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Abstract

Operator cost partitioning is a well-known technique to make
admissible heuristics additive by distributing the operator
costs among individual heuristics. Planning tasks are usu-
ally defined with non-negative operator costs and therefore
it appears natural to demand the same for the distributed
costs. We argue that this requirement is not necessary and
demonstrate the benefit of using general cost partitioning. We
show that LP heuristics for operator-counting constraints are
cost-partitioned heuristics and that the state equation heuris-
tic computes a cost partitioning over atomic projections. We
also introduce a new family of potential heuristics and show
their relationship to general cost partitioning.

Introduction
Heuristic search is commonly used to solve classical plan-
ning tasks. Optimal planning requires admissible heuristics,
which estimate the cost to the goal without overestimation.
If several admissible heuristics are used, they must be com-
bined in a way that guarantees admissibility. By evaluating
each heuristic on a copy of the task with a suitably reduced
cost function, operator cost partitioning (Katz and Domsh-
lak 2010) allows summing heuristic estimates admissibly.

Previous work on operator cost partitioning required all
cost functions to be non-negative. We show that this re-
striction is not necessary to guarantee admissibility and
that dropping it can lead to more accurate heuristic esti-
mates. Moreover, we demonstrate that when allowing nega-
tive operator costs, heuristics based on the recently proposed
operator-counting constraints (Pommerening et al. 2014b)
can be interpreted as a form of optimal cost partitioning.
This includes the state equation heuristic (Bonet and van
den Briel 2014), which was previously thought (Bonet 2013)
to fall outside the four main categories of heuristics for clas-
sical planning: abstractions, landmarks, delete-relaxations
and critical paths (Helmert and Domshlak 2009). We show
that the state equation heuristic computes a general optimal
cost partitioning over atomic projection heuristics. In ad-
dition, we introduce potential heuristics, a new family of
heuristics with a close relationship to general operator cost
partitioning. Finally, we empirically demonstrate the posi-
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tive influence of allowing negative costs in cost partitioning
and the strong performance of potential heuristics.

SAS+ Planning and Heuristics
We consider SAS+ planning (Bäckström and Nebel 1995)
with operator costs, where a task is given as a tuple Π =
〈V,O, sI, s?, cost〉. Each V in the finite set of variables
V has a finite domain dom(V ). A state s is a variable as-
signment over V . A fact is a pair of a variable and one
of its values. For a partial variable assignment p we use
vars(p) to refer to the set of variables on which p is de-
fined and where convenient we consider p to be a set of facts
{〈V, p[V ]〉 | V ∈ vars(p)}. Each operator o in the finite set
O has a precondition pre(o) and an effect eff (o), which are
both partial variable assignments over V . Operator o is ap-
plicable in a state s if s and pre(o) are consistent, i. e., they
do not assign a variable to different values. Applying o in s
results in state sJoK with

sJoK[V ] =

{
eff (o)[V ] if V ∈ vars(eff (o))

s[V ] otherwise.

An operator sequence π = 〈o1, . . . , on〉 is applicable in state
s0 if there are states s1, . . . , sn such that for 1 ≤ i ≤ n,
operator oi is applicable in si−1 and si = si−1JoiK. We
refer to the resulting state sn by s0JπK.

The initial state sI is a complete and the goal description
s? a partial variable assignment over V . For a state s, an
s-plan is an operator sequence π that is applicable in s and
for which sJπK and s? are consistent. An sI-plan is called a
solution or plan for the task.

The function cost : O → R+
0 assigns a non-negative cost

to each operator. Throughout the paper, we will vary plan-
ning tasks by considering different cost functions, so the
following definitions refer to arbitrary cost functions cost′,
which need not be equal to cost.

The cost of a plan π = 〈o1, . . . , on〉 under cost function
cost′ is cost′(π) =

∑n
i=1 cost′(oi). An optimal s-plan under

cost function cost′ is a plan π that minimizes cost′(π) among
all s-plans. Its cost is denoted with h∗(s, cost′). If there is
no s-plan then h∗(s, cost′) =∞. A heuristic h is a function
that produces an estimate h(s, cost′) ∈ R+

0 ∪ {∞} of the
optimal cost h∗(s, cost′). If cost′ = cost, these notations
can be abbreviated to h∗(s) and h(s). In cases where we
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do not need to consider other cost functions, we will define
heuristics only for cost.

We say that c ∈ R+
0 ∪{∞} is an admissible heuristic esti-

mate for state s and cost function cost′ if c ≤ h∗(s, cost′). A
heuristic function is admissible if h(s, cost′) is an admissi-
ble heuristic estimate for all states s and cost functions cost′.
A heuristic h is goal-aware if h(s, cost′) = 0 for every state
s consistent with s? and cost function cost′. It is consistent
if h(s, cost′) ≤ cost′(o) + h(sJoK, cost′) for every state s,
operator o applicable in s and cost function cost′. Heuristics
that are goal-aware and consistent are admissible, and ad-
missible heuristics are goal-aware. The A∗ algorithm (Hart,
Nilsson, and Raphael 1968) generates optimal plans when
equipped with an admissible heuristic.

Non-Negative Cost Partitioning
A set of admissible heuristics is called additive if their sum
is admissible. A famous early example of additive heuristics
are disjoint pattern database heuristics for the sliding-tile
puzzle (Korf and Felner 2002), which were later generalized
to classical planning (e. g., Haslum et al. 2007).

Cost partitioning (Katz and Domshlak 2007; Yang et al.
2008; Katz and Domshlak 2010) is a technique for making
arbitrary admissible heuristics additive. The idea is that each
heuristic may only account for a fraction of the actual oper-
ator costs, so that the total cost cannot exceed the optimal
plan cost.

Definition 1 (Non-negative cost partitioning). Let Π
be a planning task with operators O and cost function
cost. A non-negative cost partitioning for Π is a tuple
〈cost1, . . . , costn〉 where costi : O → R+

0 for 1 ≤ i ≤ n
and

∑n
i=1 costi(o) ≤ cost(o) for all o ∈ O.

Proposition 1 (Katz and Domshlak 2010). Let Π be a
planning task, let h1, . . . , hn be admissible heuristics for Π,
and let P = 〈cost1, . . . , costn〉 be a non-negative cost parti-
tioning for Π. Then hP (h1, . . . , hn, s) =

∑n
i=1 hi(s, costi)

is an admissible heuristic estimate for s.

Among other contributions, Katz and Domshlak (2010)
showed how to compute an optimal (i. e., best possible) cost
partitioning for a given state and a wide class of abstraction
heuristics in polynomial time. However, for reasons of effi-
ciency, non-optimal cost partitioning such as zero-one cost
partitioning (e. g., Edelkamp 2006), uniform cost partition-
ing (e. g., Karpas and Domshlak 2009) or post-hoc optimiza-
tion (Pommerening, Röger, and Helmert 2013) is also com-
monly used.

General Cost Partitioning
We argue that there is no compelling reason to restrict op-
erator costs to be non-negative when performing cost parti-
tioning, and we will remove this restriction in the follow-
ing, permitting general (possibly negative) cost functions
cost′ : O → R. This means that we must generalize some
concepts and notations that relate to operator costs.

Shortest paths in weighted digraphs that permit negative
weights are well-defined except in the case where there ex-
ists a cycle of negative overall cost that is incident to a path

from the source state to the goal. So we can retain our def-
inition of optimal plans except for this case, in which plans
of arbitrarily low cost exist and we set h∗(s, cost′) = −∞.

Heuristic functions may now map to the set R ∪
{−∞,∞}. The definitions of admissibility and consistency
remain unchanged, but the notion of goal-aware heuristics
must be amended to require h(s, cost′) ≤ 0 instead of
h(s, cost′) = 0 for goal states s to retain the result that a
consistent heuristic is goal-aware iff it is admissible. (Even
if we are already in a goal state, the cheapest path to a goal
state may be a non-empty path with negative cost.)

With these preparations, we can show the analogue of
Proposition 1 for general cost partitioning:
Theorem 1. Let Π be a planning task with operatorsO and
cost function cost, and let P = 〈cost1, . . . , costn〉 be a gen-
eral cost partitioning for Π, i. e., cost1, . . . , costn are general
cost functions with

∑n
i=1 costi(o) ≤ cost(o) for all o ∈ O.

Let h1, . . . , hn be admissible heuristics for Π. Then
hP (h1, . . . , hn, s) =

∑n
i=1 hi(s, costi) is an admissible

heuristic estimate for every state s. If any term in the sum is
∞, the sum is defined as∞, even if another term is −∞.
Proof: Consider an arbitrary state s. If Π has no s-plan then
h∗(s) =∞ and every estimate is admissible.

We are left with the case where Π has an s-plan. Then all
hi(s, costi) are finite or−∞ because an admissible heuristic
can only produce∞ for states without plans, no matter what
the cost function is. Consider the case where h∗(s) > −∞.
Let π = 〈o1, . . . , ok〉 be an optimal s-plan for Π. We get:

hP (h1, . . . , hn, s) =

n∑
i=1

hi(s, costi) ≤
n∑

i=1

h∗(s, costi)

≤
n∑

i=1

k∑
j=1

costi(oj) =
k∑

j=1

n∑
i=1

costi(oj)

≤
k∑

j=1

cost(oj) = h∗(s).

In the case where h∗(s) = −∞, there exists a state s′ on a
path from s to a goal state with an incident negative-cost cy-
cle π′, i. e., π′ with s′Jπ′K = s′ and cost(π′) < 0. From
the cost partitioning property, we get

∑n
i=1 costi(π′) ≤

cost(π′) < 0, and hence costj(π′) < 0 for at least one
j ∈ {1, . . . , n}. This implies h∗(s, costj) = −∞ and hence
hP (h1, . . . , hn, s) = −∞, concluding the proof. �

General cost partitioning can result in negative heuristic
values even if the original task uses only non-negative oper-
ator costs, but of course for such tasks it is always admissible
to use the heuristic h = max(hP , 0) instead.

Figure 1 illustrates the utility of general cost partitioning
with a small example. The depicted task Π has two binary
variables V1 and V2, both initially 0, and the goal is to set V1
to 1. Both operators o1 and o2 have cost 1. The projections
to V1 and V2 above and to the left of Π serve as two exam-
ple abstractions of Π. Since abstractions preserve transitions
their abstract goal distances induce admissible heuristics. If
we want to add the heuristics for ΠV1 and ΠV2 admissibly,
we have to find a cost partitioning P = 〈cost1, cost2〉. If we
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Figure 1: Example task Π with two binary variables V1 and
V2 and goal s?[V1] = 1. Above and to the left of the original
task we show the projections to V1 and V2.

only consider non-negative cost partitionings it makes sense
to use the full costs in cost1 because V2 is not a goal variable
and therefore all abstract goal distances in ΠV2 are 0. This
yields hP (hV1 , hV2 , sI) = hV1(sI, cost1) + hV2(sI, cost2) =
cost(o1) + 0 = 1.

If we allow negative cost partitionings, however, we can
assign a cost of −1 to o1 in ΠV2 , allowing us to increase
its costs to 2 in ΠV1 . The resulting cost partitioning shown
in Figure 1 yields hP (hV1 , hV2 , sI) = hV1(sI, cost1) +
hV2(sI, cost2) = 2 + 0 = 2, a perfect heuristic estimate
for the example.

An optimal cost partitioning is one that achieves the high-
est heuristic value for the given heuristics and state:

Definition 2. Let Π = 〈V,O, sI, s?, cost〉 be a planning task
and let Pn be the set of general cost partitionings for Π with
n elements. The set of optimal general cost partitionings for
admissible heuristics h1, . . . , hn in a state s is

OCP(h1, . . . , hn, s) = arg max
P∈Pn

hP (h1, . . . , hn, s)

The optimal general cost partitioning heuristic estimate for
admissible heuristics h1, . . . , hn in a state s is

hOCP(h1, . . . , hn, s) = max
P∈Pn

hP (h1, . . . , hn, s).

In general, there can be infinitely many optimal cost par-
titionings. Analogously to OCP and hOCP, we define the
non-negative variants OCP+ and hOCP+ based on the set P+

n
of non-negative cost partitionings for Π with n elements.

We emphasize that knowing the state s is critical for deter-
mining an optimal cost partitioning. In general, there exists
no single cost partitioning that is optimal for all states.

Connection to Operator-Counting Constraints
We now study the connection between general cost parti-
tioning and certain heuristics based on linear programming,
originally introduced by Pommerening et al. (2014b).

Consider a set C of linear inequalities over non-negative
operator-counting variables of the form Counto for each op-
erator o. An operator sequence π satisfies C if the inequali-
ties in C are satisfied by setting each variable Counto to the
number of occurrences of o in π. If s is a state such that C is
satisfied by every s-plan, C is called an operator-counting
constraint for s. Examples of operator-counting constraints
include landmark constraints, net change constraints, post-
hoc optimization constraints and optimal cost partitioning
constraints (Pommerening et al. 2014b).1

We write the inequalities of an operator-counting con-
straint C as coeffs(C)Count ≥ bounds(C) for a coefficient
matrix coeffs(C), operator-counting variable vector Count
and a bounds vector bounds(C).

If C is a set of operator-counting contraints for a state s
and cost′ is a cost function, then IPC(cost′) denotes the fol-
lowing integer program: minimize

∑
o∈O cost′(o)Counto

subject to C and Count ≥ 0. The objective value of this
integer program, which we denote by hIP

C (cost′), is an ad-
missible heuristic estimate for s under cost function cost′.
We write LPC(cost′) and hLP

C (cost′) for the LP relaxation
of the integer program and the objective value of this LP,
which is also an admissible heuristic estimate for s under
cost′. (Note that even though our notations omit the state s,
the constraints C of course generally depend on the state s.)

It turns out that there is an intimate link between operator-
counting constraints and general cost partitioning. Given
a set of operator-counting constraints, its LP heuristic es-
timate equals the optimal general cost partitioning over the
LP heuristics for each individual constraint:
Theorem 2. Let C be a set of operator-counting constraints
for a state s. Then

hLP
C (cost) = hOCP((hLP

{C})C∈C , s).

Proof sketch (full proof in Pommerening et al. 2014a):
In LPC(cost) we can introduce local copies LCountCo of
Counto for every constraint C ∈ C by adding equations
LCountCo = Counto for all o ∈ O. We then replace all
occurrences of Counto in this constraint by LCountCo .

The resulting LP minimizes
∑

o∈O cost(o)Counto subject
to coeffs(C)LCountC ≥ bounds(C), LCountC = Count,
LCountC ≥ 0 for all C ∈ C, and Count ≥ 0. The dual
of this LP has the same objective value and contains one
non-negative variable DualCi for each inequality and one un-
bounded variable CostCo for each equation:

Maximize
∑
C∈C

bounds(C) ·DualC subject to

coeffs(C)
>DualC ≤ CostC

DualC ≥ 0

}
for all C ∈ C∑

C∈C
CostCo ≤ cost(o) for all o ∈ O

1Operator-counting constraints may also use auxiliary vari-
ables, ignored here for simplicity. We refer to a technical report
(Pommerening et al. 2014a) for detailed proofs also covering this
case.
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The first two inequalities are exactly the dual constraints
of LP{C}(Cost

C), and the objective function is exactly the
sum of dual objective functions for these LPs. The remain-
ing inequality ensures that CostC defines a general cost par-
titioning. As we maximize the sum of individual heuristic
values over all possible general cost partitionings, the re-
sult is the optimal general cost partitioning of the component
heuristics. �

The proof is constructive in the sense that it shows a way
to compute an optimal cost partitioning for the given state
from a dual solution of the original LP heuristic.

Theorem 3. Let C be a set of operator-counting constraints
for a state s. Let d be a dual solution of LPC(cost). Then the
general cost partitioning

costC(o) = coeffs(C)
>
d(DualC)

is optimal for the heuristics hLP
{C} for C ∈ C in state s.

Proof: Every optimal solution of the LP in the proof for
Theorem 2 contains an optimal cost partition in the variables
CostCo . If we take an optimal solution and replace the value
of CostCo with coeffs(C)

>
d(DualC), no value of CostCo can

increase. All inequalities are still satisfied and the objective
value does not change. �

Net-Change Constraints
We now turn to the state equation heuristic hSEQ (Bonet and
van den Briel 2014) as an application of Theorem 2. Pom-
merening et al. (2014b) showed that this heuristic dominates
the optimal non-negative cost-partitioning over projections
to goal variables. We use their formalization as lower bound
net-change constraints that compare the number of times a
fact is produced to the number of times it is consumed on the
path from a given state s to the goal. For each fact 〈V, v〉,
we obtain one inequality:∑

o always
produces 〈V, v〉

Counto +
∑

o sometimes
produces 〈V, v〉

Counto −
∑

o always
consumes 〈V, v〉

Counto

≥ 1{if s?[V ] = v} − 1{if s[V ] = v}

An operator-counting constraint can consist of any num-
ber of linear inequalities. For our purposes, it is useful to
group the inequalities for all facts that belong to the same
state variable V into one constraint CV . The state equation
heuristic is then the LP heuristic for the set C = {CV | V ∈
V} consisting of one constraint for each state variable.

To apply Theorem 2, we must first understand which
heuristics are defined by each individual constraint CV and
arbitrary cost function cost′.

Theorem 4. Let Π be a planning task, and let V be one
of its state variables. Let hV denote the atomic abstraction
heuristic based on projecting each state s to s[V ]. Then

hLP
{CV }(cost′) = hV (s, cost′)

Proof: Consider the planning task ΠV obtained by project-
ing Π to V (i. e., discarding all aspects of its description re-
lated to other variables). It is easy to see that hLP

{CV }(cost′)
corresponds to hSEQ with cost function cost′ in ΠV and that
hV (s, cost′) in the original task is h∗(s, cost′) in ΠV .

The “≤” part of the proof then follows from the admis-
sibility of hSEQ for ΠV . For the “≥” part, Pommerening
et al. (2014b) showed that hSEQ dominates the optimal cost
partitioning over atomic abstraction heuristics for goal vari-
ables. It can easily be verified that their proof also works for
the case where negative costs are permitted. If V is a goal
variable and we apply this result to ΠV , this optimal cost
partitioning is a (trivial) partitioning over a single heuristic
hV and hence equal to hV (s, cost′). If V is a non-goal vari-
able, a slight adaptation is needed, for which we refer to the
technical report (Pommerening et al. 2014a). �

We can now specify the connection between the state
equation heuristic and abstraction heuristics more precisely:

Theorem 5. The state equation heuristic is the optimal gen-
eral cost partitioning of projections to all single variables,

hSEQ(s) = hOCP((hV )V ∈V , s).

Proof: We apply Theorem 2 with the set of constraints
C = {CV | V ∈ V}. Theorem 4 establishes the connec-
tion to projections and Pommerening et al. (2014b) show
that hSEQ(s) = hLP

C (cost). �

This answers a question raised by Bonet (2013): how does
hSEQ relate to the four families of heuristics identified by
Helmert and Domshlak (2009)? We now see that we can
interpret it as an abstraction heuristic within the framework
of general cost partitioning. We also note that with Theo-
rem 3 we can extract an optimal cost partitioning from the
dual solution of the LP for hSEQ.

The concept of fluent merging (van den Briel, Kambham-
pati, and Vossen 2007; Seipp and Helmert 2011) shows an
interesting connection to projections to more than one vari-
able. Merging state variables (fluents) X and Y means in-
troducing a new state variable Z that captures the joint be-
haviour of X and Y . Theorem 4 shows that the LP heuristic
for net change constraints of variable Z is perfect for the
projection to Z and thus also for the projection to {X,Y }.

Operator-counting constraints for merging a set of facts
M of two variables were introduced by Bonet and van den
Briel (2014). They show that these constraints have perfect
information for the merged variable if M = dom(X) ×
dom(Y ). We can now see that these constraints define the
projection to two variables. Bonet and van den Briel further
suggest the use of mutexes and note a resemblance of the
corresponding abstraction heuristics to constrained pattern
databases (Haslum, Bonet, and Geffner 2005). We conjec-
ture that partial merges correspond to further abstractions of
these projections. If this conjecture holds, Theorem 2 shows
that the state equation heuristic extended with constraints for
merged variables calculates a general cost partitioning over
the corresponding abstractions.
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Potential Heuristics
In this section we introduce a new family of heuristics called
potential heuristics and show their relation to general cost
partitioning. Potential heuristics associate a numerical po-
tential with each fact. The heuristic value for a state s is
then simply the sum of potentials of all facts in s.
Definition 3. Let Π be a planning task with variables V and
facts F . A potential function is a function pot : F → R.
The potential heuristic for pot maps each state to the sum of
potentials of the facts of s:

hpot(s) =
∑
V ∈V

pot(〈V, s[V ]〉)

We simplify our presentation by assuming that all vari-
ables in the effect of an operator o also occur in its precon-
dition (vars(eff (o)) ⊆ vars(pre(o))) and there is a unique
goal state (vars(s?) = V). The definitions and proofs are
generalized to arbitrary tasks in the technical report (Pom-
merening et al. 2014a).

A potential heuristic hpot is goal-aware if and only if
hpot(s?) =

∑
V ∈V pot(〈V, s?[V ]〉) ≤ 0. It is consistent

if and only if hpot(s) ≤ cost(o) +hpot(sJoK) for every state
s and every operator o applicable in s. This condition can be
simplified as follows because the potentials of all facts not
changed by an effect cancel out:

cost(o) ≥
∑
V ∈V

pot(〈V, s[V ]〉)−
∑
V ∈V

pot(〈V, sJoK[V ]〉)

=
∑

V ∈vars(eff (o))

pot(〈V, s[V ]〉)−
∑

V ∈vars(eff (o))

pot(〈V, sJoK[V ]〉)

=
∑

V ∈vars(eff (o))

(pot(〈V, pre(o)[V ]〉)− pot(〈V, eff (o)[V ]〉))

The resulting inequality is no longer state-dependent and is
necessary and sufficient for the consistency of hpot.

Goal-aware and consistent potential heuristics can thus be
compactly classified by a set of linear inequalities. Goal-
aware and consistent heuristics are also admissible, so we
can use an LP solver to optimize any linear combination of
potentials and transform the solution into an admissible and
consistent potential heuristic.
Definition 4. Let f be a solution to the following LP:

Maximize opt subject to
∑

V ∈V P〈V,s?[V ]〉 ≤ 0 and∑
V ∈vars(eff (o))(P〈V,pre(o)[V ]〉 − P〈V,eff (o)[V ]〉) ≤ cost(o)

for all o ∈ O, where the objective function opt can be cho-
sen arbitrarily.

Then the function potopt(〈V, v〉) = f(P〈V,v〉) is the po-
tential function optimized for opt and hpotopt is the potential
heuristic optimized for opt.
Proposition 2. For any objective function opt, the heuris-
tic hpotopt is admissible and consistent, and it maximizes opt
among all admissible and consistent potential heuristics.

As an example, we consider the potential heuristic opti-
mized for the heuristic value of the initial state:

optsI
=
∑
V ∈V

P〈V,sI[v]〉

It turns out that this heuristic is closely linked to the heuris-
tics we discussed in the preceding sections:

Proposition 3. hpotoptsI
(sI) = hSEQ(sI).

Proof sketch (full proof in Pommerening et al. 2014a):
The linear programs solved for hpotoptsI

(s) and the state equa-
tion heuristic in the initial state are each other’s duals. This
can be seen with the substitution P〈V,v〉 = X〈V,s?[V ]〉 −
X〈V,v〉 where the non-negative variables X〈V,v〉 are the dual
variables of the state equation heuristic LP. �

Together with Theorem 5, it follows that the potential
heuristic approach offers an alternative way of performing
an optimal general cost partitioning for single-variable ab-
straction heuristics. Compared to previous cost-partitioning
approaches, the linear programs in Definition 4 are ex-
tremely simple in structure and very easy to understand. Our
discussion also gives us a better understanding of what these
heuristics compute: the best possible (for a given optimiza-
tion function) admissible and consistent heuristic that can be
represented as a weighted sum of indicator functions for the
facts of the planning task.

Using the state equation heuristic requires solving an LP
for every state evaluated by a search algorithm. It offers
the best possible potential heuristic value for every single
state. Alternatively, we can trade off accuracy for compu-
tation time by only computing one potential function (for
example optimized for the initial state) and then using the
induced, very quickly computable heuristic for the complete
search. We will investigate this idea experimentally in the
following section.

Evaluation
We implemented the state equation heuristic and the poten-
tial heuristic that optimizes the heuristic value of the initial
state in the Fast Downward planning system (Helmert 2006).
All our experiments were run on the set of tasks from opti-
mal tracks of IPC 1998–2011, limiting runtime to 30 min-
utes and memory usage to 2 GB. Each task ran on a single
core of an Intel Xeon E5-2660 processor (2.2 GHz). Linear
programs were solved with IBM’s CPLEX v12.5.1.

Optimal Cost Partitioning for Projections
Previous experiments (Pommerening et al. 2014b) showed
that the state equation heuristic (hSEQ) outperforms the op-
timal non-negative cost partitioning of projections to goal
variables (hOCP+

Goal1 ). To explain this difference we compare
these two heuristics to the optimal cost partitioning over all
projections to single variables using non-negative (hOCP+

All1 )
and general (hOCP

All1 ) cost partitioning. The heuristics hOCP
All1

and hSEQ compute the same value, but the encoding of hOCP
All1

is much larger because it contains one constraint for each
transition of each projection and one variable for each ab-
stract state. Likewise, the heuristics hOCP+

Goal1 and hOCP+
All1 com-

pute the same value because non-goal variables cannot con-
tribute to the heuristic with non-negative cost partitioning.

Table 1 shows the number of solved tasks (coverage) for
the tested configurations. If only non-negative costs are con-
sidered (hOCP+

All1 ), using all variables is useless and reduces
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non-negative general
costs costs

Singleton goal patterns hOCP+
Goal1 : 500 hOCP

Goal1 : 505

All singleton patterns hOCP+
All1 : 442 hOCP

All1 : 490
hSEQ: 630

Table 1: Coverage for different variants of optimal cost par-
titioning.

Figure 2: Number of expansions (excluding last f -layer) for
optimal cost partitioning of projections to single variables
with non-negative and general costs. Points above the di-
agonal represent tasks for which general operator cost parti-
tioning needs fewer expansions.

coverage in 22 out of 44 domains and from 500 to 442 solved
tasks in total. Allowing negative costs (hOCP

All1 ) recovers most,
but not all of this loss. The LPs for general cost partition-
ing are harder to solve because more interaction with non-
goal variables is possible. This decreases coverage by 1 in
six domains and by 2 in one domain. On the other hand,
general cost partitioning results in fewer expansions before
the last f -layer in 25 domains (not shown), which results
in better coverage in 13 of them. Compared to hOCP+

Goal1 us-
ing general operator cost partitioning and projections to all
variables does not pay off overall because the resulting LPs
get too large. A notable exception are the domains FreeCell
and ParcPrinter where hOCP

All1 frequently calculates the perfect
heuristic values for the initial state. Figure 2 shows that us-
ing general operator cost partitioning substantially reduces
the number of expansions.

Due to the smaller LP size hSEQ solves more tasks than
hOCP

All1 in 39 domains, an overall coverage increase of 140.
This shows that the main reason for hSEQ’s superior perfor-
mance is the more compact representation, though the gen-
eral cost partition also plays an important role, as the com-
parison of hOCP+

All1 and hOCP
All1 shows.

Figure 3: Number of solved tasks per time for the potential
and the state equation heuristic.

Potential Heuristics
We experimented with two ways to compute potential
heuristics optimized for the initial state. One solves the lin-
ear program in Definition 4 (hpotLP-sI

) directly, while the other
computes the state equation heuristic and extracts the poten-
tials from its dual using Theorem 3 (hpotSEQ-sI

). Both ways
are guaranteed to result in the same heuristic estimate for
the initial state, but since there are usually infinitely many
optimal potential functions for a given state, they can differ
widely on other states.

The heuristic hpotSEQ-sI
has higher coverage than hpotLP-sI

in 17
domains and lower coverage in 4 domains. Overall, the for-
mer solves 638 tasks and the latter 610 tasks. Since poten-
tial heuristics are fast to compute, we exploited their com-
plementary strengths by evaluating the maximum of both
heuristics, which solves all tasks solved by either of them
except two. This results in a coverage of 657 tasks, a large
improvement over the state equation heuristic which opti-
mizes the cost partitioning for every state.

The main advantage of potential heuristics is that they are
extremely fast to evaluate. This can be seen in Figure 3,
which compares the number of tasks that could be solved
within a given time by the state equation heuristic and the
potential heuristics. With the maximum of both potential
heuristics 600 tasks are solved in the first minute, compared
to 17 minutes to solve 600 tasks for hSEQ.

Conclusions
We showed that the traditional restriction to non-negative
cost partitioning is not necessary and that heuristics can ben-
efit from permitting operators with negative cost. In ad-
dition, we demonstrated that heuristics based on operator-
counting constraints compute an optimal general cost parti-
tioning. This allows for a much more compact representa-
tion of cost-partitioning LPs, and we saw that the state equa-
tion heuristic can be understood as such a compact form of
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expressing an optimal cost partitioning over projections. We
believe that an extension to other cost-partitioned heuristics
is a promising research direction for future work.

We also introduced potential heuristics as a fast alterna-
tive to optimal cost partitioning. By computing a heuristic
parameterization only once and sticking with it, they obtain
very fast state evaluations, leading to significant coverage
increases and a more than 10-fold speedup over the state
equation heuristic. We think that the introduction of poten-
tial heuristics opens the door for many interesting research
avenues and intend to pursue this topic further in the future.
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Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Rossi, F., ed., Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), 2357–
2364.
Seipp, J., and Helmert, M. 2011. Fluent merging for classi-
cal planning problems. In ICAPS 2011 Workshop on Knowl-
edge Engineering for Planning and Scheduling, 47–53.
van den Briel, M.; Kambhampati, S.; and Vossen, T. 2007.
Fluent merging: A general technique to improve reachability
heuristics and factored planning. In ICAPS 2007 Workshop
on Heuristics for Domain-Independent Planning: Progress,
Ideas, Limitations, Challenges.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions.
Journal of Artificial Intelligence Research 32:631–662.

3341




