mg, 0.072 mmol). Yield: 25 mg (74%). [a]20D +94.2
(c=0.30, MeOH); 1H NMR (500 MHz, D2O): d=7.83–7.81(m, 3H, Ar-
H), 7.75 (d, J=8.7 Hz, 1H, Ar-H), 7.57–7.55 (m, 2H, Ar-H), 7.31 (d,
J=8.8 Hz, 1H, Ar-H), 5.64 (s, 1H, H-1), 4.09 (d, J=1.5 Hz, 1H, H-2),
3.94 (dd, J=3.4, 9.7 Hz, 1H, H-3), 3.67–3.60 (m, 3H, H-4, H-6),
3.54 ppm (m, 1H, H-5); 13C NMR (125 MHz, D2O): d=175.25 (CO),
152.40, 141.31, 135.09, 133.53, 131.93, 129.46, 126.34, 125.59,
115.86 (12C, Ar-C), 97.20 (C-1), 73.68 (C-5), 70.19 (C-3), 69.58 (C-2),
66.36 (C-4), 60.55 ppm (C-6); HRMS: m/z : calcd for C20H19F3NaO8

[M+Na]+ : 467.0924, found: 467.0923.

Sodium 4’-(a-d-mannopyranosyloxy)-3’-methoxybiphenyl-4-car-
boxylate (14d): Prepared according to general procedure D from
12d (47 mg, 0.080 mmol). Yield: 10 mg (29%). [a]20D +115.1 (c=
0.30, MeOH); 1H NMR (500 MHz, D2O): d=7.81–7.79 (m, 2H, Ar-H),
7.54–7.53 (m, 2H, Ar-H), 7.19–7.11 (m, 3H, Ar-H), 5.43 (d, J=1.6 Hz,
1H, H-1), 4.10 (dd, J=1.8, 3.5 Hz, 1H, H-2), 3.96 (dd, J=3.5, 9.0 Hz,
1H, H-3), 3.78 (s, 3H, OCH3), 3.70–3.62 ppm (m, 4H, H-4, H-5, H-6);
13C NMR (125 MHz, D2O): d=175.24 (CO), 149.53, 144.24, 142.42,
135.59, 134.75, 129.40, 126.41, 119.86, 118.03, 111.44 (12C, Ar-C),
99.23 (C-1), 73.53 (C-5), 70.32 (C-3), 69.78 (C-2), 66.40 (C-4), 60.54

(C-6), 55.81 ppm (OCH3); HRMS: m/z : calcd for C20H22NaO9 [M+
Na]+ : 429.1156, found: 429.1154.

Sodium 3’-cyclopropyl-4’-(a-d-mannopyranosyloxy)biphenyl-4-
carboxylate (14e): Prepared according to general procedure D
from 12e (28 mg, 0.047 mmol). Yield: 6 mg (26%). [a]20D +149.8
(c=0.20, MeOH); 1H NMR (500 MHz, D2O): d=7.79–7.77 (m, 2H, Ar-
H), 7.48–7.46 (m, 2H, Ar-H), 7.30 (d, J=7.8 Hz, 1H, Ar-H), 7.07–7.05
(m, 2H, Ar-H), 5.52 (s, 1H, H-1), 4.10 (m, 1H, H-2), 3.98 (dd, J=3.4,
9.5 Hz, 1H, H-3), 3.69–3.62 (m, 4H, H-4, H-5, H-6), 1.99 (m, 1H, H-
cPr), 0.86–0.84 (m, 2H, CH2-cPr), 0.58–0.56 ppm (m, 2H, CH2-cPr);
13C NMR (125 MHz, D2O): d=175.34 (CO), 153.82, 142.58, 134.57,
134.34, 133.74, 129.38, 126.26, 125.01, 124.01, 115.47 (12C, Ar-C),
97.88 (C-1), 73.47 (C-5), 70.55 (C-3), 69.93 (C-2), 66.46 (C-4), 60.57
(C-6), 9.16, 7.26, 7.06 ppm (cPr); HRMS: m/z : calcd for C22H24ONaO8

[M+Na]+ : 439.1363, found: 439.1363.

Sodium 3’-cyano-4’-(a-d-mannopyranosyloxy)biphenyl-4-carbox-
ylate (14 f): A two-neck flask was charged with 10 f (150 mg,
0.28 mmol), 4-carboxybenzene boronic acid pinacol ester (15)
(77 mg, 0.31 mmol), Pd(dppf)Cl2· CH2Cl2 (7 mg, 0.008 mmol), K3PO4

(89 mg, 0.42 mmol) and a stirring bar. The flask was evacuated and
flushed with argon, then anhydrous DMF (2 mL) was added under
a stream of argon. The mixture was degassed in an ultrasonic bath
and flushed with argon for 5 min, and then stirred at 80 8C over-
night. The reaction mixture was cooled to RT, diluted with EtOAc
(50 mL), and washed with H2O (50 mL) and brine (50 mL). The or-
ganic layer was dried over Na2SO4 and concentrated in vacuo. The
residue was purified by MPLC on silica gel (CH2Cl2/MeOH, 10:1–8:1)
to afford the biphenyl intermediate (162 mg). The intermediate
was dissolved in dry MeOH (4 mL) and treated with freshly pre-
pared 1m NaOMe/MeOH (28 mL) for 4 h at RT. The reaction mixture
was neutralized with Amberlyst-15 (H+), filtered and concentrated.
The crude product was transformed into the sodium salt by pass-
ing through a small column of Dowex 50X8 (Na+ form) ion-ex-
change resin. After concentration the residue was purified by
MPLC (RP-18, H2O) followed by size-exclusion chromatography (P-2
gel, H2O) to give 14 f (19 mg, 17%) as a white solid after final lyo-
philization from H2O. [a]20D +75.3 (c=0.20, MeOH); 1H NMR
(500 MHz, D2O): d=7.86–7.79 (m, 4H, Ar-H), 7.53–7.52 (m, 2H, Ar-
H), 7.31 (d, J=8.9 Hz, 1H, Ar-H), 5.64 (d, J=1.9 Hz, 1H, H-1), 4.11
(dd, J=1.9, 3.4 Hz, 1H, H-2), 4.00 (dd, J=3.5, 9.7 Hz, 1H, H-3),
3.73–3.65 (m, 3H, H-4, H-6), 3.58 ppm (ddd, J=2.4, 5.5, 9.9 Hz, 1H,
H-5); 13C NMR (125 MHz, D2O): d=175.12 (CO), 156.82, 140.37,
134.39, 133.56, 131.83, 129.58, 126.25, 116.82, 115.78, 102.08 (13C,
Ar-C, CN), 98.09 (C-1), 73.97 (C-5), 70.29 (C-3), 69.54 (C-2), 66.36 (C-
4), 60.56 ppm (C-6); HRMS: m/z : calcd for C21H21NNaO8 [M+Na]+ :
424.1003, found: 424.1003.

3-Bromobenzyl 2,3,4,6-tetra-O-acetyl-a-d-mannopyranoside
(17a): Prepared according to general procedure A from 8[12] and 3-
bromobenzyl alcohol (16a). Yield: 100 mg (34%) as colorless oil.
Rf=0.43 (PE/EtOAc, 2:1) ; [a]20D +42.0 (c=1.40, EtOAc); 1H NMR
(500 MHz, CDCl3): d=7.48–7.46, 7.30–7.24 (m, 4H, Ar-H), 5.37 (dd,
1H, J=3.4, 10.1 Hz, H-3), 5.33–5.29 (m, 2H, H-2, H-4), 4.88 (d, 1H,
J=1.3 Hz, H-1), 4.68, 4.54 (A, B of AB, J=12.1 Hz, 2H, CH2Ar), 4.29
(dd, 1H, J=5.2, 12.3 Hz, H-6a), 4.07 (dd, 1H, J=2.3, 12.3 Hz, H-6b),
3.99 (ddd, 1H, J=2.4, 5.2, 9.9 Hz, H-5), 2.15, 2.13, 2.05, 2.00 ppm
(4 s, 12H, 4 OAc); 13C NMR (125 MHz, CDCl3): d=170.59, 169.98,
169.87, 169.69 (4 CO), 138.49, 131.34, 131.09, 130.24, 126.66, 122.57
(Ar-C), 96.83 (C-1), 69.43, 69.02, 68.90, 68.78 (C-2, C-3, C-5, CH2Ar),
66.03 (C-4), 62.36 (C-6), 20.86, 20.76, 20.68 ppm (4C, COCH3); ESI-
MS: m/z : calcd for C21H25BrNaO10 [M+Na]+ : 539.05, found: 539.14.
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5-Bromo-2-chlorobenzyl 2,3,4,6-tetra-O-acetyl-a-d-mannopyra-
noside (17b): Prepared according to general procedure A from
8[12] and 5-bromo-2-chlorobenzyl alcohol (16b). Yield: 152 mg
(48%) as a white solid. Rf=0.56 (PE/EtOAc, 2:1) ; [a]20D +48.0 (c=
1.50, EtOAc); 1H NMR (500 MHz, CDCl3): d=7.48 (t, J=1.8 Hz, 1H,
Ar-H), 7.38 (s, 1H, Ar-H), 7.35 (d, J=1.8 Hz, 1H, Ar), 5.33 (m, 3H, H-
2, H-3, H-4), 4.88 (d, J=1.5 Hz, 1H, H-1), 4.65, 4.51 (A, B of AB, J=
12.3 Hz, 2H, CH2Ar), 4.30 (dd, J=5.3, 12.3 Hz, 1H, H-6a), 4.09 (dd,
J=2.4, 12.3 Hz, 1H, H-6b), 3.98 (ddd, J=2.4, 5.2, 9.7 Hz, 1H, H-5),
2.16, 2.13, 2.05, 2.01 ppm (4 s, 12H, 4 OAc); 13C NMR (125 MHz,
CDCl3): d=170.58, 169.98, 169.89, 169.69 (4 CO), 139.77, 135.35,
129.25, 126.85, 122.91 (6C, Ar-C), 96.96 (C-1), 69.33, 68.93, 68.24
(4C, C-2, C-3, C-5, CH2Ar), 65.98 (C-4), 62.38 (C-6), 20.86, 20.77,
20.68 ppm (4C, 4COCH3); ESI-MS: m/z : calcd for C21H24BrClNaO10

[M+Na]+ : 573.01, found: 573.06.

2-Bromobenzyl 2,3,4,6-tetra-O-acetyl-a-d-mannopyranoside
(17c): Prepared according to general procedure A from 8[12] and 2-
bromobenzyl alcohol (16c). Yield: 140 mg (47%) as a white solid.
Rf=0.55 (petrol ether/EtOAc, 2:1) ; [a]20D +44.6 (c=2.10, EtOAc);
1H NMR (500 MHz, CDCl3): d=7.57 (dd, J=1.0, 8.0 Hz, 1H, Ar-H),
7.47 (dd, J=1.4, 7.6 Hz, 1H, Ar-H), 7.35 (td, J=1.1, 7.5 Hz, 1H, Ar-
H), 7.20 (td, J=1.7, 7.9 Hz, 1H, Ar-H), 5.41 (dd, J=3.5, 10.0 Hz, 1H,
H-3), 5.35 (dd, J=1.8, 3.5 Hz, 1H, H-2), 5.31 (t, J=9.9 Hz, 1H, H-4),
4.98 (d, J=1.6 Hz, 1H, H-1), 4.83, 4.61 (A, B of AB, J=12.7 Hz, 2H,
CH2Ar), 4.29 (dd, J=5.8, 12.6 Hz, 1H, H-6a), 4.10–4.06 (m, 2H, H-6b,
H-5), 2.17, 2.12, 2.04, 2.00 ppm (4 s, 12H, 4 OAc); 13C NMR
(125 MHz, CDCl3): d=170.64, 170.02, 169.88, 169.72 (4 CO), 135.77,
132.69, 129.58, 129.49, 127.64, 122.96 (Ar-C), 97.33 (C-1), 69.48,
69.30, 69.10, 68.84 (C-2, C-3, C-5, CH2Ar), 66.05 (C-4), 62.35 (C-6),
20.88, 20.76, 20.69 ppm (4C, 4COCH3); ESI-MS: m/z : calcd for
C21H25BrNaO10 [M+Na]+ : 539.05, found: 539.14.

Methyl 3’-[(2,3,4,6-tetra-O-acetyl-a-d-mannopyranosyloxy)me-
thyl]biphenyl-4-carboxylate (18a): Prepared according to general
procedure B from 17a (87.0 mg, 0.167 mmol), 11 (33.1 mg,
0.184 mmol), Pd(dppf)Cl2·CH2Cl2 (4.1 mg, 5.0 mmol) and K3PO4

(53.2 mg, 0.251 mmol). Yield: 70 mg (73%) as colorless oil. Rf=0.30
(PE/EtOAc, 2:1) ; [a]20D +41.2 (c=1.00, EtOAc); 1H NMR (500 MHz,
CDCl3): d=8.13–8.11 (m, 2H, Ar-H), 7.68–7.67 (m, 2H, Ar-H), 7.60–
7.58 (m, 2H, Ar-H), 7.48 (t, J=4.7 Hz, 1H, Ar-H), 7.39 (d, J=7.7 Hz,
1H, Ar-H), 5.41 (dd, J=3.4, 10.0 Hz, 1H, H-3), 5.33–5.30 (m, 2H, H-2,
H-4), 4.94 (d, J=1.5 Hz, 1H, H-1), 4.79, 4.64 (A, B of AB, J=12.0 Hz,
2H, CH2Ar), 4.30 (dd, J=5.0, 12.1 Hz, 1H, H-6a), 4.09–4.03 (m, 2H,
H-6b, H-5), 3.94 (s, 3H, OMe), 2.15, 2.11, 2.04, 2.00 ppm (4 s, 12H, 4
OAc); 13C NMR (125 MHz, CDCl3): d=170.64, 170.03, 169.91, 169.73,
166.94 (5 CO), 145.11, 140.41, 136.97, 130.15, 129.27, 129.09,
127.94, 127.22, 127.11 (12C, Ar-C), 96.76 (C-1), 69.57, 69.09, 68.94,
66.12 (C-2, C-3, C-5, CH2Ar), 62.40 (C-4), 60.38 (C-6), 52.15 (OMe),
20.89, 20.77, 20.69 ppm (4C, 4COCH3); ESI-MS: m/z : calcd for
C29H32NaO12 [M+Na]+ : 595.18, found: 595.21.

Methyl 3’-[(2,3,4,6-tetra-O-acetyl-a-d-mannopyranosyloxy)meth-
yl]-4’-chlorobiphenyl-4-carboxylate (18b): Prepared according to
general procedure B from 17b (143 mg, 0.260 mmol), 11 (51.5 mg,
0.286 mmol), Pd(dppf)Cl2·CH2Cl2 (6.4 mg, 7.8 mmol) and K3PO4

(82.8 mg, 0.390 mmol). Yield: 133 mg (84%) as colorless oil. Rf=
0.30 (PE/EtOAc, 2:1) ; [a]20D +45.9 (c=1.20, EtOAc); 1H NMR
(500 MHz, CDCl3): d=8.13–8.11 (m, 2H, Ar-H), 7.65–7.64 (m, 2H, Ar-
H), 7.57 (t, J=1.8 Hz, 1H, Ar-H), 7.47 (s, 1H, Ar-H), 7.37 (s, 1H, Ar-
H), 5.40 (dd, J=3.4, 10.1 Hz, 1H, H-3), 5.33–5.29 (m, 2H, H-2, H-4),
4.93 (d, J=1.4 Hz, 1H, H-1), 4.76, 4.61 (A, B of AB, J=12.1 Hz, 2H,
CH2Ar), 4.31 (dd, J=5.2, 12.3 Hz, 1H, H-6a), 4.11 (dd, J=2.3,
12.3 Hz, 1H, H-6b), 4.03 (ddd, J=2.4, 5.2, 9.9 Hz, 1H, H-5), 3.95 (s,
3H, OMe), 2.16, 2.12, 2.05, 2.00 ppm (4 s, 12H, 4OAc); 13C NMR

(125 MHz, CDCl3): d=170.61, 170.02, 169.90, 169.72, 166.75 (5 CO),
143.68, 142.16, 138.79, 135.11, 130.26, 129.68, 127.14, 125.14 (12C,
Ar-C), 96.85 (C-1), 68.99, 68.89, 68.85, 66.07 (C-2, C-3, C-5, CH2Ar),
62.42 (C-4), 60.39 (C-6), 52.23 (OMe), 20.89, 20.78, 20.71, 20.69 ppm
(4COCH3); ESI-MS: m/z : calcd for C29H31ClNaO12 [M+Na]+ : 629.14,
found: 629.10.

Methyl 2’-[(2,3,4,6-tetra-O-acetyl-a-d-mannopyranosyloxy)me-
thyl]biphenyl-4-carboxylate (21): Prepared according to general
procedure B from 17c (115 mg, 0.223 mmol), 11 (44.1 mg,
0.245 mmol), Pd(dppf)Cl2·CH2Cl2 (5.5 mg, 6.7 mmol) and K3PO4

(71.0 mg, 0.335 mmol). Yield: 120 mg (94%) as colorless oil. Rf=
0.41 (PE/EtOAc, 2:1) ; [a]20D +38.3 (c=2.00, EtOAc); 1H NMR
(500 MHz, CDCl3): d=8.11–8.10 (m, 2H, Ar-H), 7.51–7.48 (m, 1H, Ar-
H), 7.45–7.41 (m, 4H, Ar-H), 7.29 (m, 1H, Ar-H), 5.27–5.21 (m, 2H,
H-3, H-4), 5.19 (dd, J=1.9, 3.3 Hz, 1H, H-2), 4.77 (d, J=1.4 Hz, 1H,
H-1), 4.67, 4.34 (A, B of AB, J=11.3 Hz, 2H, CH2Ar), 4.13 (dd, J=5.2,
12.5 Hz, 1H, H-6a), 3.94 (s, 3H, OMe), 3.90 (dd, J=2.2, 12.3 Hz, 1H,
H-6a), 3.52 (ddd, J=2.2, 5.1, 9.3 Hz, 1H, H-5), 2.13, 2.05, 2.04,
1.99 ppm (4 s, 12H, 4 OAc); 13C NMR (125 MHz, CDCl3): d=170.52,
169.95, 169.82, 169.74, 166.77 (5 CO), 145.48, 141.44, 133.46,
129.99, 129.91, 129.58, 129.22, 128.52, 128.21 (12C, Ar-C), 97.20 (C-
1), 69.47 (C-2), 68.98 (C-3), 68.48 (C-5), 68.13 (CH2Ar), 65.88 (C-4),
62.15 (C-6), 52.18 (OMe), 20.85, 20.66, 20.62 ppm (4C, 4COCH3);
ESI-MS: m/z : calcd for C29H32NaO12 [M+Na]+ : 595.18, found:
595.21.

Methyl 3’-[(a-d-mannopyranosyloxy)methyl]biphenyl-4-carboxyl-
ate (19a): Prepared according to general procedure C from 18a
(24 mg, 0.042 mmol). Yield: 11 mg (65%). Rf=0.40 (CH2Cl2/MeOH,
8:1) ; [a]20D +68.0 (c=0.34, MeOH); 1H NMR (500 MHz, CD3OD): d=
8.11–8.09 (m, 2H, Ar-H), 7.77–7.75 (m, 2H, Ar-H), 7.70 (s, 1H, Ar-H),
7.63 (d, J=7.6 Hz, 1H, Ar-H), 7.49 (t, J=7.6 Hz, 1H, Ar-H), 7.45 (d,
J=7.6 Hz, 1H, Ar-H), 4.90 (d, J=1.8 Hz, 1H, H-1), 4.86, 4.63 (A, B of
AB, J=12.0 Hz, 2H, CH2Ar), 3.94 (s, 3H, OMe), 3.89–3.87 (m, 2H, H-
2, H-3), 3.79–3.73 (m, 2H, H-4, H-6a), 3.68–3.64 ppm (m, 2H, H-5, H-
6b); 13C NMR (125 MHz, CD3OD): d=168.42 (CO), 146.91, 141.31,
139.97, 131.13, 130.20, 129.07, 128.17, 127.91, 127.67 (12C, Ar-C),
100.76 (C-1), 75.02 (C-5), 72.65 (C-3), 72.22 (C-2), 69.73 (CH2Ar),
68.65 (C-4), 62.98 (C-6), 52.66 ppm (OMe); HRMS: m/z : calcd for
C21H24NaO8 [M+Na]+ : 427.1363, found: 427.1361.

Methyl 4’-chloro-3’-[(a-d-mannopyranosyloxy)methyl]biphenyl-
4-carboxylate (19b): Prepared according to general procedure C
from 18b (40 mg, 0.066 mmol). Yield: 26 mg (90%). Rf=0.19
(CH2Cl2/MeOH, 8:1) ; [a]20D +101.8 (c=0.50, MeOH); 1H NMR
(500 MHz, CD3OD): d=8.06 (d, J=8.4 Hz, 2H, Ar-H), 7.69 (d, J=
8.4 Hz, 2H, Ar-H), 7.57–7.56 (m, 2H, Ar-H), 7.41 (s, 1H, Ar-H), 4.87 (s,
1H, H-1), 4.80, 4.58 (A, B of AB, J=12.3 Hz, 2H, CH2Ar), 3.91 (s, 3H,
OMe), 3.87–3.83 (m, 2H, H-2, H-3), 3.74–3.57 ppm (m, 4H, H-4, H-5,
H-6); 13C NMR (125 MHz, CD3OD): d=168.74 (CO), 145.78, 143.68,
142.71, 136.55, 131.75, 131.31, 129.02, 128.77, 127.95, 126.63 (12C,
Ar-C), 101.47 (C-1), 75.65 (C-5), 73.16 (C-3), 72.65 (C-2), 69.49
(CH2Ar), 69.13 (C-4), 63.49 (C-6), 53.26 ppm (OMe); HRMS: m/z :
calcd for C21H23ClNaO8 [M+Na]+ : 461.0974, found: 461.0975.

Methyl 2’-[(a-d-mannopyranosyloxy)methyl]biphenyl-4-carboxyl-
ate (22): Prepared according to general procedure C from 21
(48 mg, 0.084 mmol). Yield: 16 mg (47%). Rf=0.42 (CH2Cl2/MeOH,
8:1) ; [a]20D +61.9 (c=0.90, MeOH); 1H NMR (500 MHz, CD3OD): d=
8.11–8.09 (m, 2H, Ar-H), 7.57 (m, 1H, Ar-H), 7.51–7.49 (m, 2H, Ar-H),
7.43–7.40 (m, 2H, Ar-H), 7.31 (m, 1H, Ar-H), 4.71 (A of AB, J=
11.4 Hz, 1H, CH2Ar), 4.70 (d, J=1.5 Hz, 1H, H-1), 4.38 (B of AB, J=
11.4 Hz, 1H, CH2Ar), 3.75–3.60 (m, 5H, H-2, H-3, H-4, H-6), 3.95 (s,
3H, OMe), 3.40 ppm (ddd, J=3.0, 5.6, 6.8 Hz, 1H, H-5); 13C NMR
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(125 MHz, CD3OD): d=168.42 (CO), 147.33, 142.66, 136.03, 130.83,
130.53, 130.47, 129.26, 129.15 (12C, Ar-C), 101.14 (C-1), 74.78 (C-5),
72.60 (C-3), 72.18 (C-2), 68.37 (2C, C-4, CH2Ar), 62.71 ppm (C-6),
52.69 (OMe); HRMS: m/z : calcd for C21H24NaO8Na [M+Na]+ :
427.1363, found: 427.1367.

Sodium 3’-[(a-d-mannopyranosyloxy)methyl]biphenyl-4-carbox-
ylate (6): Prepared according to general procedure D from 18a
(35 mg, 0.061 mmol). Yield: 24 mg (96%). [a]20D +64.5 (c=0.30,
MeOH/H2O 1:1); 1H NMR (500 MHz, D2O): d=7.80–7.78 (m, 2H, Ar-
H), 7.50–7.43 (m, 4H, Ar-H), 7.31–7.24 (m, 2H, Ar-H), 4.82 (s, 1H, H-
1), 4.58, 4.40 (A, B of AB, J=11.5 Hz, 2H, CH2Ar), 3.82 (m, 1H, H-2),
3.75–3.50 ppm (m, 5H, H-3, H-4, H-5, H-6); 13C NMR (125 MHz, D2O):
d=175.14 (CO), 142.69, 140.05, 137.34, 135.01, 129.46, 129.28,
127.92, 126.87, 126.64 (12C, Ar-C), 99.40 (C-1), 72.84 (C-5), 70.51 (C-
3), 70.01 (C-2), 69.29 (CH2Ar), 66.61 (C-4), 60.71 ppm (C-6); HRMS:
m/z : calcd for C20H22NaO8 [M+Na]+ : 413.1207, found: 413.1211.

Sodium 4’-chloro-3’-[(a-d-mannopyranosyloxy)methyl]biphenyl-
4-carboxylate (20): Prepared according to general procedure D
from 18b (54 mg, 0.089 mmol). Yield: 4 mg (10%). [a]20D +44.7 (c=
0.30, MeOH); 1H NMR (500 MHz, D2O): d=7.86 (d, J=7.8 Hz, 2H,
Ar-H), 7.58–7.56 (m, 3H, Ar-H), 7.46, 7.34 (2 s, 2H, Ar-H), 4.90 (s, 1H,
H-1), 4.58, 4.50 (A, B of AB, J=12.3 Hz, 2H, CH2Ar), 3.91 (s, 1H, H-
2), 3.78–3.75 (m, 2H, H-3, H-4), 3.71–3.59 ppm (m, 3H, H-5, H-6);
13C NMR (125 MHz, D2O): d=174.76 (CO), 141.82, 141.55, 139.40,
134.37, 129.56, 127.34, 126.74, 126.62, 125.15 (12C, Ar-C), 99.99 (C-
1), 72.96 (C-5), 70.55 (C-3), 70.04 (C-2), 68.72 (CH2Ar), 66.66 (C-4),
60.77 ppm (C-6); HRMS: m/z : calcd for C20H21ClNaO8 [M+Na]+ :
447.0817, found: 447.0816.

Sodium 2’-[(a-d-mannopyranosyloxy)methyl]biphenyl-4-carbox-
ylate (23): Prepared according to general procedure D from 21
(78 mg, 0.137 mmol). Yield: 26 mg (46%). [a]20D +53.2 (c=0.40,
MeOH); 1H NMR (500 MHz, D2O): d=7.91–7.89 (m, 2H, Ar-H), 7.43–
7.34 (m, 5H, Ar-H), 7.26 (m, 1H, Ar-H), 4.68 (s, 1H, H-1), 4.57, 4.31
(A, B of AB, J=10.8 Hz, 2H, CH2Ar), 3.57 (m, 1H, H-2), 3.46–3.39 (m,
4H, H-3, H-4, H-6), 2.83 ppm (m, 1H, H-5); 13C NMR (125 MHz, D2O):
d=173.20 (CO), 144.48, 141.80, 133.47, 132.43, 130.69, 129.95,
129.27, 128.96, 128.32 (12C, Ar-C), 99.90 (C-1), 72.44 (C-5), 70.33 (C-
3), 69.82 (C-2), 68.14 (CH2Ar), 65.99 (C-4), 60.25 ppm (C-6); HRMS:
m/z : calcd for C20H22NaO8 [M+Na]+ : 413.1207, found: 413.1208.

4-(4,4,5,5-Tetramethyl)-1,3,2-dioxaborolan-2-yl)phenyl 2,3,4,6-
tetra-O-acetyl-a-d-mannopyranoside (27): A microwave tube was
charged with 26[37] (240 mg, 0.55 mmol), KOAc (161 mg,
1.65 mmol), bis(pinacolato)diborone (152 mg, 0.60 mmol) and Pd-
(dppf)Cl2·CH2Cl2 (13 mg, 0.017 mmol). The tube was closed, evacu-
ated and flushed with argon. Then anhydrous DMF (1 mL) was
added under a stream of argon. The mixture was degassed in an
ultrasonic bath and flushed with argon for 5 min, and then heated
by microwave irradiation at 120 8C for 2 h. The reaction mixture
was cooled to RT and diluted with CH2Cl2/H2O (100 mL, 1:1). The
organic layer was washed with H2O (50 mL) and brine (50 mL),
dried over Na2SO4 and concentrated. The residue was purified by
MPLC (toluene/EtOAc, 4:1) to afford 27 (120 mg, 50%) as colorless
oil. [a]20D +58.1 (c=0.60, EtOAc); 1H NMR (500 MHz, CDCl3): d=7.76
(d, J=8.6 Hz, 2H, Ar-H), 7.08 (d, J=8.6 Hz, 2H, Ar-H), 5.58–5.55 (m,
2H, H-1, H-3), 5.45 (dd, J=1.9, 3.4 Hz, 1H, H-2), 5.37 (t, J=10.0 Hz,
1H, H-4), 4.28 (dd, J=5.0, 12.0 Hz, 1H. H-6a), 4.05–4.02 (m, 2H, H-
6b, H-5), 2.20, 2.05, 2.03 (3 s, 12H, 4 OAc), 1.33 ppm (s, 12H, 4
CH3);

13C NMR (125 MHz, CDCl3): d=170.55, 169.91, 169.74 (4C, 4
CO), 157.98, 136.62, 136.58, 115.67 (5C, Ar-C), 95.44 (C-1), 83.77 (Ar-
C), 69.37 (C-2), 69.21 (C-5), 68.87 (C-3), 65.92 (C-4), 62.06 (C-6),

24.86, 24.58 (4C, 4 CH3), 20.87, 20.69 ppm (4C, 4COCH3); ESI-MS:
m/z : calcd for C26H35BNaO12 [M+Na]+ : 573.21, found: 573.32.

Methyl 2-[4’-(2,3,4,6-tetra-O-acetyl-a-d-mannopyranosyloxy)bi-
phenyl-4-yl]acetate (29): Prepared according to general procedure
B from methyl 2-(4-bromophenyl)acetate (28, 41.2 mg,
0.180 mmol), 27 (109 mg, 0.198 mmol), Pd(dppf)Cl2·CH2Cl2 (4.4 mg,
5.4 mmol) and K3PO4 (57.3 mg, 0.270 mmol). Yield: 35 mg (34%) as
yellow oil. Rf=0.25 (petrol ether/EtOAc 2:1); [a]20D +75.09 (c=0.8,
EtOAc); 1H NMR (500 MHz, CDCl3): d=7.52–7.49 (m, 4H, Ar-H),
7.35–7.33 (m, 2H, Ar-H), 7.17–7.14 (m, 2H, Ar-H), 5.60–5.56 (m, 2H,
H-1, H-3), 5.47 (dd, J=1.8, 3.5 Hz, 1H, H-2), 5.38 (t, J=10.0 Hz, 1H,
H-4), 4.29 (dd, J=5.0, 11.9 Hz, 1H, H-6a), 4.15–4.08 (m, 2H, H-6b, H-
5), 3.71 (s, 3H, OMe), 3.66 (s, 2H, ArCH2), 2.21, 2.06, 2.05, 2.03 ppm
(4 s, 12H, 4 OAc); 13C NMR (125 MHz, CDCl3): d=171.99, 170.53,
169.99, 169.95, 169.76 (5 CO), 155.09, 139.26, 135.72, 132.83,
129.73, 128.21, 127.03, 116.82 (12C, Ar-C), 95.87 (C-1), 69.43 (C-2),
69.23 (C-5), 68.91 (C-3), 65.99 (C-4), 62.15 (C-6), 52.11 (OMe), 40.78
(ArCH2), 20.88, 20.71, 20.70, 20.67 ppm (4COCH3); ESI-MS: m/z :
calcd for C29H32NaO12 [M+Na]+ : 595.18, found: 595.21.

Methyl 2-[4’-(2,3,4,6-tetra-O-acetyl-a-d-mannopyranosyloxy)bi-
phenyl-4-yl]cyclopropanecarboxylate (33): Prepared according to
general procedure B from methyl 1-(4-bromophenyl)cyclopropane-
carboxylate (32, 42.6 mg, 0.167 mmol), 27 (101 mg, 0.184 mmol),
Pd(dppf)Cl2·CH2Cl2 (4.1 mg, 5.0 mmol) and K3PO4 (53.2 mg,
0.251 mmol). Yield: 60 mg (56%) as colorless oil. Rf=0.31 (PE/
EtOAc, 2:1) ; [a]20D +70.2 (c=1.00, EtOAc); 1H NMR (500 MHz, CDCl3):
d=7.54–7.48 (m, 4H, Ar-H), 7.40–7.39 (m, 2H, Ar-H), 7.17–7.14 (m,
2H, Ar-H), 5.59 (dd, J=3.55, 10.1 Hz, 1H, H-3), 5.56 (d, J=1.6 Hz,
1H, H-1), 5.46 (dd, J=1.9, 3.5 Hz, 1H, H-2), 5.38 (t, J=10.0 Hz, 1H,
H-4), 4.29 (dd, J=5.1, 12.0 Hz, 1H, H-6a), 4.15–4.09 (m, 2H, H-6b,
H-5), 3.65 (s, 3H, OMe), 2.21, 2.06, 2.05, 2.03 (4 s, 12H, 4 OAc),
1.64–1.62 (m, 2H, cPr), 1.27–1.16 ppm (m, 2H, cPr); 13C NMR
(125 MHz, CDCl3): d=175.04, 170.53, 169.98, 169.95, 169.75 (5 CO),
155.10, 139.25, 138.43, 135.76, 130.94, 128.24, 126.61, 116.80 (12C,
Ar-C), 95.89 (C-1), 69.44 (C-5), 69.23 (C-2), 68.90 (C-3), 66.00 (C-4),
62.15 (C-6), 52.42 (OMe), 28.67 (cPr), 20.71, 20.68 (4C, 4COCH3),
16.75 ppm (cPr) ; ESI-MS: m/z : calcd for C31H34NaO12 [M+Na]+ :
621.19, found: 621.26.

Methyl 2-[4’-(a-d-mannopyranosyloxy)biphenyl-4-yl]acetate (30):
Prepared according to general procedure C from 29 (30 mg,
0.052 mmol). Yield: 20 mg (95%). Rf=0.25 (CH2Cl2/MeOH, 8:1) ; [a]20D
+116.0 (c=0.50, MeOH); 1H NMR (500 MHz, CD3OD): d=7.57–7.53
(m, 4H, Ar-H), 7.34–7.33 (m, 2H, Ar-H), 7.22–7.20 (m, 2H, Ar-H),
5.54 (d, J=1.5 Hz, 1H, H-1), 4.05 (dd, J=1.8, 3.3 Hz, 1H, H-2), 3.95
(dd, J=3.4, 9.5 Hz, 1H, H-3), 3.82–3.74 (m, 3H, H-4, H-6), 3.71 (s,
3H, OMe), 3.66 (s, 2H, ArCH2), 3.65 ppm (ddd, J=2.5, 5.2, 9.7 Hz,
1H, H-5); 13C NMR (125 MHz, CD3OD): d=174.02 (CO), 157.50,
140.77, 136.22, 134.29, 130.81, 129.00, 127.77, 118.13 (12C, Ar-C),
100.23 (C-1), 75.42 (C-5), 72.45 (C-3), 72.03 (C-2), 68.38 (C-4), 62.70
(C-6), 52.49 (OMe), 41.34 ppm (ArCH2); HRMS: m/z : calcd for
C21H24NaO8 [M+Na]+ : 427.1363, found: 427.1363.

Methyl 2-[4’-(a-d-mannopyranosyloxy)biphenyl-4-yl]cyclopropa-
necarboxylate (34): Prepared according to general procedure C
from 33 (38 mg, 0.063 mmol). Yield: 9 mg (33%). Rf=0.33 (CH2Cl2/
MeOH, 8:1) ; [a]20D +108.0 (c=0.30, MeOH); 1H NMR (500 MHz,
CD3OD): d=7.46–7.39 (m, 4H, Ar-H), 7.28–7.26 (m, 2H, Ar-H), 7.10–
7.07 (m, 2H, Ar-H), 5.42 (d, J=1.7 Hz, 1H, H-1), 3.93 (dd, J=1.9,
3.4 Hz, 1H, H-2), 3.82 (dd, J=3.4, 9.4 Hz, 1H, H-3), 3.69–3.61 (m,
3H, H-4, H-6), 3.53 (m, 4H, OMe, H-5), 1.49–1.47 (m, 2H, cPr), 1.14–
1.11 ppm (m, 2H, cPr); 13C NMR (125 MHz, CD3OD): d=157.50,
140.87, 139.51, 136.26, 132.03, 129.04, 127.43, 118.11 (12C, Ar-C),
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100.20 (C-1), 75.43 (C-5), 72.42 (C-3), 72.02 (C-2), 68.34 (C-4), 62.68
(C-6), 52.81 (OMe), 17.20 ppm (2C, cPr) ; HRMS: m/z : calcd for
C23H26NaO8 [M+Na]+ : 453.1520, found: 453.1523.

Sodium 2-[4’-(a-d-mannopyranosyloxy)biphenyl-4-yl]acetate
(31): Prepared according to general procedure D from 29 (59 mg,
0.103 mmol). Yield: 17 mg (40%). [a]20D +94.0 (c=0.20, MeOH/H2O
1:1); 1H NMR (500 MHz, D2O): d=7.61 (d, J=8.6 Hz, 2H, Ar-H), 7.55
(d, J=8.0 Hz, 2H, Ar-H), 7.31 (d, J=8.0 Hz, 2H, Ar-H), 7.19 (d, J=
8.6 Hz, 2H, Ar-H), 5.60 (s, 1H, H-1), 4.13 (m, 1H, H-2), 4.00 (dd, J=
3.2, 8.5 Hz, 1H, H-3), 3.75–3.67 (m, 4H, H-4, H-5, H-6), 3.51 ppm (s,
2H, ArCH2);

13C NMR (125 MHz, D2O): d=154.94, 137.93, 136.29,
135.08, 129.76, 128.07, 126.72, 117.49 (12C, Ar-C), 98.20 (C-1), 73.37
(C-5), 70.40 (C-3), 69.89 (C-2), 66.58 (C-4), 60.65 (C-6), 43.89 ppm
(ArCH2); HRMS: m/z : calcd for C20H22NaO8 [M+Na]+ : 413.1207,
found: 413.1208.

Sodium 2-[4’-(a-d-mannopyranosyloxy)biphenyl-4-yl]cyclopropa-
necarboxylate (35): Prepared according to general procedure D
from 33 (59 mg, 0.099 mmol). Yield: 10 mg (23%). [a]20D +95.0 (c=
0.20, dioxane/H2O 1:1); 1H NMR (500 MHz, D2O): d=7.62–7.60 (m,
2H, Ar-H), 7.54–7.53 (m, 2H, Ar-H), 7.38–7.19 (m, 4H, Ar-H), 5.60 (s,
1H, H-1), 4.13 (m, 1H, H-2), 4.00 (m, 1H, H-3), 3.75–3.67 (4H, H-4,
H-5, H-6), 1.33 (s, 2H, cPr), 1.01 ppm (s, 2H, cPr) ; 13C NMR
(125 MHz, D2O): d=128.67, 126.10, 124.37, 115.47 (12C, Ar-C), 96.18
(C-1), 71.35 (C-5), 68.38 (C-3), 67.87 (C-2), 64.56 (C-4), 58.62 (C-6),
12.66 ppm (2C, cPr); HRMS: m/z : calcd for C22H24NaO8 [M+Na]+ :
439.1363, found: 439.1363.

Competitive binding assay

A recombinant protein consisting of the CRD of FimH linked with
a thrombin cleavage site (Th) to a His6-tag (FimH-CRD-Th-His6) was
expressed in E. coli strain HM125 and purified by affinity chroma-
tography.[16] To determine the affinity of the various FimH antago-
nists, a competitive binding assay described previously[16] was ap-
plied. Microtiter plates (F96 MaxiSorp, Nunc) were coated with
a 10 mgmL!1 solution of FimH-CRD-Th-His6 in 20 mm HEPES,
150 mm NaCl, and 1 mm CaCl2, pH 7.4 (assay buffer), 100 mL per
well, overnight at 4 8C. The coating solution was discarded, and the
wells were blocked with 3% BSA in assay buffer (150 mL per well)
for 2 h at 4 8C. After three washing steps with assay buffer (150 mL
per well), a fourfold serial dilution of the test compound (50 mL per
well) in assay buffer containing 5% DMSO and streptavidin-perox-
idase coupled Man-a(1–3)[Man-a(1–6)]-Man-b(1–4)-GlcNAc-b(1–4)-
GlcNAcb polyacrylamide (TM-PAA) polymer (50 mL per well of
a 0.5 mgmL!1 solution) were added. On each individual microtiter
plate, n-heptyl a-d-mannopyranoside (1) was tested in parallel. The
plates were incubated for 3 h at 25 8C and 350 rpm and then care-
fully washed four times with 150 mL per well assay buffer. After the
addition of 100 mL per well of 2,2’-azino-di-(3-ethylbenzthiazoline-
6-sulfonic acid) (ABTS) substrate, the colorimetric reaction was al-
lowed to develop for 4 min and then was stopped by the addition
of 2% aqueous oxalic acid before the optical density (OD) was
measured at 415 nm on a microplate reader (Spectramax 190, Mo-
lecular Devices, CA, USA). The IC50 values of the compounds tested
in duplicate were calculated with Prism software (GraphPad Soft-
ware Inc. , La Jolla, CA, USA). The IC50 defines the molar concentra-
tion of the test compound that decreases the maximal specific
binding of TM-PAA polymer to FimH-CRD by 50%. The relative IC50

(rIC50) is the ratio of the IC50 of the test compound to the IC50 of n-
heptyl a-d-mannopyranoside (1).

Cell-based flow cytometry assay

The assay was performed as described previously.[17] Briefly, 5637
cells (DSMZ, Braunschweig, Germany) were grown to confluence in
24-well plates. Before infection, a serial dilution of test compound
in 5% DMSO, PBS (Sigma–Aldrich) was prepared. GFP-labeled
UTI89 bacteria (200 mL) in RPMI 1640 medium (Invitrogen, Basel,
Switzerland) were pre-incubated with test compound (25 mL) for
10 min at RT. The bacteria–antagonist mixtures were then added
to the monolayers of 5637 cells. The multiplicity of infection (MOI)
was 1:50 (cell/bacteria). To homogenize the infection, plates were
centrifuged at RT for 3 min at 600 g. After an incubation time of
1.5 h at 37 8C, infected cells were washed four times with RPMI
1640 medium and suspended in ice-cold PBS for 5–20 min (treat-
ment with ice-cold PBS results in the detachment of the infected
cells). Cells were then kept in the dark until analysis. Samples were
measured with a CyAn ADP flow cytometer (Beckman–Coulter,
Brea, CA, USA) and analyzed by gating on the eukaryotic cells
based on forward (FSC) and side scatter (SSC), which excludes un-
bound labeled bacteria and debris from analysis. A total of 104

cells were measured per sample. Data were acquired in a linear
mode for the SSC and logarithmic mode for FSC and the green flu-
orescent channel FL1-H (GFP). The mean fluorescence intensity
(MFI) of GFP was counted as a surrogate marker for the adherence
of bacteria. Quantification of adhesion was evaluated with the
FlowJo software 9.0.1 (Tree Star Inc. , Ashland, OR, USA). IC50 values
were determined by plotting the concentration of the antagonist
in a logarithmic mode versus the MFI and by fitting the curve with
Prism software (GraphPad, inhibition curve, variable slope), (n=2–
3, in duplicate/triplicate).

Isothermal titration calorimetry (ITC)

For the ITC experiments, the His tag in FimH-CRD-Th-His6 was
cleaved.[16] Briefly, the protein (1 mg) was incubated with 10 U
thrombin (T-6884, Sigma–Aldrich) in 20 mm Tris·HCl, pH 8.4,
150 mm NaCl and 2.5 mm CaCl2 (cleavage buffer) at 20 8C for 16 h.
The mixture was then applied to a gel filtration column (Bio-Prep
SE100/17, Bio-Rad) attached to an FPLC system. The chromatogra-
phy was run with assay buffer and analyzed by SDS-PAGE. The frac-
tions containing FimH-CRD were pooled and concentrated by ul-
trafiltration (MWCO10, Sartorius AG, Tagelswangen, Switzerland).
The ITC experiments were performed using a VP-ITC instrument
from MicroCal Inc. (GE Healthcare, Northampton, MA, USA). The
measurements were performed at 25 8C. Prior to measurements,
the protein was dialyzed in assay buffer (10 mm HEPES, 150 mm
NaCl, 1 mm CaCl2, pH 7.4 (HBS-Ca). Injections of 3–5 mL ligand solu-
tions (150 mm) were added at an interval of 10 min into the sample
cell solution containing FimH-CRD (8–22 mm, sample cell volume
1.4523 mL) with stirring at 307 rpm. Protein concentration was de-
termined by HPLC-UV against a BSA standard.[38] The quantity c=
Mt(0) KD

!1, where Mt(0) is the initial macromolecule concentration,
is of importance in titration microcalorimetry. The c values ranged
between 300 and 3200. Because the smallest reliable volumes
were injected, sigmoidal curves were obtained. Control experi-
ments injecting ligand solution into buffer without protein showed
that the heat of dilution was small and constant. Baseline correc-
tion and peak integration were accomplished using Origin 7 as de-
scribed by the manufacturer (OriginLab, Northampton, MA, USA).
The first injection was always excluded from data analysis because
it usually suffers from sample loss during the mounting of the sy-
ringe and the equilibration preceding the actual titration. A three-
parameter (N (stoichiometry), KD (dissociation constant) and DH8
(change in enthalpy) nonlinear least-square data fitting was per-
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formed in a Microsoft Excel spreadsheet using the Solver add-in
(Frontline System)[39,40] according to binding isotherms published
by Ziegler and Seelig.[41]

Thermodynamics parameters were calculated from Equation (4).

DG ¼ DH"TDS ¼ RT lnKD ¼ "RT lnKA ð4Þ

where DG, DH, and DS are the changes in free energy, enthalpy,
and entropy of binding, respectively, T is the absolute temperature,
and R is the universal gas constant (8.314 Jmol"1 K"1).

Determination of pharmacokinetic parameters

Materials : Dimethyl sulfoxide (DMSO), 1-octanol, Dulbecco’s modi-
fied Eagle’s medium (DMEM) high glucose, l-glutamine solution,
penicillin–streptomycin solution, Dulbecco’s phosphate-buffered
saline (DPBS), and trypsin–EDTA solution were purchased from
Sigma–Aldrich. MEM nonessential amino acid (MEM-NEAA) solu-
tion, fetal bovine serum (FBS), and DMEM without sodium pyruvate
and phenol red were bought from Invitrogen. PAMPA System Solu-
tion, GIT-0 Lipid Solution, and Acceptor Sink Buffer were ordered
from pIon (Woburn, MA, USA). Acetonitrile (MeCN) was bought
from Acros Organics. The Caco-2 cells were kindly provided by
Prof. G. Imanidis, FHNW, Muttenz, Switzerland and originated from
the American Type Culture Collection (Rockville, MD, USA).

Parallel artificial membrane permeation assay (PAMPA)

Values of logPe were determined in a 96-well format with the
PAMPA[33] permeation assay. For each compound, measurements
were performed at three pH values (5.0, 6.2, 7.4) in quadruplicate.
For this purpose, 12 wells of a deep-well plate, i.e. , four wells per
pH value, were filled with 650 mL System Solution. Samples
(150 mL) were withdrawn from each well to determine the blank
spectra by UV spectroscopy (SpectraMax 190). Then, analyte dis-
solved in DMSO was added to the remaining System Solution to
yield 50 mm solutions. To exclude precipitation, the optical density
was measured at 650 nm, with 0.01 being the threshold value. Sol-
utions exceeding this threshold were filtered. Afterward, samples
(150 mL) were withdrawn to determine the reference spectra. Fur-
ther 200 mL were transferred to each well of the donor plate of the
PAMPA sandwich P/N 110 163 (pIon, Woburn MA, USA). The filter
membranes at the bottom of the acceptor plate were impregnated
with 5 mL of GIT-0 Lipid Solution, and 200 mL of Acceptor Sink
Buffer were filled into each acceptor well. The sandwich was as-
sembled, placed in the GutBox, and left undisturbed for 16 h. It
was then disassembled, and samples (150 mL) were transferred
from each donor and acceptor well to UV plates. Quantification
was performed by both UV spectroscopy and LC–MS; logPe values
were calculated with the aid of the PAMPA Explorer Software (pIon,
version 3.5).

Colorectal adenocarcinoma (Caco-2) cell permeation assay

Caco-2 cells were cultivated in tissue culture flasks (BD Biosciences,
Franklin Lakes, NJ, USA) with DMEM high-glucose medium contain-
ing l-glutamine (2 mm), nonessential amino acids (0.1 mm), penicil-
lin (100 UmL"1), streptomycin (100 mgmL"1), and FBS (10%). The
cells were kept at 37 8C in humidified air containing 5% CO2, and
the medium was changed every second day. When ~90% conflu-
ence was reached, the cells were split in a 1:10 ratio and distribut-
ed to new tissue culture flasks. At passage numbers between 60

and 65, they were seeded at a density of 5.3!105 cells per well to
Transwell 6-well plates (Corning Inc. , Corning, NY, USA) with 2.5 mL
culture medium in the basolateral and 1.8 mL in the apical com-
partment. The medium was renewed on alternate days. Permeation
experiments were performed between days 19 and 21 post-seed-
ing. Prior to the experiment, the integrity of the Caco-2 monolay-
ers was evaluated by measuring the transepithelial electrical resist-
ance (TEER) with an Endohm tissue resistance instrument (World
Precision Instruments Inc. , Sarasota, FL, USA). Only wells with TEER
values >300 Wcm2 were used. Experiments were performed in the
apical-to-basolateral (absorptive) and basolateral-to-apical (secreto-
ry) directions in triplicate. Transport medium (DMEM without
sodium pyruvate and phenol red) was withdrawn from the donor
compartments of three wells and replaced by the same volume of
compound stock solutions to reach an initial sample concentration
of 62.5 mm. The Transwell plate was then shaken (250 rpm) in the
incubator. Samples (40 mL) were withdrawn after 15, 30, and
60 min from the donor and acceptor compartments, and their con-
centrations were determined by LC–MS. Apparent permeability co-
efficients (Papp) were calculated according to the equation

Papp ¼
dQ
dt

% 1
A% c0

ð5Þ

where dQ/dt is the permeability rate, A the surface area of the
monolayer, and c0 the initial concentration in the donor compart-
ment.[42] After the experiment, TEER values were assessed again for
each well and results from wells with values <300 Wcm2 were dis-
carded.

logD7.4 determination

The in silico prediction tool ALOGPS[43] was used to estimate the
logP values of the compounds. Depending on these values, the
compounds were classified into three categories: hydrophilic com-
pounds (logP<0), moderately lipophilic compounds (0& logP&1)
and lipophilic compounds (logP>1). For each category, two differ-
ent ratios (volume of 1-octanol to volume of buffer) were defined
as experimental parameters (Table 4).

Equal amounts of phosphate buffer (0.1m, pH 7.4) and 1-octanol
were mixed and shaken vigorously for 5 min to saturate the
phases. The mixture was left until separation of the two phases oc-
curred, and the buffer was retrieved. Stock solutions of the test
compounds were diluted with buffer to a concentration of 1 mm.
For each compound, six determinations, i.e. , three determinations
per 1-octanol/buffer ratio, were performed in different wells of
a 96-well plate. The respective volumes of buffer containing ana-
lyte (1 mm) were pipetted to the wells and covered by saturated 1-
octanol according to the chosen volume ratio. The plate was
sealed with aluminum foil, shaken (1350 rpm, 25 8C, 2 h) on a Hei-
doph Titramax 1000 plate shaker (Heidolph Instruments GmbH &
Co. KG, Schwabach, Germany) and centrifuged (2000 rpm, 25 8C,

Table 4. Compound classification based on estimated logP values.[43]

Compound type logP Ratio (1-octanol)/(buffer)

hydrophilic <0 30:140, 40:130
moderately lipophilic 0–1 70:110, 110:70
lipophilic >1 3:180, 4:180
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5 min, 5804 R Eppendorf centrifuge, Hamburg, Germany). The
aqueous phase was transferred to a 96-well plate for analysis by
LC–MS.

logD7.4 was calculated from the 1-octanol/buffer ratio (o/b), the ini-
tial concentration of the analyte in buffer (1 mm), and the concen-
tration of the analyte in the aqueous phase (cB) with equation:

logD7:4 ¼ log
1mM" cB

cB
# 1
o : b

! "
ð6Þ

Solubility

Solubility was determined in a 96-well format using the mSOL Ex-
plorer solubility analyzer (pIon, version 3.4.0.5). For each com-
pound, measurements were performed at three pH values (3.0, 5.0,
7.4) in triplicates. For this purpose, nine wells of a deep-well plate,
that is, three wells per pH value, were filled with 300 mL of an
aqueous universal buffer solution. Aliquots (3 mL) of a compound
stock solution (10–50 mm in DMSO) were added and thoroughly
mixed. The final sample concentration was 0.1–0.5 mm, the residual
DMSO concentration was 1.0% (v/v) in the buffer solutions. After
15 h, the solutions were filtered (0.2 mm 96-well filter plates) using
a vacuum to collect manifold (Whatman Ltd. , Maidstone, UK) to
remove any precipitates. Equal amounts of filtrate and n-propanol
were mixed and transferred to a 96-well plate for UV detection
(190–500 nm). The amount of material dissolved was calculated by
comparison with UV spectra obtained from reference samples,
which were prepared by dissolving compound stock solution in
a 1:1 mixture of buffer and n-propanol (final concentrations 0.017–
0.083 mm).

LC–MS measurements

Analyses were performed using an 1100/1200 Series HPLC System
coupled to a 6410 Triple Quadrupole mass detector (Agilent Tech-
nologies, Inc. , Santa Clara, CA, USA) equipped with electrospray
ionization. The system was controlled with the Agilent MassHunter
Workstation Data Acquisition software (version B.01.04). The
column used was an Atlantis T3 C18 column (2.1!50 mm) with
a 3 mm particle size (Waters Corp., Milford, MA, USA). The mobile
phase consisted of two eluents: solvent A (H2O, containing 0.1%
formic acid, v/v) and solvent B (MeCN, containing 0.1% formic acid,
v/v), both delivered at 0.6 mLmin"1. The gradient was ramped
from 95% A/5% B to 5% A/95% B over 1 min, and then held at
5% A/95% B for 0.1 min. The system was then brought back to
95% A/5% B, resulting in a total duration of 4 min. MS parameters
such as fragmentor voltage, collision energy, and polarity were op-
timized individually for each analyte, and the molecular ion was
followed for each compound in the multiple reaction monitoring
mode. The concentrations of the analytes were quantified by the
Agilent Mass Hunter Quantitative Analysis software (version
B.01.04).

Abbreviations

Caco-2 cells, colorectal adenocarcinoma cells; CRD, carbohydrate
recognition domain; D, distribution coefficient octanol/H2O; GFP,
green fluorescent protein; HPLC, high-performance liquid chroma-
tography; IC50, half-maximal inhibitory concentration; ITC, isother-
mal titration calorimetry; MFI, mean fluorescence intensity; PAMPA,
parallel artificial membrane permeability assay; Papp, apparent per-

meability coefficient; Pe, effective permeation value; SAR, struc-
ture–activity relationship; SPR, structure–property relationship;
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2.6 Manuscript 5: Urinary tract infection – which FimH conformation 

is therapeutically relevant? 

 

 

This manuscript describes a Topliss-guided SAR study starting from the biphenyl α-D-

mannopyranoside lead structure. The affinity of the antagonists to a stable full-length FimH 

variant as well as to the isolated FimH lectin domain, which mimics the high-affinity state, 

was evaluated. Moreover, the determination of physicochemical parameters predictive for 

oral bioaviliabtiliy and renal excretion (aqueous solubility, lipophilicity, membrane 

permeability) completes this study.  
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Abstract 

Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) are among 

the most prevalent infectious diseases worldwide requiring antibiotic treatment. Since 

recurrent antibiotic exposure can lead to resistance against antimicrobials, efficient new 

prevention and treatment strategies are urgently needed. The attachment of UPEC to 

urothelial host cells is mediated by the mannose-binding adhesin FimH located at the tip of 

bacterial type 1 pili. FimH can exhibit two structural conformations: A low-affinity state and 

a high-affinity state, which is induced only upon ligand binding and under shear stress. In 

order to investigate the suitability of the different conformations of FimH as targets for the 

development of antagonists we conducted a Topliss-guided SAR study starting from biphenyl 

α-D-mannoside 2 to identify potent ligands for a stable full-length FimH variant as a model 

for the native conformation. The affinity of the antagonists to the full-length FimH as well as 

to the isolated FimH lectin domain, which mimics the high-affinity state, was evaluated. In 

addition, the relevant pharmacokinetic parameters (solubility, permeability, renal excretion) 

were determined. With the m- & p-cyano substituted biphenyls 4p & 4q and the m-nitro 

derivative 4r three promising candidates for in vivo experiments with a UTI mouse model 

could be identified. 

Introduction 

Urinary tract infection (UTI) is among the most prevalent infectious diseases worldwide and 

affects millions of people every year.[1,2] In the vast majority of the reported cases, 

uropathogenic strains of Escherichia coli (UPEC) are the causal pathogen.[3,4] To date, acute, 

uncomplicated lower urinary tract infection (cystitis) is mainly treated with antibiotics for 

symptom relief (i.e. reduction of dysuria, frequent and urgent urination, bacteriuria, pyuria) 

and for prevention of more devastating or even life threatening complications like 

pyelonephritis and urosepsis.[5,6] However, the repeated use of antibacterial chemo–

therapeutics leads to increasing antimicrobial resistance resulting in treatment failure.[7-9] 

Therefore, new strategies for the prevention and treatment of UTI with orally applicable 

therapeutics are urgently needed.[10] 

The key step in the establishment of the infection is the bacterial adhesion to urinary 

epithelial cells,[11,12] which prevents the clearance of UPEC by the bulk flow of urine and 

enables the bacteria to colonize the epithelial cells. The adherence to the urothelial surface is 

mediated by the mannose-specific lectin FimH located at the tip of bacterial type 1 pili.[4,13-17] 



2.6 – Manuscript 5 

 146 

Hence, the virulence factor FimH was identified as an attractive target for the development of 

anti-adhesive drugs for the treatment of UTI.[18,19] Mannose-based FimH antagonists compete 

with the cellular target of FimH, the mannosylated glycoprotein uroplakin Ia present on 

urothelial cells.[20] As a result, the bacterial adhesion is prevented and hence the infection. A 

substantial advantage of this anti-adhesion therapy of UTI over treatment with antibiotics is 

the reduced risk of resistance formation, because no direct selection pressure is exerted on the 

pathogen.[18,21] 

FimH is composed of two domains: the N-terminal lectin domain (FimH-L) and, connected 

by a short linker, the C-terminal pilin domain (FimH-P).[22] The lectin domain encloses the 

carbohydrate recognition domain (CRD) that binds to oligomannosides of the glycoprotein 

uroplakin Ia on the epithelial cell surface,[19] while the pilin domain anchors the adhesin to 

the pilus.[23] FimH-P exhibits an incomplete immunoglobulin-like fold that is completed by 

insertion of an N-terminal donor strand of FimG, the preceding subunit in pilus assembly.[23] 

Due to this two-domain architecture, FimH can exhibit two experimentally observed 

structural states:[22] A "compressed" FimH-L conformation (low-affinity state) that was 

observed in the crystal structure of the entire fimbrial tip in absence of ligands,[22] and an 

"elongated" conformation (high-affinity state), which was found in several X-ray structures 

of the isolated lectin domain FimH-L in its ligand-bound state[24-29] as well as in the complex 

between FimH and the pilus assembly chaperone FimC.[30] The switch between these 

conformations is regulated by the pilin domain and can be triggered by applying mechanical 

forces along the molecule that occur, for example, during excretion of urine. This behavior is 

characteristic for the "catch-bond" phenomenon[31-35] found for the FimH-ligand 

interaction.[22] It is responsible for the remarkable ability of FimH to increase its apparent 

affinity to target glycans and enables the bacteria to attach tightly to oligomannosides on 

bladder epithelial cells, even under the harsh conditions of the urinary tract (i.e. flow of 

urine). Whereas in the low-affinity state the ligand binding site of FimH-L is open, the high-

affinity conformation is characterized by a deep and narrow CRD, which is caused by 

structural rearrangements in the swing (amino acids 27-33), linker (residues 154-160) and 

insertion (residues 112-118) loops.[22] As a result, the hydrophilic side chains of amino acids 

lining the FimH binding pocket establish a perfect network of hydrogen bonds with the 

hydroxy groups of α-D-mannopyranosides.[36] 

Interestingly, the isolated FimH-L was found to exhibit an about two orders of magnitude 

higher binding affinity to methyl α-D-mannopyranoside[22] and BSA-labeled mannose[22,37] 
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than the full-length FimH in the fimbrial tip. In addition, mutagenesis experiments to disrupt 

the inter-domain interface[38] and the observation that crystals of the fimbrial tip broke upon 

carbohydrate addition further supported the opinion that binding of ligands is connected to 

domain separation in FimH and that mechanical force shifts the ligand binding equilibrium 

towards that of the isolated lectin domain.[22] 

About three decades ago, Sharon et al. investigated various oligomannosides and aryl α-D-

mannosides as potential antagonists of the FimH-mediated bacterial adhesion[39,40] and 

reported on a protective effect of methyl α-D-mannoside in a UTI mouse model.[41] Since 

then, various monovalent α-D-mannosides bearing a wide range of aglycones including n-

alkyl,[24] phenyl,[42] dioxocyclobutenylaminophenyl,[43] umbelliferyl,[42] biphenyl,[25,44-47] 

indol(in)ylphenyl,[48] triazolyl[49] and thiazolylamino[26] have been described as high-affinity 

ligands for the FimH lectin domain. In part, these modifications were the result of rational 

drug design based on X-ray crystal structures of FimH-L bound to α-D-mannosides.[24,36] 

Additionally, different multivalent presentations of the mannose have been reported[50-56] and 

a heptavalent presentation of β-cyclodextrin-tethered n-heptyl α-D-mannoside (1) (Figure 1) 

was shown to be highly effective when applied into the bladder of C3H/HeN mice together 

with the UTI89 bacterial strain.[56] Importantly, adverse side effects resulting from non-

selective binding of mannose-based FimH antagonists to human mannose receptors could be 

ruled out.[57] 
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Figure 1. Monovalent FimH antagonists: n-Heptyl α-D-mannopyranoside (1) and biphenyl mannoside 2 served 

as reference compounds; the biphenyl derivatives 3-7 have been orally explored in in vivo disease models. 
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The high affinities of α-D-mannopyranosides towards the FimH lectin domain in the high-

affinity conformation are resulting from optimal interactions with the main structural features 

of the CRD:[27,28,30,36] First, the mannose binding pocket accommodates the mannose moiety 

by means of a perfect hydrogen bond network and, second, the entrance to the binding site, 

the so-called 'tyrosine gate', consisting of Tyr48, Tyr137 and Ile52, hosts hydrophobic 

aglycones. Aromatic groups, such as present in the biphenyl derivatives 2-7 (Figure 1), can 

undergo strong π-π-stacking interactions with the tyrosine gate, which are further favored by 

the addition of electron withdrawing substituents on the terminal ring of the biaryl 

moiety.[25,44] 

In the last years, the high potential of the biphenyl α-D-mannosides 3 & 5-7 for an oral 

treatment was proven in several in vivo PK studies in mice.[44-46] However, due to the 

insufficient pharmacokinetic properties of the antagonists, i.e. modest bioavailability and 

short duration of the therapeutic effect in the bladder, high doses (≥ 50 mg/kg) at short 

intervals were necessary to achieve anti-adhesive effects over an extended period of time. 

Recently, we identified para-cyano derivative 4p, a bioisostere of 3, as FimH antagonist with 

an optimal in vitro PK/PD profile.[58] Biphenyl 4p not only showed sub-nanomolar affinity to 

the isolated FimH lectin domain, but also significantly improved pharmacokinetic parameters 

(solubility, permeability, renal excretion). The para-cyano substituent mediated lipophilicity 

as well as high plasma protein binding, which slowed down the rate of renal excretion. The 

beneficial PK profile of 4p was confirmed by in vivo experiments in mice with steady renal 

excretion over more than 8 h following oral application, which allows for a long-lasting anti-

adhesive effect. Furthermore, orally applied 4p proved to be effective in a UTI mouse model 

in low dosage (10 mg/kg) leading to a reduction of the bacterial load in the bladder by more 

than 1000-fold. 

However, most previous in vitro ligand binding studies on FimH have been performed with 

the isolated FimH lectin domain where the CRD is locked in the high-affinity state.[22] But in 

the majority of virulent UPEC strains, e.g. UTI89,[60] CFT073,[61] and J96[62] this 

conformation is induced in vivo only after ligand binding and the onset of shear stress. 

Therefore it remains questionable if the isolated FimH-L is the relevant target for the 

development of anti-adhesive drugs. Since the compressed (low-affinity) conformation of 

FimH with its open binding site represents the state in UPEC under non-flow conditions, the 

binding of ligands to this FimH conformation should be investigated as well. 
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To address this issue, in a structure-affinity relationship (SAR) study we synthesized a series 

of novel derivatives of biphenyl α-D-mannoside 2 (Figure 1) as FimH antagonists and 

determined their binding affinity to a stable and soluble full-length FimH variant, which 

mimics FimH in the assembled fimbrial tip. For comparison with previous results,[44,47,58] 

their affinity to the isolated FimH lectin domain was evaluated as well. In addition, the in 

vitro pharmacokinetic properties of the antagonists, which are predictive for oral 

bioavailability and renal excretion, were also quantified. 

Results and Discussion 

The aim of the present study was to identify high-affinity antagonists for the full-length 

FimH by introducing various substituents on the terminal aromatic ring of biphenyl α-D-

mannoside 2, which represents the parent compound of the highly active derivatives 3[44] and 

4p.[58] However, finding the optimal substitution pattern on an aromatic ring in a lead 

compound (e.g. 2) in order to maximize its potency is a very common problem in drug 

design. Since there are many possible substitutions and several different ring positions, the 

number of potential compounds to be considered is very large. The Topliss operational 

scheme,[63,64] a manual and non-mathematical application of the Hansch method for treatment 

of structure activity correlations,[65,66] presents a valuable tool in drug design to approach this 

problem rationally by guiding towards the most active analogue of a lead compound with the 

least synthetic investment. It allows for selecting a limited group of substituents that provide 

good discrimination between π (hydrophobic effects), σ (electronic effects) and ES (steric 

effects). 

Synthesis of FimH Antagonists. The biphenyl mannosides were synthesized in analogy to 

previously described routes (Scheme 1).[44,47] Lewis acid promoted glycosylation of 2-chloro-

4-phenylphenol (9) with peracetyled D-mannose 8 (→ 11) and subsequent deprotection under 

Zemplén conditions afforded biphenyl α-D-mannoside 2. For the synthesis of the substituted 

biphenyl derivatives 4a-r, phenol 10 was mannosylated with 8 to give iodide 12. In a 

palladium-catalyzed Suzuki coupling of 12 with aryl boronates 13a-r, the biphenyls 14a-r 

were obtained. Finally, deprotection of the mannose moiety yielded the test compounds 4a-r. 
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Scheme 1. a) BF3⋅Et2O, 40 °C, 1 d (11: 77%, 12: 76%); b) NaOMe, MeOH, 5-12 h (34-95%); c) 

Pd(dppf)2⋅CH2Cl2, K3PO4, DMF, 80 °C, 5-12 h (45-90%). 

Binding Affinities. The binding affinity of the biphenyl mannosides 2 and 4a-r was 

determined in a competitive fluorescence polarization assay (FP-assay) to a stable variant of 

the full-length FimH (see below), as well as to the isolated FimH lectin domain in the form of 

a previously described[67] protein construct consisting of the CRD with a C-terminal His-tag 

with a thrombin cleavage site (FimH-CRD-Th-His6). In both cases, n-heptyl mannoside (1) 

was used as a reference compound. 

Construction of a soluble full-length FimH. Since isolated FimH with a non-complemented 

pilin domain is only marginally stable and shows aggregation tendency under physiological 

conditions,[68] a recently described[69] soluble and stable full-length FimH variant was used in 

this study. For this, a FimH-FimC complex was produced by periplasmic co-expression and 

subsequent extraction by chemical lysis of the bacterial outer membrane. The FimH-FimC 

complex was purified using conventional purification methods and stable full-length FimH 

was obtained by replacing FimC with a synthetic peptide corresponding to the sequence of 

the natural FimG donor strand (FimG residues 1-14; termed DsG) that completes the Ig-like 

fold of the FimH pilin domain. This FimH·DsG complex represents a minimal and yet 

comprehensive analogue of the native FimH structure as first published by Le Trong et al.[22] 
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Competitive Fluorescence Polarization Assay.[58] For the rapid determination of binding 

affinity, a recently developed competitive binding assay based on fluorescence polarization 

(FP) was used with both, the full-length FimH and the isolated FimH lectin domain. The 

antagonist of interest displaces the fluorescent-labeled competitor 15[58] from the binding site, 

thereby reducing fluorescence polarization.[70] Initially, the affinity of 15 to either FimH 

protein was evaluated in a direct binding assay. Whereas for the isolated lectin domain a 

dissociation constant (KD) of 1.7 nM has been reported,[58] for the full-length FimH a KD of 

137 nM was determined (Table 1), which represents a decrease in affinity by almost two 

orders of magnitude compared to FimH-L. After having established the KD of 15 to both 

FimH proteins, competitive FP experiments were performed with unlabeled FimH 

antagonists as competitors. Before measuring FP, the test compounds were incubated for at 

least 1 h with full-length FimH or for at least 24 h with the isolated lectin domain. These 

incubation periods were empirically determined to be necessary for the reaction to reach 

equilibrium. Resulting competition binding curves (Figure 2) were fitted to an equilibrium 

competition binding model[71] to obtain the corresponding KDs. 

 

 
 

Figure 2. Inhibition curves of biphenyl mannoside 4r from the competitive FP assay with the full-length FimH 

(blue) and the isolated lectin domain (black). The KD values were determined by nonlinear least-squares fitting 

to a competition binding equation[71] [KD (full-length FimH) = 39.1 nM; KD (lectin domain) = 0.2 nM]. 

 

For the unsubstituted biphenyl mannoside 2 a KD of 458 nM to the full-length FimH was 

measured (Table 1), which is an eightfold improvement of affinity compared to the reference 

compound n-heptyl mannoside (1). According to the Topliss scheme, the p-chloride 4a is the 
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first derivative to be examined. It was found to have an about two-fold higher affinity to the 

FimH·DsG complex than parent compound 2 (KD 251 nM), which most probably can be 

attributed to a +π-effect, a +σ-effect or to a combination of both. The m,p-dichloro derivative 

4b was synthesized next, because of the increase in both π- and σ-values when summed up 

for the two substituents. Since the affinity of 4b was lower than that of the precursor 4a, 

compounds 4c-e were the next synthetic targets leading to the p-nitro derivative 4e, which 

showed a significantly improved affinity compared to 4a (KD 140 nM vs 251 nM). This 

might be attributed to the lower lipophilicity (-π-effect) and higher electron-withdrawing 

capacity (+σ-effect) of the p-nitro substituent. 

To cross check, the derivatives 4f-h were also synthesized. Interestingly, the p-methyl 

biphenyl 4g was found to be nearly as active as the p-chloro compound 4a (KD 297 nM vs 

251 nM). Therefore, the middle branch of the Topliss operational scheme was investigated as 

well. However, all of the derivatives 4i-n showed decreased affinities, which might be 

ascribed to either an unfavorable steric effect of the ortho-substitution in 4k-m leading to a 

conformational change of the biphenyl moiety, or to the exceedance of the optimal 

lipophilicity and the low electron-withdrawing potential of the substituents. 

If an improvement in affinity is achieved with a p-nitro group as in 4e, the Topliss scheme 

suggests investigating substituents exhibiting a similar electron-withdrawing potential but a 

lower π-effect in order to find the optimal σ/π-balance.[63,64] Therefore, the p-acetyl (→ 4o) 

and p-cyano (→ 4p) derivatives were examined next. Indeed, both compounds showed an 

increased affinity to the full-length FimH with KDs < 100 nM. Finally, the beneficial nitro- 

and cyano-substituents were moved to the 3-position since the meta-substituents show a 

stronger -π-effect than their para-counterparts while maintaining a comparable +σ-effect. 

However, while 3-substitution with CN in 4q did not improve the activity compared to 4p, a 

meta-nitro group (→ 4r, Figure 2) led to a 3.5-fold gain in affinity compared to the para-

derivative 4e (KD 39.1 nM vs 140 nM) making compound 4r the most active ligand to the 

full-length FimH identified by this approach. Apparently, the m-nitro substitution in 4r 

provides the optimal balance between lipophilicity and electron-withdrawing effect. 
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Table 1. Pharmacodynamic and pharmacokinetic parameters of FimH antagonists. 

 

Compound 

OHO
HO

OH
OH

OR  

Full-length 

FimH 

KD [nM]a 

FimH lectin 

domain 

KD [nM]a 

Solubility 

[µg/mL]b 

logD7.4
c PAMPA 

logPe [cm/s]d 

1 O  3600 16.7 > 3000 1.7 n.d. 

15[58] O

NH

O

NH

HN

S

O

O

OHO OH

Cl

 

137 1.7 n.d. n.d. n.d. 

2 
O

Cl

 

458 3.8 5.5 ± 0.2 2.6 ± 0.1 n.d. 

4a 
O

Cl

Cl  

251 4.9 3.5 ± 0.3 3.3 ± 0.1 n.d. 

4b 
O

Cl

Cl

Cl

 

692 5.8 2.3 ± 0.2 n.d. n.d. 

4c 
O

Cl

CF3  

415 5.8 22 ± 0 3.4 ± 0.1 n.d. 

4d 
O

Cl

Cl

Cl  

465 4.1 8.0 ± 0.8 n.d. n.d. 

4e 
O

Cl

NO2  

140 0.6 117 ± 7 2.3 ± 0.0 -5.0 ± 0.1 

4f 
O

Cl

OCH3  

344 2.2 3.8 ± 0.4 2.7 ± 0.1 n.d. 

4g 
O

Cl

CH3  

297 3.6 7.4 ± 0.2 3.3 ± 0.0 n.d. 

4h 
O

Cl

Cl

CF3

 

377 7.5 1.0 ± 0.2 n.d. n.d. 

4i 
O

Cl

Cl

 

353 3.2 5.7 ± 0.7 3.2 ± 0.0 n.d. 
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4j 
O

Cl

CH3

 

380 2.2 7.1 ± 0.6 3.0 ± 0.0 n.d. 

4k 
O

Cl

Cl

 

434 3.1 28 ± 1 3.1 ± 0.1 -4.4 ± 0.1 

4l 
O

Cl

CH3

 

436 2.9 135 ± 24 2.9 ± 0.0 -4.6 ± 0.2 

4m 
O

Cl

OCH3

 

391 2.7 > 280 2.4 ± 0.0 -4.6 ± 0.1 

4n 
O

Cl

CF3

 

575 5.1 36 ± 1 3.3 ± 0.1 n.d. 

4o 
O

Cl

COCH3  

98.6 0.3 16 ± 0 2.1 ± 0.1 n.d. 

4p[58] 
O

Cl

CN  

83.8 0.6 192 ± 5 2.1 ± 0.0 -5.2 ± 0.0 

4q 
O

Cl

CN

 

85.9 0.4 227 ± 5 2.1 ± 0.0 -5.1 ± 0.0 

4r 
O

Cl

NO2

 

39.1 0.2 23 ± 2 2.4 ± 0.1 -4.9 ± 0.1 

 

[a] Affinities (dissociation constants, KD) to the full-length FimH (FimH·DsG) and the isolated FimH lectin 

domain (FimH-CRD-Th-His6) were determined in a competitive fluorescence polarization assay.[58] [b] Kinetic 

solubility was measured in a 96-well format in triplicate using the µSOL Explorer solubility analyzer.[72] [c] 

Octanol-water partition coefficients (logD7.4) were determined by a miniaturized shake flask procedure. The 

values are indicated as mean ± SD of sextuplicate determinations.[73] [d] Permeation through an artificial 

membrane (logPe, effective permeability) was determined by PAMPA (parallel artificial membrane 

permeability assay) in quadruplicate.[74] 
 

When tested with the isolated FimH CRD in the FP assay all the antagonists 2 and 4a-r 

exhibited low nanomolar affinities. Compared to the full-length FimH this corresponds to an 

increase in affinity of about two orders of magnitude. Obviously, for FimH in the high-

affinity state with its deep and narrow mannose binding pocket the influence of the 

hydrophobic and electronic effects of different substituents is not as pronounced as in the 
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case of the full-length FimH in the low-affinity conformation with an open ligand binding 

site. However, the antagonists bearing substituents with high +σ-effect like p- and m-nitro 

(→ 4e & 4r, Figure 2), p- and m-cyano (→ 4p & 4q), and p-acetyl (→ 4o) showed even sub-

nanomolar affinities to the FimH lectin domain, which is in good agreement with previous 

findings that a high electron-withdrawing potential of substituents on the biphenyl aglycone 

is essential for an enhanced π-π stacking interaction with the tyrosine gate lining the entrance 

to the mannose binding pocket.[44,47,58] 

Physicochemical Properties. For assessing the potential of the antagonists for intestinal 

absorption and renal clearance, lipophilicity (logD7.4),[73] aqueous solubility, and permeability 

through an artificial membrane (PAMPA, logPe)[74] were determined (Table 1). According to 

the maximum absorbable dose (MAD) concept,[75,76] an aqueous solubility of at least 50 

µg/mL is required to achieve quantitative absorption of a 1 mg/kg dose of compound with 

medium permeability. However, whereas for n-heptyl α-mannopyranoside (1), excellent 

aqueous solubility (> 3000 µg/mL) was determined, the unsubstituted parent compound 2 as 

well as the disubstituted derivatives and antagonists bearing apolar substituents in the meta- 

or para-position (compounds 4a-4d, 4f-j, 4n and 4o) were found to be scarcely soluble. By 

contrast, the polar cyano moiety (→ 4p, 4q) and the para-nitro substituent present in 4e 

enhanced solubility to 117-227 µg/mL, while a nitro group in the meta-position (→ 4r) led to 

a substantial drop in solubility below the critical limit of 50 µg/mL. Moving apolar 

substituents to the ortho-position (→ 4k-m) also markedly improved aqueous solubility, 

which is in agreement with an increased distortion angle of the two phenyl moieties resulting 

in the disruption of the molecular planarity. 

All biphenyl derivatives showed moderate to high lipophilicity with logD7.4 values ranging 

from 2.1 to 3.4, which is beneficial for oral absorption by passive diffusion. Indeed, 

permeability data derived from PAMPA[74] (logPe -4.4 to -5.2, Pe: effective permeation) 

suggested high permeation through the intestinal membranes for all tested antagonists. In 

addition, logD7.4 was described as a key parameter for tubular reabsorption.[77-79] Hence, 

lipophilic compounds are predominantly reabsorbed from the renal filtrate. Considering that 

renal clearance is the major route of elimination, this will lead to a slow but steady excretion 

into the bladder. In contrast, hydrophilic compounds are poorly reabsorbed and therefore 

quickly renally eliminated, which results in high initial drug levels in the urine but limits the 

time range where the minimal anti-adhesive concentration is maintained. As a consequence, a 
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logD7.4 > 2 as determined for the biphenyl mannosides in this study is optimal for tubular 

reabsorption from the glomerular filtrate and thus for slow renal clearance. 

Summary and Conclusion 

Recently, a panel of monovalent alkyl and aryl α-D-mannopyranosides has been reported as 

potent FimH antagonists. However, in most previous in vitro ligand binding studies the 

isolated FimH lectin domain, in which the CRD is locked in the high-affinity conformation, 

was used as target. Yet, in virulent UPEC strains this state is induced only after ligand 

binding and when shear stress is applied, while the low-affinity conformation of FimH 

represents the native state under non-flow conditions.[22] As a consequence, it remained 

doubtful if the isolated FimH CRD is the relevant target for the development of FimH 

antagonists. Therefore, the aim of the present study was to find potent ligands for a stable 

full-length FimH variant (FimH·DsG), which mimics FimH in the assembled fimbrial tip. In 

a Topliss-guided SAR study starting from biphenyl α-D-mannoside 2 we identified a series of 

antagonists with electron-withdrawing substituents in the meta- or para-position of the 

terminal aromatic ring (→ 4o-4r) that exhibited affinities to the full-length FimH below 100 

nM. With the most potent compound, the meta-nitro derivative 4r, a more then tenfold 

improvement of affinity was achieved compared to 2 (KD 39.1 nM vs 458 nM). By contrast, 

when tested with the isolated FimH lectin domain, all biphenyl mannosides were found to be 

about two orders of magnitude more potent, with a very narrow affinity span in the low 

nanomolar range. This indicates a less distinct influence of the substituent properties 

(hydrophobicity and electronic effects) on FimH in the high-affinity conformation with a 

deep and narrow mannose binding pocket compared to the full-length FimH in the low-

affinity state with its open binding site. 

Besides the pharmacodynamics, the relevant pharmacokinetic parameters (solubility, 

lipophilicity, permeability) for oral bioavailability and renal excretion, were also investigated. 

However, only a few biphenyl derivatives (o-methyl, o-methoxy, m- & p-cyano, and p-nitro) 

showed aqueous solubility above the critical limit of 50 µg/mL leading to sufficient 

antagonist concentration in the intestinal fluids. Nevertheless, all of these compounds 

exhibited substantial permeability, which, in combination with high aqueous solubility, 

suggests high systemic availability after oral dosing. Furthermore, due to their favorable 

lipophilicity, the biphenyls are susceptible to tubular reabsorption. Unless they are eliminated 
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via concurring hepatic pathways, this results in sustained availability of the antagonist in the 

urinary bladder. 

In summary, the m-nitro substituted biphenyl α-D-mannoside 4r was identified as a candidate 

for in vivo experiments in mice because of its high affinity to the full-length FimH. However, 

the low aqueous solubility of 4r might be a drawback for an oral application. Therefore, the 

cyano derivatives 4p[58] and 4q, although twofold less potent, should be considered as well 

due to their more beneficial in vitro PK/PD profile. In future investigations, the biphenyls 4p-

4r will be tested in a UTI disease model with different UPEC strains like UTI89,[60] 

CFT073,[61] and J96[62] to further evaluate the suitability of the different conformations of 

FimH as targets for the development of drugs for an anti-adhesion therapy of UTI. 

Experimental section 

Synthesis 

General Methods. NMR spectra were recorded on a Bruker Avance DMX-500 (500 MHz) 

spectrometer. Assignment of 1H and 13C NMR spectra was achieved using 2D methods (COSY, 

HSQC, HMBC, TOCSY). Chemical shifts are expressed in ppm in relation to the residual solvent 

signals (CHCl3 and CHD2OD) on the δ-scale. Coupling constants J are given in Hertz (Hz). 

Multiplicities were specified as follows: s (singlet), d (doublet), dd (doublet of a doublet), t (triplet), q 

(quartet), m (multiplet). Commercially available reagents were purchased from Fluka, Aldrich, Acros, 

and Abcr. Dichloromethane (DCM) was dried by filtration over Al2O3 (Fluka, type 5016 A basic). 

N,N-dimethylformamide (DMF) was dried by distillation from calcium hydride. Methanol (MeOH) 

was dried by refluxing with sodium methoxide and distilled immediately before use. Molecular sieves 

were activated under vacuum at 500 ºC for 1 h immediately before use. Reactions were monitored by 

TLC using glass plates coated with silica gel 60 F254 (Merck) and visualized by using UV light and/or 

by charring with a molybdate solution (a 0.02 M solution of ammonium cerium sulfate dihydrate and 

ammonium molybdate tetrahydrate in 10% aq. H2SO4). Column chromatography was performed on a 

CombiFlash Companion (Teledyne-ISCO, Inc.) using RediSep normal phase disposable flash 

columns (silica gel, 40-63 µm). Reversed phase chromatography was performed on LiChroprepRP-18 

(Merck, 40-63 µm). LC-MS separations were carried out using Sunfire C18 columns (19 x 150 mm, 

5.0 µm) on a Waters 2525 LC, equipped with Waters 2996 photodiode array and Waters micromass 

ZQ MS for detection. Electron spray ionization mass spectra (ESI-MS) were obtained on a Waters 

micromass ZQ. HR-MS analysis were carried out using a Agilent 1100 LC equipped with a 

photodiode array detector and a Micromass QTOF I equipped with a 4 GHz digital-time converter. 

Optical rotations were measured using Perkin-Elmer polarimeter 341. 
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General procedure A for the synthesis of biphenyl compounds. A two-neck flask was charged 

with 12 (100 mg, 1.0 eq), arylboronic acid or boronate 13a-r (1.1 eq), Pd(Cl2)dppf·CH2Cl2 (0.03 eq), 

K3PO4 (2 eq), and a stirring bar under argon. Then anhydrous DMF (2 mL) was added. The mixture 

was flushed with argon and degassed for 5 min, then heated to 80 °C and stirred for 5-12 h. The 

reaction mixture was cooled to rt, diluted with EtOAc (50 mL), washed with H2O (50 mL) and brine 

(50 mL), dried over Na2SO4, concentrated and purified by chromatography on silica (petroleum 

ether/EtOAc) to afford biphenyl compounds 14a-r. 

General procedure B for deacetylation. To a solution of 11 or 14a-r (1.0 eq) in dry MeOH (2 mL) 

was added freshly prepared methanolic NaOMe solution (1 M, 0.1 eq) under argon. The mixture was 

stirred at rt until the reaction was complete (2-8 h, monitored by TLC), then neutralized with acetic 

acid, filtered and concentrated in vacuo. The residue was purified by chromatography on silica 

(DCM/MeOH, 10:1 to 8:1) to afford 2 and 4a-r as white solids. Further purification for biological 

testing was performed using preparative LC-MS. 

3-Chloro-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (11). To a suspension of 

activated MS 4Å (150 mg), α-D-mannose pentaacetate (8, 156 mg, 0.40 mmol) and 2-chloro-4-

phenylphenol (9, 98 mg, 0.48 mmol) in dry DCM (1.5 mL) was added dropwise freshly distilled 

BF3·Et2O (148 µL, 1.2 mmol) under argon. The mixture was stirred for 24 h at 40 °C. After cooling to 

rt the mixture was diluted with DCM (50 mL), filtered through celite, and washed with satd. aq. 

NaHCO3 (50 mL), water (50 mL) and brine (50 mL). The organic phase was dried over Na2SO4 and 

concentrated under reduced pressure. The crude product was purified by chromatography on silica 

(petroleum ether/EtOAc, 1:0 to 1:1) to yield 11 (166 mg, 77%). [α]D
20 +72.0 (c 0.47, CHCl3); 1H 

NMR (500 MHz, CDCl3): δ = 7.56 (d, J = 1.6 Hz, 1H, Ar-H), 7.45 (d, J = 7.4 Hz, 2H, Ar-H), 7.32 (m, 

4H, Ar-H), 7.17 (m, 1H, Ar-H), 5.63-5.42 (m, 3H, H-1, H-2, H-3), 5.33 (t, J = 10.1 Hz, 1H, H-4), 

4.22 (dd, J = 12.2, 5.3 Hz, 1H, H-6a), 4.14 (m, 1H, H-5), 4.04 (d, J = 12.2 Hz, 1H, H-6b), 2.14 (s, 3H, 

COCH3), 2.06-1.88 (m, 9H, 3 COCH3); 13C NMR (126 MHz, CDCl3): δ = 170.61, 170.08, 169.91, 

169.90 (4 CO), 150.64, 139.28, 137.64, 129.25, 129.06, 127.78, 126.97, 126.40, 124.82, 117.43 (12C, 

Ar-C), 96.86 (C-1), 69.90 (C-5), 69.50 (C-2), 68.93 (C-3), 66.01 (C-4), 62.26 (C-6), 21.01, 20.85, 

20.82, 20.80 (4 COCH3); ESI-MS: m/z: Calcd for C26H27ClNaO10 [M+Na]+: 557.1, found: 557.2. 

2-Chloro-4-iodo-phenyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (12).[80] According to the 

procedure for 11, compound 8 (390 mg, 0.77 mmol) was reacted with 2-chloro-4-iodophenol (10, 235 

mg, 0.9 mmol) and BF3·Et2O (290 µL, 2.3 mmol) in DCM (3 mL) containing MS 4Å (300 mg) for 20 

h at 40 °C. Yield: 345 mg, 76%. Spectroscopic data were in accordance with reported values.[80] 

3,4'-Dichloro-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14a). Prepared 

according to general procedure A from 12 (30 mg, 0.052 mmol), 4-chloro-phenylboronic acid (13a, 

9.0 mg, 0.57 mmol), Pd(dppf)Cl2⋅CH2Cl2 (1.3 mg, 1.6 µmol) and K3PO4 (22 mg, 0.1 mmol). Yield: 16 
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mg (54%) as a white solid. [α]D
20 +97.8 (c 0.54, CHCl3); 1H NMR (500 MHz, CD3OD): δ = 7.66-7.23 

(m, 7H, Ar-H), 5.67 (s, 1H, H-1), 5.49-5.43 (m, 2H, H-2, H-3), 5.25 (t, J = 10.0 Hz, 1H, H-4), 4.13 

(dd, J = 12.1, 5.4 Hz, 1H, H-6a), 4.05 (ddd, J = 10.1, 5.4, 2.1 Hz, 1H, H-5), 3.98 (dd, J = 12.2, 2.2 Hz, 

1H, H-6b), 2.14-1.80 (m, 12H, 4 COCH3); 13C NMR (126 MHz, CD3OD): δ = 172.17, 171.51, 171.48 

(4C, 4 CO), 151.81, 139.07, 137.34, 134.80, 130.12, 129.73, 129.31, 127.49, 125.65, 118.86 (12C, 

Ar-C), 97.67 (C-1), 71.23 (C-5), 70.50, 70.24 (C-2, C-3), 66.97 (C-4), 63.29 (C-6), 20.58, 20.55 (4C, 

4 COCH3); ESI-MS: m/z: Calcd for C26H26Cl2NaO10 [M+Na]+: 591.1, found: 591.1. 

3,3',4'-Trichloro-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14b). Prepared 

according to general procedure A from 12 (79 mg, 0.135 mmol), 3,4-dichloro-phenylboronic acid 

(13b, 228 mg, 0.15 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.3 mg, 4 µmol) and K3PO4 (57 mg, 0.27 mmol). 

Yield: 52 mg (64%) as a white solid. [α]D
20 +66.5 (c 0.23, CHCl3); 1H NMR (500 MHz, CDCl3): δ = 

7.59 (dt, J = 8.9, 4.4 Hz, 2H, Ar-H), 7.50 (d, J = 8.3 Hz, 1H, Ar-H), 7.41-7.31 (m, 2H, Ar-H), 7.24 (d, 

J = 8.6 Hz, 1H, Ar-H), (5.66-5.58 (m, 2H, H-2, H-3), 5.55 (d, J = 1.9 Hz, 1H, H-1), 5.41 (t, J = 10.1 

Hz, 1H, H-4), 4.29 (dd, J = 12.3, 5.2 Hz, 1H, H-6a), 4.18 (ddd, J = 10.1, 5.1, 2.1 Hz, 1H, H-5), 4.10 

(m, 1H, H-6b), 2.21 (s, 3H, COCH3), 2.15-1.97 (m, 9H, 3 COCH3); 13C NMR (126 MHz, CDCl3): δ = 

170.60, 170.11, 169.92, 169.89 (4 CO), 151.29, 139.26, 135.03, 133.24, 132.06, 131.01, 129.15, 

128.81, 126.32, 126.18, 125.12, 117.41 (12C, Ar-C), 96.80 (C-1), 69.99 (C-5), 69.45 (C-3), 68.88 (C-

2), 65.93 (C-4), 62.22 (C-6), 21.01, 20.85, 20.83 (4C, 4 COCH3); ESI-MS: m/z: Calcd for 

C26H26Cl3NaO10 [M+Na]+: 625.0, found: 625.0. 

3-Chloro-4'-(trifluoromethyl)-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14c). 

Prepared according to general procedure A from 12 (79 mg, 0.135 mmol), 4-trifluoromethyl-

phenylboronic acid (13c, 28 mg, 0.15 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.3 mg, 4 µmol) and K3PO4 (57 

mg, 0.27 mmol). Yield: 46 mg (57%) as a white solid. [α]D
20 +63.8 (c 0.31 , CHCl3); 1H NMR (500 

MHz, CD3OD): δ = 7.84-7.77 (m, 3H, Ar-H), 7.74 (d, J = 8.3 Hz, 2H, Ar-H), 7.64 (dd, J = 8.6, 2.3 

Hz, 1H, Ar-H), 7.43 (d, J = 8.6 Hz, 1H, Ar-H), 5.81 (s, 1H, H-1), 5.60-5.54 (m, 2H, H-2, H-3), 5.36 

(t, J = 10.0 Hz, 1H, H-4), 4.24 (dd, J = 12.2, 5.4 Hz, 1H, H-6a), 4.14 (ddd, J = 10.0, 5.4, 2.2 Hz, 1H, 

H-5), 4.09 (dd, J = 12.2, 2.2 Hz, 1H, H-6b), 2.20, 2.07, 2.01, 1.95 (4 s, 12H, 4 COCH3); 13C NMR 

(126 MHz, CD3OD): δ = 172.18, 171.52, 171.50, 171.48 (4 CO), 152.30, 144.19, 136.90, 130.12, 

128.39, 127.89, 126.94, 126.91, 125.75, 118.82 (13C, Ar-C, CF3), 97.62 (C-1), 71.26 (C-5), 70.49, 

70.21 (C-2, C-3), 66.95 (C-4), 63.28 (C-6), 20.59, 20.58, 20.55 (4C, 4 COCH3); ESI-MS: m/z: Calcd 

for C27H26ClF3NaO10 [M+Na]+: 625.1, found: 625.0. 

2',3,4'-Trichloro-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14d). Prepared 

according to general procedure A from 12 (79 mg, 0.14 mmol), 2,4-dichloro-phenylboronic acid (13d, 

28 mg, 0.15 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.3 mg, 4 µmol) and K3PO4 (57 mg, 0.27 mmol). Yield: 48 

mg (59%) as a white solid. [α]D
20 +58.8 (c 0.56, CHCl3); 1H NMR (500 MHz, CD3OD): δ = 7.60-7.30 
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(m, 6H, Ar-H), 5.79 (s, 1H, H-1), 5.61-5.53 (m, 2H, H-2, H-3), 5.35 (m, 1H, H-4), 4.24 (dt, J = 11.9, 

5.9 Hz, 1H, H-6a), 4.18-4.06 (m, 2H, H-5, H-6b), 2.19, 2.08, 2.01, 1.96 (4 s, 12H, 4 COCH3); 13C 

NMR (126 MHz, CD3OD): δ = 172.18, 171.51, 171.48 (4C, 4 CO), 152.01, 138.68, 135.51, 135.36, 

134.29, 133.49, 132.33, 130.72, 130.24, 128.66, 124.79, 118.03 (12C, Ar-C), 97.63 (C-1), 71.27 (C-

5), 70.49 (C-3), 70.23 (C-2), 66.96 (C-4), 63.30 (C-6), 20.60, 20.56 (4C, 4 COCH3); ESI-MS: m/z: 

Calcd for C26H25Cl3NaO10 [M+Na]+: 625.0, found: 625.0. 

3-Chloro-4'-nitro-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14e). Prepared 

according to general procedure A from 12 (41 mg, 0.07 mmol), 4-nitro-phenylboronic acid (13e, 13 

mg, 0.08 mmol), Pd(dppf)Cl2⋅CH2Cl2 (1.7 mg, 2 µmol) and K3PO4 (30 mg, 0.14 mmol). Yield: 31 mg 

(76%) as a light-yellow solid. [α]D
20 +77.1 (c 0.58, CHCl3); 1H NMR (500 MHz, CD3OD): δ = 8.34-

8.26 (m, 2H, Ar-H), 7.89-7.77 (m, 3H, Ar-H), 7.67 (dd, J = 8.6, 2.3 Hz, 1H, Ar-H), 7.43 (d, J = 8.7 

Hz, 1H, Ar-H), 5.81 (s, 1H, H-1), 5.60-5.52 (m, 2H, H-2, H-3), 5.36 (m, 1H, H-4), 4.23 (dd, J = 12.1, 

5.3 Hz, 1H, H-6a), 4.18-4.04 (m, 2H, H-5, H-6b), 2.20, 2.07, 2.02, 1.95 (4 s, 12H, 4COCH3); 13C 

NMR (126 MHz, CD3OD): δ = 172.14, 171.49, 171.48, 171.45 (4 CO), 152.73, 148.64, 146.63, 

135.95, 130.32, 128.73, 128.11, 125.84, 125.18, 118.76 (12C, Ar-C), 97.59 (C-1), 71.28 (C-5), 70.45, 

70.17 (C-2, C-3), 66.91 (C-4), 63.26 (C-6), 20.59, 20.58, 20.56 (4C, 4 COCH3); ESI-MS: m/z: Calcd 

for C26H26ClNNaO12 [M+Na]+: 602.1, found: 602.1. 

3-Chloro-4'-methoxy-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14f). Prepared 

according to general procedure A from 12 (59.6 mg, 0.1 mmol), 4-methoxyphenylboronic acid (13f, 

17 mg, 0.112 mmol), Pd(dppf)Cl2⋅CH2Cl2 (2.5 mg, 3 µmol) and K3PO4 (43 mg, 0.2 mmol). Yield: 52 

mg (90 %) as a white solid. [α]D
20 +73.7 (c 0.53, CHCl3); 1H NMR (500 MHz, CD3OD): δ = 7.64 (d, J 

= 2.2 Hz, 1H, Ar-H), 7.56-7.46 (m, 3H, Ar-H), 7.33 (d, J = 8.6 Hz, 1H, Ar-H), 7.05-6.95 (m, 2H, Ar-

H), 5.73 (s, 1H, H-1), 5.56 (dd, J = 8.1, 3.4 Hz, 2H, H-2, H-3), 5.35 (t, J = 10.1 Hz, 1H, H-4), 4.23 

(dd, J = 12.1, 5.5 Hz, 1H, H-6a), 4.17 (ddd, J = 10.0, 5.6, 2.1 Hz, 1H, H-5), 4.09 (dd, J = 12.1, 2.1 Hz, 

1H, H-6b), 3.83 (s, 3H, OCH3), 2.19 (s, 3H, COCH3), 2.09-1.92 (m, 9H, 3 COCH3); 13C NMR (126 

MHz, CD3OD): δ = 172.19, 171.52, 171.48 (4C, 4 CO), 161.04, 151.01, 138.58, 132.80, 129.26, 

128.85, 127.01, 125.50, 118.93, 115.43 (12C, Ar-C), 97.76 (C-1), 71.18 (C-5), 70.52, 70.30 (C-2, C-

3), 67.01 (C-4), 63.32 (C-6), 55.77 (OCH3), 20.59, 20.58, 20.56 (4C, 4 COCH3); ESI-MS: m/z: Calcd 

for C27H29ClKO11 [M+K]+: 603.1, found: 603.0. 

3-Chloro-4'-methyl-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14g). Prepared 

according to general procedure A from 12 (79 mg, 0.135 mmol), 4-methyl-phenylboronic acid (13g, 

20 mg, 0.15 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.3 mg, 4 µmol) and K3PO4 (57 mg, 0.27 mmol). Yield: 50 

mg (67%) as a white solid. [α]D
20 +71.9 (c 0.43, CHCl3); 1H NMR (500 MHz, CD3OD): δ = 7.67 (d, J 

= 2.2 Hz, 1H, Ar-H), 7.52 (dd, J = 8.6, 2.2 Hz, 1H, Ar-H), 7.47 (t, J = 7.3 Hz, 2H, Ar-H), 7.35 (d, J = 

8.6 Hz, 1H, Ar-H), 7.25 (d, J = 7.9 Hz, 2H, Ar-H), 5.75 (s, 1H, H-1), 5.59-5.52 (m, 2H, H-2, H-3), 
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5.34 (t, J = 10.0 Hz, 1H, H-4), 4.23 (dd, J = 12.1, 5.5 Hz, 1H, H-6a), 4.17 (m, 1H, H-5), 4.09 (dd, J = 

12.1, 2.1 Hz, 1H, H-6b), 2.37 (s, 3H, PhCH3), 2.20 (s, 3H, COCH3), 2.12-1.92 (m, 9H, 3 COCH3); 13C 

NMR (126 MHz, CDCl3): δ = 170.64, 170.10, 169.94, 169.91 (4 CO), 150.42, 137.66, 137.63, 

136.41, 129.78, 129.03, 126.81, 126.18, 124.80, 117.47 (12C, Ar-C), 96.90 (C-1), 69.89, 69.53, 68.95 

(C-5, C-3, C-2), 66.04 (C-4), 62.29 (C-6), 21.23, 21.02, 20.86, 20.83, 20.82 (5 CH3); ESI-MS: m/z: 

Calcd for C27H29ClNaO10 [M+Na]+: 571.1, found: 571.1. 

3,4'-Dichloro-3'-(trifluoromethyl)-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside 

(14h). Prepared according to general procedure A from 12 (80 mg, 0.137 mmol), 3-trifluoro-4-

chlorophenylboronic acid (13h, 34 mg, 0.151 mmol), Pd(dppf)Cl2⋅ CH2Cl2 (3.4 mg, 4 µmol) and 

K3PO4 (58 mg, 0.27 mmol). Yield: 70 mg (80%) as a white solid. [α]D
20 +60.7 (c 0.27, CHCl3); 1H 

NMR (500 MHz, CD3OD): δ = 7.95 (d, J = 1.9 Hz, 1H, Ar-H), 7.84 (dd, J = 8.3, 2.0 Hz, 1H, Ar-H), 

7.79 (d, J = 2.3 Hz, 1H, Ar-H), 7.72-7.58 (m, 2H, Ar-H), 7.44 (m, 1H, Ar-H), 5.80 (s, 1H, H-1), 5.60-

5.51 (m, 2H, H-2, H-3), 5.36 (t, J = 10.0 Hz, 1H, H-4), 4.24 (dd, J = 12.2, 5.3 Hz, 1H, H-6a), 4.18-

4.05 (m, 2H, H-5, H-6b), 2.20, 2.08, 2.02, 1.96 (4s, 12H, 4 COCH3); 13C NMR (126 MHz, CD3OD): δ 

= 172.17, 171.49, 171.47 (4C, 4 CO), 152.43, 139.86, 135.79, 133.40, 132.76, 130.00, 127.78, 

126.84, 125.87, 118.88 (12C, Ar-C), 97.65 (C-1), 71.28 (C-5), 70.49, 70.21 (C-2, C-3), 66.94 (C-4), 

63.28 (C-5), 20.59, 20.56 (4C, 4 COCH3); ESI-MS: m/z: Calcd for C27H25Cl2F3NaO10 [M+Na]+: 

659.1, found: 659.0. 

3,3'-Dichloro-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14i). Prepared 

according to general procedure A from 12 (81 mg, 0.138 mmol), 3-chloro-phenylboronic acid (13i, 24 

mg, 0.15 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.4 mg, 4 µmol) and K3PO4 (59 mg, 0.28 mmol). Yield: 57 mg 

(75%) as a white solid. [α]D
20 +67.3 (c 0.27, CHCl3); 1H NMR (500 MHz, CD3OD): δ = 7.71 (t, J = 

7.8 Hz, 1H, Ar-H), 7.66-7.31 (m, 6H, Ar-H), 5.78 (s, 1H, H-1), 5.61-5.51 (m, 2H, H-2, H-3), 5.35 (t, J 

= 10.1 Hz, 1H, H-4), 4.23 (dd, J = 12.2, 5.4 Hz, 1H, H-6a), 4.19-4.02 (m, 2H, H-5, H-6b), 2.19 (s, 3H, 

COCH3), 2.11-1.92 (m, 9H, 3 COCH3); 13C NMR (126 MHz, CD3OD): δ = 172.18, 171.50, 171.48 

(4C, 4 CO), 152.04, 142.44, 137.09, 135.96, 131.56, 129.89, 128.65, 127.75, 127.67, 126.23, 125.67, 

118.82 (12C, Ar-C) 97.66 (C-1), 71.23, 70.49, 70.23 (C-2, C-3, C-5), 66.95 (C-4), 63.28 (C-6), 20.59, 

20.58, 20.55 (4C, 4 COCH3); ESI-MS: m/z: Calcd for C26H26Cl2NaO10 [M+Na]+: 591.1, found: 591.0. 

3-Chloro-3'-methyl-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14j). Prepared 

according to general procedure A from 12 (79 mg, 0.135 mmol), 3-methyl-phenylboronic acid (13j, 

20 mg, 0.15 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.3 mg, 4 µmol) and K3PO4 (57 mg, 0.27 mmol). Yield: 51 

mg (69%) as a white solid. [α]D
20 +78.2 (c 0.36, CHCl3); 1H NMR (500 MHz, CD3OD): δ = 7.68 (d, J 

= 2.1 Hz, 1H, Ar-H), 7.53 (dd, J = 8.6, 2.1 Hz, 1H, Ar-H), 7.34 (m, 4H, Ar-H), 7.17 (d, J = 7.4 Hz, 

1H, Ar-H), 5.76 (s, 1H, H-1), 5.59-5.52 (m, 2H, H-2, H-3), 5.35 (t, J = 9.9 Hz, 1H, H-4), 4.24 (dd, J = 

12.1, 5.5 Hz, 1H, H-6a), 4.17 (m, 1H, H-5), 4.09 (dd, J = 12.1, 2.1 Hz, 1H, H-6b), 2.40 (s, 3H, 
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PhCH3), 2.19 (s, 3H, COCH3), 2.09-1.94 (m, 9H, 3 COCH3); 13C NMR (126 MHz, CD3OD): δ = 

172.20, 171.53, 171.49 (4C, 4 CO), 151.44, 140.37, 139.83, 138.93, 129.93, 129.75, 129.40, 128.41, 

127.52, 125.47, 124.90, 118.82 (12 Ar-C), 97.71 (C-1), 71.19 (C-5), 70.51, 70.28 (C-2, C-3), 66.99 

(C-4), 63.31 (C-6), 21.52 (PhCH3), 20.60, 20.59, 20.56 (4C, 4 COCH3); ESI-MS: m/z: Calcd for 

C27H29ClNaO10 [M+Na]+: 571.1, found: 571.1. 

2',3-Dichloro-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14k). Prepared 

according to general procedure A from 12 (81 mg, 0.138 mmol), 2-chloro-phenylboronic acid (13k, 

24 mg, 0.15 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.4 mg, 4 µmol) and K3PO4 (59 mg, 0.28 mmol). Yield: 52 

mg (66%) as a white solid. [α]D
20 +64.7 (c 0.42, CHCl3); 1H NMR (500 MHz, CD3OD): δ = 7.48 (dd, 

J = 8.9, 1.7 Hz, 2H, Ar-H), 7.39-7.30 (m, 5H, Ar-H), 5.77 (s, 1H, H-1), 5.64-5.52 (m, 2H, H-2, H-3), 

5.35 (m, 1H, H-4), 4.24 (dd, J = 12.1, 5.6 Hz, 1H, H-6a), 4.17 (ddd, J = 10.0, 5.6, 2.0 Hz, 1H, H-5), 

4.08 (m, 1H, H-6b), 2.19, 2.07, 2.01, 1.96 (4 s, 12H, 4 COCH3); 13C NMR (126 MHz, CD3OD): δ = 

172.16, 171.50, 171.45 (4C, 4 CO), 151.72, 139.84, 136.70, 133.35, 132.42, 132.34, 131.10, 130.31, 

130.24, 128.37, 124.63, 117.98 (12 Ar-C), 97.64 (C-1), 71.22 (C-5), 70.47, 70.24 (C-2, C-3), 66.96 

(C-4), 63.29 (C-6), 20.62, 20.61, 20.60, 20.57 (4 COCH3); ESI-MS: m/z: Calcd for C26H26Cl2NaO10 

[M+Na]+: 591.1, found: 591.0. 

3-Chloro-2'-methyl-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14l). Prepared 

according to general procedure A from 12 (79 mg, 0.14 mmol), 2-methyl-phenylboronic acid (13l, 20 

mg, 0.15 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.3 mg, 4 µmol) and K3PO4 (57 mg, 0.27 mmol). Yield: 39 mg 

(53%) as a white solid. [α]D
20 +62.9 (c 0.42, CHCl3); 1H NMR (500 MHz, CD3OD): δ = 7.37 (dd, J = 

12.9, 5.2 Hz, 2H, Ar-H), 7.29-7.19 (m, 4H, Ar-H), 7.16 (d, J = 6.9 Hz, 1H, Ar-H), 5.76 (s, 1H, H-1), 

5.59-5.54 (m, 2H, H-2, H-3), 5.35 (m, 1H, H-4), 4.28-4.03 (m, 3H, H-5, H-6), 2.25 (s, 3H, PhCH3), 

2.19, 2.08, 2.02, 1.98 (4 s, 12H, 4 COCH3); 13C NMR (126 MHz, CD3OD): δ = 172.19, 171.54, 

171.50 (4C, 4 CO), 151.24, 141.25, 139.60, 136.36, 132.01, 131.48, 130.60, 129.93, 128.82, 127.04, 

124.80, 118.24 (12 Ar-C), 97.81 (C-1), 71.21 (C-5), 70.52, 70.31 (2C, C-2, C-3), 67.02 (C-4), 63.35 

(C-6), 20.60, 20.56, 20.52 (5C, 5 CH3); ESI-MS: m/z: Calcd for C27H29ClNaO10 [M+Na]+: 571.1, 

found: 571.1. 

3-Chloro-2'-methoxy-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14m). Prepared 

according to general procedure A from 12 (79 mg, 0.135 mmol), 2-methoxy-phenylboronic acid 

(13m, 23 mg, 0.15 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.3 mg, 4 µmol) and K3PO4 (57 mg, 0.27 mmol). 

Yield: 34 mg (45%) as a white solid. [α]D
20 +75.0 (c 0.52, CHCl3); 1H NMR (500 MHz, CD3OD): δ = 

7.58 (d, J = 2.1 Hz, 1H, Ar-H), 7.42 (dd, J = 8.6, 2.1 Hz, 1H, Ar-H), 7.38-7.25 (m, 3H, Ar-H), 7.08 

(d, J = 8.2 Hz, 1H, Ar-H), 7.02 (m, 1H, Ar-H), 5.76 (s, 1H, H-1), 5.58 (dd, J = 8.5, 3.2 Hz, 2H, H-2, 

H-3), 5.37 (t, J = 10.0 Hz, 1H, H-4), 4.26 (dd, J = 12.1, 5.6 Hz, 1H, H-6a), 4.19 (ddd, J = 10.0, 5.7, 

2.0 Hz, 1H, H-5), 4.12 (dt, J = 8.5, 5.3 Hz, 1H, H-6b), 3.82 (s, 3H, OCH3), 2.21, 2.10, 2.04, 1.98 (4 s, 
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12H, 4 COCH3); 13C NMR (126 MHz, CD3OD): δ = 172.23, 171.54, 171.49 (4C, 4 CO), 157.81, 

150.91, 136.27, 132.31, 131.42, 130.27, 130.11, 129.80, 124.42, 122.00, 118.00, 112.60 (12 Ar-C), 

97.63 (C-1), 71.16, 70.53, 70.30 (C-2, C-3, C-5), 67.02 (C-4), 63.31 (C-6), 55.99 (OCH3), 20.60, 

20.59, 20.57 (4C, 4 COCH3); ESI-MS: m/z: Calcd for C27H29ClNaO11 [M+Na]+: 587.1, found: 587.2. 

3-Chloro-3'-(trifluoromethyl)-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14n). 

Prepared according to general procedure A from 12 (80 mg, 0.137 mmol), 3-trifluoromethyl-

phenylboronic acid (13n, 29 mg, 0.15 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.4 mg, 4 µmol) and K3PO4 (58 

mg, 0.27 mmol). Yield: 69 mg (83%) as a white solid. [α]D
20 +62 (c 0.49, CHCl3); 1H NMR (500 

MHz, CD3OD): δ = 7.86 (m, 2H, Ar-H), 7.77 (d, J = 2.2 Hz, 1H, Ar-H), 7.71-7.59 (m, 3H, Ar-H), 

7.43 (d, J = 8.6 Hz, 1H, Ar-H), 5.80 (s, 1H, H-1), 5.66-5.53 (m, 2H, H-2, H-3), 5.38 (t, J = 10.1 Hz, 

1H, H-4), 4.31-4.06 (m, 3H, H-5, H-6), 2.28-1.93 (m, 12H, 4 COCH3); 13C NMR (126 MHz, 

CD3OD): δ = 172.15, 171.49, 171.47, 171.46 (4 CO), 152.19, 141.43, 136.92, 132.36 (q, J = 32 Hz), 

131.56, 130.93, 128.9 (q, J = 279 Hz), 126.69, 125.77, 125.29 (q, J = 3.8 Hz), 124.53, 124.35 (q, J = 

3.9 Hz), 118.88 (13C, 12 Ar-C, CF3), 97.66 (C-1), 71.24 (C-5), 70.47 (C-3), 70.22 (C-2), 66.94 (C-4), 

63.27 (C-6), 20.59, 20.58, 20.56, 20.55 (4 COCH3); ESI-MS: m/z: Calcd for C27H26ClF3NaO10 

[M+Na]+: 641.1, found: 641.1. 

4'-Acetyl-3-chloro-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14o). Prepared 

according to general procedure A from 12 (64.3 mg, 0.11 mmol), 4-acetylphenylboronic acid (13o, 27 

mg, 0.12 mmol), Pd(dppf)Cl2⋅CH2Cl2 (2.7 mg, 3 µmol) and K3PO4 (47 mg, 0.22 mmol). Yield: 52 mg 

(82%) as a white solid. [α]D
20 +76.9 (c 0.62, CHCl3); 1H NMR (500 MHz, CD3OD): δ = 8.04 (d, J = 

8.4 Hz, 2H, Ar-H), 7.77 (d, J = 2.2 Hz, 1H, Ar-H), 7.71 (d, J = 8.4 Hz, 2H, Ar-H), 7.61 (dd, J = 8.6, 

2.2 Hz, 1H, Ar-H), 7.38 (d, J = 8.7 Hz, 1H, Ar-H), 5.78 (s, 1H, H-1), 5.60-5.51 (m, 2H, H-2, H-3), 

5.35 (t, J = 10.0 Hz, 1H, H-4), 4.23 (dd, J = 12.2, 5.4 Hz, 1H, H-6a), 4.17-4.01 (m, 2H, H-5, H-6b), 

2.62 (s, 3H, PhCOCH3), 2.20, 2.10, 2.04, 1.98 (4 s, 12H, 4 COCH3); 13C NMR (126 MHz, CD3OD): δ 

= 199.93 (PhCOCH3), 172.14, 171.49, 171.46, 171.45 (4 CO), 152.26, 144.91, 137.30, 137.07, 

130.24, 130.03, 127.92, 127.82, 125.70, 118.78 (12 C, Ar-C), 97.62 (C-1), 71.23 (C-5), 70.46, 70.21 

(C-2, C-3), 66.93 (C-4), 63.27 (C-6), 26.73 (PhCOCH3), 20.61, 20.59, 20.57 (4C, 4 COCH3); ESI-

MS: m/z: Calcd for C28H29ClNaO11 [M+Na]+: 599.1, found 599.1. 

4'-(2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyloxy)-3'-chloro-biphenyl-4-carbonitril (14p).[58] 

Prepared according to general procedure A from 12 (79 mg, 0.135 mmol), 4-cyano-phenylboronic 

acid (13p, 22 mg, 0.15 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.3 mg, 4 µmol) and K3PO4 (57 mg, 0.27 mmol). 

Yield: 57 mg (75%) as a white solid. [α]D
20 +77.7 (c 0.5, CHCl3); 1H NMR (500 MHz, CDCl3): δ = 

7.72 (d, J = 8.3 Hz, 2H, Ar-H), 7.63 (m, 3H, Ar-H), 7.43 (dd, J = 8.6, 2.2 Hz, 1H, Ar-H), 7.27 (d, J = 

8.6 Hz, 1H, Ar-H), 5.64-5.59 (m, 2H, H-1, H-3), 5.54 (dd, J = 3.2, 1.9 Hz, 1H, H-2), 5.41 (t, J = 10.1 

Hz, 1H, H-4), 4.28 (dd, J = 12.3, 5.2 Hz, 1H, H-6a), 4.17 (ddd, J = 10.0, 5.1, 2.1 Hz, 1H, H-5), 4.10 
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(dd, J = 12.3, 2.2 Hz, 1H, H-6b), 2.21 (s, 3H, COCH3), 2.12-2.00 (m, 9H, 3 COCH3); 13C NMR (126 

MHz, CDCl3): δ = 170.54, 170.08, 169.90, 169.84, (4 CO) 151.67, 143.61, 135.29, 132.87, 129.41, 

127.53, 126.60, 125.20, 118.79, 117.36, 111.47 (13C, Ar-C, CN), 96.72 (C-1), 70.00 (C-5), 69.39 (C-

3), 68.82 (C-2), 65.86 (C-4), 62.16 (C-6), 20.98, 20.81, 20.79, 20.78 (4 COCH3); ESI-MS: m/z: Calcd 

for C27H26ClNNaO10 [M+Na]+: 582.1, found: 582.1. 

4'-(2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyloxy)-3'-chloro-biphenyl-3-carbonitril (14q). 

Prepared according to general procedure A from 12 (80 mg, 0.137 mmol), 3-cyanophenylboronic acid 

pinacol ester (13q, 35 mg, 0.151 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.4 mg, 4 µmol) and K3PO4 (58 mg, 

0.27 mmol). Yield: 57 mg (74%) as a white solid. [α]D
20 +66.2 (c 0.6, CHCl3); 1H NMR (500 MHz, 

CDCl3): δ = 7.83-7.73 (m, 2H, Ar-H), 7.62 (dd, J = 10.4, 5.0 Hz, 2H, Ar-H), 7.55 (t, J = 7.8 Hz, 1H, 

Ar-H), 7.41 (dd, J = 8.6, 2.2 Hz, 1H, Ar-H), 7.33-7.23 (m, 2H, Ar-H), 5.61 (m, 2H, H-1, H-3), 5.54 

(dd, J = 3.3, 1.9 Hz, 1H, H-2), 5.39 (t, J = 10.1 Hz, 1H, H-4), 4.27 (dd, J = 12.3, 5.2 Hz, 1H, H-6a), 

4.22-4.05 (m, 2H, H-5, H-6b), 2.21 (s, 3H, COCH3), 2.14-1.99 (m, 9H, 3 COCH3); 13C NMR (126 

MHz, CDCl3): δ = 170.83, 170.23, 170.12, 170.04 (4 CO), 151.35, 140.43, 134.98, 131.29, 131.11, 

130.39, 129.89, 129.18, 126.39, 125.07, 118.60, 117.37, 113.04 (13C, 12 Ar-C, CN), 96.60 (C-1), 

69.83 (C-5), 69.29 (C-3), 68.85 (C-2), 65.80 (C-4), 62.14 (C-6), 24.54, 20.78, 20.64, 20.62 (4 

COCH3); ESI-MS: m/z: Calcd for C27H26ClNNaO10 [M+Na]+: 582.1, found: 582.1. 

3-Chloro-3'-nitro-biphenyl-4-yl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (14r). Prepared 

according to general procedure A from 12 (80 mg, 0.137 mmol), 3-nitro-phenylboronic acid (13r, 25 

mg, 0.151 mmol), Pd(dppf)Cl2⋅CH2Cl2 (3.4 mg, 4 µmol) and K3PO4 (58 mg, 0.27 mmol). Yield: 55 

mg (69%) as a white solid. [α]D
20 +70.6 (c 0.23, CHCl3); 1H NMR (500 MHz, CD3OD): δ = 8.44 (t, J 

= 1.9 Hz, 1H, Ar-H), 8.23 (m, 1H, Ar-H), 8.02 (dd, J = 7.8, 0.6 Hz, 1H, Ar-H), 7.82 (d, J = 2.3 Hz, 

1H, Ar-H), 7.77-7.61 (m, 2H, Ar-H), 7.44 (d, J = 8.7 Hz, 1H, Ar-H), 5.81 (s, 1H, H-1), 5.63-5.54 (m, 

2H, H-2, H-3), 5.38 (t, J = 10.0 Hz, 1H, H-4), 4.26 (dd, J = 12.2, 5.3 Hz, 1H, H-6a), 4.16 (ddd, J = 

10.1, 5.3, 2.2 Hz, 1H, H-5), 4.10 (m, 1H, H-6a), 2.22 (s, 3H, COCH3), 2.10-1.92 (m, 9H, 3 COCH3); 
13C NMR (126 MHz, CD3OD): δ = 172.16, 171.49, 171.47, 171.46 (4 CO), 152.47, 150.23, 142.04, 

136.00, 133.90, 131.33, 130.07, 127.85, 125.86, 123.29, 122.34, 118.88 (12 Ar-C), 97.66 (C-1), 71.26 

(C-5), 70.45, 70.21 (C-2, C-3), 66.92 (C-4), 63.26 (C-6), 20.60, 20.59, 20.56 (4C, 4 COCH3); ESI-

MS: m/z: Calcd for C26H26ClNNaO12 [M+Na]+: 602.1, found: 602.1. 

3-Chloro-biphenyl-4-yl α-D-mannopyranoside (2). Prepared according to general procedure B from 

11 (101 mg, 0.19 mmol). Yield: 65 mg (93%) as a white solid. [α]D
20 +87.5 (c 0.067, MeOH/CHCl3, 

1:1); 1H NMR (500 MHz, CD3OD): δ = 7.63 (d, J = 2.2 Hz, 1H, Ar-H), 7.59-7.48 (m, 3H, Ar-H), 7.42 

(dd, J = 12.3, 5.0 Hz, 3H, Ar-H), 7.32 (t, J = 7.4 Hz, 1H, Ar-H), 5.58 (d, J = 1.5 Hz, 1H, H-1), 4.12 

(dd, J = 3.3, 1.8 Hz, 1H, H-2), 4.01 (dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.83-3.64 (m, 4H, H-4, H-5, H-6); 
13C NMR (126 MHz, CD3OD): δ = 152.67, 140.68, 137.91, 129.99, 129.49, 128.52, 127.72, 127.50, 
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125.24, 118.73 (12C, Ar-C), 100.86 (C-1), 75.97 (C-5), 72.43 (C-3), 71.90 (C-2), 68.26 (C-4), 62.69 

(C-6); HR-MS: m/z: Calcd for C18H19ClNaO6 [M+Na]+: 389.0762, found 389.0764. 

3,4'-Dichloro-biphenyl-4-yl α-D-mannopyranoside (4a). Prepared according to general procedure 

B from 14a (45.6 mg, 0.08 mmol). Yield: 20 mg (62%) as a white solid. [α]D
20 +69.9 (c 0.42, MeOH); 

1H NMR (500 MHz, CD3OD): δ = 7.66 (d, J = 2.2 Hz, 1H, Ar-H), 7.59-7.54 (m, 2H, Ar-H), 7.51 (dd, 

J = 8.6, 2.3 Hz, 1H, Ar-H), 7.46-7.40 (m, 3H, Ar-H), 5.58 (d, J = 1.6 Hz, 1H, H-1), 4.11 (dd, J = 3.3, 

1.8 Hz, 1H, H-2), 3.99 (dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.81-3.69 (m, 3H, H-4, H-6), 3.65 (ddd, J = 9.8, 

5.5, 2.4 Hz, 1H, H-5); 13C NMR (126 MHz, CD3OD): δ = 152.92, 139.33, 136.43, 134.57, 130.05, 

129.44, 129.23, 127.44, 125.32, 118.70 (12C, Ar-C), 100.79 (C-1), 75.99 (C-5), 72.40 (C-3), 71.86 

(C-2), 68.23 (C-4), 62.66 (C-6); HR-MS: m/z: Calcd for C18H18Cl2NaO6 [M+Na]+: 423.0373, found 

423.0378. 

3,3',4'-Trichloro-biphenyl-4-yl α-D-mannopyranoside (4b). Prepared according to general 

procedure B from 14b (45.3 mg, 0.08 mmol). Yield: 26 mg (80%) as a white solid. [α]D
20 +92.8 (c 

0.24, MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.70 (d, J = 2.1 Hz, 1H, Ar-H), 7.63 (d, J = 2.2 Hz, 

1H, Ar-H), 7.56-7.41 (m, 4H, Ar-H), 5.60 (d, J = 1.6 Hz, 1H, H-1), 4.12 (dd, J = 3.3, 1.8 Hz, 1H, H-

2), 4.00 (dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.81-3.69 (m, 3H, H-4, H-6), 3.64 (ddd, J = 9.7, 5.4, 2.4 Hz, 

1H, H-5); 13C NMR (126 MHz, CD3OD): δ = 153.28, 140.97, 134.91, 133.84, 132.38, 131.98, 129.50, 

129.49, 127.51, 127.42, 125.38, 118.60 (12 Ar-C), 100.68 (C-1), 75.99 (C-5), 72.38 (C-3), 71.81 (C-

2), 68.19 (C-4), 62.63 (C-6); HR-MS: m/z: Calcd for C18H17Cl3NaO6 [M+Na]+: 456.9983, found 

456.9984. 

3-Chloro-4'-(trifluoromethyl)-biphenyl-4-yl α-D-mannopyranoside (4c). Prepared according to 

general procedure B from 14c (36.2 mg, 0.06 mmol). Yield:  25 mg (95%) as a white solid. [α]D
20 

+83.0 (c 0.24, MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.84-7.40 (m, 7H, Ar-H), 5.62 (d, J = 1.2 

Hz, 1H, H-1), 4.13 (m, 1H, H-2), 4.01 (dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.84-3.71 (m, 3H, H-4, H-6), 

3.65 (m, 1H, H-5); 13C NMR (126 MHz, CD3OD): δ = 153.33, 144.34, 135.92, 130.42 (q, J = 32 Hz), 

128.3 (q, J = 246 Hz), 128.28, 126.90 (q, J = 3.7 Hz), 125.38, 124.69, 118.62 (13C, 12 Ar-C, CF3), 

100.65 (C-1), 75.96 (C-5), 72.38 (C-3), 71.80 (C-2), 68.16 (C-4), 62.57 (C-6); HR-MS: m/z: Calcd for 

C19H18ClF3NaO6 [M+Na]+: 457.0636, found 457.0641. 

2',3,4'-Trichloro-biphenyl-4-yl α-D-mannopyranoside (4d). Prepared according to general 

procedure B from 14d (28.4 mg, 0.05 mmol). Yield:  15 mg (73%) as a white solid. [α]D
20 +82.2 (c 

0.22, MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.59-7.28 (m, 6H, Ar-H), 5.60 (d, J = 1.4 Hz, 1H, 

H-1), 4.12 (dd, J = 3.3, 1.8 Hz, 1H, H-2), 4.00 (dd, J = 9.4, 3.4 Hz, 1H, H-3), 3.83-3.61 (m, 4H, H-4, 

H-5, H-6); 13C NMR (126 MHz, CD3OD): δ = 153.12, 138.93, 135.19, 134.62, 134.33, 133.51, 

132.03, 130.68, 130.18, 128.60, 124.47, 117.95, (12 Ar-C), 100.82 (C-1), 76.05 (C-5), 72.41 (C-3), 
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71.86 (C-2), 68.25 (C-4), 62.69 (C-6); HR-MS: m/z: Calcd for C18H17Cl3NaO6 [M+Na]+: 456.9983, 

found 456.9989. 

3-Chloro-4'-nitro-biphenyl-4-yl α-D-mannopyranoside (4e). Prepared according to general 

procedure B from 14e (27.3 mg, 0.05 mmol). Yield:  16 mg (83%) as a white solid. [α]D
20 +100.2 (c 

0.20, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.32 (d, J = 8.8 Hz, 2H, Ar-H), 8.00 (s, 1H, Ar-H), 

7.86 (d, J = 8.8 Hz, 2H, Ar-H), 7.82 (d, J = 2.2 Hz, 1H, Ar-H), 7.67 (dd, J = 8.6, 2.2 Hz, 1H, Ar-H), 

7.52 (d, J = 8.7 Hz, 1H, Ar-H), 5.66 (d, J = 1.3 Hz, 1H, H-1), 4.14 (dd, J = 3.2, 1.8 Hz, 1H, H-2), 4.02 

(dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.85-3.71 (m, 3H, H-4, H-6), 3.65 (ddd, J = 9.6, 5.4, 2.3 Hz, 1H, H-5); 
13C NMR (126 MHz, CD3OD): δ = 153.86, 148.53, 146.97, 135.06, 130.04, 128.64, 128.10, 125.53, 

125.16, 118.60 (12C, Ar-C), 100.68 (C-1), 76.09 (C-5), 72.41 (C-3), 71.82 (C-2), 68.22 (C-4), 62.67 

(C-6); HR-MS: m/z: Calcd for C18H18ClNNaO8 [M+Na]+: 434.0613, found 434.0614. 

3-Chloro-4'-methoxy-biphenyl-4-yl α-D-mannopyranoside (4f). Prepared according to general 

procedure B from 14f (25 mg, 0.05 mmol). Yield:  13 mg (73%) as a white solid. [α]D
20 +84.5 (c 0.16, 

CHCl3/MeOH, 1:1); 1H NMR (500 MHz, CD3OD): δ = 7.58 (d, J = 2.2 Hz, 1H, Ar-H), 7.53-7.43 (m, 

3H, Ar-H), 7.39 (d, J = 8.6 Hz, 1H, Ar-H), 6.98 (d, J = 8.8 Hz, 2H, Ar-H), 5.55 (d, J = 1.4 Hz, 1H, H-

1), 4.11 (dd, J = 3.3, 1.8 Hz, 1H, H-2), 3.99 (m, 1H, H-3), 3.82 (s, 3H, OCH3), 3.81-3.62 (m, 4H, H-4, 

H-5, H-6); 13C NMR (126 MHz, CD3OD): δ = 160.88, 152.14, 137.70, 133.08, 129.00, 128.77, 

126.97, 125.20, 118.81, 115.38 (12C, Ar-C), 100.92 (C-1), 75.91 (C-5), 72.41 (C-3), 71.90 (C-2), 

68.26 (C-4), 62.68 (C-6), 55.76 (OCH3); HR-MS: m/z: Calcd for C19H21ClNaO7 [M+Na]+: 419.0868, 

found 419.0865. 

3-Chloro-4'-methyl-biphenyl-4-yl α-D-mannopyranoside (4g). Prepared according to general 

procedure B from 14g (38 mg, 0.07 mmol). Yield: 14 mg (53%) as a white solid. [α]D
20 +95.1 (c 0.22, 

MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.60 (d, J = 2.2 Hz, 1H, Ar-H), 7.51-7.37 (m, 4H, Ar-H), 

7.23 (d, J = 8.0 Hz, 2H, Ar-H), 5.56 (d, J = 1.4 Hz, 1H, H-1), 4.11 (dd, J = 3.2, 1.8 Hz, 1H, H-2), 4.00 

(dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.82-3.64 (m, 4H, H-4, H-5, H-6), 2.36 (s, 3H, CH3); 13C NMR (126 

MHz, CD3OD): δ = 152.40, 138.43, 137.87, 137.74, 130.59, 129.23, 127.53, 127.21, 125.18, 118.73 

(12C, Ar-C), 100.86 (C-1), 75.91 (C-5), 72.41 (C-3), 71.89 (C-2), 68.24 (C-4), 62.66 (C-6), 21.08 

(CH3); HR-MS: m/z: Calcd for C19H21ClNaO6 [M+Na]+: 403.0919, found 403.0924. 

3,4'-Dichloro-3'-(trifluoromethyl)-biphenyl-4-yl α-D-mannopyranoside (4h). Prepared according 

to general procedure B from 14h (76 mg, 0.12 mmol). Yield:  18 mg (36%) as a white solid. [α]D
20 

+83.0 (c 0.34, MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.95-7.44 (m, 6H, Ar-H), 5.61 (d, J = 1.4 

Hz, 1H, H-1), 4.11 (dd, J = 3.3, 1.8 Hz, 1H, H-2), 4.00 (dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.83-3.68 (m, 

3H, H-4, H-6), 3.63 (ddd, J = 9.6, 5.4, 2.3 Hz, 1H, H-5 ); 13C NMR (126 MHz, CD3OD): δ = 153.48, 

140.08, 134.83, 133.32, 132.64, 132.04, 129.79, 128.7 (q, J = 246 Hz), 126.71, 126.67, 125.51, 
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123.27, 118.69 (12 Ar-C, CF3), 100.70 (C-1), 76.05 (C-5), 72.39 (C-3), 71.82 (C-2), 68.21 (C-4), 

62.66 (C-6); HR-MS: m/z: Calcd for C19H17Cl2F3NaO6 [M+Na]+: 491.0246, found 491.0250. 

3,3'-Dichloro-biphenyl-4-yl α-D-mannopyranoside (4i). Prepared according to general procedure B 

from 14i (34 mg, 0.06 mmol). Yield: 15 mg (62%) as a white solid. [α]D
20 +96.1 (c 0.21, MeOH); 1H 

NMR (500 MHz, CD3OD): δ = 7.64 (d, J = 1.9 Hz, 1H, Ar-H), 7.57 (s, 1H, Ar-H), 7.55-7.29 (m, 5H, 

Ar-H), 5.59 (s, 1H, H-1), 4.12 (s, 1H, H-2), 4.00 (dd, J = 9.5, 3.3 Hz, 1H, H-3), 3.83-3.69 (m, 3H, H-

4, H-6), 3.64 (m, 1H, H-5); 13C NMR (126 MHz, CD3OD): δ = 153.12, 142.67, 136.15, 135.88, 

131.47, 129.57, 128.42, 127.66, 127.59, 126.13, 125.32, 118.64 (12 Ar-C), 100.74 (C-1), 75.98 (C-5), 

72.39 (C-3), 71.84 (C-2), 68.21 (C-4), 62.65 (C-6); HR-MS: m/z: Calcd for C18H18Cl2NaO6 [M+Na]+: 

423.0373, found 423.0378. 

3-Chloro-3'-methyl-biphenyl-4-yl α-D-mannopyranoside (4j). Prepared according to general 

procedure B from 14j (40.6 mg, 0.07 mmol). Yield: 26 mg (92%) as a white solid. [α]D
20 +98.5 (c 

0.30, MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.61 (d, J = 2.2 Hz, 1H, Ar-H), 7.39 (m, 5H, Ar-H), 

7.15 (d, J = 7.3 Hz, 1H, Ar-H), 5.56 (d, J = 1.5 Hz, 1H, H-1), 4.11 (dd, J = 3.3, 1.8 Hz, 1H, H-2), 3.99 

(dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.84-3.62 (m, 4H, H-4, H-5, H-6), 2.39 (s, 3H, CH3); 13C NMR (126 

MHz, CD3OD): δ = 152.59, 140.64, 139.76, 138.07, 129.88, 129.48, 129.21, 128.37, 127.48, 125.18, 

124.85, 118.71 (12 Ar-C) 100.87 (C-1), 75.95 (C-5), 72.43 (C-3), 71.91 (C-2), 68.27 (C-4), 62.68 (C-

6), 21.53 (CH3); HR-MS: m/z: Calcd for C19H21ClNaO6 [M+Na]+: 403.0919, found 403.0925. 

2',3-Dichloro-biphenyl-4-yl α-D-mannopyranoside (4k). Prepared according to general procedure 

B from 14k (38.7 mg, 0.07 mmol). Yield: 20 mg (73%) as a white solid. [α]D
20 +85.6 (c 0.3, MeOH); 

1H NMR (500 MHz, CD3OD): δ = 7.53-7.24 (m, 7H, Ar-H), 5.60 (d, J = 1.3 Hz, 1H, H-1), 4.13 (dd, J 

= 3.2, 1.8 Hz, 1H, H-2), 4.01 (dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.86-3.64 (m, 4H, H-4, H-5, H-6); 13C 

NMR (126 MHz, CD3OD): δ = 152.84, 140.11, 135.85, 133.40, 132.43, 132.05, 131.05, 130.18, 

130.15, 128.30, 124.32, 117.89 (12 Ar-C), 100.83 (C-1), 75.98 (C-5), 72.39, 71.86, (C-3, C-2), 68.23 

(C-4), 62.66 (C-6); HR-MS: m/z: Calcd for C18H18Cl2NaO6 [M+Na]+: 423.0373, found 423.0378. 

3-Chloro-2'-methyl-biphenyl-4-yl α-D-mannopyranoside (4l). Prepared according to general 

procedure B from 14l (26 mg, 0.05 mmol). Yield: 17 mg (95%) as a white solid. [α]D
20 +88.0 (c 0.22, 

MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.40-6.93 (m, 7H, Ar-H), 5.47 (d, J = 1.5 Hz, 1H, H-1), 

4.02 (dd, J = 3.3, 1.8 Hz, 1H, H-2), 3.90 (dd, J = 9.4, 3.4 Hz, 1H, H-3), 3.74-3.55 (m, 4H, H-4, H-5, 

H-6), 2.14 (s, 3H, CH3); 13C NMR (126 MHz, CD3OD): δ = 152.30, 141.49, 138.70, 136.37, 131.70, 

131.42, 130.62, 129.84, 128.67, 126.97, 124.50, 118.20 (12 Ar-C), 100.97 (C-1), 75.97 (C-5), 72.42 

(C-3), 71.91 (C-2), 68.28 (C-4), 62.70 (C-6), 20.52 (CH3); HR-MS: m/z: Calcd for C19H21ClNaO6 

[M+Na]+: 403.0919, found 403.0922. 

3-Chloro-2'-methoxy-biphenyl-4-yl α-D-mannopyranoside (4m). Prepared according to general 

procedure B from 14m (26.6 mg, 0.05 mmol). Yield:  15 mg (80%) as a white solid. [α]D
20 +81.2 (c 



2.6 – Manuscript 5 

 168 

0.12, MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.51 (s, 1H, Ar-H), 7.41-6.93 (m, 6H, Ar-H), 5.56 

(d, J = 1.4 Hz, 1H, H-1), 4.11 (dd, J = 3.3, 1.8 Hz, 1H, H2), 4.00 (dd, J = 9.4, 3.4 Hz, 1H, H-3), 3.81 

(s, 3H, OCH3), 3.79-3.66 (m, 4H, H-4, H-5, H-6); 13C NMR (126 MHz, CD3OD): δ = 157.83, 152.11, 

135.39, 132.06, 131.40, 130.08, 130.05, 124.14, 121.98, 117.93, 112.62 (12C, Ar-C), 100.87 (C-1), 

75.89 (C-5), 72.41 (C-3), 71.91 (C-2), 68.26 (C-4), 62.67 (C-6), 56.01 (OCH3); HR-MS: m/z: Calcd 

for C19H21ClNaO7 [M+Na]+: 419.0868, found 419.0871. 

3-Chloro-3'-(trifluoromethyl)-biphenyl-4-yl α-D-mannopyranoside (4n). Prepared according to 

general procedure B from 14n (60 mg, 0.1 mmol). Yield:  39 mg (91%) as a white solid. [α]D
20 +84.3 

(c 0.42, MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.87-7.78 (m, 2H, Ar-H), 7.70-7.44 (m, 5H, Ar-

H), 5.61 (d, J = 1.1 Hz, 1H, H-1), 4.13 (dd, J = 3.0, 1.7 Hz, 1H, H-2), 4.01 (dd, J = 9.5, 3.4 Hz, 1H, 

H-3), 3.84-3.60 (m, 4H, H-4, H-5, H-6); 13C NMR (126 MHz, CD3OD): δ = 153.25, 141.66, 135.98, 

132.30 (q, J = 246 Hz), 131.45, 130.85, 128.68 (q, J = 32 Hz), 126.71, 125.42, 125.05 (q, J = 3.8 Hz) 

124.55, 124.23 (q, J = 3.8 Hz), 118.68 (12 Ar-C, CF3), 100.71 (C-1), 75.99 (C-5), 72.39 (C-3), 71.82 

(C-2), 68.20 (C-4), 62.64 (C-6); HR-MS: m/z: Calcd for C19H18ClF3NaO6 [M+Na]+: 457.0636, found 

457.0640. 

4'-Acetyl-3-chloro-biphenyl-4-yl α-D-mannopyranoside (4o). Prepared according to general 

procedure B from 14o (32 mg, 0.06 mmol). Yield: 21 mg (93%) as a white solid. [α]D
20 +103.2 (c 

0.27, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.06 (d, J = 8.4 Hz, 2H, Ar-H), 7.74 (dd, J = 8.6, 5.3 

Hz, 3H, Ar-H), 7.61 (dd, J = 8.6, 2.2 Hz, 1H, Ar-H), 7.48 (d, J = 8.7 Hz, 1H, Ar-H), 5.61 (d, J = 1.3 

Hz, 1H, H-1), 4.12 (dd, J = 3.3, 1.8 Hz, 1H, H-2), 4.00 (dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.83-3.59 (m, 

4H, H-4, H-5, H-6), 2.63 (s, 3H, COCH3); 13C NMR (126 MHz, CD3OD): δ = 200.02 (CO), 153.40, 

145.29, 137.16, 136.20, 130.22, 129.76, 127.86, 127.80, 125.39, 118.61 (12C, Ar-C), 100.72 (C-1), 

76.03 (C-5), 72.40 (C-3), 71.83 (C-2), 68.22 (C-4), 62.66 (C-6), 26.71 (COCH3); HR-MS: m/z: Calcd 

for C20H21ClNaO7 [M+Na]+: 431.0868, found 431.0869. 

3'-Chloro-4'-(α-D-mannopyranosyloxy)-biphenyl-4-carbonitril (4p).[58] Prepared according to 

general procedure B from 14p (36 mg, 0.06 mmol). Yield: 12 mg (48%) as a white solid. [α]D
20 

+109.4 (c 0.23, MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.80-7.72 (m, 5H, Ar-H), 7.59 (dd, J = 

8.6, 2.2 Hz, 1H, Ar-H), 7.48 (d, J = 8.7 Hz, 1H, Ar-H), 5.62 (d, J = 1.4 Hz, 1H, H-1), 4.12 (dd, J = 

3.3, 1.8 Hz, 1H, H-2), 4.00 (dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.83-3.68 (m, 3H, H-4, H-6), 3.63 (ddd, J = 

9.6, 5.4, 2.3 Hz, 1H, H-5); 13C NMR (126 MHz, CD3OD): δ = 153.65, 145.15, 135.42, 133.86, 

129.82, 128.53, 127.87, 125.47, 119.70, 118.59, 111.97 (13C, 12 Ar-C, CN), 100.66 (C-1), 76.05 (C-

5), 72.39 (C-3), 71.80 (C-2), 68.20 (C-4), 62.65 (C-6); IR (KBr): ν = 3400 (O-H), 2227 (C≡N), 1606, 

1487 (Ar-C=C) cm-1; HR-MS: m/z: Calcd for C19H18ClNNaO6 [M+Na]+: 414.0715, found 414.0721. 

3'-Chloro-4'-(α-D-mannopyranosyloxy)-biphenyl-3-carbonitril (4q). Prepared according to 

general procedure B from 14q (84 mg, 0.15 mmol). Yield: 14 mg (34%) as a white solid. [α]D
20 +96.3 
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(c 0.23, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.03-7.88 (m, 2H, Ar-H), 7.71 (m, 2H, Ar-H), 

7.65-7.54 (m, 2H, Ar-H), 7.48 (d, J = 8.6 Hz, 1H, Ar-H), 5.61 (d, J = 1.4 Hz, 1H, H-1), 4.12 (dd, J = 

3.3, 1.8 Hz, 1H, H-2), 4.00 (dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.85-3.56 (m, 4H, H-4, H-5, H-6); 13C 

NMR (126 MHz, CD3OD): δ = 153.45, 142.02, 135.30, 132.39, 132.00, 131.28, 131.15, 129.71, 

127.74, 125.49, 119.62, 118.68, 114.15 (12 Ar-C, CN), 100.72 (C-1), 76.04 (C-5), 72.40 (C-3), 71.83 

(C-2), 68.21 (C-4), 62.66 (C-6); HR-MS: m/z: Calcd for C19H18ClNNaO6 [M+Na]+: 414.0715, found 

414.0715. 

3-Chloro-3'-nitro-biphenyl-4-yl α-D-mannopyranoside (4r). Prepared according to general 

procedure B from 14r (48 mg, 0.08 mmol). Yield:  32 mg (94%) as a white solid. [α]D
20 +93.2 (c 

0.52, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.47-7.97 (m, 3H, Ar-H), 7.80-7.48 (m, 4H, Ar-H), 

5.63 (s, 1H, H-1), 4.11 (m, 1H, H-2), 4.00 (dd, J = 9.5, 3.4 Hz, 1H, H-3), 3.82-3.58 (m, 4H, H-4, H-5, 

H-6); 13C NMR (126 MHz, CD3OD): δ = 153.56, 150.26, 142.38, 135.13, 133.86, 131.29, 129.78, 

127.82, 125.53, 123.09, 122.28, 118.70 (12 Ar-C), 100.71 (C-1), 76.06 (C-5), 72.40 (C-3), 71.82 (C-

2), 68.21 (C-4), 62.66 (C-6); HR-MS: m/z: Calcd for C18H18ClNNaO8 [M+Na]+: 434.0613, found 

434.0612. 

Biological Evaluation 

Expression and purification of the FimH lectin domain (FimH-L). A recombinant protein 

consisting of the CRD of FimH linked to a 6His-tag via a thrombin cleavage site (FimH-CRD-Th-

His6) was expressed in E. coli strain HM125[81] and purified by affinity chromatography as previously 

described.[67] 

Expression and purification of full-length FimH (FimH·DsG). Full-length FimH was purified for 

the most part as previously described.[69] Briefly, FimH and FimC were co-expressed in E. coli 

HM125[81] harboring pFimH-FimC. Cells were grown at 30 °C in LB medium containing ampicillin 

(100 µg/mL) to an OD600 of 1.5, whereupon co-expression of FimH and FimC was induced by adding 

isopropyl-β-D-thiogalactoside (IPTG) to a final concentration of 1 mM. Expression was continued for 

12-16 h before cells were harvested by centrifugation and resuspended in 50 mM Tris (pH 7.5), 150 

mM NaCl, 5 mM EDTA and 1 mg/mL polymyxin B sulfate (13 mL per liter of culture). After stirring 

the suspension at 4 °C for 1.5 h, cells and cell debris were pelleted and the supernatant (periplasmic 

extract) was dialyzed against 20 mM Tris (pH 8.0). All following purification steps were performed at 

4 °C. The supernatant was loaded onto an Uno Q column (Bio-Rad, USA), which was equilibrated 

with the same buffer. The flow-through, which contained the FimH-FimC complex, was dialyzed 

against 10 mM MOPS (pH 7.0) and loaded onto a Mono S column (GE Healthcare, UK) equilibrated 

with the same buffer. The complex was eluted with a linear gradient from 0 to 300 mM NaCl. 

Fractions containing the FimH-FimC complex were pooled and dialyzed against a buffer containing 

20 mM NaH2PO4 (pH 7.4) and 50 mM NaCl. Concentrated to 40 µM, FimH-FimC was incubated for 
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48 h at 37 °C with a 3-fold molar excess of a synthetic peptide (DsG) corresponding to the N-terminal 

sequence of the FimG donor strand with an additional arginine at the C-term to improve peptide 

solubility.[82] After incubation, the excess of DsG displaced FimC from FimH, thereby forming a 

stable full-length FimH construct. The mixture was dialyzed against 20 mM acetic acid (pH 4.5) and 

loaded onto a Mono S column, which was equilibrated with the same buffer. Full-length FimH was 

eluted with a linear gradient from 0 to 400 mM, separating it from isolated FimC, unreacted FimH-

FimC complex and excess DsG. Fractions containing full-length FimH were pooled, dialyzed against 

20 mM acetic acid (pH 4.5), analyzed by SDS-PAGE and ESI-mass spectrometry (m/z: Calcd: 

30635.3 Da, found: 30635.0 Da), and stored at -80 °C. 

Competitive fluorescence polarization assay (FP assay). FP assays were essentially performed as 

previously described.[58] The affinity (dissociation constant KD) of 15 to either FimH protein was 

determined in a direct binding assay. The KD of 15 to the isolated FimH lectin domain (FimH-L) has 

been reported as 1.7 nM.[58] In the case of the full-length FimH (FimH·DsG), the KD was determined 

by mixing a serial dilution of FimH from 1 nM to 5 µM with a constant concentration of 15, which 

was fixed at either 5, 10 or 20 nM. All solutions were diaylzed against or prepared in a buffer 

containing 20 mM HEPES (pH 7.4), 150 mM NaCl and 50 µg/mL BSA. The mixture was incubated 

at rt for at least 1 h in black, flat bottom, NBS-treated 96-well microtiter plates (Corning, USA) and in 

a final volume of 100 µL per well. The KD was determined by monitoring the binding of 15 to full-

length FimH and measuring the associated increase in FP using a Synergy H1 Hybrid microplate 

reader (BioTek, USA). FP was measured at 528 nm through polarizing filters that were oriented 

parallel and perpendicular to the incident polarizing light at 485 nm. The resulting binding isotherm 

was fitted to a single-site binding model, which accounts for ligand depletion[83] to determine the KD. 

KD determination of FimH antagonists. The fluorescently labeled ligand 15[58] was used for the 

competitive fluorescence polarization assay. In these competition assays, a serial dilution of 

competitor was titrated into fixed concentrations of FimH protein and 15. For the determination of 

competitor KDs to FimH-L, equimolar concentrations of protein and 15 were used (50 nM). By 

comparison, 10 nM 15 and 300 nM FimH were used in competition assays with FimH·DsG. FP was 

measured as described above and incubation times were varied for either FimH protein. The mixture 

with the labeled FimH antagonist and the unlabeled competing antagonist was incubated for at least 

24 h with the isolated lectin domain, while with full-length FimH the incubation period could be 

reduced to a minimum of 1 h. These time periods were determined empirically to be necessary for the 

reaction to equilibrate and are inherently tied to diverging binding kinetics of these FimH proteins. 

Data were fit to an equilibrium competition function[71] and analyzed with Prism (GraphPad Software, 

USA). 
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Physicochemical and in vitro Pharmacokinetic Studies 

Materials. DMSO, 1-propanol and 1-octanol were purchased from Sigma-Aldrich. PAMPA System 

Solution, GIT-0 Lipid Solution, and Acceptor Sink Buffer were ordered from pIon (Woburn, MA, 

USA). Acetonitrile (MeCN) was purchased from Acros Organics (Geel, Belgium). 

logD7.4 determination. The in silico prediction tool ALOGPS[84] was used to estimate the logP values 

of the compounds. Depending on these values, the compounds were classified into three categories: 

hydrophilic compounds (logP below zero), moderately lipophilic compounds (logP between zero and 

one) and lipophilic compounds (logP above one). For each category, two different ratios (volume of 

1-octanol to volume of buffer) were defined as experimental parameters (Table 2). 

Table 2. Compound classification based on estimated logP values. 

Compound type logP ratio (1-octanol / buffer) 

hydrophilic < 0 30:140, 40:130 

moderately lipophilic 0 - 1 70:110, 110:70 

lipophilic > 1 3:180, 4:180 
 

Equal amounts of phosphate buffer (0.1 M, pH 7.4) and 1-octanol were mixed and shaken vigorously 

for 5 min to saturate the phases. The mixture was left until separation of the two phases occurred, and 

the buffer was retrieved. Stock solutions of the test compounds were diluted with buffer to a 

concentration of 1 µM. For each compound, six determinations, i.e. three determinations per 1-

octanol:buffer ratio, were performed in different wells of a 96-well plate. The respective volumes of 

buffer containing analyte (1 µM) were pipetted to the wells and covered by saturated 1-octanol 

according to the chosen volume ratio. The plate was sealed with aluminum foil, shaken (1350 rpm, 25 

°C, 2 h) on a Heidolph Titramax 1000 plate-shaker (Heidolph Instruments GmbH & Co. KG, 

Schwabach, Germany) and centrifuged (2000 rpm, 25 °C, 5 min, 5804 R Eppendorf centrifuge, 

Hamburg, Germany). The aqueous phase was transferred to a 96-well plate for analysis by LC-MS. 

The logD7.4 was calculated from the 1-octanol:buffer ratio (o/b), the initial concentration of the 

analyte in buffer (1 µM), and the concentration of the analyte in buffer (cB) with equation (2): 

€ 

logD7.4 = log 1µM − cB
cB

×
1
o :b

$ 

% 
& 

' 

( 
)  
 (2) 

LC-MS measurements. Analyses were performed using an 1100/1200 Series HPLC System coupled 

to a 6410 Triple Quadrupole mass detector (Agilent Technologies, Inc., Santa Clara, CA, USA) 

equipped with electrospray ionization. The system was controlled with the Agilent MassHunter 

Workstation Data Acquisition software (version B.01.04). The column used was an Atlantis® T3 C18 

column (2.1 x 50 mm) with a 3 µm particle size (Waters Corp., Milford, MA, USA). The mobile 

phase consisted of two eluents: eluent A (H2O, containing 0.1% formic acid, v/v) and eluent B 
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(acetonitrile, containing 0.1% formic acid, v/v), both delivered at 0.6 mL/min. The gradient was 

ramped from 95% A/5% B to 5% A/95% B over 1 min, and then hold at 5% A/95% B for 0.1 min. 

The system was then brought back to 95% A/5% B, resulting in a total duration of 4 min. MS 

parameters such as fragmentor voltage, collision energy, polarity were optimized individually for each 

analyte, and the molecular ion was followed for each compound in the multiple reaction monitoring 

mode. The concentrations of the analytes were quantified by the Agilent Mass Hunter Quantitative 

Analysis software (version B.01.04). 

Solubility. Solubility was determined in a 96-well format using the µSOL Explorer solubility 

analyzer (pIon, version 3.4.0.5). Measurements were performed at pH 7.4 in triplicates. Three wells of 

a deep well plate were filled with 300 µL of aqueous universal buffer solution. Aliquots (3 µL) of 

compound stock solution (100 mM in DMSO) were added and thoroughly mixed. The final sample 

concentration was 1 mM, the residual DMSO concentration was 1.0% (v/v) in the buffer solutions. 

After 15 h, the solutions were filtrated (0.2 µm 96-well filter plates) using a vacuum to collect 

manifold (Whatman Ltd., Maidstone, UK) to remove any precipitates. Equal amounts of filtrate and 

1-propanol were mixed and transferred to a 96-well plate for UV detection (190 to 500 nm, 

SpectraMax 190, Molecular Devices, Sunnyvale, CA, USA). The amount of material dissolved was 

calculated by comparison with UV spectra obtained from reference samples, which were prepared by 

dissolving compound stock solution in a 1:1 mixture of buffer and 1-propanol (final concentrations 

0.167 mM). 

Parallel Artificial Membrane Permeation Assay (PAMPA). Values of logPe were determined in a 

96-well format with the PAMPA[74] permeation assay. Measurements were performed at pH 7.4 in 

quadruplicates. Four wells of a deep well plate were filled with 650 µL System Solution. Samples 

(150 µL) were withdrawn from each well to determine the blank spectra by UV-spectroscopy 

(SpectraMax 190). Then, analyte dissolved in DMSO was added to the remaining System Solution to 

yield 50 µM solutions. To exclude precipitation, the optical density was measured at 650 nm, with 

0.01 being the threshold value. Solutions exceeding this threshold were filtrated. Afterwards, samples 

(150 µL) were withdrawn to determine the reference spectra. Further 200 µL were transferred to each 

well of the donor plate of the PAMPA sandwich (pIon, P/N 110 163). The filter membranes at the 

bottom of the acceptor plate were infused with 5 µL of GIT-0 Lipid Solution, and 200 µL of Acceptor 

Sink Buffer were filled into each acceptor well. The sandwich was assembled, placed in the 

GutBoxTM, and left undisturbed for 16 h. Then, it was disassembled and samples (150 µL) were 

transferred from each donor and acceptor well to UV-plates. Quantification was performed by UV 

spectroscopy. The logPe-values were calculated with the aid of the PAMPA Explorer Software (pIon, 

version 3.5). 
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2.7 Paper 6: FimH antagonists: bioisosteres to improve the in vitro and 

in vivo PK/PD profile 

 

 

The following paper explores various bioisosteres of the para-carboxylate moiety on the 

terminal ring of the biphenyl mannoside. For assessing the binding affinity of the antagonists 

to the FimH-CRD, a competitive fluorescence polarization assay and isothermal titration 

calorimetry were implemented. Moreover, the binding poses of two bioisosteres were 

determined by X-ray crystallography. The assessment of the key physicochemical properties 

predictive for oral bioavailability and antagonist elimination as well as in vivo studies in a 

mouse model complete this thorough characterization. 
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ABSTRACT: Urinary tract infections (UTIs), predominantly caused by
uropathogenic Escherichia coli (UPEC), belong to the most prevalent infectious
diseases worldwide. The attachment of UPEC to host cells is mediated by FimH, a
mannose-binding adhesin at the tip of bacterial type 1 pili. To date, UTIs are mainly
treated with antibiotics, leading to the ubiquitous problem of increasing resistance
against most of the currently available antimicrobials. Therefore, new treatment
strategies are urgently needed. Here, we describe the development of an orally
available FimH antagonist. Starting from the carboxylate substituted biphenyl α-D-
mannoside 9, affinity and the relevant pharmacokinetic parameters (solubility,
permeability, renal excretion) were substantially improved by a bioisosteric
approach. With 3′-chloro-4′-(α-D-mannopyranosyloxy)biphenyl-4-carbonitrile
(10j) a FimH antagonist with an optimal in vitro PK/PD profile was identified.
Orally applied, 10j was effective in a mouse model of UTI by reducing the bacterial
load in the bladder by about 1000-fold.

■ INTRODUCTION
Urinary tract infection (UTI) is one of the most frequent
infectious diseases worldwide and affects millions of people every
year.1 In more than 70% of the reported cases, uropathogenic
Escherichia coli (UPEC) is the causal pathogen.2 Acute,
uncomplicated lower urinary tract infection, commonly referred
to as cystitis, requires an antibiotic treatment for symptom relief
(i.e., reduction of dysuria, frequent and urgent urination,
bacteriuria, pyuria) and for prevention of more devastating or
even life threatening complications like pyelonephritis and
urosepsis.3,4 However, the repeated use of antibacterial chemo-
therapeutics provokes antimicrobial resistance leading to treat-
ment failure.5 Hence, a new approach for the prevention and
treatment of UTI with orally applicable therapeutics is urgently
needed.6

UPEC undergo a well-defined infection cycle within the host.7

The key step in pathogenesis is bacterial adhesion to the
epithelial cells in the lower urinary tract.8 This interaction
prevents UPEC from clearance by the bulk flow of urine and
enables the bacteria to colonize the epithelial cells. The adhesion
is mediated by the virulence factor FimH located at the tip of
bacterial type 1 pili.9,10 FimH consists of two immunoglobulin-
like domains: the N-terminal lectin domain and (connected by a
short linker) the C-terminal pilin domain.11 The lectin domain
encloses the carbohydrate recognition domain (CRD) that binds

to the oligomannosides of the glycoprotein uroplakin Ia on the
epithelial cell surface.12 The pilin domain anchors the adhesin to
the pilus and regulates the switch between two conformational
states of the CRD with high and low affinity for mannosides,
respectively.
More than 3 decades ago, Sharon and co-workers described

various oligomannosides and aryl α-D-mannosides as potential
antagonists of the FimH-mediated bacterial adhesion.13,14

However, only weak interactions in the milli- to micromolar
range were observed. In recent years, several high-affinity
monovalent mannose-based FimH antagonists with various
aglycones like n-alkyl,15 phenyl,16 dioxocyclobutenyl-
aminophenyl,17 umbelliferyl,16 biphenyl,18−22 indol(in)-
ylphenyl,23 triazolyl,24 and thiazolylamino25 have been reported.
In addition, different multivalent presentations of the mannose
have been synthesized26−32 and a heptavalent presentation of n-
heptyl α-D-mannoside (1) tethered to β-cyclodextin proved to be
highly effective when applied together with the UTI89 bacterial
strain through a catheter into the bladder of C3H/HeN mice.32

Importantly, adverse side effects resulting from nonselective
binding of FimH antagonists (they are all α-D-mannopyrano-
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sides) to mannose receptors of the human host system have
recently been ruled out.33

The high affinities of the monovalent α-D-mannopyranosides
are based on optimal interactions with the main structural
features of the CRD:34−37 first, the mannose binding pocket
accommodating the mannose moiety by means of an extended
hydrogen bond network and, second, the entrance to the binding
site composed of three hydrophobic amino acids (Tyr48,
Tyr137, and Ile52) and therefore referred to as “tyrosine gate”
hosting aliphatic and aromatic aglycones. As an example, n-heptyl
α-D-mannopyranoside (1) exhibits nanomolar affinity due to
hydrophobic contacts of the alkyl aglycone with the hydrophobic
residues of the tyrosine gate.15 Furthermore, aromatic aglycones,
such as present in mannosides 2 and 3 (Figure 1), provide strong
π−π stacking interactions with the tyrosine gate. This interaction
is further favored by the addition of an electron withdrawing
substituent on the terminal ring of the biaryl portion (→4).18,19

Recent in vivo PK studies in mice proved the high potential of
the biphenyl α-D-mannosides 5−8 for an oral treatment,
although high doses (≥50 mg/kg) were necessary to achieve
theminimal concentrations required for the antiadhesive effect in
the urinary bladder.19−21 Moreover, the therapeutic effect could
only be maintained for a few hours, i.e., 4 h for a po (per os)
single-dose application of 7 (50 mg/kg), because of rapid
elimination by glomerular filtration and low reabsorption from
the primary urine in the renal tubules.20

To date, the physicochemical properties affecting the rate of
renal excretion, i.e., lipophilicity and plasma protein binding
(PPB), or metabolic liabilities promoting nonrenal elimination
pathways have been barely investigated for FimH antagonists.
The goal of the present study was to optimize the biphenyl α-D-
mannoside with respect to oral bioavailability and renal
excretion. Starting from antagonist 919 (Figure 2), we
synthesized new biphenyl derivatives, characterized their affinity
to the CRD, structurally investigated their binding mode, and
determined physicochemical and pharmacokinetic parameters
predictive for intestinal absorption and renal elimination.
Furthermore, we determined in vivo PK (pharmacokinetics) of
the most promising new antagonists in a mouse model. After oral
administration, the compound with the best PK profile proved
effective in reducing the bacterial loads upon bladder infection in
a mouse model of UTI.

■ RESULTS AND DISCUSSION
As previously reported, the carboxylate substituent present in the
biphenyl mannoside 9 (its electron withdrawing potential being
essential for an enhanced drug target interaction) strongly
decreases the lipophilicity of the antagonist (log D7.4 < −1.5 19)
in comparison to the n-heptyl (→1, log P = 1.7 19) or the
unsubstituted biphenyl aglycone (→3, log P = 2.1 22). Since low
lipophilicity is a major reason for low intestinal absorption and
rapid renal excretion of the systemically available antagonist,19,23

we aspired to improve oral bioavailability as well as renal
excretion by replacing the carboxylate in 9 with various
bioisosteric groups39 (Figure 2).

Synthesis. Iodide 11 was prepared from peracetylated
mannose and 4-iodophenol in the presence of BF3·Et2O.

22 In a
palladium-catalyzed Miyaura−Suzuki coupling40 with the
boronic acid or boronate derivatives 12a−g, the biphenyl
derivatives 13a−g were obtained in good to excellent yields.
Final deprotection yielded the test compounds 10a−g. When
microwave-assisted reaction conditions41 were utilized, the
conversion of arylnitrile 13g to tetrazole 14 proceeded rapidly
and with good yield. After deprotection of 14 using Zempleń
conditions, the test compound 10h was obtained (Scheme 1).
The cyanobenzamide derivative 10i (Scheme 2) was obtained

from 9 by peracetylation (→15) followed by conversion of the

Figure 1. Monovalent FimH antagonists 1−4 acting as reference compounds and 5−8 which have been orally explored in in vivo disease models.

Figure 2. Bioisosteric replacement of the carboxylic acid substituent of
biphenyl α-D-mannopyranoside 9.
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carboxylic acid into its acid chloride with 1-chloro-N,N,2-
trimethyl-1-propenylamine.42 Without isolation, the acid
chloride was reacted with sodium hydrogen cyanamide in
DMF followed by deacetylation under Zempleń conditions to
yield the test compound 10i.
Finally, to further improve the pharmacokinetic properties of

mannoside 10g18 (see Table 3), a chloride substituent was
introduced to the ortho-position of the aromatic ring adjacent to
the anomeric oxygen. For its synthesis, peracetylated α-D-
mannose (16) was coupled with 2-chloro-4-iodophenol (17)
using BF3·Et2O as promotor (→18, 76%). After the introduction

of the second aromatic ring by Miyaura−Suzuki coupling (→19,
75%), deprotection yielded mannoside 10j (Scheme 3).

Binding Affinity.The binding affinity of heptyl mannoside 1,
the biphenyl mannosides 3, 9, 20,18 and the bioisosteres 10a−j
was determined in a competitive fluorescence polarization assay
(FP assay) and with isothermal titration calorimetry (ITC). A
protein construct consisting of the CRD with a C-terminal His-
tag with a thrombin cleavage site (FimH-CRD-Th-His6) was
used for all experiments.43

Competitive Fluorescence Polarization Assay. For the
rapid evaluation of binding affinity, we established a competitive

Scheme 1a

a(a) Pd(Cl2)dppf·CH2Cl2, K3PO4, DMF, 80 °C, 4 h (13a−g, 44−99%); (b) NaOMe, MeOH, rt, 4 h (10a−h, 29−86%); (c) TMSN3, Bu2Sn(O),
DME, 150 °C, microwave, 10 min (81%).

Scheme 2a

a(a) (i) Ac2O, DMAP, pyridine, 0 °C to rt, overnight; (ii) sat. NaHCO3 aq, DCM, rt, 2 h (15, 53%); (b) 1-chloro-N,N,2-trimethyl-1-propenylamine,
toluene, 0 °C to rt, 2 h; (c) NaH, NH2CN, DMF, 0 °C to rt, overnight; (d) NaOMe, MeOH, rt, 4 h (10i, 21% for three steps).

Scheme 3a

a(a) BF3·Et2O, CH2Cl2, 40 °C (76%); (b) Pd(Cl2)dppf·CH2Cl2, K3PO4, DMF, 80 °C (75%); (c) NaOMe, MeOH, rt, 4 h (48%).
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binding assay based on fluorescence polarization (FP). Similar
formats have been applied before for the detection of
carbohydrate−lectin interactions.18,44 In this assay, the antago-
nist of interest displaces a fluorescently labeled competitor from

the binding site, thereby causing a reduction in fluorescence
polarization.45 To identify the optimal competitor, fluorescein
isothiocyanate (FITC) was connected to the FimH ligand 21 by
three linkers of different lengths (→22−24, Scheme 4). For

Scheme 4a

a(a) 1-[(1-(Cyano-2-ethoxy-2-oxoethylideneaminooxy)dimethylaminomorpholinomethylene)]methanaminium hexafluorophosphate (COMU),
NEt3, fluoresceinamine, DMF, rt, 7 h (22, 19%); b) (i) DIC, NHS, N-Boc-ethylenediamine, DMF, rt, 12 h; (ii) TFA, DCM, rt, 10 min (68%
over two steps), (iii) fluorescein isothiocyanate (FITC), NEt3, DMF, rt, 3 h (23, 48%); (c) (i) DIC, NHS, N-Boc-PEG2-NH2, DMF, rt, 14 h; (ii)
TFA, DCM, rt, 30 min (62% over two steps); (iii) FITC, DMF, rt (24, 65%).

Figure 3. (A) Direct binding curve of the labeled competitor 23 obtained by adding a linear dilution of FimH-CRD (0−100 nM) and a constant
concentration of competitor 23 (5 nM). The KD was determined by fitting the experimental data to a single-site binding fit that accounts for ligand
depletion. In three FP based direct binding experiments the KD of competitor 23 was determined to be 1.7 nM. (B) Inhibition curve of n-heptyl
mannoside (1) from the competitive FP assay. The IC50 value was determined by nonlinear least-squares fitting to a standard four-parameter equation. A
modified Cheng−Prusoff equation45 was used to calculate the corresponding KD value (KD = 28.3 nM).
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optimal sensitivity and signal-to-noise ratio, three main
parameters need to be considered: (i) the affinity of the
competitor should not be impaired by the fluorescent label; (ii)
the conformational flexibility of the label upon binding of the
competitor to the CRD should be low; (iii) the fluorescence
properties of the label should not be affected by the connected
ligand.46−48 A change in fluorescence properties was observed for
reporter ligand 22 in which the label was linked to the biphenyl
agylcone by an amide bond. The absorption spectrum revealed a
lack of the characteristic fluorescein absorption peak at 494 nm
(Scheme 4), likely due to an extension of the conjugated system
to the biphenyl moiety of the ligand. The elongated saturated
spacer groups in competitors 23 and 24 ensured that the
expected spectral properties of the dye were retained (Scheme
4).
For the determination of their binding affinity, fixed

concentrations of the reporter ligands 23 and 24 were incubated
for 24 h with a linear dilution of the FimH-CRD (0−100 nM). FP
was measured using a plate reader, with polarized excitation at
485 nm and emission at 528 nmmeasured through appropriately
oriented polarizers. Fitting the single-site binding function of
Cooper49 to the observed FP data resulted for compound 23 in a
dissociation constant (KD = 1.7 nM, Figure 3A) similar to that of
the unlabeled parent compound 21,19 whereas 24 showed a 5-
fold lower affinity (9.9 nM) (Scheme 4). Therefore, the reporter
ligand 23 fulfills all characteristics as an optimal competitor and
was used for the FP assay.
For the test compounds 1, 3, 9, 20, and 10a−j, a 24 h

incubation time was applied before FP was measured because of
the long residence time of FimH antagonists (t1/2 > 3.5 h, Figure
3B50). The 24 h incubation period was empirically determined to
be necessary to reach equilibrium between reporter ligand and
compound of interest. IC50 values were obtained by nonlinear
least-squares regression (standard four-parameter dose−re-
sponse curve) and converted to KD values using a modified
Cheng−Prusoff equation.45 This equation accounts for the
ligand depletion effect in competitive titrations involving high-
affinity interaction partners present in similar concentrations.
Under these conditions, the free concentration of an interacting
species cannot be assumed to equal the total concentration.
The KD values determined for the test compounds 1, 3, 9, 20,

and 10a−j are summarized in Table 1. Against our expectations,
the biphenyl mannosides 3 and 9 exhibit similar affinities (Table
1), despite the presence of an electron withdrawing carboxylate
substituent in antagonist 9. According to the crystal structure of
FimH cocrystallized with the sulfonamide derivative 10e (Figure
4A), the outer aromatic ring of the biphenyl aglycone forms π−π
interactions with the electron rich Tyr48, which is part of the
tyrosine gate of FimH.15 A reduction of electron density of the
aglycone by the electron withdrawing carboxylate was expected
to enforce these π−π stacking interactions and lead to improved
affinity. However, this beneficial effect might be compensated by
an entropic penalty originating from the improved π−π stacking
to Tyr48 that might lead to the reduced flexibility of both protein
and antagonist. Furthermore, a beneficial enthalpy effect might
be partially compensated by an enthalpy penalty originating from
the desolvation of the charged carboxylate in 951 (see also
Experimental Section). Although this substituent is solvent
exposed, at least a partial desolvation may be necessary upon
antagonist binding. To prove this assumption, we replaced the
carboxylate by the corresponding methyl ester (→20)18 in order
to reduce the desolvation penalty and, as predicted by the
Hammett constant σp,

52 to further improve the π−π stacking.

Table 1. Affinities (KD) of FimH Antagonists to FimH-CRD-
Th-His6

b

aThe KD value of 10j was approximated to be in the subnanomolar
range. The IC50 value obtained in the competitive FP assay was equal
to the lowest value that can be resolved by the assay, indicating
stoichiometric titration of 10j due to its high affinity. Consequently, its
KD must be below the KD of competitor 23. bDissociation constants
(KD) were determined in a competitive fluorescence polarization assay.
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Indeed, a 6-fold improvement in affinity was achieved. However,
since the methyl ester undergoes rapid enzyme-mediated
hydrolysis in vivo,19 it will not be available at the place of action
in the urinary bladder. The methyl ester was therefore replaced
by metabolically stable bioisosteres39 exhibiting comparable
electron withdrawing properties52 (Table 1, entries 5−13). The
most potent derivatives 10d, 10e, and 10g showed affinities in
the low nanomolar range.
As previously reported,22 a chloro substituent in the ortho-

position of the aromatic ring adjacent to the anomeric oxygen is
favorable for affinity and improves the physicochemical proper-
ties relevant for oral bioavailability. Indeed, the corresponding
antagonist 10j was the most potent compound tested in this
study.
Isothermal Titration Calorimetry (ITC). To further

confirm our hypothesis regarding π−π stacking and desolvation,
we performed ITC experiments with the reference compound 1,
the unsubstituted biphenyl mannoside 3, the carboxylic acid 9,
and the bioisosteres 10b−e,g,j (Table 2). ITC allows the
simultaneous determination of the stoichiometry (N), the
change in enthalpy (ΔH) and the dissociation constant (KD)
for ligand−protein binding.53,54 The reliable determination of
these three parameters requires well-defined sigmoidal titration
curves characterized by the dimensionless Wiseman parameter c
(c = Mt(0) KD

−1, where Mt(0) is the initial macromolecule
concentration).55 To be sure that data can be fitted with
confidence, the c-value should be between 1 and 1000 (ideally
between 5 and 500),56 which could be achieved for the
antagonists 3 and 9. For titrations involving low micromolar
Mt(0) and interactions in the low nanomolar or picomolar range,
as suggested for the bioisosteres 10b−j, c-values above 1000 were
expected. Since these conditions lead to steep titration curves
that do not allow the determination of the curve slope
representing 1/KD, we applied an alternative, competitive format
referred to as displacement assay.57,58 First, FimH-CRD-Th-His6
was preincubated with the low affinity antagonist n-heptyl 2-
deoxy-α-D-mannopyranoside (25, for synthesis see Supporting
Information). The high-affinity bioisosteres of interest were
titrated into the protein−ligand complex giving well-defined
sigmoidal titration curves.
The resulting KD values (Table 2) correspond well with the

data obtained from the FP assay (Table 1). A comparison of the
thermodynamic fingerprints of antagonists 3 and 9 reveals that
the more favorable enthalpic contribution resulting from
facilitated π−π stacking leads to a net enthalpy gain (ΔΔH =

−3.7 kJ/mol). However, an even greater increase in enthalpy is
likely countered by the enthalpy costs for desolvation of the
electron withdrawing carboxylate.
The gain in enthalpy is in turn compensated by an unfavorable

entropy (−TΔΔS = 3.2 kJ/mol) as a result of the reduced
flexibility of both the antagonist and the Tyr48 side chain caused
by the improved interaction. This is not entirely outweighed by
the beneficial entropy contribution related to the partial
desolvation of the carboxylate and the related release of water
into the bulk. Added together, the enthalpy and entropy
contributions of antagonists 3 and 9 result in similar affinities
(KD of 17.7 and 15.0 nM, respectively).
In contrast, the replacement of the carboxylate group by

various neutral bioisosteres (entries 4−7) reduces the enthalpy
costs for desolvation (see calculated free energies of desolvation,
Experimental Section) and therefore leads to a markedly
improved enthalpy (ΔΔH from −3.5 to −5.8 kJ/mol). As a
result, an up to 5-fold improvement of the KD values was
achieved. Finally, with a cyano substituent (entries 8 and 9), the
enthalpy term was further improved (ΔΔH = −3.7 kJ/mol)
because of a reduced desolvation penalty and improved π−π
stacking interactions. However, this beneficial component is
again partially compensated by a decrease in entropy. This can be
attributed, first, to the loss of flexibility of the tightly bound ligand
(Figure 4B) and, second, to the smaller surface area of the cyano
substituent compared to amide, sulfonamide, and sulfone, which
results in a smaller number of water molecules being released to
bulk upon binding.

X-ray Crystallography. To determine the binding poses of
the bioisosters, we cocrystallized the compounds 10e and 10j
with the FimH-CRD (Figure 4). Atomic resolution crystal
structures were obtained at 1.07 Å (10e) and 1.10 Å (10j). As
observed in previous mannoside cocrystal structures,15,18,36 the
mannose moiety forms an extensive hydrogen bond network to
the well-defined binding site with all of its hydroxyl groups. The
biphenyl aglycone is located between the tyrosine gate residues
(Tyr48/Tyr137). The π−π stacking of the second aromatic ring
of the aglycone to the side chain of Tyr48 contributes most to the
interaction energy of the aglycone moiety. Interactions to the
Tyr137 side chain on the other hand are only limited. Whereas a
previously published crystal structure of a biphenyl mannoside in
complex with FimH-CRD suffers from crystal contacts of
binding site residues (Tyr48 side chain to backbone oxygen of
Val27) possibly causing the distortion of the binding site,18 the
binding sites of our structures are mostly solvent exposed. This

Figure 4. Ligand binding poses determined by X-ray cocrystallization with compounds 10e resolved to 1.07 Å (A) and 10j resolved to 1.10 Å (B). The
electron density surrounding the aglycone of 10e indicates flexibility of the aglycone and was modeled in two poses. Both compounds bind in a similar
pose with a well-defined hydrogen network surrounding the mannose moiety and π−π stacking interactions between the second aromatic ring and
Tyr48 side chain (A). In contrast, in the FimH-CRD/10j structure the amino acid side chain of Y48 can be modeled in two distinct rotamers, suggesting
flexibility also of the receptor (B).
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revealed the flexibility of the aglycone in the FimH-CRD/10e
structure, since the electron density toward the solvent-exposed
sulfonamide indicates that there is not one single orientation.
Therefore, the aglycone was modeled in two distinct poses. In
contrast, in the FimH-CRD/10j structure the amino acid side
chain of Y48 can be modeled in two distinct rotamers, suggesting
flexibility also of the receptor.
Physicochemical Properties and in Vitro Pharmacoki-

netics. Intestinal absorption and renal excretion are prereq-
uisites for a successful oral treatment of UTI with FimH

antagonists. Furthermore, reabsorption of antagonist from the
renal ultrafiltrate is desirable for maintaining the minimal
antiadhesive concentration in the target organ, namely, the
bladder, over an extended period of time. To estimate the
influence of the bioisostere approach on oral bioavailability and
the rate of renal excretion, we determined lipophilicity by means
of the octanol−water distribution coefficient (log D7.4),

59

aqueous solubility, and membrane permeability in the artificial
membrane permeability assay (PAMPA)60 and the colorectal
adenocarcinoma (Caco-2) cell monolayer model.61

Table 2. Thermodynamic Parameters from ITC for Selected FimH Antagonists Binding to FimH-CRD-Th-His6
d

a95% confidence interval from fitting in parentheses. bGlobal fit including two direct titration measurements. cITC data were previously published
with an n-value of 0.82.37 dn, stoichiometric correction factor.
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Oral Bioavailability. Oral bioavailability of a compound
relies on solubility, permeation through the membranes lining
the intestine, and stability against first pass metabolism.64,65 As
discussed by Lipinski66 and Curatolo,67 dose and permeability
define the minimum aqueous solubility required for oral
administration. Thus, a dose of 1 mg/kg of a moderately
permeable compound requires a solubility of at least 52 μg/mL.
Whereas sufficient aqueous solubility (>3000 μg/mL) was
reported for n-heptyl α-mannopyranoside (1),19 the unsub-
stituted biphenyl α-D-mannopyranoside 3 and the antagonists
bearing a methylcarboxylate, carboxamide, or tetrazole sub-
stituent (compounds 20, 10a, and 10h) were found to be scarcely
soluble.22 As proposed by Ishikawa,68 a possible reason is the
apolar and planar aglycone. By contrast, the polar carboxylic acid
moiety present in antagonist 9 or the substituents in the
bioisosteres 10b−j enhance solubility to 122−273 μg/mL, a level
sufficient for in vivo PK studies. For in vivo disease studies,
however, dosages of up to 10 mg/kg were foreseen (see below),
requiring a solubility of 520 μg/mL.66,67 For this reason,
surfactant Tween 80 (1%) had to be added.
Furthermore, permeability data derived from PAMPA69 and

the Caco-2 model70 suggest moderate to high permeation of the
moderately lipophilic antagonists 1, 3, and 20 (logD7.4 > 1.6)
through the intestinal membranes. The bioisosteres 10a−f,h,i,
although slightly more permeable than the strongly hydrophilic
carboxylic acid derivative 9, show only low values of permeability
compared to n-heptyl α-D-mannopyranoside (1) or the
unsubstituted biphenyl mannoside 3. However, the p-cyanobi-
phenyl derivatives 10g and 10j display elevated log D7.4 and
effective permeability (log Pe) in the range for successful
intestinal absorption. Regarding both sufficient aqueous
solubility and elevated membrane permeability, the p-cyano
substituted bioisosteres 10g and 10j are thus the most promising

candidates for oral absorption. Moreover, combining the
bioisosteric replacement with the addition of a chloro substituent
in the ortho-position of the aromatic ring adjacent to the
anomeric oxygen (→10j)22 resulted in the most advantageous
physicochemical profile for oral bioavailability.

Renal Excretion. The rate of renal excretion depends on the
rate of glomerular filtration and the propensity to tubular
secretion and reabsorption of an antagonist.71 Only the fraction
that is not bound to plasma proteins is expected to enter the
glomerular filtrate.72 Plasma protein binding (PPB) data
indicating the fraction bound ( f b) are listed in Table 2.62 The
biphenyls 9 and 10c were identified as moderate binders to
plasma proteins ( f b≤ 65%), which suggests a low impact of PPB
on antagonist filtration. The fb values of the antagonists 1, 3, 20,
and 10j were between 80% and 93%, whereas the bioisosteres
10d,e,g showed particularly high protein binding ( f b ≥ 99%)
implying slow compound entry into the primary urine. However,
the kinetic aspects of PPB, that is, association and dissociation
rate constants, remain to be determined to quantify precisely the
influence of PPB on filtration.73

Furthermore, log D7.4 was identified as key determinant of
tubular reabsorption.74−76 Accordingly, lipophilic compounds
are predominantly reabsorbed from the renal filtrate. Given that
renal clearance is the major route of elimination, this will result in
a slow but steady excretion into the bladder. In contrast,
hydrophilic compounds are poorly reabsorbed and thus quickly
renally eliminated, which leads to high initial compound levels in
the urine but narrows the time range where the minimal
antiadhesive concentration is maintained. Consequently, low
log D7.4 as shown for the antagonists 9, 10h, and 10i implies low
tubular reabsorption and rapid elimination of the filtered
molecules by the urine. Otherwise, log D7.4 between 0.2 and
0.7, such as determined for the bioisosteres 10a-e, suggests

Table 3. Physicochemical and in Vitro Pharmacokinetic Parametersh

Caco-2 Papp [10
−6 cm/s]e

compd pKa
a log D7.4

b
solubility

[μg/mL]/pHc
PAMPA log Pe
[cm/s]/pHd a → b b → a

PPB f b
[%]f

metabolic stability t1/2
[min]g

1 1.65 >3000 −4.89 7.0 ± 0.6 9.4 ± 0.2 81 13
3 2.1 ± 0.1 21 ± 1/7.4 −4.7 ± 0.1/7.4 10.0 ± 0.9 19.0 ± 1.2 93 ± 1 nd
20 2.14 33.8/6.51 −4.7 4.23 nd 93 1.0
9 3.88 <−1.5 >3000/6.61 no permeation nd nd 73 >60
10a 0.5 ± 0.1 12 ± 1/7.4 −6.8 ± 0.3/7.4 0.12 ± 0.01 0.61 ± 0.03 nd nd
10b 0.8 ± 0.0 122 ± 13/7.4 −9.2 ± 1.4/7.4 1.10 ± 0.82 0.87 ± 0.15 nd nd
10c 0.2 ± 0.1 >250/7.4 −7.8 ± 0.3/7.4 0.18 ± 0.07 1.30 ± 0.03 48 ± 2 >60
10d 0.4 ± 0.0 246 ± 17/7.4 −7.2 ± 0.0/7.4 0.36 ± 0.01 1.76 ± 0.12 99 ± 1 >60
10e 0.7 ± 0.1 >250/7.4 −8.6 ± 0.2/7.4 0.28 ± 0.23 1.82 ± 0.14 >99 >60
10f 6.5 1.1 ± 0.0 >150/3.0 −7.7 ± 0.8/5.0 0.40 ± 0.02 1.90 ± 0.17 nd nd

>150/7.4 −8.8 ± 0.1/7.4
10g 1.4 ± 0.0 186 ± 4/7.6 −5.7 ± 0.0/7.4 2.0 ± 0.1 13.2 ± 2.1 99 ± 0 >60
10h 3.7 −1.4 ± 0.1 11 ± 0/3.0 −9.3 ± 1.4/5.0 0.17 ± 0.00 0.22 ± 0.01 nd nd

273 ± 2/7.4 −8.8 ± 1.4/7.4
10i 2.5 −1.1 ± 0.1 >150/3.0 −6.8 ± 0.2/5.0 0.22 ± 0.14 0.29 ± 0.03 nd nd

>150/7.4 −7.0 ± 0.1/7.4
10j 2.1 ± 0.0 192 ± 5/7.4 −5.2 ± 0.0/7.4 2.2 ± 0.4 22.1 ± 1.5 89 ± 1 >60

apKa values were determined by NMR spectroscopy. bOctanol−water distribution coefficients (log D7.4) were determined by a miniaturized shake-
flask procedure at pH 7.4. Values represent the mean ± SD of sextuplicate measurements.59 cKinetic solubility was measured in a 96-well format
using the μSOL Explorer solubility analyzer at the indicated pH in triplicate. dPe = effective permeability. Passive permeation through an artificial
membrane was determined by the parallel artificial membrane permeation assay (PAMPA). Values represent the mean ± SD of quadruplicate
measurements performed at the indicated pH.60 ePapp = apparent permeability. Permeation through a Caco-2 cell monolayer was assessed in the
absorptive (a → b) and secretory (b → a) directions in triplicate.61 fPlasma protein binding (PPB) was determined by equilibrium dialysis in
triplicate.62 gMetabolic stability was determined by incubating the compounds (2 μM) with pooled rat liver microsomes (RLM, 0.5 mg/mL) in the
presence of NADPH (1 mM, compounds 1, 9, 10c−e,g,j) or without NADPH (compound 20).63 hnd = not determined.

Journal of Medicinal Chemistry Article

DOI: 10.1021/jm501524q
J. Med. Chem. 2015, 58, 2221−2239

2228



2.7 – Paper 6 

 188 

increasing propensity to tubular reuptake, whereas logD7.4 > 1 as
shown for heptyl mannoside 1 and the biphenyl mannosides 3,
20, 10g, 10f, and 10j is optimal for tubular reabsorption from the
glomerular filtrate and thus for slow renal clearance.
Metabolic Stability. Increasing lipophilicity is usually

paralleled by increasing susceptibility to metabolism.77 Liabilities
toward metabolic clearance pathways that prevent the intact
antagonist from reaching the target in the bladder were therefore
of interest. To assess their propensity to cytochrome P450
(CYP450) mediated metabolism, heptyl mannoside 1, the
carboxylic acid derivative 9, and the bioiosteres 10c−e,g,j were
incubated with rat liver microsomes (RLM, 0.5 mg/mL) in the
presence of the cofactor β-nicotinamide adenine dinucleotide
phosphate (NADPH).63 To confirm the high propensity of the
methyl ester present in antagonist 20 to carboxylesterase (CES)
mediated hydrolysis, this antagonist was incubated with RLM
only. The profiles of unchanged compound versus time revealed
high susceptibility of heptyl mannoside 1 to CYP450-mediated
metabolism (t1/2 = 13 min) and rapid hydrolysis of the ester 20
by the hepatic CES (t1/2 = 1.0 min). Otherwise, the bioisosteres
10c−e,g,j were stable against enzyme-mediated bioconversion

(t1/2 > 60 min), suggesting lower propensity to metabolic,
nonrenal elimination pathways.
Considering PPB, lipophilicity, andmetabolic stability data, we

therefore expected (i) a steady release of compounds 10d,e,g,j
into the bladder because of high PPB decelerating glomerular
filtration (10d,e,g) and/or high log D7.4 supporting tubular
reabsorption (10g,j), (ii) a fast excretion of antagonists 9 and 10c
via the urine due to low PPB and low log D7.4, and (iii) a rapid
clearance of heptyl mannoside 1 from the body by renal and
metabolic pathways. Compounds featuring high propensity to
renal excretion as major route of elimination (10c, 10e and 10j)
were selected for in vivo PK studies in a mouse model.

Pharmacokinetic Studies in C3H/HeN Mice. This first
part of our study explored the predicted effects of lipophilicity,
PPB, and metabolic stability on antagonist disposition and
elimination upon a single dose iv application (50 mg/kg) of
compounds 10c and 10e. The PK parameters of these
applications and those of the previously published carboxylate
9 are summarized in Table 4. The table also contains the results
of the iv administration of compound 10j (0.625 mg/kg).

Table 4. Pharmacokinetic Parameters Determined after a Single iv Application of Compounds 9, 10c, 10e, and 10j in Female C3H/
HeN Micea

plasma

compd C0 (μg/mL) dose (mg/kg) Vz (mL) t1/2 (h) AUC0−inf (μg·h/mL) CLtot (mL/h) urine, Cmax (μg/mL)

9 40 50 25.2 0.33 23.5 53.1 300
10c 109.7 50 28.3 0.4 25.3 49.4 4611
10e 151.6 50 19.5 1.9 175.1 7.1 387
10j 0.36 0.625 52.8 0.17 0.07 218 10

aValues were calculated using PKSolver.78 C0, initial concentration; Vz, volume of distribution in terminal phase; AUC, area under the curve; CLtot,
total clearance; Cmax, maximal concentration.

Figure 5. Antagonist concentrations in (A) plasma and (B) urine after a single iv application of 9, 10c, and 10e (50 mg/kg).

Figure 6.Antagonist concentrations in (A) plasma and (B) urine after a single iv and po application of compound 10j (iv, 0.625mg/kg; po, 1.25mg/kg).
MAC90 is the minimal antiadhesive concentration to inhibit 90% adhesion (0.094 μg/mL).
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In contrast to the fast plasma clearance of antagonists 9 and
10c (Figure 5A), the methylsulfonamide bioisostere 10e attained
higher initial concentration in plasma (C0) and lower total
clearance (CLtot). Therefore, it could be detected until 6 h after
application, resulting in markedly higher plasma AUC. The
observed high C0 of compound 10e may be attributed to a small
volume of distribution (Vz) resulting from the high PPB ( f b ≥
99%).72 In urine (Figure 5B), the carboxylic acid 9 and the
morpholinomethanone 10c displayed high levels immediately
following administration and a rapid concentration decrease
within the first 2 h, reflecting the rapid elimination from plasma.
Fast renal excretion as major route of elimination can be
rationalized by the physicochemical properties of the antagonists
9 and 10c, that is, moderate PPB and log D7.4, as well as high
metabolic stability. Otherwise, the methylsulfonamide bioisos-
tere 10e showed sustained compound levels in urine over a
period of 2 h and subsequent slow decrease until 6 h after
administration. This sustained renal excretion is a result of the
interplay of the antagonist’s elevated PPB and log D7.4.
In a second study, the p-cyano bioisostere 10j, characterized by

a high oral absorption potential, was administered as a single dose
iv (0.625 mg/kg) and po (1.25 mg/kg). The plasma
concentration curve upon iv dosing displays a steep decline
within the first hour after application, while the po curve shows a
prolonged period where absorption and elimination are in
equilibrium (Figure 6A). The urine concentration profiles

(Figure 6B) parallel the plasma curves obtained by the two
modes of application; i.e., high plasma clearance upon iv bolus
injection led to high initial antagonist levels in urine and a rapid
concentration decline. By contrast, sustained plasma concen-
trations upon po administration resulted in prolonged urine
levels.
As a result, urine concentrations exceed the minimum level

required for the antiadhesive effect as estimated from the in vitro
cell infection model79 (minimal antiadhesion concentration,23

MAC90 = 0.094 μg/mL) for more than 8 h upon oral single-dose
administration (Figure 6B).

Infection Study in C3H/HeN Mice. In a preventive study,
six mice were inoculated with UTI89 following an oral
application of 10j (1.25 mg/kg) 40 min prior to infection.
Three hours after inoculation, the animals were sacrificed and
bladder and kidneys were removed. Organs were homogenized
and analyzed for bacterial counts. The effect of the FimH
antagonist was compared to a 8 mg/kg dose of ciprofloxacin
(CIP), applied subcutaneously (sc) 10 min before infection. CIP
is used as standard antibiotic therapy in humans for the treatment
of UTI.80 In mice, the dose of 8 mg/kg sc was shown to mimic
the standard human dose regarding peak levels and the AUC24 in
serum.81 The median reductions in bacterial counts in mice
treated with 10j and CIP compared to the control group 3 h after
infection are displayed in Figure 7.

Figure 7. Preventive efficacy of 10j in the UTI mouse model 3 h after infection. The bars depict the median bacterial load with the interquartile range in
the different study groups. Shown are the results of the control group (PBS), control group formulation (5% DMSO in PBS containing 1% Tween 80),
and the intervention groups with the preventive applications of either 1.25 or 10 mg/kg 10j po or 8 mg/kg CIP sc (representing the murine dose
equivalent to a human standard dose).81 DL, detection limit. CFU, colony forming units.
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The median value in the untreated control group showed
bacterial counts of 6.6 log10 colony forming units (CFU) in the
bladder and 6 log10 CFU in the kidneys. After oral application of
1.25 mg/kg 10j, bacterial loads in the bladder decreased by 1.78
log10 CFU and 1.07 log10 CFU in the kidneys. The lower
reduction in the kidneys is most likely due to the differing
adhesion mechanisms between bladder and kidneys (type 1 pili
vs P-pili), which is not targeted by 10j.82 With CIP (8 mg/kg sc)
a substantial reduction in both bladder and kidneys (median
reductions of 2.44 log10 and 2.47 log10, respectively) was
observed. Despite the low oral dose of 10j (1.25 mg/kg), the
approximately 100-fold reduction of CFU in the bladder
promised an even higher effect upon dose increase to 10 mg/
kg. Since the solubility of 10j for this increased dose is too low
(192 μg/mL), we used 5% DMSO and surfactant Tween 80
(1%) as solubilizer. To effectively compare the effect of a higher
dose of 10j, a control group receiving the formulation only (5%
DMSO in PBS containing 1% Tween 80, termed control group
formulation) was tested in parallel. When 10 mg/kg 10j was
applied, bacterial loads in the bladder decreased by 2.68 log10
CFU/mL compared to the control group formulation, clearly
exceeding the effect of CIP with a reduction of 2.44 log10 CFU/
mL. However, only a moderate reduction of 1.04 log10 CFU was
achieved in the kidneys.

■ SUMMARY AND CONCLUSION
Recently, numerous monovalent alkyl and aryl α-D-mannopyr-
anosides have been described as potent FimH antagonists.
However, most of them suffer from insufficient pharmacokinetic
properties, i.e., modest bioavailability and short duration of the
therapeutic effect in the bladder, their site of action. As a
consequence, high doses at short intervals are required to achieve
antiadhesive effects over an extended period of time. Therefore,
the goal of the present study was an appropriate optimization of
the pharmacokinetic profile of biphenyl α-D-mannopyranosides
while keeping their high affinity to the CRD of FimH. The
starting point was the biphenylcarboxylate 9 where the critical
carboxylate was replaced by bioisosteres.39,83

With a series of bioisosteres, a 3- to 5-fold improvement of
affinity was achieved compared to 9. Although binding
necessitates only partial desolvation of the carboxylate and its
bioisosteric replacements, a reduction of the enthalpy penalty for
desolvation51 was identified as the source of the improved affinity
exhibited by the bioisosteres. Thermodynamic evaluation of
antagonists 10b−e revealed almost identical enthalpy contribu-
tion to binding. However, for antagonists with the p-cyano
substituent (10g and 10j) an enhancement of up to −8.7 kJ/mol
was observed, indicating a reduced desolvation penalty and an
improved stacking as derived from the crystal structure of 10j
cocrystallized with the CRD of FimH (Figure 4B). On the other
hand, higher affinity originating from a reduction of conforma-
tional flexibility of ligand and protein resulted in a concomitant
entropy penalty of up to 6.5 kJ/mol.
In addition to the improved pharmacodynamics, the relevant

pharmacokinetic parameters (solubility, permeability, renal
excretion) were substantially improved. With 3′-chloro-4′-(α-
D-mannopyranosyloxy)biphenyl-4-carbonitrile (10j), a FimH
antagonist with an optimal in vitro PK/PD profile was identified.
The p-cyano substituent conferred lipophilicity and high binding
to plasma proteins, which slowed the rate of renal excretion.
Despite higher lipophilicity, antagonist 10j was insusceptible to
CYP450-mediated metabolism and therefore predominantly
eliminated via the renal pathway. In vivo experiments confirmed

the excellent PK profile of 10j with steady renal excretion for
more than 8 h after oral application (1.25 mg/kg), suggesting a
long-lasting antiadhesive effect. Finally, the preventive oral
application of 10j (10 mg/kg) reduced the bacterial load in the
bladder by almost 1000-fold 3 h after infection. Although the first
3 h of the infection do not represent the complete infection cycle,
they represent the time span of bacteria adhering and invading
urothelial cells.84,85 Nevertheless, the effect of FimH antagonist
10j within a longer infection time and at higher dosing will be the
subject of future investigations.

■ EXPERIMENTAL SECTION
Synthesis. The synthesis of compounds 10a−d, 10f, 10g, 10i, 13a−

d, 13f, 13g, 15, 18, and 25, including compound characterization data,
can be found in the Supporting Information.

General Methods.NMR spectra were recorded on a Bruker Avance
DMX-500 (500.1 MHz) spectrometer. Assignment of 1H and 13C NMR
spectra was achieved using 2D methods (COSY, HSQC, HMBC).
Chemical shifts are expressed in ppm using residual CHCl3, CHD2OD,
or HDO as references. Optical rotations were measured using
PerkinElmer polarimeter 341. Electron spray ionization mass spectra
were obtained on a Waters micromass ZQ. The LC/HRMS analyses
were carried out using a Agilent 1100 LC equipped with a photodiode
array detector and a Micromass QTOF I equipped with a 4 GHz digital
time converter. Microwave-assisted reactions were carried out with a
CEM Discover and Explorer. Reactions were monitored by TLC using
glass plates coated with silica gel 60 F254 (Merck) and visualized by using
UV light and/or by charring with a molybdate solution (a 0.02 M
solution of ammonium cerium sulfate dihydrate and ammonium
molybdate tetrahydrate in aqueous 10% H2SO4). MPLC separations
were carried out on a CombiFlash Companion or Rf (Teledyne Isco)
equipped with RediSep normal-phase or RP-18 reversed-phase flash
columns. LC−MS separations were done on a Waters system equipped
with sample manager 2767, pump 2525, PDA 2525, andMicromass ZQ.
All compounds used for biological assays are at least of 95% purity based
on HPLC analytical results. Commercially available reagents were
purchased from Fluka, Aldrich, Alfa Aesar, or abcr GmbH & Co. KG
(Germany). Solvents were purchased from Sigma-Aldrich or Acros and
were dried prior to use where indicated. Methanol (MeOH) was dried
by refluxing with sodium methoxide and distilled immediately before
use. Dimethoxyethane (DME) was dried by filtration over Al2O3 (Fluka,
type 5016 A basic).

4′-(2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyloxy)-N-meth-
ylbiphenyl-4-sulfonamide (13e). A Schlenk tube was charged with
aryl iodide 1122 (116 mg, 0.21 mmol), 4-(N-methylsulfamoyl)-
phenylboronic acid (12e, 50 mg, 0.23 mmol), Pd(dppf)Cl2·CH2Cl2 (5
mg, 0.006 mmol), K3PO4 (67 mg, 0.32 mmol), and a stirring bar. The
tube was closed with a rubber septum and was evacuated and flushed
with argon. This procedure was repeated once, and then anhydrous
DMF (1 mL) was added under a stream of argon. The mixture was
degassed in an ultrasonic bath and flushed with argon for 5 min and then
stirred at 80 °C overnight. The reaction mixture was cooled to rt, diluted
with EtOAc (50 mL), and washed with water (50 mL) and brine (50
mL). The organic layer was dried over Na2SO4 and concentrated in
vacuo. The residue was purified by MPLC on silica gel (petroleum
ether/EtOAc) to afford 13e (105 mg, 84%) as a white solid. [α]D

20

+56.4 (c 0.50, MeOH). 1H NMR (500 MHz, CDCl3): δ = 7.92−7.90
(m, 2H, Ar−H), 7.70−7.68 (m, 2H, Ar−H), 7.57−7.55 (m, 2H, Ar−H),
7.21−7.19 (m, 2H, Ar−H), 5.60−5.57 (m, 2H, H-1, H-3), 5.48 (dd, J =
1.8, 3.4 Hz, 1H, H-2), 5.40 (t, J = 10.0 Hz, 1H, H-4), 4.38 (dd, J = 5.4,
10.8 Hz, 1H, NH), 4.30 (dd, J = 4.9, 12.3 Hz, 1H, H-6a), 4.13−4.08 (m,
2H, H-5, H-6b), 2.72 (d, J = 5.4 Hz, 3H, NCH3), 2.22, 2.07, 2.05, 2.04 (4
s, 12H, 4 COCH3).

13C NMR (126 MHz, CDCl3): δ = 170.55, 170.06,
170.03, 169.75 (4 CO), 155.97, 144.81, 137.16, 134.09, 128.62, 127.85,
127.39, 117.01 (Ar−C), 95.78 (C-1), 69.34 (C-5), 69.31 (C-2), 68.81
(C-3), 65.86 (C-4), 62.07 (C-6), 29.44 (NHCH3), 20.92, 20.74, 20.72
(4C, 4 COCH3). ESI-MS m/z, calcd for C27H31NNaO12S [M + Na]+:
616.1. Found: 616.1.
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4′-(α-D-Mannopyranosyloxy)-N-methylbiphenyl-4-sulfona-
mide (10e). To a solution of 13e (40 mg, 0.07 mmol) in dry MeOH (5
mL) was added freshly prepared 1MNaOMe/MeOH (0.1 equiv) under
argon. The mixture was stirred at rt until the reaction was complete
(monitored by TLC), then neutralized with Amberlyst-15 (H+) ion-
exchange resin, filtered, and concentrated in vacuo. The residue was
purified by MPLC on silica gel (DCM/MeOH, 10:1 to 7:1) to afford
10e (22 mg, 76%) as white solid. [α]D

20 +105.7 (c 0.30, MeOH). 1H
NMR (500 MHz, CD3OD): δ = 7.90−7.88 (m, 2H, Ar−H), 7.80−7.79
(m, 2H, Ar−H), 7.66−7.64 (m, 2H, Ar−H), 7.26−7.25 (m, 2H, Ar−H),
5.58 (d, J = 1.7 Hz, 1H, H-1), 4.06 (dd, J = 1.8, 3.3 Hz, 1H, H-2), 3.96
(dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.79−3.74 (m, 3H, H-4, H-6a, H-6b), 3.63
(ddd, J = 2.5, 5.2, 9.7 Hz, 1H, H-5), 2.57 (s, 3H, NHCH3).

13C NMR
(126 MHz, CD3OD): δ = 158.34, 146.13, 138.67, 134.55, 129.53,
128.82, 128.21, 118.29 (Ar−C), 100.09 (C-1), 75.53 (C-5), 72.42 (C-
3), 71.96 (C-2), 68.32 (C-4), 62.68 (C-6), 29.31 (NHCH3). HRMS m/
z, calcd for C19H23NNaO8S [M + Na]+: 448.1037. Found: 448.1038.
5-(4′-(2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyloxy)-

biphenyl-4-yl)-1H-tetrazole (14). A Schlenk tube was charged with
13g (30 mg, 0.06 mmol), trimethylsilyl azide (16 μL, 0.12 mmol),
dibutyltin oxide (2 mg, 0.006 mmol), DME (1 mL), and a stirring bar.
The mixture was heated to 150 °C for 10 min by microwave irradiation.
The reaction mixture was cooled to rt and then concentrated in vacuo.
The residue was purified by MPLC on silica gel (DCM/MeOH, 9:1 to
8:1) to afford 14 (26 mg, 81%) as a colorless oil. [α]D

20 +56.1 (c 0.3,
MeOH). 1H NMR (500 MHz, CDCl3): δ = 8.25−8.15 (m, 2H, Ar−H),
7.75−7.65 (m, 2H, Ar−H), 7.60−7.55 (m, 2H, Ar−H), 7.20−7.17 (m,
2H, Ar−H), 5.64−5.55 (m, 2H, H-1, H-3), 5.49 (dd, J = 1.7, 3.3 Hz, 1H,
H-2), 5.40 (t, J = 10.1 Hz, 1H, H-4), 4.31 (dd, J = 5.3, 12.4 Hz, 1H, H-
6a), 4.17−4.06 (m, 2H, H-5, H-6b), 2.22, 2.07, 2.06, 2.05 (4 s, 12H, 4
COCH3).

13C NMR (126 MHz, CDCl3): δ = 170.67, 170.14, 170.11,
169.81 (4 CO), 155.61, 128.36, 127.84, 127.49, 116.93 (Ar−C), 95.78
(C-1), 69.36 (C-5), 69.26 (C-2), 68.90 (C-3), 65.89 (C-4), 62.12 (C-6),
20.92, 20.76, 20.73 (4 COCH3). ESI-MSm/z, calcd for C27H28N4NaO10
[M + Na]+: 591.2. Found: 591.1.
5-(4′-(α-D-Mannopyranosyloxy)biphenyl-4-yl)-1H-tetrazole

(10h). Prepared according to the procedure described for 10e from 14
(26 mg, 0.03 mmol). Yield: 18 mg (quant) as a white solid. [α]D

20

+112.1 (c 0.1, MeOH/H2O, 2:1).
1H NMR (500 MHz, CD3OD): δ =

7.98−7.96 (m, 2H, Ar−H), 7.72−7.71 (m, 2H, Ar−H), 7.58−7.54 (m,
2H, Ar−H), 7.16−7.13 (m, 2H, Ar−H), 5.46 (d, J = 1.7 Hz, 1H, H-1),
3.94 (dd, J = 1.9, 3.5 Hz, 1H, H-2), 3.83 (dd, J = 3.4, 9.5 Hz, 1H, H-3),
3.68−3.61 (m, 3H, H-4, H-6a, H-6b), 3.52 (ddd, J = 2.5, 5.4, 9.7 Hz, 1H,
H-5). 13C NMR (126 MHz, CD3OD): δ = 158.19, 145.07, 134.97,
129.29, 128.74, 128.55, 118.26 (Ar−C), 100.13 (C-1), 75.52 (C-5),
72.42 (C-3), 71.98 (C-2), 68.33 (C-4), 62.69 (C-6). HRMS m/z, calcd
for C19H21N4O6 [M + H]+: 401.1456. Found: 401.1450.
4′-(2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyloxy)-3′-chlor-

obiphenyl-4-carbonitrile (19). Prepared according to the procedure
described for 13e from aryl iodide 1823 (79 mg, 0.135 mmol), 12g (22
mg, 0.15mmol), Pd(dppf)Cl2·CH2Cl2 (3.3 mg, 4 μmol), and K3PO4 (57
mg, 0.27mmol). Yield: 57mg (75%) as a white solid. [α]D

20 +77.7 (c 0.5,
CHCl3).

1H NMR (500 MHz, CDCl3): δ = 7.72 (d, J = 8.3 Hz, 2H, Ar−
H), 7.63 (m, 3H, Ar−H), 7.43 (dd, J = 2.2, 8.6 Hz, 1H, Ar−H), 7.27 (d, J
= 8.6 Hz, 1H, Ar−H), 5.64−5.59 (m, 2H, H-1, H-2), 5.54 (dd, J = 1.9,
3.2 Hz, 1H, H-3), 5.41 (t, J = 10.1 Hz, 1H, H-4), 4.28 (dd, J = 5.2, 12.3
Hz, 1H, H-6a), 4.17 (ddd, J = 2.1, 5.1, 10.0 Hz, 1H, H-5), 4.10 (dd, J =
2.2, 12.3 Hz, 1H, H-6b), 2.21 (s, 3H, COCH3), 2.12- 2.00 (m, 9H, 3
COCH3).

13C NMR (126 MHz, CDCl3): δ = 170.54, 170.08, 169.90,
169.84, (4C, CO) 151.67, 143.61, 135.29, 132.87, 129.41, 127.53,
126.60, 125.20, 118.79, 117.36, 111.47 (Ar−C, CN), 96.72 (C-1), 70.00
(C-5), 69.39 (C-3), 68.82 (C-2), 65.86 (C-4), 62.16 (C-6), 20.98, 20.81,
20.79, 20.78 (4 COCH3). ESI-MS m/z, calcd for C27H26ClNNaO10 [M
+ Na]+: 582.1. Found: 582.1.
3′-Chloro-4′-(α-D-mannopyranosyloxy)biphenyl-4-carboni-

trile (10j). Prepared according to the procedure described for 10e from
19 (36 mg, 0.06 mmol). Yield: 12 mg (48%) as a white solid. [α]D

20

+109.4 (c 0.23, MeOH). 1H NMR (500 MHz, CD3OD): δ = 7.80−7.72
(m, 5H, Ar−H), 7.59 (dd, J = 2.2, 8.6 Hz, 1H, Ar−H), 7.48 (d, J = 8.7Hz,
1H, Ar−H), 5.62 (d, J = 1.4 Hz, 1H, H-1), 4.12 (dd, J = 1.8, 3.3 Hz, 1H,

H-2), 4.00 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.83−3.68 (m, 3H, H-4, H-6a,
H-6b), 3.63 (ddd, J = 2.3, 5.4, 9.6 Hz, 1H, H-5). 13C NMR (126 MHz,
CD3OD): δ = 153.65, 145.15, 135.42, 133.86, 129.82, 128.53, 127.87,
125.47, 119.70, 118.59 (Ar−C), 111.97 (CN), 100.66 (C-1), 76.05 (C-
5), 72.39 (C-3), 71.80 (C-2), 68.20 (C-4), 62.65 (C-6). IR (KBr), ν =
3400 (OH), 2227 (CN), 1606, 1487 (Ar−CC) cm−1. HRMSm/z,
calcd for C19H18ClNNaO6 [M + Na]+: 414.0715. Found: 414.0721.

3 ′ - Ch l o r o -N - ( 3 ′ , 6 ′ - d i h yd ro xy - 3 - o xo - 3H - s p i r o -
[ i s o b e n z o f u r a n - 1 , 9 ′ - x a n t h e n ] - 5 - y l ) - 4 ′ - ( α - D -
mannopyranosyloxy)biphenyl-4-carboxamide (22). Compound
21 (10.0 mg, 0.024 mmol), fluoresceinamine isomer I (12.7 mg, 0.037
mmol), and COMU (20.9 mg, 0.049 mmol) were dissolved in dry DMF
(1mL). ThenNEt3 (10 μL, 0.073mmol) was added and themixture was
stirred at rt for 7 h. 1 NHCl in DMFwas added until acid reaction on pH
paper and the mixture was concentrated. The residue was dissolved in
DCM/MeOH (3:1) and loaded onto a silica gel column. The complex
mixture of compounds was only partially resolved. The fractions
containing the product were collected, concentrated, and purified by
preparative HPLC (gradient H2O/MeCN, +0.2% HCO2H) to afford
compound 22 (5 mg, 19%). [α]D

20 +21.1 (c 0.10, MeOH). 1H NMR
(500MHz, CD3OD): δ = 8.26 (d, J = 8.4Hz, 2H, Ar−H), 7.88−7.74 (m,
3H, Ar−H), 7.66 (dd, J = 2.2, 8.6 Hz, 1H, Ar−H), 7.51 (d, J = 8.7 Hz,
1H, Ar−H), 7.29 (dd, J = 1.9, 5.3 Hz, 2H, Ar−H), 7.19 (dd, J = 2.1, 8.3
Hz, 1H, Ar−H), 7.08−6.99 (m, 2H, Ar−H), 6.95 (d, J = 8.7 Hz, 1H, Ar−
H), 6.72 (dd, J = 5.5, 10.6, Hz, 2H, Ar−H), 6.61 (dd, J = 2.3, 8.7 Hz, 1H,
Ar−H), 5.65 (s, 1H, H-1), 4.15 (dd, J = 1.8, 3.2 Hz, H-2), 4.03 (dd, J =
3.4, 9.5, Hz, H-3), 3.87−3.72 (m, 3H, H-4, H-6a, H-6b), 3.65 (m, 1H, H-
5). 13C NMR (126 MHz, CD3OD): δ = 137.50, 136.01, 131.90, 130.24,
130.20, 129.87, 129.24, 128.03, 127.91, 125.79, 125.46, 124.73, 118.99,
118.76, 118.65 (Ar−C), 100.73 (C-1), 76.06 (C-5), 72.42 (C-3), 71.85
(C-2), 68.24 (C-4), 62.69 (C-2). ESI-MS m/z, calcd for C39H31ClNO12
[M + H]+: 740.2. Found: 740.2.

3′-Chloro-N-(2-(3-(3′ ,6′-dihydroxy-3-oxo-3H-spiro-
[isobenzofuran-1,9′-xanthen]-5-yl)thioureido)ethyl)-4′-(α-D-
mannopyranosyloxy)biphenyl-4-carboxamide (23). To a stirred
solution of compound 21 (25 mg, 0.061 mmol) in dry DMF (1 mL),
NHS (21 mg, 0.183 mmol) was added, followed by DIC (9.2 mg, 0.073
mmol). The mixture was stirred at rt for 2 h. Then N-Boc-
ethylendiamine (10.7 mg, 0.067 mmol) was added and the reaction
was stirred for 10 h. It was then cooled down to 0 °C, diluted with water,
and concentrated. Chromatography on silica gel (DCM/MeOH)
yielded 23 mg (0.042 mmol, 68%) of tert-butyl (3′-chloro-4′-(α-D-
mannopyranosyloxy)biphenyl-4-yl-carboxamido)ethyl)carbamate. This
product was dissolved in DCM (3 mL), and TFA (1 mL) was added.
The solid dissolved during addition of TFA. After 10 min the reaction
was complete. The mixture was evaporated, and excess TFA was
removed in high vacuum. The intermediate N-(2-aminoethyl)-3′-
chloro-4′-(α-D-mannopyranosyloxy)biphenyl-4-carboxamide TFA salt
(23 mg, 0.042 mmol, quant) was used directly in the next step. It was
dissolved in dry DMF (0.5 mL), and NEt3 (12.8 mg, 0.127 mmol) was
added. The mixture was cooled to 0 °C. Then FITC (14.8 mg, 0.038
mmol) was added and the mixture was stirred for 3 h in the dark. The
mixture was then coevaporated with water, taken up in MeOH/10% aq
acetic acid and evaporated. Chromatography on silica gel (DCM/
MeOH) yielded compound 23, contaminated with triethylammonium
acetate. The compound was then redissolved in MeOH, and 0.5 N HCl
in MeOH was added. The mixture was evaporated and chromato-
graphed on silica gel to yield pure 23 (15mg, 47%). [α]D

20 +12.1 (c 0.30,
MeOH). 1H NMR (500 MHz, CD3OD): δ = 8.12 (s, 1H), 7.92 (d, J =
8.3 Hz, 2H, Ar−H), 7.70 (dd, J = 5.0, 13.1 Hz, 2H, Ar−H), 7.64 (d, J =
8.3 Hz, 2H, Ar−H), 7.54 (dd, J = 2.2, 8.6 Hz, 1H, Ar−H), 7.46 (d, J = 8.7
Hz, 1H, Ar−H), 7.09 (d, J = 8.2 Hz, 1H, Ar−H), 6.74 (s, 2H), 6.69 (d, J
= 1.4Hz, 2H, Ar−H), 6.55 (d, J = 8.4Hz, 2H, Ar−H), 5.63 (d, J = 1.3Hz,
H-1), 4.15 (dd, J = 1.8, 3.1 Hz, H-2), 4.03 (dd, J = 3.4, 9.5 Hz, H-3), 3.94
(s, 2H, CH2), 3.86−3.64 (m, 6H, H-4, H-5, H-6, CH2).

13C NMR (126
MHz, CD3OD): δ = 153.21, 143.84, 136.41, 129.66, 129.18, 127.76,
127.70, 125.37, 118.64, 103.62 (Ar−C), 100.75 (C-1), 76.00 (C-5),
72.41 (C-3), 71.86 (C-2), 68.24 (C-4), 62.69 (C-6), 40.76 (CH2). ESI-
MS m/z, calcd for C42H37ClN3O12S [M + H]+: 842.2. Found: 842.2.
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3′-Chloro-N-(2-(2-(2-(3-(3′,6′-dihydroxy-3-oxo-3H-spiro-
[isobenzofuran-1,9′-xanthen]-5-yl)thioureido)ethoxy)ethoxy)-
ethyl)-4′-(α-D-mannopyranosyloxy)biphenyl-4-carboxamide
(24).Compound 21 (280 mg, 0.68 mmol) was dissolved in dry DMF (5
mL) under argon. ThenNHS (235mg, 2.04 mmol) was added, followed
by DIC (0.12 mL, 0.78 mmol) and the mixture was stirred at rt for 4 h.
Then Boc-PEG2-NH2 (186 mg, 0.75 mmol) was added, and the mixture
was stirred at rt under argon for 10 h. It was then slowly diluted with
water and concentrated. The residue was purified by chromatography on
silica gel (DCM/MeOH) to give tert-butyl (2-(2-(2-(3′-chloro-4′-(α-D-
mannopyranosyloxy)biphenyl-4-ylcarboxamido)ethoxy)ethoxy)ethyl)-
carbamate (300 mg, 0.468 mmol, 69%). Then the carbamate was
suspended in DCM (3 mL), and TFA (1 mL) was added dropwise at rt.
After 30 min, the solvents were evaporated and the crude mixture was
dissolved in CHCl3/MeOH (6:4, +0.5% conc NH4OH) and transferred
to a silica gel column, eluting with the same solvent mixture, to yield N-
(2 -(2 -(2 - aminoe thoxy)e thoxy)e thy l ) -3 ′ - ch lo ro -4 ′ - (α -D -
mannopyranosyloxy)biphenyl-4-carboxamide (228 mg, 90%). A
fraction of the amine (10 mg, 0.018 mmol) was dissolved in dry DMF
(0.5 mL) and cooled to 0 °C. FITC (6.5 mg, 0.017 mmol) was added,
and the mixture was stirred for 1 h. The mixture was concentrated and
the residue was purified by chromatography on silica (DCM/MeOH) to
yield 24 (10 mg, 65%). 1H NMR (500 MHz, CD3OD): δ = 8.21 (d, J =
1.4 Hz, 1H, Ar−H), 7.88 (d, J = 8.3 Hz, 2H, Ar−H), 7.68 (d, J = 2.2 Hz,
2H, Ar−H), 7.63 (d, J = 8.3 Hz, 2H, Ar−H), 7.53 (dd, J = 2.2, 8.6 Hz,
1H, Ar−H), 7.43 (d, J = 8.7 Hz, 1H, Ar−H), 7.09 (d, J = 8.2 Hz, 1H, Ar−
H), 6.68 (d, J = 2.3Hz, 2H, Ar−H), 6.65 (dd, J = 2.6, 8.6Hz, 2H, Ar−H),
6.53 (dd, J = 1.6, 8.7 Hz, 2H, Ar−H), 5.61 (d, J = 1.3 Hz, 1H, H-1), 4.14
(dd, J = 1.8, 3.2, Hz, 1H, H-2), 4.03 (dd, J = 3.4, 9.5 Hz, 1H, H-3), 3.93−
3.53 (m, 16H), 3.37 (s, 2H, NCH2), 1.30 (s, 2H, CH2).

13C NMR (126
MHz, CD3OD): δ = 170.01 (CO), 153.17, 143.72, 136.37, 134.37,
130.39, 129.69, 129.04, 127.78, 127.73, 125.35, 118.60, 103.60 (Ar−C),
100.72 (C-1), 75.97 (C-5), 72.41 (C-3), 71.86, 71.40, 70.59 (5C, C-2,
OCH2), 68.23 (C-4), 62.64 (C-6), 49.88, 45.49, 40.97 (CH2). ESI-MS
m/z, calcd for C46H45ClN3O14S [M + H]+: 930.2. Found: 930.4.
Competitive Fluorescence Polarization Assay. Expression and

Purification of CRD of FimH. A recombinant protein consisting of the
CRD of FimH linked to a 6His-tag via a thrombin cleavage site (FimH-
CRD-Th-His6) was expressed in E. coli strain HM125 and purified by
affinity chromatography as previously described.43

KD Determination of FITC-Labeled Ligands. The functionalized
ligands (23, 24) were prepared as a 10 mM stock solution in pure
DMSO (Sigma-Aldrich, Buchs, Switzerland). All further dilutions of
compounds and FimH-CRD-Th-His6 protein were prepared in assay
buffer (20 mM HEPES, 150 mM NaCl, 50 μg/mL BSA, pH 7.4). BSA
was added to the assay buffer to prevent nonspecific binding of protein
to the plastic surface. Binding isotherms for the fluorescent ligands were
obtained in direct binding studies by adding a constant concentration of
ligand (final concentration 5 nM) and a linear dilution of protein (final
concentration 0−100 nM) to a final volume of 200 μL in 96-well, black,
flat bottom NBS plates (Corning Inc., Corning, NY, USA). After
incubation of the plate for 24 h at rt with gentle shaking, the fluorescence
polarization was measured with the Synergy H1 hybrid multimode
microplate reader (BioTek Instruments Inc., Winooski, VT, USA) with
polarized excitation at 485 nm and emission measured at 528 nm
through polarizing filters parallel and perpendicularly oriented to the
incident polarized light. KD values were determined by plotting the FP
readout as a function of the protein concentration and applying the
following single-site binding equation (eq 1) that accounts for ligand
depletion:

= + −
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+ + − + + −⎛
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where Sobs is the observed signal from the ligand, SF is the signal from
free ligand, SB is the signal from bound ligand, CP is the total
concentration of protein, and CL is the total concentration of ligand.49

KD Determination of FimH Antagonists. The fluorescently labeled
ligand 23was used for the competitive fluorescence polarization assay. A
linear dilution of nonlabeled FimH antagonist with final concentrations
ranging from 0 to 10 μM was titrated into 96-well, black, flat-bottom
NBS plates (Corning Inc.) to a final volume of 200 μL containing a
constant concentration of protein (final concentration 25 nM) and
FITC-labeled ligand which was fixed at a higher concentration in
competitive binding assays than in direct binding experiments to obtain
higher fluorescence intensities (final concentration 20 nM). Prior to
measuring the fluorescence polarization, the plates were incubated on a
shaker for 24 h at rt until the reaction reached equilibrium. The IC50
value was determined with Prism (GraphPad Software Inc., La Jolla, CA,
USA) by applying a standard four-parameter IC50 function. The
obtained IC50 values were converted into their corresponding KD values
using the derivation of the Cheng−Prusoff equation.45 This variation of
the Cheng−Prusoff equation is applied to competition assays with tight-
binding inhibitors and includes terms to correct for ligand depletion
effects. However, the KD for antagonists having a higher affinity toward
FimH than the labeled ligand could not be accurately determined.45

Isothermal Titration Calorimetry (ITC). All ITC experiments
were performed with the FimH-CRD-Th-His6 protein using a VP-ITC
instrument from MicroCal, Inc. (Malvern Instruments, Worcestershire,
U.K.) with a sample cell volume of 1.4523 mL. The measurements were
performed with 0−5% DMSO at 25 °C, a stirring speed of 307 rpm, and
10 μcal s−1 reference power. The protein samples were dialyzed in assay
buffer prior to all experiments. Because of the high protein consumption
of ITC, only the experiments for the reference compounds (1, 3, and
25) were measured in duplicates. Compounds 1, 3, 9, and 25 were
measured in a direct fashion by titration of ligand (100−2,000 μM) into
protein (8.6−55 μM) with injections of 3−8 μL at intervals of 10 min to
ensure nonoverlapping peaks. The quantity c = Mt(0) KD

−1, where
Mt(0) is the initial macromolecule concentration, is of importance in
titration microcalorimetry. The c-values of the direct titrations were
below 1000 and thus within the reliable range. For the compounds 10b−
e, 10g, and 10j additional competitive ITC experiments were performed
because of their high affinity resulting in c-values above 1000 for direct
titrations. These ligands (600 μM) were titrated into protein (30 μM),
which was preincubated with compound 25 (300 μM) resulting in
sigmoidal titration curves. Because of slow reaction kinetics, titration
intervals of 20 min were used.

Baseline correction and peak integration were performed using the
Origin 7 software (OriginLab, Northampton, MA, USA). An initial 2 μL
injection was excluded from data analysis. Baseline subtraction and
curve-fitting with the three variables N (concentration correction
factor), KD (dissociation constant), andΔH° (change in enthalpy) were
performed with the SEDPHAT software, version 10.40 (National
Institutes of Health).86 A global fitting analysis was performed for the
competition titration (10b−e, 10g, or 10j competing for the protein
binding site with compound 25) and the direct titration of the
competitor (compound 25 binding to protein) to fit for KD.ΔH° andN
were fitted from direct titrations of 10b−e, 10g, or 10j into protein. For
the compounds 3, 9, and 25 binding to protein all variables could be
determined from a global analysis of the direct titration.

The thermodynamic parameters were calculated with the following
equation (eq 2):

Δ ° = Δ ° − Δ ° = = −G H T S RT K RT Kln lnD A (2)

whereΔG°,ΔH°, andΔS° are the changes in free energy, enthalpy, and
entropy of binding, respectively, T is the absolute temperature, and R is
the universal gas constant (8.314 J mol−1 K−1). The 95% confidence
intervals of the measurements were calculated for the two variables KD
and ΔH° with the one-dimensional error surface projection within the
SEDPHAT software.

Calculation of the Free Energy of Desolvation. The three-
dimensional representation for each of the aglycons (4-methoxybi-
phenyl scaffold, Figure 8) was built in the Maestro87 modeling
environment, and the global minimum conformation was identified by
performing 500 iterations of the mixed torsional/low-mode conforma-
tional sampling in combination with the OPLS-2005 force-field and the
implicit solvent model (water) as implemented in the Macromodel

Journal of Medicinal Chemistry Article

DOI: 10.1021/jm501524q
J. Med. Chem. 2015, 58, 2221−2239

2233



Results and discussion 

 193 

9.9.88 The global minimum structures were used as input for the
AMSOL 7.1 program89 to obtain the free energy of desolvation ΔGdes
(Table 5) with the SM5.4A solvation model90 and the AM191 level of
theory (used keywords “AM1 SM5.4A SOLVNT=WATER TRUES”).

Determination of the MAC90 by Flow Cytometry. The MAC90
was determined in principle as in the previously published flow
cytometry assay79 but with some modifications. The human epithelial
bladder carcinoma cell line 5637 (DSMZ, Braunschweig, Germany) was
grown in RPMI 1640 medium, supplemented with 10% fetal calf serum
(FCS), 100 U/mL penicillin, and 100 μg/mL streptomycin at 37 °C, 5%
CO2. All solutions were purchased from Invitrogen (Basel, Switzerland).
The cells were subcultured 1:6 twice per week [using trypsin/EDTA
(Sigma-Aldrich) for the detachment]. Two days before infection, 1.8 ×
105 cells were seeded in each well of a 24-well plate in RPMI 1640
containing 10% FCS without antibiotics. The cell density was
approximately (3−5) × 105 cells/well at the assay day.
For infection, the GFP-expressing clinical E. coli isolate UTI8992

(UTI89 wt) and the GFP-expressing FimA-H knockout strain UTI89
Δf imA-Hwere used (strains were provided by Prof. Urs Jenal, Biocenter,
University of Basel, Switzerland).79 Bacteria were cultivated at 37 °C in
10 mL Luria−Bertani (LB) broth (Becton, Dickinson and Company)
overnight, harvested by centrifugation (3800 rpm, 10 min), and washed
three times in phosphate buffered saline (PBS, Sigma-Aldrich), and a
bacterial solution of OD600 of 0.75 in RPMI + 10% FCS was prepared.
For the determination of the MAC90 value, the IC90, linear dilutions of
the FimH antagonist were prepared in 5%DMSO and PBS. Bacteria and
antagonists were preincubated for 10 min at 37 °C, before cells were
infected with either only 200 μL of bacterial solution of UTI89 or UTI89
Δf imA-H (positive and negative controls), or 225 μL of the
preincubated bacteria−antagonist mixture. Infection lasted for 1.5 h.
During this time infected cells were incubated at 37 °C. Then, cells were
washed with PBS and detached from wells by the addition of 150 μL of
trypsin and incubation at 37 °C for 10 min, before flushing from wells
PBS containing 2% FCS and transferred to tubes. To dilute the trypsin,
cells were centrifuged at 13 000 rpm, 1 min, 600 μL of the supernatant
was discarded, and the pellet was resuspended in the remaining 300 μL
of PBS containing 2% FCS. Samples were stored on ice until
measurement. Before analysis with the flow cytometer (Becton
Dickinson, FACSCanto II), the samples were gently mixed and filtered
using a 35 μm nylon mesh (Corning Life Sciences) to prevent cellular
aggregation. Cells were gated with linear scaling for side scatter (SSC)
and forward scatter (FSC) and GFP intensity of live cells was evaluated.
IC90 values were determined by plotting the concentration of the
antagonist in a logarithmic mode versus the mean fluorescence intensity
(MFI) of living cells and by fitting a dose−response curve (variable
slope, four parameters) with the Prism software (GraphPad Prism).

X-ray Analysis of the Antagonists 10e and 10j Cocrystallized
with FimH-CRD. FimH-CRD/10e Cocrystallization. Initial FimH-
CRD (18 mg/mL in 20 mM HEPES, pH 7.4) crystals were obtained in
complex with 4-(5-nitroindolin-1-yl)phenyl α-D-mannopyranoside (5
mM).23 Crystals were grown in sitting-drop vapor diffusion at 20 °C
with 200 nL of protein−antagonist mixture together with 200 nL of
precipitant solution in well D3 (0.2 M sodium phosphate monobasic
monohydrate, 20% w/v PEG 3,350) of the PEG/Ion HT screen
(Hampton Research, CA, USA). Cubic crystals appeared within 1 week,
which served as cross-seeding crystals. A solution of FimH-CRD (20
mg/mL) and 10e (5 mM) was mixed with 0.2 M sodium phosphate
monobasic monohydrate, 20% w/v PEG 400 with 0.5 μL of each
solution. Streak-seeding was performed after 1 day of incubation. Cubic
FimH-CRD/10e crystals formed within 24 h. Crystals were flash cooled
to 100 K with perfluoropolyether cryo oil (Hampton Research, CA,
USA) as cryoprotectant. Data were collected with synchrotron radiation
(λ = 0.999 99 Å) at the PXIII beamline, Swiss Light Source, Switzerland.

FimH-CRD/10j Cocrystallization. Cocrystals were initially grown in
sitting-drop vapor diffusion at 20 °C with 0.5 μL of a mixture of FimH-
CRD (20 mg/mL) and 10j (5 mM) together with 0.5 μL of 0.1 M
HEPES, pH 7.5, 2M ammonium sulfate. Platelike crystals formed within
2 weeks and were used as seeds for subsequent crystallization.
Diffraction quality crystals were grown by streak-seeding in 0.5 μL of
FimH-CRD (10 mg/mL) with 10j (2.5 mM) and 0.5 μL of 0.1 M
HEPES, pH 7.5, 1.25 M ammonium sulfate. The drops were covered
with perfluoropolyether cryo oil prior to flash cooling to 100 K. Data
were collected with synchrotron radiation (λ = 1.000 03 Å) at the PXIII
beamline, Swiss Light Source, Switzerland.

Structure Determination and Refinement. Data were indexed and
integrated with the XDS package93 for the FimH-CRD/10e cocrystal
structure, and with mosflm94 for the FimH-CRD/10j cocrystal structure
(Table 6). Scaling was performed with XDS and SCALA included in the
CCP4 suite, respectively.95 Structures were solved by molecular

Figure 8. 4-Methoxybiphenyl scaffold of aglycons.

Table 5. Aqueous Free Energy of Desolvation

R ΔGdes [kJ/mol]

neutral
H 15.6
CONHCH3 39.9
COOCH3 23.0
SO2NHCH3 65.5
SO2CH3 56.4
4-morpholineamide 45.3
CN 22.0

deprotonated
COO− 298.2
SO2-N

−-Me 342.0

Table 6. Data Collection and Refinement Statistics for FimH-
CRD/10e and FimH-CRD/10j Cocrystals

FimH-CRD/10e FimH-CRD/10j

PDB code 4CSS 4CST
space group P212121 P212121
no. of molecules in
the asymmetric
unit

1 1

Cell Dimensions
a, b, c (Å) 48.38, 56.23, 61.59 48.84, 55.89, 61.00
α, β, γ (deg) 90, 90, 90 90, 90, 90

Data Collection
beamline Swiss Light Source PXIII Swiss Light Source PXIII
resolution range
(Å)a

30.0−1.07 (1.13−1.07) 23.5−1.10 (1.12−1.10)

unique
observationsa

72000 (9354) 66470 (2500)

average
multiplicitya

10.9 (3.7) 5.4 (2.4)

completeness (%) 96.1 (78.0) 97.2 (76.5)
Rmerge

a 0.056 (0.57) 0.051 (0.305)
mean I/σ(I) a 21.5 (2.22) 15.5 (2.9)

Refinement
resolution range
(Å)

15.7−1.07 23.5−1.10

R, Rfree 11.2, 13.2 11.4, 13.0
rms deviation from
ideal bond length
(Å)

0.010 0.010

rms deviation from
ideal bond angle
(deg)

1.170 1.420

aValues in parentheses are for highest-resolution shell.
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replacement with PHASER96 using the FimH-CRD-butyl α-D-
mannopyranoside complex (PDB code 1UWF) as search model. The
structures were iteratively built using the COOT software97 and refined
with the PHENIX software.98 Geometric restraints for 10e and 10j were
generated with PRODRG.99 The models were validated using
molprobity.100 Residues 113−115 were not modeled in the 10e
structure because of disorder. Furthermore, the ligand was modeled in
two possible conformations. For both ligands, electron density is
reduced on the second aromatic ring because of flexibility of the ligand.
Physicochemical and in Vitro Pharmacokinetic Studies.

Materials. Dimethyl sulfoxide (DMSO), 1-propanol, 1-octanol,
Dulbecco’s modified Eagle medium (DMEM)−high glucose, L-
glutamine solution, penicillin−streptomycin solution, Dulbecco’s
phosphate buffered saline (DPBS), trypsin−EDTA solution, magne-
sium chloride hexahydrate, and reduced nicotinamide adenine
dinucleotide phosphate (NADPH)were purchased from Sigma-Aldrich.
MEM nonessential amino acid (MEM-NEAA) solution, fetal bovine
serum (FBS), and DMEM without sodium pyruvate and phenol red
were bought from Invitrogen (Carlsbad, CA, USA). PRISMA HT
universal buffer, GIT-0 Lipid Solution, and Acceptor Sink Buffer were
ordered from pIon (Woburn, MA, USA). Human plasma was bought
from Biopredic (Rennes, France), and acetonitrile (MeCN) and
methanol (MeOH) were from Acros Organics (Geel, Belgium). Pooled
male rat liver microsomes were purchased from BD Bioscience
(Franklin Lakes, NJ, USA). Tris(hydroxymethyl)aminomethane
(TRIS) was obtained from AppliChem (Darmstadt, Germany). The
Caco-2 cells were kindly provided by Prof. G. Imanidis, FHNW,
Muttenz, and originated from the American Type Culture Collection
(Rockville, MD, USA).
pKa. The pKa values were determined as described elsewhere.101 In

brief, the pH of a sample solution was gradually changed and the
chemical shift of protons adjacent to ionizable centers was monitored by
1H nuclear magnetic resonance (NMR) spectroscopy. The shift was
plotted against the pH of the respective sample, and the pKa was read out
from the inflection point of the resulting sigmoidal curve.
log D7.4. The in silico prediction tool ALOGPS102 was used to

estimate log P values of the compounds. Depending on these values, the
compounds were classified into three categories: hydrophilic com-
pounds (log P below zero), moderately lipophilic compounds (log P
between zero and one), and lipophilic compounds (log P above one).
For each category, two different ratios (volume of 1-octanol to volume
of buffer) were defined as experimental parameters (Table 7).

Equal amounts of phosphate buffer (0.1 M, pH 7.4) and 1-octanol
were mixed and shaken vigorously for 5 min to saturate the phases. The
mixture was left until separation of the two phases occurred, and the
buffer was retrieved. Stock solutions of the test compounds were diluted
with buffer to a concentration of 1 μM. For each compound, six
determinations, that is, three determinations per 1-octanol/buffer ratio,
were performed in different wells of a 96-well plate. The respective
volumes of buffer containing analyte (1 μM) were pipetted to the wells
and covered by saturated 1-octanol according to the chosen volume
ratio. The plate was sealed with aluminum foil, shaken (1350 rpm, 25 °C,
2 h) on a Heidolph Titramax 1000 plate-shaker (Heidolph Instruments
GmbH & Co. KG, Schwabach, Germany), and centrifuged (2000 rpm,
25 °C, 5 min, 5804 R Eppendorf centrifuge, Hamburg, Germany). The
aqueous phase was transferred to a 96-well plate for analysis by LC−MS.
The logD7.4 coefficient was calculated from the 1-octanol/buffer ratio

(o/b), the initial concentration of the analyte in buffer (1 μM), and the
concentration of the analyte in buffer (cB) with eq 3:

= μ −⎛
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Aqueous Solubility. Solubility was determined in a 96-well format
using the μSOL Explorer solubility analyzer (pIon, version 3.4.0.5). For
each compound, measurements were performed at pH 3.0 and 7.4 in
triplicate. For this purpose, six wells of a deep well plate, that is, three
wells per pH value, were filled with 300 μL of PRISMA HT universal
buffer, adjusted to pH 3.0 or 7.4 by adding the requested amount of
NaOH (0.5 M). Aliquots (3 μL) of a compound stock solution (10−50
mM in DMSO) were added and thoroughly mixed. The final sample
concentration was 0.1−0.5 mM, and the residual DMSO concentration
was 1.0% (v/v) in the buffer solutions. After 15 h, the solutions were
filtered (0.2 μm 96-well filter plates) using a vacuum to collect manifold
(Whatman Ltd., Maidstone, U.K.) to remove the precipitates. Equal
amounts of filtrate and 1-propanol were mixed and transferred to a 96-
well plate for UV/vis detection (190−500 nm, SpectraMax 190). The
amount of material dissolved was calculated by comparison with UV/vis
spectra obtained from reference samples, which were prepared by
dissolving compound stock solution in a 1:1 mixture of buffer and 1-
propanol (final concentrations 0.017−0.083 mM).

Parallel Artificial Membrane Permeation Assay (PAMPA). Effective
permeability (log Pe) was determined in a 96-well format with the
PAMPA.60 For each compound, measurements were performed at pH
5.0 and 7.4 in quadruplicates. Eight wells of a deep well plate, that is, four
wells per pH value, were filled with 650 μL of PRISMA HT universal
buffer adjusted to pH 5.0 or 7.4 by adding the requested amount of
NaOH (0.5 M). Samples (150 μL) were withdrawn from each well to
determine the blank spectra by UV/vis spectroscopy (190−500 nm,
SpectraMax 190). Then analyte dissolved in DMSO was added to the
remaining buffer to yield 50 μM solutions. To exclude precipitation, the
optical density was measured at 650 nm, with 0.01 being the threshold
value. Solutions exceeding this threshold were filtered. Afterward,
samples (150 μL) were withdrawn to determine the reference spectra.
Further 200 μL was transferred to each well of the donor plate of the
PAMPA sandwich (pIon, P/N 110163). The filter membranes at the
bottom of the acceptor plate were infused with 5 μL of GIT-0 lipid
solution, and 200 μL of Acceptor Sink Buffer was filled into each
acceptor well. The sandwich was assembled, placed in the GutBox, and
left undisturbed for 16 h. Then it was disassembled and samples (150
μL) were transferred from each donor and acceptor well to UV plates for
determination of the UV/vis spectra. Effective permeability (log Pe) was
calculated from the compound flux deduced from the spectra, the filter
area, and the initial sample concentration in the donor well with the aid
of the PAMPA Explorer software (pIon, version 3.5).

Colorectal Adenocarcinoma (Caco-2) Cell Permeation Assay.
Caco-2 cells were cultivated in tissue culture flasks (BD Biosciences)
with DMEM high glucose medium, containing L-glutamine (2 mM),
nonessential amino acids (0.1 mM), penicillin (100 U/mL),
streptomycin (100 μg/mL), and fetal bovine serum (10%). The cells
were kept at 37 °C in humidified air containing 5% CO2, and the
medium was changed every second day. When approximately 90%
confluence was reached, the cells were split in a 1:10 ratio and
distributed to new tissue culture flasks. At passage numbers between 60
and 65, they were seeded at a density of 5.3 × 105 cells per well to
Transwell six-well plates (Corning Inc.) with 2.5 mL of culture medium
in the basolateral and 1.8 mL in the apical compartment. The medium
was renewed on alternate days. Permeation experiments were
performed between days 19 and 21 after seeding. Prior to the
experiment, the integrity of the Caco-2 monolayers was evaluated by
measuring the transepithelial electrical resistance (TEER) with an
Endohm tissue resistance instrument (World Precision Instruments
Inc., Sarasota, FL, USA). Only wells with TEER values higher than 250
Ω cm2 were used. Experiments were performed in the apical-to-
basolateral (absorptive) and basolateral-to-apical (secretory) directions
in triplicate. Transport medium (DMEM without sodium pyruvate and
phenol red) was withdrawn from the donor compartments of three wells
and replaced by the same volume of compound stock solution (10 mM
in DMSO) to reach an initial sample concentration of 62.5 μM. The
Transwell plate was then shaken (600 rpm, 37 °C) on a Heidolph

Table 7. Compound Classification Based on Estimated log P
Values

compd type log P ratio (1-octanol/buffer)

hydrophilic <0 30:140, 40:130
moderately lipophilic 0−1 70:110, 110:70
lipophilic >1 3:180, 4:180
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Titramax 1000 plate-shaker. Samples (40 μL) were withdrawn from the
donor and acceptor compartments 30 min after initiation of the
experiment, and the compound concentrations were determined by
LC−MS (see below). Apparent permeability (Papp) was calculated
according to eq 4:

=P Q
t Ac

d
d

1
app

0 (4)

where dQ/dt is the compound flux (mol s−1), A is the surface area of the
monolayer (cm2), and c0 is the initial concentration in the donor
compartment (mol cm−3).60 After the experiment, TEER values were
assessed again for each well and results from wells with values below 250
Ω cm2 were discarded.
Plasma Protein Binding (PPB). PPB was determined in a 96-well

format using a high throughput dialysis block (HTD96b; HTDialysis
LCC, Gales Ferry, CT, USA). For each compound, measurements were
performed in triplicate. Dialysis membranes (MWCO 12-14 K;
HTDialysis LCC) were hydrated according to the instructions of the
manufacturer and placed into the dialysis block. Human plasma was
centrifuged (5800 rpm, 5 °C, 10 min), the pH of the supernatant
(without floating plasma lipids) was adjusted to 7.4 by adding the
requested amount of HCl (4 M), and analyte was added to yield a final
concentration of 10 μM. Equal volumes (150 μL) of plasma containing
the analyte or TRIS-HCl buffer (0.1 M, pH 7.4) were transferred to the
compartments separated by the dialysis membrane. The block was
covered with a sealing film and left undisturbed (5 h, 37 °C). Afterward,
samples (90 μL) were withdrawn from the buffer compartments and
diluted with plasma (10 μL). From the plasma compartments, samples
(10 μL) were withdrawn and diluted with TRIS-HCl buffer (90 μL).
The solutions were further diluted with ice-cooled MeCN (300 μL) to
precipitate the proteins and centrifuged (3600 rpm, 4 °C, 10 min). The
supernatants (50 μL) were retrieved, and the analyte concentrations
were determined by LC−MS (see below). The fraction bound ( f b) was
calculated as follows (eq 5):

= −f
c
c

1b
b

p (5)

where cb is the concentration of the analyte withdrawn from the buffer
compartment before dilution and cp is the concentration in the plasma
compartment. The values were accepted if the recovery of analyte was
between 80% and 120% of the initial amount.
Cytochrome P450 Mediated Metabolism. Incubations consisted of

pooledmale rat liver microsomes (0.5 mgmicrosomal protein/mL), test
compound (2 μM), MgCl2 (2 mM), and NADPH (1 mM) in a total
volume of 300 μLTRIS-HCl buffer (0.1M, pH 7.4) and were performed
in a 96-well plate on a Thermomixer Comfort (Eppendorf).
Compounds and microsomes were preincubated (37 °C, 700 rpm, 10
min) before NADPH was added. Samples (50 μL) at t = 0 min and after
an incubation time of 5, 10, 20, and 30 min were quenched with 150 μL
of ice-cooled MeOH, centrifuged (3600 rpm, 4 °C, 10 min), and 80 μL
of supernatant was transferred to a 96-well plate for LC−MS analysis
(see below). The metabolic half-life (t1/2) was calculated from the slope
of the linear regression from the log percentage remaining compound
versus incubation time relationship. Control experiments without
NADPH were performed in parallel.
LC−MS Measurements. Analyses were performed using an 1100/

1200 series HPLC system coupled to a 6410 triple quadrupole mass
detector (Agilent Technologies, Inc., Santa Clara, CA, USA) equipped
with electrospray ionization. The system was controlled with the Agilent
MassHunter Workstation Data Acquisition software (version B.01.04).
The column used was an Atlantis T3 C18 column (2.1 mm × 50 mm)
with a 3 μmparticle size (Waters Corp., Milford, MA, USA). Themobile
phase consisted of eluent A (H2O containing 0.1% formic acid (for 10a−
f,h,i), or 10 mM ammonium acetate, pH 5.0 in 95:5, H2O/MeCN (for
10g,j)) and eluent B (MeCN containing 0.1% formic acid). The flow
rate was maintained at 0.6 mL/min. The gradient was ramped from 95%
A/5% B to 5% A/95% B over 1 min and then held at 5% A/95% B for 0.1
min. The system was then brought back to 95% A/5% B, resulting in a
total duration of 4 min. MS parameters such as fragmentor voltage,

collision energy, polarity were optimized individually for each analyte,
and the molecular ion was followed for each compound in the multiple
reaction monitoring mode. The concentrations of the analytes were
quantified by the Agilent Mass Hunter Quantitative Analysis software
(version B.01.04).

In Vivo Studies. Animals. Female C3H/HeN mice weighing
between 19 and 25 g were obtained from Charles River Laboratories
(Sulzfeld, Germany) or Harlan (Venray, The Netherlands) and were
housed three or four per cage. The mice were kept under specific
pathogen-free conditions in the Animal House of the Department of
Biomedicine, University Hospital of Basel, and animal experimentation
guidelines according to the regulations of the Swiss veterinary law were
followed. After 7 days of acclimatization, 9- to 10-week-old mice were
used for the studies. Animals had free access to chow and water at any
time and were kept in a 12 h/12 h light/dark cycle. For administration
volumes and sampling the good practice guidelines were followed.103

Pharmacokinetic Studies. The single-dose studies for the first
experiment set were performed by intravenous application of FimH
antagonists at a dosage of 50 mg/kg body weight, followed by plasma
and urine sampling. Antagonists were diluted in PBS (Sigma-Aldrich)
for injection into the tail vein. Blood and urine samples (10 μL) were
taken at 6 and 30 min and at 1, 2, 4, 6, and 8 h after injection. For the PK
studies with 10j, the antagonist was dissolved in PBS with 5% DMSO
(Sigma-Aldrich) and injected into the tail vain (0.625 mg/kg) or given
orally (1.25 mg/kg) using a gavage (syringes from BD Micro Fine, U-
100 Insuline, 30 G with BD Microlance 3, 25 G needles, Becton
Dickinson and Soft-Ject, 1 mL syringes from Henke Sass Wolf; gavage
from Fine Science Tools). Blood and urine were sampled (10 μL) after
7, 13, 20, 30, 45min and after 1, 1.5, 2, 2.5, 3, 4, 6, 8, and 24 h. Both blood
and urine samples were directly diluted after sampling with MeOH
(Acros Organics) to precipitate the proteins and centrifuged for 11 min
at 13 000 rpm. The supernatants were transferred to a 96-well plate
(Agilent Technologies, 0.5 mL, polypropylene), and the analyte
concentrations were determined by LC−MS (see above).

Infection Study. For all infection studies, the drinking water of the
mice was replaced by water containing 5% glucose (monohydrate from
AppliChem, BioChemica), 3 days before the start of the experiment. 10j
was dosed at 1.25 mg/kg (in 5% DMSO and PBS) and 10 mg/kg (in 5%
DMSO in PBS containing 1% Tween 80, all purchased from Sigma-
Aldrich) and applied orally via gavage to six and four mice, respectively,
as described in the section Pharmacokinetic Studies, 40 min prior to
infection. Ciprofloxacin (Ciproxin solution, 2 mg/mL, Bayer) was dosed
with 8 mg/kg, which would correspond to a human dose of 500 mg,81

subcutaneously 10 min prior to infection with UTI89 to 4 mice. The
values for the control group (PBS, po) resulted from the infection of 11
mice. Four mice were orally treated with the formulation vehicle for 10j
(5% DMSO in PBS containing 1% Tween 80) and termed controls
formulation. Before infection, remaining urine in the bladder was
expelled by gentle pressure on the abdomen. Mice were anesthetized in
2.5 vol % isoflurane/oxygen mixture (Attane, Minrad Inc., USA) and
placed on their back. Infection was performed transurethrally using a
polyethylene catheter (Intramedic polyethylene tubing, inner diameter
0.28 mm, outer diameter 0.61 mm, Becton Dickinson), on a syringe
(Hamilton Gastight Syringe 50 μL, removable 30G needle, BGB
Analytik AG, Switzerland). After gentle insertion of the catheter into the
bladder, 50 μL of bacterial suspension of UTI89 (5.5 × 109 to 2.25 ×
1010 CFU/mL) was slowly injected. This corresponded to approx-
imately 107−108 CFU per mouse. Mice were killed by CO2 3 h after
inoculation, and bladder and kidneys were aseptically removed. Organs
were homogenized in 1 mL of PBS using a tissue lyser (Retsch,
Germany). Serial dilutions of bladder and kidneys were plated on Levine
Eosin Methylene Blue Agar plates (Becton Dickinson), and CFUs were
counted after overnight incubation at 37 °C.
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2.8 Chapter 7: Prodrugability of Carbohydrates – Investigations on 

FimH Antagonists 

 

 

The following chapter specifically addresses the low membrane permeability of the 

para-(methylsulfonyl)biphenyl α-D-mannopyranoside. By introducing short-chain acyl 

promoieties at the C-6 position of biphenyl α-D-mannopyranoside, prodrugs with an 

excellent absorption potential were obtained. The human carboxylesterase 2 was identified as 

a main enzyme mediating rapid bioconversion to the active principle. Despite their propensity 

to hydrolysis within the enterocytes during absorption, these ester prodrugs present a 

considerable progress in the development of orally available FimH antagonists. 

 

 

Contribution to the project: 

Simon Kleeb performed all experiment regarding the physicochemical and in vitro 

pharmacokinetic characterization of the various ester prodrugs. He established and performed 

the assays for exploring the enzyme-mediated transformation of the prodrugs to the 

pharmacologically active parent compound and interpreted the resulting data. He was 

responsible for the writing of the chapter with exception of the synthesis section.  

Wojciech Schönemann and Philipp Dätwyler synthesized all the tested compounds and were 

responsible for the writing of the synthesis section. Furthermore, Wojciech Schönemann 

revised the manuscript. 

 

 

Abbreviations: 

BNPP, bis(4-nitrophenyl) phosphate; Caco-2 cells, colorectal adenocarcinoma cells; CES, 

carboxylesterase; CRD, carbohydrate recognition domain; hCE1, human carboxylesterase 

isotype 1; hCE2, human carboxylesterase isotype 2; HLM, human liver microsomes; P, 

octanol-water partition coefficient; Papp, apparent permeability; Pe, effective permeability; 

PAMPA, parallel artificial membrane permeability assay; PPB, plasma protein binding; 

RLM, rat liver microsomes; UPEC, uropathogenic Escherichia coli; UTI, urinary tract 

infection. 
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Introduction 

Urinary tract infection primarily caused by uropathogenic Escherichia coli (UPEC) is among 

the most prevalent infectious diseases, requiring an antibiotic treatment.[1] Frequent and 

repeated use of antibiotics can lead to antimicrobial resistance and treatment failure, which 

manifests the need for alternative therapeutic strategies.[2] Bacterial adhesion to the bladder 

cell surface is crucial for the infection cycle, because it prevents the bacteria from being 

washed out by the bulk flow of urine and enables UPEC to colonize urothelial cells.[3] This 

initial interaction is mediated by the mannose-specific lectin FimH localized at the tip of the 

bacterial type 1 pili.[4] FimH encloses a carbohydrate recognition domain (CRD) which 

specifically targets the mannosylated glycoprotein uroplakin Ia on the urothelial cell surface 

and a pilin domain regulating the switch between the low and high affinity states of the 

CRD.[5]  

For more than three decades, FimH antagonists have been explored as novel therapeutics for 

the prevention and treatment of UTI.[6] In recent years, several alkyl and aryl 

α-D-mannopyranosides were reported, showing nanomolar affinities towards the FimH-

CRD.[7] In vivo pharmacokinetic studies supporting oral bioavailability of biphenyl 

α-D-mannopyranosides in a mouse model were first performed in 2010,[7d] and since then, 

further reports describing orally active FimH antagonists have been published.[7f, 7g] In either 

case, high oral dosages (≥ 50 mg/kg) were necessary to achieve the minimal concentrations 

required for antiadhesive effects in the bladder. The antagonists were furthermore rapidly 

eliminated from circulation, such that the therapeutic effect – upon a single dose – could be 

maintained only for few hours. 

 

 
 

Figure 1. Pharmacokinetic optimization of biphenyl α-D-mannopyranosides by (a) an ester prodrug 

approach[7d, 10] and (b) bioisosteric modifications.[11] Compared to the parent carboxylate 1, the ester prodrugs 

2a-c exhibit oral availability; with bioisosteres of the carboxylate 1 (→ 3 & 4a-c) a prolonged renal excretion 

could be achieved.  
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Low antagonist availability in the urine despite high oral dosages might be a consequence of 

low intestinal absorption (i.e. low aqueous solubility or low membrane permeability) or 

extensive non-renal elimination.[8] Moreover, undesirably fast renal excretion of the 

systemically available fraction is due to high glomerular filtration, i.e. low plasma protein 

binding (PPB), or poor reabsorption of polar molecules from the ultrafiltrate in the renal 

tubules.[9] We recently described ester prodrugs of antagonist 1 (Figure 1) which mask the 

carboxylic acid moiety on the terminal ring of the biphenyl aglycone and consequently 

increase the intestinal absorption.[7d, 10] In a further publication, we introduced bioisosteres 

that confer moderate lipophilicity and high PPB leading to prolonged excretion of the 

systemically available antagonist into the urinary bladder.[11] Only in the case of the cyanide 

3, the physicochemical profile allowed for oral absorption and sustained renal excretion, 

whereas further bioisosteres, e.g. the methylsulfonyl-biphenyl mannoside 4a, were too polar 

for absorption.  

A common feature of most carbohydrate derivatives is their high polarity, resulting from the 

many hydroxyl groups of the sugar moiety. In order to enhance absorption of such species, 

the hydrophilic character should be reduced. Peracylation of saccharides can markedly 

increase their cellular uptake, an effect that was observed in the case of peracetylated 

monosaccharides and disaccharides containing one peracetylated subunit.[12a, 12b] Moreover, a 

similar strategy was applied for oligoribonucleotides,[12c-12g] leading to enhanced cellular 

uptake as well as to improved nuclease stability.[12d] However, polyacylated carbohydrate 

derivatives may have certain disadvantages, i.e. very low solubility and/or complicated in 

vivo pharmacokinetic profile due to different rates for deacylation leading to numerous 

metabolic intermediates.  

Here we describe the optimization of the PK parameters relevant for oral absorption for 

methylsulfonyl bioisostere 4a following an ester prodrug strategy. As opposed to 

peracylation, we acylated only one of the hydroxyl groups. For the adjustment of 

lipophilicity, the aliphatic esters were elongated or branched, thereby paving the way for 

orally available prodrugs with sustained excretion of the pharmacologically active principle 

4a into the bladder (Scheme 1).  
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Results and Discussion 

A series of acyl promoieties were introduced at the C-6 hydroxyl group of the mannose 

moiety of antagonist 4a. A common feature of the prodrugs 5a-g is the direct acylation of the 

C-6 hydroxy group. In the case of prodrug 5h, an additional acetal linker was introduced for 

improving the steric accessibility of the metabolic cleavage site. Upon hydrolysis of the ester, 

the resulting hemiacetal intermediate is expected to break down spontaneously, releasing the 

active principal as well as formaldehyde.  

O

S
Me

O O

5a: R = -COCH3
5b: R = -COCH2CH3
5c: R = -COCH(CH3)2
5d: R = -CO(CH2)2CH3
5e: R = -COC(CH3)3
5f:  R = -COCH2CH(CH3)2
5g: R = -CO(CH2)3CH3
5h: R = -CH2O(CO)C(CH3)3

O
OH

OR

HO
HO

O

S
Me

O O

O
OH

OH

HO
HO

1. Intestinal absorption
2. Enzyme-mediated
    bioactivation

3. Renal 
    excretion

4a
Therapeutic

effect

 
Scheme 1. Ester prodrugs of the biphenyl α-D-mannopyranoside (4a). Carboxylic acids of different chain length 

were esterified with the C-6 hydroxyl group of the mannose moiety.  

Compounds 5a-g were obtained according to the synthetic route depicted in Scheme 2. 

BF3⋅Et2O-promoted mannosylation of phenol 7 followed by deacetylation under standard 

Zemplén conditions gave mannoside 9. Intermediate 10 was obtained by selectively 

protecting the primary alcohol in 9 with tert-butyldimethylsilyl chloride, benzylation of 

remaining three hydroxyl groups and finally removal of TBDMS group under acidic 

conditions. The Suzuki cross-coupling reaction with 4-(methanesulfonyl)phenylboronic acid 

pinacol ester (11) afforded mannoside 12. Esterification of 6-OH was performed with acetic 

anhydrate (→ 13a) or corresponding acid chlorides (→ 13b-g). Final compounds were 

obtained after hydrogenolysis with palladium hydroxide on carbon in hydrogen atmosphere. 
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Scheme 2. a) BF3⋅Et2O, CH2Cl2, 4Å MS, 40 °C, 30 h, 67%; b) MeONa/MeOH, rt, 27 h, 61%; c) i. TBDMSCl, 

imidazole, DMF, 0°C → rt, 18 h; ii. BnBr, NaH, TBAI, DMF, 0 °C → rt, 5 h; iii. H2SO4 (1 M), MeOH, 0 °C, 18 

h, 58% (for 3 steps); d) PdCl2(dppf)⋅CH2Cl2, K3PO4, DMF, 80 °C, 19 h, 86%; e) Ac2O or R2-Cl, DMAP, 

pyridine, 60 °C, 3-24 h, 58-91%; f) Pd(OH)2/C, H2 (g), EtOH, rt, 1-16 h, 55-75%. 

For synthesizing 5h, the final acylation step was modified. Starting from 12, 

methylthiomethyl ether was introduced into the structure via Pummerer rearrangement. After 

removal of the main impurities by flash column chromatography the obtained intermediate 

was coupled with pivalic acid in presence of N-iodosuccinimide yielding the 

pivaloyloxymethyl ester 14.[13] Final debenzylation by hydrogenolysis using palladium 

hydroxide on carbon as a catalyst yielded 5h. 
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Scheme 3. a) i. Ac2O, AcOH, DMSO, 4Å MS, rt, 23 h; ii. PivOH, NIS, 0 °C → rt, 15 h, 33%; b) Pd(OH)2/C, H2 

(g), EtOH, rt, 16 h, 24%. 

Table 1 summarizes the physicochemical properties of the ester prodrugs 5a-h, i.e. aqueous 

solubility,[14] lipophilicity as quantified by the octanol-water partition coefficient (log P),[15] 

and permeability determined in permeation experiments through an artificial membrane 

(PAMPA)[16] as well as a colorectal adenocarcinoma (Caco-2) cell monolayer.[17] The table 
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further includes metabolic stability data, describing the susceptibility of the esters to 

hydrolysis by rat or human liver associated esterases.[18]  

Table 1. Physicochemical and pharmacokinetic parameters of different ester prodrugs 5a-h 
Caco-2 Papp

[d] 
[10-6 cm/s] 

Compd log P[a] Solubility[b] 
[µg/mL] 

PAMPA[c] 
log Pe 
[cm/s] a-b b-a b-a/a-b 

RLM[e] 
t1/2 

[min] 

HLM 
t1/2 

[min] 

4a[11] 0.4 ± 0.0 246 ± 17 -7.2 ± 0.0 0.4 ± 0.0 1.8 ± 0.1 5.0 --- --- 

5a 0.9 ± 0.1 146 ± 6 -5.4 ± 0.1 1.8 ± 0.7 17.7 ± 1.1 10 33 n.d. 

5b 1.5 ± 0.1 253 ± 10 -5.0 ± 0.0 4.0 ± 0.6 15.2 ± 0.7 3.8 6.5 3.0 

5c 1.8 ± 0.1 61 ± 1 -4.6 ± 0.0 10.5 ± 0.9 19.5 ± 0.1 1.9 3.7 n.d. 

5d 1.8 ± 0.0 145 ± 9 -4.7 ± 0.1 17.3 ± 1.9 23.5 ± 1.2 1.4 1.8 1.1 

5e 2.3 ± 0.1 58 ± 7 -4.6 ± 0.1 14.1 ± 1.2 19.8 ± 3.3 1.4 15 n.d 

5f 2.1 ± 0.1 65 ± 4 -4.4 ± 0.0 17.8 ± 2.4 24.3 ± 3.0 1.4 2.0 n.d. 

5g 2.2 ± 0.1 149 ± 5 -4.5 ± 0.1 18.1 ± 0.2 29.4 ± 4.0 1.6 < 1 < 1 

5h 2.1 ± 0.1 154 ± 12 -4.5 ± 0.1 9.4 ± 1.3 30.3 ± 3.2 3.2 44 n.d. 

The indicated values represent the mean ± standard deviation (SD) of replicate determinations. 
[a] Octanol-water partition coefficients (log P) were determined by a miniaturized shake-flask procedure in 
sextuplicate.[15] 
[b] Kinetic aqueous solubility was measured in triplicate.[14] 
[c] Pe = effective permeability: diffusion through an artificial membrane was determined by the parallel artificial 
membrane permeability assay (PAMPA) in quadruplicate.[16] 
[d] Papp = apparent permeability: permeation through a Caco-2 cell monolayer was assessed in the absorptive 
(a→b) and secretory (b→a) direction in triplicate. The initial compound concentration (c0) in the donor chamber 
was 62.5 µM.[17] 
[e] Microsomal stability was determined with pooled male rat liver microsomes (0.125 mg/mL) and pooled 
human liver microsomes (0.125 mg/mL) at pH 7.4 and 37 °C. The initial compound concentration was 2 µM. 
The concentration of the prodrug in the incubation was monitored by LC-MS and t1/2 was calculated from the 
slope of the linear regression from the log percentage compound remaining versus incubation time 
relationship.[18] 

The primary goal of this ester prodrug approach, that is, to increase lipophilicity and 

permeability of the biphenyl mannoside 4a, could clearly be achieved. The log P coefficients 

increased in parallel with the number of carbons of the acyl promoiety. The acetate 5a was 

only a little more lipophilic than the parent compound, whereas the propionate 5b, the 

isobutyrate 5c, and the butyrate 5d exhibited markedly elevated lipophilicity. Log P values 

above 2 were observed in the case of the pivalate 5e, the pivaloyloxymethyl 5h, the 

isovalerate 5f, and the valerate 5g. Furthermore, the effective permeability (log Pe) deduced 

from the artificial membrane permeability assay (PAMPA) rose proportionally to log P. Log 

Pe values above -5.7 are a strong indicator of oral availability. The PAMPA results for the 

prodrugs 5a and 5b (log Pe -5.4 & -5.0) indicate a relevant improvement in membrane 
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permeability compared to the parent compound 4a (log Pe -7.2) and optimal permeability for 

the more lipophilic esters 5c-h (log Pe -4.7 ⋅/⋅ -4.4).[19]  

In addition to PAMPA, bi-directional permeation studies through Caco-2 cell monolayers 

were performed in order to reveal carrier-mediated transport through the membranes lining 

the intestine.[17] Since Caco-2 cells express esterases, the system was treated with the esterase 

inhibitor bis(4-nitrophenyl) phosphate (BNPP).[18] This step enabled us to study membrane 

permeation independently from enzyme-mediated hydrolysis. Apparent permeability (Papp) 

derived from the experiments in the absorptive direction (apical→basal) complied with the 

increasing trend observed in lipophilicity and PAMPA. The first two compounds in the series 

(5a, 5b) showed low permeability (Papp < 5 · 10-6 cm/s) whereas for the remaining prodrugs, 

high permeability (Papp > 9 · 10-6 cm/s) was observed. For the most polar prodrugs 5a & 5b, 

high Papp in the secretory direction (basal→apical) is leading to unfavorable efflux ratios 

(b→a/a→b). In these cases, strong efflux carrier activity probably outbalanced the slow 

diffusion in the absorptive direction.[21] Otherwise, the more lipophilic compounds 5c-g 

diffused more rapidly and therefore appeared as weak efflux transporter substrates. The 

pivaloyloxymethyl 5h is the only exception to the described tendency showing a smaller Papp 

in the absorptive direction compared to the other lipophilic prodrugs. Although the 

performance of 5h remains in the high-permeability range, its overall evaluation becomes 

worse when efflux ratio of 3.2 is taken into account. This extraordinary result might be 

attributed to a much different structure of the promoiety. 

For achieving oral bioavailability, quantitative dissolution of the orally administered prodrug 

in the intestine is an additional requirement.[22] Regarding aqueous solubility, the compounds 

listed in Table 1 can be divided into two categories: The esters with branched acyl 

promoieties (isobutyrate 5c, pivalate 5e, and isovalerate 5f) were sparsely soluble in aqueous 

medium (around 60 µg/mL), whereas the linear esters (acetate 5a, propionate 5b, butyrate 5d, 

valerate 5g) and heteroatom-containing promoiety (pivaloyloxymethyl 5h) showed solubility 

values of at least 145 µg/mL. Provided that the prodrugs are applied at a therapeutic dose of 

at most 1 mg/kg body weight, aqueous solubility of 52 µg/mL should be aspired,[22] which 

could barely be achieved with the branched-chain derivatives. By contrast, the prodrugs 5a, 

5b, 5d, 5g, and 5h markedly exceeded this minimum solubility criterion for quantitative 

intestinal absorption.  
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Considering the two pivotal criteria for oral absorption – aqueous solubility and membrane 

permeability – the prodrug 5b (high solubility, moderate permeability) as well as the 

derivatives 5d and 5g (moderate solubility, high permeability) showed the most balanced 

profiles for successful absorption.  

Another prerequisites for developing orally available prodrugs are chemical stability under 

the conditions encountered in stomach and intestine as well as resistance to hydrolysis during 

the absorption phase.[23] In order to assess the stability of the esters against hydrolysis under 

acidic and slightly basic conditions, the butyrate prodrug 5d was dissolved in phosphate 

buffer (20 mM, pH 2.5 and 7.4), acetate buffer (20 mM, pH 5.0), and borate buffer (20 mM, 

pH 9.5) and kept at 37 °C for three hours.[24] At acidic or physiological pH, 5d proved to be 

stable, whereas 29% were hydrolyzed at pH 9.5. We, therefore, expect only marginal prodrug 

loss in the strongly acidic environment of the stomach and the slightly acidic environment of 

the proximal small bowel.[25]  

Furthermore, the ester fulfilling stability requirements prior to absorption, should be rapidly 

cleaved once in circulation.[23] Enzymatic ester hydrolysis, which is basically undesirable 

during absorption but necessary once the prodrug has reached the bloodstream, can be 

mediated by plasma-borne esterases or, as in case of many ester prodrugs, by the 

carboxylesterase (CES) localized in the endoplasmic reticulum of different tissues.[26] The 

CES superfamily encloses various isozymes classified into five subfamilies. The isozymes 

hCE1, highly expressed in the liver but scarcely observed in the gastrointestinal tract, and 

hCE2, present in both, liver and small intestine, have been identified as major human 

CES.[18, 27] In order to estimate the prodrugs’ propensity to CES-mediated hydrolysis 

irrespective of the type of isozyme involved, we incubated the compounds 5a-h (initial conc. 

= 2 µM) with rat liver microsomes (RLM; 0.125 mg/mL in TRIS-HCl 0.1 M, pH 7.4). In a 

further step, we assessed the most promising esters 5b, 5d, and 5g using human liver 

microsomes (HLM; 0.125 mg/mL). The metabolic half-lives (t1/2) derived from the 

microsomal incubations revealed two major trends: First, the increasing susceptibility to 

hydrolysis along with the lipophilicity of the linear esters and, second, sterically hindered 

acyl moieties, such as present in the pivalate 5e and pivaloyloxymethyl 5h, hampering the 

enzymatic turnover. Moreover, exposing the pivalate ester by an acetal linker (→ 5h) actually 

did not increase the rate of enzyme-mediated hydrolysis.  

Rapid hydrolysis as detected for the propionate, butyrate, and valerate esters is basically 

essential to yield the pharmacologically active principle. However, the prodrug approach 
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might only be successful if the cleavage takes place in the liver and not in the intestine during 

absorption or, more precisely, if the hydrolysis is mediated by the isozyme hCE1 rather than 

by hCE2.[23] Since liver microsomes prepared by differential centrifugation from a crude liver 

homogenate contain both carboxylesterases, selective inhibition of only one would reveal 

which isozyme is mainly involved in the hydrolysis of the esters. Therefore, loperamide (a 

specific inhibitor of hCE2) was added to the incubation of 5b, 5d, and 5g with HLM.[28] 

Figure 2 summarizes the hydrolytic activity in presence of the hCE2 specific inhibitor at 

ascending concentrations (1 µM, 10 µM, and 100 µM). The metabolic turnover of the esters 

5b, 5d, and 5g was in fact inhibited by loperamide, which attributes the hydrolysis to the 

hCE2 isozyme.[28] High recognition of our promoieties by isotype 2 complies with the 

distinct substrate specificity of the two isozymes. Accordingly, hCE2 prefers esters with a 

relatively small acyl moiety and a large alcohol group, whereas hCE1 primarily catalyzes the 

hydrolysis of esters with a large acyl but small alcohol moiety.[18] Isotype 2 mediated 

bioconversion might interfere with the intestinal absorption, even in the case of the well 

soluble and permeable prodrugs 5b, 5d, and 5g. Hydrolysis within the enterocytes yields the 

polar active principle 4a, which is as likely to be effluxed back into the gut lumen as it is to 

proceed into the portal blood.[23]  

 
Figure 2. Human liver microsome (HLM) mediated hydrolysis of ester prodrugs 5b, 5d, and 5g in presence of 

loperamide (0 µM, 1 µM, 10 µM, 100 µM), a specific inhibitor of the human carboxylesterase isotype 2 (hCE2). 

The bars represent the accumulation of the parent compound 4a in the incubation with inhibitor (1 µM, 10 µM, 

100 µM) relative to the accumulation in the control experiment without Loperamide (blank). 

Conclusions 

In summary, we have identified several short-chain fatty acids (propionic acid, butyric acid, 

and valeric acid) as useful acyl promoieties for optimizing the intestinal absorption potential 

of the biphenyl mannoside 4a. We showed that acylation of only one hydroxyl group on the 

sugar moiety was sufficient to move log P into the range preferred for good absorption. 
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Nonetheless, other carbohydrates containing less lipophilic reducing-end moiety (e.g. 

disaccharide) may require acylation of additional hydroxyl groups. Moreover, introducing the 

ester promoiety to the sugar may be advantageous for the stability towards other enzymes, i.e. 

glycosidases. All sugar-based drug candidates, if prone to glycosidic bond cleavage, may 

become more resistant to glycosidases located in saliva and gastrointestinal tract, since they 

probably would no longer fit to the active site.  

The downside of this approach is possible premature cleavage of the promoiety by hCE2 

located in the enterocytes. Therefore, choosing the best prodrug should be supported by 

enzymatic stability studies and the half-life should be long enough to enable the majority of 

the prodrug to be absorbed in unchanged form. 

For proving the benefits of the prodrug approach on oral bioavailability and for assessing 

whether the intestinal uptake is affected by concomitant hydrolysis, in vivo pharmacokinetic 

studies of our compounds in a mouse model shall be performed in a next step. 

Experimental Section 

Chemistry 

General methods: NMR spectra were recorded on a Bruker Avance DMX-500 (500 MHz) 

spectrometer. Assignment of 1H and 13C NMR spectra was achieved using 2D methods (COSY, 

HSQC, HMBC). Chemical shifts are expressed in ppm using residual CHCl3, CHD2OD or HDO as 

references. Optical rotations were measured using Perkin-Elmer Polarimeter 341. Electron spray 

ionization mass spectra (ESI-MS) were obtained on a Waters micromass ZQ Mass Spectrometer. The 

LC-HRMS analysis were carried out using a Agilent 1100 LC equipped with a photodiode array 

detector and a Micromass QTOF I equipped with a 4 GHz digital-time converter. Reactions were 

monitored by TLC using glass plates coated with silica gel 60 F254 (Merck) and visualized by using 

UV light and/or by charring with a molybdate solution (a 0.02 M solution of ammonium cerium 

sulfate dihydrate and ammonium molybdate tetrahydrate in aqueous 10% H2SO4). MPLC separations 

were carried out on a CombiFlash Companion or Rf from Teledyne Isco equipped with RediSep 

normal-phase. All compounds used for biological assays are at least of 97% purity based on HPLC 

analytical results. Commercially available reagents were purchased from Aldrich, Alfa Aesar, ABCR 

or Acros Organics. Solvents were purchased from Sigma-Aldrich or Acros and were dried prior to use 

where indicated. Methanol (MeOH), pyridine and DMSO were dried by storing with activated 

molecular sieves 3Å or 4Å for at least one day. Dichloromethane (DCM) was dried by filtration over 

Al2O3 (Fluka, type 5016 A basic). Molecular sieves 4Å were activated in vacuo at 500 °C for 1 h 

immediately before use. 
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General procedure A for esterification. To a solution of 12 in dry pyridine (2 mL) was added Ac2O 

or the corresponding acyl chloride and a catalytic amount of DMAP. The mixture was stirred at rt 

under argon until the reaction was complete (monitored by TLC), then diluted with EtOAc and 

washed with H2O and brine. The organic layer was dried over Na2SO4, concentrated in vacuo and co-

evaporated with xylene. The residue was purified by MPLC on silica gel (petroleum ether/EtOAc, 

7:3) to afford 13a-g. 

General procedure B for hydrogenolysis. A solution of 13a-g or 14 in EtOH was stirred under 

hydrogen in the presence of Pd(OH)2/C (E101 NE/W, 20% Pd). The mixture was stirred at rt until the 

reaction was complete (monitored by TLC), then filtered through Celite, washed with MeOH and 

concentrated in vacuo. The residue was purified by MPLC on silica gel (DCM/MeOH) to give 5a-h. 

4-Iodophenyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (8). 1,2,3,4,6-O-pentaacetyl-D-

mannopyranoside (15.0 g, 45.4 mmol), 4-iodophenol (11.2 g, 50.0 mmol, 1.1 eq) and activated 

molecular sieves 4 Å (2.00 g) were stirred in dry DCM (60 mL) under argon. After 1 h of mixing, first 

portion of BF3⋅Et2O (10 mL, 81 mmol, 1.8 eq) was added dropwise followed by the addition of 

second portion (6.8 mL, 55.2 mmol, 1.2 eq) 4 h later. The reaction was carried out at 40 °C for 30 h. 

The reaction mixture was filtered through Celite and the filtrate was diluted with EtOAc (250 mL), 

washed with satd aq NaHCO3 (3 x 100 mL) and brine (100 mL). The organic layer was dried over 

Na2SO4 and concentrated in vacuo. The residue was crystallized from Et2O/hexan (1:1) to give 8. The 

mother liquor was concentrated and 8 was crystallized again from Et2O/hexan (2:1). The filtrate was 

concentrated and purified by MPLC on silica gel (petroleum ether/EtOAc, 9:1). The compound 8 was 

obtained in an overall yield of 67% (16.8 g). Analytical data are with accordance with the literature 

data.[29]  

4-Iodophenyl α-D-mannopyranoside (9). To a solution of 8 (16.8 g, 30.5 mmol) in dry MeOH (100 

mL) was added freshly prepared 1 M MeONa/MeOH (2 mL) under argon. The reaction mixture was 

stirred overnight at rt, then neutralized with Amberlyst-15 (H+) ion-exchange resin, filtered and 

concentrated in vacuo. Recrystallization from ethanol (250 mL) afforded white crystals of 9. The 

mother liquor was concentrated and purified by MPLC on silica gel (DCM/MeOH, 9:1). The 

compound 9 was obtained in an overall yield of 61% (7.10 g). [α]

€ 

D
20  +106.5 (c 1.00, MeOH); 1H NMR 

(500 MHz, CD3OD): δ = 7.61 (d, J = 8.9 Hz, 2H, Ar-H), 6.96 (d, J = 8.9 Hz, 2H, Ar-H), 5.48 (d, J = 

1.4 Hz, 1H, H-1), 4.01 (dd, J = 1.8, 3.2 Hz, 1H, H-2), 3.89 (dd, J = 3.4, 9.4 Hz, 1H, H-3), 3.80-3.69 

(m, 3H, H-4, H-6a, H-6b), 3.57 ppm (ddd, J = 2.4, 5.4, 9.7 Hz, 1H, H-5); 13C NMR (125 MHz, 

CD3OD): δ = 157.84, 139.52, 120.15 (5C, Ar-C), 100.13 (C-1), 85.31 (Ar-C), 75.52 (C-5), 72.32 (C-

3), 71.84 (C-2), 68.28 (C-4), 62.65 ppm (C-6); HRMS: m/z: Calcd for C12H15INaO6 [M+Na]+: 

404.9811, found: 404.9808. 
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4-Iodophenyl 2,3,4-tri-O-benzyl-α-D-mannopyranoside (10). To a stirred solution of 9 (6.61 g, 

17.3 mmol) in dry DMF (17 mL) were added TBDMSCl (2.61 g, 17.3 mmol, 1.0 eq) and imidazole 

(2.35 g, 34.6 mmol, 2.0 eq) under argon at 0 °C. After 1 h, the reaction mixture was removed from the 

ice bath and allowed to reach rt. Another portion of TBDMSCl (0.26 g, 1.73 mmol, 0.1 eq) was added 

after 15 h. The reaction was carried out for next 3 h until 9 was completely consumed. The reaction 

mixture was diluted with DCM (200 mL), washed with satd aq NaHCO3 (2 x 150 mL) and brine 

(150 mL). The organic layer was dried over Na2SO4, concentrated in vacuo and co-evaporated with 

toluene (2 x 100 mL) to afford 9.60 g of crude product. The obtained compound (6.01 g) was 

dissolved in dry DMF (28 mL) under argon. Sodium hydride (1.75 g, 43.6 mmol, 60% in mineral oil) 

was added to the stirred solution together with an additional portion of DMF (16 mL) at 0 °C 

followed by the addition of BnBr (6.47 mL, 54.5 mmol). The reaction mixture was removed from the 

ice bath and allowed to reach rt. Bu4NI (0.88 g, 2.42 mmol) was added after 2 h. When the reaction 

was complete after another 2 h, the mixture was diluted with EtOAc (250 mL) and washed with satd 

aq NaHCO3 (150 mL), H2O (150 mL) and brine (100 mL). The organic layer was dried over Na2SO4, 

concentrated in vacuo and co-evaporated with toluene (75 mL) to afford 10.8 g of yellowish product. 

The crude compound (10.8 g) was then dissolved in MeOH (70 mL) under argon and a solution of 

H2SO4 in MeOH (1 M, 560 µL) was added dropwise. The reaction was stirred at 0 °C until 

completion (18 h, monitored by TLC), then the mixture was diluted with EtOAc (100 mL) and 

washed with satd aq NaHCO3 (100 mL), H2O (100 mL) and brine (100 mL). The aqueous layer was 

extracted with EtOAc (100 mL). The combined organic layers were dried over Na2SO4, concentrated 

in vacuo and pre-purified by MPLC on silica gel (petroleum ether/EtOAc, 85:15). The crude 10 was 

crystallized from petroleum ether/EtOAc (3:1). The mother liquor was concentrated and the residue 

was recrystallized from MeOH (20 mL). The compound 10 was obtained in an overall yield of 58% 

(4.32 g) over three steps. [α]

€ 

D
20  +55.9 (c 1.00, EtOAc); 1H NMR (500 MHz, CDCl3): δ = 7.48 (d, J = 

8.7 Hz, 2H, Ar-H), 7.35-7.24 (m, 15H, Ar-H), 6.67 (d, J = 8.7 Hz, 2H, Ar-H), 5.49 (d, J = 1.7 Hz, 1H, 

H-1), 4.90 (d, J = 10.9 Hz, 1H, PhCH2O), 4.78 (d, J = 12.2 Hz, 1H, PhCH2O), 4.70-4.62 (m, 4H, 

PhCH2O), 4.07-4.02 (m, 2H, H-4, H-3), 3.89 (br s, 1H, H-2), 3.70-3.69 (m, 2H, H-6a, H-6b), 3.62 (m, 

1H, H-5), 1.81 ppm (s, 1H, OH); 13C NMR (125 MHz, CDCl3): δ = 155.93, 138.53, 138.42, 138.35, 

138.09, 128.61, 128.58, 128.19, 128.03, 127.95, 127.86, 127.80, 118.73 (23C, Ar-C), 96.66 (C-1), 

85.12 (Ar-C), 79.88 (C-3 or C-4), 75.40 (PhCH2O), 74.74 (C-2), 74.43 (C-3 or C-4), 73.38 (PhCH2O), 

73.28 (C-5), 72.69 (PhCH2O), 62.06 ppm (C-6); ESI-MS: m/z: Calcd for C33H33INaO6 [M+Na]+: 

675.12, found: 675.18. 

4'-(Methylsulfonyl)-biphenyl-4-yl 2,3,4-tri-O-benzyl-α-D-mannopyranoside (12). The compounds 

10 (2.50 g, 3.83 mmol) and 11 (843 mg, 4.21 mmol) were dissolved in dry DMF (20 mL) under 

argon. The mixture was degassed in an ultrasonic bath and flushed with argon for 5 min followed by 

the addition of K3PO4 (2.44 g, 11.5 mmol, 3.0 eq) and Pd(dppf)Cl2⋅CH2Cl2 (156 mg, 0.19 mmol, 0.05 
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eq). The mixture was stirred at 80 °C for 19 h. The reaction mixture was diluted with EtOAc (200 

mL), washed with H2O (2 x 120 mL) and brine (120 mL), dried over Na2SO4 and concentrated in 

vacuo. The residue was purified by MPLC on silica gel (petroleum ether/EtOAc, 1:1) to give 12 (2.24 

g, 86%) as a white solid. [α]

€ 

D
20  +70.8 (c 1.01, EtOAc); 1H NMR (500 MHz, CDCl3): δ = 7.99-7.97 (m, 

2H, Ar-H), 7.72-7.70 (m, 2H, Ar-H), 7.53-7.52 (m, 2H, Ar-H), 7.42-7.29 (m, 15H, Ar-H), 7.08-7.06 

(m, 2H, Ar-H), 5.58 (d, J = 1.9 Hz, 1H, H-1), 4.97 (d, J = 10.9 Hz, 1H, PhCH2O), 4.87 (d, J = 12.3 

Hz, 1H, PhCH2O), 4.78-4.69 (m, 4H, PhCH2O), 4.16-4.09 (m, 2H, H-3, H-4), 4.00 (d, J = 2.2 Hz, 1H, 

H-2), 3.79-3.73 (m, 3H, H-5, H-6a, H-6b,), 3.09 ppm (s, 3H, SO2CH3); 13C NMR (125 MHz, CDCl3): 

δ = 156.68, 146.14, 138.87, 138.46, 138.35, 138.15, 133.34, 128.78, 128.65, 128.63, 128.24, 128.09, 

128.06, 128.02, 127.91, 127.84, 127.67, 116.99 (30C, Ar-C), 96.67 (C-1), 80.00 (C-3 or C-4), 75.46 

(PhCH2O), 74.79 (C-2), 74.59 (C-3 or C-4), 73.41 (PhCH2O), 73.31 (C-5), 72.74 (PhCH2O), 62.25 

(C-6), 44.79 ppm (SO2CH3); ESI-MS: m/z: Calcd for C40H40NaO8S [M+Na]+: 703.23, found: 703.26. 

4'-(Methylsulfonyl)-biphenyl-4-yl 6-O-acetyl-2,3,4-tri-O-benzyl-α-D-mannopyranoside (13a). 

Prepared according to the general procedure A from 12 (100 mg, 0.147 mmol), Ac2O (27 µL, 

0.294 mmol, 2.0 eq) and DMAP (1 mg, 0.008 mmol, 0.05 eq). The reaction was started at 0 °C and 

allowed to warm up to rt. Yield: 104 mg (96%) as colorless oil. [α]

€ 

D
20  +70.0 (c 1.00, CHCl3); 1H NMR 

(500 MHz, CDCl3): δ = 7.90 (d, J = 8.5 Hz, 2H, Ar-H), 7.63 (d, J = 8.4 Hz, 2H, Ar-H), 7.46 (d, J = 

8.8 Hz, 2H, Ar-H), 7.33-7.17 (m, 15H, Ar-H), 7.03 (d, J = 8.7 Hz, 2H, Ar-H), 5.52 (d, J = 1.7 Hz, 1H, 

H-1), 4.88 (d, J = 10.8 Hz, 1H, PhCH2O), 4.77-4.63 (m, 4H, PhCH2O), 4.54 (d, J = 10.8 Hz, 1H, 

PhCH2O), 4.26-4.18 (m, 2H, H-6a, H-6b), 4.07 (dd, J = 3.0, 9.2 Hz, 1H, H-3), 3.98-3.92 (m, 2H, H-2, 

H-4), 3.81 (m, 1H, H-5), 2.99 (s, 3H, SO2CH3), 1.92 ppm (s, 3H, COCH3); 13C NMR (125 MHz, 

CDCl3): δ = 170.83 (CO), 156.71, 146.07, 138.84, 138.29, 138.10, 138.09, 133.31, 128.64, 128.59, 

128.57, 128.55, 128.24, 128.05, 127.99, 127.95, 127.93, 127.90, 127.84, 127.61, 117.12 (30C, Ar-C), 

96.43 (C-1), 79.97 (C-3), 75.34 (PhCH2O), 74.48 (C-2), 74.32 (C-4), 73.05, 72.56 (2 PhCH2O), 71.01 

(C-5), 63.21 (C-6), 44.74 (SO2CH3), 20.95 ppm (COCH3); ESI-MS: m/z: Calcd for C42H42NaO9S 

[M+Na]+: 745.24, found: 745.31. 

4’-(Methylsulfonyl)-biphenyl-4-yl 2,3,4-tri-O-benzyl-6-O-propionyl-α-D-mannopyranoside 

(13b). Prepared according to the general procedure A from 12 (70 mg, 0.103 mmol), propionyl 

chloride (33 µL, 0.309 mmol, 3.0 eq) and DMAP (1 mg, 0.008 mmol, 0.08 eq). The reaction was 

started at rt and then wormed up to 60 °C. Yield: 38 mg (58%) as colorless oil. [α]

€ 

D
20  +63.0 (c 1.84, 

CHCl3); 1H NMR (500 MHz, CDCl3): δ = 7.97 (d, J = 8.4 Hz, 2H, Ar-H), 7.70 (d, J = 8.4 Hz, 2H, Ar-

H), 7.51 (d, J = 8.7 Hz, 2H, Ar-H), 7.41-7.27 (m, 15H, Ar-H), 7.10 (d, J = 8.7 Hz, 2H, Ar-H), 5.58 (d, 

J = 1.5 Hz, 1H, H-1), 4.95 (d, J = 10.7 Hz, 1H, PhCH2O), 4.83 (d, J = 12.3 Hz, 1H, PhCH2O), 4.77-

4.72 (m, 3H, PhCH2O), 4.60 (d, J = 10.7 Hz, 1H, PhCH2O), 4.34-4.28 (m, 2H, H-6a, H-6b), 4.14 (dd, 

J = 3.0, 9.2 Hz, 1H, H-3), 4.03 (t, J = 9.5 Hz, 1H, H-4), 3.99 (m, 1H, H-2), 3.88 (ddd, J = 2.4, 4.4, 9.8 
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Hz, 1H, H-5), 3.08 (s, 3H, SO2CH3), 2.27 (q, J = 7.5 Hz, 2H, CH2COO), 1.07 ppm (t, J = 7.6 Hz, 3H, 

CH3); 13C NMR (125 MHz, CDCl3): δ = 174.29 (CO), 156.77, 146.18, 138.89, 138.36, 138.17, 

138.15, 137.46, 137.16, 133.37, 128.70, 128.65, 128.63, 128.61, 128.29, 128.12, 128.01, 127.99, 

127.97, 127.92, 127.68, 118.42, 117.18 (30C, Ar-C), 96.44 (C-1), 80.02 (C-3), 75.44 (PhCH2O), 

74.61 (C-2), 74.50 (C-4), 73.15, 72.65 (2 PhCH2O), 71.19 (C-5), 63.14 (C-6), 44.80 (SO2CH3), 27.66 

(CH2COO), 9.21 ppm (CH3); ESI-MS: m/z: Calcd for C43H44NaO9S [M+Na]+: 759.26, found: 759.13. 

4’-(Methylsulfonyl)-biphenyl-4-yl 2,3,4-tri-O-benzyl-6-O-isobutyryl-α-D-mannopyranoside 

(13c). Prepared according to the general procedure A from 12 (70 mg, 0.103 mmol), isobutyryl 

chloride (33 µL, 0.309 mmol, 3.0 eq) and DMAP (2 mg, 0.016 mmol, 0.16 eq). The reaction was 

started at rt and then wormed up to 60 °C. Yield: 63 mg (82%) as colorless oil. [α]

€ 

D
20  +60.0 (c 3.17, 

CHCl3); 1H NMR (500 MHz, CDCl3): δ = 7.96 (d, J = 8.4 Hz, 2H, Ar-H), 7.68 (d, J = 8.4 Hz, 2H, Ar-

H), 7.49 (d, J = 8.7 Hz, 2H, Ar-H), 7.39-7.26 (m, 15H, Ar-H), 7.09 (d, J = 8.7 Hz, 2H, Ar-H), 5.57 (d, 

J = 1.6 Hz, 1H, H-1), 4.94 (d, J = 10.6 Hz, 1H, PhCH2O), 4.81 (d, J = 12.2 Hz, 1H, PhCH2O), 4.74-

4.71 (m, 3H, PhCH2O), 4.58 (d, J = 10.6 Hz, 1H, PhCH2O), 4.35 (dd, J = 1.7, 11.9 Hz, 1H, H-6a), 

4.25 (dd, J = 5.2, 11.9 Hz, 1H, H-6b), 4.12 (dd, J = 3.0, 9.2 Hz, 1H, H-3), 4.00 (t, J = 9.5 Hz, 1H, H-

4), 3.97 (m, 1H, H-2), 3.86 (ddd, J = 1.6, 5.0, 9.8 Hz, 1H, H-5), 3.06 (s, 3H, SO2CH3), 2.49 (hept, J = 

7.0 Hz, 1H, CH(CH3)2), 1.09 (d, J = 7.0 Hz, 3H, CH3), 1.06 ppm (d, J = 7.0 Hz, 3H, CH3); 13C NMR 

(125 MHz, CDCl3): δ = 176.85 (CO), 156.73, 146.17, 138.85, 138.33, 138.14, 133.31, 128.67, 128.62, 

128.56, 128.22, 128.06, 128.01, 127.95, 127.90, 127.64, 117.14 (30C, Ar-C), 96.34 (C-1), 79.96 (C-

3), 75.48 (PhCH2O), 74.67 (C-2), 74.61 (C-4), 73.16, 72.63 (2 PhCH2O), 71.32 (C-5), 62.98 (C-6), 

44.77 (SO2CH3), 34.10 (CH), 19.12, 18.92 ppm (2 CH3); ESI-MS: m/z: Calcd for C44H46NaO9S 

[M+Na]+: 773.28, found: 773.28. 

4’-(Methylsulfonyl)-biphenyl-4-yl 2,3,4-tri-O-benzyl-6-O-butyryl-α-D-mannopyranoside (13d). 

Prepared according to the general procedure A from 12 (54 mg, 0.080 mmol), butyryl chloride (10 

µL, 0.094 mmol, 1.2 eq) and DMAP (1 mg, 0.008 mmol, 0.1 eq). The reaction mixture was stirred at 

rt. Yield: 45 mg (75%) as colorless oil. [α]

€ 

D
20  +68.6 (c 1.13, CHCl3); 1H NMR (500 MHz, CDCl3): δ = 

8.02 (d, J = 8.4 Hz, 2H, Ar-H), 7.75 (d, J = 8.5 Hz, 2H, Ar-H), 7.56 (d, J = 8.8 Hz, 2H, Ar-H), 7.45-

7.32 (m, 15H, Ar-H), 7.15 (d, J = 8.8 Hz, 2H, Ar-H), 5.64 (d, J = 1.7 Hz, 1H, H-1), 5.00 (d, J = 10.7 

Hz, 1H, PhCH2O), 4.87 (d, J = 12.3 Hz, 1H, PhCH2O), 4.81-4.77 (m, 3H, PhCH2O), 4.65 (d, J = 10.7 

Hz, 1H, PhCH2O), 4.40-4.33 (m, 2H, H-6a, H-6b), 4.19 (dd, J = 3.0, 9.2 Hz, 1H, H-3), 4.07 (t, J = 9.5 

Hz, 1H, H-4), 4.04 (m, 1H, H-2), 3.92 (ddd, J = 2.2, 4.6, 9.8 Hz, 1H, H-5), 3.12 (s, 3H, SO2CH3), 2.29 

(t, J = 7.5 Hz, 2H, CH2COO), 1.67-1.59 (m, 2H, CH2), 0.91 ppm (t, J = 7.4 Hz, 3H, CH3); 13C NMR 

(125 MHz, CDCl3): δ = 173.42 (CO), 156.72, 146.10, 138.83, 138.31, 138.12, 138.10, 133.27, 128.64, 

128.59, 128.57, 128.55, 128.21, 128.05, 127.98, 127.95, 127.93, 127.91, 127.86, 127.60, 117.10 

(30C, Ar-C), 96.37 (C-1), 79.95 (C-3), 75.40 (PhCH2O), 74.58, 74.49 (C-2, C-4), 73.10, 72.59 (2 
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PhCH2O), 71.17 (C-5), 62.94 (C-6), 44.73 (SO2CH3), 36.23 (CH2COO), 18.47 (CH2), 13.80 ppm 

(CH3); ESI-MS: m/z: Calcd for C44H46NaO9S [M+Na]+: 773.28, found: 773.44. 

4’-(Methylsulfonyl)-biphenyl-4-yl 2,3,4-tri-O-benzyl-6-O-pivaloyl-α-D-mannopyranoside (13e). 

Prepared according to the general procedure A from 12 (100 mg, 0.147 mmol), pivaloyl chloride (36 

µL, 0.294 mmol, 2.0 eq) and DMAP (1 mg, 0.008 mmol, 0.05 eq). The reaction was started at rt and 

then wormed up to 60 °C. Yield: 101 mg (90%) as colorless oil. [α]

€ 

D
20  +88.7 (c 1.02, CHCl3); 1H 

NMR (500 MHz, CDCl3): δ = 7.90 (d, J = 8.4 Hz, 2H, Ar-H), 7.62 (d, J = 8.4 Hz, 2H, Ar-H), 7.44 (d, 

J = 8.7 Hz, 2H, Ar-H), 7.35-7.20 (m, 15H, Ar-H), 7.05 (d, J = 8.7 Hz, 2H, Ar-H), 5.53 (d, J = 1.6 Hz, 

1H, H-1), 4.90 (d, J = 10.6 Hz, 1H, PhCH2O), 4.77 (d, J = 12.2 Hz, 1H, PhCH2O), 4.68-4.65 (m, 3H, 

PhCH2O), 4.55 (d, J = 10.7 Hz, 1H, PhCH2O), 4.36 (dd, J = 1.5, 11.8 Hz, 1H, H-6a), 4.15-4.08 (m, 

2H, H-3, H-6b), 3.98-3.93 (m, 2H, H-2, H-4), 3.82 (ddd, J = 1.3, 5.3, 9.8 Hz, 1H, H-5), 2.99 (s, 3H, 

SO2CH3), 1.05 ppm (s, 9H, CH3); 13C NMR (125 MHz, CDCl3): δ = 178.19 (CO), 156.61, 146.05, 

138.75, 138.25, 138.07, 133.16, 128.59, 128.52, 128.46, 128.11, 127.97, 127.91, 127.84, 127.83, 

127.52, 127.59, 117.08 (30C, Ar-C), 96.13 (C-1), 79.84 (C-3), 75.40 (PhCH2O), 74.71, 74.64 (C-2, C-

4), 73.11, 72.50 (2 PhCH2O), 71.33 (C-5), 63.07 (C-6), 44.62 (SO2CH3), 38.82 (C(CH3)3), 27.17 ppm 

(3 CH3); ESI-MS: m/z: Calcd for C45H48NaO9S [M+Na]+: 787.29, found: 787.36. 

4’-(Methylsulfonyl)-biphenyl-4-yl 2,3,4-tri-O-benzyl-6-O-isovaleryl-α-D-mannopyranoside (13f). 

Prepared according to the general procedure A from 12 (38 mg, 0.056 mmol), isovaleryl chloride (27 

µL, 0.223 mmol, 4.0 eq) and DMAP (1 mg, 0.008 mmol, 0.14 eq). The reaction mixture was stirred at 

rt. Yield: 35 mg (81%) as colorless oil. [α]

€ 

D
20  +59.0 (c 0.93, CHCl3); 1H NMR (500 MHz, CDCl3): δ = 

7.99 (d, J = 8.4 Hz, 2H, Ar-H), 7.72 (d, J = 8.4 Hz, 2H, Ar-H), 7.53 (d, J = 8.7 Hz, 2H, Ar-H), 7.42-

7.29 (m, 15H, Ar-H), 7.11 (d, J = 8.7 Hz, 2H, Ar-H), 5.59 (d, J = 1.6 Hz, 1H, H-1), 4.97 (d, J = 10.7 

Hz, 1H, PhCH2O), 4.84 (d, J = 12.3 Hz, 1H, PhCH2O), 4.77-4.74 (m, 3H, PhCH2O), 4.62 (d, J = 10.7 

Hz, 1H, PhCH2O), 4.38 (dd, J = 1.9, 11.9 Hz, 1H, H-6a), 4.29 (dd, J = 4.9, 12.0 Hz, 1H, H-6b), 4.15 

(dd, J = 3.0, 9.2 Hz, 1H, H-3), 4.04 (t, J = 9.5 Hz, 1H, H-4), 4.00 (m, 1H, H-2), 3.88 (ddd, J = 1.8, 

4.8, 9.8 Hz, 1H, H-5), 3.09 (s, 3H, SO2CH3), 2.16 (d, J = 7.1 Hz, 2H, CH2COO), 2.04 (m, 1H, 

CH(CH3)2), 0.89 (d, J = 3.0 Hz, 3H, CH3), 0.88 ppm (d, J = 3.0 Hz, 3H, CH3); 13C NMR (125 MHz, 

CDCl3): δ = 172.93 (CO), 156.76, 146.14, 138.85, 138.33, 138.15, 138.13, 133.29, 128.66, 128.62, 

128.60, 128.58, 128.22, 128.09, 127.98, 127.96, 127.94, 127.89, 127.62, 117.11 (30C, Ar-C), 96.39 

(C-1), 79.97 (C-3), 75.45 (PhCH2O), 74.61, 74.57 (C-2, C-4), 73.13, 72.62 (2 PhCH2O), 71.22 (C-5), 

62.89 (C-6), 44.77 (SO2CH3), 43.48 (CH2COO), 25.70 (CH(CH3)2), 22.56 ppm (2 CH3); ESI-MS: 

m/z: Calcd for C45H48NaO9S [M+Na]+: 787.29, found: 787.46. 

4’-(Methylsulfonyl)-biphenyl-4-yl 2,3,4-tri-O-benzyl-6-O-valeryl-α-D-mannopyranoside (13g). 

Prepared according to the general procedure A from 12 (69 mg, 0.101 mmol), valeryl chloride (49 µL, 

0.404 mmol, 4.0 eq) and DMAP (1 mg, 0.008 mmol, 0.08 eq). The reaction was started at rt and then 
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wormed up 60 °C. Yield: 70 mg (91%) as yellowish oil. [α]

€ 

D
20  +63.9 (c 1.00, CHCl3); 1H NMR (500 

MHz, CDCl3): δ = 7.90 (d, J = 8.4 Hz, 2H, Ar-H), 7.64 (d, J = 8.4 Hz, 2H, Ar-H), 7.45 (d, J = 8.7 Hz, 

2H, Ar-H), 7.33-7.20 (m, 15H, Ar-H), 7.03 (d, J = 8.7 Hz, 2H, Ar-H), 5.52 (d, J = 1.5 Hz, 1H, H-1), 

4.88 (d, J = 10.7 Hz, 1H, PhCH2O), 4.76 (d, J = 12.3 Hz, 1H, PhCH2O), 4.70-4.63 (m, 3H, PhCH2O), 

4.53 (d, J = 10.7 Hz, 1H, PhCH2O), 4.28-4.21 (m, 2H, H-6a, H-6b), 4.07 (dd, J = 3.0, 9.2 Hz, 1H, H-

3), 3.95 (t, J = 9.5 Hz, 1H, H-4), 3.92 (m, 1H, H-2), 3.81 (ddd, J = 2.3, 4.4, 9.8 Hz, 1H, H-5), 3.01 (s, 

3H, SO2CH3), 2.19 (t, J = 9.5 Hz, 2H, CH2COO), 1.50-1.44 (m, 2H, CH2), 1.24-1.17 (m, 2H, CH2), 

0.77 ppm (t, J = 7.4 Hz, 3H, CH3); 13C NMR (125 MHz, CDCl3): δ = 173.63 (CO), 156.76, 146.12, 

138.84, 138.32, 138.14, 138.12, 133.29, 128.65, 128.60, 128.59, 128.57, 128.22, 128.06, 127.99, 

127.97, 127.94, 127.92, 127.88, 127.61, 117.12 (30C, Ar-C), 96.43 (C-1), 79.97 (C-3), 75.21 

(PhCH2O), 74.59, 74.52 (C-2, C-4), 73.11, 72.60 (2 PhCH2O), 71.17 (C-5), 63.01 (C-6), 44.75 

(SO2CH3), 34.04 (CH2COO), 27.00, 22.35 (2 CH2), 13.78 ppm (CH3); ESI-MS: m/z: Calcd for 

C45H48NaO9S [M+Na]+: 787.29, found: 787.56. 

4’-(Methylsulfonyl)-biphenyl-4-yl 2,3,4-tri-O-benzyl-6-O-pivaloyloxymethyl-α-D-

mannopyranoside (14). The compound 12 (250 mg, 0.367 mmol) was dissolved in dry DMSO under 

argon followed by the addition of Ac2O (2 mL) and AcOH (0.2 mL). The reaction was stirred at rt for 

19 h. The mixture was diluted with EtOAc (50 mL) and washed with satd aq NaHCO3 (2 x 50 mL) 

and brine (50 mL). The organic layer was dried over Na2SO4, concentrated in vacuo and pre-purified 

by MPLC on silica gel (petroleum ether/EtOAc, 7:3) to afford 153 mg of the intermediate. The 

obtained compound (113 mg) was dissolved in dry DMF (2 mL) under argon and PivOH (47 mg, 

0.460 mmol) and NIS (52 mg, 0.230 mmol) were added. The reaction was quenched after 17 h with 

Et3N (0.100 mL). Then, the mixture was diluted with EtOAc (50 mL) and washed with satd aq 

NaHCO3 (50 mL), H2O (50 mL) and brine (50 mL). The organic layer was dried over Na2SO4, 

concentrated in vacuo and purified by MPLC on silica gel (petroleum ether/EtOAc, 7:3). The 

compound 14 was obtained in overall yield of 33% (72 mg) over two steps. [α]

€ 

D
20  +64.3 (c 0.58, 

CHCl3); 1H NMR (500 MHz, CDCl3): δ = 7.84 (d, J = 8.4 Hz, 2H, Ar-H), 7.63 (d, J = 8.4 Hz, 2H, Ar-

H), 7.45 (d, J = 8.7 Hz, 2H, Ar-H), 7.32-7.21 (m, 15H, Ar-H), 7.02 (d, J = 8.7 Hz, 2H, Ar-H), 5.50 (d, 

J = 1.6 Hz, 1H, H-1), 5.22 (s, 2H, OCH2O), 4.88 (d, J = 10.9 Hz, 1H, PhCH2O), 4.75 (d, J = 12.4 Hz, 

1H, PhCH2O), 4.70 (d, J = 12.4 Hz, 1H, PhCH2O), 4.65-4.62 (m, 2H, PhCH2O), 4.59 (d, J = 11.0 Hz, 

1H, PhCH2O), 4.05-3.97 (m, 2H, H-3, H-4), 3.90 (m, 1H, H-2), 3.83 (dd, J = 4.4, 10.7 Hz, 1H, H-6a), 

3.78-3.72 (m, 2H, H-5, H-6b), 2.99 (s, 3H, SO2CH3), 1.08 ppm (s, 9H, CH3); 13C NMR (125 MHz, 

CDCl3): δ = 178.10 (CO), 156.90, 146.19, 138.83, 138.47, 138.19, 133.28, 128.74, 128.60, 128.59, 

128.55, 128.08, 128.00, 127.98, 127.86, 127.83, 127.67, 117.16 (30C, Ar-C), 96.74 (C-1), 89.94 

(OCH2O), 80.00 (C-3), 75.25 (PhCH2O), 74.55, 74.50 (C-2, C-4), 73.16, 72.62 (2 PhCH2O), 72.38 

(C-5), 69.04 (C-6), 44.78 (SO2CH3), 39.04 (C(CH3)3), 27.17 ppm (3 CH3); ESI-MS: m/z: Calcd for 

C46H50NaO10S [M+Na]+: 817.30, found: 817.39. 
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4’-(Methylsulfonyl)-biphenyl-4-yl 6-O-acetyl-α-D-mannopyranoside (5a). Prepared according to 

the general procedure B from 13a (50 mg, 0.069 mmol) with 15 mg of Pd(OH)2/C (E101 NE/W, 20% 

Pd) in EtOH (5 mL). Purified using DCM/MeOH (9:1) solvent system. Yield: 24 mg (75%) as white 

solid. [α]

€ 

D
20  +101.2 (c 0.19, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.02 (d, J = 8.5 Hz, 2H, Ar-

H), 7.88 (d, J = 8.5 Hz, 2H, Ar-H), 7.71 (d, J = 8.8 Hz, 2H, Ar-H), 7.26 (d, J = 8.6 Hz, 2H, Ar-H), 

5.57 (d, J = 1.5 Hz, 1H, H-1), 4.39 (dd, J = 1.9, 11.8 Hz, 1H, H-6a), 4.24 (dd, J = 6.4, 11.8 Hz, 1H, H-

6b), 4.08 (dd, J = 1.8, 3.4 Hz, 1H, H-2), 3.94 (dd, J = 3.4, 9.0 Hz, 1H, H-3), 3.82-3.73 (m, 2H, H-4, 

H-5), 3.18 (s, 3H, SO2CH3), 1.93 ppm (s, 3H, CH3); 13C NMR (125 MHz, CD3OD): δ = 172.68 (CO), 

158.24, 147.29, 140.20, 134.42, 129.59, 129.03, 128.47, 118.37 (12C, Ar-C), 99.90 (C-1), 73.02 (C-

5), 72.39 (C-3), 71.77 (C-2), 68.52 (C-4), 64.81 (C-6), 44.48 (SO2CH3), 20.69 ppm (CH3); HRMS: 

m/z: Calcd for C21H24NaO9S [M+Na]+: 475.1039, found: 475.1037. 

4’-(Methylsulfonyl)-biphenyl-4-yl 6-O-propionyl-α-D-mannopyranoside (5b). Prepared according 

to the general procedure B from 13b (28 mg, 0.038 mmol) with 20 mg of Pd(OH)2/C (E101 NE/W, 

20% Pd) in EtOH (5 mL). Purified using DCM/MeOH (1:0-9:1) solvent system. Yield: 11 mg (59%) 

as white oil. [α]

€ 

D
20  +93.8 (c 0.50, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.02 (d, J = 8.4 Hz, 2H, 

Ar-H), 7.87 (d, J = 8.4 Hz, 2H, Ar-H), 7.70 (d, J = 8.7 Hz, 2H, Ar-H), 7.25 (d, J = 8.7 Hz, 2H, Ar-H), 

5.58 (d, J = 1.0 Hz, 1H, H-1), 4.42 (dd, J = 1.6, 11.7 Hz, 1H, H-6a), 4.23 (dd, J = 6.7, 11.7 Hz, 1H, H-

6b), 4.09 (d, J = 1.6 Hz, 1H, H-2), 3.95 (dd, J = 3.4, 9.1 Hz, 1H, H-3), 3.82-3.73 (m, 2H, H-4, H-5), 

3.18 (s, 3H, SO2CH3), 2.25 (dq, J = 2.8, 7.6 Hz, 2H, CH2COO), 1.02 ppm (t, J = 7.6 Hz, 3H, CH3); 
13C NMR (125 MHz, CD3OD): δ = 175.92 (CO), 158.18, 147.26, 140.19, 134.37, 129.57, 129.03, 

128.45, 118.34 (12C, Ar-C), 99.75 (C-1), 73.11 (C-5), 72.39 (C-3), 71.74 (C-2), 68.57 (C-4), 64.75 

(C-6), 44.48 (SO2CH3), 28.20 (CH2COO), 9.31 ppm (CH3); HRMS: m/z: Calcd for C22H26NaO9S 

[M+Na]+: 489.1195, found: 489.1192. 

4’-(Methylsulfonyl)-biphenyl-4-yl 6-O-isobutyryl-α-D-mannopyranoside (5c). Prepared according 

to the general procedure B from 13c (40 mg, 0.053 mmol) with 25 mg of Pd(OH)2/C (E101 NE/W, 

20% Pd) in EtOH (4 mL). Purified using DCM/MeOH (1:0-9:1) solvent system. Yield: 18 mg (70%) 

as white oil. [α]

€ 

D
20  +109.8 (c 0.85, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.02 (d, J = 8.4 Hz, 2H, 

Ar-H), 7.86 (d, J = 8.5 Hz, 2H, Ar-H), 7.68 (d, J = 8.7 Hz, 2H, Ar-H), 7.25 (d, J = 8.7 Hz, 2H, Ar-H), 

5.60 (d, J = 1.1 Hz, 1H, H-1), 4.45 (dd, J = 1.6, 11.7 Hz, 1H, H-6a), 4.20 (dd, J = 7.0, 11.7 Hz, 1H, H-

6b), 4.09 (dd, J = 1.7, 3.2 Hz, 1H, H-2), 3.95 (dd, J = 3.4, 9.1 Hz, 1H, H-3), 3.82-3.72 (m, 2H, H-4, 

H-5), 3.18 (s, 3H, SO2CH3), 2.45 (hept, J = 7.0 Hz, 1H, CH(CH3)2), 1.06 (d, J = 7.0 Hz, 3H, CH3), 

1.02 ppm (d, J = 7.0 Hz, 3H, CH3); 13C NMR (125 MHz, CD3OD): δ = 178.50 (CO), 158.14, 147.26, 

140.17, 134.34, 129.60, 129.02, 128.43, 118.29 (12C, Ar-C), 99.61 (C-1), 73.27 (C-5), 72.37 (C-3), 

71.71 (C-2), 68.57 (C-4), 64.84 (C-6), 44.48 (SO2CH3), 35.12 (CH), 19.23, 19.14 ppm (2 CH3); 

HRMS: m/z: Calcd for C23H28NaO9S [M+Na]+: 503.1352, found: 503.1353. 
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4’-(Methylsulfonyl)-biphenyl-4-yl 6-O-butyryl-α-D-mannopyranoside (5d). Prepared according to 

the general procedure B from 13d (45 mg, 0.060 mmol) with 40 mg of Pd(OH)2/C (E101 NE/W, 20% 

Pd) in EtOH (5 mL). Purified using DCM/MeOH (9:1) solvent system. Yield: 21 mg (72%) as 

colorless oil. [α]

€ 

D
20  +97.3 (c 1.05, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.01 (d, J = 8.5 Hz, 2H, 

Ar-H), 7.87 (d, J = 8.5 Hz, 2H, Ar-H), 7.69 (d, J = 8.8 Hz, 2H, Ar-H), 7.24 (d, J = 8.8 Hz, 2H, Ar-H), 

5.58 (d, J = 1.4 Hz, 1H, H-1), 4.43 (dd, J = 1.8, 11.7 Hz, 1H, H-6a), 4.20 (dd, J = 6.9, 11.7 Hz, 1H, H-

6b), 4.08 (dd, J = 1.7, 3.3 Hz, 1H, H-2), 3.93 (dd, J = 3.4, 9.1 Hz, 1H, H-3), 3.79 (m, 1H, H-5), 3.73 

(m, 1H, H-4), 3.17 (s, 3H, SO2CH3), 2.21-2.17 (m, 2H, CH2COO), 1.55-1.47 (m, 2H, CH2), 0.83 ppm 

(t, J = 7.4 Hz, 3H, CH3); 13C NMR (125 MHz, CD3OD): δ = 175.09 (CO), 158.18, 147.24, 140.19, 

134.31, 129.56, 129.03, 128.43, 118.31 (12C, Ar-C), 99.70 (C-1), 73.17 (C-5), 72.39 (C-3), 71.74 (C-

2), 68.59 (C-4), 64.72 (C-6), 44.47 (SO2CH3), 36.88 (CH2COO), 19.29 (CH2), 13.92 ppm (CH3); 

HRMS: m/z: Calcd for C23H28NaO9S [M+Na]+: 503.1352, found: 503.1350. 

4’-(Methylsulfonyl)-biphenyl-4-yl 6-O-pivaloyl-α-D-mannopyranoside (5e). Prepared according to 

the general procedure B from 13e (50 mg, 0.065 mmol) with 15 mg of Pd(OH)2/C (E101 NE/W, 20% 

Pd) in EtOH (5 mL). Purified using DCM/MeOH (9:1) solvent system. Yield: 24 mg (73%) as white 

oil. [α]

€ 

D
20  +96.0 (c 1.18, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.02 (d, J = 8.5 Hz, 2H, Ar-H), 

7.85 (d, J = 8.6 Hz, 2H, Ar-H), 7.68 (d, J = 8.7 Hz, 2H, Ar-H), 7.26 (d, J = 8.9 Hz, 2H, Ar-H), 5.62 

(d, J = 1.5 Hz, 1H, H-1), 4.45 (dd, J = 1.7, 11.7 Hz, 1H. H-6a), 4.15 (dd, J = 7.4, 11.7 Hz, 1H, H-6b), 

4.09 (dd, J = 1.8, 3.4 Hz, 1H, H-2), 3.96 (dd, J = 3.4, 9.2 Hz, 1H, H-3), 3.81 (ddd, J = 1.6, 7.4, 9.2 Hz, 

1H, H-5), 3.73 (t, J = 9.6 Hz, 1H, H-4), 3.18 (s, 3H, SO2CH3), 1.07 ppm (s, 9H, CH3); 13C NMR (125 

MHz, CD3OD): δ = 179.92 (CO), 158.09, 147.28, 140.16, 134.31, 129.65, 129.03, 128.43, 118.26 

(12C, Ar-C), 99.43 (C-1), 73.38 (C-5), 72.35 (C-3), 71.68 (C-2), 68.59 (C-4), 65.14 (C-6), 44.48 

(SO2CH3), 39.72 (C(CH3)3), 27.43 ppm (CH3); HRMS: m/z: Calcd for C24H30NaO9S [M+Na]+: 

517.1508, found: 517.1507. 

4’-(Methylsulfonyl)-biphenyl-4-yl 6-O-isovaleryl-α-D-mannopyranoside (5f). Prepared according 

to the general procedure B from 13f (34 mg, 0.044 mmol) with 40 mg of Pd(OH)2/C (E101 NE/W, 

20% Pd) in EtOH (7 mL). Purified using DCM/MeOH (9:1) solvent system. Yield: 12 mg (55%) as 

colorless oil. [α]

€ 

D
20  +120.3 (c 0.60, MeOH); 1H NMR (500 MHz, CD3OD): δ = 8.02 (d, J = 8.5 Hz, 

2H, Ar-H), 7.88 (d, J = 8.5 Hz, 2H, Ar-H), 7.70 (d, J = 8.8 Hz, 2H, Ar-H), 7.25 (d, J = 8.8 Hz, 2H, 

Ar-H), 5.58 (d, J = 1.3 Hz, 1H, H-1), 4.45 (dd, J = 1.6, 11.7 Hz, 1H, H-6a), 4.18 (dd, J = 7.0, 11.7 Hz, 

1H, H-6b), 4.07 (dd, J = 1.7, 3.3 Hz, 1H, H-2), 3.94 (dd, J = 3.4, 9.2 Hz, 1H, H-3), 3.79 (m, 1H, H-5), 

3.72 (m, 1H, H-4), 3.17 (s, 3H, SO2CH3), 2.09 (dd, J = 3.0, 7.2 Hz, 2H, CH2COO), 1.95 (m, 1H, 

CH(CH3)2), 0.83 ppm (app-t, J = 6.3 Hz, 6H, 2 CH3); 13C NMR (125 MHz, CD3OD): δ = 174.55 

(CO), 158.20, 147.24, 140.19, 134.28, 129.57, 129.03, 128.42, 118.30 (12C, Ar-C), 99.69 (C-1), 

73.25 (C-5), 72.39 (C-3), 71.74 (C-2), 68.60 (C-4), 64.72 (C-6), 44.47 (SO2CH3), 44.16 (CH2COO), 
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26.67 (CH(CH3)2), 22.68, 22.66 ppm (2 CH3); HRMS: m/z: Calcd for C24H30NaO9S [M+Na]+: 

517.1508, found: 517.1499. 

4’-(Methylsulfonyl)-biphenyl-4-yl 6-O-valeryl-α-D-mannopyranoside (5g). Prepared according to 

the general procedure B from 13g (51 mg, 0.067 mmol) with 40 mg of Pd(OH)2/C (E101 NE/W, 20% 

Pd) in EtOH (15 mL). Purified using DCM/MeOH (95:5) solvent system. Yield: 25 mg (76%) as 

white solid. [α]

€ 

D
20  +111.4 (c 1.00, MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.99 (d, J = 8.5 Hz, 2H, 

Ar-H), 7.85 (d, J = 8.5 Hz, 2H, Ar-H), 7.68 (d, J = 8.8 Hz, 2H, Ar-H), 7.23 (d, J = 8.8 Hz, 2H, Ar-H), 

5.56 (d, J = 1.4 Hz, 1H, H-1), 4.41 (dd, J = 1.8, 11.7 Hz, 1H, H-6a), 4.18 (dd, J = 7.0, 11.7 Hz, 1H, H-

6b), 4.05 (dd, J = 1.7, 3.3 Hz, 1H, H-2), 3.91 (dd, J = 3.4, 9.1 Hz, 1H, H-3), 3.77 (m, 1H, H-5), 3.70 

(t, J = 9.6 Hz, 1H, H-4), 3.15 (s, 3H, SO2CH3), 2.21-2.17 (m, 2H, CH2COO), 1.48-1.42 (m, 2H, CH2), 

1.24-1.17 (m, 2H, CH2), 0.79 ppm (t, J = 7.4 Hz, 3H, CH3); 13C NMR (125 MHz, CD3OD): δ = 

175.26 (CO), 163.63, 158.20, 147.22, 140.20, 134.28, 129.56, 129.02, 128.41, 118.31 (12C, Ar-C), 

99.73 (C-1), 73.18 (C-5), 72.40 (C-3), 71.74 (C-2), 68.60 (C-4), 64.75 (C-6), 44.48 (SO2CH3), 34.71 

(CH2COO), 27.96, 23.20 (2 CH2), 13.99 ppm (CH3); HRMS: m/z: Calcd for C24H30NaO9S [M+Na]+: 

517.1508, found: 517.1499. 

4’-(Methylsulfonyl)-biphenyl-4-yl 6-O-pivaloyloxymethyl-α-D-mannopyranoside (5h). Prepared 

according to the general procedure B from 14 (36 mg, 0.045 mmol) with 30 mg of Pd(OH)2/C (E101 

NE/W, 20% Pd) in EtOH (5 mL). Purified using DCM/MeOH (95:5) solvent system. Yield: 10 mg 

(24%) as white solid. [α]

€ 

D
20  +111.4 (c 1.00, MeOH); 1H NMR (500 MHz, CD3OD): δ = 7.99 (d, J = 

8.5 Hz, 2H, Ar-H), 7.86 (d, J = 8.5 Hz, 2H, Ar-H), 7.67 (d, J = 8.8 Hz, 2H, Ar-H), 7.23 (d, J = 8.8 Hz, 

2H, Ar-H), 5.52 (d, J = 1.6 Hz, 1H, H-1), 5.26 (s, 2H, OCH2O), 4.03 (dd, J = 1.8, 3.3 Hz, 1H, H-2), 

3.91-3.90 (m, 2H, H-3, H-6a), 3.85 (m, 1H, H-6b), 3.75-3.71 (m, 2H, H-4, H-5), 3.15 (s, 3H, 

SO2CH3), 1.19 ppm (s, 9H, CH3); 13C NMR (125 MHz, CD3OD): δ = 179.44 (CO), 158.49, 147.36, 

140.16, 134.45, 129.65, 129.01, 128.50, 118.44 (12C, Ar-C), 100.20 (C-1), 90.45 (OCH2O), 74.36 (C-

5), 72.42 (C-2), 71.83 (C-3), 70.53 (C-6), 68.32 (C-4), 44.48 (SO2CH3), 39.92 (C(CH3)3), 27.39 ppm 

(3 CH3); HRMS: m/z: Calcd for C25H32NaO10S [M+Na]+: 547.1614, found: 547.1607. 

Pharmacokinetic Assays 

Materials: Dimethyl sulfoxide (DMSO), 1-propanol, 1-octanol, Dulbecco’s Modified Eagle’s 

Medium (DMEM) high glucose, penicillin-streptomycin (solution stabilized, with 10’000 units 

penicillin and 10 mg streptomycin/mL), L-glutamine solution (200 mM), magnesium chloride, 

ammonium acetate, bis(4-nitrophenyl) phosphate (BNPP), and loperamide hydrochloride were 

purchased from Sigma-Aldrich (St. Louis, MI, USA). PRISMA HT universal buffer, GIT-0 Lipid 

Solution, and Acceptor Sink Buffer were ordered from pIon (Woburn, MA, USA). MEM non-

essential amino acids solution 10 mM (100X), fetal bovine serum (FBS), and DMEM without sodium 

pyruvate and phenol red were bought from Invitrogen (Carlsbad, CA, USA). Acetonitrile (MeCN) and 
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methanol (MeOH) were ordered from Acros Organics (Geel, Belgium). Pooled male rat liver 

microsomes (Sprague Dawley), and pooled human liver microsomes were ordered from BD 

Bioscience (Franklin Lakes, NJ, USA). The Caco-2 cells were kindly provided by Prof G. Imanidis, 

FHNW, Muttenz, Switzerland and originated from the American Type Culture Collection (Rockville, 

MD, USA).  

log P determination. The in silico prediction tool ALOGPS[30] was used to estimate the octanol-water 

partition coefficients (log P) of the compounds. Depending on these values, the compounds were 

classified into three categories: hydrophilic compounds (log P below zero), moderately lipophilic 

compounds (log P between zero and one) and lipophilic compounds (log P above one). For each 

category, two different ratios (volume of 1-octanol to volume of buffer) were defined as experimental 

parameters (Table 2).  

Table 2. Compound classification based on estimated log P values. 

Compound type log P ratios (1-octanol: buffer) 

hydrophilic  < 0 30:140, 40:130 

moderately lipophilic 0 - 1 70:110, 110:70 

lipophilic > 1 3:180, 4:180 
 

Equal amounts of phosphate buffer (0.1 M, pH 7.4) and 1-octanol were mixed and shaken vigorously 

for 5 min to saturate the phases. The mixture was left until separation of the two phases occurred, and 

the buffer was retrieved. Stock solutions of the test compounds were diluted with buffer to a 

concentration of 1 µM. For each compound, six determinations, i.e. three determinations per 1-

octanol:buffer ratio, were performed in different wells of a 96-well plate. The respective volumes of 

buffer containing analyte (1 µM) were pipetted to the wells and covered by saturated 1-octanol 

according to the chosen volume ratio. The plate was sealed with aluminium foil, shaken (1350 rpm, 

25 °C, 2 h) on a Heidolph Titramax 1000 plate-shaker (Heidolph Instruments GmbH & Co. KG, 

Schwabach, Germany) and centrifuged (2000 rpm, 25 °C, 5 min, 5804 R Eppendorf centrifuge, 

Hamburg, Germany). The aqueous phase was transferred to a 96-well plate for analysis by liquid 

chromatography-mass spectrometry (LC-MS, see below).  

The log P coefficients were calculated from the 1-octanol:buffer ratio (o:b), the initial concentration 

of the analyte in buffer (1 µM), and the concentration of the analyte in buffer (cB) with Equation 1:  

 

€ 

log P = log 1µM − cB
c B

×
1
o :b

$  

%  
&  

' 

( 
)  (1) 

The average of the three log P values per 1-octanol:buffer ratio was calculated. If the two means 

obtained for a compound did not differ by more than 0.1 units, the results were accepted. 
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Parallel artificial membrane permeability assay (PAMPA). Effective permeability (log Pe) was 

determined in a 96-well format with PAMPA.[31] For each compound, measurements were performed 

at pH 7.4 in quadruplicate. Four wells of a deep well plate were filled with 650 µL of PRISMA HT 

universal buffer, adjusted to pH 7.4 by adding the requested amount of NaOH (0.5 M). Samples 

(150 µL) were withdrawn from each well to determine the blank spectra by UV/Vis-spectroscopy 

(190 to 500 nm, SpectraMax 190, Molecular Devices, Silicon Valley, CA, USA). Then, analyte 

dissolved in DMSO (10 mM) was added to the remaining buffer to yield 50 µM solutions. To exclude 

precipitation, the optical density (OD) was measured at 650 nm, and solutions exceeding OD 0.01 

were filtrated. Afterwards, samples (150 µL) were withdrawn to determine the reference spectra. 

Further 200 µL was transferred to each well of the donor plate of the PAMPA sandwich (pIon, P/N 

110 163). The filter membranes at the bottom of the acceptor plate were infused with 5 µL of GIT-0 

Lipid Solution and 200 µL of Acceptor Sink Buffer was filled into each acceptor well. The sandwich 

was assembled, placed in the GutBoxTM, and left undisturbed for 16 h. Then, it was disassembled and 

samples (150 µL) were transferred from each donor and acceptor well to UV-plates for determination 

of the UV/Vis spectra. Effective permeability (log Pe) was calculated from the compound flux 

deduced from the spectra, the filter area, and the initial sample concentration in the donor well with 

the aid of the PAMPA Explorer Software (pIon, version 3.5). 

Colorectal adenocarcinoma (Caco-2) cell permeation assay. Caco-2 cells were cultivated in tissue 

culture flasks (BD Biosciences, Franklin Lakes, NJ, USA) with DMEM high glucose medium, 

containing L-Glutamine (2 mM), nonessential amino acids (0.1 mM), Penicillin (100 U/mL), 

Streptomycin (100 µg/mL), and fetal bovine serum (10%). The cells were kept at 37 °C in humidified 

air containing 5% CO2, and the medium was changed every second day. When approximately 90% 

confluence was reached, the cells were split in a 1:10 ratio and distributed to new tissue culture flasks. 

At passage numbers between 60 and 65, they were seeded at a density of 5.3 x 105 cells per well to 

Transwell 6-well plates (Corning Inc., Corning, NY, USA) with 2.5 mL of culture medium in the 

basolateral and 2 mL in the apical compartment. The medium was renewed on alternate days. 

Permeation experiments were performed between days 19 and 21 post seeding. Previously to the 

experiment, the integrity of the Caco-2 monolayers was evaluated by measuring the transepithelial 

electrical resistance (TEER) with an Endohm tissue resistance instrument (World Precision 

Instruments Inc., Sarasota, FL, USA). Only wells with TEER values higher than 250 Ω cm2 were 

used. To inhibit carboxylesterase activity, the Caco-2 cell monolayers were pre-incubated with bis(4-

nitrophenyl) phosphate (BNPP, 200 µM) dissolved in transport medium (DMEM without sodium 

pyruvate and phenol red) for 40 min.[32] Experiments were performed in the apical-to-basolateral 

(absorptive) and basolateral-to-apical (secretory) directions in triplicates. Transport medium was 

withdrawn from the donor compartments and replaced by the same volume of compound stock 

solution (10 mM in DMSO) to reach an initial sample concentration of 62.5 µM. The Transwell plate 
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was shaken (600 rpm, 37 °C) on a Heidolph Titramax 1000 plate-shaker. Samples (40 µL) were 

withdrawn from the donor and acceptor compartments 30 min after initiation of the experiment and 

the concentrations were determined by LC-MS (see below). Apparent permeability (Papp) was 

calculated according to Equation 2: 

 

€ 

Papp =
dQ
d t

×
1

A × c0  (2) 

where dQ/dt is the compound flux (mol s-1), A the surface area of the monolayer (cm2), and c0 the 

initial concentration in the donor compartment (mol cm-3).[33] After the experiment, TEER values were 

measured again and results from wells with values below 250 Ω cm2 were discarded.  

Aqueous solubility. Solubility was determined in a 96-well format using the µSOL Explorer 

solubility analyzer (pIon, version 3.4.0.5). For each compound, measurements were performed in 

triplicate. Three wells of a deep well plate were filled with 300 µL of PRISMA HT universal buffer, 

adjusted to pH 7.4 by adding the requested amount of NaOH (0.5 M). Aliquots (3 µL) of a compound 

stock solution (40-100 mM in DMSO) were added and thoroughly mixed. The final sample 

concentration was 0.4-1.0 mM, the residual DMSO concentration was 1.0% (v/v). Fifteen hours after 

initiation of the experiment, the solutions were filtrated (0.2 µm 96-well filter plates) using a vacuum 

to collect manifold (Whatman Ltd., Maidstone, UK) to remove any precipitates. Equal amounts of 

filtrate and 1-propanol were mixed and transferred to a 96-well plate for UV detection (190 to 500 

nm). The amount of material dissolved was calculated by comparison with UV spectra obtained from 

reference samples, which were prepared by dissolving compound stock solution in a 1:1 mixture of 

buffer and 1-propanol (final concentrations 0.067-0.167 mM).  

Enzymatic hydrolysis by liver microsome associated carboxylesterase. Incubations were 

performed in triplicate in a 96-well format on an Eppendorf Thermomixer Comfort. The reaction 

mixture (270 µL) consisting of liver microsomes (0.139 µg/mL), TRIS-HCl buffer (0.1 M, pH 7.4) 

and MgCl2 (2 mM) was preheated (37 °C, 500 rpm, 10 min), and the incubation was initiated by 

adding 30 µL of compound solution (20 µM) in TRIS-HCl buffer. The final concentration of the 

compound was 2 µM, and the microsomal concentration was 0.125 mg/mL. At the beginning of the 

experiment (t = 0 min) and after an incubation time of 2, 5, 10, 20, and 30 min, samples (40 µL) were 

transferred to 120 µL of ice-cooled MeOH and centrifuged (3600 rpm, 4 °C, 10 min). Then, 80 µL of 

supernatant was transferred to a 96-well plate for analysis by LC-MS (see below). The metabolic half-

life (t1/2) was calculated from the slope of the linear regression from the log percentage remaining 

compound versus incubation time relationship. Control experiments were performed in parallel by 

preincubating the microsomes with the specific carboxylesterase inhibitor BNPP (1 mM) for 5 min 

before addition of the compound solution.[34]  
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Isozyme specific inhibition of carboxylesterase mediated hydrolysis. Test compounds were 

dissolved in DMSO to 1 mM and then diluted with TRIS-HCl buffer (0.1 M, pH 7.4) containing 

MgCl2 (2 mM) to a concentration of 6 µM. Loperamide hydrochloride was dissolved in DMSO to 

20 mM, 2 mM, and 0.2 mM and then diluted with TRIS-HCl buffer containing MgCl2 to a 

concentration of 750 µM, 75 µM, and 7.5 µM. Human liver microsomes were suspended in TRIS-

HCl buffer containing MgCl2 to a concentration of 30 µg/mL. Compound solution (100 µL) and 

microsomal suspension (200 µL) mixed with loperamide solution or blank buffer (50 µL) were 

preheated (37 °C, 500 rpm, 15 min) in separate wells of a 96-well plate. The incubation was initiated 

by transferring 200 µL of microsome suspension containing loperamide to the compound solution. 

The final compound concentration was 2 µM, the microsomal concentration was 0.02 mg/mL, and the 

loperamide concentration was 100 µM, 10 µM, 1 µM, and 0 µM (blank). At the beginning of the 

experiment (t = 0 min) and after an incubation time of 10, 20, 30, 45, and 60 min, samples (20 µL) 

were transferred to 60 µL of ice-cooled MeOH and analysed by LC-MS (see below). The metabolic 

turnover was assessed as accumulation of product 4a versus incubation time.[35]  

LC-MS measurements. Analyses were performed using a 1100/1200 Series HPLC System coupled 

to a 6410 Triple Quadrupole mass detector (Agilent Technologies, Inc., Santa Clara, CA, USA) 

equipped with electrospray ionization. The system was controlled with the Agilent MassHunter 

Workstation Data Acquisition software (version B.01.04). The column used was an Atlantis® T3 C18 

column (2.1 x 50 mm) with a 3 µm-particle size (Waters Corp., Milford, MA, USA). The mobile 

phase consisted of eluent A: 10 mM ammonium acetate, pH 5.0 in 95:5, H2O:MeCN; and eluent B: 

MeCN containing 0.1% formic acid. The flow rate was maintained at 0.6 mL/min. The gradient was 

ramped from 95% A/5% B to 5% A/95% B over 1 min, and then hold at 5% A/95% B for 0.1 min. 

The system was then brought back to 95% A/5% B, resulting in a total duration of 4 min. MS 

parameters such as fragmentor voltage, collision energy, polarity were optimized individually for each 

drug, and the molecular ion was followed for each compound in the multiple reaction monitoring 

mode. The concentrations of the analytes were quantified by the Agilent Mass Hunter Quantitative 

Analysis software (version B.01.04). 
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2.9 Paper 8: Antiadhesion therapy for urinary tract infections – a 

balanced PK/PD profile proved to be key for success 

 

 

This publication presents the identification of the indolinylphenyl α-D-mannopyranosides as 

highly potent FimH antagonists. The assessment of the physicochemical profile and a single-

dose pharmacokinetic study complete the characterization of this promising new antagonist 

category.  
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ABSTRACT: The initial step for the successful establishment
of urinary tract infections (UTIs), predominantly caused by
uropathogenic Escherichia coli, is the adhesion of bacteria to
urothelial cells. This attachment is mediated by FimH, a
mannose-binding adhesin, which is expressed on the bacterial
surface. To date, UTIs are mainly treated with antibiotics,
leading to the ubiquitous problem of increasing resistance
against most of the currently available antimicrobials. Therefore,
new treatment strategies are urgently needed, avoiding selection
pressure and thereby implying a reduced risk of resistance. Here,
we present a new class of highly active antimicrobials, targeting the virulence factor FimH. When the most potent representative, an
indolinylphenyl mannoside, was administered in a mouse model at the low dosage of 1 mg/kg (corresponding to approximately
25 μg/mouse), the minimal therapeutic concentration to prevent UTI was maintained for more than 8 h. In a treatment study, the
colony-forming units in the bladder could be reduced by almost 4 orders of magnitude, comparable to the standard antibiotic
treatment with ciprofloxacin (8 mg/kg, sc).

■ INTRODUCTION
Adhesion to target cells enables microorganisms to evade the
natural clearing mechanisms and to ensure survival in the host
environment. In urinary tract infections (UTIs), which are pre-
dominantly caused by uropathogenic Escherichia coli (UPEC),
adhesion is accomplished by bacterial lectins, recognizing
carbohydrate ligands located on the endothelial cells of the
urinary tract.1 For example, UPEC expressing P-pili cause
pyelonephritis by binding to galabiose-containing ligands on
the kidney epithelium, while mannose-binding type 1 piliated
UPEC promote cystitis by targeting the glycoprotein uroplakin
Ia (UPIa) on the mucosal surface of the urinary bladder. This
initial step of the infection, the adhesion to the bacterial surface,
prevents the rapid clearance of UPECs from the urinary tract
by the bulk flow of urine and, at the same time, enables the
invasion of host cells.2,3 The most prevalent fimbriae encoded
by UPEC consist of four subunits, FimA, FimF, FimG, and
FimH.4 The FimH lectin caps the fimbriae of type 1 pili and
contains the carbohydrate recognition domain (CRD), mediating
the crucial bacteria−cell interaction.3
UTIs affect a large proportion of the world population and

account for significant morbidity and high medical costs.2

Symptomatic UTIs should be treated with antibiotics to
prevent potential devastating complications, like pyelonephritis
and urosepsis. However, recurrent infections with subsequent
antibiotic exposure can lead to emergence of antimicrobial
resistance, which often results in treatment failure and reduces
the range of therapeutic options. Hence, it is an urgent need
for public health to develop an efficient, cost-effective, and

nonantibiotic therapy to both prevent and treat UTIs without
facilitating antimicrobial resistance.5

More than two decades ago, Sharon and co-workers have
investigated various mannosides as antagonists for type 1
fimbriae-mediated bacterial adhesion.6 For the further improve-
ment of these FimH antagonists, two different approaches were
explored. First, multivalent mannosides were investigated,7,8

and second, monovalent high-affinity antagonists were designed
(for representative examples, see Figure 1)8 based on structural
information obtained from crystal structures of the carbohy-
drate-recognition domain (CRD) of FimH cocrystallized with
FimH antagonists.9

In this article, we present a new class of FimH antagonists.
The binding affinities of these indolylphenyl and indolinyl-
phenyl α-D-mannosides were determined in several target- and
function-based assays. In addition, their in vitro pharmacoki-
netic properties were assigned, before the potential of selected
compounds for in vivo application in a UTI mouse model was
explored.

■ RESULTS AND DISCUSSION
Rational Design of FimH Antagonists. Crystal structures

of FimH cocrystallized with various mannosides9 disclosed a
carbohydrate binding pocket with a hydrophobic entrance, the
so-called tyrosine gate. The latter is formed by two tyrosines
(Tyr48 and Tyr137) and an isoleucine (Ile52). Whereas n-butyl
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α-D-mannoside populates the tyrosine gate and interacts with
both tyrosines (in-docking mode),9b,c biphenyl α-D-mannosides,
probably due to insufficient flexibility, adopt an out-docking mode,
leading to an optimal π−π stacking of their outer aromatic ring
with Tyr48.9d In several recent publications, biphenyl α-D-
mannosides with excellent affinities were reported.9d,11,13

Here, antagonists with (aza)indolylphenyl and indolinyl-
phenyl aglycones (see Table 1) are explored. According to our
docking studies, the increased volume of the outer aromatic
ring (indolyl/indolinyl vs phenyl) leads to an improved fit.
Details are given in the Supporting Information.
Synthesis of FimH Antagonists. Starting from trichloro-

acetimidate 5, which was obtained from D-mannose (4) as
reported earlier,14 Lewis acid-promoted mannosylation of the
phenols 6a−d yielded the phenyl α-D-mannosides 7−10
(Scheme 1). In the subsequent copper-catalyzed Ullmann type
coupling reaction15 with the indoles 11e−j, a partial deacetyla-
tion of the mannose moiety was observed due to the use of
K2CO3 or K3PO4 as a base. Therefore, the crude products
were reacetylated to give the substituted 4-(indol-1-yl)phenyl
α-D-mannopyranosides 12−20 and 30. Saponification afforded
the test compounds 21−29, 31, and 32 (Table 1).
Careful reduction of the nitro group in 13 by catalytic

hydrogenation with PtO2 in the presence of catalytic amounts
of morpholine16 quantitatively yielded the corresponding amine
33 (Scheme 2). Acylation with 4-chlorobenzoyl chloride or
methanesulfonyl chloride (→ 34 and 35) and subsequent
deacetylation under Zempleń conditions gave the amides 36
and 37 (Table 1).
Starting from phenyl mannoside 7, 7-azaindole derivatives 39

and 40 (Scheme 3) were obtained by an Ullmann type coupling
reaction as well. Final deprotection yielded the test compounds
41 and 42 (Table 1).
To further explore the contribution of the indole aglycone to

binding, it was replaced by indoline moieties (→ 48a−d and
52, Scheme 4). The phenyl mannosides 44 and 50 were
synthesized using the procedure as described for 7. In a
palladium-catalyzed Buchwald−Hartwig coupling17 with
5-nitro-indoline (45) or indoline (46), the protected manno-
sides 47a−d and 51 were obtained in 43−80% yield. Final
deacetylation under Zempleń conditions gave the indoline
derivatives 48a−d and 52 (Table 1).
Finally, the synthesis of the 5-linked 7-aza-indole 57 and the

imidazo-pyridine derivative 58 is outlined in Scheme 5.
Palladium-catalyzed Suzuki−Miyaura coupling18 of 7 with boronic
esters 53 or 54 (→ 55 and 56) and subsequent deprotection
afforded the test compounds 57 and 58 (Table 1).

In Vitro Binding Affinities. To evaluate the potential of
indolylphenyl and indolinylphenyl mannosides to prevent
FimH-dependent adhesion of UPECs to urothelial cell surfaces,
two different assay formats were applied. First, in the cell-free
binding assay,12 which is based on the interaction of a
biotinylated polyacrylamide glycopolymer with the CRD of
FimH, the inhibitory potency of FimH antagonists was
measured. Second, in the cell-based aggregation assay,19 the
disaggregation of guinea pig erythrocytes (GPE) incubated with
UPEC, strain UTI89 was determined as a function of various
concentrations of FimH antagonists.
In the two assay formats, different affinities were expected.

Whereas in the cell-free binding assay only the CRD of FimH is
used, the complete pili are present in the cell-based aggregation
assay. Furthermore, both formats are competitive assays, that is,
the analyzed antagonists compete with mannosides for the
binding site. In the cell-free binding assay, the competitor is a
polymer-bound trimannoside, whereas in the aggregation assay,
the antagonist competes with more potent oligo- and
polysaccharide chains20 present on the surface of erythro-
cytes.21 The interaction is further complicated by the existence
of a high- and a low-affinity state of the CRD of FimH. Aprikian
et al. experimentally demonstrated that in full-length fimbriae
the pilin domain stabilizes the CRD domain in the low-affinity
state, whereas the CRD domain alone adopts the high-affinity
state.22 Furthermore, it was recently shown that shear stress can
induce a conformational switch (twist in the β-sandwich fold of
the CRD domain) resulting in improved affinity.23 Despite
these differences, the ranking of the half maximal inhibitory
concentration (IC50) values within the two assay formats is
expected to be in a similar order.
According to molecular dynamics (MD) simulations, a cavity

between the ortho-hydrogen of the phenyl ring adjacent to the
anomeric center and the binding pocket offers the opportunity to
improve binding with a substituent of appropriate size, leading to
refined van der Waals interactions. We therefore replaced the
ortho-hydrogen by a chloro (entries 3−7 and 12−17), fluoro
(entries 8 and 9), or methoxy substituent (entry 10). The ortho-
chloro substituted antagonist showed the best binding affinities in
both assays (Table 1). When a second chloro substituent was
introduced to the ortho′-position (29, entry 11), the binding
affinity unexpectedly decreased in both assays, indicating that the
entropic gain expected by symmetrization of the antagonist could
not be realized, probably because of rotational constraints.
Therefore, an ortho-chloro substituent in the first aromatic ring
was retained when the indole/indoline moiety was further
optimized (48a−d, entries 18−21). As compared to the reference
compound 1, the indoline derivative 48c (entry 20) exhibited an

Figure 1. Alkyl (1) and aryl (2 and 3) α-D-mannopyranosides with nanomolar affinities. n-Heptyl α-D-mannoside (1) serves as a reference
compound throughout our studies. Mannosides 2 and 3 exhibit low nanomolar affinities. Compound 3a is the first reported orally available FimH
antagonist that is hydrolyzed to the renally excretable acid 3b. The IC50 values were determined with a cell-free binding assay.12 Relative IC50 values
(rIC50) were calculated by dividing the IC50 of the substance of interest by the IC50 of the reference compound 1.
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up to 30-fold improved affinity in the cell-free binding assay and
the aggregometry assay. Finally, when the indolinyl substituent was
introduced in the meta-position (→ 52, entry 22) or aza-indolyl

(→ 57, entry 23) and imidazo-pyridyl substituents (→ 58, entry
24) were introduced in the para-position of the first aromatic ring,
a substantial reduction in affinity was observed.

Scheme 1a

aReagents and conditions: (a) 4 Å MS, TMSOTf, toluene, rt, 2 h (37−94%). (b) (i) CuI, K2CO3, L-proline, DMSO, 90°C, overnight or CuI, K3PO4,
trans-1,2-cyclohexanediamine, dioxane, 105°C, overnight; (ii) Ac2O/pyr, DMAP, 2−4 h. (c) 0.5 M NaOMe/MeOH, rt. (d) 2N NaOH, THF/
MeOH/H2O (5:5:2), 40 °C (→ 32).

Scheme 2a

aReagents and conditions: (a) H2 (1 atm), PtO2, cat. morpholine, MeOH/EtOAc (quant). (b) 4-Cl-BzCl or MeSO2Cl, Et3N, DCM, rt, 1 h (34,
94%; 35, 82%). (c) 0.5 M NaOMe/MeOH, rt (36, 85%; 37, 82%).
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In Vitro Pharmacokinetic Characterization. To
reach their therapeutic target, orally applied FimH antag-
onists should be gastrointestinally absorbed and renally
eliminated; that is, an optimal balance between solubility,
permeability, and lipophilicity is required. To identify the
most promising candidates among the high-affinity FimH
antagonists for the in vivo validation, membrane perme-
ability, thermodynamic solubility, octanol−water parti-
tion, and plasma protein binding (PPB) were therefore
determined.
The parallel artificial membrane permeability assay

(PAMPA) predicts a medium to high oral absorption potential

for compounds with an effective permeability (log Pe) above
−6.3,24 a property fulfilled by most of the listed indole and
indoline derivatives (Table 2). Apparently, elevated lipophilicity
of most antagonists, that is, log D7.4 > 2, facilitates permeation

Scheme 3a

aReagents and conditions: (a) (i) CuI, K2CO3, L-proline, DMSO,
90 °C, overnight or CuI, K3PO4, trans-1,2-cyclohexanediamine, dioxane,
105 °C, overnight; (ii) Ac2O/pyr, DMAP, 2−4 h (39, 82%; 40, 80%).
(b) 0.5 M NaOMe/MeOH, rt (41, 63%; 42, 91%).

Scheme 4a

aReagents and conditions: (a) 4 Å MS, TMSOTf, toluene or DCM, rt, 2 h (7, 73%; 44, quant; 50, 93%). (b) Cs2CO3, Pd2(dba)3, X-Phos, toluene,
80 °C, 140 h or microwave, 80 °C, 8 h (47a−d, 43−75%). (c) Cs2CO3, Pd2(dba)3, X-Phos, dioxane, Ac2O, pyr, 80 °C, 53 h (80%). (d) NaOMe/
MeOH, rt, 20−23 h, (48a−d, 37−77%; 52, 60%).

Scheme 5a

aReagents and conditions: (a) K3PO4, Pd(Ph3P)4, dioxane, 100 °C,
overnight (55, 56%). (b) K3PO4, PdCl2(dppf), DMF, 100 °C,
overnight (56, 96%). (c) 0.5 M NaOMe/MeOH, rt, 2−2.5 h (57,
42%; 58, 37%).
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across the artificial membrane. In contrast to the promising
PAMPA results, thermodynamic solubility strongly limited the
dosages, which could be applied for the in vivo pharmacokinetic
(PK) studies (see below).25,26

Regarding their renal elimination, lipophilic FimH antago-
nists (log D7.4 > 2) are expected to undergo considerable
reabsorption in the renal tubules, leading overall only to a slow
excretion into the bladder. On the contrary, hydrophilic

Table 1. In Vitro Pharmacodynamic Parameters of FimH Antagonistsa

aThe IC50 values were determined with the cell-free binding assay12 and the aggregometry assay.19 The rIC50 values were calculated by dividing the
IC50 of the compound of interest by the IC50 of the reference compound 1. This leads to rIC50 values below 1 for derivatives binding better than 1
and rIC50 values above 1.00 for compounds with a lower affinity than 1. n.a., not active; n.d., not determined.
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compounds (log D7.4 < 0) are poorly reabsorbed and thus
rapidly renally cleared, which leads to high initial compound
levels in the urine but narrows the time range where a
therapeutic concentration (T > MICadhesion, see below) is
maintained.27 Consequently, moderate lipophilicity, that is,
log D7.4 in the range of 1−2, is beneficial to maintain the drug
concentration in the bladder over an extended time period.
Most of the FimH antagonists listed in Table 2 show moderate
to high lipophilicity and are therefore potentially affected by
renal reabsorption. Moreover, PPB values ≥90% as found for
most of the antagonists in Table 2 attenuate fast renal clearance,
because, in line with the free drug hypothesis, molecules bound
to plasma proteins evade excretion.28 Compounds for the
further evaluation were selected according to affinity (22 and
48c, Table 1) or their PK properties (21 and 48a, Table 2).
Determination of the Minimal Inhibitory Concen-

tration of Adhesion (MICadhesion). Whereas in antimicrobial
chemotherapy the MIC is defined as the lowest concentration of
a drug that inhibits visible growth of an organism,32 we defined a
modified MIC for FimH antagonists because of their different
mode of action (they neither kill nor inhibit the growth of
bacteria). The MICadhesion can be used for the determination
of the therapeutic dosage in vivo and is defined as the con-
centration of antagonist leading to 90% inhibition of adhesion
of the pathogen to the target cells (IC90). To determine the
MICadhesion, human bladder cells are infected with green
fluorescent protein (GFP) labeled UPEC (strain UTI89) in
the presence of different concentrations of FimH antagonists
and analyzed by flow cytometry.33 The half-maximal inhibitory
concentration (IC50) was calculated by plotting the mean
fluorescent intensity (MFI) of the cells versus the concentration
of the antagonist. From this plot, the concentration where 90%
bacterial adhesion to human bladder cells is inhibited (IC90) can

be deduced. The corresponding concentration in μg/mL was
defined as MICadhesion. IC50, IC90, and MICadhesion values of the
four selected FimH antagonists and of the previously reported
biphenyl derivative 3b11 are listed in Figure 2.

Pharmacokinetic Studies in C3H/HeN Mice with a
Single iv Dose. In our previously reported study,11 FimH
antagonist 3b was applied at a dosage of 50 mg/kg. For the in
vivo characterization of the compounds of the new series,
the dosage was adjusted according to their maximal solubility
[in 5% aqueous dimethyl sulfoxide (DMSO)]. Plasma and
urine concentrations of the selected FimH antagonists 3b,11 21,
22, 48a, and 48c after single iv application are summarized in
Figure 3. The MICadhesion values are indicated in the individual
graphs with a dotted line. An important parameter for the
prediction of the therapeutic outcome in the UTI mouse model
is the time period for which the antagonist concentration in the
urine is above the MICadhesion (T > MICadhesion), representing
the therapeutic time range.
As a consequence of fast renal excretion, the MICadhesion value

for reference compound 3b applied at a dosage of 50 mg/kg
could be maintained for approximately 4 h (Figure 3A). When
21 and 22 were applied at dosages of 25 and 5 mg/kg,
respectively, substantially lower urine concentrations were
observed, for 21 below the MICadhesion value and for 22 only
marginally above (Figure 3B,C). Although compound 48a was
applied with a single dose of 1 mg/kg (50-fold reduced dosage
as compared to 3b), it exhibited the highest availability in the
urine [area under the curve (AUC)0−24] with a T > MICadhesion
of >8 h (Figure 3D). Finally, antagonist 48c was applied at
0.05 mg/kg, which is a 1000-fold reduced dosage as compared
to 3b. Nevertheless, it still showed an improved therapeutic
time range of 8 h (T > MICadhesion, Figure 3E).

Treatment Study in C3H/HeN Mice. For the in vivo UTI
treatment study, antagonist 48a was selected for iv application
(1 mg/kg) into the tail vein, followed by infection with UPEC
(UTI89). The animals were sacrificed 3 h after inoculation, and

Table 2. Distribution Coefficients (log D7.4 Values) Were
Measured by a Miniaturized Shake Flask Procedure29a

entry
compd
no.

log
D7.4

solubility/pH
(μg/mL)

PAMPA log Pe (log
10−6 cm/s)

PPB
(%)

25 3b11 −0.8 >3000 NP 89
26 21 1.8 31.5/6.5 −4.7 98
27 22 1.8 1.4/6.5 −4.9 99
28 23 3.0 9.6/6.6 −4.6 96
29 24 2.7 <0.1/6.5 NP ND
30 25 ND 0.1/6.5 −4.6 >99
31 26 2.4 67/6.5 −4.7 98
32 27 1.9 4.0/6.5 −5.4 95
33 31 2.8 2.1/6.5 −4.4 99
34 32 1.1 1050/5.6 −6.4 93
35 36 ND <0.001/6.5 −6 >99
36 37 1.8 279/6.3 NP 94
37 41 3.4 3.8/6.5 −5.0 96
38 42 1.6 8.5/6.3 −6.3 95
39 48a 1.9 24/6.5 −5.5 95
40 48b 2.3 31/6.5 −4.7 97
41 48c 1.9 3.6/6.5 −5.7 99
42 48d 2.8 21/6.5 −4.6 99
43 57 3.2 5.5/6.4 NP 90
44 58 1.3 2.4/6.3 −8.0 <30

aThermodynamic solubility (S) was measured by an equilibrium shake
flask approach.30 Passive permeation through an artificial membrane
and retention therein was determined by PAMPA.24a PPB was
assessed following a miniaturized equilibrium dialysis protocol.31 Pe,
effective permeation; ND, not determined; NP, no permeation.

Figure 2. Determination of the MICadhesion. The table lists the half-
maximal inhibitory concentration (IC50), the 90% inhibitory
concentration of adhesion [IC90 (μM)] and the MICadhesion (μg/mL)
of selected indolylphenyl (21 and 22) and indolinylphenyl (48a and
48c) mannosides as well as the previously reported biphenyl derivative
3b.11 IC50 values were determined using the cell-based flow cytometry
infection assay33 (see the graph, representing results for 48a). The
MICadhesion is the concentration in μg/mL of antagonist that inhibits
adhesion of the pathogen to host cells by 90% (IC90).
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homogenized organs (bladder and kidneys) were examined for
bacterial counts. The results were compared to ciprofloxacin
(CIP), used as standard antibiotic therapy against UTI.34

The mean value in the untreated control group showed
bacterial counts of 1.4 × 108 colony-forming units (CFU) in
the bladder and 9.7 × 106 CFU in the kidneys. The bar diagram
in Figure 4 summarizes the bacterial counts after treatment.
The baseline represents the values obtained for the control
group, which was used as reference for CFU reductions. After iv
application of 48a, a substantial decrease of the bacterial counts

by 3.7 log10 CFU was observed in the bladder. Results were
compared to the previously presented antagonist 3b,11 which
was tested using the same protocol. With 3b, a 50-fold higher
dosage (50 mg/kg) had to be applied to obtain a comparable
reduction of 4 log10 CFU for bladder counts. Mice treated with
CIP (8 mg, sc) showed an almost identical reduction of
bacterial counts in the bladder as the tested FimH antagonists
3b (50 mg/kg) and 48a (1 mg/kg). Furthermore, antagonist
48a prevented bacteria from ascending into the kidneys
(−1.3 log10 CFU) twice as efficiently as 3b (−0.7 log10 CFU).

Figure 3. Determination of antagonist concentration in urine and plasma after a single iv application (n = 4). The data (table and graphs) show time-
dependent urine and plasma concentrations and the MICadhesion values as dotted lines for 3b (reference compound

11), 21, 22, 48a, and 48c. AUC0−24
is the AUC over 24 h; MICadhesion is the minimal inhibitory concentration of adhesion.
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As previously addressed,11 urine samples show in general
higher bacterial counts as compared to the bladder. A possible
explanation is the varying urine volumes, leading to either a
concentration or a dilution of bacteria in the urine samples.
Therefore, results were limited to the evaluation of bladder and
kidney counts. Furthermore, as compared to bladder counts,
the bacterial counts in the kidneys were reduced to a smaller
extent, probably due to different bacterial adhesion mechanisms
in bladder and kidney (type 1 pili- vs P pili-dependent inter-
actions).3 Therefore, the considerable reduction of the bacterial
counts in the kidney as observed for antagonist 48a may
originate from the inability of UPECs blocked by 48a to adhere
to bladder cells and their subsequent removal from the bladder
by the urine flow. As a result, only a reduced population for
ascending into the kidneys is available.

■ CONCLUSIONS
The FimH antagonists presented in this article exhibit an
alternative mode of action as compared to antibiotics as they
neither kill nor inhibit growth of bacteria. By blocking FimH, a
lectin located at the tip of the bacterial fimbriae, they interfere
with the adhesion of UPEC to the endothelial cells of the
urinary tract and therewith the initial step of the infection.
To select the most promising candidates for in vivo studies,36

a thorough investigation of the in vitro potency and the
physicochemical/PK properties of these FimH antagonists
(Tables 1 and 2) was performed.
Starting from the known FimH antagonist biphenyl

α-D-mannopyranoside (3b), we designed antagonists with
spatially more demanding aglycones and therefore a better fit
in the out-docking mode.9d,13,37 Thus, a series of indolylphenyl
and indolinylphenyl α-D-mannopyranosides were synthesized.
For the initial evaluation of their affinities, a target-based,
cell-free binding assay12 and a cell-based aggregometry assay19

were applied. In both series, an ortho-chloro substituent on
the phenyl ring adjacent to the anomeric oxygen and an
electron-withdrawing substituent on the indole/indoline moiety
yielded the antagonists with the highest affinities/activities
(see Table 1), presumably by favoring the π−π stacking with
the electron rich Tyr48.

The most important requirement for a successful treatment
in the UTI mouse model is the maintenance of a MICadhesion of
the antagonist in the urine. To avoid a fast renal clearance as
experienced with the biphenyl mannoside 3b11 (log D7.4 of
−0.8, PPB 89%) (Figure 3A), the indole derivatives 21 and 22
and the indoline derivatives 48a and 48c exhibiting higher
lipophilicity (log D7.4 values of 1.8 and 1.9) and PPB (>95%)
were selected as candidates for the in vivo PK study. Whereas
for the indole derivatives 21 and 22 only insufficient urine
concentrations (Figure 3B,C) were obtained, 48a and 48c
exhibited a substantially improved renal elimination profile with
T > MICadhesion of >8 and 8 h, respectively, although 50−1000-
fold lower dosages were applied (Figure 3D,E).
On the basis of these results, 48a was selected for the

treatment study in the UTI mouse model (dosage of 1 mg/kg).
It reduced the CFUs in the bladder by 3.7 orders of magnitude,
which is almost comparable to 3b, applied at a 50-fold higher
dosage (50 mg/kg, −4 log10 CFU). Furthermore, 48a led to a
considerably better reduction of bacterial counts in the kidneys
(−1.3 log10 CFU vs −0.7 log10 CFU for 3b). Of additional
interest is the fact that the FimH antagonist 48a was able to
reduce bacterial infection in the bladder comparably well as the
standard antibiotic treatment with ciprofloxacin (CIP),34

indicating a promising profile for the alternative treatment of
UTIs with FimH antagonists. Overall, the indoline derivative
48a is the most active antagonist tested in vivo to date.11,13

Because the experimental setup used in this study is a pro-
phylactic approach, an adopted protocol for the treatment of an
established infection is currently developed.
According to the PAMPA values, most representatives of the

indole and indoline series are expected to be orally available
(Table 2). However, a major drawback is their low solubility,
limiting, for example, the dosage of 48a to 1 mg/kg and 48c
to 0.05 mg/kg. To evaluate the dosage dependence, that is,
whether higher dosages will further reduce the bacterial counts
in bladder and kidney, the physicochemical issue of solubility
will be addressed by appropriate formulations and structural
modifications (e.g., by disruption of the molecular planarity of
the aromatic aglycone26).

Figure 4. Treatment efficacy in the UTI mouse model 3 h after infection (n = 6). The bar diagram shows the reduction of bacterial counts of the
indolinylphenyl mannoside 48a at an iv dosage of 1 mg/kg, the biphenyl derivative 3b at an iv dosage of 50 mg/kg, and ciprofloxacin (CIP) at an sc
dosage of 8 mg/kg (representing the murine dose equivalent to a human standard dose).35 The baseline represents the mean counts of the untreated
control group; that is, the values of the control group were subtracted from the results of the tested antagonists.
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Overall, these results clearly indicate the high therapeutic
potential of this new series of FimH antagonists. Because of
optimized PK properties, a substantial reduction of the dosage
could be achieved. Thus, with the most promising representative
to date, the indolinylphenyl α-D-mannoside 48a, the infection
can be successfully treated with a low dosage of 1 mg/kg
(approximately 25 μg/mouse) without any additional admin-
istration of antibiotics.

■ EXPERIMENTAL SECTION
Synthesis. The synthesis of compounds 7−10, 14−20, 23−37,

39−42, 44, 47b,d, 48b,d, 50−52, and 55−58, including compound
characterization data, can be found in the Supporting Information.
General Methods. Commercially available reagents were purchased

from Fluka, Aldrich, Merck, AKSci, ASDI, or Alfa Aesar. Methanol
(MeOH) was dried by distillation from sodium methoxide. Toluene
and dioxane were dried by distillation from sodium/benzophenone.
Optical rotations were measured at 20 °C on a Perkin-Elmer 341
polarimeter. Nuclear magnetic resonance (NMR) spectra were
obtained on a Bruker Avance 500 UltraShield spectrometer at
500.13 MHz (1H) or 125.76 MHz (13C). Chemical shifts are given
in ppm and were calibrated on residual solvent peaks or to
tetramethylsilane as an internal standard. Multiplicities are specified
as s (singlet), d (doublet), dd (doublet of a doublet), t (triplet),
q (quartet), or m (multiplet). Assignment of the 1H and 13C NMR
spectra was achieved using 2D methods (COSY, HSQC). ESI mass
spectra were recorded on a Waters micromass ZQ instrument. High-
resolution mass spectra were obtained on an ESI Bruker Daltonics
micrOTOF spectrometer equipped with a TOF hexapole detector.
Microwave-assisted reactions were carried out with CEM Discover and
Explorer. Reactions were monitored by TLC using glass plates coated
with silica gel 60 F254 and visualized by using UV light and/or by
charring with a molybdate solution (a 0.02 M solution of ammonium
cerium sulfate dihydrate and ammonium molybdate tetrahydrate in
aqueous 10% H2SO4) with heating to 150 °C for 5 min. Column
chromatography was performed on a CombiFlash Companion (ISCO,
Inc.) using RediSep normal phase disposable flash columns (silica gel).
Reversed phase chromatography was performed on LiChroprepRP-18
(Merck, 40−63 μm).
Compound Purity. Each test compound was purified by

chromatography on silica (dichloromethane (DCM)/MeOH, 10:1)
or reversed-phase chromatography (RP-18 column, H2O/MeOH,
gradient from 0 to 20% MeOH), followed by Bio-Gel P2 (exclusion
limit 1800 Da, Bio-Rad Laboratories) size exclusion chromatography
(elution with water containing up to 20% MeOH at 0.25 mL/min)
prior to HPLC, HRMS, NMR, and activity testing. The purity of all
test compounds was determined by NMR and HPLC [Beckman
Coulter Gold, consisting of pump 126, DAD 168 (190−410 nm), and
autosampler 508. Column: Waters Atlantis T3, 3 μm, 2.1 mm ×
100 mm. A, H2O + 0.1% TFA; B, MeCN + 0.1% TFA. Detection,
270 nm. Gradient, 5 → 95% B (22 min); flow rate, 0.5 mL/min] to be
≥95% (for 1H NMR spectra and HPLC traces, see the Supporting
Information).
2-Chloro-4-(indol-1-yl)phenyl α-D-Mannopyranoside (21). A

resealable Schlenk tube, which was equipped with a magnetic stirring
bar, was charged with 7 (146 mg, 0.25 mmol), CuI (10 mg, 0.05 mmol),
indole (11e, 35.0 mg, 0.30 mmol), K2CO3 (86 mg, 0.63 mmol), and
L-proline (11.5 mg, 0.10 mmol). The vessel was sealed with a rubber
septum, evacuated, and backfilled with argon (this process was repeated
twice). Then, DMSO (1 mL) was added under a stream of argon, the
reaction tube was quickly sealed, and the suspension was stirred at 90 °C
overnight. The reaction mixture was cooled to rt, diluted with EtOAc
(5 mL), and filtered through a plug of Celite. The filtrate was
concentrated in vacuo, and the residue was treated for 2 h with Ac2O/
pyridine (3 mL, 1:2) and a catalytic amount of DMAP. The reaction was
quenched by the addition of MeOH and concentrated, and the residue
was purified by chromatography on silica (petroleum ether/EtOAc, 4:1
to 1:1) to give slightly impure 12 (40 mg, 28%). Compound 12 (40 mg,
0.07 mmol) was dissolved in MeOH (1 mL) and treated at rt with

0.5 M NaOMe/MeOH (14 μL) until completion of the reaction. The
reaction mixture was neutralized with amberlyst-15 (H+) ion-exchange
resin and filtered. The filtrate was concentrated, and the residue was
purified by chromatography on silica (DCM/MeOH, 10:1) and P2 size
exclusion chromatography to afford 21 (20 mg, 70%) as a white solid
after a final lyophilization from water/dioxane. [α]D

20 +171.6 (c 0.18,
MeOH). 1H NMR (500 MHz, CD3OD): δ 7.62−7.54 (m, 3H, Ar−H),
7.45−7.38 (m, 3H, Ar−H), 7.18 (t, J = 7.0 Hz, 1H, Ar−H), 7.11 (t, J =
7.0 Hz, 1H, Ar−H), 6.65 (s, 1H, Ar−H), 5.61 (s, 1H, H-1), 4.14 (m,
1H, H-2), 4.01 (dd, J = 9.0, 2.5 Hz, 1H, H-3), 3.81−3.69 (m, 4H, H-6a,
H-4, H-6b, H-5). 13C NMR (125 MHz, CD3OD): δ 151.81, 137.30,
136.22, 130.81, 128.98, 127.04, 125.58, 124.98, 123.49, 122.06, 121.42,
119.23, 111.00, 104.71 (Ar−C), 101.03 (C-1), 76.11 (C-5), 72.38 (C-3),
71.84 (C-2), 68.22 (C-4), 62.70 (C-6). HRMS (ESI) m/z calcd for
C20H20ClNNaO6 [M + Na]+, 428.0877; found, 428.0875.

2-Chloro-4-(5-nitroindol-1-yl)phenyl α-D-Mannopyranoside (22).
According to the procedure described for 21, compound 22 was
prepared from 7 (117 mg, 0.20 mmol) and 5-nitroindole (11f, 39 mg,
0.24 mmol) via the acetylated intermediate 13. After workup, the
residue was purified by chromatography on silica (DCM/MeOH,
10:1) and P2 size exclusion chromatography to yield 22 (54 mg, 60%)
as a yellow solid after a final lyophilization from water/dioxane. [α]D

20

+85.7 (c 0.25, MeOH). 1H NMR (500 MHz, CD3OD): δ 8.63 (d,
J = 2.0 Hz, 1H, Ar−H), 8.11 (dd, J = 9.0, 2.0 Hz, 1H, Ar−H), 7.65−
7.55 (m, 4H, Ar−H), 7.48 (dd, J = 8.5, 2.5 Hz, 1H, Ar−H), 6.91 (d,
J = 3.0 Hz, 1H, Ar−H), 5.65 (s, 1H, H-1), 4.14 (m, 1H, H-2), 4.01
(dd, J = 9.5, 3.5 Hz, 1H, H-3), 3.83−3.72 (m, 3H, H-6a, H-4, H-6b),
3.66 (m, 1H, H-5). 13C NMR (125 MHz, CD3OD): δ 152.73, 143.52,
140.14, 134.75, 132.99, 130.01, 127.65, 125.75, 125.57, 119.11, 118.95,
118.79, 111.51, 106.68 (Ar−C), 100.90 (C-1), 76.19 (C-5), 72.37
(C-3), 71.78 (C-2), 68.18 (C-4), 62.69 (C-6). HRMS (ESI) m/z calcd
for C20H19ClN2NaO8 [M + Na]+, 473.0728; found, 473.0728.

4-(5-Nitroindolin-1-yl)phenyl 2,3,4,6-Tetra-O-acetyl-α-D-manno-
pyranoside (47a). In a Schlenk tube, a mixture of 2-dicyclohexyl-
phosphino-2′,4′,6′-triisopropylbiphenyl (X-Phos) (9.1 mg, 0.019 mmol)
and Pd2(dba)3 (3.85 mg, 0.0037 mmol) in dry toluene (3.5 mL) was
stirred for 15 min at 40 °C under argon. Then, 44 (200 mg,
0.37 mmol), Cs2CO3 (364 mg 1.12 mmol), and 5-nitroindoline (45,
91.6 mg, 0.56 mmol) were added. The reaction mixture was degassed in
an ultrasonic bath and stirred for 140 h at 80 °C. The reaction mixture
was diluted with EtOAc (10 mL) and washed with aqueous saturated
NaHCO3 and brine. The aqueous layers were extracted with EtOAc
(3 × 10 mL), and the combined organic layers were dried over Na2SO4,
filtered, and concentrated under reduced pressure. The residue was
purified by chromatography on silica (5−40% gradient of EtOAc in
petrol ether) to give 47a (163 mg, 75%) as an orange solid. [α]D

20

+55.0 (c 1.00, CHCl3).
1H NMR (500 MHz, CDCl3): δ 7.98 (dd, J =

2.3 Hz, 8.9 Hz, 1H, Ar−H), 7.95 (s, 1H, Ar−H), 7.21 (m, 1H, Ar−H),
7.13 (m, 3H, Ar−H), 6.73 (d, J = 8.9 Hz, 1H, Ar−H), 5.55 (dd, J =
10.1, 3.5 Hz, 1H, H-3), 5.50 (d, J = 1.6 Hz, 1H, H-1), 5.44 (dd, J = 3.5,
1.8 Hz, 1H, H-2), 5.38 (t, J = 10.1 Hz, 1H, H-4), 4.28 (dd, J = 12.5,
5.2 Hz, 1H, H-6a), 4.08 (m, 4H, CH2, H-6b, H-5), 3.19 (t, J = 8.6 Hz,
2H, CH2), 2.20, 2.18, 2.04, 2.02 (4s, 12H, OAc).

13C NMR (125 MHz,
CDCl3): δ 170.70, 170.23, 170.19, 169.90 (4 CO), 137.21, 128.40,
126.27, 122.03, 121.32, 117.92, 117.81, 105.52 (Ar−C), 96.36 (C-1),
69.53 (C-5), 69.40 (C-2), 68.98 (C-3), 66.03 (C-4), 62.28 (C-6), 53.85
(CH2), 27.27 (CH2), 21.65, 21.09, 20.92, 20.90 (4 COCH3). MS (ESI)
m/z calcd for C28H31N2O12 [M + H]+, 587.19; found, 587.29.

2-Chloro-4-(5-nitroindolin-1-yl)phenyl 2,3,4,6-Tetra-O-acetyl-α-
D-mannopyranoside (47c). According to the procedure described
for 47a, compound 7 (60 mg, 0.10 mmol) was microwave irradiated
with Cs2CO3 (100 mg 0.30 mmol), X-Phos (4.9 mg, 0.010 mmol),
Pd2(dba)3 (2.21 mg, 0.0020 mmol), and 5-nitroindoline (45, 50.5 mg,
0.30 mmol) in toluene (1 mL) to yield 47c (36 mg, 56%) as an orange
solid. [α]D

20 +99.6 (c 0.08, CHCl3).
1H NMR (500 MHz, CDCl3):

δ 8.03 (dd, J = 8.8, 2.3 Hz, 1H, Ar−H), 7.99 (m, 1H, Ar−H),
7.30 (d, J = 2.7 Hz, 1H, Ar−H), 7.26−7.08 (m, 2H, Ar−H), 6.82 (d,
J = 8.9 Hz, 1H, Ar−H), 5.59 (dd, J = 10.1, 3.4 Hz, 1H, H-3), 5.54−
5.46 (m, 2H, H-2, H-1), 5.39 (t, J = 10.1 Hz, 1H, H-4), 4.28 (dd, J =
12.2, 5.1 Hz, 1H, H-6a), 4.21 (m, 1H, H-5), 4.10 (dd, J = 12.3, 2.2 Hz,
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1H, H-6b), 4.06 (t, J = 9.0 Hz, 2H, CH2), 3.20 (t, J = 8.6 Hz, 2H,
CH2), 2.19, 2.06, 2.05, 2.03 (4s, 12H, OAc). 13C NMR (125 MHz,
CDCl3): δ 170.69, 170.21, 170.04, 169.94 (4 CO), 152.91, 147.91,
138.24, 131.61, 129.24, 128.43, 125.72, 122.33, 121.42, 119.52, 118.45,
106.00 (Ar−C), 97.42 (C-1), 70.00 (C-3), 69.53 (C-2), 68.90 (C-5),
65.99 (C-4), 62.31 (C-6), 53.70 (CH2), 27.31 (CH2), 21.11, 20.94,
20.92 (4C, 4 COCH3). MS (ESI) m/z calcd for C28H29ClN2NaO12
[M + Na]+, 643.13; found, 643.19.
4-(5-Nitroindolin-1-yl)phenyl α-D-Mannopyranoside (48a). Com-

pound 47a (218 mg, 0.37 mmol) was dissolved in MeOH (2 mL) and
treated at rt with 0.5 M NaOMe/MeOH (1 mL) for 20 h. The
reaction mixture was neutralized with amberlyst-15 (H+) ion-exchange
resin and filtered. The filtrate was concentrated, and the residue was
purified by RP-18 chromatography (H2O/MeOH, gradient from 0 to
20% MeOH), followed by P2 size exclusion chromatography to yield
48a (77.7 mg, 50%) as a colorless solid after a final lyophilization from
water/dioxane. [α]D

20 +57.0 (c 0.10, MeOH). 1H NMR (500 MHz,
CD3OD): δ 8.00 (m, 2H, Ar−H), 7.31 (m, 2H, Ar−H), 7.21 (m, 2H,
Ar−H), 6.78 (d, J = 8.5 Hz, 1H, Ar−H), 5.47 (d, J = 2.0 Hz, 1H, H-1),
4.12 (m, 2H, NCH2), 4.02 (dd, J = 3.3, 1.8 Hz, 1H, H-2), 3.90 (dd, J =
9.4, 3.4 Hz, 1H, H-3), 3.79 (dd, J = 12.0, 6.4 Hz, 1H, H-6a), 3.73 (m,
2H, H-6b, H-4), 3.62 (ddd, J = 9.7, 5.3, 2.3 Hz, 1H, H-5), 3.21 (t, J =
8.5 Hz, 2H, CH2).

13C NMR (125 MHz, CD3OD): δ 154.98, 137.95,
127.14, 123.52, 122.02, 119.08, 106.41 (Ar−C), 100.69 (C-1), 75.62
(C-5), 72.54 (C-3), 72.13 (C-2), 68.50 (C-4), 62.86 (C-6), 55.07
(CH2), 28.03 (CH2). HRMS (ESI) m/z calcd for C20H23N2O8 [M +
H]+, 419.1449; found, 419.1453.
2-Chloro-4-(5-nitroindolin-1-yl)phenyl α-D-Mannopyranoside

(48c). According to the procedure described for 48a, compound 47c
(36 mg, 0.058 mmol) was treated with 0.5 M NaOMe/MeOH
(0.5 mL) in MeOH (1 mL) for 21 h. After workup, the residue was
purified by RP-18 chromatography (H2O/MeOH, gradient from
0 to 20% MeOH) and P2 size exclusion chromatography to yield 48c
(16.5 mg, 63%) as a colorless solid after a final lyophilization from
water/dioxane. [α]D

20 +53.8 (c 0.21, MeOH/CHCl3).
1H NMR

(500 MHz, CD3OD): δ 8.05−8.01 (m, 2H, Ar−H), 7.42 (m, 2H,
Ar−H), 7.28 (dd, J = 9.0, 2.5 Hz, 1H, Ar−H), 6.86 (d, J = 8.5 Hz, 1H,
Ar−H), 5.51 (d, J = 1.5 Hz, 1H, H-1), 4.11 (m, 3H, NCH2, H-2), 3.97
(dd, J = 9.3, 3.4 Hz, 1H, H-3), 3.81(dd, J = 11.7, 2.2 Hz, 1H, H-6a),
3.64 (ddd, J = 9.7, 5.6, 2.2 Hz, 1H, H-5), 3.23 (t, J = 8.6 Hz, 2H, CH2).
13C NMR (125 MHz, CD3OD): δ 134.69, 133.05, 132.87, 130.67,
129.03, 126.83, 123.31, 121.97, 121.31, 119.65, 106.72 (Ar−C), 101.25
(C-1), 76.04 (C-5), 72.40 (C-3), 71.88 (C-2), 68.27 (C-4), 62.73
(C-6), 54.74 (CH2), 27.93 (CH2). HRMS (ESI) m/z calcd for
C20H21ClN2NaO8 [M + Na]+, 475.0879; found, 475.0875.
In Vitro Activity. Cell-Free Binding Assay. To determine the

affinity of the various FimH antagonists, a cell-free binding assay
described previously12 was applied. A recombinant protein
consisting of the CRD of FimH linked with a thrombin cleavage
site to a 6His-tag (FimH-CRD-Th-6His) was expressed in E. coli
strain HM125 and purified by affinity chromatography.
Microtiter plates (F96 MaxiSorp, Nunc) were coated with
100 μL/well of a 10 μg/mL solution of FimH-CRD-Th-6His in
20 mM HEPES, 150 mM NaCl, and 1 mM CaCl2, pH 7.4 (assay
buffer), overnight at 4 °C. The coating solution was discarded,
and the wells were blocked with 150 μL/well of 3% BSA in
assay buffer for 2 h at 4 °C. After three washing steps with
assay buffer (150 μL/well), a 4-fold serial dilution of the test
compound (50 μL/well) in assay buffer containing 5% DMSO
and streptavidin-peroxidase coupled biotinylated polyacrylamide
(PAA) glycopolymers [Manα1−3(Manα1−6)Manβ1−
4GlcNAcβ1−4GlcNAcβ-PAA-biotin, TM-PAA] (50 μL/well
of a 0.5 μg/mL solution), was added. On each individual
microtiter plate, n-heptyl α-D-mannopyranoside (1) was tested
as a reference compound. The plates were incubated for 3 h at
25 °C and 350 rpm and then carefully washed four times with
150 μL/well assay buffer. After the addition of 100 μL/well of
the horseradish peroxidase substrate 2,2′-azino-di(3-ethylbenz-
thiazoline-6-sulfonic acid) (ABTS), the colorimetric reaction
was allowed to develop for 4 min, then stopped by the addition

of 2% aqueous oxalic acid before the optical density (OD) was
measured at 415 nm on a microplate-reader (Spectramax 190,
Molecular Devices, CA). The IC50 values of the compounds
tested in duplicates were calculated with the prism software
(GraphPad Software, Inc., La Jolla, CA). The IC50 defines the
molar concentration of the test compound that reduces the
maximal specific binding of TM-PAA polymer to FimH-CRD by
50%. The relative IC50 (rIC50) is the ratio of the IC50 of the test
compound to the IC50 of n-heptyl α-D-mannopyranoside (1).

Bacteria and Growth. The clinical E. coli isolate UTI8938

(UTI89wt) was kindly provided by the group of Prof. Urs Jenal,
Biocenter, University of Basel, Switzerland. Microorganisms were
stored at −70 °C and incubated for 24 h before the experiments under
static conditions at 37 °C in 10 mL of Luria−Bertani broth (Becton,
Dickinson and Company, Le Pont de Claix, France) using 50 mL tubes.
Prior to each experiment, the microorganisms were washed twice and
resuspended in phosphate-buffered saline (PBS, Sigma-Aldrich, Buchs,
Switzerland). Bacterial concentrations were determined by plating serial
1:10 dilutions on blood agar, followed by colony counting with 20−200
colonies after overnight incubation at 37 °C.

Aggregometry Assay. The aggregometry assay was carried out as
previously described.19 In short, the percentage of aggregation of E.
coli UTI89 with GPEs was quantitatively determined by measuring the
optical density at 740 nm and 37 °C under stirring at 1000 rpm using
an APACT 4004 aggregometer (Endotell AG, Allschwil, Switzerland).
Bacteria were cultivated as described above. GPEs were separated from
guinea pig blood (Charles River Laboratories, Sulzfeld, Germany)
using Histopaque (density of 1.077 g/mL at 24 °C, Sigma-Aldrich).
Prior to the measurements, the cell densities of E. coli and GPE were
adjusted to an OD600 of 4, corresponding to 1.9 × 108 CFU/mL and
2.2 × 106 cells/mL, respectively. For the calibration of the instrument,
the aggregation of platelet poor plasma (PPP) using PBS alone was set
as 100%, and the aggregation of platelet rich plasma (PRP) using GPE
was set as 0%. After calibration, measurements were performed with
250 μL of GPE and 50 μL of bacterial suspension, and the aggregation
was monitored over 600 s. After the aggregation phase of 600 s, 25 μL
of antagonist in PBS was added to each cuvette, and disaggregation
was monitored for 1400 s.

Cultivation of 5637 Cells. The human epithelial bladder carcinoma
cell line 5637 was obtained from the German Collection of
Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany).
The cells were grown in RPMI 1640 medium, supplemented with
10% fetal calf serum (FCS), 100 U/mL penicillin, and 100 μg/mL
streptomycin at 37 °C, 5% CO2. All solutions were purchased from
Invitrogen (Basel, Switzerland). The cells were subcultured 1:5 twice
per week for six passages before using them in the infection assay.
Two days before infection, 1.8 × 105 cells were seeded in each well of a
24-well plate in RPMI 1640 containing 10% FCS without antibiotics.
The cell density was approximately (3−5) × 105 cells/well prior the
infection.

Flow Cytometry Infection Assay. The infection assay was carried
out as previously described.33 Briefly, to evaluate FimH antagonists, a
serial dilution of the antagonists in 5% DMSO was prepared. Before
infection, a suspension of green fluorescently labeled (GFP) bacteria
(UTI89, 200 μL) and 25 μL of the test compound were preincubated
for 10 min at room temperature. The bacteria−antagonist mixture was
then added to the monolayer of 5637 cells (grown in 24-well plates,
as described above) at a multiplicity of infection (MOI) of 1:50
(cell:bacteria). To homogenize the infection, plates were centrifuged at
room temperature for 3 min at 600g. After an incubation of 1.5 h at
37 °C, infected cells were washed four times with RPMI 1640 medium
and suspended in ice-cold PBS for 5−20 min. Cells were then kept in
the dark until analysis. All measurements were made within 1 h after
the termination of the infection. Samples were acquired in a CyAn
ADP flow cytometer (Becton, Dickinson and Company) and analyzed
by gating on the eukaryotic cells based on forward (FSC) and side
scatter (SSC), which excludes unbound GFP-labeled bacteria and
debris from analysis. A total of 104 cells were measured per sample.
Data were acquired in a linear mode for the side scatter (SSC) and in
a logarithmic mode for the forward scatter (FSC) and the green
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fluorescent channel FL1-H (e.g., GFP). The MFI of FL1-H was
counted as a surrogate marker for the adherence of bacteria.
Quantification of adhesion was evaluated with the FlowJo software
9.0.1 (Tree Star, Inc., Ashland, OR). IC50 values were determined by
plotting the concentration of the antagonist in logarithmic mode
versus the MFI and by fitting the curve with the prism software
(GraphPad, inhibition curve, nonlinear regression, variable slope,
n = 4). The IC90 (F = 90) was calculated from the determined IC50
value and the hill slope (H) as follows:

= − ×⎜ ⎟⎛
⎝

⎞
⎠

F
F

IC
100

ICF

H1/

50

In Vitro Pharmacokinetic Parameters. Materials. DMSO
and 1-octanol were purchased from Sigma-Aldrich. PAMPA
System Solution, GIT-0 Lipid solution, and Acceptor Sink
Buffer were ordered from pIon (Woburn, MA). Human plasma
was bought from Biopredic (Rennes, France), and acetonitrile
(MeCN) was from Acros Organics (Geel, Belgium).
Log D7.4 Determination. The in silico prediction tool ALOGPS39

was used to estimate the log P values of the compounds. Depending
on these values, the compounds were classified into three categories:
hydrophilic compounds (log P below zero), moderately lipophilic
compounds (log P between zero and one), and lipophilic compounds
(log P above one). For each category, two different ratios (volume of
1-octanol to volume of buffer) were defined as experimental
parameters (Table 3).

Equal amounts of phosphate buffer (0.1 M, pH 7.4) and 1-octanol
were mixed and shaken vigorously for 5 min to saturate the phases.
The mixture was left until separation of the two phases occurred, and
the buffer was retrieved. Stock solutions of the test compounds were
diluted with buffer to a concentration of 1 μM. For each compound,
six determinations, that is, three determinations per 1-octanol:buffer
ratio, were performed in different wells of a 96-well plate. The
respective volumes of buffer containing analyte (1 μM) were pipetted
to the wells and covered by saturated 1-octanol according to the
chosen volume ratio. The plate was sealed with aluminum foil, shaken
(1350 rpm, 25 °C, 2 h) on a Heidolph Titramax 1000 plate-shaker
(Heidolph Instruments GmbH & Co. KG, Schwabach, Germany), and
centrifuged (2000 rpm, 25 °C, 5 min, 5804 R Eppendorf centrifuge,
Hamburg, Germany). The aqueous phase was transferred to a 96-well
plate for analysis by LC-MS (see below).
log D7.4 was calculated from the 1-octanol:buffer ratio (o:b), the

initial concentration of the analyte in buffer (1 μM), and the
concentration of the analyte in the aqueous phase (cB) with equation:

= μ − ×
⎛
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⎞
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c
c

log log
1 M 1

o: b7.4
B

B

The average of the three log D7.4 values per 1-octanol:buffer ratio was
calculated. If the two means obtained for a compound did not differ by
more than 0.1 unit, the results were accepted.
PAMPA. Log Pe was determined in a 96-well format with the

PAMPA24a permeation assay. For each compound, measurements
were performed at three pH values (5.0, 6.2, and 7.4) in
quadruplicates. For this purpose, 12 wells of a deep well plate, that
is, four wells per pH value, were filled with 650 μL of System Solution.
Samples (150 μL) were withdrawn from each well to determine the
blank spectra by UV spectroscopy (SpectraMax 190, Molecular
Devices). Then, analyte dissolved in DMSO was added to the
remaining System Solution to yield 50 μM solutions. To exclude

precipitation, the optical density was measured at 650 nm, with
0.01 being the threshold value. Solutions exceeding this threshold were
filtrated. Afterward, samples (150 μL) were withdrawn to determine
the reference spectra. Further samples (200 μL) were transferred to
each well of the donor plate of the PAMPA sandwich (pIon, Woburn,
MA, P/N 110 163). The filter membranes at the bottom of the
acceptor plate were impregnated with 5 μL of GIT-0 Lipid Solution,
and 200 μL of Acceptor Sink Buffer was filled into each acceptor well.
The sandwich was assembled, placed in the GutBox, and left
undisturbed for 16 h. Then, it was disassembled, and samples
(150 μL) were transferred from each donor and acceptor well to UV
plates. Quantification was performed by both UV spectroscopy and
LC-MS (see below). log Pe values were calculated with the aid of the
PAMPA Explorer Software (pIon, version 3.5).

Thermodynamic Solubility. Microanalysis tubes (LaboTech J.
Stofer LTS AG, Muttenz, Switzerland) were charged with 1 mg
of solid substance and 250 μL of phosphate buffer (50 mM, pH 6.5).
The tubes were briefly shaken by hand, sonicated for 15 min, and
vigorously shaken (600 rpm, 25 °C, 2 h) on an Eppendorf
Thermomixer Comfort. Afterward, they were left undisturbed for
24 h. After the pH was measured, the compound solutions were
filtered (MultiScreen HTS 96-well Filtration System, Millipore,
Billerica, MA) by centrifugation (1500 rpm, 25 °C, 3 min). The
filtrates were diluted (1:2, 1:10, and 1:100 or, if the results were outside
of the calibration range, 1:1000 and 1:10000), and the concentrations
were determined by LC-MS (see below). The calibration was based on
six values ranging from 0.1 to 10 μg/mL.

PPB. The dialysis membranes (MWCO 12−14 K; HTDialysis LCC,
Gales Ferry, CT) were prepared according to the instructions of the
manufacturer. The human plasma was centrifuged (5800 rpm, 25 °C,
10 min), the pH of the supernatant (without floating plasma lipids)
was adjusted to 7.5, and the analyte was added to yield 10 μM
solutions. PPB determinations were performed in triplicate. Equal
volumes (150 μL) of phosphate buffer (0.1 M, pH 7.4) and plasma
containing the analyte were transferred to the separated compartments
of the 96-well high throughput dialysis block (HTDialysis LCC).
The plate was covered with a sealing film and incubated (5 h, 37 °C).
Afterward, samples (90 μL) were withdrawn from the buffer
compartments and diluted with plasma (10 μL). From the plasma
compartments, samples (10 μL) were withdrawn and diluted with
phosphate buffer (90 μL). The solutions were further diluted with ice-
cooled MeCN (300 μL) to precipitate the proteins and centrifuged
(3600 rpm, 4 °C, 11 min). The supernatants (50 μL) were retrieved,
and the analyte concentrations were determined by LC-MS (see
below). The fraction bound ( f b) was calculated as follows:

= −f
c
c

1b
b

p

where cb is the concentration of the analyte in the buffer compartment
and cp is the concentration in the plasma compartment. The values
were accepted if the recovery of analyte was between 80 and 120% of
the initial amount.

LC-MS Measurements. Analyses were performed using a 1100/
1200 Series HPLC System coupled to a 6410 Triple Quadrupole mass
detector (Agilent Technologies, Inc., Santa Clara, CA) equipped with
electrospray ionization. The system was controlled with the Agilent
MassHunter Workstation Data Acquisition software (version B.01.04).
The column used was an Atlantis T3 C18 column (2.1 mm × 50 mm)
with a 3 μm particle size (Waters Corp., Milford, MA). The mobile
phase consisted of two eluents: solvent A (H2O, containing 0.1%
formic acid, v/v) and solvent B (acetonitrile, containing 0.1% formic
acid, v/v), both delivered at a flow rate of 0.6 mL/min. The gradient
was ramped from 95% A/5% B to 5% A/95% B over 1 min and then
held at 5% A/95% B for 0.1 min. The system was then brought back to
95% A/5% B, resulting in a total duration of 4 min. MS parameters
such as fragmentor voltage, collision energy, and polarity were
optimized individually for each compound, and the molecular ion was
followed for each compound in the multiple reaction monitoring

Table 3

compd type log P ratios (1-octanol:buffer)

hydrophilic <0 30:140, 40:130
moderately lipophilic 0−1 70:110, 110:70
lipophilic >1 3:180, 4:180
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mode. The concentration of each analyte was quantified by the Agilent
Mass Hunter Quantitative Analysis software (version B.01.04).
In Vivo Pharmacokinetic and Treatment Studies. Animals.

Female C3H/HeN mice weighing between 19 and 25 g were
obtained from Charles River Laboratories and were housed
three or four to a cage. Mice were kept under specific pathogen-
free conditions in the Animal House of the Department of
Biomedicine, University Hospital Basel, and animal exper-
imentation guidelines according to the regulations of Swiss
veterinary law were followed. After 7 days of acclimatization,
9−10 week old mice were used for the PK and infection study.
During the studies, animals were allowed free access to chow
and water. Three days before infection studies and during
infection, 5% D-(+)-glucose (AppliChem, Baden-Da ̈ttwil,
Switzerland) was added to the drinking water, to increase the
number of bacterial counts in the urine and kidneys.40

Pharmacokinetic Studies. Single-dose PK studies were performed
by iv application of the FimH antagonist at the designated dosages
followed by urine and plasma sampling. For iv application, the
antagonists were diluted in 100 μL of PBS and injected into the tail
vein. Blood and urine were sampled (10 μL) after 6 and 30 min and 1,
2, 4, 6, and 8 h. Before analysis, proteins in blood and urine samples
were precipitated using methanol (Acros Organics) and centrifuged
for 11 min at 13000 rpm. The supernatant was transferred into a
96-well plate (0.5 mL, polypropylene, Agilent Technologies) and
analyzed by LC-MS as described above.
UTI Mouse Model. Mice were infected as previously described.40 In

brief, before infection, all remaining urine was depleted form the
bladder by gentle pressure on the abdomen. Mice were anesthetized
with 1.1 vol% isoflurane/oxygen mixture (Attane, Minrad Inc., Buffalo,
NY) and placed on their backs. Anesthetized mice were inoculated
transurethrally with the bacterial suspension by use of a 2 cm
polyethylene catheter (Intramedic polyethylene tubing; inner diame-
ter, 0.28 mm; outer diameter, 0.61 mm; Beckton, Dickinson and
Company), which was placed on a syringe (Hamilton Gastight Syringe
50 μL, removable 30G needle, BGB Analytik AG, Boeckten,
Switzerland). The catheter was gently inserted through the urethra
until it reached the top of the bladder, followed by slow injection of
50 μL of bacterial suspension at a concentration of approximately 5 ×
107 to 5 × 108 CFU.
Antagonist Treatment Studies. The FimH antagonists were

applied iv in 100 μL of PBS into the tail vein 10 min before infection.
Three hours after the onset of infection, mice were sacrificed with
CO2. Organs were removed aseptically and homogenized in 1 mL of
PBS by using a tissue lyser (Retsch, Haan, Germany). Serial dilutions
of bladder and kidneys were plated on Levine Eosin Methylene Blue
Agar plates (Beckton, Dickinson and Company). CFU counts were
determined after overnight incubation at 37 °C and expressed as
CFU/organ, corresponding to CFU/bladder and CFU/2 kidneys.
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2.10 Manuscript 9: FimH antagonists – phosphate prodrugs improve 

oral bioavailability 

 

 

The following manuscript addresses the low aqueous solubility of the biphenyl and 

indolinylphenyl mannosides by a phosphate ester prodrug approach. A Caco-2 cell model 

was implemented to characterize the enzyme-mediated cleavage of the phosphate promoiety 

and the subsequent permeation of the pharmacologically active parent compound through the 

confluent cell monolayer. Preliminary observations in vitro were completed by an in vivo 

pharmacokinetic study. As a result, phosphate prodrugs showing high oral availability and 

leading to prolonged high concentrations of FimH antagonist in the urine were identified. 

 

 

Contribution to the project: 

Simon Kleeb implemented all in vitro assays regarding the phosphatase-mediated release of 

the parent compound from the prodrug as well as the in vitro absorption studies. He 

furthermore interpreted the resulting data and was responsible for the writing of the 

manuscript except for the sections about synthesis and the in vivo pharmacokinetic study.  

 

 

This manuscript is in preparation for J. Med. Chem.  
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Abstract 

Urinary tract infections by urophathogenic Escherichia coli belong to the most common 

infectious diseases and frequently require antibiotic treatment. Since frequent exposure to 

antibiotics leads to the emergence of antimicrobial resistance, alternative prevention and 

treatment strategies are urgently needed. In the initial step of the host cell colonization, FimH 

a lectin located at the tip of bacterial type 1 pili interacts with mannosylated glycoproteins on 

the urinary bladder mucosa. Although this initial pathogen/host interaction can be efficiently 

antagonized by biaryl α-D-mannopyranosides, their physicochemical profile, namely low 

aqueous solubility, however, is unfavorable for an oral treatment. 

Here we report the syntheses and the pharmacokinetic evaluation of phosphate prodrugs of 

biaryl α-D-mannopyranosides, which are characterized by strongly increased aqueous 

solubility. In a Caco-2 cell model, hydrolysis of the phosphate esters by brush border-

associated enzymes created a supersaturated solution of the active principal and thus a high 

concentration gradient across the cell monolayer. As a result, an up to tenfold increase in the 

absorptive flux could be observed. Compared to the same molecular dose of the active 

principle, a substantial increase of the FimH antagonists in the urine was achieved with 

phosphate prodrugs. An oral availability of up to 95% of the administered dose marks a 

milestone in the development of FimH antagonists. 

Introduction 

Urinary tract infection (UTI) are the most common bacterial infections in humans and affect 

millions of people.[1] UTI remains one of the most common indications for prescribing 

antimicrobials to tackle the symptoms (dysuria, frequent and urgent urination, bacteriuria, 

and pyuria) and to prevent complications (pyelonephritis and urosepsis).[2] However, frequent 

and repeated use of antibiotics can lead to the emergence of antimicrobial resistance. 

Alternative prevention and treatment strategies are therefore urgently needed.[3] 

Uropathogenic Escherichia coli (UPEC) strains are the causative agents of more than 70% of 

all UTI episodes.[4,5] Bacterial adherence to the bladder cell surface is the initial step of the 

pathogenesis, preventing UPEC from being cleared by the bulk flow of urine and enabling 

the bacteria to colonize the urothelial cells.[6] Among the different adhesins expressed on the 

bacterial surface, mannose-binding type 1 pili are the most prevalent. They consist of a 

helical rod formed by 500 to 3000 copies of the main structural subunit FimA and of a linear 
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tip fibrillum formed by the subunits FimG, FimF, and FimH.[7] The latter subunit is expressed 

on the tip of the pili and encloses the carbohydrate recognition domain (CRD), which targets 

the mannosylated glycoprotein uroplakin 1a on the mucosal surface of the bladder.[8] 

More than three decades ago, Sharon and co-workers described various oligomannosides and 

aryl α-D-mannosides as potential antagonists of the FimH-mediated bacterial adhesion.[9,10] 

Lateron, several high-affinity monovalent mannose-based FimH antagonists with various 

aglycones like n-alkyl,[11] phenyl,[12] dioxocyclobutenylaminophenyl,[13] umbelliferyl,[12] 

biphenyl,[14-18] indol(in)ylphenyl,[19] triazolyl[20] and thiazolylamino[21] have been reported. In 

addition, different multivalent presentations of mannose have been synthesized.[22-28] Most 

importantly, adverse side effects resulting from non-selective binding of FimH antagonists - 

they are all α-D-mannopyranosides - to mannose receptors of the human host system could 

recently been ruled out.[29] 

In vivo studies in mice impressively proved the therapeutic potential of biaryl mannosides for 

an oral treatment of UTI.[15-17] However, since only low oral bioavailability could be 

achieved, basic determinants such as aqueous solubility and membrane permeability should 

be further optimized.[30] A possible solution is offered by a phosphate prodrug approach 

which is either applied when the active principal exhibits high membrane permeability but 

suffers from low aqueous solubility[31] or when the therapeutic dose exceeds the maximum 

amount of drug dissolvable in the intestinal fluids.[32] Successful applications led to various 

marketed drugs, e.g. to the antiretroviral drug fosamprenavir,[33,34] the anesthetic propofol,[35] 

or the chemotherapeutic drug fludarabine phosphate.[36]  

The goal of the present study was to optimize the physicochemical profile of the biaryl 

mannosides 3-5 by a phosphate prodrug approach, enhancing aqueous solubility and, 

consequently, oral availability. 

Results and Discussion 

The potent FimH antagonists 3-5[14,18,19,37] are perfect candidates for a phosphate approach 

due to their low aqueous solubility and elevated membrane permeability. Table 1 summarizes 

their (previously published) binding affinity (IC50)[14,18,19,37] and their physicochemical 

properties (solubility, lipophilicity, and permeability).  
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Table 1. Binding affinity and physicochemical parameters of the biaryl α-D-mannopyranosides 3-5[14,18,19,37]. 

IC50 values, aqueous solubility, log P, and PAMPA data were adopted from references [18,19,37], the IC50 of 

antagonist 4 and Caco-2 Papp values of antagonist 5 were obtained according to the procedure described in [18].  

Caco-2 Papp
[e] [10-6 cm/s] 

Cpd. OHO

OH

HO

OH

R  

IC50
[a] 

[nM] 

Solubility[b

] [µg/ml] 

log P[c] 

 

PAMPA 

log Pe
[d] [cm/s] a→b b→a 

3[14,18] 
O

 

84.9 21  2.1  -4.7  10.0 ± 0.9 19.0 ± 1.2 

4[37] 
O

CN

Cl

 

10.1 192 2.1  -5.2  2.2 ± 0.4 22.1 ± 1.5 

5[19] 
O

N

NO2

 
20 24 1.9 -5.5 2.9 ± 0.6 39.3 ± 5.8 

 

[a] IC50 values were determined in a cell-free competitive binding assay;[38] [b] 3 and 5: Thermodynamic 

solubility, 4: Kinetic solubility;[39] [c] Octanol-water partition coefficients (log P) were determined by a 

miniaturized shake-flask procedure;[40] [d] Pe = effective permeability: passive permeation through an artificial 

membrane was determined by the parallel artificial membrane permeability assay (PAMPA);[41,42] [e] 

Papp = apparent permeability: permeation through a Caco-2 cell monolayer was assessed in the absorptive (a→b) 

and secretory (b→a) directions in triplicate.[43,44] 

For identifying the optimal position of the phosphate promoiety within the biaryl mannoside 

3-5, a series of phosphate esters was synthesized (Figure 1) and subjected to alkaline 

phosphatase (ALP)-mediated hydrolysis. In the prodrugs 6a-d and 7a-d, the phosphate ester 

bond was directly linked to the various hydroxyl groups of the mannose moiety. 

Alternatively, an acetal linker was used in the prodrugs 6e and 8 in order to increase the 

distance between the enzymatic cleavage site and the derivatized hydroxyl group of the active 

principal to enhance accessibility of the phosphate ester and increase the dephosphorylation 

rate. The hemiacetal formed as intermediate is expected to collapse spontaneously releasing 

the active principle as well as formaldehyde.[45] 
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6a: R2 = P(=O)(ONH4)2; R3, R4, R6 = H
6b: R3 = P(=O)(ONH4)2; R2, R4, R6 = H
6c: R4 = P(=O)(ONH4)2; R2, R3, R6 = H
6d: R6 = P(=O)(ONH4)2; R2, R3, R4 = H
6e: R2 = CH2OP(=O)(ONH4)2; R2, R3, R4 = H

7a: R2 = P(=O)(ONa)2; R3, R4, R6 = H
7b: R3 = P(=O)(ONa)2; R2, R4, R6 = H
7c: R4 = P(=O)(ONa)2; R2, R3, R6 = H
7d: R6 = P(=O)(ONa)2; R2, R3, R4 = H

8

O P
ONH4

O

ONH4

 
Figure 1. Phosphate monoester 6a-e of biphenyl α-D-mannopyranoside 3, 7a-d of the substituted biphenyl α-D-

mannopyranoside 4 and 8 of the indolinylphenyl α-D-mannopyranoside 5. 

Synthesis of phosphates 6a-d. The 2-phosphate 6a of biphenyl α-D-mannopyranoside (3) 

was synthesized according to the procedure depicted in Scheme 1. Starting from 3,[14,18] a 

benzylidene acetal (→ 9) was used to protect the 4- and 6-OH of the mannose moiety. Then, 

the 3-position was protected by a selective dibutyltin oxide-mediated benzylation (→ 10). By 

phosphorylation using dibenzyl N,N-diisopropyl-phosphoramidite in the presence of 1,2,4-

triazole and subsequent oxidation with tert-butylhydroperoxide the protected intermediate 11 

was obtained. The final deprotection of the phosphate and the mannose moiety by catalytic 

hydrogenation yielded the 2-phosphate 6a. The 3-, 4- and 6-phosphates 6b-d were obtained 

in analogous procedures from suitably protected precursors (for the synthesis see the 

Supporting Information). 

O

OH

HO
HO

O

OH

a)

3 9: R = H
10: R = Bn

b)

O
RO
O

O

OHOPh

c)

O

OH

HO
HO

O

O
P

O

ONH4

ONH4

6a

O
BnO
O

O

OOPh

11

P

O

OBn

OBn

d)

 

Scheme 1. Reagents and conditions: a) PhCH(OMe)2, p-TsOH, DMF, 50 °C, overnight (70%); b) i. Bu2SnO, 

toluene, 135 °C, 3 h; ii. BnBr, toluene, 115 °C, overnight (80%); c) dibenzyl N,N-diisopropylphosphoramidite, 

1,2,4-triazole, MeCN, 0 °C to rt, overnight; then 70% aq. tert-BuOOH, rt, 1 h (62%); d) i. H2 (4 bar), 

Pd(OH)2/C, EtOAc, cat. HOAc, overnight; ii. 25% aq. NH3/MeOH (4:1), rt, overnight (45%). 
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Synthesis of Phosphates 7a-d. Due to the labile chloro- and cyano-substituents present in 

biphenyl α-D-mannopyranoside 4[37], the 2-phosphate 7a was obtained by a modified strategy 

(Scheme 2), because synthetic steps affording hydrogenation had to be omitted. After 

protecting the 4- and 6-OH of 4 with a benzylidene acetal (→ 12), selective benzoylation of 

the 3-OH of the mannose moiety afforded 13.[46] The phosphorylated of the 2-OH group with 

bis[2-(trimethylsilyl)ethyl] N,N-diisopropylphosphoramidite in the presence of 1,2,4-triazole 

and subsequent oxidation with tert-butylhydroperoxid yielded intermediate 14. When the 

(trimethylsilyl)ethyl esters in 14 were cleaved with TFA and the benzoate removed with 

NH3/MeOH 2-phosphate 7a was obtained. For the synthesis of the 3-, 4- and 6-phosphates 

7b-d the same phosphorylation protocol was applied (see the Supporting Information for 

details). 

O

OH

HO
HO

O

4

OH

Cl

CN
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b)

O
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O
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O

O
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O
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O

O
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CN
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O
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O

O
O

SiMe3

SiMe3
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Scheme 2. Reagents and conditions: a) PhCH(OMe)2, p-TsOH, rt, 17 h (22%); b) BzCl, DCM/pyr, 0 °C to rt, 3 

h (60%); c) bis[2-(trimethylsilyl)ethyl] N,N-diisopropylphosphoramidite, 1,2,4-triazole, MeCN, 0 °C to rt, 16 h; 

then 70% aq. tert-BuOOH, rt, 1 h (55%); d) TFA/DCM (1:4), rt, 2 h (61%); e) 25% aq. NH3/MeOH (4:1), rt, 16 

h (71%). 

Synthesis of Acetal-linked Phosphates 8 & 6e. Scheme 3 describes the synthesis of the 

acetal-linked phosphate 8 of indolinylphenyl α-D-mannopyranoside 5.[19] Selective protection 

of the 6-OH of 5 with tert-butyldimethylsilyl, subsequent benzoylation of the remaining 

hydroxy functions (→ 16), and selective cleavage of the silyl group gave precursor 17. The 

introduction of a 6-O-(thiomethyl)methyl group by reaction of 17 with DMSO and acetic 

anhydride under acidic conditions (→ 18) followed by treatment with phosphoric acid and N-

iodosuccinimide yielded phosphate 19. Finally, debenzoylation with NH3/MeOH provided 
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test compound 8. The acetal-linked phosphate 6e was prepared analogously from 3 (see 

Supporting Information). 
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Scheme 3. Reagents and conditions: a) i. TBSCl, cat. DMAP, pyr, rt, overnight, ii. BzCl, rt, 2 h, (quant.); b) 1 

M H2SO4/MeOH, rt, 1.5 h (73%); c) DMSO/Ac2O/HOAc, rt, overnight (74%); d) H3PO4/NIS/THF, 0 °C to rt, 1 

h (67%); e) 25% aq. NH3/MeOH/DCM (8:5:4), rt, overnight (41%). 

Pharmacokinetic Evaluation. Thermodynamic solubilities of the phosphate prodrug were 

determined in phosphate buffer (50 mM, pH 6.5) and confirmed the expected raise in 

aqueous solubility and exceed those of the active principles 3-5 by several orders of 

magnitude (Table 2). For the ALP-mediated hydrolysis of the different phosphate esters 

Caco-2 cells were used, which express the enzyme on the apical brush border surface of the 

confluent cell monolayer.[47] Prodrugs 6a-e, 7a-d and 8, dissolved in Dulbecco’s Modified 

Eagle’s Medium (62.5 µM), were applied into the apical compartment of the Caco-2 cell 

monolayer and their concentrations were monitored by LC-MS for a period of 60 min. The 

experimental half-life (t1/2) was calculated from the percentage of remaining prodrug vs. 

incubation time. (Table 2). 
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Table 2. Aqueous solubility and Caco-2 phosphatase-mediated hydrolysis (t1/2) of the prodrugs 6a-6e, 7a-7d, 8, 

and their active compound 3-5, respectively.  

Cpd Solubility 
[µg/ml]  t1/2 [min] Cpd Solubility 

[µg/ml]  t1/2 [min] 

3 21 --- 6e >3000 8.7 

4 172 --- 7a >3000 13 

5 24 --- 7b >3000 12 

6a >3000 12 7c >3000 43 

6b >3000 13 7d >3000 48 

6c 2703 >60 8 >3000 11 

6d >3000 >60    

 

 

 
Figure 2. Decomposition of phosphomonoester and phosphonooxymethyl ether prodrugs in the apical Caco-2 

cell compartment: (a) 6a-e, 8; (b) 7a-d. Prodrugs dissolved in Dulbecco’s Modified Eagle’s Medium (62.5 µM) 

were given into the apical chamber and the concentrations of unchanged prodrug were monitored by LC-MS. 

As visualized in Figure 2, the prodrugs showed varying propensity to dephosphorylation, 

depending on the position of the promoiety. The 2- and 3-phosphate esters 6a, 6b, 7a, and 7b 

were rapidly hydrolyzed, whereas the 4- and 6-phosphate esters 6c, 6d, 7c, and 7d were more 

stable and showed t1/2 of more than 40 min. This high stability is probably due to steric 

reasons, i.e. hindered accessibility of the ester bonds in the C4 and C6-position by the 

nucleophile within the active site of the ALP.[45,48,49] Actually, exposing the phosphate 

promoiety in C6 by introduction of an acetal linker to form a phosphonooxymethyl ether (→ 

6e, 8) markedly increased its susceptibility to ALP-mediated cleavage (t1/2 = 8.7 min and 11 

min, respectively). 

Due to their high propensity to ALP-mediated hydrolysis, the phosphate esters 6a, 6b, 7a, 7b, 

and 8 were almost entirely converted to parent drug within 60 min. The parent compounds on 
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their part slowly permeated the Caco-2 cell monolayer. As an example, Figure 3a depicts the 

concentrations of prodrug 7b and active principal 4 in the apical and basal chamber 60 min 

after application of prodrug on the apical side. When applied to the basal chamber of the 

Caco-2 system, the prodrug concentrations remained at a high level, due to the lack of ALP 

on the basal enterocyte membrane[47] and high chemical stability of the phosphate ester bond 

under the chosen assay conditions (Figure 3b). Irrespective of dosing the prodrugs on the 

apical or basal side, it could not be detected in the receiver compartments, which corroborates 

the poor membrane permeability of the polar phosphate ester.  

 

 
Figure 3. Conversion of prodrug 7b to the parent compound 4 in a Caco-2 cell monolayer model within 60 min 

of incubation. A prodrug solution (62.5 µM) was applied either into the apical (a) or basal (b) chamber. The 

columns represent the concentrations of prodrug and parent compound in the apical and basal chambers 60 min 

after initiation of the experiment. 

Chemical stability under different pH conditions and stability against degradation by 

digestive enzymes were furthermore assessed by incubating the prodrugs 7a, 7c, and 7d with 

simulated gastric and intestinal fluids.[50,51] All tested compounds proved stable under the 

chosen conditions (see supporting information). We therefore expect, that the phosphates 

should only be cleaved by the ALP in the intestine. 

For proving the benefits of high solubility provided by the promoiety on parent compound 

absorption, we applied in a next step the most labile prodrugs 6e and 8 into the apical 

chambers of the Caco-2 system at concentrations exceeding the parent drugs’ equilibrium 

solubility and monitored the accumulation of 3 and 5 on the basal side of the cell monolayer. 

Figures 4a and 4b summarize the concentrations of parent compound in the basal receiver 
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chambers 60 min after apical application of the antagonists 3 and 5 at 62.5 µM (equivalent to 

their aqueous solubility) as well as the prodrugs 6e and 8 at concentrations ranging from 100 

to 400 µM. In fact, dosing the parent compounds at 62.5 µM or the respective prodrugs at 

100 µM led to similar receiver concentrations – in the former case due to antagonist 

permeating through the cell monolayer, in the latter case as a result of ALP-mediated 

hydrolysis (i.e. conversion of the prodrug to the antagonist) and subsequent permeation. 

Raising the prodrug doses to 200 µM or 400 µM markedly increased the apparent flux. In the 

case of 6e, the receiver concentration of 3 rose proportionally to the amount of applied 

prodrug and did not display saturation kinetics.[52] Indeed, in a bi-directional Caco-2 

experiments, antagonist 3 displayed a low efflux ratio (b→a/a→b = 1.9, Table 1) suggesting 

a major contribution of non-saturable, passive diffusion and a minor contribution of 

saturable, active efflux to the net absorptive flux. By contrast, prodrug 8 dosed at 400 µM 

induced about tenfold higher receiver concentrations of parent compound 5 than the same 

prodrug applied at 100 µM. Obviously, the highly concentrated, supersaturated antagonist 

solution upon dephosphorylation promoted the diffusion through the cell monolayer. 

Moreover, the high concentrations saturated the strong transporter mediated efflux of 

compound 5 (b→a/a→b = 14, Table 1). 

For prodrug 7b, similar results were observed even though the parent compound 4 – an efflux 

transporter substrate as well (b→a/a→b = 10) – is markedly more soluble than the 

antagonists 3 and 5 (Figure 4c). Overall, these observations predict a significant increase in 

intestinal uptake of the antagonists 3-5 due to the highly polar phosphate promoiety. 
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Figure 4. Accumulation of parent compound (a) 3, (b) 5, and (c) 4 in the basal receiver chamber of a Caco-2 

cell system 60 min after applying (a) parent compound 3 or prodrug 6e, (b) parent compound 5 or prodrug 8, 

and (c) parent compound 4 or prodrug 7b into the apical chamber. The parent compounds were dosed at a 

concentration of 62.5 µM, which corresponds to approx. the aqueous solubility of the 3 and 5, the phosphate 

prodrugs were dosed at three different concentrations ranging from 100 µM to 400 µM. 

In vivo pharmacokinetic studies. Since dissolution, hydrolysis of the phosphate promoiety, 

and membrane permeation of the active principle were successfully tested in vitro, the 

prodrugs 7b, 7c, and 8 were selected for pharmacokinetic studies in the mouse model. All 

three compounds were administered per os at a dose of 10 mg/kg. As all prodrugs are highly 

soluble in aqueous medium (> 3000 µg/ml), they were dissolved and dosed in phosphate 

buffered saline (PBS). The concentrations of prodrug and active principle in plasma and urine 

were monitored for a period of 24 h (Figure 5). The prodrugs 7b, 7c, and 8 could not be 

detected in any of the plasma and urine samples. The concentrations of 4 and 5 in plasma 

were close to the detection limit of the used analytical method and are therefore not shown. 

 

Figure 5. Urine concentration in C3H HeN mice of (a) 4 upon oral administration of 4 and the phosphate 

prodrugs 7b and 7c, (b) 5 upon oral administration of the phosphate prodrug 8.  
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Although the prodrugs 7b and 8 proved similarly prone to ALP-mediated hydrolysis in vitro 

(Table 2), the urine level vs. time profiles summarizing all biopharmaceutical processes upon 

oral single-dose administration (i.e. bioactivation, intestinal uptake, metabolic transformation, 

and renal excretion) differed significantly. Within the first two hours, the levels of 5 in urine 

(Figure 5b) rose to concentrations between 0.6 and 1.4 µg/mL and remained at a plateau 

before rising again to reach maximum concentration (Cmax, 4.5 µg/mL) 3 h post 

administration. Then, they dropped steadily until the end of the observation period. The 

overall amount of compound appearing in urine was approximately 5 % of the given dose. By 

contrast, urine levels of 4 after the administration of 7b peaked 1 h post administration (40.5 

µg/mL) and around 80 % of the orally applied dose appeared in the urine. Given the almost 

identical propensity to ALP-mediated hydrolysis and similarly high solubility of the prodrugs 

7b and 8, the observed differences are rather a consequence of varying physicochemical 

properties of the parent compounds 4 and 5. Indeed, antagonist 5 is supposed to permeate 

biological membranes less easily and to be a stronger substrate of efflux transporters than 

antagonist 4 (Table 1). Moreover, 5 is markedly less soluble in aqueous media. It therefore 

risks precipitating from the supersaturated solution in the intestine upon ALP-mediated 

dephosphorylation. 

Both prodrugs 7b and 8 being rapidly hydrolysed in vitro, we assessed in a further 

experiment the impact of slower ALP-mediated bioactivation on parent compound 

availability in urine. Indeed, we hypothesized that a slower conversion prolongs intestinal 

uptake and compound excretion into urine. This would be an advantage for UTI treatment, as 

the dosing interval and the therapeutic effects might be prolonged. For this purpose, we 

administered prodrug 7c showing in vitro t1/2 of 43 min (Table 2). Figure 5a compares the 

urine concentration profiles of parent compound 4 upon oral single dose administration of the 

prodrugs 7b and 7c (10 mg/kg), and upon oral administration of the parent compound itself 

(1.25 mg/kg).  

After applying 7c, compound 4 reached Cmax (54 µg/mL) after only 20 min – compared to 

40.5 µg/mL after one hour for 7b – and remained at a high level for the next 3 h. Within the 

observation period of 3-24 h, the compound levels upon administration of the two prodrugs 

dropped steadily; however, the concentrations in the experiment with prodrug 7c were about 

three times higher than those reached with 7b. As a consequence, the amount of compound 

appearing in urine corresponds to approx. 95% of the administered dose of 7c, which 

suggests a higher absorption rate than the one of 7b. 
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Against our expectations, Tmax (time when Cmax is observed) of 4 from 7c did not occur 

markedly later than Tmax of 4 from 7b. The observed difference in in vitro t1/2 (approx. 30 

min, see Table 2) was not sufficient to provoke a clear shift. Even slower ALP-mediated 

bioactivation would probably be required for a significant effect. Nonetheless, the higher and 

more constant levels of 4 after application of 7c are advantageous for UTI treatment.  

Overall, 7c increased Cmax of the parent compound in urine by a factor of 16 compared to the 

application of the parent compound 4 itself (from 3.3 µg/ml at 1.5h to 54 µg/ml at 20 min). 

The elimination slopes of all three curves in Figure 6 parallel nicely, reflecting the intrinsic 

pharmacokinetic properties of the parent compound. Nevertheless, the increase in solubility 

using a phosphate prodrug led to a saturation of efflux-transporter in the intestine and 

increased the cumulative amount of parent compound appearing in the urine, which is the 

compartment of action. Bioavailability is exceptionally high and marks a milestone in the 

development of orally available FimH antagonists. 

Summary and Conclusions  

The phosphate prodrug approach applied to previously published FimH antagonists with low 

solubility led to improved in vivo pharmacokinetics. We analyzed the properties of the 

phosphate promoiety in different positions of the mannose ring. When the phosphate ester 

bond was directly linked to position C2 and C3 (→ 6a, 6b, 7a, 7b) of the mannose moiety or 

when an acetal linker at position 6 was used (→ 6e & 8) enzymatic cleavage was fast (t1/2 < 

15 min). In contrast, a phosphate in the 4 or 6-position (→ 7c & 7d) showed an improved 

stability (t1/2  > 40 min). In vivo administration of prodrug 7c exhibited an increased Cmax 

compared to a phosphate prodrug with a fast cleavage (7b, t1/2  < 15 min). A possible reason 

is related to a slower conversion to the active principle, prolonging intestinal uptake and renal 

excretion. Nevertheless, the observed difference of the in vitro t1/2 was not sufficient to 

provoke a clear shift of the PK curve. Moreover, different physicochemical properties 

(solubility and permeability) of the active principle influence the in vivo PK curves. For 

antagonist 5 with an 8-fold lower solubility compared to 4, the risk of precipitation from the 

supersaturated solution in the small intestines has to be considered. With a slower cleavage of 

the phosphate prodrug the oral uptake of FimH antagonist 5 could be improved. Furthermore, 

a high concentration gradient across the Caco-2 cell monolayer promotes the absorptive flux 

and apparently saturates the efflux carrier activity of 6e, 8, and 7b. This observation was 

confirmed in the in vivo PK study in a mouse, where urine levels (Cmax) of the active 
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principle 4 were 16 times higher when the phosphate prodrug 7c was administered instead of 

the active principle 4. However, therapeutic dose of 4 was restricted by its low solubility and 

could only be applied at a dose of 1.25 mg/kg. The introduction of the polar phosphate 

promoiety leads to a sufficient solubility for a therapeutic dose of 10 mg/kg. Availability in 

urine of more than 80% of the administered dose illustrates the high potential of phosphate 

prodrugs for optimizing the pharmacokinetic profile of low soluble FimH antagonists.  

Experimental Section 

Synthesis 

General Methods. NMR spectra were recorded on a Bruker Avance DMX-500 (500.1 MHz) 

spectrometer. Assignment of 1H and 13C NMR spectra was achieved using 2D methods (COSY, 

HSQC). Chemical shifts are expressed in ppm using residual CHCl3 or MeOH as references. Optical 

rotations were measured with a PerkinElmer Polarimeter 341. Electrospray ionization mass 

spectrometry (ESI-MS) data were obtained on a Waters Micromass ZQ instrument. Microwave-

assisted reactions were carried out with a CEM Discover and Explorer. Reactions were monitored by 

TLC using glass plates coated with silica gel 60 F254 (Merck) and visualized by UV light and/or by 

charring with a molybdate solution (0.02 M solution of ammonium cerium sulfate dihydrate and 

ammonium molybdate tetrahydrate in aqueous 10% H2SO4). Medium pressure chromatography 

(MPLC) separations were carried out on a CombiFlash Companion or Rf from Teledyne Isco 

equipped with RediSep normal-phase or RP-18 reversed-phase flash columns. Commercially available 

reagents were purchased from Fluka, Aldrich, or Alfa Aesar (Germany). Solvents were purchased 

from Sigma–Aldrich (Buchs, Switzerland) or Acros Organics (Geel, Belgium) and were dried prior to 

use where indicated. MeOH was dried by reflux with sodium methoxide and distilled and stored under 

argon atmosphere. DCM and MeCN were dried by filtration over Al2O3 (Fluka, type 5016 A basic) 

and stored over molecular sieves under argon. Molecular sieves (4 Å) were activated in vacuo at 

300°C for 0.5 h before use. 

General procedure for phosphorylation. To an ice-cooled solution (0 °C) of protected mannoside 

(1 eq) and 1,2,4-triazole (4 eq) in dry MeCN was added dibenzyl N,N-diisopropylphosphoramidite or 

bis[2-(trimethylsilyl)ethyl] N,N-diisopropylphosphoramidite (2 eq) and the mixture was stirred for 30 

min at 0 °C and then overnight at rt. Then, 70% aq. tert-butylhydroperoxid (4 eq) was added and the 

solution was stirred for 1 h. The reaction was quenched with 1 M aq. Na2S2O3 and 1 M aq. NaHCO3 

and the mixture was extracted twice with DCM. The combined organic layers were dried over 

Na2SO4, filtered and the solvents removed in vacuo. The residue was purified by MPLC on silica gel 

(petroleum ether/EtOAc) to yield the phosphorylated compounds. 
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Biphenyl 4,6-O-benzylidene-α-D-mannopyranoside (9). To a mixture of biphenyl α-D-

mannopyranoside (1)[14,18] (1.16 g, 3.51 mmol) and benzaldehyde dimethyl acetal (1.58 mL, 10.5 

mmol) in dry MeCN/DMF (10 mL/1 mL) was added p-toluenesulfonic acid (40 mg). The reaction 

mixture was stirred at 80 °C overnight and then neutralized with satd. aq. NaHCO3. Then the mixture 

was diluted with DCM (20 mL) and washed with water (2 × 10 mL) and brine (10 mL). The organic 

layer was dried over Na2SO4 and concentrated. The residue was purified by MPLC on silica 

(DCM/MeOH, 20:1-9:1) to afford 9 (1.03 g, 70%) as a white solid. [α]D
20 +163.1 (c 1.09, 

CHCl3/MeOH, 1:1); 1H NMR (CDCl3, 500 MHz): δ = 3.83 (t, J = 10.0 Hz, 1H, H-6a), 3.99 (td, J = 

4.5, 9.5 Hz, 1H, H-5), 4.04 (t, J = 9.5 Hz, 1H, H-4), 4.22 (dd, J = 5.0, 10.0 Hz, 1H, H-6b), 4.28 (m, 

1H, H-2), 4.33 (dd, J = 3.5, 9.5 Hz, 1H, H-3), 5.60 (s, 1H, PhCH), 5.66 (s, 1H, H-1), 7.13 (m, 2H, Ar-

H), 7.31-7.50 (m, 8H, Ar-H), 7.55 (m, 4H, Ar-H); 13C NMR (CDCl3, 126 MHz): δ = 63.8 (C-5), 68.6 

(C-3), 68.7 (C-6), 70.9 (C-2), 78.7 (C-4), 98.1 (C-1), 102.3 (PhCH), 116.6, 126.3, 126.8, 127.0, 128.3, 

128.4, 128.8, 129.0, 129.3, 129.7, 134.5, 135.7, 137.1, 140.5, 155.4 (18C, Ar-C); ESI-MS: m/z: Calcd 

for C25H24NaO6 [M+Na]+: 443.15, found: 443.12. 

Biphenyl 3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (10). A suspension of 9 (380 mg, 

0.900 mmol) and dibutyl tinoxide (247 mg, 0.990 mmol) in dry toluene (6 mL) was refluxed at 135 

°C for 3 h. The mixture was concentrated to dryness and tetrabutylammonium bromide (320 mg, 

0.990 mmol) and benzyl bromide (0.13 mL, 1.08 mmol) in dry toluene (6 mL) were added. The 

reaction mixture was stirred at 115 °C overnight, the solvent was removed under reduced pressure and 

the residue was purified by MPLC on silica (petroleum ether/EtOAc, 6:1-4:1) to give 10 (370 mg, 

80%) as a white solid. [α]D
20 +139.6 (c 2.66, CHCl3); 1H NMR (CDCl3, 500 MHz): δ = 3.87 (t, J = 

10.5 Hz, 1H, H-6a), 4.01 (td, J = 5.0, 10.0 Hz, 1H, H-5), 4.17 (dd, J = 3.0, 9.5 Hz, 1H, H-3), 4.20-

4.26 (m, 2H, H-6b, H-4), 4.31 (dd, J = 1.5, 3.0 Hz, 1H, H-2), 4.82 (d, J = 12.0 Hz, 1H, OCH2Ph), 4.97 

(d, J = 12.0 Hz, 1H, OCH2Ph), 5.66 (s, 1H, PhCH), 5.69 (d, J = 1.0 Hz, 1H, H-1), 7.13 (m, 2H, Ar-H), 

7.37-7.46 (m, 10H, Ar-H), 7.51-7.58 (m, 7H, Ar-H); 13C NMR (CDCl3, 126 MHz): δ = 64.0 (C-5), 

68.7 (C-6), 70.0 (C-2), 73.3 (OCH2Ph), 75.4 (C-3), 78.7 (C-4), 97.9 (C-1), 101.7 (PhCH), 116.7, 

126.1, 126.8, 127.8, 127.0, 127.8, 128.0, 128.2, 128.3, 128.5, 128.7, 128.8, 128.9, 129.0, 129.7, 

134.5, 135.7, 137.4, 137.9, 140.5, 155.3 (24C, Ar-C); ESI-MS: m/z: Calcd for C32H30NaO6 [M+Na]+: 

533.19, found: 533.17. 

Biphenyl 2-O-dibenzylphosphoryl-3-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (11). 

According to the general procedure, compound 10 (194 mg, 0.250 mmol) was reacted with 1,2,4-

triazole (69.5 mg, 1.00 mmol) and dibenzyl N,N-diisopropylphosphoramidite (90%, 187 µL, 0.500 

mmol) in MeCN (3.0 mL), followed by treatment with 70% aq. tert-butylhydroperoxide (150 µL) to 

yield 11 (120 mg, 62%) as a white solid. [α]D
20 +55.3 (c 0.38, DCM); 1H NMR (CDCl3, 500 MHz): δ 

= 3.81 (t, J = 10.5 Hz, 1H, H-6a), 3.99 (td, J = 5.0, 10.0 Hz, 1H, H-5), 4.11 (t, J = 10.0 Hz, 1H, H-4), 
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4.22 (m, 2H, H-3, H-6b), 4.85 (m, 2H, OCH2Ph), 5.30 (m, 1H, H-2), 5.08-5.12 (m, 4H, OCH2Ph), 

5.62 (m, 2H, H-1, PhCH), 7.03 (m, 2H, Ar-H), 7.26-7.58 (m, 27H, Ar-H); 13C NMR (CDCl3, 126 

MHz): δ = 64.6 (C-5), 68.5 (C-6), 69.5 (d, J = 6 Hz, OCH2Ph), 69.6 (d, J = 6 Hz, OCH2Ph), 72.8 

(OCH2Ph), 73.9 (d, J = 5 Hz, C-3), 74.6 (d, J = 6 Hz, C-2), 78.2 (C-4), 97.2 (d, J = 3 Hz, C-1), 101.6 

(PhCH), 116.8, 126.0, 126.8, 126.9, 127.0, 127.6, 127.7, 127.74, 127.85, 127.92, 128.19, 128.22, 

128.3, 128.45, 128.52, 128.6, 128.7, 128.9, 135.66, 135.71, 135.76, 135.8, 135.9, 137.4, 137.5, 138.0, 

140.5, 155.0 (36C, Ar-C); ESI-MS: m/z: Calcd for C46H44O9P [M+H]+: 771.27, found: 771.37. 

Biphenyl 2-O-phosphoryl-α-D-mannopyranoside diammonium salt (6a). Hydrogenolysis of 

compound 11 (100 mg, 0.129 mmol) was conducted in a Parr shaker with 10% Pd(OH)2/C (12 mg) 

and a catalytic amount of HOAc in EtOAc (6.0 mL) under hydrogen (4 bar) at rt overnight. Then, the 

reaction suspension was filtered through celite and the filtrate was concentrated in vacuo. The residue 

was stirred in 25% aq. NH3 (4 mL) and MeOH (1 mL) overnight. Then, the solvents were removed 

under reduced pressure and the residue was purified by MPLC on silica (DCM/MeOH/H2O, 6:4:0.6) 

to give 6a (26.0 mg, 45%) as a white solid. [α]D
20 +66.7 (c 0.12, H2O); 1H NMR (D2O, 500 MHz): δ = 

3.77-3.82 (m, 3H, H-5, H-6), 3.87 (t, J = 10.0 Hz, 1H, H-4), 4.14 (ddd, J = 2.0, 3.0, 10.0 Hz, 1H, H-

3), 4.62 (ddd, J = 2.0, 3.0, 8.5 Hz, 1H, H-2), 5.89 (d, J = 1.5 Hz, 1H, H-1), 7.31 (m, 2H, Ar-H), 7.44 

(m, 1H, Ar-H), 7.55 (t, J = 7.5 Hz, 2H, Ar-H), 7.71 (m, 4H, Ar-H); 13C NMR (D2O, 126 MHz): δ = 

60.5 (C-6), 66.6 (C-4), 70.1 (d, J = 5 Hz, C-3), 73.5 (C-5), 73.6 (d, J = 5 Hz, C-2), 97.0 (d, J = 3 Hz, 

C-1), 117.2, 117.6, 126.7, 127.4, 128.0, 128.2, 129.1, 135.3, 140.0, 155.0 (12C, Ar-C); ESI-MS: m/z: 

Calcd for C18H20O9P [M-2NH4+H]-: 411.08, found: 411.06. 

4'-(4,6-O-Benzylidene-α-D-mannopyranosyloxy)-3'-chloro-biphenyl-4-carbonitrile (12). To a 

solution of 4[37] (500 mg, 1.28 mmol) in anhydrous DMF (20 mL) were added benzaldehyde dimethyl 

acetal (575 µL, 3.83 mmol) and p-toluenesulfonic acid (20 mg). The mixture was stirred at 50 °C 

overnight. Then, the reaction mixture was neutralized with satd. aq. NaHCO3 (10 mL), diluted with 

DCM (30 mL), and washed with water (3 × 10 mL) and brine (10 mL). The organic layer was dried 

over Na2SO4, filtered and the solvents removed in vacuo. The residue was purified by MPLC on silica 

(DCM/MeOH, 1:0-5:1, +0.5% NEt3) to yield 12 (132 mg, 22%). [α]D
20 +62.3 (c 0.59, CHCl3/MeOH, 

1:1); 1H NMR (500 MHz, CDCl3): δ = 3.76 (t, J = 10.2 Hz, 1H, H-6a), 3.91 (td, J = 4.8, 9.8 Hz, 1H, 

H-5), 3.99 (t, J = 9.4 Hz, 1H, H-4), 4.14 (dd, J = 4.8, 10.3 Hz, 1H, H-6a), 4.28-4.33 (m, 2H, H-2, H-

3), 5.53 (s, 1H, PhCH), 5.62 (s, 1H, H-1), 7.19 (m, 1H, Ar-H), 7.29-7.31 (m, 3H, Ar-H), 7.38 (m, 1H, 

Ar-H), 7.40-7.44 (m, 2H, Ar-H), 7.54-7.58 (m, 3H, Ar-H), 7.63-7.67 (m, 2H, Ar-H); 13C NMR (126 

MHz, CDCl3): δ = 64.2 (C-5), 68.5, 70.6 (3C, C-2, C-3, C-6), 78.4 (C-4), 98.7 (C-1), 102.4 (PhCH), 

111.2, 116.8, 118.7, 124.6, 126.2, 126.6, 127.4, 128.4, 132.5, 143.7, 151.8 (19 C, 18 Ar-C, CN); ESI-

MS: m/z: Calcd for C33H26ClNNaO7 [M+Na]+: 502.90, found: 502.04. 

4'-(3-O-Benzoyl-4,6-O-benzylidene-α-D-mannopyranosyloxy)-3'-chloro-biphenyl-4-carbonitrile 
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(13). To a solution of 12 (131 mg, 0.275 µmol) in DCM/pyridine (6 mL, 5:1) was added dropwise 

over 30 min a 0.1 M benzoyl chloride solution in dry DCM (2.8 mL, 0.280 mmol) at 0 °C under 

argon. The mixture was stirred another 30 min at 0 °C, then the ice-bath was removed and stirring 

continued for 2 h at rt. Then, the mixture was diluted with DCM (10 mL) and washed with 0.1 M aq. 

HCl (5 mL) and satd. aq. NaHCO3 (10 mL). The organic layer was dried with Na2SO4, filtered and 

concentrated. The residue was purified by MPLC on silica (petroleum ether/EtOAc, +0.5% NEt3) to 

yield 13 (96.8 mg, 60%). [α]D
20 +113.8 (c 1.02, DCM); 1H NMR (500 MHz, CDCl3): δ = 3.91 (t, J = 

10.2 Hz, 1H, H-6a), 4.17 (td, J = 4.9, 9.7 Hz, 1H, H-5), 4.24 (dd, J = 4.8, 10.2 Hz, 1H, H-6b), 4.45 (t, 

J = 9.9 Hz, 1H, H-4), 4.65 (dd, J = 1.6, 3.2 Hz, 1H, H-2), 5.64 (s, 1H, PhCH), 5.70 (d, J = 1.2 Hz, 1H, 

H-1), 7.25-7.34 (m, 4H, Ar-H), 7.37-7.47 (m, 5H, Ar-H), 7.51-7.60 (m, 4H, Ar-H), 7.51-7.60 (m, 2H, 

Ar-H), 8.06-8.11 (m, 2H, Ar-H); 13C NMR (126 MHz, CDCl3): δ = 65.1 (C-5), 68.4 (C-6), 69.1 (C-2), 

71.2 (C-3), 75.6 (C-4), 99.1 (C-1), 101.8 (PhCH), 110.8, 116.9, 118.6, 124.8, 126.0, 126.3, 127.2, 

128.1, 128.3, 132.6, 133.2, 136.9, 143.5, 151.6 (25C, 24 Ar-C, CN), 165.7 (CO); IR (KBr): ν = 3437 

(vs, OH), 2227 (m, CN), 1721 (vs, C=O) cm-1; ESI-MS: m/z: Calcd for C33H26ClNNaO7 [M+Na]+: 

606.13, found: 606.11. 

4'-(3-O-Benzoyl-4,6-O-benzylidene-2-O-bis[2-(trimethylsilyl)ethoxy]phosphoryl-α-D-

mannopyranosyloxy)-3'-chloro-biphenyl-4-carbonitrile (14). According to the general procedure, 

compound 13 (96.8 mg, 0.166 mmol) was reacted with 1,2,4-triazole (45.8 mg, 0.663 mmol) and 

bis[2-(trimethylsilyl)ethyl] N,N-diisopropylphosphoramidite (136 µL, 0.331 mmol) in MeCN (3.0 

mL), followed by treatment with 70% aq. tert-butylhydroperoxide (91 µL, 0.663 mmol) to yield 14 

(79.6 mg, 55%) as a 4:1-mixture of 2- and 3-phosphorylated isomers. 1H NMR (500 MHz, CDCl3): δ 

= -0.09, -0.02 (2s, 18H, 2 Si(CH3)3), 0.92-01.06 (m, 4H, 2 SiCH2), 3.87 (td, J = 4.5, 10.1 Hz, 1H, H-

6a), 4.12 (m, 6H, H-5, H-6b, 2 OCH2), 4.36 (t, J = 9.9 Hz, 1H, H-4), 5.17 (ddd, J = 1.7, 3.1, 9.1 Hz, 

1H, H-2), 5.63 (s, 1H, PhCH), 5.81 (m, 1H, H-3), 5.84 (d, J = 1.5 Hz, 1H, H-1), 7.22-7.33 (m, 4H, Ar-

H), 7.37-7.45 (m, 4H, Ar-H), 7.46-7.56 (m, 2H, Ar-H), 7.57-7.64 (m, 3H, Ar-H), 7.66-7.71 (m, 2H, 

Ar-H), 8.08-8.14 (m, 2H, Ar-H); 13C NMR (126 MHz, CDCl3): δ = -1.7, -1.6 (6C, Si(CH3)3), 19.4 (d, 

J = 5 Hz, 2C, 2 SiCH2), 65.2 (C-5), 66.9 (t, J = 6 Hz, 2C, 2 OCH2), 68.4 (C-6), 69.1 (d, J = 5 Hz, C-

3), 73.2 (d, J = 5 Hz, C-2), 75.4 (C-4), 97.8 (d, J = 2 Hz, C-1), 101.9 (PhCH), 111.1, 117.1, 118.6, 

125.0, 126.2, 126.4, 127.3, 128.2, 128.3, 128.6, 129.0, 129.7, 129.9, 130.0, 132.6, 133.2, 134.9, 

136.8, 143.5, 151.5 (25C, 24 Ar-C, CN), 165.6 (CO); ESI-MS: m/z: Calcd for C49H67ClN2O10PSi2 

[M+NEt3+H]+: 965.38, found: 965.53. 

4'-(3-O-Benzoyl-2-O-phosphoryl-α-D-mannopyranosyloxy)-3'-chloro-biphenyl-4-carbonitrile 

disodium salt (15). A solution of 14 (79.6 mg, 0.275 mmol) in dry DCM (1.5 mL) was treated with 

TFA (150 µL) for 1 h at rt under argon. Then, a drop of water was added and stirring continued for 30 

min. The solvents were removed in vacuo, the residue was dissolved in H2O (1 mL) containing a drop 

of 1 M aq. NaOH and purified by MPLC on RP-18 (H2O/MeOH, 95:5-4:1) to yield 15 (34.7 mg, 
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61%) as a 4:1-mixture of 2- and 3-phosphate. 1H NMR (500 MHz, CD3OD): δ = 3.78-3.90 (m, 3H, H-

5, H-6), 4.20 (t, J = 9.9 Hz, 1H, H-4), 5.01 (ddd, J = 2.0, 3.1, 9.4 Hz, 1H, H-2), 5.60-5.65 (td, J = 2.6, 

10.1 Hz, 1H, H-3), 5.91 (d, J = 1.6 Hz, 1H, H-1), 7.45-7.53 (m, 3H, Ar-H), 7.57-7.65 (m, 2H, Ar-H), 

7.75-7.81 (m, 5H, Ar-H), 8.15-8.18 (m, 2H, Ar-H); 13C NMR (126 MHz, CD3OD): δ = 62.2 (C-6), 

65.3 (C-4), 73.9 (dd, J = 5.8 Hz, 2C, C-2, C-3), 76.3 (C-5), 98.8 (d, J = 2 Hz, C-1), 112.0, 118.8, 

119.7, 125.8, 127.9, 131.0, 133.9, 136.0, 145.0, 153.2 (19C, 18 Ar-C, CN), 167.8 (CO); ESI-MS: m/z: 

Calcd for C26H22ClNO10P [M-2Na+H]-: 574.07, found: 574.21. 

3'-Chloro-4'-(2-O-phosphoryl-α-D-mannopyranosyloxy)-biphenyl-4-carbonitrile disodium salt 

(7a). Compound 15 (34.7 mg, 56.0 µmol) was dissolved in MeOH (0.25 mL) and 25% aq. NH3 (1 

mL). The mixture was stirred for 16 h at rt. The solvents were removed in vacuo, the residue was 

dissolved in H2O (0.5 mL) containing a drop of 1 M aq. NaOH and purified by MPLC on RP-18 

(H2O/MeOH) to yield pure 2-phosphate 7a (20.4 mg, 71%) as the sodium salt. [α]D
20 +17.9 (c 0.78, 

H2O); 1H NMR (500 MHz, D2O): δ = 3.70-3.82 (m, 3H, H-5, H-6), 3.92 (t, J = 9.8 Hz, 1H, H-4), 4.13 

(dd, J = 3.0, 9.7 Hz, 1H, H-3), 4.66 (dt, J = 2.4, 8.3 Hz, 1H, H-2), 5.97 (d, J = 1.2 Hz, 1H, H-1), 7.40 

(d, J = 8.7 Hz, 1H, Ar-H), 7.45-7.53 (m, 4H, Ar-H), 7.66 (d, J = 8.4 Hz, 2H, Ar-H); 13C NMR (126 

MHz, D2O): δ = 62.0 (C-6), 68.6 (C-4), 72.3 (d, J = 3 Hz, C-3), 73.8 (d, J = 4 Hz, C-2), 99.2 (d, J = 5 

Hz, C-1), 111.0, 118.9, 121.2, 125.5, 128.2, 128.4, 130.1, 134.4, 135.4, 144.7, 152.5 (13C, 12 Ar-C, 

CN); IR (KBr): ν = 3436 (vs, OH), 2230 (w, CN) cm-1; ESI-MS: m/z: Calcd for C19H18ClNO9P [M-

2Na+H]-: 470.04, found: 469.96. 

4-(5-Nitroindolin-1-yl)phenyl 2,3,4-tri-O-benzoyl-6-O-(tert-butylsilyldimethyl)-α-D-

mannopyranoside (16). To a solution of 5[19] (709 mg, 1.69 mmol) in pyridine were added tert-

butyldimethylsilyl chloride (319 mg, 2.12 mmol) and DMAP (20.6 mg) and the mixture was stirred at 

rt overnight. Then, a solution of benzoyl chloride (0.98 mL, 8.45 mmol) in pyridine (2.0 mL) was 

added and the mixture was stirred at rt for 2 h. The mixture was diluted with DCM (30 mL) and 

subsequently washed with 0.1 M aq. HCl (10 mL) and satd. aq. NaHCO3 (10 mL). The organic layer 

was dried over Na2SO4, filtered and the solvent removed in vacuo. The residue was purified by MPLC 

on silica (petroleum ether/EtOAc, 9:1-7:3) to yield crude 16 (1.43 g, quant.) as a yellow solid, which 

was used in the next step without further purification. 1H NMR (CDCl3, 500 MHz): δ = -0.01 (s, 3H, 

Si(CH3)2), 0.00 (s, 3H, Si(CH3)2), 0.87 (s, 9H, C(CH3)3), 3.22 (t, J = 8.5 Hz, 2H, CH2), 3.83 (dd, J = 

2.3, 11.5 Hz, 1H, H-6a), 3.88 (dd, J = 4.7, 11.5 Hz, 1H, H-6b), 4.10 (t, J = 8.7 Hz, 2H, NCH2), 4.43 

(m, 1H, H-5), 5.77 (d, J = 1.8 Hz, 1H, H-1), 5.87 (m, 1H, H-2), 6.03-6.15 (m, 2H, H-3, H-4), 6.77 (d, 

J = 8.9 Hz, 1H, Ar-H), 7.22-7.31 (m, 6H, Ar-H), 7.38 (t, J = 7.8 Hz, 2H, Ar-H), 7.41-7.55 (m, 5H, Ar-

H), 7.60-7.67 (m, 1H, Ar-H), 7.88 (dd, J = 1.2, 8.3 Hz, 2H, Ar-H), 7.94-8.01 (m, 3H, Ar-H), 8.03 (dd, 

J = 2.3, 8.9 Hz, 1H, Ar-H), 8.14 (dd, J = 1.2, 8.3 Hz, 1H, Ar-H); 13C NMR (CDCl3, 126 MHz): δ = -

5.51, -5.50 (Si(CH3)2), 25.8 (3C, C(CH3)3), 27.1 (CH2), 53.7 (NCH2), 62.1 (C-6), 66.6 (C-3), 70.3, 

70.4 (C-2, C-4), 72.3 (C-5), 96.4 (C-1), 105.3, 118.0, 121.1, 122.0, 126.1, 128.3, 128.4, 128.43, 
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128.6, 129.1, 129.2, 129.3, 129.7, 129.8, 130.0, 131.0, 133.2, 133.3, 133.6, 136.8, 139.1, 152.8, 153.8 

(30C, Ar-C), 165.3, 165.6, 165.7 (3 CO); ESI-MS: m/z: Calcd for C47H48N2NaO11Si [M+Na]+: 867.29, 

found: 867.25. 

4-(5-Nitroindolin-1-yl)phenyl 2,3,4-tri-O-benzoyl-α-D-mannopyranoside (17). A solution of 16 

(1.43 g, 1.69 mmol) in DCM/MeOH (16 mL, 1:1) was treated with 1 M H2SO4 in MeOH (1.6 mL) for 

1.5 h at rt. The reaction mixture was neutralized with NEt3 and the solvents were removed in vacuo. 

The residue was purified by MPLC on silica (petroleum ether/EtOAc, 3:1-3:2) to yield 17 (900 mg, 

73%). 1H NMR (CDCl3, 500 MHz): δ = 3.22 (t, J = 8.6 Hz, 2H, CH2), 3.77 (dd, J = 3.3, 13.0 Hz, 1H, 

H-6a), 3.84 (dd, J = 1.8, 13.0 Hz, 1H, H-6b), 4.11 (t, J = 9.4 Hz, 2H, NCH2), 4.20 (m, 1H, H-5), 5.83 

(d, J = 1.6 Hz, 1H, H-1), 5.88 (dd, J = 1.9, 3.3 Hz, 1H, H-2), 5.96 (t, J = 10.1 Hz, 1H, H-4), 6.22 (dd, 

J = 3.4, 10.2 Hz, 1H, H-3), 6.78 (d, J = 8.9 Hz, 1H, Ar-H), 7.21-7.34 (m, 6H, Ar-H), 7.37-7.43 (m, 

3H, Ar-H), 7.45 (t, J = 7.4 Hz, 1H, Ar-H), 7.50-7.57 (m, 3H, Ar-H), 7.65 (t, J = 7.5 Hz, 1H, Ar-H), 

7.84-7.89 (m, 2H, Ar-H), 7.97-8.02 (m, 3H, Ar-H), 8.04 (dd, J = 2.3, 8.9 Hz, 1H, Ar-H), 8.12-8.16 

(m, 2H, Ar-H); 13C NMR (CDCl3, 126 MHz): δ = 27.1 (CH2), 53.7 (NCH2), 61.1 (C-6), 67.0 (C-4), 

69.3 (C-3), 70.4 (C-2), 71.8 (C-5), 96.4 (C-1), 105.4, 117.6, 121.1, 122.0, 126.1, 127.0, 128.3, 128.4, 

128.5, 128.6, 128.7, 129.0, 129.03, 129.5, 129.7, 129.9, 130.0, 131.1, 133.4, 133.77, 133.8, 137.0, 

139.2, 152.5, 153.6 (30C, Ar-C), 165.5, 165.6, 166.6 (3 CO); ESI-MS: m/z: Calcd for C41H34N2NaO11 

[M+Na]+: 753.21, found: 753.33. 

4-(5-Nitroindolin-1-yl)phenyl 2,3,4-tri-O-benzoyl-6-O-(methylthio)methyl α-D-manno-

pyranoside (18). Degassed DMSO (2.5 mL) was added to a degassed mixture of 27 (200 mg, 0.273 

mmol) in Ac2O (1.65 mL) and HOAc (0.5 mL). The mixture was stirred at rt overnight, then diluted 

with EtOAc (20 mL), and subsequently washed with satd. aq. NaHCO3 (2 × 10 mL), H2O (2 × 10 mL) 

and brine (10 mL). The organic layer was dried over Na2SO4 and concentrated. The residue was 

purified by MPLC on silica (petroleum ether/EtOAc, 3:1-7:3) to yield 18 (160 mg, 74%). 1H NMR 

(CDCl3, 500 MHz): δ = 2.08 (s, 3H, CH3), 3.23 (t, J = 8.6 Hz, 2H, CH2), 3.72 (dd, J = 2.4, 11.1 Hz, 

1H, H-6a), 3.89 (dd, J = 4.5, 11.2 Hz, 1H, H-6b), 4.12 (m, 2H, NCH2), 4.43 (m, 1H, H-5), 4.61, 4.72 

(A, B of ABX, J = 11.6 Hz, 2H, CH2), 5.79 (d, J = 1.6 Hz, 1H, H-1), 5.86 (m, 1H, H-2), 6.03-6.11 (m, 

2H, H-3, H-4), 6.78 (d, J = 8.9 Hz, 1H, Ar-H), 7.22-7.33 (m, 7H, Ar-H), 7.36-7.42 (m, 2H, Ar-H), 

7.46 (t, J = 7.4 Hz, 1H, Ar-H), 7.48-7.56 (m, 3H, Ar-H), 7.64 (t, J = 7.5 Hz, 1H, Ar-H), 7.85-7.91 (m, 

2H, Ar-H), 7.96-8.01 (m, 3H, Ar-H), 8.04 (dd, J = 2.2, 8.8 Hz, 1H, Ar-H), 8.10-8.17 (m, 2H, Ar-H); 
13C NMR (CDCl3, 126 MHz): δ = 13.9 (CH3), 27.1 (CH2), 53.7 (NCH2), 66.3 (C-6), 67.8 (C-4), 70.1 

(C-3), 70.4 (C-2), 71.7 (C-5), 75.9 (CH2), 96.5 (C-1), 105.4, 117.9, 121.1, 122.0, 126.1, 128.4, 128.5, 

128.7, 129.0, 129.2, 129.7, 129.8, 131.0, 131.1, 133.3, 133.4, 133.7, 137.0, 139.2, 152.7, 153.7 (30C, 

Ar-C), 165.5, 165.60, 165.62 (3 CO); ESI-MS: m/z: Calcd for C43H38N2NaO11S [M+Na]+: 813.21, 

found: 813.32. 
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4-(5-Nitroindolin-1-yl)phenyl 2,3,4-tri-O-benzoyl-6-O-(phosphonooxy)-methyl α-D-manno-

pyranoside (19). Compound 28 (400 mg, 0.500 mmol) was dissolved in a mixture of H3PO4 (366 mg, 

3.73 mmol) in THF (5 mL). Then, N-iodosuccinimide (225 mg, 1.00 mmol) was added and the 

mixture was stirred for 15 min at 0 °C and for 1 h at rt. The reaction was quenched with 1 M aq. 

Na2S2O3 and 28% aq. ammonia (2 mL), then the volatiles were removed in vacuo at < 30 °C. The 

residue was purified by MPLC on silica (DCM/[MeOH/ H2O 10:1], 1:0-3.5:1) to yield slightly impure 

19 (278 mg, 67%), which was used in the next step without further purification. 

4-(5-Nitroindolin-1-yl)phenyl 6-O-(phosphonooxy)-methyl α-D-mannopyranoside diammonium 

salt (8). Compound 19 (278 mg, 0.337 mmol) was stirred in a mixture of MeOH (5 mL), DCM (4 

mL) and 25% aq. NH3 (8 mL) overnight. The solvent was removed under reduced pressure and the 

residue was purified by MPLC on RP-18 (H2O/MeOH) to give 8 (78 mg, 41%). 1H NMR (D2O, 500 

MHz): δ = 3.21 (t, J = 8.4 Hz, 2H, CH2), 3.81 (dd, J = 1.8, 11.3 Hz, 1H, H-6a), 3.86 (m, 1H, H-5), 

3.91 (t, J = 9.7 Hz, 2H, NCH2), 3.96 (dd, J = 4.2, 11.3 Hz, 1H, H-6b), 4.04 (dd, J = 3.5, 9.6 Hz, 1H, 

H-3), 4.14 (t, J = 8.8 Hz, 2H, CH2), 4.16 (dd, J = 1.8, 3.4 Hz, 1H, H-2), 4.89 (A of ABX, J = 5.6, 10.8 

Hz, 1H, CH2), 5.00 (B of ABX, J = 5.6, 8.1 Hz, 1H, CH2), 5.60 (s, 1H, H-1), 6.86 (d, J = 8.9 Hz, 1H, 

Ar-H), 7.22 (d, J = 8.9 Hz, 2H, Ar-H), 7.39 (d, J = 8.8 Hz, 2H, Ar-H), 8.01 (s, 1H, Ar-H), 8.05 (d, J = 

9.3 Hz, 1H, Ar-H); 13C NMR (D2O, 126 MHz): δ = 26.3 (CH2), 53.6 (NCH2), 66.1, 66.3 (C-4, C-6), 

69.9 (C-2), 70.2 (C-3), 72.3 (C-5), 90.1 (d, J = 4 Hz, CH2), 98.7 (C-1), 105.6, 118.1, 121.2, 121.9, 

122.0, 127.0, 132.5, 136.6, 137.5, 151.9, 154.6 (12C, 12 Ar-C), ESI-MS: m/z: Calcd for C21H24N2O12P 

[M-2NH4+H]-: 527.11, found: 527.18. 

Physicochemical and pharmacokinetic characterization  

Materials. Dulbecco’s Modified Eagle’s Medium (DMEM) - high glucose, L-glutamine solution, 

penicillin-streptomycin solution, Dulbecco’s Phosphate Buffered Saline (DPBS), and trypsin-EDTA 

solution were purchased from Sigma-Aldrich. MEM nonessential amino acid (MEM-NEAA) solution, 

fetal bovine serum (FBS), and DMEM without sodium pyruvate and phenol red were bought from 

Invitrogen (Carlsbad, CA, USA). Acetonitrile (MeCN) was from Acros Organics (Geel, Belgium). 

The Caco-2 cells were kindly provided by Prof. G. Imanidis, FHNW, Muttenz, and originated from 

the American Type Culture Collection (Rockville, MD, USA). 

Aqueous Solubility. Microanalysis tubes (LaboTech J. Stofer LTS AG, Muttenz, Switzerland) were 

charged with 500 µg of solid substance and 100 µL of phosphate buffer (50 mM, pH 6.5). The tubes 

were briefly shaken by hand, sonicated for 15 min, and vigorously shaken (600 rpm, 25 °C, 2 h) on an 

Eppendorf Thermomixer Comfort (Eppendorf, Hamburg, Germany). Afterwards, they were left 

undisturbed for 24 h. Then, the compound solutions were filtered (MultiScreen HTS 96-well 

Filtration System, Millipore, Billerica, MA) by centrifugation (1500 rpm, 25 °C, 3 min). The filtrates 
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were further diluted with buffer (1:1000 and 1:10000), and the concentrations were determined by 

LC-MS (see below). 

Colorectal adenocarcinoma (Caco-2) cell permeation assay and hydrolysis studies. Caco-2 cells 

were cultivated in tissue culture flasks (BD Biosciences, Franklin Lakes, NJ, USA) with DMEM high 

glucose medium, containing L-glutamine (2 mM), nonessential amino acids (0.1 mM), penicillin (100 

U/mL), streptomycin (100 µg/mL), and fetal bovine serum (10%). The cells were kept at 37 °C in 

humidified air containing 5% CO2, and the medium was changed every second day. When 

approximately 90% confluence was reached, the cells were split in a 1:10 ratio and distributed to new 

tissue culture flasks. At passage numbers between 60 and 65, they were seeded at a density of 5.3 × 

105 cells per well to Transwell six-well plates (Corning Inc., Corning, NY, USA) with 2.5 mL of 

culture medium in the basolateral and 2.0 mL in the apical compartment. The medium was renewed 

on alternate days. Enzymatic hydrolysis and permeation experiments were performed between days 

19 and 21 post seeding. Prior to the experiment, the integrity of the Caco-2 monolayers was evaluated 

by measuring the transepithelial electrical resistance (TEER) with an Endohm tissue resistance 

instrument (World Precision Instruments Inc., Sarasota, FL, USA). Only wells with TEER values 

higher than 250 Ω cm2 were used. After the experiment, TEER values were assessed again for each 

well and results from wells with values below 250 Ω cm2 were discarded. 

Permeation experiments with the compounds 3-5 were performed in the apical-to-basolateral and 

basolateral-to-apical directions in triplicates. Transport medium (DMEM without sodium pyruvate 

and phenol red) was withdrawn from the donor compartments of three wells and replaced by the same 

volume of compound stock solution (10 mM in DMSO) to reach an initial sample concentration of 

62.5 µM. The Transwell plate was shaken (600 rpm, 37 °C) on a Heidolph Titramax 1000 plate-

shaker (Heidolph Instruments GmbH & Co. KG, Schwabach, Germany). Samples (40 µL) were 

withdrawn from the donor and acceptor compartments 30 min after initiation of the experiment and 

the compound concentrations were determined by LC-MS. Apparent permeability (Papp) was 

calculated according to Equation 1: 

 

€ 

Papp =
dQ
d t

×
1

A × c0
 
 (1) 

where dQ/dt is the compound flux (mol s-1), A the surface area of the monolayer (cm2), and c0 the 

initial concentration in the donor compartment (mol cm-3).[37] 

Hydrolysis studies with the compounds 6a-e, 7a-d and 8 were performed in triplicates. Transport 

medium was withdrawn from the apical compartments of three wells and replaced by the same 

volume of compound stock solution (10 mM in H2O) to reach an initial sample concentration of 62.5 

µM. The Transwell plate was shaken (600 rpm, 37 °C) on a Heidolph Titramax 1000 plate-shaker. 

Samples (40 µL) were withdrawn from the apical compartment 10, 20, 30, 45, and 60 min after the 

initiation of the experiment and the concentrations of prodrug were determined by LC-MS. Metabolic 
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half-life (t1/2) was calculated from the slope of the linear regression from the log percentage remaining 

compound versus incubation time relationship. 

Studies of hydrolysis and subsequent permeation in the apical-to-basolateral and basolateral-to-apical 

directions were performed with compound 7b in triplicate. Transport medium was withdrawn from 

the apical or basal donor compartments of three wells and replaced by the same volume of compound 

stock solution (10 mM in H2O) to reach an initial sample concentration of 62.5 µM. The Transwell 

plate was shaken (600 rpm, 37 °C) on a Heidolph Titramax 1000 plate-shaker. Samples (40 µL) were 

withdrawn form the apical and basal compartments 60 min after the initiation of the experiment and 

the concentrations of prodrug 7b and parent compound 4 were determined by LC-MS. 

Studies of hydrolysis and subsequent permeation in the apical-to-basolateral direction were performed 

with the compounds 6e, 7b and 8 at different concentrations (100, 200, or 400 µM) in duplicate. 

Transport medium was withdrawn from the apical compartments of two wells and replaced by the 

same volume of compound stock solution (16, 32, or 64 mM in H2O) to reach initial sample 

concentrations of 100, 200, or 400 µM. The Transwell plate was shaken (600 rpm, 37 °C) on a 

Heidolph Titramax 1000 plate-shaker. Samples (40 µL) were withdrawn from the basal compartments 

60 min after the initiation of the experiment and the concentrations of prodrug 6e, 7b and 8 as well as 

parent compound 3-5, respectively, were determined by LC-MS. 

Stability Assay. The simulated fluids were prepared according to UPS specifications and Dressman et 

al. [48,49] All fluids were preheated at 37 °C. The compounds were then added to yield 20 µM solutions 

(t = 0 min). Incubations were performed on a Heidolph 1000 incubator (500 rpm, 37 °C). After an 

incubation time of 0, 10, 20, 30, 60, and 120 min, samples (30 µL) were withdrawn, precipitated with 

ice-cooled methanol (120 µL), put into the freezer (-20 °C, 10 min), and then centrifuged (13,200 

rpm, 3 min). The supernatant was transferred into a 96-well plate. The concentration of analyte in the 

supernatant was analysed by LC-MS. 

LC-MS Measurement. Analyses were performed using an 1100/1200 Series HPLC System coupled 

to a 6410 Triple Quadrupole mass detector (Agilent Technologies, Inc., Santa Clara, CA, USA) 

equipped with electrospray ionization. The system was controlled with the Agilent MassHunter 

Workstation Data Acquisition software (version B.01.04). The column used was an Atlantis® T3 C18 

column (2.1 x 50 mm) with a 3 µm particle size (Waters Corp., Milford, MA, USA). The mobile 

phase consisted of two eluents: Eluent A (H2O, containing 0.1% formic acid, v/v for compounds 5, 

6a-e, 7c, 7d and 8; ammonium acetate buffer, 10 mM, pH 5 for compounds 3 and 4; formiate buffer, 

10 mM, pH 3 for compounds 7a and 7b) and eluent B (MeCN, containing 0.1% formic acid, v/v), 

delivered at 0.6 mL/min. The gradient was ramped from 95% A/5% B to 5% A/95% B over 1 min, 

and then held at 5% A/95% B for 0.1 min. The system was then brought back to 95% A/5% B, 

resulting in a total duration of 4 min. MS parameters such as fragmentor voltage, collision energy, 
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polarity were optimized individually for each analyte, and the molecular ion was followed for each 

compound in the multiple reaction monitoring mode. The concentrations of the analytes were 

quantified by the Agilent Mass Hunter Quantitative Analysis software (version B.01.04). 

In vivo pharmacokinetics. For the PK studies, eight-week-old female C3H/HeN mice (21-27 g) from 

Harlan (Venray, The Netherlands) were purchased. The mice were housed in groups of three per cage 

and kept under specific pathogen-free conditions in the Animal House of the Department of 

Biomedicine, University Hospital of Basel. For experimentation, all guidelines according to the Swiss 

veterinary law were followed. The animals were kept in a 12h/12h light/dark cycle and had chow and 

water ad libitum. After one week of acclimatization, the mice were used in groups of three for the 

pharmacokinetic studies. Compounds were diluted in PBS and applied using an oral gavage (10 

mg/kg). All administered solutions consisted of prodrug (min. 94%) and active principle (max. 6%). 

Blood and urine samples (10 µL) were taken before the experiment (0 min) and at 6, 13, 20, 40 min, 

1, 1.5, 2, 3, 4, 6, 8, and 24 h after administration. Directly after sampling, the samples were diluted in 

methanol (1:5) to precipitate proteins. After centrifugation (11 min, 13000 rpm) the supernatant was 

transferred to a 96-well plate and analysed by LC-MS as described before. The samples at 0 min were 

used to define the detection limit in plasma and urine. The percentages of absorbed fractions in urine 

were calculated by the average urine concentration opposed to the sampled urine volumes and divided 

by the dosed amount of drug. Sampling and administration was performed following the guidelines in 

reference.[53] 
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2.11 Paper 10: Design, synthesis, and biological evaluation of mannosyl 

triazoles as FimH antagonists 

 

 

The following publication explores FimH antagonists with aglycones of increased flexibility. 

The modes of binding to the FimH-CRD and the physicochemical properties of triazolyl-

methyl and -ethyl α-D-mannopyranosdes, N-linked mannosyl triazoles, and triazolyl-methyl-

C-mannosides are exposed in details.  
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a b s t r a c t

Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is one of the most prevalent
infectious diseases. Particularly affected are women, who have a 40–50% risk to experience at least one
symptomatic UTI episode at some time during their life. In the initial step of the infection, the lectin
FimH, located at the tip of bacterial pili, interacts with the high-mannosylated uroplakin Ia glycoprotein
on the urinary bladder mucosa. This interaction is critical for the ability of UPEC to colonize and invade
the bladder epithelium. X-ray structures of FimH co-crystallized with two different ligands, the physio-
logical binding epitope oligomannose-3 and the antagonist biphenyl a-D-mannoside 4a revealed different
binding modes, an in-docking-mode and an out-docking-mode, respectively. To accomplish the in-docking-
mode, that is the docking mode where the ligand is hosted by the so-called tyrosine gate, FimH antago-
nists with increased flexibility were designed and synthesized. All derivatives 5–8 showed nanomolar
affinities, but only one representative, the 4-pyridiyl derivative 5j, was as potent as the reference com-
pound n-heptyl a-D-mannoside (1b). Furthermore, a loss of affinity was observed for C-glycosides and
derivatives where the triazole aglycone is directly N-linked to the anomeric center. A conformational
analysis by NMR revealed that the triazolyl-methyl-C-mannosides 8 adopt an unusual 1C4 chair confor-
mation, explaining the comparably lower affinity of these compounds. Furthermore, to address the drug-
likeness of this new class of FimH antagonists, selected pharmacokinetic parameters, which are critical
for oral bioavailability (lipophilicity, solubility, and membrane permeation), were determined.

! 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Urinary tract infections (UTIs) are among the most common
infections, affecting millions of people each year. Although UTIs
rarely cause severe diseases such as pyelonephritis or urosepsis,
they are associated with extensive morbidity and generate consid-
erable medical expenses.1 Uropathogenic Escherichia coli (UPEC)
are the primary cause of UTIs accounting for 70–95% of the re-

ported cases. Particularly affected are women, who have a 40–
50% risk to suffer from a symptomatic UTI episode at some time
during their life.2,3 Symptomatic UTIs require antimicrobial treat-
ment, resulting in selection and development of bacterial resis-
tance. Consequently, treatment of consecutive infections becomes
increasingly difficult. Especially patients with diabetes, urinary
tract anomaly, paraplegia and those with permanent urinary cath-
eter experience repeated UTIs with resistant strains. Therefore, a
new approach for the treatment and prevention of UTI with non-
antibiotic and orally applicable therapeutics with a low potential
for resistance would have a great impact on patient care, public
healthcare, and medical expenses.

UPEC express a number of well-studied virulence factors for
successful colonization of and survival within the host.1,4,5 One
important virulence factor, the mannose-specific FimH adhesin, is
located at the tip of bacterial type 1 pili.6 Type 1 pili are the most
prevalent fimbriae encoded by UPEC, consisting of the four sub-
units FimA, FimF, FimG and FimH. The FimH lectin enables UPEC
to attach to high-mannosylated uroplakin Ia glycoproteins on the
urinary bladder mucosa, thus enabling adherence and invasion of
host cells and at the same time preventing the rapid clearance of

0968-0896/$ - see front matter ! 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.bmc.2011.08.057

Abbreviations: ABTS, 2,20-azino-di-(3-ethylbenzthiazoline-6-sulfonic acid); AUC,
area under the curve; BSA, bovine serum albumin; CRD, carbohydrate recognition
domain; D, distribution coefficient; DCM, dichloromethane; DMSO, dimethyl
sulfoxide; GIT, gastrointestinal tract; GPE, guinea pig erythrocytes; HEPES, 4-(2-
hydroxyethyl)-piperazine-1-ethanesulfonic acid; IC50, half maximal inhibitory
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E. coli from the UTI by the bulk flow of urine.1,7 As a part of the
FimH subunit, a carbohydrate-recognition domain (CRD) is
responsible for bacterial interactions with the host cells within
the urinary tract.7 The crystal structure of methyl a-D-mannopy-
ranoside bound to the FimH-CRD was solved8 and the structures
of the corresponding complexes with n-butyl a-D-mannopyrano-
side,9 Mana(1-3)-[Mana(1-6)]-Manb(1-4)-GlcNAcb-(1-4)GlcNAc
(oligomannose-3)10 and biphenyl a-D-mannopyranoside11 recently
became available.

Previous studies showed that colonization and subsequent
E. coli infection of the human urothelium can be prevented by vac-
cination with FimH adhesin.12,13 Furthermore, adherence and inva-
sion of host cells by E. coli can also be inhibited by oligomannosides
representing the glycosylation of uroplakin 1a.14 For some a-D-
mannosides it was shown that they prevent type 1 pili mediated
adhesion, that is, they do not act by killing or arresting the growth
of the pathogen as antibiotics do. Therefore, the spread of strains
resistant to such agents are expected to be significantly delayed
as compared to that of strains resistant to antibiotics.15 In addition,
environmental contamination is less problematic compared to
antibiotics.15a

More than two decades ago, various oligomannosides and aro-
matic a-D-mannosides that antagonize type 1 fimbriae-mediated
bacterial adhesion were identified.15,16 However, for these manno-
sides only weak interactions in the milli- to micromolar range were
observed. To improve their affinity, the multivalent presentation of
the a-mannoside epitope,17 and the rational design of ligands
guided by structural information were explored.9–11 Recently, var-
ious reports on high affinity monovalent FimH antagonists were
published.11,18,19

The CRD of the FimH protein consists of amino acids with
hydrophilic side chains and can therefore establish a perfect
network of hydrogen bonds with the hydroxyl groups at the 2-,
3-, 4- and 6-positions of D-mannose. The entrance to this man-
nose-binding pocket, the so-called ‘tyrosine gate’, is shaped by
two tyrosines (Tyr48 and Tyr137), and one isoleucine (Ile52) which
support hydrophobic contacts.20 Generally, long chain alkyl and
aryl mannosides (for selected examples see Fig. 1) displayed the
highest affinities.8,9,11,16–21

Recently, we reported the synthesis, the critical pharmacoki-
netic properties and affinity data of low molecular weight a-D-
mannosides with the ability to block the FimH-mediated bacterial
adhesion in a mouse infection model.19 The orally available, nano-
molar FimH antagonist 4b (Fig. 1) exhibited the potential to reduce
the colony forming units (CFU) in the urine and in the bladder by
two and four orders of magnitude, respectively, demonstrating
the therapeutic potential of this new class of anti-infectives for
the effective treatment of urinary tract infections.

However, a potential drawback of FimH antagonists with agly-
cons consisting of biphenyls directly linked to the carbohydrate
moiety is their limited conformational flexibility, which could

hamper an optimal fit with the tyrosine gate.11 To increase the con-
formational flexibility, the spacers between the mannose moiety
and the first aromatic ring of the biphenyl moiety in i (Fig. 2) as
well as between the aromatic rings was extended. Furthermore,
the rotational barrier of the biphenyl25 was reduced by replacing
one of the rings by a triazole (for the torsion profile see Fig. 2).
Overall, these modifications should lead to a reduction of the con-
formational restraints and therefore an optimized spatial arrange-
ment of the aglycone in the tyrosine gate.

Oligomannose-3 is present on the high-mannosylated uroplakin
Ia located on urothelial cells and is supposed to interact with UPEC.
The crystal structure of the FimH-CRD10 complexed with oligo-
mannose-3 (PDB code 2VCO, Fig. 3A) clearly shows the important
role of the tyrosine gate hosting this physiological ligand in the
so-called in-docking-mode. Interestingly, for 4a complexed with
FimH-CRD a different binding mode outside of the tyrosine gate
was reported (out-docking-mode, see Fig. 3B).11 In analogy to oligo-
mannose-3, docking of triazole derivative 5b to the crystal struc-
ture of the FimH lectin domain (PDB code 3MCY)11 led - as a
result of the increased flexibility of the aglycone - to the in-dock-
ing-mode. Thus, in contrast to the biphenyl aglycone present in
4a, the phenyl-triazole 5b is expected to be hosted by the tyrosine
gate. The three-dimensional structure 5b was generated using
Glide 5.526 and the kinetic stability of the protein–ligand complex
was then assessed with a 2 ns molecular-dynamics simulation
using Desmond.27

A comparison of the docking modes of oligomannose-3, 4a and
5b reveals that the interaction of the mannose moiety is highly
conserved for all three compounds. However, in contrast to oligo-
mannose-3 and 5b, the biphenyl moiety in 4a is not able to reach
the tyrosine gate due to its rigid structure. Instead, a p-p-stacking
interaction of the second aromatic ring of the biphenyl aglycone
with Tyr48 outside of the tyrosine gate11 (out-docking-mode,
Fig. 3B) is achieved by induced fit, that is, a substantial move of
Tyr48. In addition, a further stabilization of the protein–ligand
complex by a hydrogen bond between the ester in the meta-posi-
tion of 4a and the side-chain of Arg98 was assumed.11

Based on these evidences, a library of derivatives according to
the criteria summarized in Figure 2 was designed. Here, we de-
scribe synthesis, biological evaluation, and determination of phar-
macokinetic parameters of triazole derivatives.

2. Results and discussion

2.1. Synthesis of triazolyl-methyl and -ethyl a-D-
mannopyranosides

In a first approach, the phenyl ring adjacent to the anomeric
center (see Fig. 2) was replaced by a triazolyl-methyl moiety to in-
crease the conformational flexibility. To avoid solubility problems
as well as to take advantage of additional polar interactions, for
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Figure 1. Known alkyl (1) and aryl (2–4) a-D-mannosides exhibiting micro- to nanomolar affinities.
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example, H-bonds with the hydroxyl-groups of Thr51 or Tyr137
(Fig. 3C), the second aromatic ring was substituted with a carbox-
ylate in para- or meta-position (?5a–c, Scheme 1).

For the synthesis of mannosyl triazoles 5a–c, alkyne 1029 read-
ily available from peracetylated D-mannose (9) was reacted with

the known aryl azides 11a,30 11b,31 and 11c32 in a copper(I)-
catalyzed Huisgen 1,3-dipolar cycloaddition33,34 using tert-buta-
nol/water/THF (1:1:1) as solvent.35 The saponification of the
anti-substituted triazoles 12a–c yielded the test compounds 5a–c
(Table 1).

Figure 3. (A) & (B) Crystal structures of oligomannose-3 (A, PDB code 2VCO)10 and biphenyl 4a (B, PDB code 3MCY)11 bound to the FimH-CRD. C) Automated docking of
triazole 5b into the lectin domain of FimH (PDB code 3MCY).11 The images have been generated using VMD.28 The ligands are depicted colored by atom (C: dark grey, H:
white, O: red, N: blue); the tyrosine gate (residues Tyr48, Tyr137 and Ile52) is shown in yellow, residue Thr51 in green and residue Arg98 in red. While 4a binds in the out-
docking-mode, compound 5b, like oligomannose-3, is inserted into the tyrosine gate (in-docking-mode).

Figure 2. Design of FimH antagonists with aglycons of increased flexibility. Spacer elongations and replacement of one phenyl ring by a triazole should reduce the
conformational restraints and lead to an improved fit in the tyrosine gate. The torsion profiles for biphenyl and 1-phenyl-1,2,3-triazole were calculated at the B3LYP level of
theory22,23 with 6-31G(d,p) basis set in the gas phase using Gaussian 03.24

6456 O. Schwardt et al. / Bioorg. Med. Chem. 19 (2011) 6454–6473
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In a second approach, the terminal aromatic ring was replaced
by various substituents like (hetero)aryl, benzyl, and adamantyl
groups (?5d–i & 5j–m). Furthermore, in compounds 6h–k the
spacer between the carbohydrate moiety and the triazole ring
was elongated from methyl to ethyl allowing for a higher confor-
mational flexibility (Scheme 2).

The mannosyl triazoles 5d–m and 6h–k were obtained by
reacting the known mannosyl alkynes 10,29 1336 and 1437 with
the azides 15d–m. Whereas the azides 15d–f are commercially
available, 15g,38 15h,39 15i,40 15j–l,41 and 15m40 were obtained
by known procedures.

The cycloaddition of alkyne 14 and azides 15d–i under Cu(I)-
catalyzed click conditions33,34 yielded directly the anti-substituted
triazoles 5d–i in 27–77% (Table 1). However, due to the cumber-
some purification of the unprotected mannosyl triazoles, test com-
pounds 5j–m were obtained by an alternative sequence starting
from the protected alkyne 10 and azides 15j–m followed by sapon-
ification of the intermediates 16j–m. The analogous cycloaddition
of butinyl mannoside 13 with azides 15h–k yielded the protected

triazoles 17h–k in 83–96%. Final deacetylation under Zemplén
conditions gave the test compounds 6h–k, which contain a linker
extended by an additional carbon between mannose and aglycone
(Table 1).

2.2. Synthesis of FimH antagonists modified at the anomeric
center

To avoid the low metabolic stability of O-mannosides like com-
pounds 5 and 6 due to potential cleavage by mannosidases, the
corresponding N-linked mannosyl triazoles 7 and C-mannosides 8
were prepared (Scheme 3). Mannosyl azide 18 was obtained
according to published procedures.42 The Cu(I)-catalyzed click
reaction of 18 with the commercially available acetylenes 19n–s
gave exclusively the anomerically pure anti-substituted a-D-man-
nosyl-triazoles 20n–s in 84–98% yield and after deacetylation the
test compounds 7n–s (Table 1).

Finally, the synthesis of triazolyl-methyl-C-mannosides 8n–s
(Scheme 3) started frommannosyl cyanide 21, which was obtained
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Table 1
Pharmacodynamic and pharmacokinetic parameters of mannosylated triazoles 5–8

(continued on next page)
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The IC50sweredeterminedwitha cell-free competitivebinding assay.45Relative IC50s (rIC50)werecalculatedbydividing the IC50 of the substance of interest
by the IC50 of the reference compound 1b (entry 2). Passive permeation through an artificial membrane and retention therein was determined by PAMPA
(parallel artificial membrane permeation assay).50 Distribution coefficients (logD7.4 values) were measured by a miniaturized shake flask procedure.51

Thermodynamic solubility was measured by an equilibrium shake flask approach.52 Pe effective permeation; n.p. not permeable; n.d. not determined.

Table 1. (continued)
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from 9 as reported earlier.43 Catalytic hydrogenation in the pres-
ence of Boc2O (?22) followed by deacetylation led to the Boc-pro-
tected amine 23. Cleavage of the Boc-group, amine-azide
exchange44 and subsequent re-acetylation yielded azide 24 in
81% over three steps. The cycloaddition of 24 and the acetylenes
19n–s gave the anti-substituted triazoles 25n–s in excellent yields.
Final deprotection afforded the test compounds 8n–s (Table 1).

2.3. Biological evaluation

For an initial biological in vitro characterization, a cell-free com-
petitive binding assay45 and later on, a cell-based aggregation as-
say46 were applied. Whereas for the cell-free competitive binding
assay only the CRD of the pili was expressed, the complete pili
are present in the cell-based assay format. Furthermore, both for-
mats are competitive assays, that is, the analyzed antagonists com-
pete with mannosides for the binding site. In the cell-free
competitive binding assay, the competitors are polymer-bound
trimannosides, whereas in the aggregation assay the antagonist
competes with more potent oligo- and polysaccharide chains14

present on the surface of erythrocytes.47 The interaction is further
complicated by the existence of a high- and a low-affinity state of
the CRD of FimH. Aprikian et al. experimentally demonstrated that
in full-length fimbriae the pilin domain stabilizes the CRD domain
in the low-affinity state, whereas the CRD domain alone adopts the
high-affinity state.48 Furthermore, it was recently shown that shear
stress can induce a conformational switch (twist in the b-sandwich
fold of the CRD domain) resulting in improved affinity.49 Therefore,
different affinities are expected when - as in the cell-based aggre-
gometry assay - full-length fimbriae are present, when compared
to the CRD domain alone.

2.4. Cell-free competitive binding assay

The cell-free inhibition assay is based on the interaction of a
biotinylated polyacrylamide glycopolymer with the carbohydrate

recognition domain (CRD) of FimH as previously reported.45 A sol-
uble recombinant protein consisting of the FimH-CRD (amino acid
residues 1–156), a C-terminal thrombin cleavage site and a 6His-
tag (FimH-CRD-Th-6His) was expressed in E. coli strain HM125
and purified by affinity chromatography on a Ni-NTA column. For
the determination of IC50 values, a microtiter plate coated with
FimH-CRD-Th-6His was incubated with biotinylated Mana(1-3)-
[Mana(1-6)]-Manb(1-4)-GlcNAcb(1-4)-GlcNAcb-polyacrylamide
(TM-PAA) polymer conjugated to streptavidin-horseradish peroxi-
dase and the FimH antagonist in fourfold serial dilution (Fig. 4).
The assay was performed in duplicates and repeated twice for each
compound. To ensure comparability of different antagonists, the
reference compound n-heptyl a-D-mannopyranoside (1b)9,46 was
tested in parallel on each individual microtiter plate. The affinities
are reported relative to 1b as rIC50 in Table 1. The relative IC50

(rIC50) is the ratio of the IC50 of the test compound to the IC50 of
1b (entry 2).

Interestingly, all antagonists in Table 1 except methyl a-D-man-
noside (1a) exhibit nanomolar affinities. When compared to 1a, an
up to 30-fold improvement was obtained. In the first series, con-
taining a triazolyl-methyl moiety (5a–m, entries 3–15), 5j (entry
12) exhibits the highest affinity with an IC50 of 70 nM. This is in
the range of n-heptyl a-D-mannoside (1b), however, compared to
the biphenyl derivative 4b19 (Fig. 1), this in fact represents a
18-fold reduction of affinity (rIC50 0.0619 for 4b vs. rIC50 1.1 for
5j). At this point, we should recollect that 4b and 5j address differ-
ent docking modes (out- and in-docking-mode) and therefore also
different structural environments.

Antagonists where the linker between the anomeric center and
the triazole is extended by an additional carbon (?6h–k, entries
16–19) show affinities in the range of 200 nM and therefore - with
the exception of 4-pyridyl derivative 6j (entry 18) - two- to four-
fold higher affinity compared to their counterparts with the shorter
linker. When the triazole is directly linked to the anomeric center
(?7n–s, entries 20–25) affinities are 2- to 8-fold reduced, probably
as a consequence of the reduced flexibility preventing an optimal
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interaction of the aglycone with the tyrosine gate. Finally, the
C-mannosides 8n–s (entries 26–31), which do not exhibit the exo-
anomeric effect of the O-mannosides and therefore can more easily
adopt the optimal orientation within the tyrosine gate, surprisingly
show a twofold reduction in affinity.

2.5. Aggregometry assay

The potential to disaggregate E. coli from guinea pig erythrocytes
(GPE) was determined for a variety of themannosylated triazoles in
a function-based aggregometry assay.46 The measurements were
performed in triplicates and the corresponding IC50 valueswere cal-
culated by plotting the area under the curve (AUC) of disaggregation
against the concentration of the antagonists. n-Heptyl a-D-manno-
pyranoside (1b) was again used as reference compound with an
IC50 of 77.1 lM (Table 2, entry 1). While the antagonists 5e, 6j, 6k,
7o and 7q showed IC50 values in the range of 200–300 lM, surpris-
ingly no activities could be determined for compounds 5j, 8q and 8r
up to a concentration of 700 lM. As earlier observed,46 the activities
obtained from the aggregometry assay are approximately 1000-fold
lower than the affinities determined in the target-based competi-
tive assay.

2.6. Conformational analysis of mannosyl triazoles

Compared to their counterparts 7, where the triazole is directly
linked to the anomeric center, most of the C-mannosides 8 exhibit
a lower affinity. By applying NMR techniques, it was investigated
whether this loss of affinity originates fromdistorted ring conforma-
tions. Due to signal overlap, the unprotected mannosides 7 and 8
were not suited for the conformational analysis. However, for the
peracetylated derivatives 20n and 25n the ring conformation could
be assigned based on coupling constants and NOESY experiments.
First, the observed 3J coupling constants for their ring protons were
strikingly different. In 20n, they were in agreement with those ex-
pected for a regular 4C1 chair conformation of an a-D-mannopyran-
osyl ring,with small J1,2 and J2,3 couplings and largevalues for J3,4 and
J4,5 (Fig. 5A). In contrast, the large J1,2 coupling constant (8.4 Hz) and
small to medium values for J2,3, J3,4 and J4,5 found for 25n, are in
agreement with a ring flip of the a-D-mannopyranosyl chair from
the common 4C1 to the unusual 1C4 conformation (Fig. 5B). A similar

conformational switch has also been observed for a-CF2-manno-
sides.53 As a consequence, the triazolyl-methyl group now is ori-
ented equatorially in C-mannoside 25n, while in 20n the triazole
moiety adopts an axial position.

Subsequent 2D-NOESY measurements (Fig. 5C and D) con-
firmed this analysis. For both compounds a sequence of seven
2D-NOESY experiments with increasing mixing times from 0.5 s
to 2.0 s in steps of 0.25 s was recorded. The intensity of the positive
signals grows with increasing mixing time and indicates the rela-
tive spatial proximity of a particular proton to that of the source
proton. The NOEs of the proton of interest (intcross) were normal-
ized to the intensity of the diagonal peak of the source proton
(intdiag). Plotting these normalized intensities against the mixing
time results in a straight line for each pair of protons. The distances
rij were then calculated from the slopes r of the linear regression
according to rij = rref (rref /rij)1/6, were rref is the average distance
of the geminal protons H-6a and H-6b, which was chosen as refer-
ence (rref = 1.78 Å).54,55

Typically, in the chair conformation of carbohydrates the vicinal
proton–proton distances are approx. 2.95 ± 0.15 Å for a diaxial,
2.45 ± 0.15 Å for an axial-equatorial and 2.50 ± 0.20 Å for a diequa-
torial orientation.56 As shown in Figure 5A and B, the distances of
the ring protons in 20n and 25n determined from NOE experi-
ments correlate well with the theoretical values and support the
results obtained from the analysis of the coupling constants. In
summary, NMR spectroscopic data indicate that the mannopyran-
osyl chairs in these compounds adopt different conformations,
depending on the substituent at C-1.

This conformational analysis offers an explanation for the two-
fold reduction of affinity found for most of the C-mannosides 8
compared to the corresponding N-linked triazoles 7. Due to the
inversion of the ring conformation in 8 (1C4 vs 4C1), the optimal
fit into the hydrophilic mannose-binding pocket of FimH is
disturbed.

2.7. Pharmacokinetic properties of mannosyl triazoles

Finally, the druglikeness of this new class of FimH antagonists
was addressed. For a successful po application in our UTI mouse
model,19 FimH antagonists have to exhibit oral bioavailability,
metabolic stability and fast renal elimination to the urinary tract,
their place of action. For the evaluation of oral absorption and renal
excretion of the triazoles 5–8 physicochemical parameters such as
solubility, lipophilicity (distribution coefficients, log D7.4) and per-
meability were determined (Table 1). The mannosides of all four
compound families (5–8) are all highly soluble (159 lg/mL to >
3 mg/mL) and therefore fulfill a first prerequisite for absorption
in the gastrointestinal tract (GIT). All compounds showed low to
moderate log D7.4 values in the range of < -1.5 to 1.45. While these
parameters are beneficial for renal excretion,57 oral absorption by
passive diffusion can only be expected to a minor extent. Indeed,
for none of the tested compounds a significant permeation through
an artificial membrane (PAMPA,50 log Pe, Pe: effective permeation)
nor membrane retention could be detected. Whereas for a success-
ful oral absorption a log Pe >!5.7 and/or a membrane retention
%Mm > 80 % are required,58 the corresponding values for all tria-
zoles are far from being in this range. Overall, only poor absorption
from the GIT can be therefore expected.

3. Conclusions

Crystal structures indicate that the natural ligand oligoman-
nose-310 inserts into the tyrosine gate formed by Tyr48, Tyr137
and Ile52 of the carbohydrate recognition domain of FimH
(in-docking-mode). In contrast, the recently reported high-affinity

Figure 4. Examples of inhibition curves obtained from the cell-free competitive
binding assay.45 Each assay was run in duplicate and was repeated at least twice.
For antagonists 5h, 6i and the reference compound 1b IC50 values in the nM range
were obtained.
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biphenyl mannoside 4c was shown to bind in the out-docking-
mode, that is, it establishes a p-p-stacking interaction with Tyr48
from the outside of the tyrosine gate.11 Based on docking studies,
we designed a series of low molecular weight mannosyl triazoles,
which exhibit an increased conformational flexibility of the agly-
cone and therefore should allow for binding to the tyrosine gate
in the in-docking-mode. For their pharmacodynamical evaluation
two assay formats, a target-based binding assay45 and a function-
based aggregation assay,46 were applied. In general, all triazoles
5–8 showed nanomolar affinities, but only one representative,
the 4-pyridyl derivative 5j, was as potent as the reference
compound n-heptyl mannoside (1b). Obviously, the high flexibility
of the n-heptyl aglycone in 1b optimally fulfills the spatial require-
ments of the tyrosine gate. In addition, the hydrophobic contacts
established by the substituted triazole aglycone within the tyro-
sine gate in the in-docking-mode are less favorable than the p-p-
stacking interaction of biphenyl derivatives11,19 with Tyr48 in the
out-docking-mode.

Furthermore, the reduced affinities of the triazolyl-methyl-C-
mannosides 8 can be rationalized by a disturbed interaction of
the mannose moiety. A conformational analysis by 1H NMR and
NOESY NMR revealed that in contrast to the other three classes
of mannosyl triazoles (compounds 5, 6 and 7), the C-mannosides
8 do not adopt the common 4C1 but an unusual 1C4 chair conforma-

tion, thus preventing an optimal fit of the mannosyl moiety into
the hydrophilic mannose-binding pocket of FimH.

Finally, for a successful therapeutic application, FimH antago-
nists have to exhibit appropriate pharmacokinetic properties,
that is, oral bioavailability and fast renal elimination to the uri-
nary tract, their place of action. One prerequisite for absorption
in the GIT is sufficient solubility, a property, which is fulfilled
by all synthesized antagonists. However, according to their lipo-
philicity and membrane permeation properties, the mannosyl tri-
azoles are not expected to be orally absorbed. Possible
improvements of the pharmacokinetic profiles of mannosyl tria-
zoles are currently studied.

4. Experimental part

4.1. Chemistry

General. NMR spectra were recorded on a Bruker Avance
DMX-500 (500 MHz) spectrometer. Assignment of 1H and 13C
NMR spectra was achieved using 2D methods (COSY, HSQC).
Chemical shifts are expressed in ppm using residual CHCl3 and
CD2HOD as references. Optical rotations were measured using a
Perkin-Elmer Polarimeter 341. Electron spray ionization mass

Table 2
IC50 values of mannosylated triazoles determined in the aggregometry assay46

The relative IC50 (rIC50) was calculated by dividing the IC50 of the substance of interest by the IC50 of the
reference compound 1b. n.a., not active.
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spectra (ESI-MS) were obtained on a Waters micromass ZQ. The
HRMS analyses were carried out using a Bruker QTOF. Reactions
were monitored by TLC using glass plates coated with silica gel
60 F254 (Merck) and visualized by using UV light and/or by charring
with a molybdate solution (a 0.02 M solution of ammonium cerium
sulfate dihydrate and ammonium molybdate tetrahydrate in aque-
ous 10% H2SO4). MPLC separations were carried out on a Combi-
Flash Companion from Teledyne Isco equipped with RediSep
normal-phase or C18 reversed-phase flash columns. Tetrahydrofu-
rane (THF) was freshly distilled under argon over sodium and ben-
zophenone. Methanol (MeOH) was dried by refluxing with sodium
methoxide and distilled immediately before use. Dichloromethane
(DCM), ethyl acetate (EtOAc), and toluene were dried by filtration
over Al2O3 (Fluka, type 5016 A basic).

4.1.1. General procedure A for the synthesis of mannosyl
triazoles 5d–i

A mixture of acetylene 1437 (1.0 eq), azide 15d–i (1.5 eq), Cu-
SO4!5H2O (0.25 eq) and sodium ascorbate (0.5 eq) was dissolved
in degassed tert-BuOH/H2O (1:1, 2 mL/0.1 mmol 14) under argon.
After stirring for 1 d the solvents were removed in vacuo and the
crude product was first purified by MPLC on silica (DCM/MeOH)
and then by reversed-phase chromatography (RP-18, H2O/MeOH)
to yield 5d–i as colorless solids.

4.1.2. General procedure B for the synthesis of mannosyl
triazoles 12a–c, 16j–m and 17h–k

Acetylene 1029 or 1336 (1.0 eq) and azide 11a–c or 15h–m
(1.5–2 eq) were dissolved in THF/tert-BuOH/H2O (1:1:1, 1.5 mL/
0.1 mmol 10 or 11). The mixture was degassed in an ultrasound
bath under a flow of argon for 20 min. Then 0.5 M aq CuSO4!5H2O

(0.25 eq) and 1 M aq sodium ascorbate (0.5 eq) were added under
argon at rt. After stirring overnight the solvents were removed in
vacuo and the crude product was purified by MPLC on silica (petrol
ether/EtOAc) to yield 12a–c, 16j–m and 17h–k as colorless oils.

4.1.3. General procedure C for the synthesis of mannosyl
triazoles 20n–s and 25n–s

Azide 1842 or 24 (1.0 eq) and acetylene 19n–s (2.0 eq) were dis-
solved in THF/tert-BuOH/H2O (1:1:1, 3 mL/0.1 mmol 18 or 24). The
mixture was degassed in an ultrasound bath under a flow of argon
for 20 min. Then 0.2 M aq CuSO4!5H2O (0.2 eq) and 1 M aq sodium
ascorbate (0.4 eq) were added under argon at rt. After stirring for
1–2 d the solvents were removed in vacuo and the crude product
was purified by MPLC on silica (petrol ether/EtOAc) to yield 20n–
s and 25n–s as colorless oils.

4.1.4. General procedure D for deacetylation
To a solution of the acetylated compound (38–50 mg) in MeOH

(3 mL) was added 1 M NaOMe/MeOH (0.3 mL). The mixture was
stirred at rt for 3–6 h. The solution was concentrated and the res-
idue was purified by MPLC on reversed phase (RP-18 column, H2O/
MeOH) and P2 size-exclusion chromatography to afford the target
molecule as a colorless solid after a final lyophilization from water/
dioxane.

4.1.5. Synthesis of azide 24
4.1.5.1. (2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)-N-tert-
butoxycarbonyl-methylamine (22). Cyanide 2143 (1.63 g,
4.57 mmol), Boc2O (1.49 g, 6.86 mmol) and Pd/C (10%, 250 mg)
were suspended in EtOAc (25 mL) and hydrogenated (4 bar H2) at
rt for 4 h. After filtration over Celite, fresh Pd/C (10%, 750 mg)

Figure 5. Coupling constants and proton-proton distances for peracetylated triazoles 20n (A) and 25n (B) determined by 1H NMR and 2D-NOESY experiments; 2D-NOESY
spectra of 20n (C) and 25n (D) in CDCl3 with mixing times of 1.5 s (C) and 750 ms (D).
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was added and the mixture was hydrogenated (4 bar H2) for addi-
tional 17 h. The suspension was filtered over Celite and concen-
trated. The residue was purified by MPLC on silica (petrol ether/
EtOAc) to give 22 (1.51 g, 72%) as a colorless solid.

1H NMR (500 MHz, CDCl3): d 1.44 (s, 9H, C(CH3)3), 2.07, 2.10,
2.10 (3 s, 12H, 4 COCH3), 3.38 (m, 2H, H-10), 3.99–4.05 (m, 2H, H-
1, H-5), 4.07 (dd, J = 3.8, 11.8 Hz, 1H, H-6a), 4.54 (dd, J = 6.9,
11.7 Hz, 1H, H-6b), 4.79 (m, 1H, NH), 5.07 (dd, J = 5.3, 6.4 Hz, 1H,
H-4), 5.10 (dd, J = 3.3, 6.0 Hz, 1H, H-2), 5.26 (dd, J = 3.3, 6.5 Hz,
1H, H-3); 13C NMR (125 MHz, CDCl3): d 20.70, 20.73, 20.76, 20.81
(4 COCH3), 28.3 (C(CH3)3), 39.7 (C-10), 61.2 (C-6), 67.50, 67.51 (C-
2, C-4), 68.0 (C-3), 71.1 (C-1), 72.2 (C-5), 79.7 (C(CH3)3), 155.8
(NCO), 169.5, 169.6, 169.9, 170.7 (4 COCH3); ESI-MS Calcd for
C20H31NNaO11 [M+Na]+: 484.18, Found: 484.11.

4.1.5.2. N-tert-Butoxycarbonyl-(a-D-mannopyranosyl)methyl-
amine (23). A solution of 22 (1.47 g, 3.19 mmol) in MeOH
(20 mL) was treated with 1 M methanolic NaOMe (2 mL) under ar-
gon at rt for 3 h. The reaction mixture was neutralized with acetic
acid and concentrated. The residue was purified by MPLC on silica
(DCM/MeOH) to give 23 (925 mg, 99%) as a colorless solid.

1H NMR (500 MHz, CD3OD): d 1.44 (s, 9H, C(CH3)3), 3.32 (m, 2H,
H-10), 3.54 (m, 1H, H-5), 3.63 (t, J = 7.6 Hz, 1H, H-4), 3.68 (dd,
J = 3.1, 7.8 Hz, 1H, H-3), 3.74 (dd, J = 2.8, 11.8 Hz, 1H, H-6a), 3.77
(m, 1H, H-2), 3.79 (dd, J = 6.4, 11.8 Hz, 1H, H-6b), 3.86 (m, 1H, H-
1), 6.72 (m, 1H, NH); 13C NMR (125 MHz, CD3OD): d 28.8
(C(CH3)3), 40.6 (C-10), 62.7 (C-6), 69.6 (C-4), 70.2 (C-2), 72.7 (C-3),
76.9 (C-1), 77.4 (C-5), 80.2 (C(CH3)3), 158.6 (NCO); ESI-MS Calcd
for C12H23NNaO7 [M+Na]+: 316.14, Found: 316.03.

4.1.5.3. (2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)methylaz-
ide (24). Triflyl azide stock solution preparation:44 Sodium
azide (796 mg, 12.2 mmol) was dissolved in water (2 mL). Toluene
(2 mL) was added, and the mixture was cooled to 0 !C with stirring.
Then triflic anhydride (1.31 mL, 6.12 mmol) was added dropwise.
The biphasic reaction mixture was stirred vigorously at 0 !C for
30 min and at 10 !C for another 2 h. The reaction mixture was neu-
tralized with satd aq NaHCO3. The phases were separated, and the
aqueous phase extracted with toluene (2 ! 2 mL). The organic
layers were combined to give the triflyl azide stock solution.
Amine-azide exchange: A solution of 23 (430 mg, 1.47 mmol) in
dioxane/water (2:1, 15 mL) was treated with concentrated HCl
(5 mL) under argon at rt for 4 h. The mixture was concentrated
and the residue was dried in high vacuo. Then, the crude amine
hydrochloride (341 mg), NaHCO3 (492 mg, 5.86 mmol) and Cu-
SO4"5H2O (14.1 mg, 61 lmol) were dissolved in water (1.91 mL).
The triflyl azide stock solution (3.25 mL, 3.3 mmol) was added
and the biphasic reaction mixture was made homogenous by the
addition of MeOH (12.6 mL). The mixture was stirred at rt for
20 h. The solvents were removed in vacuo and the residue was ta-
ken up in dry pyridine (10 mL), and acetic anhydride (4 mL) was
added. The reaction mixture was stirred at rt under argon for 4 h.
The solvents were removed in vacuo and the crude product was
purified by MPLC on silica (petrol ether/EtOAc) to yield 24
(459 mg, 81%) as a colorless oil.

IR (film) 2102 (vs, N3), 1747 (vs, CO) cm#1; 1H NMR
(500 MHz, CDCl3): d 2.04, 2.07, 2.08, 2.10 (4 s, 12H, 4 COCH3),
3.29 (dd, J = 3.3, 13.4 Hz, 1H, H-10a), 3.49 (dd, J = 7.3, 13.4 Hz,
1H, H-10b), 4.05–4.09 (m, 2H, H-5, H-6a), 4.15 (dt, J = 3.2,
7.1 Hz, 1H, H-1), 4.60 (m, 1H, H-6b), 5.01 (dd, J = 4.4, 6.0 Hz,
1H, H-4), 5.14 (dd, J = 3.4, 6.9 Hz, 1H, H-2), 5.27 (dd, J = 3.4,
6.0 Hz, 1H, H-3); 13C NMR (125 MHz, CDCl3): d 20.61, 20.63,
20.65, 20.74 (4 COCH3), 50.1 (C-10), 60.8 (C-6), 67.0 (C-2), 67.5
(C-3), 67.6 (C-4), 70.5 (C-1), 72.9 (C-5), 169.3, 169.5, 169.6,
170.6 (4 COCH3); ESI-MS Calcd for C15H21N3NaO9

[M+Na]+: 410.12, Found: 410.04.

4.1.6. Synthesis of peracetylated mannosyl triazoles
4.1.6.1. Methyl 4-[4-((2,3,4,6-tetra-O-acetyl-a-D-mannopyrano-
syloxy)methyl)-1H-1,2,3-triazol-1-yl]-benzoate (12a). Fol-
lowing general procedure B, 10 (40.0 mg, 0.103 mmol) was
reacted with methyl 4-azidobenzoate (11a,30 36.5 mg,
0.206 mmol), 0.5 M CuSO4 (52 lL, 26 lmol) and 1 M sodium ascor-
bate (52 lL, 52 lmol) to yield 12a (55.8 mg, 96%).

[a]D +45.0 (c 1.03, CHCl3); IR (film) 1747 (vs, CO) cm#1; 1H NMR
(500 MHz, CDCl3): d 1.99, 2.04, 2.12, 2.16 (4 s, 12H, 4 COCH3), 3.97
(s, 3H, OMe), 4.10 (ddd, J = 2.2, 5.1, 9.5 Hz, 1H, H-5), 4.14 (dd,
J = 2.3, 12.2 Hz, 1H, H-6a), 4.32 (dd, J = 5.2, 12.2 Hz, 1H, H-6b),
4.79, 4.95 (A, B of AB, J = 12.6 Hz, 2H, H-10), 5.01 (d, J = 1.1 Hz,
1H, H-1), 5.28 (dd, J = 1.7, 3.1 Hz, 1H, H-2), 5.32 (t, J = 9.8 Hz, 1H,
H-4), 5.36 (dd, J = 3.2, 10.0 Hz, 1H, H-3), 7.88 (AA0 of AA0BB0,
J = 8.7 Hz, 2H, C6H4), 8.11 (s, 1H, C2N3H), 8.23 (BB0 of AA0BB0,
J = 8.7 Hz, 2H, C6H4); 13C NMR (125 MHz, CDCl3): d 20.7, 20.8,
20.9 (4C, 4 COCH3), 52.5 (OMe), 61.0 (C-10), 62.4 (C-6), 66.0 (C-4),
68.8, 69.0, 69.4 (C-2, C-3, C-5), 97.0 (C-1), 120.0 (2C, C6H4), 121.0
(C2N3H–C5), 130.4 (C6H4–C1), 131.4 (2C, C6H4), 139.9 (C6H4–C4),
144.7 (C2N3H–C4), 169.7, 170.0, 170.1, 170.7 (5C, 5 CO); ESI-MS
Calcd for C25H29N3NaO12 [M+Na]+: 586.02, Found: 586.16.

4.1.6.2. Ethyl 3-[4-((2,3,4,6-tetra-O-acetyl-a-D-mannopyranosyl-
oxy)methyl)-1H-1,2,3-triazol-1-yl]-benzoate (12b). Follow-
ing general procedure B, 10 (50.0 mg, 0.129 mmol) was reacted
with ethyl 3-azidobenzoate (11b,31 49.3 mg, 0.258 mmol), 0.5 M
CuSO4 (64 lL, 32 lmol) and 1 M sodium ascorbate (64 lL,
64 lmol) to yield 12b (72.7 mg, 97%).

[a]D +40.2 (c 1.04, CHCl3); IR (film) 1749 (vs, CO) cm#1; 1H NMR
(500 MHz, CDCl3): d 1.43 (t, J = 7.2 Hz, 1H, CH3), 1.99, 2.04, 2.12,
2.16 (4 s, 12H, 4 COCH3), 4.09–4.15 (m, 2H, H-5, H-6a), 4.32 (dd,
J = 5.0, 12.1 Hz, 1H, H-6b), 4.44 (q, J = 7.2 Hz, 2H, OCH2), 4.79,
4.95 (A, B of AB, J = 12.4 Hz, 2H, H-10), 5.02 (d, J = 1.4 Hz, 1H, H-
1), 5.28 (dd, J = 1.7, 3.2 Hz, 1H, H-2), 5.31 (m, 1H, H-4), 5.36 (dd,
J = 3.3, 9.9 Hz, 1H, H-3), 7.64 (t, J = 8.0 Hz, 1H, C6H4–H5), 8.02
(ddd, J = 0.9, 2.1, 8.0 Hz, 1H, C6H4–H4), 8.11 (s, 1H, C2N3H), 8.14
(d, J = 7.9 Hz, 1H, C6H4-H6), 8.38 (t, J = 1.7 Hz, 1H, C6H4-H2); 13C
NMR (125 MHz, CDCl3): d 14.3 (CH3), 20.67, 20.69, 20.78, 20.88
(4 COCH3), 60.9 (C-10), 61.7 (OCH2), 62.4 (C-6), 66.0 (C-4), 68.8
(C-3), 69.0 (C-5), 69.4 (C-2), 96.9 (C-1), 121.2 (C6H4), 121.3
(C2N3H–C5), 124.8, 129.9, 130.0, 132.3, 137.0 (C6H4), 144.5
(C2N3H–C4), 165.2, 169.7, 169.9, 170.1, 170.7 (5 CO); ESI-MS Calcd
for C26H32N3O12 [M+H]+: 578.20, Found: 578.19.

4.1.6.3. Methyl 5-[4-((2,3,4,6-tetra-O-acetyl-a-D-mannopyrano-
syloxy)methyl)-1H-1,2,3-triazol-1-yl]-nicotinate (12c). Fol-
lowing general procedure B, 10 (40.0 mg, 0.103 mmol) was
reacted with methyl 5-azidonicotinate (11c,32 32.5 mg,
0.182 mmol), 0.5 M CuSO4 (52 lL, 26 lmol) and 1 M sodium ascor-
bate (52 lL, 52 lmol). The crude product was dissolved in DCM
(10 mL) and washed with 0.1 M aq EDTA (5 mL). The aqueous
phase was extracted with DCM (2 ! 10 mL) and the combined or-
ganic layers were dried with Na2SO4 and evaporated to dryness.
The residue was purified by MPLC on silica (petrol ether/EtOAc)
to give 12c (42.4 mg, 73%).

[a]D +39.7 (c 1.06, CHCl3); IR (film) 1733 (vs, CO) cm#1; 1H NMR
(500 MHz, CDCl3): d 1.98, 2.03, 2.11, 2.15 (4 s, 12H, 4 COCH3), 4.01
(s, 3H, OCH3), 4.09 (m, 1H, H-5), 4.14 (dd, J = 2.4, 12.2 Hz, 1H, H-6a),
4.31 (dd, J = 5.2, 12.3 Hz, 1H, H-6b), 4.79, 4.96 (A, B of AB,
J = 12.5 Hz, 2H, H-10), 5.01 (d, J = 1.4 Hz, 1H, H-1), 5.27 (dd,
J = 1.7, 3.0 Hz, 1H, H-2), 5.30 (t, J = 9.8 Hz, 1H, H-4), 5.34 (dd,
J = 3.3, 9.9 Hz, 1H, H-3), 8.17 (s, 1H, C2N3H), 8.69 (t, J = 2.0 Hz, 1H,
C5H3N-H2), 9.27, 9.30 (2 s, 2H, C5H3N-H4, H6); 13C NMR
(125 MHz, CDCl3): d 20.63, 20.65, 20.75, 20.84 (4 COCH3), 52.9
(OMe), 60.8 (C-10), 62.4 (C-6), 66.0 (C-4), 68.8, 68.9 (C-3, C-5),
69.3 (C-2), 97.0 (C-1), 121.2 (C2N3H–C5), 126.9, 128.6, 133.3
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(C5H3N), 145.1 (2C, C5H3N, (C2N3H–C4), 150.7 (C5H3N), 164.4,
169.7, 169.9, 170.1, 170.7 (5 CO); ESI-MS Calcd for C24H29N4O12

[M+H]+: 565.18, Found: 565.15.

4.1.6.4. [1-(Pyridin-4-yl)-1,2,3-triazol-4-yl]methyl 2,3,4,6-tetra-
O-acetyl-a-D-mannopyranoside (16j). Following general
procedure B, 10 (100 mg, 0.26 mmol) was reacted with 4-azido-
pyridine (15j,41 47 mg, 0.39 mmol), 0.5 M CuSO4 (130 lL, 65 lmol)
and 1 M sodium ascorbate (130 lL, 130 lmol). The crude product
was dissolved in DCM (20 mL) and washed with 0.1 M aq EDTA
(10 mL). The aqueous phase was extracted with DCM (2 ! 20 mL)
and the combined organic layers were dried with Na2SO4 and
evaporated to dryness. The residue was purified by MPLC on silica
(DCM/MeOH) to give 16j (114 mg, 87%).

[a]D +52.1 (c 2.26, DCM); IR (film) 1748 (vs, CO) cm"1; 1H NMR
(500 MHz, CDCl3): d 1.92, 1.97, 2.05, 2.09 (4s, 12H, 4 COCH3), 3.96–
4.14 (m, 2H, H-5, H-6a), 4.24 (dd, J = 4.8, 12.1 Hz, 1H, H-6b), 4.73,
4.89 (A, B of AB, J = 12.5 Hz, 2H, H-10), 4.94 (s, 1H, H-1), 5.14–
5.33 (m, 3H, H-2, H-3, H-4), 7.70 (m, 2H, C5H4N), 8.15 (s, 1H,
C2N3H), 8.73 (m, 2H, C5H4N); 13C NMR (125 MHz, CDCl3): d
20.77, 20.78, 20.88, 20.96 (4 COCH3), 61.0 (C-10), 62.5 (C-6), 66.1,
68.9, 69.0, 69.5 (C-2, C-3, C-4, C-5), 97.1 (C-1), 113.9 (2C, C5H4N),
120.7 (C2N3H–C5), 143.0 (C5H4N–C1), 145.2 (C2N3H–C4), 151.9
(2C, C5H4N), 169.8, 170.1, 170.2, 170.8 (4 COCH3); ESI-MS Calcd
for C22H26 N4NaO10 [M+Na]+: 529.16, Found: 529.07.

4.1.6.5. [1-(40-Fluorophenyl)-1,2,3-triazol-4-yl]methyl 2,3,4,6-
tetra-O-acetyl-a-D-mannopyranoside (16k). Following
general procedure B, 10 (100 mg, 0.26 mmol) was reacted with
1-azido-4-fluorobenzene (15k,41 53 mg, 0.39 mmol), 0.5 M CuSO4

(130 lL, 65 lmol) and 1 M sodium ascorbate (130 lL, 130 lmol)
to yield 16k (127 mg, 94%).

[a]D +42.0 (c 1.00, DCM); IR (film) 1749 (vs, CO) cm"1; 1H NMR
(500 MHz, CDCl3): d 1.96, 2.01, 2.09, 2.13 (4s, 12H, 4 COCH3), 4.07
(m, 1H, H-5), 4.11 (dd, J = 2.4, 12.2 Hz, 1H, H-6a), 4.28 (dd, J = 5.2,
12.2 Hz, 1H, H-6b), 4.75, 4.91 (A, B of AB, J = 12.4 Hz, 2H, H-10),
4.98 (d, J = 1.6 Hz, 1H, H-1), 5.24–5.31 (m, 2H, H-2, H-4), 5.33
(dd, J = 3.3, 10.0 Hz, 1H, H-3), 7.21 (m, 2H, C6H4), 7.71 (m, 2H,
C6H4), 7.97 (s, 1H, C2N3H); 13C NMR (125 MHz, CDCl3): d 20.87,
20.88, 20.98, 21.07 (4 COCH3), 61.3 (C-10), 62.6 (C-6), 66.3, 69.0,
69.2, 69.7 (C-2, C-3, C-4, C-5), 97.2 (C-1), 117.0 (d, J = 22.5 Hz, 2C,
C6H4), 121.6 (C2N3H–C5), 122.9 (d, J = 8.8 Hz, 2C, C6H4), 133.4 (d,
J = 3.8 Hz, C6H4–C1), 145.0 (C2N3H–C4), 163.8 (d, J = 247.5 Hz,
C6H4–C4), 169.9, 170.2, 170.3, 170.9 (4 COCH3); ESI-MS Calcd for
C23H26FN3NaO10 [M+Na]+: 546.16, Found: 546.15.

4.1.6.6. [1-(30-Fluorophenyl)-1,2,3-triazol-4-yl]methyl 2,3,4,6-
tetra-O-acetyl-a-D-mannopyranoside (16l). Following
general procedure B, 10 (100 mg, 0.26 mmol) was reacted with
1-azido-3-fluorobenzene (15l,41 53 mg, 0.39 mmol), 0.5 M CuSO4

(130 lL, 65 lmol) and 1 M sodium ascorbate (130 lL, 130 lmol)
to yield 16l (115 mg, 85%).

[a]D +47.5 (c 2.14, DCM); IR (film) 1748 (vs, CO) cm"1; 1H
NMR (500 MHz, CDCl3): d 1.96, 2.01, 2.09, 2.13 (4s, 12H, 4
COCH3), 4.02–4.15 (m, 2H, H-5, H-6a), 4.29 (dd, J = 5.1, 12.2 Hz,
1H, H-6b), 4.75, 4.91 (A, B of AB, J = 12.5 Hz, 2H, H-10), 4.98 (s,
1H, H-1), 5.22–5.36 (m, 3H, H-2, H-3, H-4), 7.14 (m, 1H, C6H4),
7.44–7.59 (m, 3H, C6H4), 8.02 (s, 1H, C2N3H); 13C NMR
(125 MHz, CDCl3): d 20.86, 20.88, 20.97, 21.07 (4 COCH3), 61.2
(C-10), 62.6 (C-6), 66.2, 69.0, 69.2, 69.6 (C-2, C-3, C-4, C-5),
97.2 (C-1), 108.6 (d, J = 26.3 Hz, C6H4), 116.0 (d, J = 17.5 Hz,
C6H4), 116.1 (m, C6H4), 121.3 (C2N3H–C5), 131.5 (d, J = 8.8 Hz,
C6H4), 138.2 (d, J = 10.0 Hz, C6H4–C1), 144.7 (C2N3H–C4), 163.3
(d, J = 247.5 Hz, C6H4–C4), 169.9, 170.1, 170.3, 170.9 (4 COCH3);
ESI-MS Calcd for C23H26FN3NaO10 [M+Na]+: 546.16, Found:
546.15.

4.1.6.7. [1-(40-Methoxyphenyl)-1,2,3-triazol-4-yl]methyl 2,3,4,6-
tetra-O-acetyl-a-D-mannopyranoside (16m). Following
general procedure B, 10 (100 mg, 0.26 mmol) was reacted with
1-azido-4-methoxybenzene (15m,40 58 mg, 0.39 mmol), 0.5 M
CuSO4 (130 lL, 65 lmol) and 1 M sodium ascorbate (130 lL,
130 lmol) to yield 16m (128 mg, 92%).

[a]D +45.0 (c 2.26, DCM); IR (film) 1749 (vs, CO) cm"1; 1H NMR
(500 MHz, CDCl3): d 1.93, 1.98, 2.06, 2.10 (4s, 12H, 4 COCH3), 3.81
(s, 3H, OCH3), 3.99–4.12 (m, 2H, H-5, H-6a), 4.26 (dd, J = 5.3,
12.4 Hz, 1H, H-6b), 4.71, 4.87 (A, B of AB, J = 12.4 Hz, 2H, H-10),
4.95 (d, J = 1.4 Hz, 1H, H-1), 5.20–5.28 (m, 2H, H-2, H-4), 5.30
(dd, J = 3.2, 10.0 Hz, 1H, H-3), 6.97 (m, 2H, C6H4), 7.58 (m, 2H,
C6H4), 7.91 (s, 1H, C2N3H); 13C NMR (125 MHz, CDCl3): d 20.78,
20.80, 20.89, 20.98 (4 COCH3), 55.7 (OCH3), 61.2 (C-10), 62.5 (C-
6), 66.1, 68.9, 69.1, 69.5 (C-2, C-3, C-4, C-5), 97.0 (C-1), 114.9 (2C,
C6H4), 121.5 (C2N3H–C5), 122.4 (2C, C6H4), 130.4 (C6H4–C1),
144.1 (C2N3H–C4), 160.0 (C6H4–C4), 169.8, 170.0, 170.2, 170.8 (4
COCH3); ESI-MS Calcd for C24H29N3NaO11 [M+Na]+: 558.18, Found:
558.18.

4.1.6.8. [1-(30-Methoxybenzyl)-1,2,3-triazol-4-yl]ethyl 2,3,4,6-
tetra-O-acetyl-a-D-mannopyranoside (17h). Following
general procedure B, 13 (55 mg, 0.14 mmol) was reacted with 3-
methoxybenzylazide (15h,39 34 mg, 0.21 mmol), 0.5 M CuSO4

(70 lL, 35 lmol) and 1 M sodium ascorbate (70 lL, 70 lmol) to
yield 17h (65 mg, 83%).

[a]D +36.5 (c 1.00, DCM); IR (film) 1748 (vs, CO) cm"1; 1H NMR
(500 MHz, CDCl3): d 1.85, 1.88, 1.93, 1.99 (4s, 12H, 4 COCH3), 2.86
(tt, J = 4.8, 9.9 Hz, 2H, H-20), 3.56 (dt, J = 6.6, 9.5 Hz, 1H, H-10a), 3.63
(s, 3H, OCH3), 3.69 (m, 1H, H-5), 3.83 (dt, J = 6.6, 9.5 Hz, 1H, H-10b),
3.91 (dd, J = 2.4, 12.3 Hz, 1H, H-6a), 4.09 (dd, J = 5.2, 12.3 Hz, 1H, H-
6b), 4.65 (d, J = 1.7 Hz, 1H, H-1), 5.03 (dd, J = 1.8, 3.0 Hz, 1H, H-2),
5.07–5.16 (m, 2H, H-3, H-4), 5.33 (s, 2H, CH2Ar), 6.68, 6.72, 7.13
(m, 4H, C6H4), 7.68 (s, 1H, C2N3H); 13C NMR (125 MHz, CDCl3): d
20.85, 20.88, 21.02 (4C, 4 COCH3), 26.4 (C-20), 54.1 (CH2Ar), 55.4
(OCH3), 62.5 (C-6), 66.2 (C-4), 67.2 (C-10), 68.9, 69.2, 69.7 (C-2, C-
3, C-5), 97.6 (C-1), 113.9, 114.2, 120.4, 130.3 (C6H4, C2N3H–C5),
136.5 (C6H4–C1), 144.8 (C2N3H–C4), 160.2 (C6H4–C3), 169.8,
170.1, 170.2, 170.8 (4 COCH3); ESI-MS Calcd for C26H33N3NaO11

[M+Na]+: 586.21, Found 586.29.

4.1.6.9. [1-(40-Nitrophenyl)-1,2,3-triazol-4-yl]ethyl 2,3,4,6-tetra-
O-acetyl-a-D-mannopyranoside (17i). Following general
procedure B, 13 (55 mg, 0.14 mmol) was reacted with 1-azido-4-
nitrobenzene (15i,40 34 mg, 0.21 mmol), 0.5 M CuSO4 (70 lL,
35 lmol) and 1 M sodium ascorbate (70 lL, 70 lmol) to yield 17i
(74 mg, 94%).

[a]D +28.1 (c 1.00, DCM); IR (film) 1748 (vs, CO) cm"1; 1H NMR
(500 MHz, CDCl3): d 1.92, 1.99, 2.06, 2.11 (4s, 12H, 4 COCH3), 3.12
(m, 2H, H-20), 3.69–3.82 (m, 2H, H-5, H-10a), 3.99–4.09 (m, 2H, H-
6a, H-10b), 4.19 (dd, J = 5.3, 12.3 Hz, 1H, H-6b), 4.84 (d, J = 1.6 Hz,
1H, H-1), 5.17–5.27 (m, 2H, H-2, H-4), 5.30 (dd, J = 3.3, 10.2 Hz,
1H, H-3), 8.03 (s, 1H, C2N3H), 8.06, 8.37 (m, 4H, C6H4); 13C NMR
(125 MHz, CDCl3): d 20.75, 20.89, 20.91, 21.02 (4 COCH3), 26.3
(C-20), 62.5 (C-6), 66.1 (C-4), 66.6 (C-10), 69.1, 69.2, 69.6 (C-2, C-3,
C-5), 97.5 (C-1), 120.6 (C2N3H–C5), 120.6 (2C, C6H4), 125.6 (2C,
C6H4), 141.5 (C6H4–C1), 146.2 (C2N3H–C4), 147.2 (C6H4–C4),
169.7, 170.3, 170.4, 170.8 (4 COCH3); ESI-MS Calcd for
C26H33N3NaO11 [M+Na]+: 587.17, Found 587.25.

4.1.6.10. [1-(Pyridin-40-yl)-1,2,3-triazol-4-yl]ethyl 2,3,4,6-tetra-
O-acetyl-a-D-mannopyranoside (17j). Following general
procedure B, 13 (60 mg, 0.15 mmol) was reacted with 4-azidopyri-
dine (15j,41 28 mg, 0.23 mmol), 0.5 M CuSO4 (75 lL, 38 lmol) and
1 M sodium ascorbate (75 lL, 75 lmol). The crude product was
dissolved in DCM (20 mL) and washed with 0.1 M aq EDTA
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(10 mL). The aqueous phase was extracted with DCM (2 ! 20 mL)
and the combined organic layers were dried with Na2SO4 and
evaporated to dryness. The residue was purified by MPLC on silica
(petrol ether/EtOAc) to give 17j (74 mg, 94%).

[a]D +32.6 (c 0.99, DCM); IR (film) 1748 (vs, CO) cm"1; 1H NMR
(500 MHz, CDCl3): d 1.88, 1.97, 2.05, 2.10 (4s, 12H, 4 COCH3), 3.10
(m, 2H, H-20), 3.64–3.79 (m, 2H, H-5, H-10a), 3.96–4.06 (m, 2H, H-
6a, H-10b), 4.17 (dd, J = 5.3, 12.3 Hz, 1H, H-6b), 4.83 (d, J = 1.6 Hz,
1H, H-1), 5.16–5.26 (m, 2H, H-2, H-4), 5.28 (dd, J = 3.4, 10.1 Hz,
1H, H-3), 7.78 (dd, J = 1.6, 4.7 Hz, 2H, C5H4N), 8.04 (s, 1H, C2N3H),
8.72 (dd, J = 1.4, 4.9 Hz, 2H, C5H4N); 13C NMR (125 MHz, CDCl3):
d 20.68, 20.88, 21.0 (4C, 4 COCH3), 26.3 (C-20), 62.5 (C-6), 66.0 (C-
4), 66.5 (C-10), 69.0, 69.2, 69.7 (C-2, C-3, C-5), 97.4 (C-1), 113.9
(2C, C5H4N), 120.0 (C2N3H–C5), 143.3 (C5H4N–C1), 146.1 (C2N3H–
C4), 151.8 (2C, C5H4N), 169.7, 170.3, 170.4, 170.8 (4 COCH3); ESI-
MS Calcd for C26H33N3 NaO11 [M+Na]+: 543.18, Found: 543.14.

4.1.6.11. [1-(40-Fluorophenyl)-1,2,3-triazol-4-yl]ethyl 2,3,4,6-
tetra-O-acetyl-a-D-mannopyranoside (17k). Following gen-
eral procedure B, 13 (60 mg, 0.15 mmol) was reacted with 1-azi-
do-4-fluorobenzene (15k,41 32 mg, 0.23 mmol), 0.5 M CuSO4

(77 lL, 38 lmol) and 1 M sodium ascorbate (75 lL, 75 lmol) to
yield 17k (77 mg, 96%).

[a]D +32.0 (c 1.01, DCM); IR (film) 1751 (vs, CO) cm"1; 1H NMR
(500 MHz, CDCl3): d 1.90, 1.96, 2.05, 2.10 (4s, 12H, 4 COCH3), 3.07
(m, 2H, H-20), 3.67–3.79 (m, 2H, H-5, H-10a), 3.96–4.06 (m, 2H, H-
6a, H-10b), 4.18 (dd, J = 5.2, 12.3 Hz, 1H, H-6b), 4.82 (d, J = 1.6 Hz,
1H, H-1), 5.16–5.24 (m, 2H, H-2, H-4), 5.28 (dd, J = 3.4, 10.1 Hz,
1H, H-3), 7.16, 7.73 (m, 4H, C6H4), 7.85 (s, 1H, C2N3H); 13C NMR
(125 MHz, CDCl3): d 20.71, 20.85, 20.88, 21.01 (4 COCH3), 26.3
(C-20), 62.5 (C-6), 66.1 (C-4), 66.8 (C-10), 68.9, 69.2, 69.7 (C-2, C-3,
C-5), 97.4 (C-1), 116.8 (d, J = 22.5 Hz, 2C, C6H4), 120.7 (C2N3H–
C5), 122.6 (d, J = 8.8 Hz, 2C, C6H4), 133.6 (d, J = 2.5 Hz, C6H4–C1),
145.4 (C2N3H–C4), 162.5 (d, J = 247.5 Hz, C6H4–C4), 169.7, 170.2,
170.3, 170.8 (4 COCH3); ESI-MS Calcd for C26H33N3NaO11

[M+Na]+: 560.18, Found 560.17.

4.1.6.12. 1-(2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)-4-phe-
nyl-1,2,3-triazole (20n). Following general procedure C, 18
(102 mg, 0.273 mmol) was reacted with phenylacetylene (19n,
60 lL, 0.55 mmol), 0.2 M CuSO4 (273 lL, 54.6 lmol) and 1 M so-
dium ascorbate (109 lL, 109 lmol) to yield 20n (110 mg, 84%).

[a]D +65.5 (c 1.01, CHCl3); 1H NMR (500 MHz, CDCl3): d 2.07,
2.07, 2.09, 2.20 (4 s, 12H, 4 COCH3), 3.94 (ddd, J = 2.5, 5.4, 9.0 Hz,
1H, H-5), 4.08 (dd, J = 2.5, 12.5 Hz, 1H, H-6a), 4.39 (dd, J = 5.4,
12.5 Hz, 1H, H-6b), 5.39 (t, J = 8.9 Hz, 1H, H-4), 5.98 (dd, J = 3.7,
8.8 Hz, 1H, H-3), 6.02 (dd, J = 2.7, 3.7 Hz, 1H, H-2), 6.07 (d,
J = 2.6 Hz, 1H, H-1), 7.32–7.39, 7.44–7.47, 7.85–7.87 (m, 5H,
C6H5), 7.96 (s, 1H, C2N3H); 13C NMR (125 MHz, CDCl3): d 20.5,
20.6, 20.6, 20.7 (4 COCH3), 61.5 (C-6), 66.0 (C-4), 68.2 (C-2), 68.7
(C-3), 72.1 (C-5), 83.5 (C-1), 119.7 (C2N3H–C5), 125.8, 128.6,
128.9, 129.6 (6C, C6H5), 148.2 (C2N3H–C4), 169.2, 169.6, 169.6,
170.4 (4 COCH3); ESI-MS Calcd for C22H25N3NaO9 [M+Na]+:
498.15, Found: 498.20.

4.1.6.13. 1-(2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)-4-(4-
methylphenyl)-1,2,3-triazole (20o). Following general pro-
cedure C, 18 (50 mg, 0.13 mmol) was reacted with p-tolylacetylene
(19o, 34 lL, 0.27 mmol), 0.2 M CuSO4 (134 lL, 27 lmol) and 1 M
sodium ascorbate (54 lL, 54 lmol) to yield 20o (64 mg, 98%).

[a]D +62.4 (c 1.09, CHCl3); 1H NMR (500 MHz, CDCl3): d 2.06,
2.07, 2.09, 2.19 (4 s, 12H, 4 COCH3), 2.39 (s, 3H, PhCH3), 3.94
(ddd, J = 2.4, 5.3, 9.0 Hz, 1H, H-5), 4.07 (dd, J = 2.4, 12.5 Hz, 1H,
H-6a), 4.38 (dd, J = 5.4, 12.5 Hz, 1H, H-6b), 5.39 (t, J = 8.9 Hz, 1H,
H-4), 5.98 (dd, J = 3.7, 8.7 Hz, 1H, H-3), 6.01 (dd, J = 2.6, 3.7 Hz,
1H, H-2), 6.05 (d, J = 2.4 Hz, 1H, H-1), 7.26, 7.74 (AA0, BB0 of AA0BB0,

J = 7.9 Hz, 4H, C6H4), 7.90 (s, 1H, C2N3H); 13C NMR (125 MHz,
CDCl3): d 20.6, 20.7, 20.8 (4C, 4 COCH3), 21.3 (PhCH3), 61.6 (C-6),
66.1 (C-4), 68.3 (C-2), 68.8 (C-3), 72.1 (C-5), 83.6 (C-1), 119.3
(C2N3H–C5), 125.8, 126.8, 129.6, 138.6 (6C, C6H4), 148.4 (C2N3H–
C4), 169.3, 169.7, 169.7, 170.5 (4 COCH3); ESI-MS Calcd for
C23H27N3NaO9 [M+Na]+: 512.16, Found: 512.15.

4.1.6.14. 1-(2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)-4-(3-
chlorophenyl)-1,2,3-triazole (20p). Following general proce-
dure C, 18 (50 mg, 0.13 mmol) was reacted with 3-chloro-1-ethi-
nylbenzene (19p, 33 lL, 0.27 mmol), 0.2 M CuSO4 (134 lL,
27 lmol) and 1 M sodium ascorbate (54 lL, 54 lmol) to yield
20p (59 mg, 86%).

[a]D +56.3 (c 1.03, CHCl3); 1H NMR (500 MHz, CDCl3): d 2.07,
2.08, 2.09, 2.19 (4 s, 12H, 4 COCH3), 3.95 (m, 1H, H-5), 4.08 (dd,
J = 2.1, 12.5 Hz, 1H, H-6a), 4.41 (dd, J = 5.4, 12.5 Hz, 1H, H-6b),
5.38 (t, J = 8.7 Hz, 1H, H-4), 5.95 (dd, J = 3.6, 8.6 Hz, 1H, H-3), 6.00
(m, 1H, H-2), 6.07 (d, J = 2.4 Hz, 1H, H-1), 7.34–7.40 (m, 2H,
C6H4–H5, H6), 7.75 (d, J = 7.4 Hz, 1H, C6H4–H4), 7.85 (s, 1H, C6H4-
H2), 7.98 (s, 1H, C2N3H); 13C NMR (125 MHz, CDCl3): d 20.6, 20.7,
20.7, 20.8 (4 COCH3), 61.5 (C-6), 66.1 (C-4), 68.2 (C-2), 68.7 (C-3),
72.4 (C-5), 83.5 (C-1), 120.1 (C2N3H–C5), 124.0 (C6H4–C4), 126.0
(C6H4–C2), 128.7, 130.3 (C6H4–C5, C6), 131.5 (C6H4–C3), 134.9
(C6H4–C1), 147.2 (C2N3H–C4), 169.3, 169.6, 169.7, 170.5 (4
COCH3); ESI-MS Calcd for C22H24ClN3NaO9 [M+Na]+: 532.11,
Found: 532.13.

4.1.6.15. 1-(2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)-4-(4-
trifluoromethylphenyl)-1,2,3-triazole (20q). Following gen-
eral procedure C, 18 (50 mg, 0.13 mmol) was reacted with 1-ethi-
nyl-4-trifluoromethylbenzene (19q, 44 lL, 0.27 mmol), 0.2 M
CuSO4 (134 lL, 27 lmol) and 1 M sodium ascorbate (54 lL,
54 lmol) to yield 20q (62 mg, 85%).

[a]D +54.5 (c 0.95, CHCl3); 1H NMR (500 MHz, CDCl3): d 2.08,
2.09, 2.19 (3 s, 12H, 4 COCH3), 3.97 (ddd, J = 2.5, 5.4, 8.7 Hz, 1H,
H-5), 4.09 (dd, J = 2.5, 12.5 Hz, 1H, H-6a), 4.41 (dd, J = 5.5,
12.5 Hz, 1H, H-6b), 5.39 (t, J = 8.8 Hz, 1H, H-4), 5.95 (dd, J = 3.7,
8.7 Hz, 1H, H-3), 6.00 (dd, J = 3.1, 3.4 Hz, 1H, H-2), 6.09 (d,
J = 2.8 Hz, 1H, H-1), 7.71, 7.98 (AA0, BB0 of AA0BB0, J = 8.1 Hz, 4H,
C6H4), 8.05 (s, 1H, C2N3H); 13C NMR (125 MHz, CDCl3): d 20.60,
20.69, 20.70, 20.73 (4 COCH3), 61.4 (C-6), 66.0 (C-4), 68.2 (C-2),
68.7 (C-3), 72.5 (C-5), 83.5 (C-1), 120.6 (C2N3H–C5), 124.0 (q,
J = 272 Hz, CF3), 126.0 (q, J = 3.8 Hz, 2C, C6H4–C3, C5), 126.1 (2C,
C6H4–C2, C6), 130.5 (d, J = 32.6 Hz, C6H4–C4), 133.1 (C6H4–C1),
147.0 (C2N3H–C4), 169.3, 169.6, 169.7, 170.5 (4 COCH3); ESI-MS
Calcd for C23H24F3N3NaO9 [M+Na]+: 566.14, Found: 566.10.

4.1.6.16. 1-(2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)-4-(3-
pyridyl)-1,2,3-triazole (20r). Following general procedure C,
18 (50 mg, 0.13 mmol) was reacted with 3-ethinylpyridine (19r,
27.6 mg, 0.27 mmol), 0.2 M CuSO4 (134 lL, 27 lmol) and 1 M so-
dium ascorbate (54 lL, 54 lmol). Then the reaction mixture was
diluted with DCM (20 mL) and extracted with 25 mM aq EDTA
(10 mL). The organic layer was dried (Na2SO4), concentrated and
the residue was purified by MPLC on silica (petrol ether/EtOAc)
to yield 20r (61 mg, 96%).

[a]D +56.0 (c 0.70, CHCl3); 1H NMR (500 MHz, CDCl3): d 2.06,
2.06, 2.07, 2.17 (4 s, 12H, 4 COCH3), 3.95 (ddd, J = 2.6, 5.5, 8.8 Hz,
1H, H-5), 4.07 (dd, J = 2.6, 12.5 Hz, 1H, H-6a), 4.40 (dd, J = 5.6,
12.5 Hz, 1H, H-6b), 5.38 (t, J = 8.8 Hz, 1H, H-4), 5.92 (dd, J = 3.7,
8.8 Hz, 1H, H-3), 6.00 (dd, J = 3.2, 3.5 Hz, 1H, H-2), 6.11 (d,
J = 2.9 Hz, 1H, H-1), 7.45 (dd, J = 4.9, 7.2 Hz, 1H, C5H4N-H5), 8.11
(s, 1H, C2N3H), 8.28 (d, J = 7.9 Hz, 1H, C5H4N-H6), 8.62 (m, 1H,
C5H4N-H4), 9.06 (br s, 1H, C5H4N–H2); 13C NMR (125 MHz, CDCl3):
d 20.56, 20.66, 20.68, 20.70 (4 COCH3), 61.4 (C-6), 66.0 (C-4), 68.1
(C-2), 68.6 (C-3), 72.5 (C-5), 83.6 (C-1), 120.4 (C2N3H–C5), 124.1
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(C5H4N–C5), 126.3 (C5H4N–C1), 133.7 (C5H4N–C6), 145.0 (C2N3H–
C4), 146.5 (C5H4N–C2), 148.9 (C5H4N–C4), 169.3, 169.6, 169.6,
170.5 (4 COCH3); ESI-MS Calcd for C21H24N4NaO9 [M+Na]+:
477.16, Found: 477.08.

4.1.6.17. 1-(2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)-4-
phenoxymethyl-1,2,3-triazole (20s). Following general pro-
cedure C, 18 (50 mg, 0.13 mmol) was reacted with phenylpropargyl
ether (19s, 34 lL, 0.27 mmol), 0.2 M CuSO4 (134 lL, 27 lmol) and
1 M sodium ascorbate (54 lL, 54 lmol) to yield 20s (58 mg, 85%).

[a]D +38.8 (c 0.61, CHCl3); 1H NMR (500 MHz, CDCl3): d 2.06,
2.07, 2.09, 2.18 (4 s, 12H, 4 COCH3), 3.90 (m, 1H, H-5), 4.05 (dd,
J = 2.0, 12.5 Hz, 1H, H-6a), 4.37 (dd, J = 5.4, 12.5 Hz, 1H, H-6b),
5.26 (s, 2H, CH2OPh), 5.37 (t, J = 8.9 Hz, 1H, H-4), 5.93 (dd, J = 3.6,
8.8 Hz, 1H, H-3), 5.97 (dd, J = 2.7, 3.3 Hz, 1H, H-2), 6.00 (d,
J = 2.3 Hz, 1H, H-1), 6.98–7.00, 7.30–7.32 (m, 5H, C6H5), 7.81 (s,
1H, C2N3H); 13C NMR (125 MHz, CDCl3): d 20.59, 20.67, 20.69,
20.73 (4 COCH3), 61.5 (C-6), 61.8 (CH2OPh), 66.0 (C-4), 68.2 (C-2),
68.7 (C-3), 72.2 (C-5), 83.6 (C-1), 114.7 (2C, C6H5–C2, C6), 121.4
(C6H5–C4), 123.0 (C2N3H–C5), 129.6 (2C, C6H5–C3, C5), 145.2
(C2N3H–C4), 158.0 (C6H5–C1), 169.3, 169.6, 169.7, 170.5 (4 COCH3);
ESI-MS Calcd for C23H27N3NaO10 [M+Na]+: 528.16, Found: 528.14.

4.1.6.18. 1-(2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)methyl-
4-phenyl-1,2,3-triazole (25n). Following general procedure
C, 24 (40 mg, 0.10 mmol) was reacted with phenylacetylene
(19n, 23 lL, 0.21 mmol), 0.2 M CuSO4 (103 lL, 21 lmol) and 1 M
sodium ascorbate (41 lL, 41 lmol) to yield 25n (47 mg, 93%).

[a]D -1.76 (c 1.50, CHCl3); 1H NMR (500 MHz, CDCl3): d 1.83,
2.08, 2.11, 2.12 (4 s, 12H, 4 COCH3), 4.00 (dd, J = 3.9, 12.2 Hz, 1H,
H-6a), 4.16 (dt, J = 3.5, 9.0 Hz, 1H, H-5), 4.39 (dt, J = 2.6, 8.6 Hz,
1H, H-1), 4.50 (dd, J = 8.8, 14.3 Hz, 1H, H-10a), 4.59 (dd, J = 9.2,
12.1 Hz, 1H, H-6b), 4.66 (dd, J = 2.4, 14.3 Hz, 1H, H-10b), 4.94 (dd,
J = 3.0, 4.9 Hz, 1H, H-4), 5.06 (dd, J = 3.2, 8.4 Hz, 1H, H-2), 5.35 (t,
J = 4.0 Hz, 1H, H-3), 7.32 (t, J = 7.4 Hz, 1H, C6H5-H4), 7.41 (t,
J = 7.4 Hz, 2H, C6H5-H3, H5), 7.83 (d, J = 8.0 Hz, 2H, C6H5-H2, H6),
7.92 (s, 1H, C2N3H); 13C NMR (125 MHz, CDCl3): d 20.4, 20.6,
20.7, 20.8 (4 COCH3), 50.3 (C-10), 60.0 (C-6), 66.8 (C-2), 66.9 (C-
3), 68.0 (C-4), 68.4 (C-1), 73.4 (C-5), 120.9 (C2N3H–C5), 125.6,
128.2, 128.8, 130.5 (6C, C6H5), 148.0 (C2N3H–C4), 169.1, 169.4,
169.6, 170.4 (4 COCH3); ESI-MS Calcd for C23H28N3O9 [M+H]+:
490.18, Found: 490.17.

4.1.6.19. 1-(2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)methyl-
4-(4-methylphenyl)-1,2,3-triazole (25o). Following general
procedure C, 24 (40 mg, 0.10 mmol) was reacted with p-tolylacet-
ylene (19o, 26 lL, 0.21 mmol), 0.2 M CuSO4 (103 lL, 21 lmol) and
1 M sodium ascorbate (41 lL, 41 lmol) to yield 25o (50 mg, 97%).

[a]D -1.57 (c 1.26, CHCl3); 1H NMR (500 MHz, CDCl3): d 1.83,
2.07, 2.10, 2.11 (4 s, 12H, 4 COCH3), 2.36 (s, 3H, PhCH3), 3.99 (dd,
J = 4.0, 12.2 Hz, 1H, H-6a), 4.15 (dt, J = 3.5, 9.0 Hz, 1H, H-5), 4.38
(dt, J = 2.7, 8.6 Hz, 1H, H-1), 4.50 (dd, J = 8.8, 14.4 Hz, 1H, H-10a),
4.58 (dd, J = 9.1, 12.2 Hz, 1H, H-6b), 4.64 (dd, J = 2.8, 14.4 Hz, 1H,
H-10b), 4.94 (dd, J = 3.1, 5.0 Hz, 1H, H-4), 5.06 (dd, J = 3.3, 8.3 Hz,
1H, H-2), 5.34 (dd, J = 3.5, 4.8 Hz, 1H, H-3), 7.21, 7.70 (AA0, BB0 of
AA0BB0, J = 8.0 Hz, 4H, C6H4), 7.87 (s, 1H, C2N3H); 13C NMR
(125 MHz, CDCl3): d 20.41, 20.62, 20.64, 20.74 (4 COCH3), 21.2
(PhCH3), 50.2 (C-10), 60.0 (C-6), 66.8 (C-2), 66.9 (C-3), 68.0 (C-4),
68.5 (C-1), 73.3 (C-5), 120.5 (C2N3H–C5), 125.5, 127.6, 129.5,
138.0 (6C, C6H4), 147.8 (C2N3H–C4), 169.1, 169.4, 169.6, 170.4 (4
COCH3); ESI-MS Calcd for C24H30N3O9 [M+H]+: 504.20, Found:
504.20.

4.1.6.20. 1-(2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)methyl-
4-(3-chlorophenyl)-1,2,3-triazole (25p). Following general
procedure C, 24 (40 mg, 0.10 mmol) was reacted with 3-chloro-1-

ethinylbenzene (19p, 25 lL, 0.21 mmol), 0.2 M CuSO4 (103 lL,
21 lmol) and 1 M sodium ascorbate (41 lL, 41 lmol) to yield
25p (51 mg, 94%).

[a]D -2.55 (c 1.27, CHCl3); 1H NMR (500 MHz, CDCl3): d 1.84,
2.07, 2.10, 2.11 (4 s, 12H, 4 COCH3), 3.99 (dd, J = 4.0, 12.2 Hz, 1H,
H-6a), 4.15 (dt, J = 3.4, 9.0 Hz, 1H, H-5), 4.38 (dt, J = 2.7, 8.6 Hz,
1H, H-1), 4.51 (dd, J = 8.7, 14.4 Hz, 1H, H-10a), 4.60 (dd, J = 9.2,
12.2 Hz, 1H, H-6b), 4.65 (dd, J = 2.7, 14.4 Hz, 1H, H-10b), 4.93 (dd,
J = 2.9, 4.9 Hz, 1H, H-4), 5.03 (dd, J = 3.3, 8.5 Hz, 1H, H-2), 5.34
(dd, J = 3.6, 4.6 Hz, 1H, H-3), 7.27 (m, 1H, C6H4-H6), 7.33 (t,
J = 7.8 Hz, 1H, C6H4–H5), 7.72 (d, J = 7.7 Hz, 1H, C6H4–H4), 7.81 (t,
J = 1.7 Hz, 1H, C6H4-H2), 7.94 (s, 1H, C2N3H); 13C NMR (125 MHz,
CDCl3): d 20.41, 20.60, 20.64, 20.73 (4 COCH3), 50.4 (C-10), 59.9
(C-6), 66.7 (C-2), 66.8 (C-3), 68.0 (C-4), 68.3 (C-1), 73.5 (C-5),
121.3 (C2N3H–C5), 123.6, 125.6, 128.1, 130.1, 132.3, 134.8 (C6H4),
146.5 (C2N3H–C4), 169.1, 169.3, 169.5, 170.3 (4 COCH3); ESI-MS
Calcd for C23H27ClN3O9 [M+H]+: 524.14, Found: 524.04.

4.1.6.21. 1-(2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)methyl-
4-(4-trifluoromethylphenyl)-1,2,3-triazole (25q). Following
general procedure C, 24 (40 mg, 0.10 mmol) was reacted with 1-
ethinyl-4-trifluoromethylbenzene (19q, 34 lL, 0.21 mmol), 0.2 M
CuSO4 (103 lL, 21 lmol) and 1 M sodium ascorbate (41 lL,
41 lmol) to yield 25q (56 mg, 98%).

[a]D +0.47 (c 1.19, CHCl3); 1HNMR (500 MHz, CDCl3): d 1.82, 2.08,
2.10, 2.12 (4 s, 12H, 4 COCH3), 3.97 (dd, J = 4.0, 12.2 Hz, 1H, H-6a),
4.15 (dt, J = 3.4, 9.0 Hz, 1H, H-5), 4.40 (dt, J = 2.5, 8.6 Hz, 1H, H-1),
4.53 (dd, J = 8.7, 14.4 Hz, 1H, H-10a), 4.63 (dd, J = 9.2, 12.2 Hz, 1H,
H-6b), 4.67 (dd, J = 2.7, 14.4 Hz, 1H, H-10b), 4.93 (dd, J = 2.9, 4.7 Hz,
1H, H-4), 5.04 (dd, J = 3.2, 8.6 Hz, 1H, H-2), 5.34 (t, J = 4.0 Hz, 1H,
H-3), 7.66, 7.95 (AA0, BB0 of AA0BB0, J = 8.2 Hz, 4H, C6H4), 8.00 (s,
1H, C2N3H); 13C NMR (125 MHz, CDCl3): d 20.42, 20.63, 20.67,
20.76 (4 COCH3), 50.4 (C-10), 59.9 (C-6), 66.7 (C-2), 66.8 (C-3), 68.0
(C-4), 68.2 (C-1), 73.5 (C-5), 121.7 (C2N3H–C5), 124.0 (q,
J = 272 Hz, CF3), 125.7 (2C, C6H4–C2, C6), 125.8 (q, J = 3.8 Hz, 2C,
C6H4–C3, C5), 129.9 (q, J = 32.5 Hz, C6H4–C4), 133.9 (C6H4–C1),
146.4 (C2N3H–C4), 169.1, 169.4, 169.6, 170.3 (4 COCH3); ESI-MS
Calcd for C24H27F3N3O9 [M+H]+: 558.17, Found: 558.22.

4.1.6.22. 1-(2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)methyl-
4-(3-pyridyl)-1,2,3-triazole (25r). Following general proce-
dure C, 24 (40 mg, 0.10 mmol) was reacted with 3-ethinylpyridine
(19r, 21.2 mg, 0.206 mmol), 0.2 M CuSO4 (103 lL, 21 lmol) and
1 M sodium ascorbate (41 lL, 41 lmol) to yield 25r (50 mg, 98%).

[a]D -0.08 (c 1.04, CHCl3); 1H NMR (500 MHz, CDCl3): d 1.83,
2.07, 2.09, 2.10 (4 s, 12H, 4 COCH3), 3.97 (dd, J = 4.0, 12.2 Hz, 1H,
H-6a), 4.14 (dt, J = 3.4, 8.9 Hz, 1H, H-5), 4.39 (dt, J = 2.6, 8.6 Hz,
1H, H-1), 4.54 (dd, J = 8.6, 14.4 Hz, 1H, H-10a), 4.60 (dd, J = 9.1,
12.2 Hz, 1H, H-6b), 4.66 (dd, J = 2.7, 14.4 Hz, 1H, H-10b), 4.92 (dd,
J = 2.9, 4.8 Hz, 1H, H-4), 5.02 (dd, J = 3.3, 8.5 Hz, 1H, H-2), 5.33
(m, 1H, H-3), 7.37 (m, 1H, C5H4N-H5), 8.02 (s, 1H, C2N3H), 8.21
(d, J = 7.9 Hz, 1H, C5H4N-H6), 8.56 (s, 1H, C5H4N–H2), 9.00 (m,
1H, C5H4N-H4); 13C NMR (125 MHz, CDCl3): d 20.44, 20.61, 20.65,
20.74 (4 COCH3), 50.4 (C-10), 59.9 (C-6), 66.6 (C-2), 66.8 (C-3),
67.9 (C-4), 68.3 (C-1), 73.5 (C-5), 121.3 (C2N3H–C5), 123.8
(C5H4N–C5), 126.8 (C5H4N–C1), 133.0 (C5H4N–C6), 144.6
(C2N3H–C4), 146.7 (C5H4N–C2), 149.0 (C5H4N–C4), 169.1, 169.3,
169.5, 170.3 (4 COCH3); ESI-MS Calcd for C22H27N4O9 [M+H]+:
491.18, Found: 491.17.

4.1.6.23. 1-(2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl)methyl-
4-phenoxymethyl-1,2,3-triazole (25s). Following general
procedure C, 24 (40 mg, 0.10 mmol) was reacted with phenylprop-
argyl ether (19s, 26 lL, 0.21 mmol), 0.2 M CuSO4 (103 lL, 21 lmol)
and 1 M sodium ascorbate (41 lL, 41 lmol) to yield 25s (51 mg,
96%).

O. Schwardt et al. / Bioorg. Med. Chem. 19 (2011) 6454–6473 6467



2.11 – Paper 10 

 284 

[a]D +2.34 (c 1.03, CHCl3); 1H NMR (500 MHz, CDCl3): d 2.00,
2.08, 2.12, 2.13 (4 s, 12H, 4 COCH3), 4.04 (dd, J = 4.1, 12.1 Hz, 1H,
H-6a), 4.15 (m, 1H, H-5), 4.37 (dt, J = 2.4, 8.6 Hz, 1H, H-1), 4.50
(dd, J = 8.7, 14.4 Hz, 1H, H-10a), 4.55 (dd, J = 9.0, 12.1 Hz, 1H, H-
6b), 4.63 (dd, J = 2.5, 14.4 Hz, 1H, H-10b), 4.96 (dd, J = 3.2, 4.9 Hz,
1H, H-4), 5.04 (dd, J = 3.3, 8.3 Hz, 1H, H-2), 5.34 (m, 1H, H-3),
6.96–6.99, 7.29–7.31 (m, 5H, C6H5), 7.80 (s, 1H, C2N3H); 13C NMR
(125 MHz, CDCl3): d 20.49, 20.62, 20.66, 20.74 (4 COCH3), 50.2
(C-10), 60.0 (C-6), 61.9 (CH2OPh), 66.7 (C-2), 66.9 (C-3), 67.8
(C-4), 68.5 (C-1), 73.3 (C-5), 114.6, 121.2 (3C, C6H5), 123.8
(C2N3H–C5), 129.5 (2C, C6H5), 144.3 (C2N3H–C4), 158.1 (C6H4–
C1), 169.1, 169.4, 169.6, 170.4 (4 COCH3); ESI-MS Calcd for
C24H30N3O9 [M+H]+: 520.19, Found: 520.16.

4.1.7. Synthesis of mannosyl triazoles
4.1.7.1. Sodium 4-[4-((a-D-mannopyranosyloxy)methyl)-1H-
1,2,3-triazol-1-yl]-benzoate (5a). To a solution of 12a
(48.0 mg, 85.2 lmol) in MeOH (4 mL) was added freshly prepared
1 M NaOMe in MeOH (0.4 mL) under argon. The mixture was stir-
red at rt for 3 h and then evaporated to dryness. The remains were
dissolved in H2O/dioxane (1:1, 5 mL) and treated with 1 M aq.
NaOH (0.5 mL) for 16 h. The solution was concentrated and the res-
idue purified by MPLC on RP-18 (H2O/MeOH) and P2 size exclusion
chromatography to give 5a (31.2 mg, 91%) as white powder after a
final lyophilization from water.

[a]D +41.7 (c 0.60, H2O); IR (KBr) 3413 (vs b, OH), 1607 (vs,
CO) cm!1; 1H NMR (500 MHz, D2O): d 3.60–3.66 (m, 2H, H-4, H-
5), 3.72 (dd, J = 5.5, 12.1 Hz, 1H, H-6a), 3.78 (dd, J = 3.4, 9.4 Hz,
1H, H-3), 3.82 (dd, J = 1.4, 12.2 Hz, 1H, H-6b), 3.93 (dd, J = 1.7,
3.4 Hz, 1H, H-2), 4.71 (m, 1H, H-10a), 4.82 (m, 1H, H-10b), 4.97 (s,
1H, H-1), 7.68 (m, 2H, C6H4), 7.94 (m, 2H, C6H4), 8.41 (m, 1H,
C2N3H); 13C NMR (125 MHz, D2O): d 59.7 (C-10), 60.8 (C-6), 66.6
(C-4), 69.9 (C-2), 70.4 (C-3), 72.9 (C-5), 99.5 (C-1), 120.2 (2C,
C6H4), 123.3 (C2N3H–C5), 130.3, 137.0, 137.7 (4C, C6H4), 144.2
(C2N3H–C4), 174.1 (CO); HR-MS Calcd for C16H19N3NaO8 [M+H]+:
404.1070, Found: 404.1071.

4.1.7.2. Sodium 3-[4-((a-D-mannopyranosyloxy)methyl)-1H-
1,2,3-triazol-1-yl]-benzoate (5b). According to the proce-
dure described for 5a, 12b (67.0 mg, 0.116 mmol) was subse-
quently treated with 1 M methanolic NaOMe (0.5 mL) in MeOH
(5 mL) and 1 M aq. NaOH (0.5 mL) in H2O/dioxane (1:1, 6 mL) to
yield 5b (37.7 mg, 81%).

[a]D +44.4 (c 0.89, H2O); IR (KBr) 3401 (vs b, OH), 1610 (vs,
CO) cm!1; 1H NMR (500 MHz, D2O): d 3.61–3.66 (m, 2H, H-4,
H-5), 3.72 (dd, J = 5.4, 12.2 Hz, 1H, H-6a), 3.78 (dd, J = 3.5, 9.5 Hz,
1H, H-3), 3.82 (dd, J = 1.5, 12.2 Hz, 1H, H-6b), 3.92 (dd, J = 1.7,
3.3 Hz, 1H, H-2), 4.69 (A of AB, J = 12.8 Hz, 1H, H-10a), 4.80 (m,
1H, H-10b), 4.96 (s, 1H, H-1), 7.51 (m, 1H, C6H4–H5), 7.69 (d,
J = 7.0 Hz, 1H, C6H4–H4), 7.87 (d, J = 7.7 Hz, 1H, C6H4-H6), 8.01 (s,
1H, C6H4-H2), 8.36 (m, 1H, C2N3H); 13C NMR (125 MHz, D2O): d
59.7 (C-10), 60.8 (C-6), 66.7 (C-4), 69.9 (C-2), 70.4 (C-3), 72.9 (C-
5), 99.5 (C-1), 120.8 (C6H4), 123.0 (C2N3H–C5), 123.3, 129.5,
129.8, 135.9, 138.1 (C6H4), 144.1 (C2N3H–C4), 173.6 (CO); HR-MS
Calcd for C16H19N3NaO8 [M+H]+: 404.1070, Found: 404.1068.

4.1.7.3. Sodium 5-[4-((a-D-mannopyranosyloxy)methyl)-1H-
1,2,3-triazol-1-yl]-nicotinate (5c). According to the proce-
dure described for 5a, 12c (41.0 mg, 72.6 lmol) was subsequently
treated with 1 M methanolic NaOMe (0.4 mL) in MeOH (4 mL) and
1 M aq. NaOH (0.4 mL) in H2O/dioxane (1:1, 4 mL) to yield 5c
(23.0 mg, 78%).

[a]D +36.0 (c 0.69, H2O); IR (KBr) 3413 (vs b, OH), 1616 (vs,
CO) cm!1; 1H NMR (500 MHz, D2O): d 3.61–3.66 (m, 2H, H-4, H-
5), 3.73 (dd, J = 5.4, 12.1 Hz, 1H, H-6a), 3.79 (dd, J = 3.5, 9.4 Hz,
1H, H-3), 3.83 (d, J = 12.0 Hz, 1H, H-6b), 3.94 (dd, J = 1.7, 3.2 Hz,

1H, H-2), 4.76, 4.87 (A, B of AB, J = 12.6 Hz, 1H, H-10), 4.99 (d,
J = 0.7 Hz, 1H, H-1), 8.47 (t, J = 2.0 Hz, 1H, C5H3N-H2), 8.56 (m,
1H, C2N3H), 8.96 (d, J = 2.1 Hz, 1H, C5H3N-H6), 8.97 (d, J = 1.4 Hz,
1H, C5H3N-H4); 13C NMR (125 MHz, D2O): d 59.7 (C-10), 60.8 (C-
6), 66.7 (C-4), 69.9 (C-2), 70.4 (C-3), 73.0 (C-5), 99.5 (C-1), 123.6
(C2N3H–C5), 129.5, 133.1, 133.4, 142.6 (C5H3N), 144.6
(C2N3H–C4), 149.7 (C5H3N), 171.1 (CO); HR-MS Calcd for
C15H17N4Na2O8 [M+Na]+: 427.0842, Found: 427.0844.

4.1.7.4. (1-Benzyl-1,2,3-triazol-4-yl)methyl a-D-mannopyrano-
side (5d). Following general procedure A, 14 (40 mg,
0.18 mmol) was reacted with benzyl azide (15d, 34 lL, 0.27 mmol),
CuSO4 (11 mg, 45 lmol) and sodium ascorbate (18 mg, 90 lmol) to
yield 5d (57 mg, 71%).

[a]D +53.3 (c 1.03, MeOH); 1H NMR (500 MHz, CD3OD): d 3.50
(m, 1H, H-5), 3.56 (t, J = 9.4 Hz, 1H, H-4), 3.60–3.68 (m, 2H, H-3,
H-6a), 3.73 (m, 1H, H-2), 3.79 (dd, J = 1.7, 11.7 Hz, 1H, H-6b),
4.60, 4.75 (A, B of AB, J = 12.4 Hz, 2H, H-10), 4.80 (d, J = 1.6 Hz,
1H, H-1), 5.56 (s, 2H, CH2Ph), 7.24–7.41 (m, 5H, C6H5), 7.97 (s,
1H, C2N3H); 13C NMR (125 MHz, CD3OD): d 55.1 (CH2Ph), 60.8 (C-
10), 63.1 (C-6), 68.7 (C-4), 72.1 (C-2), 72.6 (C-3), 75.1 (C-5), 100.9
(C-1), 125.5 (C2N3H–C5), 129.3, 129.8, 130.2, 136.9 (6C, C6H5),
145.9 (C2N3H–C4); HR-MS Calcd for C16H21N3NaO6 [M+Na]+:
374.1328, Found: 374.1334.

4.1.7.5. [1-(40-Aminophenyl)-1,2,3-triazol-4-yl]methyl a-D-man-
nopyranoside hydrochloride (5e). Following general proce-
dure A, 14 (40 mg, 0.18 mmol) was reacted with 4-azidoaniline
hydrochloride (15e, 46 mg, 0.27 mmol), CuSO4 (11 mg, 45 lmol)
and sodium ascorbate (18 mg, 90 lmol) to yield 5e (19 mg, 27%).

[a]D +55.2 (c 1.00, MeOH); 1H NMR (500 MHz, CD3OD): d 3.55–
3.60 (m, 2H, H-4, H-5), 3.64–3.72 (m, 2H, H-3, H-6a), 3.78 (m, 1H,
H-2), 3.83 (m, 1H, H-6b), 4.68, 4.82 (A, B of AB, J = 12.4 Hz, 2H, H-
10), 4.86 (m, 1H, H-1), 6.78, 7.45 (AA0, BB0 of AA0BB0, J = 8.7 Hz, 4H,
C6H4), 8.33 (s, 1H, C2N3H); 13C NMR (125 MHz, CD3OD): d 60.8
(C-10), 63.2 (C-6), 68.8 (C-4), 72.2 (C-2), 72.6 (C-3), 75.2 (C-5),
100.9 (C-1), 116.2 (2C, C6H4), 123.3 (2C, C6H4), 123.7 (C2N3H–C5),
128.8 (C6H4–C1), 145.8 (C2N3H–C4), 150.8 (C6H4–C4); HR-MS Calcd
for C15H21N4O6 [M+H]+: 353.1461, Found: 353.1463.

4.1.7.6. (1-Adamantyl-1,2,3-triazol-4-yl)methyl a-D-mannopy-
ranoside (5f). Following general procedure A, 14 (40 mg,
0.18 mmol) was reacted with 1-azidoadamantane (15f, 48 mg,
0.27 mmol), CuSO4 (11 mg, 45 lmol) and sodium ascorbate
(18 mg, 90 lmol) to yield 5f (20 mg, 28%).

[a]D +50.5 (c 1.04, MeOH); 1H NMR (500 MHz, CD3OD): d 1.76–
1.88 (m, 6H, Ad), 2.24 (s, 9H, Ad), 3.50–3.60 (m, 2H, H-4, H-5),
3.61–3.70 (m, 2H, H-3, H-6a), 3.75 (dd, J = 1.7, 3.3 Hz, 1H, H-2),
3.82 (m, 1H, H-6b), 4.60, 4.76 (A, B of AB, J = 12.3 Hz, 2H, H-10),
4.80 (d, J = 1.4 Hz, 1H, H-1), 8.09 (s, 1H, C2N3H); 13C NMR
(125 MHz, CD3OD): d 31.1, 37.1, 44.0 (10 C, Ad), 60.9 (C-10), 63.2
(C-6), 68.8 (C-4), 72.2 (C-2), 72.6 (C-3), 75.1 (C-5), 100.9 (C-1),
122.2 (C2N3H–C5), 144.6 (C2N3H–C4); HR-MS Calcd for
C19H29N3NaO6 [M+Na]+: 418.1954, Found: 418.1951.

4.1.7.7. [1-(40-Methoxybenzyl)-1,2,3-triazol-4-yl]methyl a-D-
mannopyranoside (5g). Following general procedure A, 14
(50 mg, 0.23 mmol) was reacted with 4-methoxybenzylazide
(15g,38 57 mg, 0.35 mmol), CuSO4 (15 mg, 60 lmol) and sodium
ascorbate (24 mg, 120 lmol) to yield 5g (64 mg, 73%).

[a]D +66.6 (c 1.01, MeOH); 1H NMR (500 MHz, CD3OD): d 3.50
(m, 1H, H-5), 3.57 (t, J = 9.4 Hz, 1H, H-4), 3.61–3.69 (m, 2H, H-3,
H-6a), 3.74 (m, 4H, H-2, OCH3), 3.78 (dd, J = 1.7, 11.7 Hz, 1H, H-
6b), 4.58, 4.73 (A, B of AB, J = 12.4 Hz, 2H, H-10), 4.79 (m, 1H, H-
1), 5.46 (s, 2H, CH2Ar), 6.88, 7.25 (AA0, BB0 of AA0BB0, J = 8.6 Hz,
4H, C6H4), 7.91 (s, 1H, C2N3H);
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13C NMR (125 MHz, CD3OD): d 54.6 (CH2Ar), 55.8 (OCH3), 60.7
(C-10), 63.0 (C-6), 68.6 (C-4), 72.0 (C-2), 72.5 (C-3), 75.0 (C-5),
100.8 (C-1), 115.4 (2C, C6H4), 125.1 (C2N3H–C5), 128.6 (2C, C6H4),
130.8 (C6H4–C1), 145.6 (C2N3H–C4), 161.4 (C6H4–C4); HR-MS Calcd
for C17H23N3NaO7 [M+Na]+: 404.1434, Found: 404.1431.

4.1.7.8. [1-(30-Methoxybenzyl)-1,2,3-triazol-4-yl]methyl a-D-
mannopyranoside (5h). Following general procedure A, 14
(50 mg, 0.23 mmol) was reacted with 3-methoxybenzylazide
(15h,39 57 mg, 0.35 mmol), CuSO4 (15 mg, 60 lmol) and sodium
ascorbate (24 mg, 120 lmol) to yield 5h (68 mg, 77%).

[a]D +62.2 (c 1.00, MeOH); 1H NMR (500 MHz, CD3OD): d 3.52
(m, 1H, H-5), 3.58 (t, J = 9.4 Hz, 1H, H-4), 3.61–3.70 (m, 2H, H-3,
H-6a), 3.70–3.84 (m, 5H, H-2, H-6b, OCH3), 4.60, 4.75 (A, B of AB,
J = 12.3 Hz, 2H, H-10), 4.81 (m, 1H, H-1), 5.52 (s, 2H, CH2Ar), 6.85
(s, 3H, C6H4), 7.24 (t, J = 7.9 Hz, 1H, C6H4), 7.98 (s, 1H, C2N3H);
13C NMR (125 MHz, CD3OD): d 55.5 (CH2Ar), 55.9 (OCH3), 60.8
(C-10), 63.0 (C-6), 68.7 (C-4), 72.1 (C-2), 72.6 (C-3), 75.1 (C-5),
100.9 (C-1), 114.9, 115.2, 121.4 (3C, C6H4), 125.6 (C2N3H–C5),
131.3 (C6H4), 138.2 (C6H4–C1), 145.8 (C2N3H–C4), 161.7 (C6H4–
C3); HR-MS Calcd for C17H23N3NaO7 [M+Na]+: 404.1434, Found:
404.1435.

4.1.7.9. [1-(40-Nitrophenyl)-1,2,3-triazol-4-yl]methyl a-D-man-
nopyranoside (5i). Following general procedure A, 14 (40 mg,
0.18 mmol) was reacted with 1-azido-4-nitrobenzene (15i,40

44 mg, 0.27 mmol), CuSO4 (11 mg, 45 lmol) and sodium ascorbate
(18 mg, 90 lmol) to yield 5i (31 mg, 44%).

[a]D +50.4 (c 1.02, MeOH); 1H NMR (500 MHz, CD3OD): d 3.56–
3.60 (m, 2H, H-4, H-5), 3.64–3.72 (m, 2H, H-3, H-6a), 3.80 (dd,
J = 1.7, 3.3 Hz, 1H, H-2), 3.84 (dd, J = 1.0, 11.7 Hz, 1H, H-66), 4.75
(A of AB, J = 12.5 Hz, 1H, H-10a), 4.88–4.91 (m, 2H, H-1, H-10b),
8.16 (m, 2H, C6H4), 8.44 (m, 2H, C6H4), 8.75 (s, 1H, C2N3H); 13C
NMR (125 MHz, CD3OD): d 60.9 (C-10), 63.2 (C-6), 68.8 (C-4), 72.1
(C-2), 72.6 (C-3), 75.3 (C-5), 101.2 (C-1), 122.0 (2C, C6H4), 123.9
(C2N3H–C5), 126.7 (2C, C6H4), 142.7 (C6H4–C1), 147.1 (C2N3H–
C4), 148.9 (C6H4–C4); HR-MS Calcd for C15H18N4NaO8 [M+Na]+:
405.1022, Found: 405.1020.

4.1.7.10. [1-(Pyridin-40-yl)-1,2,3-triazol-4-yl]methyl a-D-manno-
pyranoside (5j). Prepared from 16j (102 mg, 0.20 mmol)
according to general procedure D. Yield: 58 mg, 85%.

[a]D +70.3 (c 1.00, MeOH); 1H NMR (500 MHz, CD3OD): d 3.53–
3.63 (m, 2H, H-4, H-5), 3.64–3.74 (m, 2H, H-3, H-6a), 3.77–3.87 (m,
2H, H-2, H-6b), 4.73 (A of AB, J = 12.6 Hz, 1H, H-10a), 4.84–4.92 (m,
2H, H-1, H-10b), 7.96, 8.67 (m, 4H, C5H4N), 8.77 (s, 1H, C2N3H); 13C
NMR (125 MHz, CD3OD): d 60.9 (C-10), 63.1 (C-6), 68.7 (C-4), 72.1
(C-2), 72.6 (C-3), 75.2 (C-5), 101.2 (C-1), 115.5 (2C, C5H4N), 123.5
(C2N3H–C5), 145.2 (C2N3H–C4), 147.2 (C5H4N–C1), 152.5 (2C,
C5H4N); HR-MS Calcd for C14H19N4O6 [M+H]+: 339.1305, Found:
339.1302.

4.1.7.11. [1-(40-Fluorophenyl)-1,2,3-triazol-4-yl]methyl a-D-man
nopyranoside (5k). Prepared from 16k (106 mg, 0.20 mmol)
according to general procedure D. Yield: 56 mg, 78%.

[a]D +78.5 (c 1.00, MeOH); 1H NMR (500 MHz, CD3OD): d 3.60–
3.69 (m, 2H, H-4, H-5), 3.71–3.78 (m, 2H, H-3, H-6a), 3.86 (dd,
J = 1.7, 3.4 Hz, 1H, H-2), 3.89 (dd, J = 1.8, 11.8 Hz, 1H, H-6b), 4.77,
4.91 (A, B of AB, J = 12.5 Hz, 2H, H-10), 4.94 (d, J = 1.6 Hz, 1H, H-
1), 7.34, 7.89 (m, 4H, C6H4), 8.56 (s, 1H, C2N3H); 13C NMR
(125 MHz, CD3OD): d 60.9 (C-10), 63.2 (C-6), 68.8 (C-4), 72.2 (C-
2), 72.6 (C-3), 75.2 (C-5), 101.1 (C-1), 117.8 (d, J = 23.8 Hz, 2C,
C6H4), 124.0 (2C, C6H4), 124.0 (C2N3H–C5), 134.9 (d, J = 3.8 Hz,
C6H4–C1), 146.5 (C2N3H–C4), 164.1 (d, J = 246.3 Hz, C6H4–C4);
HR-MS Calcd for C15H18FN3NaO6 [M+Na]+: 378.1077, Found:
378.1079.

4.1.7.12. [1-(30-Fluorophenyl)-1,2,3-triazol-4-yl]methyl a-D-
mannopyranoside (5l). Prepared from 16l (105 mg, 0.20
mmol) according to general procedure D. Yield: 58 mg, 81%.

[a]D +73.8 (c 1.00, MeOH); 1H NMR (500 MHz, CD3OD): d 3.51–
3.62 (m, 2H, H-4, H-5), 3.62–3.73 (m, 2H, H-3, H-6a), 3.78 (dd,
J = 1.6, 3.1 Hz, 1H, H-2), 3.84 (m, 1H, H-6b), 4.71 (A of AB,
J = 12.4 Hz, 1H, H-10a), 4.82–4.89 (m, 2H, H-1, H-10b), 7.23 (m,
1H, C6H4), 7.57 (m, 1H, C6H4), 7.64–7.74 (m, 2H, C6H4), 8.61 (s,
1H, C2N3H); 13C NMR (125 MHz, CD3OD): d 60.8 (C-10), 63.1 (C-
6), 68.8 (C-4), 72.1 (C-2), 72.6 (C-3), 75.2 (C-5), 101.1 (C-1), 109.1
(d, J = 26.3 Hz, C6H4), 116.9 (d, J = 21.3 Hz, C6H4), 117.3 (d,
J = 3.8 Hz, C6H4), 123.8 (C2N3H–C5), 132.9 (d, J = 10.0 Hz, C6H4),
139.7 (d, J = 10.0 Hz, C6H4–C1), 146.6 (C2N3H–C4), 161.7 (d,
J = 245.0 Hz, C6H4–C3); HR-MS Calcd for C15H18FN3NaO6 [M+Na]+:
378.1077, Found: 378.1081.

4.1.7.13. [1-(40-Methoxyphenyl)-1,2,3-triazol-4-yl]methyl a-D-
mannopyranoside (5m). Prepared from 16m (113 mg,
0.21 mmol) according to general procedure D. Yield: 58 mg, 75%.

[a]D +37.4 (c 1.01, MeOH); 1H NMR (500 MHz, CD3OD): d
3.54–3.64 (m, 2H, H-4, H-5), 3.65–3.74 (m, 2H, H-3, H-6a),
3.80 (dd, J = 1.6, 3.2 Hz, 1H, H-2), 3.81–3.87 (m, 4H, H-6b,
OCH3), 4.69, 4.83 (A, B of AB, J = 12.4 Hz, 2H, H-10), 4.87 (m,
1H, H-1), 7.05, 7.68 (AA0, BB0 of AA0BB0, J = 9.0 Hz, 4H, C6H4),
8.42 (s, 1H, C2N3H); 13C NMR (125 MHz, CD3OD): d 56.3
(OCH3), 60.8 (C-10), 63.1 (C-6), 68.8 (C-4), 72.2 (C-2), 72.6 (C-
3), 75.2 (C-5), 101.0 (C-1), 116.0 (2C, C6H4), 123.4 (2C, C6H4),
123.8 (C2N3H–C5), 131.7 (C6H4–C1), 146.1 (C2N3H–C4), 161.7
(C6H4–C4); HR-MS Calcd for C16H21N3NaO7 [M+Na]+: 390.1277,
Found: 390.1279.

4.1.7.14. [1-(30-Methoxybenzyl)-1,2,3-triazol-4-yl]ethyl a-D-man
nopyranoside (6h). Prepared from 17h (53 mg, 94 lmol)
according to general procedure D. Yield: 30 mg, 81%.

[a]D +45.9 (c 1.00, MeOH); 1H NMR (500 MHz, CD3OD): d 2.99 (t,
J = 6.6 Hz, 2H, H-20), 3.41 (m, 1H, H-5), 3.57–3.75 (m, 4H, H-3, H-4,
H-6a, H-10a), 3.71 (dd, J = 1.7, 3.1 Hz, 1H, H-2), 3.78–3.83 (m, 4H, H-
6b, OCH3), 3.97 (dt, J = 6.7, 9.7 Hz, 1H, H-10b), 4.77 (d, J = 1.6 Hz, 1H,
H-1), 5.54 (s, 2H, CH2Ar), 6.80–6.96, 7.29 (m, 4H, C6H4), 7.79 (s, 1H,
C2N3H); 13C NMR (125 MHz, CD3OD): d 27.2 (C-20), 54.9 (CH2Ar),
55.9 (OCH3), 63.0 (C-6), 67.6 (C-10), 68.7 (C-4), 72.2 (C-2), 72.7
(C-3), 74.9 (C-5), 101.7 (C-1), 114.8, 115.1, 121.2 (3C, C6H4),
124.2 (C2N3H–C5), 131.3 (C6H4), 138.4 (C6H4–C1), 146.7 (C2N3H–
C4), 161.7 (C6H4–C3); HR-MS Calcd for C18H25N3NaO7 [M+Na]+:
418.1590, Found: 418.1591.

4.1.7.15. [1-(40-Nitrophenyl)-1,2,3-triazol-4-yl]ethyl a-D-manno-
pyranoside (6i). Prepared from 17i (61 mg, 0.11 mmol)
according to general procedure D. Yield: 37 mg, 86%.

[a]D +44.4 (c 1.00, MeOH); 1H NMR (500 MHz, CD3OD): d 3.13 (t,
J = 6.5 Hz, 2H, H-20), 3.42 (m, 1H, H-5), 3.60 (t, J = 9.5 Hz, 1H, H-4),
3.64–3.73 (m, 2H, H-3, H-6a), 3.78–3.88 (m, 3H, H-2, H-6b, H-10a),
4.09 (dt, J = 6.6, 9.8 Hz, 1H, H-10b), 4.83 (d, J = 1.5 Hz, 1H, H-1), 8.18,
8.48 (m, 4H, C6H4), 8.55 (s, 1H, C2N3H); 13C NMR (125 MHz,
CD3OD): d 27.3 (C-20), 63.1 (C-6), 67.4 (C-10), 68.7 (C-4), 72.2 (C-
2), 72.8 (C-3), 75.0 (C-5), 101.8 (C-1), 122.0 (2C, C6H4), 122.5
(C2N3H–C5), 126.6 (2C, C6H4), 142.8 (C6H4–C1), 148.1 (C2N3H–
C4), 148.9 (C6H4–C4); HR-MS Calcd for C16H20N4NaO8 [M+Na]+:
419.1179, Found: 419.1177.

4.1.7.16. [1-(Pyridin-40-yl)-1,2,3-triazol-4-yl]ethyl a-D-manno-
pyranoside (6j). Prepared from 17j (63 mg, 0.12 mmol)
according to general procedure D. Yield: 31 mg, 73%.

[a]D +48.3 (c 1.00, MeOH); 1H NMR (500 MHz, CD3OD): d 3.12 (t,
J = 6.5 Hz, 2H, H-20), 3.43 (m, 1H, H-5), 3.61 (t, J = 9.5 Hz, 1H, H-4),
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3.64–3.73 (m, 2H, H-3, H-6a), 3.77–3.87 (m, 3H, H-2, H-6b, H-10a),
4.08 (dt, J = 6.6, 9.8 Hz, 1H, H-10b), 4.83 (d, J = 1.5 Hz, 1H, H-1), 7.99
(dd, J = 1.6, 4.8 Hz, 2H, C5H4N), 8.58 (s, 1H, C2N3H), 8.74 (m, 2H,
C5H4N); 13C NMR (125 MHz, CD3OD): d 27.2 (C-20), 63.1 (C-6),
67.3 (C-10), 68.7 (C-4), 72.2 (C-2), 72.7 (C-3), 75.0 (C-5), 101.8 (C-
1), 115.5 (2C, C5H4N), 122.0 (C2N3H–C5), 145.3 (C5H4N–C1),
148.1 (C2N3H–C4), 152.4 (2C, C5H4N); HR-MS Calcd for
C15H21N4O6 [M+H]+: 353.1461, Found: 353.1460.

4.1.7.17. [1-(40-Fluorophenyl)-1,2,3-triazol-4-yl]ethyl a-D-man-
nopyranoside (6k). Prepared from 17k (65 mg, 0.12 mmol)
according to general procedure D. Yield: 40 mg, 90%.

[a]D +50.7 (c 1.00, MeOH); 1H NMR (500 MHz, CD3OD): d 3.10 (t,
J = 6.5 Hz, 2H, H-20), 3.43 (m, 1H, H-5), 3.61 (t, J = 9.5 Hz, 1H, H-4),
3.65–3.74 (m, 2H, H-3, H-6a), 3.77–3.87 (m, 3H, H-2, H-6b, H-10a),
4.07 (dt, J = 6.6, 9.8 Hz, 1H, H-10b), 4.82 (d, J = 1.6 Hz, 1H, H-1), 7.34,
7.88 (m, 4H, C6H4), 8.33 (s, 1H, C2N3H); 13C NMR (125 MHz,
CD3OD): d 27.2 (C-20), 63.1 (C-6), 67.5 (C-10), 68.7 (C-4), 72.2 (C-
2), 72.8 (C-3), 75.0 (C-5), 101.8 (C-1), 117.8 (d, J = 23.8 Hz, 2C,
C6H4), 122.6 (C2N3H–C5), 124.0 (d, J = 8.8 Hz, 2C, C6H4), 135.0 (d,
J = 2.5 Hz, C6H4–C1), 147.4 (C2N3H–C4), 164.1 (d, J = 246.3 Hz,
C6H4–C4); HR-MS Calcd for C16H20FN3NaO6 [M+Na]+: 392.1234,
Found: 392.1238.

4.1.7.18. 1-(a-D-Mannopyranosyl)-4-phenyl-1,2,3-triazole
(7n). Prepared from 20n (50 mg, 0.11 mmol) according to
general procedure D. Yield: 29 mg, 89%.

[a]D +98.0 (c 1.34, MeOH); 1H NMR (500 MHz, CD3OD): d 3.38
(ddd, J = 2.5, 6.6, 8.9 Hz, 1H, H-5), 3.76–3.80 (m, 2H, H-4, H-6a),
3.85 (dd, J = 2.5, 12.1 Hz, 1H, H-6b), 4.12 (dd, J = 3.5, 8.5 Hz, 1H, H-
3), 4.76 (t, J = 3.1 Hz, 1H, H-2), 6.08 (d, J = 2.7 Hz, 1H, H-1), 7.34–
7.38, 7.43–7.46, 7.84–7.85 (m, 5H, C6H5), 8.51 (s, 1H, C2N3H); 13C
NMR (125 MHz, CD3OD): d 62.6 (C-6), 68.7 (C-4), 70.1 (C-2), 72.6
(C-3), 78.7 (C-5), 88.5 (C-1), 122.1 (C2N3H–C5), 126.8, 129.5, 130.0,
131.4 (6C, C6H5), 149.0 (C2N3H–C4); HR-MS Calcd for C14H17N3NaO5

[M+Na]+: 330.1066, Found: 330.1060.

4.1.7.19. 1-(a-D-Mannopyranosyl)-4-(4-methylphenyl)-1,2,3-tri-
azole (7o). Prepared from 20o (46 mg, 94 lmol) according to
general procedure D. Yield: 20 mg, 65%.

[a]D +84.6 (c 0.63, MeOH); 1H NMR (500 MHz, CD3OD): d 2.36 (s,
3H, PhCH3), 3.36 (ddd, J = 2.3, 6.7, 8.9 Hz, 1H, H-5), 3.74–3.78 (m,
2H, H-4, H-6a), 3.84 (dd, J = 2.4, 12.1 Hz, 1H, H-6b), 4.10 (dd,
J = 3.5, 8.5 Hz, 1H, H-3), 4.74 (t, J = 3.0 Hz, 1H, H-2), 6.05 (d,
J = 2.6 Hz, 1H, H-1), 7.25, 7.72 (AA0, BB0 of AA0BB0, J = 8.0 Hz, 4H,
C6H4), 8.45 (s, 1H, C2N3H); 13C NMR (125 MHz, CD3OD): d 21.3
(PhCH3), 62.6 (C-6), 68.7 (C-4), 70.1 (C-2), 72.6 (C-3), 78.7 (C-5),
88.5 (C-1), 121.7 (C2N3H–C5), 126.7, 128.6, 130.6, 139.6 (6C,
C6H5), 149.2 (C2N3H–C4); HR-MS Calcd for C15H18N3NaO5

[M+Na]+: 344.1222, Found: 344.1215.

4.1.7.20. 4-(3-Chlorophenyl)-1-(a-D-mannopyranosyl)-1,2,3-tri-
azole (7p). Prepared from 20p (43 mg, 84 lmol) according to
general procedure D. Yield: 25 mg, 87%.

[a]D +89.2 (c 0.50, MeOH); 1H NMR (500 MHz, CD3OD): d 3.37
(ddd, J = 2.4, 6.7, 8.7 Hz, 1H, H-5), 3.77 (dd, J = 6.6, 12.2 Hz, 1H,
H-6a), 3.78 (t, J = 8.6 Hz, 1H, H-4), 3.87 (dd, J = 2.4, 12.1 Hz, 1H,
H-6b), 4.11 (dd, J = 3.5, 8.3 Hz, 1H, H-3), 4.75 (t, J = 3.1 Hz, 1H,
H-2), 6.07 (d, J = 2.6 Hz, 1H, H-1), 7.37 (d, J = 8.1 Hz, 1H, C6H4-
H6), 7.44 (t, J = 7.9 Hz, 1H, C6H4–H5), 7.79 (d, J = 7.7 Hz, 1H,
C6H4–H4), 7.90 (s, 1H, C6H4-H2), 8.58 (s, 1H, C2N3H); 13C NMR
(125 MHz, CD3OD): d 62.6 (C-6), 68.7 (C-4), 70.1 (C-2), 72.6 (C-
3), 78.7 (C-5), 88.6 (C-1), 122.7 (C2N3H–C5), 125.0, 126.6, 129.4,
131.6, 133.5, 136.0 (C6H4), 147.7 (C2N3H–C4); HR-MS Calcd for
C14H16ClN3NaO5 [M+Na]+: 364.0676, Found: 364.0676.

4.1.7.21. 4-(4-Trifluoromethylphenyl)-1-(a-D-mannopyranosyl)-
1,2,3-triazole (7q). Prepared from 20q (46 mg, 85 lmol)
according to general procedure D. Yield: 27 mg, 86%.

[a]D +83.4 (c 0.34, MeOH); 1H NMR (500 MHz, CD3OD): d 3.38
(m, 1H, H-5), 3.77–3.81 (m, 2H, H-4, H-6a), 3.85 (dd, J = 1.9,
12.0 Hz, 1H, H-6b), 4.11 (dd, J = 3.3, 8.4 Hz, 1H, H-3), 4.76 (t,
J = 2.7 Hz, 1H, H-2), 6.10 (d, J = 2.3 Hz, 1H, H-1), 7.76, 8.06 (AA0,
BB0 of AA0BB0, J = 8.0 Hz, 4H, C6H4), 8.66 (s, 1H, C2N3H); 13C NMR
(125 MHz, CD3OD): d 62.6 (C-6), 68.7 (C-4), 70.1 (C-2), 72.6 (C-3),
78.8 (C-5), 88.6 (C-1), 123.2 (C2N3H–C5), 125.6 (q, J = 272 Hz,
CF3), 127.0 (q, J = 3.7 Hz, 2C, C6H4–C3, C5), 127.2 (2C, C6H4–C2,
C6), 131.2 (d, J = 32.4 Hz, C6H4–C4), 135.5 (C6H4–C1), 147.6
(C2N3H–C4); HR-MS Calcd for C15H16F3N3NaO5 [M+Na]+:
398.0940, Found: 398.0942.

4.1.7.22. 1-(a-D-Mannopyranosyl)-4-(3-pyridyl)-1,2,3-triazole
(7r). Prepared from 20r (47 mg, 98 lmol) according to gen-
eral procedure D. Yield: 28 mg, 92%.

[a]D +86.7 (c 0.93, MeOH); 1H NMR (500 MHz, CD3OD): d 3.40
(ddd, J = 2.3, 6.6, 8.6 Hz, 1H, H-5), 3.77–3.82 (m, 2H, H-4, H-6a),
3.86 (dd, J = 2.4, 12.1 Hz, 1H, H-6b), 4.11 (dd, J = 3.5, 8.4 Hz, 1H,
H-3), 4.76 (t, J = 3.1 Hz, 1H, H-2), 6.11 (d, J = 2.7 Hz, 1H, H-1),
7.54 (dd, J = 5.0, 7.8 Hz, 1H, C5H4N-H5), 8.31 (m, 1H, C5H4N-H6),
8.53 (dd, J = 1.4, 4.9 Hz, 1H, C5H4N-H4), 8.68 (s, 1H, C2N3H), 9.04
(d, J = 1.5, 1H, C5H4N–H2); 13C NMR (125 MHz, CD3OD): d 62.6
(C-6), 68.7 (C-4), 70.1 (C-2), 72.6 (C-3), 78.8 (C-5), 88.6 (C-1),
123.1 (C2N3H–C5), 125.6 (C5H4N–C5), 128.5 (C5H4N–C1), 135.0
(C5H4N–C6), 145.6 (C2N3H–C4), 147.3 (C5H4N–C2), 149.7 (C5H4N–
C4); HR-MS Calcd for C13H16N4NaO5 [M+Na]+: 331.1018, Found:
331.1013.

4.1.7.23. 1-(a-D-Mannopyranosyl)-4-phenoxymethyl-1,2,3-tria-
zole (7s). Prepared from 20s (46 mg, 90 lmol) according to
general procedure D. Yield: 27 mg, 89%.

[a]D +57.0 (c 0.90, MeOH); 1H NMR (500 MHz, CD3OD): d 3.30
(m, 1H, H-5), 3.70–3.74 (m, 2H, H-4, H-6a), 3.78 (dd, J = 1.8,
12.1 Hz, 1H, H-6b), 4.04 (dd, J = 3.2, 8.4 Hz, 1H, H-3), 4.67 (m, 1H,
H-2), 5.14 (s, 2H, CH2OPh), 6.00 (d, J = 1.7 Hz, 1H, H-1), 6.91 (t,
J = 7.3 Hz, 1H, C6H5-H4), 6.96 (d, J = 8.1 Hz, 2H, C6H5-H2, H6),
7.24 (t, J = 7.8 Hz, 2H, C6H5-H3, H5), 8.20 (s, 1H, C2N3H); 13C NMR
(125 MHz, CD3OD): d 62.2 (CH2OPh), 62.5 (C-6), 68.6 (C-4), 70.1
(C-2), 72.5 (C-3), 78.6 (C-5), 88.4 (C-1), 115.8 (2C, C6H5–C2, C6),
122.3 (C6H5–C4), 125.3 (C2N3H–C5), 130.5 (2C, C6H5–C3, C5),
145.4 (C2N3H–C4), 159.7 (C6H5–C1); HR-MS Calcd for
C15H19N3NaO5 [M+Na]+: 360.1172, Found: 360.1171.

4.1.7.24. 1-(a-D-Mannopyranosyl)methyl-4-phenyl-1,2,3-tria-
zole (8n). Prepared from 25n (38 mg, 78 lmol) according to
general procedure D. Yield: 22 mg, 87%.

[a]D +30.6 (c 0.91, MeOH); 1H NMR (500 MHz, CD3OD): d 3.73–
3.75 (m, 2H, H-4, H-6a), 3.79–3.85 (m, 3H, H-2, H-3, H-5), 3.88 (dd,
J = 7.2, 11.5 Hz, 1H, H-6b), 4.25 (dt, J = 4.8, 7.9 Hz, 1H, H-1), 4.73
(dd, J = 8.0, 14.4 Hz, 1H, H-10a), 4.76 (dd, J = 4.5, 14.3 Hz, 1H, H-
10b), 7.33 (t, J = 7.7 Hz, 1H, C6H5-H4), 7.42 (t, J = 7.8 Hz, 2H, C6H5-
H3, H5), 7.81 (d, J = 8.0 Hz, 2H, C6H5-H2, H6), 8.45 (s, 1H, C2N3H);
13C NMR (125 MHz, CD3OD): d 50.9 (C-10), 62.1 (C-6), 69.1 (C-2),
70.0 (C-4), 72.5 (C-3), 74.9 (C-1), 78.5 (C-5), 123.4 (C2N3H–C5),
126.7, 129.3, 129.9, 131.8 (6C, C6H5), 148.8 (C2N3H–C4); HR-MS
Calcd for C15H19NaN3O5 [M+Na]+: 344.1222, Found: 344.1222.

4.1.7.25. 1-(a-D-Mannopyranosyl)methyl-4-(4-methylphenyl)-
1,2,3-triazole (8o). Prepared from 25o (42 mg, 84 lmol)
according to general procedure D. Yield: 25 mg, 87%.

[a]D +33.8 (c 1.12, MeOH); 1H NMR (500 MHz, CD3OD): d 2.35
(PhCH3), 3.72–3.76 (m, 2H, H-4, H-6a), 3.80 (dt, J = 3.2, 7.1 Hz,
1H, H-5), 3.81–3.85 (m, 2H, H-2, H-3), 3.87 (dd, J = 7.1, 11.5 Hz,
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1H, H-6b), 4.24 (dt, J = 5.1, 7.4 Hz, 1H, H-1), 4.72–4.75 (m, 2H, H-
10), 7.24, 7.69 (AA0, BB0 of AA0BB0, J = 8.0 Hz, 4H, C6H4), 8.40 (s, 1H,
C2N3H); 13C NMR (125 MHz, CD3OD): d 21.3 (PhCH3), 50.8 (C-10),
62.0 (C-6), 69.1 (C-2), 69.9 (C-4), 72.4 (C-3), 75.0 (C-1), 78.4 (C-
5), 123.0 (C2N3H–C5), 126.6, 128.9, 130.5, 139.3 (6C, C6H5), 148.9
(C2N3H–C4); HR-MS Calcd for C16H21NaN3O5 [M+Na]+: 358.1379,
Found: 358.1380.

4.1.7.26. 4-(3-Chlorophenyl)-1-(a-D-mannopyranosyl)methyl-
1,2,3-triazole (8p). Prepared from 25p (40 mg, 77 lmol)
according to general procedure D. Yield: 23 mg, 83%.

[a]D +31.5 (c 1.05, MeOH); 1H NMR (500 MHz, CD3OD): d 3.73
(m, 1H, H-4), 3.74 (dd, J = 3.0, 11.5 Hz, 1H, H-6a), 3.79–3.82 (m,
2H, H-3, H-5), 3.83 (dd, J = 3.4, 8.7 Hz, 1H, H-2), 3.89 (dd, J = 7.4,
11.6 Hz, 1H, H-6b), 4.24 (dt, J = 4.7, 7.9 Hz, 1H, H-1), 4.73 (dd,
J = 8.0, 14.4 Hz, 1H, H-10a), 4.77 (dd, J = 4.4, 14.5 Hz, 1H, H-10b),
7.33 (dd, J = 0.9, 8.1 Hz, 1H, C6H4-H6), 7.41 (t, J = 7.9 Hz, 1H,
C6H4–H5), 7.74 (d, J = 7.8 Hz, 1H, C6H4–H4), 7.90 (t, J = 1.6 Hz, 1H,
C6H4-H2), 8.51 (s, 1H, C2N3H); 13C NMR (125 MHz, CD3OD): d
50.9 (C-10), 62.0 (C-6), 69.0 (C-2), 70.0 (C-4), 72.4 (C-3), 74.7 (C-
1), 78.5 (C-5), 124.0 (C2N3H–C5), 124.9, 126.5, 129.1, 131.5,
133.9, 135.9 (6C, C6H4), 147.4 (C2N3H–C4); HR-MS Calcd for
C15H18ClNaN3O5 [M+Na]+: 378.0833, Found: 378.0833.

4.1.7.27. 4-(4-Trifluoromethylphenyl)-1-(a-D-mannopyrano-
syl)methyl-1,2,3-triazole (8q). Prepared from 25q (47 mg,
84 lmol) according to general procedure D. Yield: 28 mg, 86%.

[a]D +32.6 (c 1.03, MeOH); 1H NMR (500 MHz, CD3OD): d 3.73–
3.76 (m, 2H, H-4, H-6a), 3.81–3.86 (m, 3H, H-2, H-3, H-5), 3.89 (dd,
J = 7.5, 11.5 Hz, 1H, H-6b), 4.25 (dt, J = 4.8, 7.9 Hz, 1H, H-1), 4.76
(dd, J = 8.0, 14.5 Hz, 1H, H-10a), 4.79 (dd, J = 4.4, 14.5 Hz, 1H, H-
10b), 7.72, 8.01 (AA0, BB0 of AA0BB0, J = 8.2 Hz, 4H, C6H4), 8.60 (s,
1H, C2N3H); 13C NMR (125 MHz, CD3OD): d 51.0 (C-10), 62.0 (C-6),
69.0 (C-2), 70.0 (C-4), 72.4 (C-3), 74.7 (C-1), 78.6 (C-5), 124.5
(C2N3H–C5), 125.6 (q, J = 271 Hz, CF3), 126.9 (q, J = 3.7 Hz, 2C,
C6H4–C3, C5), 127.0 (2C, C6H4–C2, C6), 130.9 (q, J = 32.4 Hz,
C6H4–C4), 135.7 (C6H4–C1), 147.2 (C2N3H–C4); HR-MS Calcd for
C16H18F3NaN3O5 [M+Na]+: 412.1096, Found: 412.1095.

4.1.7.28. 1-(a-D-Mannopyranosyl)methyl-4-(3-pyridyl)-1,2,3-tri-
azole (8r). Prepared from 25r (44 mg, 90 lmol) according to
general procedure D. Yield: 24 mg, 83%.

[a]D +31.2 (c 0.99, MeOH); 1H NMR (500 MHz, CD3OD): d 3.71–
3.74 (m, 2H, H-4, H-6a), 3.80–3.83 (m, 3H, H-2, H-3, H-5), 3.89 (dd,
J = 7.7, 11.6 Hz, 1H, H-6b), 4.23 (dt, J = 4.6, 8.6 Hz, 1H, H-1), 4.76
(dd, J = 8.4, 14.4 Hz, 1H, H-10a), 4.80 (dd, J = 4.2, 14.4 Hz, 1H, H-
10b), 7.53 (dd, J = 5.0, 7.9 Hz, 1H, C5H4N-H5), 8.28 (d, J = 8.0 Hz,
1H, C5H4N-H6), 8.51 (d, J = 4.8 Hz, 1H, C5H4N-H4), 8.63 (s, 1H,
C2N3H), 9.02 (s, 1H, C5H4N–H2); 13C NMR (125 MHz, CD3OD): d
48.1 (C-10), 60.6 (C-6), 67.2 (C-2), 68.5 (C-4), 70.6 (C-3), 75.1 (C-
1), 76.2 (C-5), 123.2 (C2N3H–C5), 124.5 (C5H4N–C5), 126.82
(C5H4N–C1), 134.3 (C5H4N–C6), 144.4 (C2N3H–C4), 145.7 (C5H4N–
C2), 148.4 (C5H4N–C4); HR-MS Calcd for C14H18NaN4O5 [M+Na]+:
345.1175, Found: 345.1175.

4.1.7.29. 1-(a-D-Mannopyranosyl)methyl-4-phenoxymethyl-
1,2,3-triazole (8s). Prepared from 25s (41 mg, 79 lmol)
according to general procedure D. Yield: 23 mg, 83%.

[a]D +22.8 (c 1.01, MeOH); 1H NMR (500 MHz, CD3OD): d 3.69–
3.76 (m, 3H, H-4, H-5, H-6a), 3.79–3.82 (m, 2H, H-2, H-3), 3.83 (dd,
J = 6.5, 11.5 Hz, 1H, H-6b), 4.19 (dt, J = 5.0, 7.0 Hz, 1H, H-1), 4.69
(dd, J = 7.5, 14.5 Hz, 1H, H-10a), 4.72 (dd, J = 5.0, 14.5 Hz, 1H, H-
10b), 5.15 (s, 2H, CH2OPh), 6.94 (t, J = 7.4 Hz, 1H, C6H5-H4), 7.00
(d, J = 8.1 Hz, 2H, C6H5-H2, H6), 7.27 (m, 2H, C6H5-H3, H5), 8.17
(s, 1H, C2N3H); 13C NMR (125 MHz, CD3OD): d 50.9 (C-10), 62.0
(C-6), 62.3 (CH2OPh), 69.0 (C-2), 69.8 (C-4), 72.4 (C-3), 74.9 (C-1),

78.4 (C-5), 115.9 (2C, C6H5–C2, C6), 122.2 (C6H5–C4), 126.4
(C2N3H–C5), 130.5 (2C, C6H5–C3, C5), 145.0 (C2N3H–C4), 159.8
(C6H5–C1); HR-MS Calcd for C16H21N3NaO5 [M+Na]+: 374.1328,
Found: 374.1328.

4.2. Biological evaluation

4.2.1. Competitive binding assay
A recombinant protein consisting of the CRD of FimH linked

with a thrombin cleavage site to a 6His-tag (FimH-CRD-Th-6His)
was expressed in E. coli strain HM125 and purified by affinity chro-
matography.45 To determine the affinity of the various FimH antag-
onists, an competitive binding assay described previously45 was
applied. Microtiter plates (F96 MaxiSorp, Nunc) were coated with
100 lL/well of a 10 lg/mL solution of FimH-CRD-Th-6His in
20 mM HEPES, 150 mMNaCl and 1 mM CaCl2, pH 7.4 (assay buffer)
overnight at 4 !C. The coating solution was discarded and the wells
were blocked with 150 lL/well of 3% BSA in assay buffer for 2 h at
4 !C. After three washing steps with assay buffer (150 lL/well), a
four-fold serial dilution of the test compound (50 lL/well) in assay
buffer containing 5% DMSO and streptavidin-peroxidase coupled
TM-PAA polymer (50 lL/well of a 0.5 lg/mL solution) were added.
On each individual microtiter plate n-heptyl a-D-mannopyranoside
(1b) was tested in parallel. The plates were incubated for 3 h at
25 !C and 350 rpm and then carefully washed four times with
150 lL/well assay buffer. After the addition of 100 lL/well of
ABTS-substrate, the colorimetric reaction was allowed to develop
for 4 min, then stopped by the addition of 2% aqueous oxalic acid
before the optical density (OD) was measured at 415 nm on a
microplate-reader (Spectramax 190, Molecular Devices, California,
USA). The IC50 values of the compounds tested in duplicates were
calculated with prism software (GraphPad Software, Inc., La Jolla,
USA). The IC50 defines the molar concentration of the test com-
pound that reduces the maximal specific binding of TM-PAA poly-
mer to FimH-CRD by 50%. The relative IC50 (rIC50) is the ratio of the
IC50 of the test compound to the IC50 of 1b.

4.2.2. Aggregometry assay
The aggregometry assay was carried out as previously de-

scribed.46 In short, the percentage of aggregation of E. coli
UTI8959 (UTI89wt) with guinea pig erythrocytes (GPE) was quanti-
tatively determined by measuring the optical density at 740 nm
and 37 !C under stirring at 1000 rpm using an APACT 4004 aggre-
gometer (Endotell AG, Allschwil, Switzerland). GPE were separated
from guinea pig blood (Charles River Laboratories, Sulzfeld, Ger-
many) using Histopaque (density of 1.077 g/mL at 24 !C, Sigma-Al-
drich, Buchs, Switzerland). Prior to the measurements, the cell
densities of E. coli and GPE were adjusted to an OD600 of 4, corre-
sponding to 1.9 ! 108 CFU/mL and 2.2 ! 106 cells/mL respectively.
For the calibration of the instrument, the aggregation of protein
poor plasma (PPP) using PBS alone was set as 100% and the aggre-
gation of protein rich plasma (PRP) using GPE as 0%. After calibra-
tion, measurements were performed with 250 lL GPE and 50 lL
bacterial suspension and the aggregation monitored over 600 s.
After the aggregation phase of 600 s, 25 lL of antagonist in PBS
were added to each cuvette and disaggregation was monitored
for 1400 s. UTI89 DfimA-H was used as negative control.

4.3. Determination of the pharmacokinetic parameters

4.3.1. Materials
Dimethyl sulfoxide (DMSO) and 1-octanol were purchased from

Sigma-Aldrich (St. Louis MI, USA). PAMPA System Solution, GIT-0
Lipid Solution, and Acceptor Sink Buffer were ordered from pIon
(Woburn MA, USA). Acetonitrile (MeCN) was bought from Acros
Organics (Geel, Belgium).
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4.3.2. LC–MS measurements
Analyses were performed using an Agilent 1100/1200 Series

HPLC System coupled to a 6410 Triple Quadrupole mass detector
(Agilent Technologies, Inc., Santa Clara CA, USA) equippedwith elec-
trospray ionization. The system was controlled with the Agilent
MassHunter Workstation Data Acquisition software (version
B.01.04). The column used was an Atlantis! T3 C18 column (2.1 x
50 m) with a 3 lm particle size (Waters Corp., Milford MA, USA).
Themobile phase consisted of two eluents: solvent A (H2O, contain-
ing 0.1% formic acid, v/v) and solvent B (MeCN, containing 0.1% for-
mic acid, v/v), both delivered at 0.6 mL/min. The gradient was
ramped from 95% A/5% B to 5% A/95% B over 1 min, and then hold
at 5% A/95% B for 0.1 min. The system was then brought back to
95% A/5% B, resulting in a total duration of 4 min. MS parameters
such as fragmentor voltage, collision energy and polarity were opti-
mized individually for each compound, and the molecular ion was
followed for each compound in the multiple reaction monitoring
mode. Theconcentrationsof the analyteswerequantifiedby theAgi-
lent Mass Hunter Quantitative Analysis software (version B.01.04).

4.3.3. log D7.4 determination
The in silico prediction tool ALOGPS60 was used to estimate the

log P values. Depending on these values, the compounds were clas-
sified into three categories: hydrophilic compounds (log P below
zero), moderately lipophilic compounds (log P between zero and
one) and lipophilic compounds (log P above one). For each cate-
gory, two different ratios (volume of 1-octanol to volume of buffer)
were defined as experimental parameters:

Compound type log P Ratios (1-octanol:buffer)

Hydrophilic <0 30:140, 40:130
Moderately lipophilic 0–1 70:110, 110:70
Lipophilic >1 3:180, 4:180

Equal amounts of phosphate buffer (0.1 M, pH 7.4) and 1-octa-
nol were mixed and shaken vigorously for 5 min to saturate the
phases. The mixture was left until separation of the two phases oc-
curred, and the buffer was retrieved. Stock solutions of the test
compounds were diluted with buffer to a concentration of 1 lM.
For each compound, six determinations, that is, three determina-
tions per 1-octanol : buffer ratio, were performed in different wells
of a 96-well plate. The respective volumes of buffer containing ana-
lyte (1 lM) were pipetted to the wells and covered by saturated 1-
octanol according to the chosen volume ratio. The plate was sealed
with aluminium foil, shaken (1350 rpm, 25 "C, 2 h) on a Heidoph
Titramax 1000 plate-shaker (Heidolph Instruments GmbH & Co.
KG, Schwabach, Germany) and centrifuged (2000 rpm, 25 "C,
5 min, 5804 R Eppendorf centrifuge, Hamburg, Germany). The
aqueous phase was transferred to a 96-well plate for analysis by li-
quid chromatography-mass spectrometry (LC-MS).

log D7.4 was calculated from the 1-octanol : buffer ratio (o:b),
the initial concentration of the analyte in buffer (1 lM), and the
concentration of the analyte in buffer (cB) with equilibration:

logD7:4 ¼ 1lM " cB
cB

# 1
o : b

! "

The average of the three log D7.4 values per 1-octanol:buffer ra-
tio was calculated. If the two mean values obtained for a com-
pound did not differ by more than 0.1 unit, the results were
accepted.

4.3.4. Parallel artificial membrane permeation assay (PAMPA)
log Pe was determined in a 96-well format with the PAMPA50

permeation assay. For each compound, measurements were

performed at three pH values (5.0, 6.2 and 7.4) in quadruplicates.
For this purpose, 12 wells of a deep well plate, that is, four wells
per pH-value, were filled with 650 lL PAMPA System Solution.
Samples (150 lL) were withdrawn from each well to determine
the blank spectra by UV-spectroscopy (SpectraMax 190, Molecular
Devices, Silicon Valley Ca, USA). Then, analyte dissolved in DMSO
was added to the remaining PAMPA System Solution to yield
50 lM solutions. To exclude precipitation, the optical density
was measured at 650 nm, with 0.01 being the threshold value.
Solutions exceeding this threshold were filtrated. Afterwards, sam-
ples (150 lL) were withdrawn to determine the reference spectra.
Further 200 lL were transferred to each well of the donor plate of
the PAMPA sandwich (pIon, Woburn MA, USA, P/N 110 163). The
filter membranes at the bottom of the acceptor plate were impreg-
nated with 5 lL of GIT-0 Lipid Solution and 200 lL of Acceptor Sink
Buffer were filled into each acceptor well. The sandwich was
assembled, placed in the GutBox™, and left undisturbed for 16 h.
Then, it was disassembled and samples (150 lL) were transferred
from each donor and acceptor well to UV-plates. Quantification
was performed by both UV-spectroscopy and LC-MS. log Pe-values
were calculated with the aid of the PAMPA Explorer Software
(pIon, version 3.5).

4.3.5. Thermodynamic solubility
Microanalysis tubes (Labo-Tech J. Stofer LTS AG, Muttenz, Swit-

zerland) were charged with 1 mg of solid substance and 250 lL of
phosphate buffer (50 mM, pH 6.5). The samples were briefly sha-
ken by hand, then sonicated for 15 min and vigorously shaken
(600 rpm, 25 "C, 2 h) on a Eppendorf Thermomixer comfort. After-
wards, the samples were left undisturbed for 24 h. After measuring
the pH, the saturated solutions were filtered through a filtration
plate (MultiScreen! HTS, Millipore, Billerica MA, USA) by centrifu-
gation (1500 rpm, 25 "C, 3 min). Prior to concentration determina-
tion by LC-MS, the filtrates were diluted (1:1, 1:10 and 1:100 or, if
the results were outside of the calibration range, 1:1000 and
1:10000). The calibration was based on six values ranging from
0.1 to 10 lg/mL.
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3 Summary and outlook 

The goal of the present thesis was the physicochemical and pharmacokinetic characterization 

of carbohydrate mimetics within the development process of a highly potent, orally available 

FimH antagonist. For this purpose, various in vitro assays predictive for drug absorption, 

distribution, metabolism, and excretion (ADME) were established. Procedures for the 

determination of the aqueous solubility, the octanol-water distribution coefficient, and the 

acid dissociation constant were implemented in order to elucidate the physicochemical 

determinants of the ADME properties. The parallel artificial membrane permeability assay 

and the Caco-2 cell monolayer model were used for predicting the permeation through the 

membranes lining the small intestine by passive diffusion or carrier mediated transport. The 

Caco-2 model was moreover used for elucidating the enzyme-mediated bioactivation of 

phosphate ester prodrugs. Plasma protein binding – a determinant of compound distribution 

and elimination – was assessed by an equilibrium dialysis experiment. The metabolic 

stability assay using liver microsomes or plasma was established for estimating a 

compound’s propensity to cytochrome P450-mediated metabolism and for assessing the 

esterase-mediated bioactivation of ester prodrugs. The various in vitro assays were integrated 

into a flowchart (see Figure 3.1) that we used as a guideline for the optimization of our FimH 

antagonists towards oral bioavailability and sustained renal excretion as the major route of 

drug elimination.  

Starting from the highly soluble but poorly permeable biphenyl α-D-mannopyranoside with a 

para-carboxylate on the terminal aromatic ring of the aglycone, we optimized the 

physicochemical and pharmacokinetic properties following various strategies. 

An ester prodrug approach proved successful for masking the polar carboxylate and, hence, 

for increasing the membrane permeability. Preliminary results in vitro and in vivo suggested 

that the methyl ester was advantageous for intestinal absorption and rapid bioactivation by 

hepatic esterases. However, the aqueous solubility of the ester prodrug was in the low µg/mL 

range. Since low solubility constrains the oral absorption potential, further optimization of 

the alkyl promoiety was required.  

Alkyl promoieties functionalized with oxygenated and nitrogenated substituents were shown 

to effectively shield the polar carboxylate and to confer higher aqueous solubility than the 

methyl ester. Consequently, higher oral doses should be dissolvable in the intestinal fluids, 

which enhances the concentration gradient across the intestinal mucosa and supports the 
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absorptive flux. We furthermore observed that the alkoxyethyl esters were recognized by the 

carboxylesterase expressed in hepatocytes while the aminoethyl esters were rapidly cleaved 

by the plasma-borne butyrilcholinesterase. Indeed, bioactivation by plasma-borne enzymes 

implies immediate availability of the active principle in the bloodstream and low non-renal 

clearance by phase II metabolic reactions and hepatobiliary excretion.  

Disruption of the molecular planarity and symmetry of the biphenyl mannoside by modifying 

the substitution pattern was considered as an alternative strategy for optimizing the 

physicochemical profile of the methyl ester. With this approach, solubility and membrane 

permeability in the range for high oral absorption was achieved. However, shifting the 

substituents markedly decreased the affinity to the FimH-CRD, overriding the gain in the 

intestinal uptake potential. Furthermore, the introduction of triazole, pyrazole or six-

membered aromatic heterocycles proved beneficial to the aqueous solubility but in turn 

drastically reduced the membrane permeability. By contrast, the phenyl-1H-pyrrole aglycone 

conferred markedly higher aqueous solubility than the biphenyl analogue and similarly high 

permeability, suggesting an improvement in systemic availability of the prodrugs upon oral 

administration. Surprisingly, those compounds containing a phenyl-1H-pyrrole aglycone 

showed high microsomal stability and therefore do not act as prodrugs but are renally 

excreted unchanged. 

While exploring the substitution pattern on the aromatic ring adjacent to the anomeric 

oxygen, we realized that chloro, methyl, or trifluoromethyl substituents in the ortho-position 

– they are advantageous for the binding to the FimH-CRD – increased the lipophilicity of the 

biphenyl mannoside and consequently the membrane permeability. They otherwise had 

negligible effects on the low aqueous solubility, namely of the methyl ester prodrug. 

Nonetheless, we identified these substituents as a useful tool for optimizing the absorption 

potential of hydrophilic, highly soluble biaryl mannosides.  

While modifying the substitution pattern on the terminal ring of the biphenyl aglycone 

following the Topliss operational scheme, we recognized further effects of the substituents’ 

nature and position on aqueous solubility, lipophilicity, and membrane permeability. Indeed, 

only a few biphenyl derivatives (o-methyl, o-methoxy, m- & p-cyano, and p-nitro) showed 

aqueous solubility above the critical limit of 50 µg/ml. Nevertheless, all of these compounds 

exhibited substantial permeability, which, in combination with high aqueous solubility, 

suggests high systemic availability upon oral dosing.  
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With a series of bioisosteres, i.e. alternative electron-withdrawing substituents on the 

terminal aromatic ring of the biphenyl aglycone, a substantial improvement of the affinity 

and the relevant pharmacokinetic parameters (solubility, permeability, renal excretion) could 

be achieved. With 3’-chloro-4’-(α-D-mannopyranosyloxy)biphenyl-4-carbonitrile, a FimH 

antagonist with an optimal in vitro PK/PD profile was identified. The para-cyano substituent 

conferred lipophilicity and high binding to plasma proteins, which slowed the rate of renal 

excretion. Despite higher lipophilicity, the antagonist was insusceptible to CYP450-mediated 

metabolism and therefore predominantly eliminated via the renal pathway. In vivo 

experiments in a mouse model confirmed the excellent PK profile.  

Further bioisosteres, e.g. the para-methylsulfone substituent, proved promising regarding 

affinity and their propensity to renal excretion but were – unlike the para-cyano analogue – 

too polar for oral absorption. Nonetheless, the introduction of acyl promoieties in the C-6 

position of the mannoside turned out successful for addressing low lipohilicity and 

permeability. Hydrolysis by the carboxylesterase isozyme expressed in the enterocytes 

(hCE2) was identified as primary mechanism of bioactivation. This might be unfavorable for 

the intestinal uptake since hydrolysis within the enterocytes yields the polar active principle 

supposed as likely to be effluxed back into the gut lumen as it is to proceed into the portal 

blood. The half-life should therefore be long enough to enable the majority of the prodrug to 

be absorbed in unchanged form. For proving the benefits of the prodrug approach on oral 

bioavailability and for assessing whether the intestinal uptake is affected by concomitant 

hydrolysis, in vivo pharmacokinetic studies in a mouse model shall be performed in a further 

step.  

We further focused our efforts on a phosphate prodrug strategy to optimize the 

physicochemical profile of indolinylphenyl and biphenyl mannosides. Indeed, the 

introduction of a phosphate promoiety proved advantageous for improving the otherwise low 

aqueous solubility of the parent compound. In a Caco-2 cell model, the phosphate esters 

displayed susceptibility to hydrolysis mediated by the alkaline phosphatase on the apical 

brush border membrane. Rapid bioconversion was shown to provide a high concentration 

gradient of the mannoside antagonists across the cell monolayer, promoting the absorptive 

flux and saturating the apparent efflux carrier activity. In vivo experiments in a mouse model 

showing high oral availability and sustained renal excretion of the antagonists confirmed the 

excellent profile of the phosphate prodrugs.  
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In summary, the physicochemical and pharmacokinetic characterization has become a vital 

tool for the development of carbohydrate mimetics towards oral bioavailability and sustained 

renal excretion as main route of drug elimination. As a result of our thorough studies, two 

approaches were identified as most advantageous for the design of orally available FimH 

antagonists: first the prodrug approach, i.e. the introduction of heteroalkyl or phosphate 

promoieties, and second the replacement of the para-carboxylate on the terminal ring of the 

biphenyl aglycone with bioisosteres, such as the cyano substituent.  

Given our impressive progress in improving the oral absorption, the focus shall now be 

moved to renal excretion, which is the second crucial step in the FimH antagonist’s delivery 

to the therapeutic target in the urinary bladder. This task requires a deepened understanding 

of the compound secretion and reuptake mechanisms in the renal tubules. In vitro assays 

focusing on passive permeation and carrier-mediated transport through the tubular 

membranes shall therefore be established.14 Moreover, the metabolic stability assay 

implemented in our laboratory suggests a high stability of the most active biaryl 

α-D-mannopyranosides against cytochrome P450-mediated metabolism. Establishing more 

advanced in vitro models considering Phase II metabolic reactions and the identification of 

metabolic soft spots will nonetheless be an important task.15 The toxicity of the carbohydrate 

mimetics will be a further field of interest. An MTT assay16 for screening the cytotoxicity has 

already been implemented in our laboratory and is regularly performed for validating the 

outcome of cell-based assays (e.g. activity assay, cell monolayer permeation assays). Further 

assays focusing on the cardiotoxicity (i.e. screening for hERG K+ channel blocking17) or the 

mutagenicity (e.g. Ames test18) will provide a deeper insight into the toxic potential of the 

carbohydrate mimetics.  

This thorough ADMET characterization will finally support the further development of the 

biaryl α-D-mannopyranosides towards a marketed drug for the prevention and treatment of 

urinary tract infection.  
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Figure 3.1. Flowchart guiding the optimization of the FimH antagonists towards oral bioavailability and 
sustained renal excretion as major route of drug elimination. The scheme includes assays for determining the 
aqueous solubility and the octanol-water distribution coefficient (log D7.4), the artificial membrane permeability 
assay (PAMPA), the Caco-2 cell monolayer model, an equilibrium dialysis experiment for determining plasma 
protein binding, and the metabolic stability assay using microsomal preparations or plasma.1-7 The strategies for 
increasing the aqueous solubility (i.e. disruption of molecular planarity and symmetry) are according to the study 
by Ishikawa et al.8 The strategies for increasing the permeability are based on the seminal publications by 
Lipinski et al. and Veber et al.9, 10 The minimum solubility criteria are based on the maximum absorbable dose 
(MAD) concept introduced by Johnson and Swindell.11 The effective permeability (log Pe) criteria were adopted 
from Avdeef et al. and the apparent permeability criteria (Papp) from Kerns et al.12, 13 
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