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ABSTRACT

Centrioles function as core components of centrosomes and as

basal bodies for the formation of cilia and flagella. Thus, effective

control of centriole numbers is essential for embryogenesis, tissue

homeostasis and genome stability. In mammalian cells, the centriole

duplication cycle is governed by Polo-like kinase 4 (Plk4). Here, we

identify the E3 ubiquitin ligase Mind bomb (Mib1) as a new

interaction partner of Plk4. We show that Mib1 localizes to

centriolar satellites but redistributes to centrioles in response to

conditions that induce centriole amplification. The E3 ligase activity

of Mib1 triggers ubiquitylation of Plk4 on multiple sites, causing the

formation of Lys11-, Lys29- and Lys48-ubiquitin linkages. These

modifications control the abundance of Plk4 and its ability to interact

with centrosomal proteins, thus counteracting centriole amplification

induced by excess Plk4. Collectively, these results identify the

interaction between Mib1 and Plk4 as a new and important element

in the control of centriole homeostasis.
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INTRODUCTION
Centrioles play important functions in the organization of

microtubule arrays. A pair of centrioles, surrounded by

pericentriolar material (PCM), constitutes the centrosome, the

main microtubule-organizing center of animal cells (Bornens,

2012; Gönczy, 2012; Nigg and Stearns, 2011). In addition,

centrioles function as basal bodies, or templates, for the

axonemes of cilia and flagella (Ishikawa and Marshall, 2011;

Santos and Reiter, 2008). In proliferating cells, centrioles duplicate

exactly once per cell cycle through the formation of one new

centriole close to the proximal end of each pre-existing centriole

(Azimzadeh and Bornens, 2007; Firat-Karalar and Stearns, 2014;

Nigg and Stearns, 2011). Proper control of centriole biogenesis is

crucial for embryogenesis, tissue homeostasis and genome stability

(Bettencourt-Dias et al., 2011; Godinho and Pellman, 2014;

Chavali et al., 2014; Nigg et al., 2014). Dysfunction of the

centriole-ciliary apparatus and/or centrosomes is implicated in the

etiology of ciliopathies, brain diseases, dwarfism and cancer

(Bettencourt-Dias et al., 2011; Godinho and Pellman, 2014;

Hildebrandt et al., 2011; Nigg and Raff, 2009; Thornton and

Woods, 2009).

Centriole biogenesis in human cells and Drosophila melanogaster

is governed by Polo-like kinase 4 (Plk4, also known as Sak), a

distant member of the Polo kinase family (Bettencourt-Dias et al.,

2005; Habedanck et al., 2005); in Caenorhabditis elegans an

analogous function is attributed to the kinase ZYG-1 (O’Connell

et al., 2001). Tight control of Plk4 levels is crucial, as its depletion

leads to a gradual loss of centrioles and its overexpression to

centriole amplification (Bettencourt-Dias et al., 2005; Habedanck

et al., 2005; Kleylein-Sohn et al., 2007; Rodrigues-Martins et al.,

2007). One important mechanism for controlling Plk4 abundance is

based on the ability of Plk4 to dimerize and trans-autophosphorylate,

which results in the generation of a phosphodegron for recognition

by Skp, Cullin, F-box containing complex coanatining b-TrCP

(SCFb-TrCP), an E3 ligase, and subsequent degradation of Plk4 by

the proteasome (Cunha-Ferreira et al., 2013; Cunha-Ferreira et al.,

2009; Guderian et al., 2010; Holland et al., 2012; Holland et al.,

2010; Klebba et al., 2013; Sillibourne et al., 2010). Other regulatory

mechanisms are likely to exist, and a full understanding of Plk4

regulation is important, particularly in view of the frequent

deregulation of this kinase in human cancers (Chng et al., 2008;

Macmillan et al., 2001; Mason et al., 2014; van de Vijver et al.,

2002) and the impact of Plk4 mutations on brain development and

body growth (Martin et al., 2014).

Here, we report on a new interaction between Plk4 and the E3

ubiquitin ligase Mind bomb 1 (Mib1). This comes as a surprise,

as Mib1 has previously been studied mainly in the context of

Notch and nuclear factor (NF)-kB signaling (Barsi et al., 2005;

Daskalaki et al., 2011; Itoh et al., 2003; Li et al., 2011; Liu et al.,

2012). However, recent reports have described associations of

Mib1 with centriolar satellites, small multiprotein clusters in the

vicinity of centrosomes (Akimov et al., 2011; Jakobsen et al.,

2011; Tollenaere et al., 2014; Villumsen et al., 2013). Here, we

confirm that Mib1 localizes to centriolar satellites but

additionally show that Mib1 relocates to centrioles in response

to stimulation of centriole biogenesis. Moreover, we demonstrate

that Mib1 interacts with Plk4 and promotes its ubiquitylation.

This in turn affects Plk4 abundance and localization, with

important consequences for centriole homeostasis.

RESULTS AND DISCUSSION
Recent proteomics and yeast two-hybrid studies have hinted at a

centrosome-associated function for the E3 ubiquitin ligase Mib1

(Akimov et al., 2011; Jakobsen et al., 2011; Tseng et al., 2014). In

line with these results, we found that Mib1 colocalizes with PCM-

1 (Fig. 1A, top left), a marker for centriolar satellites

(Dammermann and Merdes, 2002). Furthermore, we could

detect Mib1 in the vicinity of centrosomes in interphase but not

mitotic cells (supplementary material Fig. S1), in agreement with
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Fig. 1. Interaction of Mib1 with Plk4. U2OS (A) or U2OS:Myc-Plk4 cells (B) were fixed and stained with the indicated antibodies. Scale bar: 0.5 mm. (A) Cells
were synchronized in S phase (aphidicolin, 24 h) and treated for 4 h with vehicle or taxol (5 mM); siRNA-treated cells were synchronized in S phase and
fixed 48 h after transfection, and stained for PCM-1 (green), Mib1 (red) and the centriole marker Cep135 (blue). (B) Control (2Tet) or tetracycline (+Tet)-treated
(12 h) U2OS:Myc-Plk4 cells were stained with the indicated antibodies. (C,D) Western blot analyses of immunoprecipitated (IP) complexes from HEK293T cells
transfected with the indicated construct. Asterisk denotes detection of a weak band corresponding to the complex between Plk4 and full length Mib1. TCL,
total cell lysate. (E) Schematic representation of Mib1 domains interacting with Plk4. Symbols (+), +, ++, or 2 refer to the efficacy of co-immunoprecipitation.
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reports of PCM-1 localization (Balczon et al., 1994). Centriolar
satellite localization of both Mib1 and PCM-1 was abolished by

taxol treatment, suggesting a dependency on intact microtubules
(Fig. 1A, top right). Moreover, siRNA-mediated depletion of
PCM-1 resulted in a redistribution of Mib1 to centrioles (Fig. 1A,
bottom), reminiscent of the behavior of the centriolar satellite

proteins Cep72 and Cep290 (Lopes et al., 2011; Stowe et al., 2012).
Furthermore, overexpression of Myc–Plk4 in either U2OS or RPE-
1 cells also triggered re-localization of Mib1, but not PCM-1, to

centrioles (Fig. 1B; supplementary material Fig. S2A,B). The same
phenotype was seen when Plk4 levels were raised through
depletion of b-TrCP (supplementary material Fig. S2C) or when

centriole amplification was induced through transient transfection
of Plk4 or the centriole duplication factors STIL or Sas6 (also
known as SASS6) (supplementary material Fig. S2D). Moreover,

MCF-7 breast cancer cells, which are prone to centriole over-
duplication upon loss of p53 (D’Assoro et al., 2004), showed
increased levels of Plk4 and, concomitantly, more pronounced
Mib1 signals at centrioles, when compared to RPE-1 cells

(supplementary material Fig. S2E–G). Thus, we conclude that
Mib1 localizes to centrioles in response to Plk4 elevation and
centriole over-duplication, raising the prospect of a functional link

between Mib1 activity and the regulation of centriole duplication.
Next, we examined a possible interaction between Mib1 and

Plk4. Only trace amounts of wild-type Flag–Mib1 could be co-

immunoprecipitated with Myc–Plk4 but, remarkably, strong
binding was seen between Plk4 and a Flag–Mib1DRING
mutant (Fig. 1C,D), which is catalytically inactive (Berndt

et al., 2011; Itoh et al., 2003). Myc–Cep135, analyzed as a
control, was unable to bind either wild-type or mutant Mib1
(Fig. 1C). A Mib1 mutant carrying a point mutation (C997S) that
disrupts one of the three RING fingers (Berndt et al., 2011) also

showed poor binding to Plk4 (Fig. 1C,D), in line with
observations that this mutant is at least partially active when
overexpressed in cells (Berndt et al., 2011; and data not shown).

Using Mib1 deletion mutants (Fig. 1E), binding of Myc–Plk4
could be mapped to the N-terminal but not C-terminal part of
Mib1 (Fig. 1C,D). Complex formation could also be detected

between Myc–Plk4 and endogenous Mib1 (supplementary
material Fig. S2H) and between Plk4 and Mib1 proteins
produced by in vitro translation (supplementary material Fig.
S2I), supporting a direct interaction.

The striking difference in the ability of catalytically active and
inactive Mib1 to co-immunoprecipitate with Plk4 raised the
possibility that Mib1 might act as an ubiquitin ligase for Plk4.

Indeed, transient overexpression of wild-type Flag–Mib1 resulted
in the appearance of higher migrating forms of Myc–Plk4
(Fig. 2A), but not Myc–Cep135 (Fig. 2B). Importantly, this Plk4

modification was induced only by Mib1 full length protein, but
not by Mib1 deletion mutants (Fig. 2A), even though the latter
showed much stronger binding to Plk4 (Fig. 1C,D). To determine

the nature of this Mib1-dependent modifications, we co-
expressed Myc–Plk4 with His-tagged ubiquitin and either wild-
type Flag–Mib1 or Mib1DRING, respectively, and then isolated
poly-ubiquitylated protein species. Remarkably, Flag–Mib1 wild-

type, but not catalytically inactive Mib1DRING, efficiently
promoted poly-ubiquitylation of Myc–Plk4 (Fig. 2C), but not
Myc–Cep135 (supplementary material Fig. S3A).

Given that steady-state levels of Plk4 are regulated by the E3
ligase SCFb-TrCP (Cunha-Ferreira et al., 2009; Guderian et al.,
2010; Rogers et al., 2009), we tested the possible involvement of

this ligase in Mib1-mediated ubiquitylation of Plk4. As expected,

depletion of b-TrCP caused an increase in active b-catenin (ABC;
Fig. 2D), a direct target of SCFb-TrCP (Hart et al., 1999; van Noort

et al., 2002), as well as increased levels of Plk4 at centrosomes
(supplementary material Fig. S3B). In striking contrast, b-TrCP
depletion did not affect Mib1-induced ubiquitylation of Myc–
Plk4 (Fig. 2D), arguing that SCFb-TrCP does not mediate Mib1

action on Plk4. We have not been able to obtain active full-length
Mib1 to demonstrate in vitro ubiquitylation of purified Plk4 and
thus cannot formally exclude an indirect mechanism. However,

the most parsimonious interpretation of our results is that Mib1
acts directly on Plk4.

Next, we used mass spectrometry to explore the nature of the

Mib1-induced ubiquitylation of Plk4. We identified a total of 15
ubiquitylated lysine residues within Plk4, many of which
clustered within the kinase domain, the linker region, and polo

box domains (Fig. 2E). When different moieties of Plk4 were
examined for their response to Mib1, most fragments showed a
mobility shift after 18 h of co-expression and downregulation
after 36 h of co-expression (supplementary material Fig. S3C). In

contrast, although mass spectrometry had revealed ubiquitylated
lysine residues within the PB1 or PB2 region of Plk4,
ubiquitylation of a corresponding fragment (residues 608–970)

did not lead to either a mobility upshift or downregulation
(supplementary material Fig. S3C). Taken together, these
experiments indicate that Mib1 modifies Plk4 on multiple sites,

likely involving more than one type of ubiquitylation. Depending
on the types of linkages, ubiquitin modifications might either
trigger protein degradation or serve to regulate protein

localization, activity or protein–protein interactions (Al-Hakim
et al., 2008; Ciechanover, 1998; Chen and Sun, 2009; Komander,
2009; Pickart and Eddins, 2004; Xu et al., 2009). To obtain
information about the types of Mib1-mediated ubiquitin chains

formed on Plk4 we performed ubiquitylation assays using His–
ubiquitin mutants that are able to contribute to only one particular
type of linkage. Mib1 mediated extensive ubiquitylation of Plk4

in presence of wild-type ubiquitin or mutants conferring K11-,
K29- and K48-based linkages, but K63-based ubiquitylation was
much less efficient (Fig. 2F). These results suggest that Mib1 is

able to induce formation of ubiquitin chains on Plk4 that are
typically associated with fast proteasomal degradation (K11 and
K48 linkages). In addition, Mib1 clearly induces formation on
Plk4 of at least one additional type of ubiquitin chain that is

commonly associated with regulatory events (K29 linkages).
Our identification of K11- and K48-based ubiquitin linkages

suggested that Mib1 might control Plk4 abundance. To examine

this possibility, we transfected Myc–Plk4-inducible U2OS
(denoted USOS U2OS:Myc–Plk4) cells with control or Mib1
small interfering RNA (siRNA) oligonucleotides, induced Myc–

Plk4 expression by tetracycline and 2 h later added cycloheximide
to inhibit protein translation (Fig. 3A). As shown by western
blotting (Fig. 3B) and quantified in Fig. 3C, Mib1 depletion led to

a significant increase in the levels of exogenous Myc–Plk4.
Overexpression of Plk4 in U2OS:Myc–Plk4 cells has been
previously shown to trigger centriole over-duplication
(Habedanck et al., 2005; Kleylein-Sohn et al., 2007) as reflected

in the formation of multiple procentrioles around each pre-existing
centriole (Fig. 3D). Interestingly, we found that centriole over-
duplication was enhanced upon Mib1 depletion from tetracycline-

treated U2OS:Myc–Plk4 cells, particularly when these were
synchronized in S phase by aphidicolin, indicating that Mib1
counteracts excess Plk4 activity (Fig. 3E). In contrast, depletion of

Mib1 from parental U2OS cells caused neither a significant
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Fig. 2. Mib1 ubiquitylates Plk4. (A,B) HEK293T cells were transfected with Myc–Plk4 (or Myc–Cep135 for control in B) and the indicated Flag–Mib1 constructs
before protein extracts were probed by western blotting. The bands marked with an asterisk (*) most likely represent cleavage fragments of Flag–Mib1.
(C) HEK293T cells were transfected with the indicated plasmids before His-pulldowns were analyzed by western blotting. (D) HEK293T cells were transfected
with the indicated plasmids and subjected to b-TrCP siRNA (or control siRNA) before extracts were probed with antibodies against Myc, Flag, ABC (active
b-catenin) and a-tubulin. Numbers below the top panel indicate the signal ratio of modified (arrowhead) to unmodified (arrow) Myc–Plk4, presented as
mean6s.d. (n52). (E) Schematic representation of ubiquitylated lysine residues (K) within Plk4, as revealed by mass spectrometry (PB, polo box domain).
(F) HEK293T cells transfected with the indicated plasmids before His-pulldowns were analyzed by western blotting. His–ubiquitin was used in wild-type form (wt)
or in mutant form able to contribute only to specific types of ubiquitin chains, notably, K29-only, K48-only or K63-only. TCL, total cell lysate.
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increase in centrosomal levels of Plk4 (Fig. 3F) nor centriole
amplification (Fig. 3G), although both these phenotypes could

readily be observed upon depletion of b-TrCP (Fig. 3F,G). These
results suggest that the ubiquitin ligase activity of Mib1 becomes
important primarily in response to excess Plk4, whereas normal

cell cycle regulation is exerted primarily by SCFb-TrCP.
We also examined the impact of Mib1 overexpression on Plk4

levels. We found that overexpression of Flag–Mib1, but not Flag–

Mib1DRING, caused a marked decrease of Myc–Plk4 levels at

centrioles (Fig. 4A,B), and similar effects were seen also upon
endogenous Plk4 (Fig. 4C,D). Similarly, Mib1 caused
downregulation when Plk4 levels were elevated by b-TrCP
depletion (supplementary material Fig. S4A,B), and expression of

Flag–Mib1 in the U2OS:Myc-Plk4 cell line greatly impaired the
ability of exogenous Myc–Plk4 to trigger centriole over-
duplication (Fig. 4E,F). Taken together, these results

demonstrate that Mib1 is able to reduce centriolar levels of
Plk4 and thereby counteract Plk4-induced centriole over-
duplication. Flag–Mib1 overexpression also caused a reduction

in centriolar levels of Sas6 (supplementary material Fig. S4C,D),
in line with recent studies showing that Plk4 is required for the
recruitment of Sas6 to centrioles (Dzhindzhev et al., 2014; Kratz

et al., 2015; Ohta et al., 2014). Interestingly, Mib1 also caused a
mobility upshift in Sas6, but not in STIL (supplementary material
Fig. S4E). The significance of this upshift will require further
study. One possibility is that Sas6 is an additional target of Mib1,

in which case Sas6 ubiquitylation might also contribute to the
effects of Mib1 on centriole duplication.

In addition to K48-linked ubiquitin chains, we observed

ubiquitin chains on Plk4 that are not generally related to fast
proteasomal protein degradation (Al-Hakim et al., 2008;
Komander, 2009; Xu et al., 2009). This most likely explains

why Mib1-induced ubiquitylated species of Plk4 could readily be
detected without use of proteasome inhibitors (Fig. 3A–C).
Considering that we were able to map ubiquitylated lysine
residues to regions that are essential for Plk4 functionality,

notably the kinase domain, the linker region and the polo box
domains (Fig. 2E), we asked whether ubiquitylation might affect
the interaction of Plk4 with its binding partners Cep192 and

Cep152 (Cizmecioglu et al., 2010; Dzhindzhev et al., 2010; Hatch
et al., 2010; Kim et al., 2013; Sonnen et al., 2013). We found that
affinity purified LAP–Plk4, ubiquitylated in a Mib1-dependent

manner, indeed showed reduced in vitro binding to both the GST-
tagged N-terminal of Cep192 and Cep152 (Fig. 4G–I). Taken
together, these results suggest that ubiquitylation by Mib1

negatively affects the ability of Plk4 to bind its centriole-
recruitment factors Cep152 and Cep192 (Kim et al., 2013;
Sonnen et al., 2013).

In conclusion, we show that Mib1 is important for regulating

Plk4 levels, particularly under conditions of aberrant Plk4
expression. Such conditions are known to occur in breast
cancer as well as other tumor types (Chng et al., 2008;

Macmillan et al., 2001; Mason et al., 2014; van de Vijver
et al., 2002). Specifically, we propose that SCFb-TrCP is the major
E3 ligase controlling steady-state Plk4 levels under physiological

conditions (Cunha-Ferreira et al., 2013; Cunha-Ferreira et al.,

Fig. 3. Mib1 counteracts excessive Plk4 levels. (A) Schematic design of
experiments with U2OS:Myc-Plk4 cells, as analyzed in B–E. Tet, tetracycline.
(B,C) Western blot analyses of protein extracts prepared from U2OS:Myc–
Plk4 cells treated with control or Mib1-specific siRNA. Relative Myc–Plk4
levels (normalized to tubulin, n53, two tailed t-test, **P50.0045) are
quantified in C. (D) Non-induced (2Tet) and induced (+Tet) U2OS:Myc–Plk4
cells were fixed and stained for CP110 (green), Myc–Plk4 (red), and the
centriole maker Cep135 (blue). Scale bar: 0.5 mm. (E) Quantification of Myc–
Plk4-induced centriole over-duplication (more than four CP110-positive
centrioles per cell) in asynchronously growing or S-phase arrested
(aphidicolin-treated) U2OS cells subjected to control or Mib1-specific siRNA
(mean6s.e.m., n54, one way-ANOVA). *P,0.05. (F) U2OS cells were
treated with the indicated siRNA oligonucleotides and stained after 48 h for
Plk4 (green) and Cep135 (red). Scale bar: 0.5 mm. (G) Quantification
(mean6s.e.m., n53, one way-ANOVA) of the effects of the indicated siRNA
treatments on centriole over-duplication (counted as in E). **P,0.01.
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Fig. 4. Mib1 negatively regulates centriole biogenesis and Plk4 interactions. (A,B) U2OS:Myc–Plk4 cells were transfected with the indicated plasmids,
treated for 2 h with tetracycline and then stained for Myc–Plk4 (green), Flag–Mib1 (red) and the centriole marker Cep135 (blue). A quantification (mean6s.e.m.,
n53, one way-ANOVA) is shown in B. (C) U2OS cells were transfected with the indicated plasmids and stained for endogenous Plk4 (green), Flag-Mib1 (red)
and Cep135 (blue). Quantification (mean6s.e.m., n52, one way-ANOVA) is shown in D. (E) Transfected U2OS:Myc–Plk4 cells were treated for 6 h with
tetracycline and stained for CP110 (green), Flag–Mib1 (red) and Cep135 (blue). Quantification (mean6s.e.m., n53, two way-ANOVA) is shown in F. (G,I)
Western blot analyses of the effect of Mib1-mediated ubiquitylation on binding of affinity-purified LAP–Plk4 to the GST-tagged Cep192 N-terminus (G) or GST-
tagged Cep152 N-terminus (I). Quantification of these results is shown in H (mean6s.e.m., n54, two tailed t-test, *P50.0315) and J (mean6s.e.m., n53, two
tailed t-test, *P50.0148), respectively. (K) Proposed model, as described in text. Scale bars: 0.5 mm.
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2009; Holland et al., 2012; Klebba et al., 2013) and that Mib1
might become important primarily in response to excess Plk4

(this study). As illustrated in Fig. 4K, our data indicate that Mib1-
induced ubiquitylation results in at least two functional consequences
for Plk4 and hence centriole numbers. First, Mib1 contributes to
control turnover of Plk4 through ubiquitin-dependent proteolytic

degradation. Second, Mib1-dependent ubiquitylation of Plk4 also
impairs the ability of Plk4 to interact with Cep152 and Cep192,
hence reducing its association with centrioles. Combined, these

Mib1-induced effects on Plk4 abundance and localization
contribute to control centriole numbers. In future it will be
interesting to explore the role of Mib1 in the control of Plk4 under

pathophysiological conditions, notably in human tumors with high
levels of centriole amplification. As one example, we have shown
here that Mib1 levels are enhanced at the centrioles of breast cancer

cells, MCF-7, which express higher levels of Plk4 than RPE-1
cells, and our model would indicate that this reflects a response to
deregulation of Plk4. However, it is also attractive to speculate that
tumors might exist in which a loss of Mib1 (or Mib2) activity

causes Plk4 overexpression and concomitant centriole duplication.

MATERIALS AND METHODS
Cell culture, transfections and drug treatments
U2OS, U2OS:Myc-Plk4 (Kleylein-Sohn et al., 2007), MCF-7 and

HEK293T cells were propagated in Dulbecco’s modified Eagle’s

medium (DMEM), and RPE-1 cells were grown in DMEM with F12.

Media were supplemented with 10% fetal bovine serum (FBS) and

penicillin-streptomycin (all from Life Technologies, Carlsbad, CA; FBS

for U2OS:Myc-Plk4 from PAA). Transfection was performed with

TransIT-LT1 (Mirus Bio, Madison, WI). siRNA experiments were

performed using Oligofectamine (U2OS cell) or Lipofectamine

RNAiMAX (HEK293T cells), both from Life Technologies. Control

(GL2) and Mib1 (targeting sequence, TTCTCATCCACAATCCA-

TGGT), PCM-1 (targeting sequence, AATCAGCTTCGTGATTCT-

CAG), or b-TrCP1 and b-TrCP2 (targeting sequence, GTGGAATTTGT-

GGAACATC) specific oligonucleotides were used at concentrations of

50–100 nM for 36–48 h. In some experiments, cells were transfected

with plasmids 32–36 h after siRNA transfection, as described above.

Expression of Myc-Plk4 in the U2OS:Myc-Plk4 cell line was induced by

tetracycline (1 mg/ml) for 2–12 h. Where indicated, cells were treated

with cycloheximide (50 mg/ml) or aphidicolin (1.6 mg/ml; 24 h).

Plasmids and cloning
Insert-containing entry vectors for use in the GATEWAY system (Life

Technologies) were generated by PCR, using Pfu Ultra II Fusion DNA

polymerase (Agilent, Santa Clara, CA). Inserts were verified by

sequencing and subsequently cloned into pDEST-Myc, pDEST-Flag,

pDEST-GST (Invitrogen), or pg-LAP1 (Addgene plasmid 19702)

GATEWAY destination vectors. All human cDNAs used here have

been described previously: Mib1 (Berndt et al., 2011), Plk4 (Habedanck

et al., 2005), Cep152 and Cep192 (Sonnen et al., 2013), Cep135

(Kleylein-Sohn et al., 2007), Ubiquitin wt and chain-specific mutants

(Chastagner et al., 2006).

Immunofluorescence microscopy
Methanol fixation of cells, blocking, incubation with primary and

secondary antibodies, and washing were performed as described (Sonnen

et al., 2012). The following antibodies were used: rabbit anti-PCM-1 was

raised by Charles River Laboratories against His-PCM-1 (amino acids

1022–1202), rabbit anti-Mib1 (M5948; Sigma-Aldrich, St.Louis, MI),

rabbit anti-Cep135, rabbit-CP110, rabbit anti-Plk4 (all described in

Kleylein-Sohn et al., 2007), mouse anti-Plk4 (Guderian et al., 2010),

mouse anti-Myc (clone 9E10), mouse anti-Flag (clone M2; Sigma-

Aldrich), Alexa-Fluor-488-conjugated donkey anti-mouse, Alexa-Fluor-

488-conjugated donkey anti-rabbit, Alexa-Fluor-488-conjugated donkey

anti-mouse, and Alexa-Fluor-488-conjugated donkey anti-rabbit (all from

Life Technologies). Direct labeling of primary antibodies was performed

using an Alexa-antibody labeling kit (Life Technologies). Imaging was

performed in Glycergel mounting medium (Agilent) at room temperature,

using a DeltaVision Core system (Applied Precision, Issaquah, WA) with

a 606/1.2 or 1006/1.4 Apo plan oil immersion objective, Photometrics

CoolSNAP CCD camera and solid state illumination. Image stacks were

taken with a z distance of 0.2 mm, deconvolved (conservative ratio, three

to five cycles), and projected as maximal intensity images by using

SoftWoRX (Applied Precision). For cell counts, 50–100 cells per

condition and experiment were analyzed. Densitometry analysis was

performed in 16-bit TIFF images with ImageJ within selected regions of

interest (ROIs); 15–20 cells per experiment and condition were analyzed.

Data are presented as relative staining intensity (staining intensity of a

protein of interest normalized to the intensity of centriolar marker

Cep135). Relative Mib1 levels at the centrosome (supplementary

material Fig. S2G) were measured as total intensities in ROIs using

Cell Profiler. The area of Cep135 signal, enlarged by 2ppx, was used to

create a mask to measure centriole-associated Mib1 staining. Contrast

and/or brightness adjustment and cropping of final images were done

using Photoshop CS5 (Adobe Systems, San Jose, CA).

Cell lysis, pulldown and western blotting
At 18 h post-transfection, cells were washed in PBS and lysed [62.5 mM

Tris-HCl, pH 6.8, 1% SDS, 10% glycerol (all from Sigma-Aldrich)].

Samples were processed as described previously (Bryja et al., 2005) and

analyzed by western blotting. The following antibodies were used, in

addition to those listed above: rabbit anti-Myc (sc-789; Santa Cruz

Biotechnology, Dallas, TX), rabbit anti-Flag (F7425; Sigma-Alrich), goat

anti-GST (27457701V; GE Healthcare, Issaquah, WA), rabbit anti-GFP

(Ab290; Roche, Basel, Switzerland), mouse anti-a-tubulin (T9026;

Sigma-Aldrich), mouse anti-active-b-catenin (clone 8E7; Millipore,

Billerica, MA), horseradish peroxidase (HRP)-conjugated goat anti-

mouse (170-6516) and goat anti-rabbit (170-6515, both from BioRad,

Hercules, CA), and HRP-conjugated donkey anti-goat (sc-2020; Santa

Cruz Biotechnology). Signal was revealed using the SuperSignal Femto

detection kit (Thermo Scientific, Rockford, IL) and detected using

LAS3000 (GE Healthcare), ChemiDoc (BioRad) or film (Fig. 2F, Agfa).

For immunoprecipitation–pulldown experiments, cells were lysed in IP

Lysis buffer [20 mM Tris-HCl pH 7.4, 150 mM NaCl, 25 mM b-glycerol

phosphate, 0.5% Igepal CA630, 0.5% Triton X-100 (all from Sigma-

Aldrich), and 16 Complete proteasome inhibitors (Roche)]. Following

centrifugation (15,000 g for 10 min at +4 C̊), cleared extracts were

incubated (6 h at +4 C̊ in an orbital shaker) with anti-Myc (9E10), anti-

Flag (M2) G-protein–sepharose (GE Healthcare) or S-protein agarose

(Novagen, Billerica, MA). Each batch of beads with LAP–Plk4 was

tested for the presence of a Mib1-induced upshift and stored as a 25%

slurry (IP Lysis buffer plus 10% glycerol and 100 mM DTT; 280 C̊) until

used in binding assays. His pulldowns were performed in denaturing

conditions [50 mM Tris-HCl, pH 7.4, 300 mM NaCl, 0.5% Triton-X-

100, 0.05% SDS, 10 mM Imidazol and 6 M Urea (all from Sigma-

Aldrich)] using Ni-NTA agarose (Qiagen, Hilden, Germany). Complexes

were pelleted, washed, and subsequently analyzed by western blotting.

In vitro translation, recombinant protein purification and
binding assays
Myc–Plk4, Flag–Mib1 and Flag–Cep152 were translated in vitro (TNT

Quick system; Promega, Madison, WI), mixed with modified IP Lysis

buffer (as above; 0.05% Igepal CA630, 100 mM DTT) and subjected to

immunoprecipitation and washing. GST-tagged proteins were purified as

described previously (Čajánek and Nigg, 2014). Binding of Mib1-

modified LAP–Plk4 with the GST-tagged Cep192 N-terminus

(recombinant, purified from bacteria) or Cep152 N-terminus (translated

in vitro) was performed in pulldown buffer (20 mM Tris-HCl, pH 7.4,

150 mM NaCl, 25 mM b-glycerol phosphate, 0.5% Igepal CA630,

100 mM DTT) for 45 min (+4 C̊; orbital shaker). Where indicated,

densitometry analysis of blots was performed with ImageJ or ImageLab

(Fig. 2D; BioRad).
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Mass spectrometry analyses of ubiquitination
Following 4 h of treatment with proteasome inhibitor MG132 (10 mM),

LAP–Plk4 was isolated from HEK293T cell extracts prepared 18 h after

transfection, using S-protein agarose. Proteins were eluted, reduced,

alkylated, digested with trypsin overnight, and then purified with C-18

Microspin columns (Harvard Apparatus, Holliston, MA). Peptides were

separated by using an Easy-Nano-LC system, and liquid-chromatography–

tandem-MS analysis was performed on a hybrid LTQ-Orbitrap mass

spectrometer (both from Thermo Scientific). Obtained protein spectra were

searched against the human proteome database (UniProt). The detection of

ligated ubiquitin was based on ubiquitin-derived di-glycine mass

increments of ubiquitylated peptides (114.1 Da per modified lysine

residue) (Kirkpatrick et al., 2005).

Statistical analyses
Statistical analyses (Student’s t-test or ANOVA with Tukey’s multiple

comparison test) were performed using Prism 6 (GraphPad Software, La

Jolla, CA). *P,0.05, **P,0.01 and ***P,0.001 were considered

statistically significant differences. Results are presented as mean6s.e.m.
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Bryja, V., Čajánek, L., Pachernı́k, J., Hall, A. C., Horváth, V., Dvorák, P. and
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