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Preface

Extensive research on semiconductor quantum dots (QDs) has been a hot topic in the semi-

conductor community over the past 20 to 30 years and is still ongoing. In the late 1980s

the term “quantum dot” was introduced to describe a semiconductor nano-structure. Some

of the motivating prospects driving the research are low-threshold QD lasers, single dots for

medical markers, lighting technologies for TVs or single spins for spintronic applications, e.g.

quantum information processing. The size and the structure of a QD can vary from a few

nanometres in colloidal dots (also known as nanocrystals) to a few hundred nanometres in

lithographically defined electrostatic devices. The material components and the fabrication

methods can differ a lot between the individual types of QDs. One feature all different kinds

of QDs have in common is the restriction of the carrier motion in all three dimensions, which

is induced by confinement. That property is the origin of the name zero-dimensional (“0D”)

structures. A second term often used describes the QD as an “artificial atom”. The strong

confinement establishes discrete energy states for the localized single carriers inside the QD,

which resembles the properties of carriers in atoms. The QDs investigated in this thesis are

self-assembled InAs QDs in a semiconductor heterostructure, laying the focus on the confined

positive charged carriers, the holes. The spin properties of the individual quantum states are

characterized with advanced optical spectroscopy techniques.

The following thesis is split into four parts. The first part motivates the search for coherent

single hole spins and explains how to get from a bulk semiconductor to a single spin. After a

short introduction of semiconductor self assembled quantum dots, their optical properties and

bandstructure, the requirements to perform single spin physics are described. The advantage

to choose the hole spin for a spin qubit instead of the electron spin, regarding their decoherence

properties is discussed. The second section of the introduction covers the experimental tech-

niques and improvements to current systems paving the way to a highly coherent spin qubit

via the hole spin and high quality data. The new device structure as well as the sophisticated

technique of resonance fluorescence detection are explained here. A description of the laser

frequency locking mechanism and a power stabilization (“noise eater”) concludes the chapter.

In the second part the first experiments of this thesis on coherent hole spins are pre-

sented. With the spectroscopic measurement method of coherent population trapping (CPT)
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Preface

long decoherence times are achieved. Charge noise is determined as a hole spin dephasing

mechanism. Despite the very promising results the experiment suffers from two disadvantages.

First the measurement method via resonant absorption spectroscopy in combination with the

unstable measurements conditions (laser fluctuations) offers a very poor signal to noise ratio.

Secondly the low frequency charge fluctuations, inherent in the sample, promote dephasing

and induce shifts in the CPT resonance position from scan to scan.

The third part covers different approaches to address the noise issue of part two. The optical

linewidth and the noise are closely related in solid state emitters: The linewidth broadening is

caused by spin and charge noise in the quantum device. First, low frequency charge fluctuations

are reduced by a feedback scheme, which stabilizes the emission frequency of the quantum dot to

a stabilized reference. The feedback loop minimizes the fluctuations in the emission frequency,

even over several hours, and eliminates the charge noise in the quantum dot to a large extent.

This method realises a frequency stabilized source of single photons in the solid-state. The

next chapter introduces a new sample design in order to reduce spectral fluctuations. The

n-i-p device growth sequence is inverted, which prevents the usual contamination of the QDs

by the C-doping. The characteristics of the ultra clean p-doped samples are narrow linewidths

in combination with high count rates. The “transform-limit” is reached with a fast scanning

method. In the sample a voltage dependent blinking behaviour of the positively charged exciton

is discovered. The story of low-noise samples and noise control continues in the next chapter.

Transform-limited linewidth of the neutral and the negatively charged exciton are presented.

For the neutral exciton this is even true for slow measurements lasting several seconds. For

already low-noise structures the residual linewidth broadening is only caused by the nuclear

spin noise. A two colour experiment provides control over the nuclear spins, which dominate

the exciton dephasing.

In the last part the interaction of the hole spin with its environment is investigated. The hole

spin states interact in an in-plane magnetic field with an external electric field. The interactions

result in a tunable hole g-factor, showing a linear dependency over a large electric field range. In

contrast the electron g-factor is not influenced by the electric field at all. Theory reproduces the

hole g-factor dependence, which arises from a soft hole confining potential, an In concentration

gradient and a strong dependence of the material parameters on the In concentration. The last

chapter demonstrates the anisotropic behaviour of the hyperfine interaction between nuclear

spins and the hole spin. In the experiment, again with the measurement method of coherent

population trapping, a low-noise sample and resonance fluorescence spectroscopy are combined.

The resulting high signal to noise ratio and the ultra narrow CPT dip enable the measurement

of very precise values for the energy splitting of the hole spin states. This is leading to the

main result: a minimal hole hyperfine interaction in an in-plane magnetic field, proofing a

decoupling from the hole spin and the nuclear spins.
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PART I

Introduction: Quantum dots, single

hole spins and the experiment





Chapter 1

Introduction to quantum dots: Concept and

experimental techniques

1.1 Quantum dots, holes, single hole spins and spin qubits

The introductory chapter’s aim is to give an overview of the indium gallium arsenide (InGaAs)

III-V semiconductor quantum dots (QDs), considering preferentially the carriers with positive

charges, the holes. In the following some background information is provided and it is explained

why and how single hole spins are advantageous candidates for spin qubits. The second part of

the introduction gives a short overview of the basic parts of the experimental setup and mea-

surement techniques. The chapter concludes with a description of four important experimental

aspects, which are essential to the experiments presented in this thesis.

1.1.1 Motivation - Coherence

Self-assembled QDs are known for their outstanding optical properties. There has been a lot

of excellent work in recent years, presenting the bright and narrow linewidth single photon

emission of a QD. The exact single charge control of the QD and the access to their spin

properties qualifies QDs for spintronic applications.

Their quantum nature yields QDs and their spins as ideal candidates for a quantum bit

(qubit), a two level quantum system. Implementing a qubit routine of initialization, manipu-

lation and read-out is essential for a potential application in quantum information processing

or quantum communication. The two different spin states, up (|⇑〉) and down (|⇓〉), are the

obvious choices for the qubit states. The information is encoded in the phase of the quantum

mechanical superposition state, a condition in which the spin can be simultaneously in the up

and down states. The qubit manipulation should then be conducted before this information

is lost. The loss of the phase in the superposition state, known as decoherence, is due to

interactions of the spin with the environment. Interactions for instance with lattice vibration
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1 Introduction

(phonons), other carriers or the nuclear spin bath. The challenge is the realisation of a highly

coherent spin system by identifying the decoherence mechanisms and switching them off, if

possible.

The most prominent candidate for a qubit is the electron spin in many ways [1]. In the

area of solid state systems a single electron spin in a nitrogen-vacancy center in diamond

shows long coherence times at room temperature in the millisecond range [2], or even up

to 30 s in ultrapure 28Si at low temperatures [3]. However, processing diamond into real

devices is a challenge, because of the very hard material properties. And it is very challenging

to achieve the kind of purified 28Si required for the reported decoherence times. Spins in

III-V semiconductors materials have considerable advantages. Apart from the confinement

of single spins in an area of a few nanometers and a straightforward growth mechanism, the

design possibilities of heterostructures and the nanofabrication technology are highly developed,

leading to highly sophisticated devices. However, electron spins in these devices exhibit rather

small coherence times in the microsecond regime and time averaged coherence times as low as

a few nanoseconds [4].

The hole spin is a viable alternative: its interaction with the nuclear spin bath is different

and therefore presumably longer coherence times are achievable. The ultimate goal of this

thesis is to explore the boundaries of hole spin coherence in real QDs. The main tool is the

quantum mechanical effect of coherent population trapping (CPT).

1.1.2 Quantum dots self-assembly and optical properties

Semiconductor QDs are formed via self-assembly in the heteroepitaxial growth of various semi-

conductors, such as InAs and GaAs. The Stranski-Krastanov (SK) growth mode is based on the

strain induced by the lattice constant mismatch between the materials. The lattice constant

of InAs is 7% larger than the one of GaAs. During the layer-by-layer growth process of InAs

on GaAs by molecular beam epitaxy (MBE) the strain accumulates and after the thickness

exceeds a certain threshold InAs QDs form. After the deposition of 1.5 monolayers of InAs,

where the lattice adapts to GaAs, a partial relaxation of the strain eventually results in the

formation of islands (the QDs) [5]. Fig. 1.1 shows a transmission electron microscopy image of

an InAs QD. The height of the QDs is typically ∼ 7-8 nm with a lateral extent of ∼ 30 nm.

The rest of the heterostructure is grown on top of a GaAs capping layer. The nucleation of the

QDs is self-organized and they are positioned randomly over the sample. Special techniques

enable site selected growth [6]. In total ∼ 105 atoms form a QD.

The spatial confinement on the nanoscale has important consequences to the electronic prop-

erties of the system. The electronic properties of bulk semiconductor materials are described

by a bandstructure diagram [7]. In Fig. 1.2(a) the band structure diagram of a confined di-

4
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QDs 

2

10 nm

Wetting layer

InAs Quantum dot

Figure 1.1 | Transmission electron microscopy image of a InAs QD with its wetting layer. (Image recorded

by Jean-Michel Chauveau and Arne Ludwig)

rect semiconductor is presented. The confined periodic energy levels of the atoms merge into

energy bands. The lowest unoccupied band (conduction band) and the highest occupied band

(valence band) are separated by the band gap energy (Eg). The energy band gap difference

in heterostructures, here between InAs and GaAs, shifts the bandstructure and creates a po-

tential barrier, which determines the lowest valence and conduction band states for the free

carriers in the low bandgap material (InAs). Based on an additional strong confinement in

three dimensions, as it is the case for QDs, discrete and fully quantized energy levels emerge

(Fig. 1.2(b)). The levels are energetically shifted with respect to the band gap energy of InAs

by the additional confinement energy. The levels exhibit an energy separation of ∼ 20–50 meV

in the conduction and ∼ 10–25 meV in the valence band.

The energy bands are drawn with respect to the crystal momentum k in the material and

can be calculated by the k·p model [8]. The k·p model is based on the quantum mechanical

perturbation theory and describes the conduction and the valence bands [9, 10] very accurately.

The s-like conduction band is constructed from Bloch states (S,Sz = 1/2, ±1/2) and resembles

a parabola close to the point with the lowest energy. In contrast the valence band with p-like

symmetry is six fold degenerate. The valence bands originate from the atomic p-states of the

host material. The different effective masses and therefore different confinement energies as

well as strain, lift the degeneracy of the heavy hole (HH) (J,Jz = 3/2, ±3/2) and light hole (LH)

(J,Jz = 3/2, ±1/2) states by ∆C. A large gap (∆SO) is formed by the spin-orbit interaction

leading to the split-off (J,Jz = 1/2, ±1/2) Bloch states.

In a semiconductor a hole is created in the highest valence band, when an electron is ener-

getically excited into the lowest conduction band and is leaving a vacancy behind (Fig. 1.2).

The concept of a hole is a virtual positively charged quasi-particle describing the absence of an

electron. The Coulomb attraction between the two particles, caused by the spatial proximity

in the QD, leads to the formation of an exciton (electron-hole pair). The exciton (X0) will

recombine by emitting a photon with the energy of the optical transition between the highest

valence band and the lowest conduction band level [11]. An additional charge (hole or electron)
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Figure 1.2 | (a) Band structure of a direct semiconductor. The energy of the electrons is shown as a

function of the wave vector k. The conduction band states are formed from atomic s-orbital, the valence band

states from p-orbitals. The energy band gap (Eg) of GaAs is 1.5 eV at low temperature. The degeneracy of

the valence band states is primary lifted owing to the spin orbit interaction ∆SO. Additionally confinement and

strain ∆C lifts the degeneracy between light and heavy hole states. For undoped materials at low temperature

the valence bands are fully occupied and the conduction bands are empty, until an electron is energetically

promoted into the conduction band, leaving a hole behind. (b) Energy level diagram of a self assembled QD.

The confinement leads to discrete energy levels for the valence and conduction band. A strong optical dipole

transition connects the energy levels of the valence and conduction states. Here the QD occupation of a optically

excited state, the positively charged trion X1+ is illustrated.

forms the positively (X1+) or negatively charged trion (X1−). The three-dimensional confine-

ment and the discrete energy levels in the QD render the notion of the k-vector redundant.

The electrons and holes inside the QD behave similarly to a single real atom, opening the wide

field of atomic physics to a solid-state environment.

The emission wavelength of the optical transition for as-grown QDs, the ones described so far,

lies at low temperatures around ∼ 1200 nm. This is very inconvenient in terms of excitation and

detection wavelength. A post-growth process of rapid thermal annealing (RTA) diffuses GaAs

into the InAs QDs, which reduces the In concentration and hence the confinement potential

and leads to a blue-shifted emission wavelength [12].

A different approach is the In-flush technique [13]: After their formation the islands are capped

only partially by GaAs (∼ 2.4 nm). An increase in temperature to 600◦C evaporates the

uncapped indium partially. Now the flat QD is capped entirely by GaAs and embedded in a

6



1.1 Quantum dots, holes, single hole spins and spin qubits

semiconductor heterostructure. The In-flush process reduces the dimensions of the QD and

shifts its emission energy to smaller wavelengths around 950 nm. The In composition inside

the QD experiences usually a gradient from the bottom to the top [14].

The optical transition is the fundamental basis for the application of a self-assembled QD as

a robust, fast and narrow-linewidth source of on-demand single photons. The high refractive

index material GaAs (n = 3.5) compromises the outcoupling efficiency of photons from the

devices. Ways to improve the efficiency are: the use of a hemispherical solid immersion lens

(SIL) on top of the sample, leading to a enhancement of the outcoupled photons [15]; putting

the QDs into a microcavity [16]; embedding the dots in an optical wave-guide, tapered towards

the end, with outcoupling efficiencies up to 70% [17]. Experiments in the field of QDs are

routinely carried out by non-resonant excitation of excitons in the high energy continuum states

above the bandgap of GaAs. The electron and hole states in the QD are populated through

fast relaxation and recombine under spontaneous emission of photons, the photoluminescence

(PL). In contrast, coherent laser spectroscopy excites the QD with exactly the energy of the

exciton transition. This technique establishes a coherent coupling of the driving laser with the

single quantum dot. Driven resonantly, the quantum dot acts like a close-to-ideal two level

system from atomic physics with a Lorentzian absorption lineshape [18], Mollow triplet [19],

power broadening and power induced transparency [20], Rabi oscillations [19], dynamic Stark

effect [21] and the antibunching of the resonance fluorescence (see e.g. Chapter 3).

In principle one could imagine the neutral exciton X0 as a qubit. The excitonic state with

one electron and one hole as state |1〉 and the empty dot as state |0〉. The large optical dipole

of the QD allows quantum operations on the THz rate or even faster [22]. The experiments in

terms of qubit initialization, manipulation and readout for excitons have been carried out in

the ultrafast regime (time scale of a few ps) [23, 24]. The drawback with this scheme is the

short exciton lifetime <1 ns [25], resembling a fast decoherence process. The short coherence

time of the exciton makes single spins the more favourable candidates for qubits. It is shown,

that this is especially true as the large optical dipole moment enables fast spin manipulation

with optical techniques [26].

1.1.3 Single spins in semiconductor QDs

The first prerequisite for single spin qubits in QDs is the control and the trapping of one single

carrier in the QD, either a single hole or electron. Three techniques place a single carrier in the

QD: growing a doping layer nearby the QD layer and thus loading permanently an electron or

hole in the QD [27, 28]; optical generation of the carriers [29, 30]; controlled tunnelling from

a near by Fermi reservoir [31, 32]. In this work the third method is applied: the QDs are

embedded in a particular heterostructure (sample designs are described later).

7



1 Introduction

A voltage applied to the structure creates a electric field along the growth direction and

tunes the energy levels of the QD relative to the Fermi energy. The number of carriers trapped

inside the QD depends on the position of the conduction levels to the Fermi energy. The device

works in the Coulomb blockade regime and the carriers experience a whole series of Coulomb

interactions, which influence the total exciton emission energies. The Coulomb blockade model

explains all interactions inside the QD [33]. For instance if one electron occupies the dot, it

is not possible for a second electron to tunnel into the QD at the same voltage. First it has

to overcome the Coulomb repulsion from the first electron. Clear steps in the QD emission

spectrum reveal that the energy for a exciton follows the Coulomb blockade model [31]. The

electric field allows a charging configuration to be chosen and a singly charged exciton to be

addressed [34] (e.g. the positively charged exciton X1+ in Chapter 4, Fig. 4.2). Tunnelling

is suppressed in the Coulomb blockade regime, but a second order spin flip process, the co-

tunnelling, is allowed [35]. An additional result of the electric field is the dc-Stark effect. The

electric field alters the separation between electron and hole wave function in the QD, which

modifies the transition energy. The energy dependency derives from perturbation theory and

is in good approximation quadratic in the electric field[36].

The second step for the creation of a spin qubit is the access to the individual spin energy

levels, which are degenerate at zero magnetic field. An external magnetic field interacts with the

magnetic moment of the electron or hole, resulting in a potential energy change by -µB. The

magnetic moment can be described in terms of the total angular momentum µj = −ĝjσjµB.

µB is the Bohr magneton, σj the spin Pauli matrix and ĝj the particular g-factor tensor of

carrier j [37, 38]. The total splitting is dependent on the magnetic field direction. In growth

direction (Faraday geometry) the electron and hole Zeemann splittings are Ze = geµBBz and

Zh = ghµBBz, respectively. A pseudo spin of ±1/2 is assigned to the hole spin here.

Now all building blocks are available to describe the individual spin systems and merge into

the spin level diagram in Fig. 1.3. The degeneracy of the heavy and light hole valence band

states is lifted (Fig. 1.2) through the uniaxial strain and the strong vertical confinement. This

implies the valence band ground state is dominated by a heavy hole contribution. Atomistic

calculation support this picture [39]. The pure heavy hole states are J,Jz = 3/2, ±3/2 in the

valence electron basis and |⇑〉, |⇓〉 in the hole basis [9]:∣∣∣∣32 ,+3

2

〉
=

1√
2
|(px + ipy) ↑〉 ≡ |⇓〉∣∣∣∣32 ,−3

2

〉
=

1√
2
|(px − ipy) ↓〉 ≡ |⇑〉

(1.1)

px and py are the p-orbitals in the plane. |↑〉 and |↓〉 represent the electron states in the valence

band. The optical selection rules are rather strict an depend on the direction of the external
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Figure 1.3 | (a) and (b). Single spin level diagrams for electron |↑〉z and |↓〉z (hole,|⇑〉z and |⇓〉z) spin states

in an external magnetic field B along the growth direction (z). The charged trion states X1− (X1+) are formed

out of two spin-paired electrons (holes) and one hole (electron). The allowed transitions under conservation of

the angular momentum (blue), are right (σ+)- and left (σ−)-handed polarized. (c) and (d). Level diagram for

electron (hole) states with a magnetic field in-plane along the x-direction. Here all transitions are allowed with

linear polarized light in x- and y-direction.

magnetic field [40]. The selection rules for the magnetic field in growth direction (z) and a

pure heavy hole spin, Fig. 1.3(b), are

|⇓〉z
σ+

←→ |⇑⇓, ↓〉z

|⇑〉z
σ−
←→ |⇑⇓, ↑〉z

(1.2)

The transition is allowed under conservation of the spin angular momentum, depended on the

photon polarization σ+ (+1) and σ− (−1). A laser with circular polarized light can only drive

the vertical transitions. Fig. 1.3(a) represents the electron spin case. The diagonal transitions

are have no spin conservation and are forbidden. The constraint on the diagonal transitions is

only partially lifted in case of a light hole admixture [41].

An in plane magnetic field modifies the level diagram. The new spin eigenstates in the

x-basis are a linear combination of the spin states in z:

|⇓〉x =
1√
2

(|⇓〉z − |⇑〉z)

|⇑〉x =
1√
2

(|⇓〉z + |⇑〉z)
(1.3)

With the new spin states in x-basis and the selection rules from the z-basis applied, all four

transitions are equally allowed. Fig. 1.3(c) for electron and (d) for hole spins show the new

level diagram with the allowed transitions. A linear y-polarized laser couples to the “diagonal”

and a x-polarized laser to the “vertical” transitions of the new level diagram.
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1.1.4 The electron spin and the problem of decoherence

The individual hole |⇑〉 and |⇓〉 or electron |↑〉 and |↓〉 states can be seen as a spin qubit. The

in-plane configuration enables individual control of the spin qubit states, if the spin states

are sufficiently separated. Coupling both spin ground states to a common upper state by two

lasers, establishes a Λ system [42] used for coherent population trapping experiments [43, 44].

The main limitation for the perfect electron spin qubit in a QD is the lack of spin coherence.

Three timescales are of interest in this context. First the spin relaxation time T1, which is the

time of a spin-flip process (|↑〉 → |↓〉) resulting of interactions with the environment, such as the

lattice. For electron spins this time is very promising as experiments state T1 > 20 ms [30] and

even predict times up to T1 = 1 s [45]. (For lateral QDs defined from a two-dimensional electron

gas relaxation times of T1 > 1 s [46] have been observed.) Second, the decoherence time of

the quantum system T2, which describes the life time of a quantum mechanical superposition

of spin up and spin down states (|↑〉 + |↓〉). This time is surprisingly small T2 = 3 µs [4, 27].

And finally the decoherence time for an ensemble measurement, the time averaged coherence,

called the dephasing time T ∗2 . This decay time includes the all statistically distributed noise

contributions over several experiments and turns out to be in the order of just a few nanoseconds

T ∗2 ' 1− 10 ns [4, 27, 43]. The three timescales are related to some extent. The decoherence

time can be generally expressed as [47, 48]

1

T2
=

1

2T1
+

1

Tφ
. (1.4)

Tφ is the dephasing contribution to the decoherence rate, which contains the pure dephasing

mechanisms of the single spin. T1 is limited by phonons. The ideal limit of decoherence for

electrons and holes, T2 = 2T1 [47, 49], can only be reached if noise induced by phonons is

dominant and Tφ is minimal. The relation between the decay times in case the hyperfine

coupling of the nuclear spins prevails is T2 6 2T1, but usually T ∗2 < T2 and T2 � T1.

The two dominant decay channels for spin qubits in QDs are the spin orbit interaction (SOI)

and the hyperfine interaction [50]:

Different types of asymmetry in the system lead to Rashba SOI, which couples the electric

field to the spin states, and Dresselhaus SOI terms [8]. The Dresselhaus term (bulk inversion

asymmetry) depends strongly on the growth direction and can cancel in certain directions

with the Rashba term (structural inversion asymmetry) in the lowest order [51]. The SOI

terms drive mainly the spin relaxation by a phonon-mediated mechanism, all other effects are

negligible [52, 53]. For electrons at high magnetic fields the influence of the phonons dominate

the T1 relaxation with a B−5-dependence [30]. At low temperatures the spin relaxation via

phonons is mostly suppressed.
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The theoretical limit, T2 = 2T1 [47], is achievable if the decoherence is only limited by

phonons. The hyperfine interaction is the main source of decoherence [54, 55] and the reason

for the experimentally achieved poor T2 � T1. As a result of the approximately 104 − 106

atoms in a QD, the electron wavefunction overlaps with a large number of atoms. Each atom

contains a non-zero nuclear spin contributing to the hyperfine interaction. Three different

components of the hyperfine interaction can be derived from the Dirac equation [56]: the

isotropic contact hyperfine interaction Hc; the anisotropic hyperfine interaction (dipole-dipole

like) Hdd; and the coupling of orbital angular momentum to the nuclear spin Hang. For

electrons the contact hyperfine interaction is the predominant coupling to the nuclear spin

bath, while the other components are negligible, due to their spherical symmetry and their

vanishing orbital momentum. The contact hyperfine interaction is:

Hc ≈
∑
i

Aei | ψi |2 Ii · S ≡ µB ĝeBN · S (1.5)

with Aei the coupling coefficient with nuclear spin i, Ii the nuclear spin vector, ψi the electron

envelope function, S the electron spin and the electron g-factor tensor ĝe. A
e
i is dependent on

the individual isotopes and typically around 100 µeV for In, Ga and As [57]. The conduction

band wavefunction consists of atomic s-orbitals (see Fig. 1.2) and exhibits therefore a large

amplitude at each individual nuclei, Fig. 1.4(a). Each nuclear spin interacts with the electron

via an effective magnetic field. In principle the effective magnetic field for N nuclear spins

balances itself out, just a residual factor of 1/
√
N remains [54]. The Overhauser field, the

remaining effective magnetic field, for InAs QDs is around BN ≈ 20 mT [58]. The fluctuating

Overhauser field leads to dephasing. The part of BN fluctuating perpendicular to the applied

magnetic field in z-direction, is responsible for the electron spin flip-flop process. In terms of

the relaxation time T1 at zero and very low magnetic fields (below 0.3 T) the flip-flop processes

result in very small relaxation times. As soon as a magnetic field lifts the degeneracy of the

spin states this process is suppressed and large T1 times can be achieved. In contrast the

other part of BN fluctuating along the applied field, e.g. in z-direction, results in random

changes in the electron precession frequency and therefore in large dephasing and a small T ∗2
(Btot = B +BN ). The changes in the precession frequency are proportional to the Zeeman

splitting of the electron spin levels by the Overhauser field (geµBBN ). Therefore the dephasing

time T ∗2 is connected to the Zeeman splitting (T ∗2 ∝ ~/∆Znue ∼ 1 ns). The electron g-factor is

ge ' −0.5 for the usual QDs [59].

Attempts to prolong the dephasing time have been made, including optical polarization of

the nuclei with a dynamic nuclear polarization scheme (DNP) [60] or feedback control to narrow

the distribution of the nuclear spin ensemble around a mean value Bmax
N [61]. Although the
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Figure 1.4 | (a) Atomic s-orbitals build the electron conduction band states (blue), each localized to a
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position of each nucleus. The magnetic dipole moment of the heavy hole spin is illustrated by a circulating

microscopic current and points in spin direction. In +z-direction for a clockwise rotation with spin up and in

−z-direction for anticlockwise and spin down.

polarization of the nuclear spin is only partially (50–70%) achieved, the dephasing time can be

extended to T ∗2 ≥ 0.1 µs [62].

Despite the decoherence the qubit routine is fully implemented for an electron spin: Initial-

ization with close to 100% fidelity by optical spin pumping (OSP) [63, 64], manipulation with

fast laser pulses [65] or alternating magnetic fields [66], and subsequent read-out [4, 65].

1.1.5 The hole spin

An interesting alternative for a spin qubit represents the hole spin. The big advantage is the

coherence of the hole spin as reported by Brunner et al. [44]. A prominent reason for the

coherence of holes is the difference in hyperfine interaction compared to electrons [67, 68].

Recently, similar experiments as the ones for electron spins have been realized for the hole spin

to achieve the spin qubit routine: initialization [29, 69], manipulation [70–72] and read-out

[73].

Phonon-mediated spin relaxation for a hole spin is comparable to the one of electrons in

a strongly confined environment [49]. The sensitivity to confinement leads to long relaxation

times T1 > 0.5 ms [69] for low magnetic fields. The hole spin experiences a T−1 and magnetic

field dependence, pointing towards phonon related decay mechanisms [74]. A weak magnetic

field dependence is predicted to arise from two phonon processes in the limit B → 0 [75]. If

only pure phonon related decoherence is present the upper limit for holes, T2 = 2T1, can be

theoretically achieved [49].

For holes, similar to electrons, the hyperfine induced dephasing is claimed to be a prominent
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decoherence mechanism at low temperatures. The hole states are constructed from atomic

p-orbitals, Fig. 1.2, with one p-orbital per atom. The hole wavefunctions have a vanishing

amplitude at the location of each nucleus, see Fig. 1.4(b), such that the contact hyperfine

interaction Hc is switched off. For holes with a p-type symmetry of the wavefunction the

dipole part of the interaction is significantly enhanced with respect to an electron spin. The

dipole part is the combined anisotropic hyperfine interaction Hdd and the coupling of orbital

angular momentum to the nuclear spin Hang. Confined systems, with a large HH-LH splitting,

have approximately pure HH states in the valence band. For a pure HH, with a magnetic

dipole moment along the z-direction and inside an unstrained QD, the effective dipole hyperfine

interaction Hamiltonian of Hdd and Hang takes a simple Ising form (only one direction of spin

component possible) [67]

HHH
dipole ≈

∑
i

Ah,zi | ψi |2 Izi · Jz ≡ µB ĝhBh
NJ

z. (1.6)

Here is Ahi the coupling coefficient of HH to the nuclear spin i, Iz is the z-component of the

nuclear spin, ψi is the hole envelope function, Jz is the z-component of the hole spin vector

and ĝh the hole g-factor tensor. Ah,zi is typically around 10 µeV (−10% of Aei ) [76, 77]. This

anisotropy of the Overhauser field opens great possibilities for hole spins (Btot = B + zBh
N ).

The heavy hole only experiences a fluctuating Overhauser field in z-direction, which leads to

dephasing if no magnetic field or a field in z-direction is applied [67]. However for a strong

in-plane magnetic field the fluctuations in z-direction have a negligible influence on the total

magnetic field. The strongly suppressed magnetic field fluctuations imply a highly coherent

heavy hole spin. The dephasing T ∗2 time should rise despite a noisy Overhauser field with an

applied in-plane magnetic field [78]. Basically the amount of the fluctuating Zeeman energy

leading to fast dephasing of the spin precession is very small, therefore T ∗2 should increase

(T ∗2 ∝ ~/∆Z⊥,nuh ). First experiments on InAs QDs support the claim of long decoherence and

dephasing times in an in-plane magnetic field: T2 = 1 µs [44, 70] and T ∗2 = 0.1 µs [44].

These predictions hold only for a pure heavy hole state. In reality the valence band ground

state is an admixture of heavy hole, light hole and the spin orbit contributions. That includes

components of the pz-orbitals to form the hole states, giving rise to non vanishing contributions

to the hyperfine interaction Hamiltonian [79]. It is therefore still unclear to which extent the

non-HH component in real QDs influences the coherence of the hole spins in InGaAs QDs. The

extended interaction Hamiltonian for the real hole spin is

Hdipole ≈
∑
i

| ψi |2 (Ah,zi Izi · Jz +Ah,yi Iyi · J
y +Ah,xi Ixi · Jx) + · · · . (1.7)
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The effective hyperfine Hamiltonian includes the ladder operators J± = Jx ± iJy for the hole

spins, I±i = Ixi ±iI
y
i for the nuclear spins and the non-collinear contributions. It can be written

as [79]

Hdipole ≈
∑
i

| ψi |2 (Ah,zi Izi ·Jz+
1

2
Ah,⊥i (I+

i ·J
−+I−i ·J

+)+Ah,nci (I+
i ·J

z+I−i ·J
z))+· · · . (1.8)

The hyperfine coupling coefficient for the transverse part is Ah,⊥i and for the non-collinear

fraction Ah,nci .

The goal of the thesis is to explore the boundaries of hole spin coherence in real QDs,

basically mapping the contribution of additional terms to the hole hyperfine interaction. The

main tool is the quantum mechanical phenomenon of coherent population trapping (CPT)

which is introduced in Chapter 2. The first experiments (Chapter 2) suffer from material

issues, noise in the sample and a bad signal-to-noise ratio in the experiment. The issues are

addressed one by one in this thesis. Finally the CPT effect is a highly sensitive and ultra-

precise measurement method, which enables the probing of the magnitude of the in-plane hole

hyperfine interaction coefficients in real QDs (Chapter 7).

1.2 Experimental overview

The second part of the introductory chapter lists the techniques which are used in the QD and

hole spin experiments. After a short overview of the basic components of the experiment, the

main improvements on the sample and on the spectroscopy setup are described in detail. Only

these details made it possible to collect the high quality data presented in this thesis.

All experiments were carried out in a cryogenic environment at 4.2 K in a liquid helium bath

cryostat (CryoVac). Superconducting magnets create magnetic fields up to 9 T in growth di-

rection (Cryomagnetics) or up to 3 T in-plane with a split-coil magnet (American Magnetics).

A photodiode underneath the sample enables the technique of differential transmission spec-

troscopy [18, 80] exploiting a Stark-shift modulation technique with lock-in detection. Here

the interference between the laser field and the field of the coherently scattered photons is mea-

sured [81]. The optical detection follows the principle of a conventional confocal microscope

[82], with a single mode fibre acting as a pinhole [83]. In detail the microscope consists of

two parts, the microscope head outside and the microscope tube inside the cryostat (see Fig.

1.5). The microscope head is designed for standard photoluminescence spectroscopy (PL) as

well as for coherent laser spectroscopy of the resonance fluorescence (RF) of the QDs. The

microscope tube contains a cage system with all electrical connections and a free space optical

passage for the light. On top a window with a anti-reflection coating seals the tube. At the
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bottom of the tube, the QD sample is placed on top of a stack of x-y-z piezo positioners and

a x-y piezo scanner (attocube). The piezo positioners enable sub-nm precision in moving even

at cryogenic temperatures around 4 K and high magnetic field. This is essential for addressing

and selecting individual QDs. A hemispherical SIL on top of the sample enhances the outcou-

pled QD emission signal. Instruments for detection of the emitted photons are a grating based

Spectrometer with a CCD camera (40 µeV resolution, Princeton Instruments) or single photon

avalanche photo diodes (APDs, PicoQuant).

1.2.1 Sample design

A huge impact on the optical properties of the QDs originates from the sample design and the

growth process. High quality and low-noise samples are very difficult to achieve. For n-doped

devices with electrons as carriers, QDs showing narrow linewidth transitions and low-noise

environments are realised by increasing the capping layer [84, 85]. In Chapter 5 we present

transform limited linewidth for neutral and charged excitons in n-doped devices. The first

generation of samples was provided by the University of California in Santa Barbara (UCSB),

the second generation with lower noise by the Ruhr-University of Bochum.

More challenging is the realization of data with comparable performance for p-doped devices

employing holes as carriers. Samples with Be as a dopant exhibit coupling to the continuum

states (Fano resonances) [86]. Hence C-doping is the favourable doping method. The linewidths

presented so far are at best three times larger than for n-type devices (∼ 5 µeV) [44, 86]

and the emission count rate ten times smaller. An inverted sample design is introduced and

characterized in detail in Chapter 4. The main advantage is the growth of the p-doped layer

at the end of the fabrication process. Therefore the contamination of the environment, which

occurs usually after the p-doping, doesn’t affect the QDs at all. That makes the smallest

linewidths seen so far possible, down to the transform limit.

1.2.2 Resonance fluorescence spectroscopy

The main advantage of experiments presented in this work is the ability to perform coherent

laser spectroscopy and detect the resonance fluorescence of the QD. This paves the way for high

resolution measurements including a high signal to noise ratio. The coherent laser drives the

QD with the exact frequency of the energy transition and the exciton recombines by emitting

a photon with the same energy. The experimental challenge is the separation of the scattered

laser light from the QD emission. One way is to excite the QD in-plane and detect the emission

out of plane, in growth direction [19, 88]. Our scheme instead takes advantage of one inherent

property of the light: the polarization. The design of the microscope head is based on a

dark-field concept. Crossed linear polarization for the excitation and the detection (s and p)
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Figure 1.5 | Schematic of the microscope system. The sample on a stack of piezo positioners is located

inside the cryostat. The microscope head remains at room temperature. The sealed laser window provides

optical access. The microscope head consists of a center part with two polarizing beam splitters (PBS) and

the horizontal excitation and vertical detection arm. The upper horizontal arm images the sample surface with

a camera. Optical fibres connect the head to the lasers and detectors. The dark-field concept is realized by

orthogonal polarization states of the excitation and collection: the linear polariser defines the laser polarization

to s, matching the lower PBS; the quarter-wave plate controls the state of polarization; and the PBSs blocks

the s-polarized back-reflected laser light. s-polarization is depicted by solid lines and the p-polarization by the

dashed lines. Schematic adapted from Ref. [87].

leads to a suppression of the laser light in the detection arm of the microscope head. This is

realised by two polarizing beam splitters (PBS), one linear polariser and a quarter-wave plate.

The linear polariser defines the polarization of the incoming laser light, e.g. to s-polarization.

The first PBS deflects the s-polarized light by 90◦ to the QD device. The quarter-wave plate

corrects for an induced ellipticity. Backscattered s-polarized laser light is only reflected by 90◦

and not transmitted into the detection arm when passing the first and second PBS. Only the

p-polarized emission from the QD gets transmitted and can be detected. A detailed description

of the dark-field microscope head is shown in Fig. 1.5 and can be found in Ref. [87].

The striking performance features are: the long term stability over several days, a suppression

of the excitation laser up to 8 orders of magnitude and a standard signal-to-background ratio

of more than 104:1.
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Figure 1.6 | Schematic of the laser frequency locking principle. The frequency of the slave laser 2 is locked

with a stabilization loop to the master laser 1 at a fixed frequency difference ∆f . Signal down-mixing with the

help of a reference source enables low frequency operation around 10 MHz.

1.2.3 Laser frequency locking

Spectroscopy measurements of the coherent population trapping mechanism include two lasers

and depend strongly on the mutual tuning of the two lasers with respect to each other. The

frequency offset stabilization technique for single spins in QDs requires a large tunability and

great flexibility. The transitions energies of the self-assembled QDs are located in a range of

±40 nm (54 µeV, ±1013 Hz). The Zeeman splitting of single spins can vary dependent on the

QD and the magnetic field direction from sub 1 GHz/Tesla up to 12 GHz/Tesla. The locking

scheme is designed to satisfy these requirements. (RF usually stands for resonance fluorescence,

only from here until the end of the first Chapter RF corresponds to radio-frequency (3 kHz -

300 GHz).)

1.2.3.1 Principle

The working principle of the laser locking scheme fixes the laser frequency of a slave laser

relative to the one of a master laser. This enables a fixed frequency difference (beat frequency:

∆f = f1− f2) at all times. The setup for the pump-probe locking scheme is shown in Fig. 1.6.

A small amount of the emission of both lasers (DLPro 940, Toptica) is combined via two

arms of a multimode fibre. The master laser is frequency stabilized by the control software

of the wavemeter (High Finnesse WS/U-30U). The beat signal is then detected with a fast

photodiode (New Focus, 1554-A-50 with bandwidth up to 12 GHz). A beat frequency (∆f)

proportional to ∆λ of the lasers can vary from 100 MHz up to 15 GHz.
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Figure 1.7 | Block diagram of the laser frequency locking electronics SP950 (Electronics Workshop Uni

Basel)

The crucial idea is the downmixing of the RF signal with the help of a mixer and a RF

reference generator (FSW-0020, Phasematrix). That is realised down to an output signal with

the intermediate frequency (IF) of 10 MHz. Consequently the whole stabilization electronics

can be operated with relatively small MHz components around 10 MHz and no wide band-

width and GHz electronics is needed. However there is no single mixer to cover the large

frequency range, therefore an additional switching system with two mixers (300 MHz to 4.3

GHz ZEM-4300 MH+, MiniCircuits and 3.2 GHz to 15 GHz, ZX05-153MH+, MiniCircuits)

is implemented. The IF is fed to the Laser Frequency-Shift Stabilization (SP 950, Electronics

Workshop Uni Basel), which provides the correcting voltage between 0 and 10 V to the piezo

controller of the slave laser. Any deviation from the target beat frequency will be corrected

and locked to 10 MHz.

1.2.3.2 Electronics

The laser frequency-shift stabilization electronics (SP 950, Electronics Workshop Uni Basel)

can be understood as a phase locked loop (PLL) with an external voltage controlled oscillator

(VCO) in form of the laser system. The PLL tries to stabilize the frequency from the mixer

(input signal) to exactly the value of an internal clock of 10 MHz. Fig. 1.7 depicts the schematic

of the SP950.

Three main features are implemented in the scheme: a sweep function, an error detection

and the control direction of the stabilization circuit. The sweep generator scans the entire
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Figure 1.8 | Examples of the locking performance: (a) The frequency locking characteristics of the system.

As soon as the locking electronics is switched on the beat signal of the two lasers is locked the reference signal.

The locking results in a 10 MHz offset induced by the mixer. (b) Tuning characteristics of the system. The

reference laser frequency is increased in 10 MHz steps and the beat frequency stays always locked with a 10

MHz offset.

capture range (200 MHz, or 2 GHz) in the case no input signal is detected. The mixer output

is dependent on the beat signal of the lasers and can vary between 100 kHz and 50 MHz. An

additional potentiometer changes the control voltage until a signal detection occurs. Then the

normal PLL scheme is applied. If no detection or no locking is possible the error detection

LED starts blinking and an acoustic signal is triggered. That happens as well in the case the

locking is lost (e.g. a laser mode hop). The last feature is the detection direction. The 10

MHz offset between the beat frequency of the lasers and the reference frequency of the RF

generator, induced by the mixer, is in principle direction independent. A negative or positive

control function locks the output frequency 10 MHz above or below the reference frequency

dependent on the actual wavelength.

1.2.3.3 Performance

The tests and analysis of the performance of the stabilization electronics are illustrated for

exemplary frequency ranges in Fig. 1.8. A spectrum analyser collects the beat frequency

and the reference frequency over time and for statistical measurements. The influence of the

PLL electronics is clearly visible, when switched on at minute 20. The signals are perfectly

locked, the FWHM of the beat frequency linewidth is only 1 MHz and the temporal drifts are

eliminated. The linewidth is below the 10 MHz expected for the CPT dip and enables therefore

high resolution and accurate measurements. The capture range for frequency locking stretches

up to 2 GHz.

The second test (Fig. 1.8(b)) illustrates the locking performance as required during the

experiment. One laser is tuned and the frequency difference to the second one is always

defined. That can be implemented via tuning of the reference frequency and it is tested if the
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beat frequency is and stays locked after each step. The sweep function enables locking under

tuning conditions over the whole frequency span from 100 MHz up to 15 GHz.

The locking scheme is especially important if long integration times (>5 s per data point)

give rise to temporal drifts and therefore broadening of the beat frequency linewidth. For the

CPT measurements in Chapter 7 the technique was not used in the end, due to high count

rates and the possibility to work with very short integration times per step. A second reason

is the high quality and temporal stability of the lasers compared to the one used in the first

experiments in Chapter 2.

1.2.4 AOM setup

The next sensitive condition of the experiment to be met by the excitation laser is the exact

control of the intensity, even when scanning the laser frequency. Additionally the long-term

fluctuations of the laser power have to be minimized, in order to enable high quality scans.

A setup including an acousto-optic modulator (AOM) as centrepiece is designed in double

passage geometry to suit the experimental needs of the measurements.

1.2.4.1 Principle

AOMs are able to modulate the frequency, intensity and direction of the laser beam, prop-

erties which can be used for e.g. spectral tunable filters [89] or laser cooling and trapping

experiments [90]. The AOM (AOM 3200-1117, Crystal Technologies) contains a TeO2 crystal

connected to a strain transducer. A RF signal applied to the transducer causes an acoustic

wave to build up inside the crystal, propagating at the speed of sound. The crystal with the

acoustic wavefront acts like a diffraction grating to the incoming laser beam. The laser light

is scattered when meeting the acoustic wavefront, a behaviour that can be approximated by

Bragg diffraction. Maximum diffraction efficiency in the first order peak is determined by the

Bragg angle condition:

sin θB = λ1/2λs (1.9)

with the Bragg angle θB, the laser wavelength of the first order λ1 and the wavelength of the

sound-wave λs. An obstacle implementing the AOM in the experiment is the dependency of

the diffraction angle to the input or modulation frequency. In the experiments single mode

fibres are used to couple the laser light in and out of the AOM setup. Wavelength tuning in

a single pass geometry would cause the output coupling efficiency to vanish. A double pass

configuration [91] eliminates that problem. Here the second pass compensates for the change

in the diffraction angle and different laser wavelengths cause no displacement at the output.

The double pass configuration is illustrated in Fig. 1.9. The polarization is indicated in green
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Figure 1.9 | Double pass configuration of the AOM setup with feedback loop. The arrows indicate the

direction of the laser light (red) and of the particular polarisation (green).

and the laser light in red. A half-wave plate and a polarizing beam-splitter filter the laser beam

such that only one linear polarization (s) is focused on the AOM and the other popularization

(p) is blocked. The quarter-wave plate changes the linear polarization to circular after the

AOM. A concave mirror acts as a cat’s eye retro-reflector and focuses the intensity of the first

order beam directly back to the AOM, independent from the spatial position on the mirror.

The undiffracted zeroth order is eliminated by a beam block. The circular polarization of the

reflected light is now counter clockwise due to a phase shift of 180◦ at the mirror. The reflected

first order beam overlaps with the incident beam with a 90◦ difference in linear polarization

(p) and is therefore reflected from the polarizing beam splitter into the single mode fibre.

The AOM, mounted on a fully movable x-z stage on top of a rotation mount, can be operated

in two modes, the frequency and the amplitude modulation mode. The frequency modulation

allows tuning of the laser output frequency during constant laser input frequency, maintaining

a stable output in terms of intensity. The amplitude modulation regulates the amount of laser

light diffracted into the first order. This mode enables the creation of short laser pulses as

well as a intensity stabilized output over a large range of frequencies and a long-term stability

with the help of a feedback loop. The feedback loop consists of a photo-diode as detector, a

current amplifier and a PID (proportional, integral, derivative) stabilization electronics, which

is connected to the RF frequency controller of the AOM. The stabilization loop readjusts the

RF amplitude modulation of the AOM, while keeping the previously set output intensity.

1.2.4.2 Characteristics of the double passage AOM setup

The AOM setup in double pass geometry was built twice in order to stabilize both lasers

in the experiment. A transmission photodiode beneath the sample collects the amount of
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Figure 1.10 | Characteristics of the AOM setup. (a) The fluctuation of the laser intensity at the QD,

without and with AOM switched on. The inset zooms into the measurement during stabilization and reveals

a fluctuation suppression of more than 2 orders of magnitude. The data was recorded in transmission by a

photo-diode beneath the sample. (b) illustrates the long-term stability of the AOM setup over 15h. Normalized

intensity while changing the frequency of the laser (c) or tuning the frequency by the AOM frequency modulation

option over a small range (d). The red data shows the result of the feedback stabilization.

coherent scattered laser light and gives a hint of the laser intensity seen by the QDs. The

characteristics of the setup are tested regarding long-term stability and intensity stabilization

while frequency tuning. Furthermore the AOM acts as a “noise eater” suppressing an applied

square wave signal over two orders of magnitude or as a short pulse (10-20 ns) generator. In Fig.

1.10(a) the difference between the on and off mode is obvious. The photocurrent fluctuations

measured by the transmission photo-diode are reduced by two orders of magnitude as soon

as the stabilization is turned on. In (b) the PID parameters of the feedback stabilization

are tested, if they apply for long term measurements of more than 15 hours. The intensity

fluctuations show a small increase over time but are still two orders below the values without

AOM.

The frequency tuning in Fig. 1.10(c) and (d) is realized in two different ways. The first way is

frequency tuning of the laser itself (Toptica DlPro940) inside a mode-hop free range of 4 GHz,

shown in (c). The range could be extended up to 20 GHz for the experiments in Chapter 7.

In this case the amplitude modulation mode and the feedback loop adjusts the intensity. Or
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Figure 1.11 | Frequency spectrum of the laser signal, with a squarewave as artificial noise source (black)

compared with the AOM intensity stabilization switched on (red).

secondly, the fine tuning option in (d), where the frequency mode of the AOM tunes the laser

externally. However this mode is restricted to a small range of 200 MHz around the center

frequency of the AOM. In both cases the output fluctuations are highly suppressed.

The intensity stabilization characteristics established the internal name “noise eater” when

referring to the setup. Fig. 1.11 illustrates the suppression of an additional applied noise signal,

in form of a square wave with a frequency of 323 Hz. The spectrum analyser demonstrates

a signal reduction over 40 dB or two orders of magnitude. Last but not least the amplitude

modulation of the AOM is able to create pulses as short as 10 ns, with a contrast ratio of 1:1000.

This is very useful for pulsed experiments and is implemented in recent work on manipulating

nuclear spin ensembles [92].
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PART II

Studies on a coherent hole spin using

optical techniques





Chapter 2

Coherent superposition of single hole spins in a

semiconductor

Adapted from:

Julien Houel, Jonathan H. Prechtel, Andreas V. Kuhlmann, Daniel Brunner, Christopher E.

Kuklewicz, Brian D. Gerardot, Nick G. Stoltz, Pierre M. Petroff, and Richard J. Warburton

“High resolution coherent population trapping on a single hole spin in a

semiconductor”

Phys. Rev. Lett. 112, 107401 (2014)

We report high resolution coherent population trapping on a single hole spin in a semiconductor

quantum dot. The absorption dip signifying the formation of a dark state exhibits an atomic

physics-like dip width of just 10 MHz. We observe fluctuations in the absolute frequency

of the absorption dip, evidence of very slow spin dephasing. We identify the cause of this

process as charge noise by, first, demonstrating that the hole spin g-factor in this configuration

(in-plane magnetic field) is strongly dependent on the vertical electric field, and second, by

characterizing the charge noise through its effects on the optical transition frequency. An

important conclusion is that charge noise is an important hole spin dephasing process.

(Experiments and results presented in this chapter were obtained in close collaboration with

Dr. Julien Houel, who performed parts of the experiments in the old nano-optics laboratory

in Edinburgh.)

http://dx.doi.org/10.1103/PhysRevLett.112.107401


2 Coherent superposition of single hole spins in a semiconductor

2.1 Introduction

Coherent population trapping (CPT) is a quantum interference effect which arises in an optical

Λ system [1]. Two ground states are coupled individually by “pump” and “probe” lasers to

a common upper level. At the two-photon resonance when the frequency difference of the

lasers matches the frequency difference of the ground states, one of the three eigenstates has

zero amplitude of the upper level, the “dark” state. CPT refers to the signature of the dark

state, a dip in the probe absorption spectrum as the probe is tuned through the two-photon

resonance. Specifically, for probe (~Ω1) and pump laser couplings (~Ω2) in the perturbative

regime ~Ω1 � ~Ω2 � ~Γr (Γr is the spontaneous emission rate from the upper state), the dip

has width ~Ω2
2/Γr. A sketch of the 3-level Λ-system shows Fig. 2.1.

CPT is a key effect in atomic physics. First, CPT forms the microscopic basis of electro-

magnetically-induced transparency which itself underpins a scheme for slowing light [2]. Sec-

ondly, the narrow dip enables the frequency separation of the ground states to be measured

extremely precisely by optical means. Thirdly, the dark state of CPT can be used for quantum

control [3]. Finally, the “visibility” of the quantum interference at the CPT dip is sensitive

to the ground state coherence (but insensitive to the upper state coherence) [4–7]: ground

state decoherence admixes the dark state with the two bright states. The dip width sets the

sensitivity to the decoherence time T2: for 1/T2 � Ω2
2/Γr the signal in the dip goes to zero but

for 1/T2 � Ω2
2/Γr the dip is washed out. The sensitivity to the dephasing time T ∗2 comes about

because ground state dephasing implies a fluctuating two-photon resonance position, resulting

in both an increase in dip width and a decrease in “visibility”.

It is motivating to implement CPT in a semiconductor. Systems include excitons in GaAs

quantum wells [8], bound excitons in GaAs [9], and spin states in InGaAs quantum dots [5–7].

The challenge is to engineer two ground states with T2 and T ∗2 times much larger than the

radiative lifetime τr of the upper state. A single electron in an InGaAs quantum dot is an

obvious candidate: the spin states represent a two-level system, and spontaneous emission is

fast, τr ∼ 1 ns [10]. Unfortunately, in the presence of noisy nuclei, the hyperfine interaction

limits T ∗2 to just a few ns [11, 12] and the CPT dip can only be observed at large optical

couplings where it is inevitably broad [5]. The situation improves either by reducing the

nuclear spin noise [13] or by using a quantum dot molecule [7] at a point where the first order

sensitivity to spin noise vanishes.

A hole spin is potentially simpler. A heavy hole state with spin eigenvectors J = 3
2 , Jz = ±3

2

is predicted to become coherent in an in-plane magnetic field [14]. In that case the hole spin

superposition state is maintained over a period longer than just a few ns. Conveniently, the

in-plane magnetic field is exactly the field direction required to establish the Λ system, as

described in the introductory chapter and in Fig. 2.1 [5, 6]. The key point is that a perfect
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3level system

δ1δ2

Ω1Ω2
Γr

1

3

2

Figure 2.1 | 3-level Λ-system. The energetically split ground state levels |1〉 and |2〉 are coupled by two

optical fields Ω1 and Ω2, respectively, to a common upper level, |3〉. δ1 and δ2 indicate the probe and pump

detunings of the optical fields to the upper level.

heavy hole spin is sensitive to nuclear spin noise only along the vertical direction z, noise which

can be suppressed by applying an external magnetic field in the (x, y)-plane [14]. The extent

to which the idealized heavy hole picture applies to a real hole in a quantum dot has been

explored in a number of recent optical experiments [6, 15–21]. The Hahn echo T2 is in the

µs range [20], a remarkable result bearing in mind the extremely limited hole spin coherence

in quantum wells and bulk material [22, 23]. Spin dephasing times T ∗2 lie in the 10 − 100

ns regime with significant differences from experiment to experiment [6, 19–21]. CPT dips

have been observed on a single hole spin [6] but these experiments used optical couplings only

slightly less than the radiative decay rate, resulting in dip widths of ∼ 100 MHz. This is too

large for slow light, high resolution spectroscopy and quantum metrology applications. It also

renders the experiment insensitive to decoherence times above about 100 ns.

2.2 Coherent population trapping experiment

We report here CPT on a single hole spin in the perturbative regime. A dip width of just 10

MHz is demonstrated. The residual absorption in the center of the dip is zero (within random

error), consistent with a coherence time T2 ≥ 1 µs. However, we discover a scan-to-scan

variation in the CPT position. We relate this to charge noise. On the one hand, we measure

the dependence of the hole spin g-factor on vertical electric field. On the other hand, we

quantify the fluctuations in vertical electric field through their effects on the optical transition,

the dependence arising via the dc Stark effect. We identify charge noise as an important

dephasing mechanism for the quantum dot hole spin. Charge-noise induced spin dephasing is

potentially important for other spin qubits with an electric-field dependent g-factor and for

systems with a strong spin-orbit interaction.
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Figure 2.2 | (a) Layer sequence of the semiconductor heterostructure. The tunnel barrier is 25 nm, capping

layer 10 nm and short-period superlattice 120 nm. Post-growth, Ohmic contacts along with a semi-transparent

surface gate electrode are fabricated. (b) Schematic of the optical set-up.

2.2.1 Device and measurement method

The semiconductor device is a p-type charge-tunable heterostructure to which a voltage Vg is

applied, Fig. 2.2(a) [6, 15, 24]. Laser spectroscopy is carried out using differential reflectivity

(∆R/R) detection, Fig. 2.2(b) [25, 26]. The exciton’s optical linewidth is dot dependent, typi-

cally 5−10 µeV [24]. This is considerably larger than both the transform limit, ∼ 0.8 µeV [27],

and the linewidths on high quality n-type samples, ∼ 1.5 µeV [25, 27], and reflects additional

charge noise associated with the p-type doping [24]. A magnetic field of 0.5 T is applied in

the plane, and then two-color pump-probe laser spectroscopy is carried out using two coher-

ent lasers. The experiment is very challenging: ∆R/R is very small at the optical resonance

(0.1%); at the ultra-low laser powers used here noise in the detector circuit is significant; and in

the perturbative regime (~Ω1 � ~Ω2 � ~/τr), the width of the CPT dip approaches the limit

set by the mutual coherence of the lasers. We meet these challenges with a solid immersion

lens to boost the ∆R/R signal, a modulation technique to reject noise in the reflectivity signal,

and a stabilization scheme to lock the pump-probe frequency difference to a radio frequency

reference (mutual coherence of 2.0 MHz in 30 s).

2.2.2 Ultranarrow CPT dip

A CPT dip on a single hole spin in a magnetic field of 0.5 T and temperature 4.2 K is shown

in Fig. 2.3. The optical couplings ~Ω1, ~Ω2 were determined by measuring an Autler-Townes

splitting at high laser powers, extrapolating the couplings to low laser powers using the scaling

~Ω ∝
√
P (P is the laser power), Fig. 2.4(a). In the CPT experiment, ~Ω2 is a factor of 3 lower

than the spontaneous decay rate Γr = 1/τr. The full-width-at-half-maximum of the CPT dip
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Figure 2.3 | Probe absorption in the presence of a close-to-resonant pump laser on a single InGaAs quantum

dot containing a single hole spin at B = 0.5 T and T = 4.2 K, 10 s integration per point. The absorption (here,

differential reflectivity ∆R/R) shows an absorption dip signifying coherent population trapping. The solid line

shows the result of a 3-level density matrix model (~Ω1 = 0.17 µeV, ~Ω2 = 0.35 µeV, ~δ2 = −2.5 µeV, ~/τr = 0.8

µeV, T2 ≥ 1 µs, T1 � T2) convoluted with a Lorentzian with FWHM ΓX = 5 µeV (1.22 GHz) to describe slow

exciton dephasing, and then with a Lorentzian with FWHM 8.3 neV (2.0 MHz) to account for the mutual

coherence of the lasers.

is just 13 MHz, equivalently 54 neV, corresponding to just 10−7 of the frequency of the optical

transitions, and just 10−3 of the thermal energy. Fig. 2.3 constitutes our main result: a CPT

dip linewidth in the MHz regime, a spectral sensitivity usually associated with atomic physics

and not a semiconductor experiment.

The solid-lines in Fig.s 2.3 and 2.4(a) correspond to the results of a 3-level density matrix

(ρ) calculation [6]. The derivation and the calculations with the density matrix formalism

are described in Appendix C. The resulting matrix element ρ13 [2] (in the case of reflectivity

measurements) is convoluted with a Lorentzian distribution of width ΓX in the energy of the

upper level, |3〉, in order to describe the effects of charge noise. ΓX is known from the one-laser

characterization at B = 0. The result is then convoluted again, this time with a Lorentzian

function of width 2.0 MHz (8.3 neV) to describe the limited mutual coherence of the lasers.

In the limit of large ~Ω2, the Autler-Townes experiment, ~Ω2 is treated as a fit parameter,

and the result describes the absorption envelope extremely well, Fig. 2.4(a). In the limit of

small ~Ω2, the CPT experiment, the result describes the dip width and depth extremely well

(Fig. 2.3). In the CPT limit, there are no unknowns apart from a small uncertainty in ~δ2, the

pump-detuning (see below).

The residual signal in the CPT dip of Fig. 2.3 can be fully accounted for by the mutual

coherence of the lasers: the condition 1/T2 � Ω2
2/Γr is satisfied, which translates to T2 ≥ 1 µs.

Furthermore, the width of the CPT dip in Fig. 2.3 is described with the 3-level model without

ensemble averaging. This sets a lower limit on the dephasing time: from the uncertainty in the

CPT width (Fig. 2.3) we determine T ∗2 ≥ 100 ns. A measurement of T ∗2 on a single emitter
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Figure 2.4 | (a) Probe absorption versus probe detuning on the same quantum dot as Fig. 2.3 in the regime

~Ω2 � ~/τr showing an Autler-Townes splitting. The solid curve is a fit to the data, ~Ω2 = 4.7 µeV, ~δ2 = 0.0

µeV, as fit parameters. ΓX = 7.5 µeV is taken from ∆R/R at B = 0. (b) Probe absorption versus probe

detuning on the same quantum dot in the regime ~Ω2 � ~/τr. Three curves are shown under close-to-identical

conditions showing a shift in the location of the dip in one case by 4 MHz (17 neV), and in another case by 23

MHz (95 neV).

involves an integration of the experiment in time, equivalently over a frequency bandwidth.

The value of T ∗2 deduced from Fig. 2.3 represents an integration over measurement frequencies

starting at about 0.01 Hz.

2.2.3 High resolution dark state spectroscopy

We take advantage of the narrow dip to perform high resolution dark state spectroscopy. We

find that the frequency of the dip fluctuates from scan to scan, Fig. 2.4(b), over a range of

∼ 5 MHz (∼ 20 neV). Occasionally, larger frequency shifts are observed, possibly with an

unusual lineshape, Fig. 2.4(b). These effects point to the presence of very slow fluctuations in

the frequency separation of the hole spin ground states. In terms of T ∗2 , we find that T ∗2 falls

to just ∼ 30 ns when the measurement bandwidth starts at ∼ 0.0001 Hz. It is unlikely that

nuclear spin noise is responsible for this extra noise at very low frequencies. On the one hand,

nuclear spin noise lies at higher frequencies [27]; on the other hand, we have not observed any

hysteresis effects in the CPT experiment, the typical signature of the nuclear spins. The slow

CPT fluctuations are reminiscent of the low frequency wanderings of the optical transition
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2.3 Hole spin dephasing

which has a 1/f -like noise spectrum and arises from charge noise [27]. We therefore look for a

link between charge noise and the hole g-factor.

2.3 Hole spin dephasing

2.3.1 Electric field dependence of the hole g-factor

We have characterized the eigenenergies as a function of Vg by measuring the photoluminescence

(PL) from the positively-charged trion X1+ in an in-plane magnetic field B = 9 T, Fig. 2.5(a).

We resolve 4 lines corresponding to the two “vertical” transitions and the two “diagonal”

transitions, Fig. 2.5(a),(b). Fig. 2.5 shows the Vg dependence of the electron and hole Zeeman

energies. To within error, ∼ 0.25%, the electron Zeeman energy Ze is independent of Vg; in

contrast, the hole Zeeman energy Zh changes by ∼ 5% over the X1+ plateau. Defining the gh

via Zh = ghµBB, we find gh = 0.15 +αF with α = 8.6×10−4 cm/kV (F is the vertical electric

field).

The dependence of gh on F creates a mechanism by which charge noise can result in spin

dephasing: electric field fluctuations cause changes to the hole spin precession frequency. In

particular, the low frequency charge noise causes both the optical transition energy and the

CPT dip position to wander. Specifically, the charge noise in a bandwidth fscan ≤ f ≤ 1/τr can

be determined by measuring the optical linewidth at rate fscan, converting the inhomogeneous

broadening into electric field noise via the known Stark shift. This is easy to measure with the

resonant laser spectroscopy employed here. Charge noise at lower frequencies, f ≤ fscan, results

in scan-to-scan fluctuations of the resonance energy. CPT is recorded on the same quantum

dot experiencing the same noise: a powerful connection can therefore be made between the

optical linewidth and the CPT experiment.

The optical linewidth of the transition probed via CPT in Fig. 2.3 is 5.0 µeV. Together with

the known Stark shifts, dE/dF = 18 µeV/kVcm−1 [dE/dVg = 1.12 µeV/mV], this results in

∆F = 0.28 kV/cm [∆Vg = 4.5 mV]. This charge noise, ∆F , results in turn in a fluctuation

in gh of ∆gh = 2.4 × 10−4, equivalently, ∆Zh = 7 neV (1.7 MHz) at 0.5 T. This broadening

is comparable to the frequency resolution of the experiment and therefore plays a small role.

This explains why the CPT dip in Fig. 2.3 can be explained without taking into account charge

noise-induced dephasing. The effects in Fig. 2.4(b) arise when fscan is reduced even further.

In this case, ultralow frequency flicker noise results in wanderings of the quantum dot optical

resonance typically by one or two linewidths over the course of many minutes [27]. These

optical shifts induce in turn wanderings of the CPT dip, by a few MHz, as observed in Fig.

2.4(b). The larger shifts in CPT position, Fig. 2.4(b), may represent highly unlikely but more

extreme changes to the electrostatic environment of the quantum dot.
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2 Coherent superposition of single hole spins in a semiconductor
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Figure 2.5 | (a) The quantum states of a single hole spin in an in-plane magnetic field. ↑, ↓ denotes an

electron spin, ⇑,⇓ a hole spin. (b) Photoluminescence on a single InGaAs quantum dot (different quantum dot

from Fig. 2.3, 2.4 but from the same wafer) at B = 9.0 T and T = 4.2 K as a function of Vg over the extent

of the single hole Coulomb blockade plateau. Four transitions are visible, labeled 1 − 4, and identified in (a).

The width of each peak is determined by the spectrometer-detector (system resolution 50 µeV). The apparent

steps are an artifact arising from the pixelated detector. (c) Electron and hole g-factors, ge and gh, versus Vg.

Vg is converted into vertical electric field F with F = −e(Vg + Vo)/D with D = 155 nm and Schottky barrier

Vo = 0.62 V. Under the assumption of a negative ge, gh is positive. The error on each point is ∼ 2 µeV using a

routine which corrects for the detector pixelation.

2.3.2 Charge noise as hole dephasing mechanism

Our results point to the role of charge noise in dephasing a quantum dot hole spin. In this

experiment, the charge noise in Zh implies a dephasing time of T ∗,c2 ' 100 ns on integrating

noise in a bandwidth starting around 0.01 Hz at B = 0.5 T. T ∗,c2 reflects an upper limit to

T ∗2 for a given fscan: other processes could reduce T ∗2 further. A consistency check is that the

measured T ∗2 in a similar bandwidth (Fig. 2.3) cannot be higher than T ∗,c2 . This is indeed the

case. Specifically, the experiment demonstrates that charge noise is the dominant dephasing

mechanism at very low values of fscan (Fig. 2.4(b)).

The key to increasing T ∗2 is to reduce the charge noise. Some quantum dots in the sample have

lower optical linewidths despite similar Stark shifts pointing to a lower level of local charge noise
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2.4 Conclusion

and for these quantum dots we can expect T ∗2 ≥ 100 ns. Generally speaking, these resonant

laser spectroscopy experiments have low charge noise, much less than in experiments with non-

resonant excitation [27]. Experiments with more charge noise will therefore give smaller hole

spin T ∗2 values. Charge noise also results in a B-dependence of T ∗2 . We find that dgh/dF is

B-independent: the fluctuations in Zh increase linearly with increasing B for constant charge

noise implying that T ∗2 scales as 1/B: T ∗2 ' ~/(|dgh/dF |∆F µBB). The B-dependence may

be obscured should other dephasing mechanisms come into play at higher magnetic fields, for

instance hyperfine coupling [20, 21] or the interaction with phonons [16, 28]. We note however

that hole spin dynamics at magnetic fields of several Tesla reveal smaller T ∗2 values [20, 21]

than those at low magnetic field [6, 19], and this is consistent with charge noise-dominated

spin dephasing. We stress that an advantage of the present experiment is that the charge noise

is measured in situ via the laser spectroscopy.

2.4 Conclusion

In conclusion, we report 10 MHz wide CPT dips in laser spectroscopy experiments on a quan-

tum dot hole spin. The quantum dot is embedded in a very good but imperfect device. Charge

noise causes slow wanderings of the CPT dip. There are a number of mitigating strategies.

First, p-type devices need to be developed with less charge noise, ideally with the low levels

of charge noise associated with the best n-type devices. Secondly, the dependence of the hole

g-factor on electric field, while possibly an attractive feature for electrical qubit control, can

be reduced by appropriate quantum dot design.
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Petroff, and R. J. Warburton, Science 325, 70 (2009).

[7] K. M. Weiss, J. M. Elzerman, Y. L. Delley, J. Miguel-Sanchez, and A. Imamoğlu, Phys.
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PART III

High quality devices and noise

reduction





Chapter 3

Charge noise suppression with a feedback

scheme

Adapted from:

Jonathan H. Prechtel, Andreas V. Kuhlmann, Julien Houel, Lukas Greuter, Arne Ludwig,

Dirk Reuter, Andreas D. Wieck, and Richard J. Warburton

“A frequency-stabilized source of single photons from a solid-state qubit”

Phys. Rev. X 3, 041006 (2013)

Single quantum dots are solid-state emitters which mimic two-level atoms but with a highly

enhanced spontaneous emission rate. A single quantum dot is the basis for a potentially

excellent single photon source. One outstanding problem is that there is considerable noise

in the emission frequency, making it very difficult to couple the quantum dot to another

quantum system. We solve this problem here with a dynamic feedback technique that locks

the quantum dot emission frequency to a reference. The incoherent scattering (resonance

fluorescence) represents the single photon output whereas the coherent scattering (Rayleigh

scattering) is used for the feedback control. The fluctuations in emission frequency are reduced

to 20 MHz, just ∼ 5% of the quantum dot optical linewidth, even over several hours. By

eliminating the 1/f -like noise, the relative fluctuations in resonance fluorescence intensity are

reduced to ∼ 10−5 at low frequency. Under these conditions, the antibunching dip in the

resonance fluorescence is described extremely well by the two-level atom result. The technique

represents a way of removing charge noise from a quantum device.

http://dx.doi.org/10.1103/PhysRevX.3.041006


3 Charge noise suppression with a feedback scheme

3.1 Introduction

Single photons are ideal carriers of quantum information [1–3]. A quantum state stored in

one of the degrees of freedom of the photon’s wave packet (polarization, phase or time-bin)

can be maintained over long distances. Single photons are therefore important in quantum

communication [3], for coupling remote stationary qubits [4], the basis of a quantum repeater

[5], or for coupling different elements in a quantum device. Furthermore, single photons are

the seed for a variety of quantum optics experiments [6, 7].

Key parameters for a single photon source are fidelity of the antibunching, flux, wavelength

and photon indistinguishability [8]. Remarkably, solid-state emitters are presently better able

to meet these demands than atomic systems [6, 7]. In particular, spontaneous emission from

individual quantum dots embedded in an inorganic semiconductor is a very promising source of

highly antibunched, high flux, indistinguishable photons [7, 9, 10]. The antibunching, particu-

larly with resonant excitation, is very high [11]. The radiative lifetime is very short, typically

just less than 1 ns [12]. The flux is usually limited by the poor collection efficiency: most

of the light is internally reflected at the GaAs-vacuum interface. However, this problem can

be solved by nano-structuring the photonic modes to create a micro-cavity [13] or a photonic

nanowire [14]. In the latter case, collection efficiencies of ∼ 70% have been achieved. The pho-

ton indistinguishability is very high for successive photons [10]. Based on the optical linewidth,

typically a factor of two above the transform limit when measured with resonant excitation

[15–18], the indistinguishability is also reasonably high for photons emitted widely separated

in time. Furthermore, a single quantum dot has also been developed as a spin qubit [19],

facilitating an interface between stationary qubits and photons [20–22].

Unlike a real atom, the exact transition wavelength of a quantum dot is not locked to any

particular wavelength and varies considerably from quantum dot to quantum dot. However, the

host semiconductor can be designed so that considerable possibilities for tuning the emission

wavelength exist. Electric field tuning [23, 24] and strain tuning [25, 26] allow the emission

wavelength to be tuned over several nanometres. A major problem remains. The emission

wavelength is not constant: it varies randomly over time, even in very controlled environments

at low temperature. The culprit at low frequency is electrical noise in the semiconductor

which shifts the emission wavelength via the Stark effect [18]. This noise has a 1/f -like power

spectrum resulting in, first, large and uncontrolled drifts at low frequencies and second, an

undefined mean value. This noise, while poorly understood, is ubiquitous in semiconductors

and makes it very difficult to couple an individual quantum dot to another quantum system,

another quantum dot for instance, or an ensemble of cold atoms. We present here a new

scheme which solves this problem: we create a stream of single photons with a wavelength

which remains constant even over several hours.
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3.2 Feedback scheme

The output of our quantum device is a stream of single photons generated by resonance flu-

orescence (RF) from a single quantum dot. RF has considerable advantages over non-resonant

excitation of photoluminescence: the linewidth is much lower [17, 18] and the antibunching

is much better. We lock the wavelength of the quantum device to a stable reference. We

generate an error signal, a signal with large slope at its zero-crossing, by measuring the differ-

ential transmission, ∆T/T , simultaneously [15, 27, 28]. The control variable is the voltage Vg

applied to a surface gate which influences the quantum dot frequency via the Stark effect. The

performance of the feedback scheme is characterized by, first, measuring a series of snap-shots

of the optical resonance to assess the residual frequency jitter; and second, by carrying out a

full analysis of the noise in the RF.

Our scheme goes well beyond previous attempts at single emitter stabilization in the solid-

state [29, 30]. The first experiment on frequency stabilization locked a non-standard quantum

dot at 780 nm to the atomic resonance of Rb [29]. We are not limited to any “magic” wave-

lengths, and in particular we can stabilize the emission wavelengths of high-quality InGaAs

quantum dots which typically emit in the 900 − 1000 nm range. The second advance of our

scheme is a 100 times better frequency stabilization relative to ref. [29]. Here, the absolute

frequency of the quantum dot emission is locked with an uncertainty of just 20 MHz. We ob-

serve a reduction in the noise power up to a frequency of ∼ 100 Hz, a bandwidth high enough

to eliminate the substantial drifts at low frequency.

3.2 Feedback scheme

3.2.1 The Concept

A sketch of the experimental concept is shown in Fig. 3.1(a). A linearly-polarized resonant

laser is focused onto the sample surface and drives the optical transition. The resonance

fluorescence of the quantum dot is collected with a polarization-based dark field technique [17,

20, 31], described in detail elsewhere [32]. Simultaneously, the optical resonance is detected in

transmission by superimposing a sub-linewidth modulation to the gate. The transmission signal

arises from an interference of quantum dot scattering with the driving laser [28]. The incoherent

part, i.e. the resonance fluorescence, averages to zero in transmission; what is detected instead

is the coherent scattering, i.e. the Rayleigh scattering. In this way, the experiment utilizes both

incoherent and coherent parts of the scattered light, for the single photon output and control,

respectively. With a small modulation, the transmission signal has a large slope with zero

crossing at zero detuning and is therefore ideal for the generation of an error signal. ∆T/T ,

the error signal, is recorded with a lock-in amplifier to reject noise and the lock-in output is

fed into a classical feedback scheme. The feedback output is, like the modulation, applied to
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Figure 3.1 | (a) Schematic view of the experiment. The narrowband laser is stabilized to a fixed frequency

by a wavemeter which in turn is stabilized to a HeNe laser. Laser light is guided through optical fibres (yellow)

and microscope optics before it is focused onto the sample, driving the X0 transition resonantly (BS = beam-

splitter, PBS = polarizing BS, Pol. = linear polarizer). Two simultaneous measurements of X0 scattering are

performed: resonance fluorescence (RF), detected with an avalanche photodiode (APD) and absorption with a

photodiode (PD) underneath the sample. The dynamic stabilization is realized with an active PID feedback loop

which corrects for fluctuations in the transition energy using the gate voltage Vg and the square wave modulation

of a function generator (FG). (b) RF signal of the fine-structure split X0 emission of a single quantum dot at

wavelength 936.5 nm, a power corresponding to a Rabi energy Ω of 0.74 µeV and a temperature of 4.2 K. A

detuning is achieved by sweeping the gate voltage. The solid red line is a Lorentzian fit to the data with linewidth

Γ = 1.28 µeV (309 MHz) and Γ = 1.45 µeV (350 MHz) and with a fine structure splitting ∆ = 11.8 µeV. (c) The

differential transmission (∆T/T ) signal on the same quantum dot with integration time 100 ms per point. The

red curve is a fit to the derivative of the two Lorentzians. The signal around the zero crossing point (∆T/T = 0)

is used to generate an error signal for the feedback scheme.
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3.2 Feedback scheme

the gate electrode of the device. The set-point of the control loop is the zero crossing with

the goal of locking the peak of the quantum dot RF spectrum to the laser. The laser itself is

locked to a HeNe laser reference.

3.2.2 The quantum dot sample

The self-assembled InGaAs quantum dots, grown by molecular beam epitaxy, are integrated

into a semiconductor charge-tunable heterostructure [33]. The quantum dots are located 25

nm above a heavily n-doped GaAs back contact (n = 1.7×1018 cm−3). The intermediate layer,

undoped GaAs (25 nm), acts as a tunneling barrier. A 150 nm GaAs layer caps the quantum

dots and an AlAs/GaAs superlattice (68 periods of AlAs/GaAs 3 nm/1 nm) completes the

heterostructure. A Ti/Au (5 nm/10 nm) Schottky gate is deposited on the sample surface;

Ohmic contacts are prepared to the back contact. Bias Vg is applied between the Schottky

gate and the back contact. The sample is placed in a liquid helium bath cryostat at 4.2 K with

a residual magnetic field of 10 mT.

3.2.3 Single quantum dot laser spectroscopy

The single quantum dot spectroscopy is performed with a confocal microscope. The continuous

wave laser has a short-term linewidth of 1 MHz. Long-term wavelength stability of ∼ 2 MHz is

achieved by locking the laser to a high resolution wavemeter, itself locked to a low linewidth (25

MHz) HeNe laser. The size of the focal spot and the collection efficiency of the single quantum

dot RF are both enhanced with a half-sphere zirconia solid immersion lens positioned on

top of the Schottky gate. Fig. 3.1(b) shows a RF signal from the neutral exciton transition,

|0〉 ↔ |X0〉, where |X0〉 represents an electron-hole complex and |0〉 the crystal ground state.

The RF is detected with a silicon avalanche photodiode (APD) in single photon counting

mode and the detuning of the quantum dot resonances relative to the constant frequency laser

is achieved in this case with the Stark shift induced by the bias Vg. The X0 exhibits a fine

structure splitting of 11.8 µeV, the two lines having linewidths Γ = 1.45, 1.28 µeV close to the

transform limit of Γ0 = ~/τr = 0.93 µeV (220 MHz) where τr is the radiative lifetime of the

exciton transition (τr = (0.71± 0.01) ns here).

3.2.4 Feedback loop

A sub-linewidth square-wave modulation at 527 Hz is applied to the Schottky gate. This

broadens both X0 transitions slightly, here the “red” transition from Γ = 1.45 to Γ = 2.58 µeV.

The transmitted light is detected with an in situ photodiode connected to a room temperature

current-voltage preamplifier. Lock-in detection of the ∆T/T signal is shown in Fig. 3.1(c).
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3 Charge noise suppression with a feedback scheme

With the sub-linewidth modulation, the ∆T/T resonance is proportional to the derivative of

the RF spectrum [27]. There are two points which cross with high slope through zero, one for

each X0 transition. Both crossing points enable a feedback scheme: ∆T/T provides the error

signal, Vg the control parameter. For instance, if the transition energy increases due to electric

fluctuations in the sample, ∆T/T moves away from zero. Once this is detected, a modified Vg

is applied to the gate to bring the resonance back to the set point. For the feedback circuit

we use a PID loop. The proportional factor P = 0.1 is chosen with respect to the slope of

the error signal, while the integral I = 0.06 and the derivative constant D = 6 × 10−5 were

obtained by tuning methods. The signal:noise ratio in the ∆T/T circuit allows us to run the

feedback scheme with a bandwidth up to ∼ 50 Hz. The “red” X0 transition was used for the

subsequent feedback experiments because it has a higher ∆T/T contrast than the “blue” X0

transition.

The noise in the device consists of charge noise and spin noise [18]. The charge noise

power spectrum consists of 1/f -like noise and Lorentzian noise, the latter with a characteristic

frequency of ∼ 10 Hz [18]. This means that the feedback bandwidth is sufficient to eliminate

the low frequency drift and most of the Lorentzian noise. The spin noise power spectrum has a

smaller amplitude but higher characteristic frequency, ∼ 10 kHz [18], exceeding the bandwidth

of the feedback.

3.3 Performance

3.3.1 Residual frequency jitter

The performance of the single quantum dot frequency stabilization is put to the test in a

stroboscopic experiment. The X0 transition energy is mapped with a second laser (linewidth

also 1 MHz). The first laser stabilizes the transition with the feedback scheme at a power

corresponding to a Rabi energy Ω of 0.74 µeV. A second laser of identical power is tuned with

triangular function back and forth through the same transition with a rate of 8.0 µeV/s. The

sum of the power of both lasers was selected to lie below the power at which power broadening

becomes significant. The RF spectrum is fitted to a constant (to describe RF from the first

laser) plus Lorentzian function (to describe RF from the second laser) in order to determine

the center position of the resonance. In this way, a “snap-shot” of the resonance position is

recorded every 5 s with “exposure time” 100 ms for a total of 1,000 s. The distribution of the

peak position can be seen in the histogram in Fig. 3.2. In Fig. 3.2(a) and (b), the scanning laser

results in an asymmetry: the resonance frequency is more likely to lie at positive detunings

on sweeping from negative to positive detunings, and vice versa. This is probably related to

the so-called “dragging” effect [34] which is very pronounced on this quantum dot at high
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Figure 3.2 | Histogram of the RF peak position with (a, b, c) and without (d) the stabilization scheme. A

triangle Vg is applied. The scanning rate of the laser is 8.0 µeV/s with period 10 s. Histograms of the RF peak

position for up-sweeps (a) and down-sweeps (b) recorded with feedback. (c) shows the histogram with feedback,

negative detunings from the up-sweeps, positive detunings from the down-sweeps. A histogram without feedback

is shown in (d). The standard deviation σ is reduced from (d) 0.250 µeV (61 MHz) without active stabilization

to (c) 0.089 µeV (22 MHz) with active stabilization.

magnetic fields (above 0.1 T) [32]: the nuclear spins polarize in such a way as to maintain the

resonance with the laser over large detunings. In other words, it is likely that the asymmetries

in Fig. 3.2(a) and (b) are first hints of dragging. The histogram in Fig. 3.2(c) is a combination

of the data sets of (a) and (b) which are influenced least by dragging (up-sweeps at negative

detuning, down-sweeps at positive detuning). Without the stabilizing loop, the long term drift,

i.e. the 1/f -like noise, results in a broader distribution, Fig. 3.2(d). This drift also leads to the

asymmetry in Fig. 3.2(d), reflecting a trend to the red in this particular case. The fluctuations

in resonance positions are quantified with the standard deviation σE of the peak positions.

Without stabilization Fig. 3.2(d), σOFF
E = 0.250 µeV (61 MHz). With active stabilization,

σ = 0.102 µeV (25 MHz). This value is small enough to be influenced by shot noise in each data

point which results in an energy uncertainty on fitting each spectrum to a Lorentzian. The shot

noise results in an energy jitter of σE,shot = 0.049 µeV, giving σON
E =

√
σ2 − σ2

E,shot =0.089 µeV

(22 MHz), 36% of σOFF
E . The measurement of σE represents a measurement of the noise in a

bandwidth from ∼ 1 mHz to ∼ 3.1 Hz. (Noise at higher frequencies is reflected in the linewidth

Γ.) The ratio σOFF
E : σON

E would increase if lower frequencies were included on account of the

1/f -like noise: σON
E would remain the same but σOFF

E would increase.

The ultimate operation capability of the stabilization system is limited by the random noise

in the output of the PID electronics. In Fig. 3.1(c) the noise in the ∆T/T signal is σ∆T/T =

1.45× 10−4. In the ideal case, this determines the energy jitter of the quantum dot resonance

position [35],

σE,min =
dδ

d∆T
σ∆T/T ' 0.013 µeV (3 MHz) (3.1)
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3 Charge noise suppression with a feedback scheme

where δ is the detuning. This limit, ∼ 100 times smaller than the linewidth, illustrates the

power of this technique. We have not yet reached this limit in practice. Nevertheless, stabi-

lization with a residual jitter down to just σE/h = 22 MHz is achieved.

3.3.2 Noise analysis and long-term behaviour

The frequency locking feedback scheme was also tested regarding its long term behaviour and

bandwidth. The RF signal was recorded over several hours, Fig. 3.3(a), without (blue) and

with (red) the stabilizing loop. The measurements are accomplished by tuning the X0 of the

quantum dot via the Stark effect into resonance with the excitation laser (δ = 0 µeV) and

then recording the arrival time of each single photon detected by the APD over the duration

of the entire experiment T . Post-experiment, the data are analyzed by setting a binning time,

tbin = 100 ms in this case. For a fixed Vg, the RF counts show large fluctuations up to a factor

of 2 (blue curve). The origin are slow electrical fluctuations in the sample which cause the

transition to drift out of resonance with the laser. With the feedback on, these fluctuations

disappear and the RF remains at a constant level (red curve). The fluctuations in the red curve

arise almost entirely from shot noise in the detector, Fig. 3.3(b). The average RF signal is a

little smaller with feedback because the applied modulation broadens slightly the resonance.

Insight into the bandwidth of the stabilization mechanism is revealed by a fast Fourier

transform (FFT) of the time trace. Although the shot noise dominates, the shot noise can be

independently measured with a small amount of reflected laser light as a source, allowing us

to determine the noise coming solely from the quantum dot. The FFT of the normalized RF

signal S(t)/〈S(t)〉 provides a noise spectrum [18]:

NRF(f) = |FFT[S(t)/〈S(t)〉]|2(tbin)2/T. (3.2)

For NRF(f), tbin = 1 µs and T = 2 hours. The noise spectrum of the quantum dot NQD(f)

is obtained by correcting the RF noise by the noise of the experiment Nexp(f) [NQD(f) =

NRF(f)−Nexp(f)]. NQD(f) corresponding to the time traces of Fig. 3.3(a) are shown in Fig.

3.3(c). Without feedback, NQD(f) has a 1/f -like dependence on f as a consequence of charge

noise in the device. With feedback, NQD(f) is reduced by up to a factor of 20 at the lowest

frequencies, and is constant: the 1/f -like noise is eliminated. The two curves meet at f ' 130

Hz once the bandwidth of the PID circuit has been exceeded. At higher frequency the noise

spectrum is dominated by spin noise [18].

The two experiments, intensity noise and energy jitter measurements, can be linked to add

weight to our analysis. Specifically, we forge a relationship between the RF noise under feedback

and the jitter in the energy detuning, σE , connecting a measurement of noise in a time-trace

to a separate measurement of a fluctuation in an energy detuning. The detuning jitter is much
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Figure 3.3 | (a) Time trace of the resonance fluorescence (RF) of a single quantum dot (the one from Fig.

3.1) with δ = 0 µeV recorded over several hours. The binning time was tbin = 100 ms. The time trace is plotted

with (red) and without (blue) the dynamic stabilization scheme. (b) 5 s excerpts of the unstabilized (blue) and

stabilized (red) time traces with the dashed lines representing the shot noise limits. (c) Noise spectra of the

normalized RF signal, S(t)/〈S(t)〉, corresponding to the time traces of (a) after correction for external noise

sources. The shot noise in the experiment is shown with the dashed lines.

less than the linewidth such that the change in the RF signal (∆RF) is related quadratically

to the detuning for fluctuations around δ = 0. The variance of the RF noise, σ2
RF, is related

to an integral of the noise curve, σ2
RF =

∫
NQD(f)df [36]. Integrating up to frequency ∆f in

the regime where NQD(f) is approximately constant,

σON
E =

Γ

2

(
NQD(0)∆f

3

) 1
4

. (3.3)

With ∆f = 3.1 Hz, NQD(0) = 1.0 × 10−5, Γ = 2.58 µeV this predicts σON
E = 0.073 µeV, in

excellent agreement with the measurement from the stroboscopic experiment (0.089 µeV).
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Figure 3.4 | Second-order correlation g2(t) for the stabilized RF from the X0 (black points). The red curve

shows a convolution of the two-level atom result with a Gaussian distribution which describes the timing jitter

of the detectors. The blue curve shows the two-level atom response alone.

3.3.3 Single Photon Source

An intensity correlation measurement g(2)(t) was performed with a Hanbury Brown-Twiss

interferometer. Low noise g(2)(t) can only be determined at these count rates (50 kHz per

APD) by integrating over several hours and the feedback is therefore important to ensure that

the detuning of the quantum dot with respect to the laser remains constant. g(2)(t) is shown

in Fig. 3.4 from X0 of the same quantum dot with zero detuning. g(2)(t) falls to 10% at t = 0.

This does not reflect g(2)(0) of the quantum dot but rather the timing jitter of the detectors

which is comparable to the radiative lifetime. We attempt to describe g(2)(t) with a convolution

of g(2)(t) for an ideal two-level atom, g
(2)
atom(t), and the response of the detectors G(t):

g(2)(t) = g
(2)
atom(t)⊗G(t). (3.4)

The detector response is a Gaussian function,

G(t) =
1√

2πσD
exp

(
− t2

2σ2
D

)
. (3.5)

g
(2)
atom(t) of a 2-level system with resonant excitation is [37],

g
(2)
atom(t) = 1−

[
cos(λt) +

3

4τr
λ sin(λt)

]
exp

(
− 3t

4τr

)
(3.6)

with λ = (Ω2 − (1/4τr)
2)1/2 [37].

The temporal jitter of the detector τD = 0.40 ns is measured independently. Ω and τr are

known from other experiments to within 10 − 20% and are allowed to vary in these windows
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by a fit routine. The convolution provides an excellent description of the measured g(2)(t) with

Ω = (0.99 ± 0.1) µeV and τr = (0.78 ± 0.05) ns. In particular, with low systematic error we

can set an upper bound to the quantum dot g(2)(0) of 1-2%.

3.4 Conclusion and Outlook

In conclusion, we have developed a dynamic method of locking the optical resonance of a single

quantum dot to a stabilized laser in order to produce a stream of frequency-stabilized single

photons via resonance fluorescence. Generally speaking, the scheme represents a way to reduce

the local charge noise in a semiconductor.

Now that the basic principle is established, there are options for improving the feedback

scheme. First, the remaining jitter in the quantum dot resonance position can be reduced by

reducing the noise in the transmission detection. Presently, we are far from the limit defined

by the shot noise in the detector current. With lower noise, the feedback bandwidth can

also be increased. The tantalizing prospect is to create transform-limited linewidths routinely

with high bandwidth feedback. A bandwidth of about 50 kHz is required [18]. Secondly, the

modulation required here to generate the error signal could be eliminated in a number of ways.

For instance, a dispersive lineshape can arise naturally in reflectivity via weak coupling to a

cavity [38]; or the Faraday effect in a small magnetic field [39] could be used.
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Chapter 4

The positively charged exciton X1+

Adapted from:

Jonathan H. Prechtel, Andreas V. Kuhlmann, Julien Houel, Arne Ludwig, Andreas D. Wieck,

and Richard J. Warburton

“The positively charged exciton in a low-noise InGaAs quantum dot

heterostructure”

Unpublished manuscript

Positively charged excitons X1+ in individual quantum dots (QDs) in a low-noise environment

are probed by resonance fluorescence spectroscopy. We characterize an inverted charge tunable

heterostructure design, with ultra-clean carbon doping combined with a high resolution mea-

surement method. In this chapter we report high performance results for the single positively

charged exciton, comparable to n-doped devices. More precisely, we demonstrate ultra-narrow

linewidth down to 0.67 ± 0.13 µeV, reaching the transform-limit, in combination with high

count rates. However, all properties are dependent on the position in the Coulomb blockade

plateau. In contrast to the neutral exciton, autocorrelation measurements of the X1+ exhibit

a bunching behaviour corresponding to on-off blinking. We model this blinking with a 3-level

density matrix system, taking the on and off rates from the autocorrelation data and reproduce

the noise-broadened optical linewidth and intensity variations. The results strengthen the case

for implementing p-doped structures with single hole spins as qubits in quantum information

processing.



4 The positively charged exciton X1+

4.1 Introduction

The positively charged exciton X1+ in a semiconductor quantum dot (QD) is formed by two

heavy hole spins and one electron spin. There are many prospects for holes, primarily using

the single hole spin as a spin qubit [1–4]. The main advantage that makes holes more attractive

candidates than electrons is the weak hyperfine interaction with the nuclear spins [5, 6] resulting

long decoherence times in the microsecond regime [7, 8].

Still, the performances of devices with holes as carriers are limping behind comparable

samples with electrons [9]. So far the devices which target the investigation of the singly hole

charged excitons were constructed either with holes as majority carriers, including a p-doping

(C, Si or Be) in a p-i-Schottky sequence structure [7, 9] or with electrons as majority carriers

in a n-i-p sequence as in Chapter 6. The QDs in these samples exhibit large linewidths, several

µeV, far from the transform-limit, and low count rates. In the transform-limit the exciton

linewidth is only determined by the radiative decay (Γr = ~/τr [10–12]). We introduce here

a new inverted device design which enables us to have a low-noise environment, very clean

quantum dots even with p-doping, and high QD emission.

In this chapter we show transform-limited linewidth for the X1+ combined with high reso-

nance fluorescence emission rates. We discover and explain a voltage dependency of the charged

exciton. The QD exhibits a blinking behaviour, caused by spin pumping effects. We connect

the resulting on and off lifetimes with the QD emission and linewidth by a 3-level density

matrix approach.

4.2 Inverted p-doped low-noise device

A main problem in highly p-doped devices is the degradation of the subsequently grown GaAs

layer by the carbon dopands. The idea is to design an inverted structure, growing the p-doped

layer last and therefore creating a clean region around the QDs with low fluctuations in the

QD emission.

The InGaAs QDs are grown by molecular beam epitaxy in the intrinsic region of a charge

tunable heterostructure device, using an In-flush technique [13]. The epitaxial gates of the

n-i-p diode structure allow the control of the QD charge states [14]. Unlike previous devices

[7, 9, 11], the sequence structure of the sample is inverted (see Fig. 4.1(a)). The QDs are

embedded between the n-doped layer (100 nm with Si-doping level of ∼ 2.0 × 1018 cm−3) at

the bottom and a p-doped layer (102 nm with C-doping level of ∼ 1.7× 1018 cm−3, plus delta

doping 10 nm ∼ 1.0 × 1010 cm−3) on top of the device. A highly opaque blocking barrier,

an AlAs/GaAs short-period superlattice (71 periods of AlAs/GaAs 3 nm/1 nm), prevents the

electrons from tunnelling into the active layer. The coupling between the the dots and the p-
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Figure 4.1 | Sample n-i-p sequence structure (a) and the corresponding energy diagram (b). The Fermi

energies of the n- and the p-type niveaus are labelled.

contact is generated through a 25 nm GaAs tunnelling barrier. The top p+ GaAs is contacted

with a plain 6 nm Au film, whereas an etch as deep as the n+layer with subsequent annealing

of Ni/Ge/Au deposit establishes the n-contact. The background doping of as-grown GaAs is

p ∼ 2.5 × 1013 cm−3; two-dimensional electron gases grown under similar conditions at 4.2 K

have mobilities > 5×106 cm2/Vs. The first superlattice above the substrate is deposited to lay

the foundation for a pure and favourable growth of the rest of the device. The band structure

of the device is illustrated in Fig. 4.1(b). The charges in the QD are controlled by the electric

field. The field is generated and tuned by the voltage V , applied to the top Au layer and the

electrical ground of the n+ contact.

This sample design yields several advantages. Devices can be grown in one single run: there

is no need stop during the growth process after the C-doped layer to prevent diffusion and

contamination of the tunnelling barrier and the active QD layer with impurities. The growing

procedure bypasses the formation of trapped charges and therefore charge noise. Hence the

prospect is that we have the same ultra-clean and low-noise material as in n-type samples, but
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4 The positively charged exciton X1+

with holes as charge carriers. Furthermore the design of the device makes the top metal gate

of the Schottky structures obsolete, fostering high QD emission.

High resolution resonant fluorescence spectroscopy is performed to characterize the QDs,

using a homebuilt confocal microscope inside a He bath cryostat at 4.2 K. The coherent con-

tinuous wave laser with a narrow linewidth (1 MHz) addresses the individual transitions of

the single QDs. The anti-bunched emission, the resonance fluorescence (RF) of the optical

transitions, is separated from the reflected and scattered laser light by a polarization-based

dark-field technique [15]. With a hemispherical solid immersion lens (SIL) on top of the sam-

ple the QD signal is enhanced. A single avalanche photo diode (APD) and a grating based

spectrometer (resolution ∼ 40 µeV) are employed for signal detection. A photodiode below the

sample detects the transmitted laser light and indicates the laser power.

4.3 Characterisation of the X1+

4.3.1 Photoluminescene and voltage dependence

In the beginning the charging behaviour of the QDs is investigated, by means of nonresonant

(excitation laser with 830 nm) photoluminescence (PL) spectroscopy. In Fig. 4.2(a) the contour

plot of a single QD illustrates the charging steps on tuning the applied bias. Every charge

added or removed from the QD corresponds to an individual emission energy of the exciton

due to different Coulomb interactions [12]. The overlaps in bias of the charge states are a

consequence of the large hole tunnelling times, relative to the radiative emission lifetime [4].

The sophisticated and accurate method of RF spectroscopy is used to characterize the emission

of the individual charging plateaus. Fig. 4.2(b) shows the narrow emission signal of the X1+

exciton with a transition linewidth of 2.2 µeV at plateau position of the red dashed line in Fig.

4.2(d). The linewidth of the transition Γ is determined by tuning the optical transition through

a fixed excitation laser frequency. This is done via the dc-Stark effect by changing the voltage

and integrating the counts with the APD for 100 ms per point. The X1+ linewidth is Ω/Γr

= 0.61 a factor of 3.3 larger than the transform-limit (Γ1+
r = 0.67 ± 0.1 µeV with Γr = ~/τr

[10–12] and the Rabi energy Ω). Although the achieved linewidth is a factor of 2-3 smaller

than in previous experiments [4] we are still above the transform-limit. The inhomogeneous

broadening is a result of charge and spin noise [16]. The use of high quality material and

resonant spectroscopy implies that spin noise, i.e. fluctuations in the Overhauser field, is the

main reason for the broadening (see Chapter 5). The supposition is supported by the linewidth

of the neutral exciton with 1.5 µeV (Ω/Γr = 0.32) which is comparable to the high quality

n-type devices in Chapter 5 and Ref. [16].
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Figure 4.2 | (a) Photoluminescence contour plot of the QD as a function of the applied voltage. (b)

Resonance fluorescence signal of the positively charged exciton X1+, with a optical transition linewidth of 2.2

µeV, at the plateau position of the red dashed line in (d). (c) Resonant characterisation of the full X1+ voltage

plateau, in terms of the linewidth (c) and the RF emission at the maximum of the signal (d). Dashed lines

indicate the extent of the voltage plateau.

In Fig. 4.2(c) and (d) the linewidth and the maximum RF count rate are shown versus the

applied voltage for the X1+. The X1+ voltage plateau is mapped with Ω/Γr = 0.61 (below the

power broadening) and with the CCD camera of the spectrometer which results in a reduction

of the RF counts by a factor of 10 compared to measurements with the APD. There are hints

of an increase of the linewidth Γ at the edges of the plateau simultaneously with the vanishing

count rate, a known feature caused by the co-tunnelling of the holes with the Fermi sea [17].

The interesting new characteristic are the two minima of the linewidth close to the edges and

a maximum in the middle of the plateau. The RF signal shows the inverse behaviour. High

emission is complementary to small linewidth and vice versa. This behaviour of the X1+ was

observed on several QDs, as well as with the p-i-Schottky sample. In the following we study this

behaviour and search for the connection between the emission rate and the optical linewidth.

4.3.2 Power dependence of linewidth and count rate

Further information about the single hole charged exciton (X1+) is gained from the power

dependencies of the linewidth and the RF count rate, shown in Fig. 4.3(a) and (b), as well as

for the X0 in (d) and (e). The measurements are performed at the favourable point of the X1+
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Figure 4.3 | The effect of power broadening and noise on X1+ and on X0. (a) and (d) show the power

dependence of the linewidth for X1+ and X0, respectively. (b) and (e) depict the power dependence of the RF

emission rate for X1+ and X0. The data are fitted by a 2-level model including power broadening and spectral

diffusion. In (c) and (f) the scanning frequency is increased, reducing the time spent on the transition itself and

reducing therefore the sensitivity to the noisy environment. At high frequencies the transform-limit is reached,

Γr, 0.92± 0.03 µeV and 0.68± 0.14 µeV for X0 and X1+ respectively. The two colours in (f) correspond to the

two fine-structure split transitions of the X0.

plateau near 0.4 V to achieve the smallest possible linewidth. The data is fitted by an ideal

2-level system, including power broadening for the homogeneous broadening and the spectral

diffusion term γ for the inhomogeneous broadening. Neglecting the dephasing of the upper

level γ2, the linewidth of the optical transition Γ follows [18]

Γ =
√

Γ2
r + 2Ω2 + γ. (4.1)

The population of the upper level ρ22 specifies the RF count rate and is derived from the

density matrix formalism [18]

ρ22 =
Ω2

(Γ2
r + 2Ω2)

· Γ− γ
Γ

. (4.2)

Scanning in time scales of seconds over the transition means integrating over all noise com-

ponents including low frequencies. The smallest linewidth with an integration time of 100
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4.3 Characterisation of the X1+

ms/point on the transition and very low power is 1.9 ± 0.2 µeV for the X1+ and almost

transform-limited for the X0 with 1.35 ± 0.15 µeV. The RF emission in saturation for the X0

is at the same Rabi coupling a factor of 3 higher than for the X1+. For this p-type device,

the photon emission rate of the excitonic transition, the X0, has the same order of magnitude

as for n-type devices (see Chapter 3 and Chapter 5 and [16]). Scanning the optical resonance

very quickly results in reaching the transform-limit Γr, 0.92 ± 0.03 µeV and 0.68 ± 0.14 µeV

for X0 and X1+ respectively, Fig. 4.3(c) and (f). The fast scanning minimizes the time on the

resonance and the charge and spin fluctuations are frozen for that period [16]. The blue and

the red data correspond the two fine-structure split transitions of the neutral exciton [19].

4.3.3 Voltage dependence of the autocorrelation

The voltage dependency of the X1+ in Fig. 4.2 (c,d) is explored with a Hanbury Brown and

Twiss interferometer, measuring the autocorrelation g2(t) of the emitted photons. At eight

points of the voltage plateau (Fig. 4.4(a)) the laser frequency is stabilized onto the resonance

and the anti-bunched output of single photons is measured for one hour. In Fig. 4.4(c-j) the

normalized g2(t)-correlations are plotted with colours matching the applied voltage in (a). The

data is corrected (g2(t� 1ns)→ 1) for the different count rates on the APDs, arising from the

different plateau positions, despite the same resonant excitation power (X1+ with Ω/Γr=0.97).

Correlation measurements were performed at two plateau positions for the neutral exciton as

well (Fig. 4.4(b)). The striking difference is the bunching behaviour close to τ = ±1 ns for the

X1+ g2 autocorrelation functions, but not for the X0. We attribute this result to fluorescence

blinking of the X1+, caused by the free hole.

We consider a random two-level emitter, with an “on” and an “off” state. The emitter has

an on lifetime τon, in our case the X1+, and an off lifetime τoff , when the emission is switched

off. The part of the autocorrelation function describing the blinking behaviour is [20, 21]

g2
on:off(τ) = 1 +

τoff

τon
exp
[
−
( 1

τon
+

1

τoff

)
τ
]
. (4.3)

A complete model of the autocorrelation function g2(τ) consists of two parts: the antibunching

of a 2-level atom under resonant excitation g2
atom(τ) [18] and the additional modulation by the

fluctuating function g2
on:off(τ). The resulting g2(τ) = g2

atom(τ) · g2
on:off(τ) is convoluted with

the Gaussian function of the detector response, which represents the detector jitter and has a

FWHM of 500 ps response time on each detector. g2(τ) fits the measurements in Fig. 4.4(c-j),

taking a Rabi energy Ω = 0.41 ± 0.05 µeV and a life time of τX1+ = 0.95 ± 0.02 ns. The fits

yield the on and off times according to Eq. 4.3, leading to the probability of being in the “on”

state τon/(τon + τoff). The lower part of Fig. 4.4(a)) reveals the strong correlation between the
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Figure 4.4 | (a) RF emission of the X1+ at different voltages V with the corresponding τon, τoff and the

on:off ratio. (b) Second order correlation function g2 for the neutral exciton at two different voltages. The red

curve describes the two level atom solution convoluted with the detector response. (c)-(j) g2(τ)-functions at

discrete points over the whole plateau, with a Rabi energy Ω = 0.41±0.05 µeV, a life time of τX1+ = 0.95±0.02

ns and the FWHM of the detector response 500 ps. The colours correspond to the different voltages in (a). The

fits describe the two level atom solution multiplied by an additional function to describe the bunching behaviour

of the X1+.

“on” probability and high X1+ emission. The charged exciton fluorescence is reduced, as soon

as the hole has a higher probability of being lost through tunnelling at the very edges or the

QD is “turned off” in the middle of the plateau. In the case of the neutral exciton the system

is always in “on” state explaining the higher RF counts in saturation, as shown in Fig. 4.3(b)

and (e).

4.4 Model of the blinking behaviour

The “on” and “off” state probabilities describe the RF emission along the plateau quantitatively

as shown in Fig. 4.4(a). A possible consequence of the blinking on the linewidth occurs when

the X1+ is decaying and during the spontaneous emission process the emitter turns abruptly off.
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match the experimental data. The 3 level model uses a Rabi energy Ω = 0.61± 0.1 µeV, an exciton life time of

Γ31 = ~/1.05 ms and spectral fluctuations of 1.5 µeV.

This means that this photon’s wave packet is truncated leading to a wider spread in frequencies.

If this happens often enough the linewidth of the emission will increase. We implement a 3-level

density matrix system to demonstrate that the additional linewidth broadening is connected to

the off times. The level system is shown in Fig. 4.5(a). The X1+ transition with the radiative

decay rate Γ31 is described by level |3〉 (2 holes, 1 electron) and level |1〉 (one hole). The

additional level |2〉 represents the “off” state. This new decay channel can be described by two

decays. The decay rate Γ32 = ~/τon to the “off” state and the decay rate Γ21 = ~/τoff from

the “off” to the ground state. τon and τoff are extracted from the fits of the autocorrelation

functions. τon is voltage independent and has a value around 250 ns, whereas τoff rises up to 1

µs in the middle of the plateau and decreases roughly symmetrically to the plateau edges (see

Fig. 4.3(a)).

The 3-level model provides information regarding of the expected linewidth and count rate.

The theoretical results (red) are in good agreement with the experimental data (black) for the

linewidth and the RF signal, Fig. 4.5(b) and (c). We added a voltage independent spectral

fluctuation of 1.5 µeV to the pure linewidth resulting from the model to account for the

inhomogeneous broadening, which is assumed constant.

The nature of the off state is not yet explained in detail. However it is likely that the dark

state is a spin-related effect. The resonant excitation pumps the system into a dark state,

either an eigenstate in the x-axis (the polarization of the excitation) or a CPT-related dark

state [22]. Additional experiments in an applied magnetic field and with two lasers are required

to probe this further.
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4 The positively charged exciton X1+

4.5 Conclusion and outlook

In conclusion we have shown transform-limited positively charged excitons in a high quality

charge tunable structure. The narrow linewidth paves the way to use the hole spin as a highly

sensitive probe for further coherent population trapping experiments. We were able to explain

the voltage dependency of the emission plateau by a blinking behaviour of the X1+ extracting

the on and off times. Finally we use a density matrix theory to connect the on and off times

to the RF emission and the linewidth of the X1+.
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Chapter 5

Transform-limited linewidth

Adapted from:

Andreas V. Kuhlmann, Jonathan H. Prechtel, Julien Houel, Arne Ludwig, Dirk Reuter,

Andreas D. Wieck and Richard J. Warburton

“Transform-limited single photons from a single quantum dot”

Submitted manuscript, arXiv:1307.7109v2

Developing a quantum photonics network requires a source of very high fidelity single photons.

An outstanding challenge is to produce a transform-limited single photon emitter to guarantee

that single photons emitted far apart in the time domain are truly indistinguishable. This is

particularly difficult in the solid-state as the complex environment is the source of noise over

a wide bandwidth. A quantum dot is a robust, fast, bright and narrow-linewidth emitter of

single photons; layer-by-layer growth and subsequent nano-fabrication allow the electronic and

photonic states to be engineered. This represents a set of features not shared by any other

emitter but transform-limited linewidths have been elusive. We report here transform-limited

linewidths measured on second timescales, primarily on the neutral exciton but also on the

charged exciton close to saturation. The key feature is control of the nuclear spins which

dominate the exciton dephasing via the Overhauser field.

(Experiments and results presented in this chapter were obtained in close collaboration with

Dr. Andreas Kuhlmann, who performed the noise experiments and the noise characterisation.)

http://arxiv.org/abs/1307.7109v2


5 Transform-limited linewidth

5.1 Introduction

A single quantum dot mimics a two-level atom and single photons are generated either by

spontaneous emission from the upper level [1–3] or by coherent scattering of a resonant laser

[4–6]. The radiative lifetime is typically τr = 800 ps [7]. There is evidence that on this

timescale and at low temperature, there is negligible pure upper level decoherence [4–6, 8].

Photons emitted subsequently are close to indistinguishable [2, 9]. (At higher temperatures

[10, 11], equivalently at low temperature but at high Rabi couplings [12, 13], phonons dephase

the upper level.) A key remaining issue concerns the wandering of the centre frequency over

times much longer than τr (Chapter 3 and [14, 15]). This wandering is highly problematic in

any quantum photonics network: the emitter detunes from the common optical frequency and

becomes dark; equivalently, the indistinguishability of single photons generated far apart in the

time domain is reduced. Active single emitter stabilization is possible but is presently limited

to correcting for very slow drifts and in any case comes at the expense of complexity (Chapter 3

and [16]). The spectral wanderings can be conveniently probed simply by measuring the optical

linewidth. Measured on second time-scales, the linewidth Γ is larger than the transform-limit

Γr = ~/τr [14, 15, 17, 18]. In fact single quantum dot linewidths have remained stubbornly

50− 100% above the transform-limit even under the most favourable conditions (high quality

material, low temperature, charge control via Coulomb blockade, resonant excitation). We

report here two regimes in which we observe transform-limited quantum dot optical linewidths

even when measured on second timescales. One regime applies to the neutral exciton, X0, the

other to the charged exciton, X1−.

5.2 The linewidth of the neutral and the negatively charged exciton

The X0 transition is split into two linearly-polarized transitions by the electron-hole exchange,

the so-called fine-structure, corresponding to an admixture of the spin ±1 states, Fig. 5.1(a).

The splitting between the two lines increases in an applied magnetic field, quadratically initially,

Fig. 5.1(b). The magnetic field is applied externally or it arises from a net polarization in the

nuclear spins which acts on the electron spin via the Overhauser field, BN . The X1− exhibits

a single line at zero magnetic field, Fig. 5.1(c), splitting linearly in magnetic field, again via

an external field or Overhauser field, Fig. 5.1(d). Both excitons exhibit large and similar dc

Stark shifts (dependence on energy with electric field F ), ∼ 25 µeVcm/kV [19]. Charge noise

leads to an inhomogeneous broadening of both X0 and X1− transitions via the dc Stark shift.

This determines the inhomogeneous broadening for quantum dots in poor quality material or

quantum dots in high quality material but with non-resonant excitation. Additionally, both

excitons are sensitive to spin noise, i.e. fluctuations in the Overhauser field, but with different
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Figure 5.1 | (a) Energy levels of neutral exciton X0 at zero magnetic field, B = 0, showing fine structure

splitting ∆. (c) Energy levels of charged exciton X1− in an Overhauser field BN , introducing an electron Zeeman

splitting Ze. (b), (d) X0, X1− energy levels versus BN with ∆ = 11.5 µeV and electron g-factor g = −0.5. (e),

(f) X0, X1− resonance fluorescence spectra at 4.2 K, B = 0.0 mT with 100 ms integration time per point. The

solid lines are Lorentzian fits to the data. The linewidths are ΓX0

= 1.29 µeV, ΓX1−
= 1.49 µeV; the Rabi

energies Ω/Γr = 0.5 (X0), 0.4 (X1−); and transform-limits ΓX0

r = 0.92 ± 0.10 µeV, ΓX1−
r = 0.75 ± 0.10 µeV.

(g) RF linewidth against scanning frequency dδ/dt/Γr. Γ approaches Γr for scanning frequencies above 50 kHz.

For each scanning frequency, the error bar represents the standard deviation of several hundred linewidth scans.

Solid lines represent a Lorentzian fit of the data with linewidth 30± 3 kHz.

sensitivities. For X0, the sensitivity is second order as the hole “shields” the electron from the

spin noise; for X1− the sensitivity is first order on account of the unpaired electron in the X1−

ground state (See slopes in Fig. 5.1 (b) and (d)). For instance, a typical Overhauser field of

20 mT [20] (arising from incomplete cancellation of the ∼ 105 nuclear spins [21, 22]) leads to

a linewidth contribution in the case of X1− of ∼ 0.5− 1.0 µeV. Experimentally, there is strong

evidence that in this cold, clean limit, spin noise and not charge noise is responsible for the

X1− inhomogeneous broadening (see Chapter 3, Appendix A and [18]). Despite the different

sensitivity to spin noise the X0 and X1− linewidths are very similar [14, 15, 18]. The approach

here is to suppress the effects of charge noise by working in the ideal limit (high quality material

at low temperature, resonant excitation on a quantum dot in the Coulomb blockade regime),

to compare X0 and X1− on the same quantum dot, and to suppress the effects of spin noise by

a search of the available parameter space.

5.2.1 Methods

The quantum dots are self-assembled using InGaAs in high purity GaAs and are embedded

between an n+ back contact (25 nm tunnel barrier) and a surface gate (see Appendix A)

[15, 18]. The gate voltage Vg determines the electron occupation via Coulomb blockade [23].
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Figure 5.2 | (a) X0 optical linewidth measured at Rabi energies Ω/Γr = 0.50 for different gate voltages by

sweeping the laser frequency through the resonance and integrating 100 ms per point. Γ decreases from 1.66 µeV

to 1.19 µeV with decreasing gate voltage. (b) X0 spectrum with Γ = 1.15 µeV. (c) X0 noise spectra recorded at

Rabi energies Ω/Γr = 0.65 for different voltages, indicated in (a) by solid lines. Maximum/minimum spin noise

(black/blue) is correlated with the largest/smallest Γ. (d) NQD(f) on X0 recorded with two lasers of frequencies

f1 and f2 and a frequency splitting f1 − f2 equal to the fine structure splitting for 〈δ〉 = 0 (blue) and 〈δ〉 = Γ/2

(red). Inset shows the laser frequency detuning relative to the optical resonance.

We drive the optical resonance of a single quantum dot at low temperature, 4.2 K, detecting the

resonance fluorescence (RF) (see Appendix A) [18, 24]. Γ is determined by sweeping the laser

frequency through the resonance, integrating the counts, typically 100 ms per point. Typical

X0 and X1− spectra are shown in Fig.s 5.1(e) and (f), respectively, with Ω/Γr = 0.5 (X0), 0.4

(X1−). The linewidths are very similar, and are a factor of 1.4 (X0), 2.0 (X1−) larger than the

transform-limit (ΓX
0

r = 0.92 ± 0.10 µeV, ΓX
1−

r = 0.75 ± 0.10 µeV). The transform limit Γr is

measured by scanning the optical resonance very quickly such that the fluctuations are frozen

during the measurement [18], Fig. 5.1(g).

5.2.2 Transform-limited neutral exciton

Fig. 5.2(a) shows Γ versus Vg on the neutral exciton, X0, measured below but close to saturation,

Ω/Γr = 0.5. At the edges of the Coulomb blockade plateau, Γ rises rapidly on account of fast

electron spin dephasing via co-tunneling with the Fermi sea [25]. This process slows down as

Vg moves away from the plateau edges. The new feature is that a “sweet-spot” exists close

to the negative Vg-end of the plateau with minimum linewidth 1.19 ± 0.13 µeV. Accounting

for the small power broadening, the ideal limit is Γ(Ω) = Γr

√
1 + 2

(
Ω
Γr

)2
= 1.10± 0.10 µeV.

Within the measurement uncertainties of 10%, the transform limit is therefore achieved. As

Vg raised to the positive side of the sweet-spot, Γ increases beyond the ideal limit, Fig. 5.2(a).
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5.2.3 Noise characteristics

It is instructive to investigate the sources of noise. A diagnostic is a noise spectrum NQD(f),

a Fourier transform of the RF time-trace (normalized with respect to the time-averaged signal

(see Appendix A) [18]). From the known relationships between RF signal, detuning δ, Rabi

coupling Ω, electric field F and the Overhauser field BN , the variances Frms and BN,rms can be

determined from the noise spectrum (see Appendix A) [18]. The increase in linewidth above

the transform-limit represents a sum over all noise sources from the scanning frequency, about

1 Hz, to Γr, about 1 GHz. The noise spectra at the low-bias end (the sweet-spot), the centre

of the plateau and the positive-bias end are shown in Fig. 5.2(c). There is a Lorentzian feature

with linewidth 30 Hz (noise correlation time 30 ms) and a second Lorentzian feature at higher

frequencies with linewidth 200 kHz (correlation time 5µs). The origin of the two features in

the noise spectrum can be identified by exploiting the different X0 response to charge noise and

spin noise: charge noise moves both X0 peaks rigidly together; spin noise moves them apart

or closer together, a “breathing” motion. A two-laser experiment enables us to distinguish

between these two possibilities. Specifically, we record X0 noise spectra with two lasers with

frequencies separated in frequency by the fine structure. On detuning both lasers from δ = 0

to δ = Γ/2, the sensitivity to charge noise increases (changing from second order to first order)

yet the sensitivity to spin noise decreases (remaining second order but with a reduced pre-

factor, see Appendix A). In the experiment, switching from 〈δ〉 = 0 to 〈δ〉 = Γ/2 causes the

noise power of the low frequency component to increase markedly, Fig. 5.2(d), identifying it as

charge noise. However, the frequency-sum over the charge noise gives a contribution to Γ of

< 0.05 µeV (see Appendix A), a negligible value. We note that both the dc Stark coefficient

and Γ vary from quantum dot to quantum dot yet there is no correlation between the two

(see Appendix A), pointing also to the unimportance of charge noise in the optical linewidth.

Conversely, the noise power of the high frequency component decreases on detuning both lasers

from δ = 0 to δ = Γ/2, identifying it as spin noise, Fig. 5.2(d). Furthermore, noise spectra

measured at 〈δ〉 = 0 but with a single laser tuned to one of the X0 transitions show that the

low frequency noise, the charge noise, is similar for all three biases yet the high frequency

noise, the spin noise, increases with increasing bias, Fig. 5.2(c). This confirms that the high

frequency noise, the spin noise, is responsible for the inhomogeneous linewidth: the integrated

spin noise is vanishingly small at the sweet-spot, increasing at the centre of the plateau, and

increasing further at the positive bias edge.

The X0 Γ versus Ω curve does not follow exactly the text-book result for a 2-level system

(see Appendix A). The Ω-dependence of NQD(f) is highly revealing, Fig. 5.3(a). In the centre

of the plateau, as Ω increases the X0 spin noise also increases, Fig. 5.3(a). BX0

N,rms increases

roughly linearly with Ω reaching at the highest couplings extremely high values, 300 mT, Fig.
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Figure 5.3 | (a) NQD(f) on X0 for a series of Rabi couplings Ω with Vg at the centre of the Coulomb

blockade plateau at B = 10.0 mT. The experimental data for Ω = 0.46 µeV (black curve) is accompanied by

the Monte Carlo fit (red dashed curve). (c) NQD(f) on X1− for a series of Rabi couplings Ω (taken at B = 10.0

mT to enhance the sensitivity to spin noise [18]). (b),(d) BN,rms versus Ω for X0, X1−.

5.3(b). (BX0

N,rms is determined by a Monte Carlo simulation of NQD(f) including an ensemble

of fluctuating nuclei – this is robust as X0 is sensitive only to the vertical component of BN

(see Appendix A). The large BX0

N,rms would appear to prohibit transform-limited linewidths on

X0 at all but the very lowest optical couplings. However, at the sweet-spot, this mechanism is

clearly suppressed: BX0

N,rms reduces to < 50 mT and approaches the value for a quantum dot

in the ground-state.

We turn now to X1−. In this case, it is clear that the nuclear spins are a significant source of

inhomogeneous broadening. We investigate the spin noise and in particular its Ω-dependence

via the noise spectra. Fig. 5.3(c) shows that the X1− spin noise decreases as Ω increases,

corresponding to a decrease in BX1−
N,rms, Fig. 5.3(d). (The distinction between charge noise and

spin noise can be made in the case of X1− simply by changing the detuning from 〈δ〉 = 0 to

〈δ〉 = Γ/2 in a one-laser experiment [18]. X1− responds to all three components of BN , a more

complex problem than that for X0, and instead BX1−
N,rms is determined, Fig. 5.3(d) with lower

systematic error from the 2-laser experiment described below.)

5.3 Spin noise control via a two laser experiment

We address whether the spin noise reduction in the case of X1− is sufficient to achieve transform-

limited optical linewidths. The Ω-dependence of ΓX
1−

can be described extremely well with

the two-level result including an inhomogeneous broadening γ, Fig. 5.4(b) (see Appendix A).

At low Ω, Γ is determined by Γr and γ; at higher Ω, Γ increases (“power broadening”) and γ

becomes irrelevant. We can therefore determine the ideal limit (Γ versus Ω with γ = 0) and

below saturation, the inhomogeneous broadening is clearly significant, Fig. 5.4(b). However,
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Figure 5.4 | The two-laser experiment (B = 0.0 mT, T = 4.2 K) on X1−. (a) Optical linewidth measured

with the probe laser (Ω1 = 0.23 µeV) versus detuning of the pump laser δ2 for Ω2 = 0.80 µeV. The dashed lines

show the ideal case (zero inhomogeneous broadening) in two limits, Ω = Ω1 and Ω = Ω1 + Ω2, appropriate for

large δ2 and δ2 = 0.0 µeV, respectively, the difference arising from power broadening. (b) Optical linewidth in

one-laser experiment (black points) versus Ω with fit to 2-level model (γ = 1.35 µeV, black curve). The optical

linewidth in two-laser experiment (Ω1 = 0.23 µeV, δ2 = 0) versus Ω2 (red points). (c) Probe spectrum with

Ω1 = 0.23 µeV, Ω2 = 0.80 µeV and δ2 = 0.0 µeV (points) with a two Lorentzian fit (solid line, energy separation

1.6 µeV, linewidths 0.8± 0.3, 1.2± 0.3 µeV). (e) Splitting from (d) versus Ω2.

this relatively simple linewidth measurement is complex to interpret as the spin noise is a

function of both Rabi energy and detuning. To simplify matters, we performed the experiment

with two lasers. The concept is that the stronger, constant frequency pump laser (Ω2, δ2)

determines the spin noise, and the weaker probe laser (Ω1, δ1) measures the optical linewidth.

Fig. 5.4(a) shows ΓX
1−

measured by sweeping δ1 versus δ2 for Ω1 = 0.23,Ω2 = 0.80 µeV. For

large δ2, the pump laser has no effect on Γ; power broadening is irrelevant and Γ is far from

the transform-limit. For small δ2 however, Γ decreases, despite the power broadening induced

by Ω2. Taking into account power broadening, Γ reduces to the ideal limit. Fig. 5.4(b) shows

the results as Ω2 increases: for Ω/Γr > 0.75, transform-limited optical linewidths are achieved.

The spin noise reduction on driving X1− with the pump laser is accompanied by a profound

change in the probe spectrum: the optical resonance now splits into two resonances, Fig.

5.4(c). The splitting reflects a static electron Zeeman splitting in the single electron ground-

state, BN = 58 mT in Fig. 5.4(c), with BN increasing with Ω2, Fig. 5.4(d). Equivalently, even

without an applied magnetic field [26], a nuclear spin polarization is created by the optical

coupling. This demonstrates that the laser locks the nuclear spins into an eigenstate of the

ΣIz operator. The experiments reveal a remarkable dependence of the spin noise on charge. In

the centre of the plateaus, resonant excitation of X0 enhances spin noise yet resonant optical

excitation of X1− suppresses spin noise. Concomitant with the different BN,rms values are the

associated BN -correlation times, much shorter for X0 (5 µs) than for X1− (100 µs) [18, 27]. We
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note that the scanning frequency dependence, Fig. 5.1(g), reveals a 100 µs noise correlation

time for both X0 and X1−: at higher enough scanning frequencies, X0 is driven too briefly for

the nuclear noise process to be effective. This points to the fact that the reduced correlation

time and increased amplitude of the spin noise as measured on X0 is related to the constant

optical driving. Fortunately, at a particular bias, the nuclear spin “shake-up” on driving X0

can be turned off and transform-limited linewidths can be achieved: the charge noise is too

small to matter and the electron-hole exchange shields the exciton from the remaining nuclear

spin noise.

The mechanisms by which the nuclear spin noise respond to resonant optical excitation are

unknown. For X1−, the data are compatible with a “narrowing” of the nuclear spin distribution,

perhaps caused by continuous weak measurement via the narrowband laser [28]. The correlation

time is compatible with the nuclear spin dipole-dipole interaction. For X0 it is unlikely that

the standard electron spin-nuclear spin contact hyperfine interaction can offer an explanation;

it is also unlikely that the bare dipole-dipole interaction can account for the short correlation

time. One possibility is that the hole in the X0 is important: a hole has a complex hyperfine

interaction, containing a term (I+Jz + I−Jz), exactly the structure required to shake-up the

nuclear spins on creation of a hole (I is the nuclear spin, J the hole spin) [29]. While the

coefficient of this term is likely to be small, it can have significant consequences should the dark

X0 state be occupied for times far exceeding the radiative lifetime [29]. Experimentally, dark

X0 state occupation is conceivable here, and the dark state lifetime is suppressed at the edges

of the Coulomb blockade plateau [25], possibly accounting for the observed quenching of the

nuclear spin shake-up. We hope that our results will stimulate a refinement in understanding

of the exciton-nuclear spin interaction.

5.4 Conclusion

In conclusion, we report transform-limited optical linewidths from a single semiconductor quan-

tum dot even when measured on second time-scales on both X0 and X1−. Generally speaking,

controlling spin noise is key to operating a quantum dot-based spin qubit [21, 22, 30–32]. The

same factor turns out also to be a key feature in creating a quantum dot-based high fidelity

single photon source.
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PART IV

Hole spin interaction with the

environment





Chapter 6

Electric field dependence of the hole g-factor

Adapted from:

Jonathan H. Prechtel, Franziska Maier, Julien Houel, Andreas V. Kuhlmann, Arne Ludwig,

Andreas D. Wieck, Daniel Loss and Richard J. Warburton

“Electrically-tunable hole g-factor of an optically-active quantum dot for fast

spin rotations”

Phys. Rev. B 91, 165304 (2015)

We report a large g-factor tunability of a single hole spin in an InGaAs quantum dot via an

electric field. The magnetic field lies in the in-plane direction x, the direction required for a

coherent hole spin. The electrical field lies along the growth direction z and is changed over a

large range, 100 kV/cm. Both electron and hole g-factors are determined by high resolution

laser spectroscopy with resonance fluorescence detection. This, along with the low electrical-

noise environment, gives very high quality experimental results. The hole g-factor gxh depends

linearly on the electric field Fz, dg
x
h/dFz = (8.3 ± 1.2) · 10−4 cm/kV, whereas the electron g-

factor gxe is independent of electric field, dgxe /dFz = (0.1± 0.3) · 10−4 cm/kV (results averaged

over a number of quantum dots). The dependence of gxh on Fz is well reproduced by a 4 × 4

k·p model demonstrating that the electric field sensitivity arises from a combination of soft

hole confining potential, an In concentration gradient and a strong dependence of material

parameters on In concentration. The electric field sensitivity of the hole spin can be exploited

for electrically-driven hole spin rotations via the g-tensor modulation technique and based on

these results, a hole spin coupling as large as ∼ 1 GHz can be envisaged.

http://dx.doi.org/10.1103/PhysRevB.91.165304


6 Electric field dependence of the hole g-factor

6.1 Introduction

A single electron spin in a self-assembled quantum dot (QD) is a promising candidate for a

solid-state qubit [1]. In particular, the large optical dipole enables the electron spin to be

initialized [2, 3], manipulated [4, 5] and read-out [6, 7] using fast optical techniques. However,

the coupling of the electron spin to the nuclear spin bath of the QD via the hyperfine interaction

leads to rapid spin dephasing [1, 8, 9]. A hole spin represents an alternative [1, 3, 10–13]. For

a heavy-hole spin, the coefficient describing the hyperfine interaction is about one tenth that

of the electron spin [14–16], and, owing to the spin ±3
2 Bloch states, highly anisotropic such

that dephasing via the nuclear spins can be suppressed with an in-plane magnetic field [14, 17].

Hole spin dephasing times T ∗2 in InGaAs QDs in excess of 100 ns have been measured in small

in-plane magnetic fields, Chapter 2 and [11], (although they appear to be smaller at high

magnetic fields [12, 18]) and the decoherence time T2 is in the microsecond regime [11, 12].

Electrical control of the hole spin is a tantalizing possibility. This has been pursued in the

context of quantum dot molecules where a strong dependence of the hole g-factor has been

discovered in the tunneling regime where bonding and anti-bonding states form [19–21]. The

dependence arises from the amplitude of the hole wave function in the barrier [19, 22]. This

is potentially a powerful route to developing a fully-functional spin qubit [23]. A quantum

dot molecule introduces both material and spectroscopic complexity and one might wonder

how far a hole spin in a single quantum dot can be developed. Theoretically there has been

already extensive work on single quantum dot hole spins [14, 17, 24, 25], a proposal for fast

electrical hole spin manipulation [26] and studies of the electrical tunability of the g-tensor

[27–29]. Electrical control of the g-factor tensor has been explored optically via electric field

control [30, 31]. However, most of the experimental studies focus on the hole g-factor with

magnetic fields in growth direction.

We demonstrate here that the hole g-factor in a quantum dot is very sensitive to an electric

field F (along the growth direction, z) when the magnetic field B is applied in-plane, the

magnetic field direction required to generate a coherent hole spin. On the one hand, the

sensitivity to electric field implies that charge noise results in hole spin dephasing (see second

part of Chapter 2 and [18]). However, with quiet electrical devices, for instance the ones used

here, this limitation can be overcome. On the other hand, the result enables fast electrical

control of the hole spin by the g-tensor modulation technique [32, 33]: the x- and z-dependencies

are different. The predicted hole spin coupling via ac electric field modulation of the g-tensor

with a SiGe quantum dot is ∼ 100 MHz [34]. Even larger couplings are predicted based on the

results presented here.

In this paper we present a measurement method for determining the g-factor using reso-

nant laser spectroscopy with resonance fluorescence (RF) detection [35, 36]. The method has

88



6.2 Experiment

higher resolution than the detection of photoluminescence following non-resonant excitation.

Furthermore, non-resonant excitation introduces not only electrical noise [35, 37] and hole spin

dephasing (see Chapter 2) but also creates space charge which screens the applied electric

field. These problems are resolved with resonant excitation. We are able to combine our high

resolution resonance fluorescence experiment with a k·p theory to support our experimental

results. The k·p analysis demonstrates that the origin of the large dependence of gxh on Fz

arises from the soft hole confinement potential (allowing the “center of gravity” of the hole

spin wave function to shift in a vertical electric field), an indium concentration gradient (the

effective hole “composition” depends on electric field), and a strong dependence of the material

parameters (notably the Luttinger parameter κ and q) on indium concentration.

6.2 Experiment

6.2.1 Sample

The quantum dots are embedded in the intrinsic region of a p-i-n device. The intrinsic re-

gion consists of a layer of self-assembled InGaAs quantum dots located between two highly

opaque blocking barriers, in each case an AlAs/GaAs short-period superlattice (16 periods of

AlAs/GaAs 3 nm/1 nm). An electric field Fz of more than 120 kV/cm can be applied to

the QDs [38]. An etch as deep as the n+ layer is followed by annealing Ni/Ge/Au in order

to contact the n+ GaAs; 60 nm of Au deposited directly onto the surface without annealing

makes a reasonable contact to the p+ GaAs. The n+ layer is earthed and the electric field is

controlled by applying voltage V to the top Au layer, Fig. 6.1(a). A split-coil magnet inside a

He bath cryostat (4.2 K) provides a magnetic field of 3.00 T in the in-plane direction.

6.2.2 Methods

Our experimental scheme involves measuring the frequencies of the optical resonances on single

QDs with high resolution laser spectroscopy. We drive the optical transitions with a coherent

continuous wave laser (linewidth 1 MHz), collecting the resonance fluorescence (RF). The RF is

separated from reflected and scattered laser light by a polarization-based dark-field technique

[36]. RF detection is carried out with a charge-coupled device (CCD) at the output of a

grating-based spectrometer (resolution ∼ 40 µeV). Energy tuning is performed by sweeping

the transitions through the constant frequency laser, exploiting the dc Stark shift (dependence

of QD optical frequency on vertical electric field). The typical linewidths are ∼ 5 µeV and

in the spectra presented here, we can determine the peak positions with a resolution of ±0.2

µeV. We study the negatively charged exciton, the X1−. This is advantageous with respect

to the neutral exciton, X0, in that it exhibits no additional fine-structure splitting due to the
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Figure 6.1 | (a) Layer sequence of the device. On top of the substrate a short-period superlattice (SPS) of

AlAs/GaAs periods is grown, followed by an n+-doped layer, an intrinsic region with a second SPS, the quantum

dot layer and a third SPS, completed with a p+ doped layer on top. On the sample surface a semi-transparent

electrode is fabricated, with a hemispherical solid-immersion lens (SIL) positioned on top. (b) Contour plot

of the resonance fluorescence (RF) signal as a function of the applied voltage. The charged exciton X1− in

an in-plane magnetic field exhibits four transitions. The four energy versus voltage dependencies are sketched

with the solid lines. The dashed line represents the resonant laser frequency. RF peaks are assigned to the

energy transitions with two numbers. The first number indicates the excited transition and the second the

recombination channel for the emission. The transitions are indicated in (c). Red and black correspond to the

diagonal and vertical transitions, respectively. The color scale is a linear representation of the CCD camera

output from background counts (white) to maximum counts 1,200 cts/s (red). (c) The quantum states of a

single electron spin in an in-plane magnetic field. ↑,↓ indicate an electron spin, ⇑,⇓ a hole spin. (d) Schematic

of the sample orientation in the microscope and of the applied fields.

electron-hole exchange interaction [39]: the trion spectrum gives direct access to the electron

and hole Zeeman energies, and hence g-factors. The device does not operate in the Coulomb

blockade regime where the charge is precisely controlled. However, we find that X1− dominates

the optical spectrum in the presence of a small amount of non resonant laser light (PNR = 0.75

nW). The in-plane magnetic field along x creates a “double” Λ-system: the spin-split ground

states are both coupled to the spin-split optically-excited states. The “vertical” transitions in

Fig. 6.1(c) are linearly-polarized along x; the “diagonal” transitions are linearly-polarized along

y. x corresponds to the [100] crystal direction. The laser is polarized along the “microscope

axis” (s/p) and this corresponds closely to π/4 with respect to the x-axis such that the Rabi

couplings of all four transitions are similar. Fig. 6.1(b) shows a contour plot of the RF signal,

a plot of RF versus energy and V at a fixed laser frequency. The backscattered resonant laser

is perfectly suppressed and is indicated via the dotted line. The applied voltage (electric field)

is scanned in 0.2 mV (0.011 kV/cm) steps; the maximum count rate is 1,200 Hz in this case.
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6.3 Results

The QD emits as soon as the voltage and the laser match the energetic resonance condition.

Depending on the voltage, two transitions always emit together, (1 and 3) or (2 and 4). This is

the experimental signature of the “double” Λ-system. If for instance the resonant laser drives

the “1”-transition (πx-polarized), spontaneous emission takes place via the “1” recombination

channel and also via the “3” recombination channel (πy-polarized). In Fig. 6.1(b) the RF

peaks are assigned to the energy transitions with two numbers. The first number indicates

the excited transition and the second the recombination channel for the emission. Energy

separations between peaks 1 and 3, likewise 2 and 4, determine the electron Zeeman energy;

energy separations between 1 and 2, likewise 3 and 4, determine the hole Zeeman energy. These

energy separations are measured at different electric fields. The applied voltage V is converted

into an electric field Fz by calculating the energy band diagram of the entire p-i-n device with a

one-dimensional Poisson solver [40]. To a very good approximation, Fz = (−V + Vbi)/d where

d is the width of the intrinsic region and Vbi = 1.52 V is the built in potential. A positive Fz

points in the positive z direction.

We should justify our assignments of the splittings which are ambiguous from the data set in

Fig. 6.1 alone. We make use of the fact that the electron g-factor ge is well known to us, both in

magnitude [41] and in sign [42]: for these quantum dots it lies typically between ge = −0.4 and

−0.7 with no significant dependence on the direction of the magnetic field. This confirms the

assignment of the 1− 3 energy splitting to the electron Zeeman energy. The corollary is that

the 1−2 splitting corresponds to the hole Zeeman energy. We find that the hole g-factor has a

positive sign with values gxh ' 0.1− 0.3. (The hole Zeeman energy is defined as ghµBB where

µB is the Bohr magneton, a description which assigns a pseudo spin of ±1
2 to the hole spin.)

These values are consistent with our previous measurements on similar samples with coherent

population trapping (see Chapter 2 and 7 and [11]), and also measurements from other groups

[12, 13, 43]. The small value of gxh is also consistent with simple theoretical considerations: in

an in-plane magnetic field, the heavy hole g-factor is small on account of the strong valence

band spin-orbit interaction [44]. We note that over the range of electric field probed here, there

are no crossings or anti-crossings of the transitions.

6.3 Results

6.3.1 Electric field dependence of the g-factor

The RF spectra are recorded at different laser energies (and therefore at different electric fields)

in steps of 30 µeV for high energies (1.314 eV) and 130 µeV for smaller energies (1.310 eV).

Four examples are illustrated in Fig. 6.2(a-d), with laser energies at the end (a), in the middle

(b,c) and at the beginning (d) of the X1− emission energy range Fig. 6.2(e). Each RF-spectrum
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Figure 6.2 | (a)-(d) Resonance fluorescence (RF) spectra of the exciton transitions of QD1 at four fixed

resonant laser energies. Detuning is achieved by tuning the voltage applied to the device. The 4 spectra are

taken at different electric fields spanning the working area of the device and at an in-plane magnetic field of 3.00

T. Each of the four peaks corresponds to one of the four transitions in the quantum system (1-4, Fig. 6.1(c)).

With the help of a quadruple Lorentzian function (red) the peak positions can be determined with a precision

of ±0.2 µeV. (e) All RF peak positions (resonant excitation energy) versus electric field. The energies can be

described in each case by a quadratic function of electric field consistent with the dc-Stark effect. The insets,

both with a field extent of 9 kV/cm and an energy extent of 200 µeV, highlight the electric field dependence of

the energy splittings (The colors match to the respective RF peaks (a)-(d).).

consists of four peaks corresponding to the four transitions of the quantum system (1-4). As in

Fig. 6.1(b) we label the peaks 1-4 with decreasing energy and assign them to the corresponding

transitions. A quadruple Lorentzian function (red) is used to fit each peak and to determine

the peak position. The “fingerprint” of the spectrum changes from (a) to (d) indicating that

there is a strong change in the g-factors. To convert the RF spectra versus V into a plot of

gxh and gxe versus Fz, we use an intermediate step, Fig. 6.2(e). Here we plot all resonance peak

positions, 1 to 4, gained from the RF spectra, as a function of Fz. Each transition is fitted to

a quadratic function of Fz, E = E0 − pFz + βF 2
z [45]. This corresponds to the behaviour of

an electric dipole with permanent dipole moment p and polarizability β in an applied electric

field. We find here p/e = (0.033 ± 0.002) nm and β = −(0.234 ± 0.002) µeV/(kV/cm)2 for

all four transitions. These values are compatible with the ones reported for similar devices

[46]. This procedure enables us to determine E1, E2, E3 and E4 at all Fz. At a particular Fz,

the energy differences enable us to make a precise measurement of the electron and the hole

g-factors. With the relations gxhµBB = E1 − E2 = E3 − E4 and gxeµBB = E1 − E3 = E2 − E4

we determine the in-plane hole and electron g-factors, gxh and gxe , for two chosen quantum dots

at different in-plane magnetic fields, Fig. 6.3.
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Figure 6.3 | In-plane electron gxe and hole gxh g-factors of two QDs as a function of a perpendicular electric

field Fz. The electron g-factor (green and olive, E1−E3 and E2−E4), with a mean value of gxe = −0.39±0.03 is

not influenced by the external electric field. The in-plane hole g-factor (red and black, E1−E2 and E3−E4) can be

tuned with voltage at a rate of dgxh/dFz = (8.3±0.1)·10−4 cm/kV for QD1 (circle) and dgxh/dFz = (7.9±0.9)·10−4

cm/kV for QD2 (triangle).

We find that the electron g-factor gxe does not depend on the applied electric field within the

sensitivity of the experiment, dge/dFz = (0.1 ± 0.3) · 10−4 cm/kV, and has an mean value of

gxe = −0.39±0.03 in our sample. This is true for both quantum dots and magnetic fields up to

3.00 T. The hole g-factor gxh behaves completely differently: there is an approximately linear

dependence on Fz. The data in Fig. 6.3 show that gxh of QD2 can be tuned by as much as

40% by changing the applied electric field by 120 kV/cm. A noteworthy fact is that gxh at any

one field is highly QD-dependent yet the dependence on field, dgxh/dFz, only changes slightly

(∼ 10%) from QD to QD. We find dgxh/dFz = (8.3 ± 1.2) · 10−4 cm/kV, a value consistent

with previous estimates/measurements (see Chapter 2 and [31, 43]) where gxh is extracted from

the energy splitting of polarization-dependent photoluminescence (Chapter 2 and [31]) and

time-resolved photo-current measurements [43].

6.3.2 Theory

The electric field displaces the electron and the hole wave functions inside the QD, by values up

to about 0.6 nm in this experiment. The electron wave function is more delocalized than the

hole largely on account of its smaller effective mass. The electron averages over a relatively large

extent and this averaging does not change significantly on displacing the electron wave function.

This is likely to be the explanation for the small value of dge/dFz observed experimentally [47].

However, the hole is more strongly localized and even sub-nm displacements have important

consequences for gxh. An important point is that the QDs have an indium concentration gradient

[48]. It is well known that one of the key parameters describing the hole g-factor, the Luttinger
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Figure 6.4 | (a) The in-plane hole g-factor for QD2 at 3.00 T. For a vertical hole confinement length of 2.4

nm the theoretical description matches the experimental data (solid green line). (b) Theoretical analysis of the

electric field dependence of the in-plane hole g-factor for different values of the vertical hole confinement length.

κ-parameter, is highly dependent on indium concentration, changing from 1.1 for GaAs to

7.6 for InAs [49]. In the simplest approximation, a pure heavy-hole state has a close-to-

zero in-plane g-factor: the spin is locked to the angular momentum vector which lies in the z

direction by the strong spin-orbit interaction [44]. However, both the quantum dot confinement

potential and the in-plane magnetic field admix the heavy-hole and light-hole states such that

there is no simple result for gxh. Calculations with a four-band k·p theory include all the most

important sources of heavy-hole, light-hole admixture and provide a quantitative explanation

of our experimental results. The confinement induces coupling between the heavy-hole and

light-hole states. Strain fields are of considerable strength and are taken into account. The

indium content in the quantum dot is taken to be 40% at the bottom and 60% at the top. The

external electric and magnetic fields are included perturbatively and the g-factor is derived

from the lowest, Zeeman-split hole states. Technical details are described in the Appendix. In

Fig. 6.4(a),(b) the calculated hole g-factor in a magnetic field of 3.00 T is shown as a function

of vertical electric field. The results in Fig. 6.4(b) show that dgxh/dFz is a strong function

of the vertical confinement length of the hole and therefore the height of the quantum dot.

Independent of material considerations, the lack of useful quantization limits the maximum

confinement length, taken as 5 nm here. Significantly, for a realistic quantum dot confinement

length of a few nm, the calculations are in good agreement with the experimental results. In

fact agreement is excellent for a confinement length of 2.4 nm which is realistic for these QDs
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(green line), Fig. 6.4(a). The model is very dependent on the indium concentration gradient.

For realistic confinement lengths a and L, a large dgxh/dFz only arises in the presence of a large

In concentration gradient: this identifies the key mechanism.

6.3.3 g-tensor modulation

Additional measurements in Faraday geometry (magnetic field in growth direction) complete

the picture of the hole g-factor tensor. The values we extract are gzh = 1.22±0.02 at zero electric

field for the hole g-factor with an electric field dependence of dgzh/dFz = (4.1±1.0)·10−3 cm/kV.

A similar slope can be found also in previous reports [30]. The dependency of the g-tensor on

electric field allows the spin-up and spin-down states to be coupled by applying an ac voltage

Vac with a frequency equal to the Larmor frequency. The resulting coupling fR [34] is,

fR =
µBVac

2h

[
1

g‖

(
∂g‖

∂Vg

)
− 1

g⊥

(
∂g⊥
∂Vg

)]
×

g‖g⊥B‖B⊥√(
g‖B‖

)2
+
(
g⊥B⊥

)2 . (6.1)

We estimate a value for the Rabi frequency fR based on our results for the hole g-factor. We

consider an oscillating voltage of 1 V (67 kV/cm) and a maximum driving frequency of fLarmor=

20 GHz. The spin rotation is fastest when the magnetic field is applied at the “magic” angle

θmax = arctan

(√
g‖

g⊥

)
, (6.2)

in this case at 20.7◦ (QD1) and 14.5◦ (QD2) with respect to the (x, y) plane. The total magnetic

field corresponds to 3.2 (4.6) T. These parameters are very reasonable in the sense that the

magnetic field is not particularly high and that it lies predominantly in-plane, as required to

decouple the heavy-hole spin from the nuclear spins. We obtain resulting Rabi frequencies of

350 MHz (QD1) and 1.1 GHz (QD2), the result depending strongly on the magnitude of the

in-plane hole g-factor gxh. These very promising values exceed the ones reported for electrons

in InSb nanowires [50] and holes in SiGe QDs [34].

6.4 Conclusion and Outlook

We have shown the tunability of the hole g-factor of an optically active QD in the key ge-

ometry of an in-plane magnetic field (to suppress the coupling of the hole spin to the nuclear

spins) and a vertical electric field (experimentally straightforward to apply large fields, here

up to 100 kV/cm). We derived the hole and electron g-factors by laser spectroscopy with res-
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6 Electric field dependence of the hole g-factor

onance fluorescence detection. Within the resolution of the experiment, the electron g-factor

is independent of the vertical electric field. Conversely, the in-plane hole g-factor is strongly

dependent on the vertical electric field with dgxh/dFz = (8.3± 1.2) · 10−4 cm/kV. This result is

explained quantitatively with a theoretical model which describes heavy-hole light-hole admix-

ture. The origin of the strong electric field dependence arises from a combination of the softness

of the hole confining potential, an indium concentration gradient and a strong dependence of

material parameters on indium concentration.

A quantum dot hole spin becomes coherent in an in-plane magnetic field (see Chapter 2 and

7). On the one hand, the large dgxh/dFz implies that charge noise results in hole spin dephasing.

This can be minimized of course by working in the clean-material, low-temperature, resonant-

excitation limit [35]. Another option, as shown by the theoretical calculations, is to work with

shallow quantum dots for which dgxh/dFz is small. On the other hand, the large dgxh/dFz is

useful: g-tensor modulation via an ac electric field can be used to drive spin rotations. With

the present quantum dots we predict that the spin can be rotated at frequencies up to ∼ 1

GHz. An overriding point is that the calculations show the overwhelming influence of the dot

height on dgxh/dFz, a powerful route to designing the hole spin properties according to the

application.
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Nature (London) 467, 297 (2010).

[7] A. Delteil, W. B. Gao, P. Fallahi, J. Miguel-Sanchez, and A. Imamoğlu, Phys. Rev. Lett.
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[27] C. E. Pryor and M. E. Flatté, Phys. Rev. Lett. 96, 026804 (2006).

[28] J. Pingenot, C. E. Pryor, and M. E. Flatté, Appl. Phys. Lett. 92, 222502 (2008).
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Warburton, A. Badolato, B. D. Gerardot, and P. M. Petroff, Appl. Phys. Lett. 86, 221905

(2005).

[43] T. M. Godden, J. H. Quilter, A. J. Ramsay, Y. Wu, P. Brereton, I. J. Luxmoore, J. Puebla,

A. M. Fox, and M. S. Skolnick, Phys. Rev. B 85, 155310 (2012).

99

http://dx.doi.org/ 10.1038/414619a
http://dx.doi.org/ 10.1126/science.1080880
http://dx.doi.org/10.1063/1.4858959
http://dx.doi.org/10.1038/nphys2688
http://dx.doi.org/10.1063/1.4813879
http://dx.doi.org/ 10.1103/PhysRevLett.108.107401
http://dx.doi.org/10.1038/NPHYS1780
http://dx.doi.org/10.1038/NPHYS1780
http://dx.doi.org/10.1103/PhysRevB.65.195315
http://www.nd.edu/~gsnider/
http://www.nd.edu/~gsnider/
http://dx.doi.org/ 10.1103/PhysRevLett.100.156803
http://dx.doi.org/ 10.1103/PhysRevLett.100.156803
http://dx.doi.org/ 10.1063/1.1940733
http://dx.doi.org/ 10.1063/1.1940733
http://dx.doi.org/ 10.1103/PhysRevB.85.155310


REFERENCES

[44] R. W. Martin, R. J. Nicholas, G. J. Rees, S. K. Haywood, N. J. Mason, and P. J. Walker,

Phys. Rev. B 42, 9237 (1990).

[45] R. J. Warburton, C. Schulhauser, D. Haft, C. Schäflein, K. Karrai, J. M. Garcia,
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[48] V. Mlinar, M. Bozkurt, J. M. Ulloa, M. Ediger, G. Bester, A. Badolato, P. M. Koenraad,

R. J. Warburton, and A. Zunger, Phys. Rev. B 80, 165425 (2009).

[49] N. J. Traynor, R. T. Harley, and R. J. Warburton, Phys. Rev. B 51, 7361 (1995).

[50] J. W. G. van den Berg, S. Nadj-Perge, V. S. Pribiag, S. R. Plissard, E. P. A. M. Bakkers,

S. M. Frolov, and L. P. Kouwenhoven, Phys. Rev. Lett. 110, 066806 (2013).

100

http://dx.doi.org/ 10.1103/PhysRevB.42.9237
http://dx.doi.org/ 10.1103/PhysRevB.65.113303
http://dx.doi.org/ 10.1063/1.3460912
http://dx.doi.org/10.1103/PhysRevB.84.195403
http://dx.doi.org/10.1103/PhysRevB.80.165425
http://dx.doi.org/10.1103/PhysRevB.51.7361
http://dx.doi.org/ 10.1103/PhysRevLett.110.066806


Chapter 7

The decoupling of the hole spin from the

nuclear spins

Adapted from:

Jonathan H. Prechtel, Andreas V. Kuhlmann, Julien Houel, Arne Ludwig, Andreas D. Wieck

and Richard J. Warburton

“The hole spin qubit: decoupling from the nuclear spins”

Submitted manuscript

A huge effort is underway to develop semiconductor nanostructures as low noise hosts for

qubits. The main source of dephasing of an electron spin qubit in GaAs is the nuclear spin

bath. A hole spin may circumvent the nuclear spin noise. In principle, the nuclear spins can

be switched off for a pure heavy-hole spin. In practice, it is unknown to what extent this ideal

limit can be achieved. A major hindrance is that p-type devices are often far too noisy. We

investigate here a single hole spin in an InGaAs quantum dot embedded in a new generation

of low-noise p-type device. We measure the hole Zeeman energy in a transverse magnetic field

with 10 neV resolution by dark state spectroscopy as we create a large transverse nuclear spin

population. The hole hyperfine interaction is highly anisotropic: the transverse coupling is

< 1% of the longitudinal coupling. For unpolarized, randomly fluctuating nuclei, the ideal

heavy-hole limit is achieved down to neV energies; equivalently dephasing times up to a µs.

The combination of large T ∗2 and strong optical dipole make the single hole spin in GaAs an

attractive quantum platform.



7 The decoupling of the hole spin from the nuclear spins

7.1 Hole spin hyperfine interaction

The electron states in a self-assembled quantum dot, Fig. 7.1(a), are constructed from atomic

s orbitals, Fig. 7.1(b). The large amplitude of the s orbital at the location of each nucleus i

results in a Fermi contact hyperfine interaction for an electron spin S with N nuclear spins Ii

Ĥcontact =
N∑
i=1

Aei |ψi|2Ii · S =
N∑
i=1

Aei |ψi|2
[
Izi S

z +
1

2

(
I+
i S
− + I−i S

+
)]
. (7.1)

Aei is the coupling coefficient and ψi the envelope function. This interaction dominates the

electron spin dephasing. The nuclei create an effective magnetic field, the Overhauser field

BN , which fluctuates in time resulting in spin dephasing [1, 2]. For self-assembled quantum

dots, N ∼ 105, BN ∼ 20 mT resulting in an energy fluctuation in the electron Zeeman energy

of δZe ' 0.6 µeV and T ∗2 ∼ 1 ns. This dephasing can only be suppressed by “narrowing” the

nuclear spin distribution, ideally preparing the nuclei in a z-eigenstate.

A hole is the absence of an electron in an otherwise occupied valence level. A hole spin has

a fundamentally different hyperfine interaction to the electron spin. The valence states are

constructed from atomic p orbitals with zero wavefunction amplitude at the location of the

nuclei, Fig. 7.1(b). The Fermi contact hyperfine interaction is therefore suppressed [3, 4]. The

dipole-dipole part of the hyperfine interaction remains [3, 5, 6]. For a pure heavy-hole (HH)

state the hyperfine interaction has an Ising-form

ĤHH
dipole =

N∑
i=1

AHH,zi |ψi|2Izi Jz. (7.2)

Such that the heavy-hole spin J experiences just the z-component of the noisy Overhauser

field. Furthermore, the coupling coefficients are reduced: AHH,zi /Aei ∼ −10% [3, 6]. The

most important consequence of the Ising-form is that application of a transverse magnetic field

suppresses hole spin dephasing by the nuclear spins [3]. This is so effective that the hyperfine

interaction is to all intents and purposes switched off for a pure heavy hole spin [7].

In practice, a real hole state is inevitably an admixture of heavy-hole, light-hole, spin-orbit

split-off and conduction states such that the hyperfine interaction is no longer purely Ising-like:

Ĥh
dipole =

N∑
i=1

|ψi|2
[
Ah,zi Izi J

z +
1

2
Ah,⊥i

(
I+
i J
− + I−i J

+
)]
. (7.3)

Ah,⊥i is the transverse part and arises from the admixture of both conduction [7, 8] and light-

hole states [6–8]. Furthermore, in this 2-fold pseudo spin-basis for the hole, admixture of the
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Figure 7.1 | Electron and hole wavefunctions. (a) TEM image of a self-assembled quantum dot (TEM

performed by Jean-Michel Chauveau and Arne Ludwig). (b) Schematic of the electron and hole states. The

electron state is constructed largely from atomic s orbitals, each localized to a unit cell (blue line) modulated by

the envelope function that extends over the quantum dot (dashed line). In contrast, the hole state is constructed

largely from atomic p orbitals (red line). The probability density for an electron to reside at the location of the

nuclei (black circles) is therefore large for an electron, small for a hole. ψe and ψh denotes the envelope function

for the electron, hole respectively.

light-holes leads in addition to “non-colinear” terms (I+
i +I−i )Jz [9, 10] and to terms with form

(I+
i J

+ + I−i J
−) [10].

Experiments have established long hole spin relaxation times [11, 12], coherence times T2 in

the µs range [13, 14], fast spin rotations [14–16] and control of two tunnel-coupled hole spin

qubits [15]. The existence of the dipole-dipole hyperfine interaction has been established [5].

Experimentally, Ah,zi has been measured to be −10% of Aei on self-assembled quantum dots

by dynamically polarizing the nuclear spins along the z-direction and measuring the changes

to the electron and hole Zeeman energies [17–19], confirming theoretical expectations [3, 6]

albeit with some interesting discussion on the sign [20]. However, the full topology of the hole

hyperfine interaction has not yet been determined: it is presently unclear if the heavy-hole

limit can be reached with available quantum dots. We stress that the anisotropy (rather than

the magnitude of Ah,zi ) is the crucial question in the development of a hole spin qubit.

Two difficulties are encountered in probing the hole spin hyperfine interaction optically.

First, optical excitation of a hole spin populates an exciton state consisting of two holes in

a singlet state but an unpaired electron spin. In this situation it is not trivial to assign any

nuclear spin effects unambiguously to the hole spin given the strong hyperfine interaction of
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7 The decoupling of the hole spin from the nuclear spins

the electron spin. Secondly, p-type devices tend to be considerably noisier than n-type devices

yet the hole g-factor is very sensitive to an electric field (Chapter 2, Chapter 6 and [21]) such

that charge noise results in spin dephasing (Chapter 2, Chapter 6 and [14]): in noisy devices

this effect can completely obscure the hyperfine couplings.

7.2 Coherent population trapping experiment

7.2.1 Method

Here we determine the topology of the hole hyperfine interaction in a self-assembled quantum

dot and uncover an extremely high anisotropy, i.e. close-to-Ising-like, |Ah,⊥i | � |A
h,z
i |. We

polarize the nuclear spins along a transverse direction, monitoring the polarization via the

lone electron spin in the exciton, and measure the hole Zeeman splitting Zh ultra-precisely by

means of dark-state spectroscopy, i.e. coherent population trapping (CPT) (see Chapter 2 and

[13, 22–24]). We exploit the coherence of the hole spin, resonance fluorescence detection (RF)

[25] and low-noise samples to achieve a spectral resolution in Zh of just 10 neV (2.4 MHz).

CPT is a quantum interference in a Λ-system where two ground states are coupled individu-

ally by “pump” and “probe” optical fields to a common upper level, Fig. 7.2(a). Here, the two

ground states correspond to the Zeeman-split hole spin states, |⇑〉x and |⇓〉x, and the upper

level to an exciton, |⇑⇓, ↓〉x or |⇑⇓, ↑〉x (where |↑〉x , |↓〉x refer to the electron spin states), Fig.

7.2(a). A transverse magnetic field (in the x-direction) establishes the quantization axis and

the Λ-system, Fig. 7.2(a). The interference occurs when the frequency difference of the lasers

matches the hole Zeeman splitting, the two-photon resonance. A dark state results, revealed

by a dip in the probe spectrum. The spectral position of the dip measures Zh. Specifically,

when ~Ω1 � ~Ω2 � ~Γr (~Ω1, ~Ω2 are the probe and pump couplings, Γr the spontaneous

emission rate) the CPT dip has width ~Ω2
2/Γr. The depth of the dip is sensitive to the hole

spin coherence: for 1/T2 � Ω2
2/Γr the emission in the dip goes to zero. Therefore, provided

the hole spin coherence is high enough, the width of the CPT dip can be much less than the

optical linewidth, enabling a highly accurate measurement of Zh. Furthermore, the location

of the CPT dip is determined only by the two-photon resonance. CPT is therefore an ideal

technique to extract Zh. Fluctuations in exciton energy (via charge noise and the Overhauser

field acting on the electron spin) modify the emission envelope [13, 22] but not the location of

the CPT dip.

7.2.2 Ultra-narrow and high signal:noise CPT dip

CPT on a single quantum dot containing a single hole is shown in Fig. 7.2(b). The results

are recorded on a new generation of low-noise p-type devices. The low noise is revealed in
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Figure 7.2 | (a) The quantum states. Two optical Λ-systems (blue and red lines) are established in a

magnetic field along the x-direction: |⇑〉x and |⇓〉x are the hole spin eigenstates in the x-basis, split by the

Zeemann energy Zh; the upper levels are the X1+ excitons consisting of two holes in a singlet state and an

unpaired electron with spin ± 1
2
, again in the x-basis. The optical transitions are linearly polarized, either πx or

πy, with equal optical dipoles, at wavelengths close to 950 nm. (b) RF spectrum on a single quantum dot QDA

containing a single hole in sample A using the “blue” Λ-system (pump on higher energy “vertical” transition).

The pronounced dip signifies CPT. The frequency of the probe laser is scanned and is plotted with respect to

the CPT dip. The solid line shows the result of a 3-level density matrix model (probe coupling ~Ω1 = 0.06 µeV,

pump coupling ~Ω2 = 0.40 µeV, spontaneous emission rate Γr = 0.68 µeV, T2 > 1 µs, T1 � T2) convoluted with

a Lorentzian with FWHM Γ = 2.5 µeV to describe slow exciton dephasing, and then with a Lorentzian with

FWHM 8.3 neV (2.0 MHz) to account for the mutual coherence of the lasers (see Supplementary Information).

The data were recorded with 0.1 s integration time per point at a magnetic field Bx = 3.00 T and temperature

T = 4.2 K. (c),(d) Two exemplary CPT dips from a quantum dot in sample A and in sample B, respectively.

The dip from sample A has FWHM of 80 neV (19.3 MHz) and is modelled with the parameters of (b). The

limited mutual coherence of the lasers is the main reason that the signal in the dip centre does not go down

completely to zero. The dip from sample B has FWHM 33 neV (8.0 MHz), 5 s integration per point. The CPT

simulation uses ~Ω1 = 0.1 µeV, ~Ω2 = 0.49 µeV, and, as in (b), Γr = 0.68 µeV, T2 > 1 µs, T1 � T2. In this

case, the remaining signal in the dip centre is likely to be a consequence of the small value of Zh: the dark state

can be destroyed by the weak coupling of the pump to the probe transition.
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7 The decoupling of the hole spin from the nuclear spins

the single quantum dot optical linewidths which are the same in sample A as those on high

quality n-type devices [26]. More importantly, the low-noise environment removes the charge-

noise-induced fluctuations of the CPT dip position which have plagued earlier experiments in

Chapter 2. The occupation of the upper level is monitored with high signal:noise by detecting

the resonance fluorescence [25, 26], Fig. 7.2(b),(c). The resonance fluorescence exhibits a

Lorentzian envelope with full-width-at-half-maximum (FWHM) 2.5 µeV and a pronounced dip

with FWHM 80 neV (19.3 MHz). A zoom-in of the CPT dip is shown in Fig. 7.2(c) along

with CPT from a quantum dot in sample B with CPT dip width 33 neV (8.0 MHz). These

spectra enable the determination of Zh with a resolution of ∼ 10 neV. This is 108-times smaller

than the optical transition energy, 250-times smaller than the optical linewidth, and 70-times

smaller than the optical transform limit.

7.2.3 Highly decoupled hole spin from nuclear spins

The transverse hole hyperfine interaction is measured by combining CPT and dynamic nuclear

polarization (DNP). The exciton resonance is locked to the pump laser frequency via the

dragging effect [17, 27, 28] resulting in DNP. The Overhauser field is thereby controlled via the

detuning δ2 of the pump laser with respect to the bare transition frequency. A strong constant

frequency pump laser defines the nuclear spin state and a weak probe laser (Ω1 � Ω2) measures

both Zh and the electron Zeeman splitting Ze. The probe laser is scanned across the vertical

and diagonal transitions, Fig. 7.3(a),(b). A pronounced dip in the spectrum indicates CPT

and measures Zh with ultra-high resolution. For zero pump detuning (zero DNP), the probe

response at much lower frequencies than the pump laser (factor of 10 less) determines Ze:

we observe an increase in RF when the probe comes into resonance with the lower energy

“vertical” transition. As the pump is detuned, Ze changes by ∆Ze via DNP. The shifts in this

low frequency resonance monitor the DNP and determine ∆Ze, Fig. 7.3(a),(b). Importantly,

the probe coupling is lowered in these experiments until the probe itself is too weak to induce

DNP, i.e. the frequency of the low energy resonance does not depend on Ω1. Fig. 7.3(c),(d)

plots Zh versus ∆Ze. Although Ze changes by almost 20 µeV, Zh remains constant to within

20 neV for both samples. This is the main result of the experiment: large values of Ix do not

result in a measurable change in Zh even when Zh is measured with high resolution.

Quantitatively, our experiment shows that ∆Zh/∆Ze < 0.1% in the presence of a transverse

DNP. This is equivalent to |Ah,⊥i /Aei | < 0.1%. Furthermore, with |Ah,zi /Aei | = 10% [17–19] (a

ratio we have confirmed on quantum dots in these samples), we can quantify the anisotropy

of the hole spin hyperfine interaction |Ah,⊥i /Ah,zi | < 1%. This is consistent with a generic

theoretical estimate [7]; we are not aware of a calculation specific to an InGaAs quantum dot.

In terms of energies, Ah,⊥i < 0.1 µeV. This implies a very small energy broadening δZh in
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Figure 7.3 | (a) Measured probe resonance fluorescence spectrum on sample B in the presence of a much

stronger, constant frequency pump laser, red: δ2 = 0; blue: δ2 = 3.4 µeV. The frequency of the probe laser

is scanned across the “vertical” and “diagonal” transitions and is plotted with respect to the pump frequency

in both cases. The pronounced dip signifies CPT and occurs when δ1 = Zh. The peak at large and negative

δ1 arises when the probe is in resonance with the lower energy “vertical” transition. At δ2 = 0 the separation

between this resonance and the CPT dip determines Ze, the Zeeman energy of the exciton (determined by the

lone electron spin). The shift in this resonance signifies a dynamic nuclear polarization (DNP): Ze changes in

response to the change in pump detuning. The measured Rabi energies are ~Ω1 = 0.049 µeV and ~Ω2 = 0.49

µeV; hole g-factor 0.034; magnetic field 3.00 T; integration time per point 5 s; temperature 4.2 K. (b) The

quantum states of the system: the red arrows indicate the optical transitions addressed by scanning the probe

laser for δ2 = 0, blue for δ2 > 0. (c),(d) Zh versus the change of the electron Zeeman energy ∆Ze for samples

A and B, respectively. The solid line represents the average value, the dashed lines represent ±σ where σ is the

standard deviation. At the one-σ level, dZh/d∆Ze = 0.1%.
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7 The decoupling of the hole spin from the nuclear spins

the presence of un-polarized but noisy nuclei (δZe = 600 neV): δZspin
h < 0.6 neV. The energy

broadening arising from the longitudinal coupling, i.e. Azh, is sub-neV for all transverse fields

above about 500 mT.

Charge noise-induced spin dephasing should also be considered (Chapter 2 and 6). We

estimate the charge noise from the optical linewidth and RF noise spectra [26]. Charge noise is

particularly small on sample A contributing < 0.1 µeV to the optical linewidth (see Appendix

A). We measure the bias dependence of Zh and find that charge noise results in a fluctuation

δZcharge
h = 0.3 neV at Bx = 3.00 T. The final conclusion is that δZh < 0.67 neV, resulting in

a T ∗2 ' 1 µs. These long values of the hole spin T ∗2 arise from the application of an in-plane

magnetic field to suppress the longitudinal hyperfine interaction, a highly suppressed transverse

hyperfine interaction and low levels of charge noise to reduce charge-noise-induced-dephasing.
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[28] A. Högele, M. Kroner, C. Latta, M. Claassen, I. Carusotto, C. Bulutay, and A. Imamoglu,

Phys. Rev. Lett. 108, 197403 (2012).

110

http://dx.doi.org/ 10.1103/PhysRevLett.105.257402
http://dx.doi.org/10.1103/PhysRevLett.106.027402
http://dx.doi.org/10.1103/PhysRevLett.106.027402
http://dx.doi.org/10.1103/PhysRevB.85.195303
http://dx.doi.org/10.1103/PhysRevB.85.195303
http://dx.doi.org/ 10.1038/nphys2514
http://dx.doi.org/10.1038/ncomms2519
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/ 10.1038/nphys1054
http://dx.doi.org/10.1038/nphys3077
http://dx.doi.org/10.1063/1.4813879
http://dx.doi.org/10.1038/nphys2688
http://dx.doi.org/10.1038/nphys1363
http://dx.doi.org/ 10.1103/PhysRevLett.108.197403


Chapter 8

Conclusion and Outlook

In this thesis the quantum mechanical effect of coherent population trapping was used to

investigate holes in semiconductor quantum dots via resonance fluorescence. The analysis of

the dark states in a pump-probe experiment is a powerful tool to realise high resolution dark

state spectroscopy. Conclusions about the coherence of the single hole spin can be drawn from

the dip depth and width. The main result is an answer to a basic semiconductor question: To

which extend interacts the hole spin with the nuclei in the QD. Can we extract a value for the

hyperfine coefficients?

The CPT measurements in the last Chapter 7 provide the answer: The hole spin is highly

anisotropic and its in-plane component is decoupled from the nuclei to a large extent. The

in-plane hyperfine coupling coefficient Ah,xi is only 0.1 % of the electron coupling constant Aei ,

and 1 % of the hole hyperfine coupling coefficient out of plane Ah,zi .

Based on this important result we conclude in Chapter 7, we have in the very low charge noise

devices dephasing times approaching 1 µs in an in-plane magnetic field. The CPT spectroscopy

measurements yield decoherence times greater than 1 µs in Chapter 2 and 7. An electrically

tunable hole g-factor over a range of more than 100 kV/cm was shown in an in-plane mag-

netic field (Chapter 6). Very narrow, transform-limited linewidths were demonstrated for the

positively charged exciton X1+ (ΓX1+ = 0.67± 0.13 µeV) in Chapter 4 and for the negatively

charged exciton X1− (ΓX1− = 0.75±0.1 µeV) in Chapter 5. These linewidth are extracted dur-

ing fast scanning through the resonance. However, even for slow measurements with a dwelling

time of a few seconds on the transition the transform-limit is reached for the neutral exciton

X0 (ΓX0 = 1.19 ± 0.13 µeV) in Chapter 5. In Chapter 3 a feedback scheme was implemented

and a frequency stabilized QD emission was realised. The stabilization loop reduces the charge

noise in the sample.

The high quality p-doped samples investigated in this thesis in combination with the reso-

nant laser spectroscopy setup, made a whole series of interesting measurements on holes and

hole spins possible. In the future a lot of compelling experiments could build on these results:
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Figure 8.1 | (a) Scheme introducing αh = (dZh/dF )/(dEX/dF ) in the Λ-system. αh is the connection

between ground state fluctuations and the excitonic fluctuations y. (b) Influence of the α-parameter on the

CPT dip under probe detuning. The detuning is relative to the pump laser energy, which is here detuned by

0.1 µeV with respect to the transition. αh is positive in the case of (a). (c) CPT of the three level model with

large αh and no pump detuning. The resonance dip is either preserved (blue) or washed out (red), dependent

on the sign and the magnitude of αh.

In Chapter 4 the positively charged exciton was analysed in detail. However, the X1+ is

not yet fully understood. The experiment gives no solid explanation for the mechanism of the

large “off” times (τoff) in the middle of the voltage plateau. So far there are only speculations

involving the creation of a dark state or a spin pumping process. Additional measurements

with an small out of plane magnetic field and two laser would be required to explore this

mechanism further.

The coherent population trapping experiment in Chapter 7 and the analysis with the density

matrix model (Appendix C) takes only the influence of the spectral fluctuations of the upper

level into account. The two ground states are robust against charge fluctuations and the CPT

dip is preserved.

In Chapter 6 a electric field dependence of the hole g-factor gh(F ) was measured. Based

on this result speculations emerge, the simple model is not completely true and the influence

of electric field fluctuations on the hole spins in the ground states is not always negligible.

Fig. 8.1 explains and introduces the theory of the “α-parameter”. The factor αh establishes

the connection between possible ground state fluctuations and the excitonic fluctuations seen

from the upper state (y). Dependent on the dc Stark shift dEX/dF and the change of the

hole g-factor, and therefore of the hole Zeeman splitting dZh/dF , the sign and the magnitude

of αh is determined. αh is a fixed parameter inherent in the sample and given by the ratio

(dZh/dF )/(dEX/dF ). The upper level moves according to the dc Stark shift of the exciton
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by y, in contrast the Zeeman split ground state levels, which are influenced only by a fraction

of the electric field fluctuations αhy.

The concept has to be included in the first convolution of the density matrix calculation

with the spectral fluctuations (Appendix C). The sign of αh and the mutual energy relation of

the pump (Ω2) and probe (Ω1) laser is very important to include αh correctly. For the case in

Fig. 8.1(a) the equation changes to:

CPT(δ2, δ1) = βRF

∫
ρ33

(
δ2 − y, δ1 − y(1− αh)

)
L1(y)dy (8.1)

Fig.s 8.1(b) and (c) demonstrate the influence of αh. For a smaller probe than pump laser

energy and a positive alpha, the CPT dip is conserved and broadened, in that case both energy

levels move in parallel (blue). If the level move anti-parallel, the dip is smeared out (red). The

magnitude of αh amplifies the effect (c).

Future experiments would be necessary to test the theory of the αh-parameter. A straight

forward experiment could be an artificial noise source integrated in the experiment. A square

wave modulation superimposed over the applied gate voltage would lead to an additional broad-

ening of the exciton linewidth. The resulting influence on the CPT dip can provide information

about the functionality of αh.

All experiments presented in this thesis were performed using a continuous wave excitation.

The QD states are always in a steady state solution and it is not possible to create an ar-

bitrary superposition of the states. Experiments with fast coherent hole spin manipulation

and spin initialisation would be obvious choices for future experiment. These experiments re-

quire a change of the measurement method to the time resolved spectroscopy domain and were

therefore not yet realised. The possible experiments would include resonant pulsed excitation

created by an electro optic modulator (EOM) or a fast pulsed laser. After an initialization

pulse, a GHz electromagnetic field could drive the transition between |⇓〉 and |⇑〉 directly and

induce spin rotations. The big advantage for coherent hole spin rotations is no population in

the quickly dephasing excited state. It would be a challenging and very compelling goal to

measure hole spin dephasing times as high as 1 µs in these low charge noise devices in the time

domain.
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Appendix A

Supplementary information to Chapter 5

“Transform-limited linewidth”

Adapted from:

Andreas V. Kuhlmann, Jonathan H. Prechtel, Julien Houel, Arne Ludwig, Dirk Reuter,

Andreas D. Wieck and Richard J. Warburton

“Transform-limited single photons from a single quantum dot”

submitted manuscript, arXiv:1307.7109v2

In Chapter 5, the linewidth of the optical transition of a single quantum dot is discussed. Here,

we explain details of the experiments, the data processing and the modelling.

http://arxiv.org/abs/1307.7109v2


A Transform-limited linewidth

A.1 The semiconductor n-doped quantum dot sample

A quantum dot (QD) sample grown by molecular beam epitaxy is used to probe the opti-

cal linewidth of single photons from a single QD. All the data presented in the Chapter 5

were measured on three QDs from different samples: QD1 from sample A (Fig.s 5.1 (a)-(e),

5.3 and 5.4 of Chapter 5) , QD2 from sample B (Fig. 5.1 (g)) and QD3 from sample C (Fig. 5.2).

The self-assembled QDs are embedded in a Schottky diode [1, 2] as shown in Fig. A.1 (a).

The layer sequence is:

1. back contact

50 nm n+-GaAs, doping level ∼ 1.7× 1018 cm−3

2. tunnelling barrier

25 nm i-GaAs

3. active layer

InGaAs QDs (diameter ∼ 20 nm, height ∼ 5 nm) with centre wavelength 950 nm

4. capping layer

150 nm i-GaAs

5. blocking barrier

68 periods AlAs/GaAs 3 nm/1 nm

6. cap

10 nm i-GaAs

7. Schottky gate

sample A 5 nm/10 nm Ti/Au

sample B and C 3 nm/7 nm Ti/Au.

The samples only differ in the gate thickness, they are from the same wafer.

The background doping of as-grown GaAs is p ∼ 1013 cm−3; two-dimensional electron gases

grown under similar conditions have mobilities > 106 cm2/Vs.

The number of electrons confined to the QD can be precisely controlled by the gate voltage

Vg as illustrated in Fig. A.1 (b). A change of gate voltage yields a change of the QD’s local

potential φ by

∆φ =
∆Vg
λ

(A.1)
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Figure A.1 | (a) Sample layer structure and the corresponding (b) energy band diagram. The Fermi energy

is pinned to the conduction band edge of the back contact. The figures are to scale with respect to length.

where λ = 18.3 denotes the sample’s lever arm, defined as the ratio of back contact to gate

distance d and tunnel barrier thickness. The exciton energy E is detuned with respect to the

constant laser frequency by exploiting the dc Stark effect,

∆E = a∆F, ∆F =
∆Vg
d

(A.2)

with Stark shift coefficient a and electric field F .

A.2 The dc Stark shift

The Stark shift is determined by recording the resonance position in Vg for many laser frequen-

cies, the laser frequency measured in each case with an ultra-precise wavemeter. The Stark

shift is linear in ∆F for the small windows of Vg used here, Fig. A.2(a). The neutral exciton

X0 has a larger Stark shift (a = 0.0306 µeV cm/V) than the charged exciton X1− (a = 0.0219

µeV cm/V) and thus it is more sensitive to charge noise. X1− has a larger linewidth (Γ = 1.48

µeV) compared to X0 (Γ = 1.28 µeV) despite the smaller Stark shift. Also, experiments on
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Figure A.2 | (a) Exciton energy voltage plateaus to determine the Stark shift coefficients of the neutral

exciton X0 and the trion X1−. Inset shows a zoom in of X0 revealing the fine structure splitting ∆ = 11.5 µeV.

Data from QD1. (b) Linewidth versus Stark shift. Statistics on X1− of 17 QDs from the same wafer with a

spread in Stark shift of up to 50% demonstrate no significant correlation between linewidth and Stark shift.

several QDs reveal no dependence of the linewidth on the Stark shift coefficient, Fig. A.2(b).

The Stark shift varies from quantum dot to quantum dot by up to 50% without a correlated

change in linewidth. Both these facts support the dominant influence of spin noise and not

charge noise on the X0 and X1− linewidths.

A.3 Power broadening

The linewidth of the optical resonance increases with increasing resonant excitation power, Fig.

A.3. The additional contribution to the linewidth is known as power broadening, described for

an ideal 2-level system by [3]

Γ(Ω) =
√

Γ2
0 + 2Ω2 + γ, Γ0 = ~/τR (A.3)

with Rabi energy Ω and radiative lifetime τR. An inhomogeneous broadening is included with

the term γ.

For X1−, the 2-level model with constant γ describes the data very well, Fig. A.3(a). The

inhomogeneous broadening γ is constant at low power, decreasing at high power but only

when power broadening dominates, such that a constant γ allows the experimental data to

be described very well (see Chapter 5). By fitting the 2-level model to the data a resonant

excitation power measured by a photo diode beneath the sample can be converted to a Rabi

energy, Fig. A.3(a).
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Figure A.3 | Power broadening. Linewidth power dependence for (a) X1− and (b) X0. The 2-level model

with (solid red lines) and without (dashed red lines) an inhomogeneous broadening (γ = 0.56 µeV) is fitted to

the X1− data. The transform-limit Γ0 is 0.75 µeV for X1− and 0.92 µeV for X0. Data from QD1.

Conversely for X0, the 2-level model with constant γ does not describe the data well. The in-

homogeneous broadening is strongly power dependent: γ increases significantly with increasing

resonant excitation power (see Chapter 5).

A phonon-induced dephasing process as observed at very high Rabi couplings [4] and in

pulsed experiments [5] is negligible at these Rabi couplings.

A.4 Resonance fluorescence

The quantum dot optical resonance is driven with a linearly-polarized, resonant continuous-

wave laser (1 MHz linewidth) focused on to the sample surface. Reflected or scattered laser

light is rejected with a dark-field technique using crossed linear polarizations for excitation and

detection [6]. The laser excitation polarization is tilted by an angle of π/4 with respect to the

neutral exciton’s linear polarization axes.

Resonance fluorescence is detected with a silicon avalanche photodiode in photon counting

mode. The experiment is not shielded against the earth’s magnetic field, thus Bmin ∼ 50 µT.

All the experiments were performed with the sample at 4.2 K.

A.5 Quantum dot noise spectrum

To determine the QD noise spectrum the arrival time of each photon is recorded over the entire

measurement time T . Post measurement, a binning time tbin is selected, typically 1 µs. The

number of counts in each time bin is S(t), the average number of counts per bin 〈S(t)〉. The
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Figure A.4 | (a) Noise spectrum of the experiment. Intensity fluctuations of the laser light in the setup

cause a 1/f2-behaviour of Nexp(f) at low frequencies (exponent of red fit −1.96). For f > 10 Hz the spectrum

is dominated by shot noise, thus, the spectrum is flat. The average count rate of the detected laser light is 101

kCounts/s in this particular experiment. (b) Shot noise. Noise spectra of the experiment alone were recorded at

different laser light count rates to extract the dependence of the shot noise on the count rate. A proportionality

of the shot noise to 〈S(t)〉−1 is verified (exponent of red fit −1.03). (c) Quantum dot noise spectrum. The noise

of the experiment is typically larger than the noise of the QD. The shot noise (red dashed line) typically equals

NQD(f) at low frequencies (f ∼ 10 Hz), and exceeds NQD(f) at higher frequencies. The RF count rate is 176

kCounts/s in this particular experiment. Data from QD2.

fast Fourier transform of the normalized RF signal S(t)/〈S(t)〉 is calculated to yield a spectrum

of the noise power NRF(f), specifically

NRF(f) = |FFT [S(t)/〈S(t)〉]|2 (tbin)2/T. (A.4)

NRFF (f) has the same spectrum independent of the choice of tbin and T : smaller values of

tbin allow NRF(f) to be determined to higher values of frequency f ; larger values of T allow

NRF(f) to be determined with higher resolution. The high frequency limit of our experiment

is only limited by the photon flux.

All Fourier transforms are normalized [7] such that the integral of the noise power Nx(f)

over all positive frequencies equals the variance of the fluctuations δx,

〈(δx)2〉 =

∫ ∞
0

dfNx(f). (A.5)

To record a noise spectrum of the experiment alone, the QD is detuned by > 100 linewidths

relative to the laser and one polarizer is rotated by a small angle to open slightly the detection

channel for reflected laser light, choosing the rotation so that the detected laser light gives a

count rate similar to the QD RF. A noise spectrum of the reflected laser light (Fig. A.4(a)) is
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recorded using exactly the routine used to analyse the RF, yielding Nexp(f). Nexp(f) has a

1/f2-behaviour at low frequencies arising from intensity fluctuations in the setup. For f > 10

Hz, Nexp(f) has a completely f -independent spectrum, Nexp ∼ 10−5 Hz−1: this is the shot noise

Nshot. The noise of the experiment is typically larger than the noise of the QD NQD(f). The

shot noise is proportional to 〈S(t)〉−1 (Fig. A.4(b)) and not to 〈S(t)〉1/2 due to the normalization

of S(t) by 〈S(t)〉 in the calculation of the spectrum. Nshot is comparable to NQD(f) at low

frequencies (f ∼ 10 Hz), and exceeds NQD(f) at higher frequencies, Fig. A.4(c).

The noise spectrum of the QD alone is then determined using

NQD(f) = NRF(f)−Nexp(f). (A.6)

Correction of NRF(f) with Nexp(f) where NRF(f) and Nexp(f) are not measured simultane-

ously is successful on account of the high stability of the setup. Furthermore, no spectral

resonances in NQD(f) have been discovered. We present here NQD(f) after averaging at each

f over a frequency range ∆f to yield equidistant data points on a logarithmic scale. This

entire procedure enables us to discern NQD(f) down to values of 10−7 Hz−1 for T = 2 hours.

A.6 Effect of charge noise on the linewidth

The quantum dot noise spectrum NQD(f) allows us to set an upper limit of the linewidth

broadening γc due to charge noise. The energy jitter due to charge fluctuations is less than the

linewidth such that the change in RF is related quadratically to the detuning for fluctuations

around δ = 0. This quadratic approximation overestimates the effect of charge fluctuations on

the linewidth. The variance of the quantum dot RF noise, σ2
QD,c, is related to an integral of

the noise curve. Integrating over the bandwidth of charge noise after subtracting spin noise,

γc =
Γ

2

(
σ2

QD,c/3
)1/4

. (A.7)

The charge noise has a 1/f -like component and a Lorentzian component. We integrate both

from 0.1 Hz to 1 GHz. Applying this concept to the X1− noise spectrum of Fig. 5.3(c) of

Chapter 5, with Γ = 1.48 µeV this predicts γc < 0.05 µeV.

A.7 Noise spectra modelling

Our previous experiments [8] demonstrate that the spectrum of the noise in the RF is dominated

by charge noise at low frequency, spin noise at high frequency. The noise sensor, the RF from

a single quantum dot, has a trivial dependence on the fluctuating electric F (t) and magnetic
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fields BN (t) only for small fluctuations in the detunings around particular values of detuning

δ. Monte Carlo simulations allow us to determine both the electric field and magnetic field

noise accurately by describing the response of the sensor for all δ, treating charge noise and

spin noise on an equal footing.

The basic approach is to calculate F (t) and BN (t), in each case from an ensemble of indepen-

dent, but identical, 2-level fluctuators using a Monte Carlo method; to calculate the RF signal

S(t) from F (t) and BN (t); and to compute the noise N(f) from S(t) using exactly the same

routine as for the experiments (but without the correction for extrinsic noise of course). Here,

we discuss the spin noise modelling of the neutral exciton X0 used to extract the root-mean-

square (rms) values of the magnetic field BN,rms in Fig. 5.3(b) of Chapter 5. The modelling of

charge noise is explained in detail elsewhere [8].

For X0, the RF depends on the electric and magnetic fields according to

S(t) =

(
Γ0
2

)2
(aF (t) + δ0(t) + δ)2 +

(
Γ0
2

)2 , δ0(t) = ±1

2

√
∆2 + δ1(t)2, δ1(t) =

1

2
gµBBN (t),

(A.8)

where a is the dc Stark coefficient, g the electron g-factor and ∆ the fine structure splitting.

For the blue Zeeman branch δ0(t) is positive, for the red one negative, respectively.

An ensemble of identical 2-level fluctuators fully describes spin noise, Fig. 5.3(a) of Chapter 5.

A.7.1 Spectrum of a 2-level fluctuator

A 2-level fluctuator occupies either state 0 with lifetime τ0 or state 1 with lifetime τ1. The

probability p of being, at any time, in state 1 is τ1/(τ0 + τ1); the probability of being in state

0 is τ0/(τ0 + τ1). The configuration C(t) of a 2-level fluctuator, either 0 or 1, is determined by

the probabilities of a 0→ 1 transition [9],

p0→1(δt) = 1− 1

τ0 + τ1

[
τ1 exp

(
−
(

1

τ0
+

1

τ1

)
δt

)
+ τ0

]
(A.9)

and a 1→ 0 transition,

p1→0(δt) = 1− 1

τ0 + τ1

[
τ0 exp

(
−
(

1

τ0
+

1

τ1

)
δt

)
+ τ1

]
(A.10)

where δt denotes the time over which the system evolves. The power spectrum of a 2-level

fluctuator S(ω) is Lorentzian [9],

S(ω) =
1

π

τ0τ1

(τ0 + τ1)2

1/T

ω2 + (1/T )2
, 1/T = 1/τ0 + 1/τ1. (A.11)
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A.7.2 Spin noise

The calculation of the time trace of the magnetic field BN (t) is simplified, such that each

nucleus is treated as a two-level fluctuator, with equal 0 → 1, 1 → 0 transition rates, 1/τ .

At t = 0, each nucleus is initialized by a random number generator giving a configuration of

nuclear spins C(0). At a later time, δt, C(δt) is calculated from C(0) again with a random

number generator using the probabilities p1→0(δt) and p0→1(δt) from the theory of a two-level

fluctuator. The nuclei are treated independently.

The nuclear magnetic field, the so-called Overhauser field BN , is given by [10]

BN =
v0

gµB

N∑
i=1

Ai |ψ(ri)|2 Ii (A.12)

where v0 is the atomic volume, Ai the hyperfine interaction constant, ri is the position of

the nuclei i with spin Ii, and ψ(r) is the normalized electron envelope function. By using an

average hyperfine constant [11] A = 90 µeV and approximating the electron envelope function

ψ(r) by a top hat, Eq. (A.12) simplifies to

BN =
A

gµBNeff

Neff∑
i=1

Ii. (A.13)

Neff denotes the number of nuclear spins inside the top hat envelope function.

Regarding the dimensionality of BN , a 1D model for the nuclear spins is appropriate for X0.

The isotropic part of the electron-hole exchange interaction “protects” the X0 from the in-plane

fluctuations of the nuclear magnetic field. Specifically, the z-component of the Overhauser field

enters along the diagonals of the exchange/Zeeman Hamiltonian [12] in the |⇑↓〉, |⇓↑〉, |⇑↑〉,
|⇓↓〉 basis and results in the dispersion of Eq. A.8. The in-plane components of the Overhauser

field couple |⇑↓〉 ↔ |⇑↑〉 and |⇓↑〉 ↔ |⇓↓〉 but these states are split by the dark-bright splitting,

100s of µeV, determined by the isotropic part of the exchange interaction. As a result the

dependence of the exciton energy on the in-plane fields is negligible.

We assume that each nuclear spin I can be represented by a spin-1
2 , a 2-level fluctuator.

To account for an underestimate of the hyperfine interaction (the real spins are larger than
1
2) the Overhauser field is enhanced via a reduction in the total number of nuclei, N →
Neff . Equivalently, we could work with a higher Neff and larger A. The model represents a

phenomenological way to create BN (t) which mimics the experiment. BN (t) is unique, the

route to BN (t) is not.
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Figure A.5 | Noise sensitivity dependence on detuning for charge noise (a) and spin noise (b) for both X0

(two lasers with frequency splitting equal to the fine structure) and X1− (one laser). The relative change in the

RF caused by an energy fluctuation of Γ0/20 is shown as a function of detuning δ. The blue lines indicate the

noise sensitivity for δ = 0 and δ = Γ/2.

There are two independent parameters that control spin noise in the simulation: the corre-

lation time τ and the rms field BN,rms. For the simulation shown in Fig. 5.3 (a) of Chapter 5

A = 90 µeV, Neff = 178, corresponding to BN,rms = 116 mT, and τ = 6.0 µeV were used. The

noise spectra at higher Rabi energies were fitted by decreasing Neff (increasing BN,rms) and

the same τ .

A.7.3 Charge noise and spin noise sensitivity dependence on laser detuning

The sensitivity in the RF to charge noise and spin noise depends on the laser detuning δ,

Fig. A.5. For X1−, only one laser is required to distinguish charge noise and spin noise yet

two lasers with frequencies separated by the fine structure splitting are required for X0. Both

charge noise (Fig. A.5(a)) and spin noise (Fig. A.5(b)) exhibit the same detuning dependence

for X1− (one laser) and X0 (two lasers). On detuning the laser/both lasers (X1−/X0) from

δ = 0 to δ = Γ/2, the sensitivity to charge noise changes from second order to first order yet

the sensitivity to spin noise decreases by a factor ∼2.

A.7.4 Effect of a small magnetic field on the nuclear spin dynamics

A small magnetic field of B = 10.0 mT was applied to measure the Ω-dependence of NQD(f),

Fig. 5.3 of Chapter 5. As a result, the sensitivity of the charged exciton to spin noise is

increased [8]. The nuclear spin dynamics are however not strongly changed by such a small

magnetic field. Noise measurements on X0 with and without a small magnetic field of 10.0 mT

demonstrate an unchanged spin noise level, Fig. A.6.
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Figure A.6 | Noise measurements on X0 at Ω = 0.45 µeV with and without a small magnetic field. The

small difference in charge noise is due to a different charging configuration of the device (see history effects in

Ref. [8]). Data from QD1.

A.7.5 Relationship to Autler-Townes splitting

In a two-laser experiment at zero magnetic field with a resonant pump laser the optical reso-

nance of the charged exciton splits into two resonances. The splitting reflects a static electron

Zeeman splitting in the single electron ground-state and not an Autler-Townes splitting [13].

We can rule out an Autler-Townes splitting as first, the splitting is not given by the Rabi

energy Ω as is the case for an Autler-Townes splitting, and secondly, we do not observe an

optically-induced splitting when the X1− resonance is pulled apart in a small magnetic field,

Fig. A.7.
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Figure A.7 | Two-laser experiment performed with identical parameters (Ω1 = 0.15 µeV, Ω2 = 0.5 µeV)

on X1− with and without a magnetic field. Data from QD1.
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Appendix B

Supplementary information to Chapter 6

“Electric field dependence of the hole g-factor”

Adapted from:

Jonathan H. Prechtel, Franziska Maier, Julien Houel, Andreas V. Kuhlmann, Arne Ludwig,

Andreas D. Wieck, Daniel Loss and Richard J. Warburton

“Electrically-tunable hole g-factor of an optically-active quantum dot for fast

spin rotations”

Phys. Rev. B 91, 165304 (2015)

A theoretical model is introduced in Chapter 6 which describes the electric field dependence of

the in plane hole g-factor (Fig. 6.4). The details about the Hamiltonian, the g-factor calculation

and the influence of the material parameters are described here.

(The theoretical model, including the g-factor calculation, was developed by Dr. Franziska

Maier. The author’s contribution was to work out the right material parameters.)

http://dx.doi.org/10.1103/PhysRevB.91.165304


B Electric field dependence of the hole g-factor

B.1 Theory

We derive the in-plane g-factor of the lowest valence states in a self-assembled InGaAs quantum

dot (QD) with an In concentration gradient with applied fields, a vertical electric field and an

in-plane magnetic field. The heavy-hole (HH) and light-hole (LH) states of the bulk material

are well described by the 4× 4 Luttinger Hamiltonian. The strain fields in self-assembled QDs

are of considerable strength and affect the band splitting. Strain is therefore incorporated

via the Bir-Pikus Hamiltonian. To go from a bulk description to a quantum dot, we add

three-dimensional harmonic confinement leading to a change from bands to quantized levels

and a mixing of the HH and LH states. We include external out-of-plane electric and in-plane

magnetic fields and derive an effective Hamiltonian for the two lowest, Zeeman-split HH states

by decoupling them perturbatively from the higher energy states. This effective Hamiltonian

is diagonalized exactly allowing the g-factor of this subsystem to be determined. The exact

value of gxh depends on the electric field-dependent hole position and the associated local alloy

composition within the QD.

B.1.1 Hamiltonian

The Hamiltonians can all be found in Ref. [1]. They are written in terms of the spin-3/2

matrices Ji, i = x, y, z, which are given in a basis of angular momentum eigenstates |j,mj〉
with j = 3/2 and mj = {3/2, 1/2,−1/2,−3/2}. Here, the HH band corresponds to mj = ±3/2

and the LH band to mj = ±1/2. For our calculations, we locate the origin of the coordinate

system at the center of the QD and let the z axis point along the growth direction [001].

The bulk valence band states are described by the Luttinger Hamiltonian

Hk = − ~2

2m0

[
γ1k

2 − 2γ2

[(
J2
x −

1

3
J2

)
k2
x + cp

]]
+

~2

2m0
4γ3 [{Jx, Jy}{kx, ky}+ cp]

+
2√
3
Ck
[
{Jx, J2

y − J2
z }kx + cp

]
, (B.1)

where {A,B} = (AB + BA)/2, cp denotes cyclic permutation, ~ki = −i~∂i, i = x, y, z, is

the momentum operator, k2 = k2
x + k2

y + k2
z and J2 = J2

x + J2
y + J2

z . The γl, l = 1, 2, 3,

are the Luttinger parameters and the parameter Ck arises as a consequence of the spin-orbit
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B.1 Theory

interaction with higher bands. We denote the diagonal part of Hk by Hk,0. We account for

strain by taking into account the Bir-Pikus Hamiltonian

Hε = Dd Trε+
2

3
Du

[(
J2
x −

1

3
J2

)
εxx + cp

]
+ [C4(εyy − εzz)Jxkx + cp] , (B.2)

where we consider only diagonal elements εii, i = x, y, z, of the strain tensor ε since the off-

diagonal shear strain components are negligible everywhere except at the dot interfaces [2]. Dd

and Du denote vector potentials and the constant C4 is defined in Ref. [[3]]. In the following,

we refer to the diagonal, k-independent part of Hε as Hε,0.

We model a flat, cylindrical QD by choosing a harmonic confinement potential,

Vc =


Vc,HH 0 0 0

0 Vc,LH 0 0

0 0 Vc,LH 0

0 0 0 Vc,HH

 , (B.3)

where

Vc,j(r) = −1

2
mj,⊥ω

2
j,⊥z

2 − 1

2
mj,‖ω

2
j,‖(x

2 + y2), (B.4)

with band index j = HH,LH. The in-plane and out-of-plane confinement energies ωj,‖ =

~/(mj,‖L
2) and ωj,⊥ = ~/(mj,⊥a

2) are defined by the confinement lengths L and a. The

corresponding effective masses in the single bands are given by mHH/LH,⊥ = m0/(γ1∓2γ2) and

mHH/LH,‖ = m0/(γ1 ± γ2). We include an external electric field in z direction, F = (0, 0, Fz),

by adding the electric potential

Vel(z) = eFzz. (B.5)

The in-plane magnetic field, B = ∇ ×A = (Bx, 0, 0), is included by adding two more terms

to the Hamiltonian [4, 5]. The first term is found by replacing k → k + eA in Hk + Hε in a

semi-classical manner. This yields the implicit magnetic field dependence given by the vector

potential A. We keep only terms linear in A and define

Hmc = eA · v, (B.6)

where v = ∂(Hk +Hε)/∂k is the velocity operator. We note that proper operator ordering is

still enforced. The second term is the magnetic interaction term

HB = −2µB[κJ ·B + qJ ·B], (B.7)
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B Electric field dependence of the hole g-factor

where κ is the isotropic and q the anisotropic part of the hole g-factor, J = (Jx, Jy, Jz) and

J = (J3
x , J

3
y , J

3
z ).

The QD states are then described by

Hqd = Hk +Hε + Vc + Vel +Hmc +HB. (B.8)

We subdivide Hqd into a leading order term

Hqd,0 = Hk,0 +Hε,0 + Vc + Vel (B.9)

and a perturbation Hqd,1. The Hamiltonian Hk,0 + Vc + Vel can be directly mapped onto a

three-dimensional, anisotropic harmonic oscillator with an energy shift and a coordinate shift

along z, both introduced by Vel. The eigenenergies Ej in band j are given by

Ej =
1

2

(Fze)
2

mj,⊥ω
2
j,⊥
− ~ωj,⊥(nz +

1

2
)

−~ωj,‖(nx + ny + 1). (B.10)

The associated eigenfunctions are the usual three dimensional harmonic oscillator eigenfunc-

tions φj,n(x, y, zj), where n = (nx, ny, nz) is a vector of the associated quantum numbers

and zj = z − Fze/(mj,⊥ω
2
j,⊥). We choose the basis states of Hqd,0 to be products of type

φj,n(x, y, zj) |j,mj〉. We rewrite Hqd in terms of these new basis states and obtain Hqd,ext.

B.1.2 g-factor

We are interested in the Zeeman splitting of the two lowest HH states, φHH,0 |3/2, 3/2〉 and

φHH,0 |3/2,−3/2〉. These states are decoupled from the higher energy states in Hqd,ext by a

Schrieffer-Wolff transformation (SWT) of the form H̃qd,ext = e−SHqd,exte
S , where S = −S† is an

anti-Hermitian operator. The exact procedure is described in detail e.g. in Ref. [1]. We perform

the SWT up to second order and, by projecting on {φHH,0 |3/2, 3/2〉 , φHH,0 |3/2,−3/2〉}, we

obtain an effective, 2×2 HamiltonianHeff. The single elements ofHeff turn out to be too lengthy

to be written down here explicitly. Exact diagonalization of Heff gives two eigenenergies, E⇑

and E⇓, from which we calculate g according to

gxh =
E⇑ − E⇓
µB|B|

. (B.11)
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B.1 Theory

B.1.3 Hole Position and Material Parameters

The applied electric field F shifts the hole position within the QD along z. Since the QD

has an In concentration gradient in the growth direction, the hole experiences an electric-field

dependent local material composition. A linear interpolation of the InAs and GaAs material

parameters is insufficient to describe ternary alloys. Instead, the gap energy and other band

parameters such as the HH mass along [001] and κ are given by a quadratic form [6, 7], where

a bowing parameter is introduced to represent the deviation from a linear dependence on

composition. We take into account the bowing of the HH mass along z and calculate the hole

position within the QD as a function of the applied electric field, zHH(Fz). This is carried out

by minimizing the parabolic part of the HH confinement potential in z direction,

1

2
mHH,⊥ω

2
HH,⊥

[
z − eFz

mHH,⊥ω
2
HH,⊥

]2

. (B.12)

We express the local material composition in terms of the hole position and model the material

parameters as functions of zHH(Fz). Inserting these material parameters in Eq.(B.11) results

in g = g(Fz). We observe that the slope of g(Fz) depends strongly on the confinement length a,

a smaller a corresponding to a flatter QD and less admixture of the LH states to the effective

HH states. This effect can be exploited to tailor the observed electric field dependence of

g by choosing an appropriate QD height. The confinement lengths are taken according to

the values measured on very similar quantum dots, a = 2.4 nm [8] and L = 4.6 nm [9]. We

take for these In-flushed QDs the In concentration of ∼ 40% at the bottom and ∼ 60% at

the top of the QD. The change in In concentration is taken from structural measurements on

flushed In0.5Ga0.5As0.5 QDs [10–12]. In our case, the average In concentration is higher as the

pre-flush In concentration is higher. We estimate the average In concentration to be ∼ 50%.

The average In concentration in combination with the strain parameters for quantum wells

(εxx = a0(GaAs)/a0(In0.5Ga0.5As)−1) lead to an estimated strain εxx = εyy = −εzz = −0.035

of the system. The material parameters (see Table B.1) were modified by the corresponding

bowing parameters [6, 7] where available. Note that the values of q reported in the literature

[1, 13–15] vary e.g. for GaAs between qGaAs = 0.01 − 0.04, meaning that, dependent on q,

different choices of strain distribution, QD geometry and In profile may produce the same

curve.
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B Electric field dependence of the hole g-factor

GaAs InAs GaAs InAs

κ 1.1[6] 7.68[6] Ck [eVÅ] −0.0034 −0.0112
q 0.01[16] 0.04[13] Dd [eV] −1.16[7] −1.0[7]
γ1 6.85 20.40 Du [eV] 3.0 2.7
γ2 2.10 8.30 C4 [eVÅ] 6.8[17] 7.0[17]
γ3 2.90 9.10

Table B.1 | Material parameters used in this work. If not stated otherwise, the parameters were taken from

Ref. [1].
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Appendix C

Supplementary information to Chapter 7

“The decoupling of the hole spin from the

nuclear spins”

Adapted from:

Jonathan H. Prechtel, Andreas V. Kuhlmann, Julien Houel, Arne Ludwig, Andreas D. Wieck

and Richard J. Warburton

“The hole spin qubit: decoupling from the nuclear spins”

Submitted manuscript

In Chapter 7 we show that the hole spins in our quantum devices are highly decoupled from the

nuclear spins in an in-plane magnetic field. We use a very sensitive optical probe, the narrow

dip of the two-photon resonance in a two-laser pump-probe experiment. In the supplementary

information we explain the sample structure in detail, the density matrix approach to model

the coherent population trapping (CPT) signal and the data processing.



C The decoupling of the hole spin from the nuclear spins

C.1 The semiconductor p-doped quantum dot Sample

The quantum device used to probe the nuclear spin – hole spin interaction is a quantum

dot (QD) sample grown by molecular beam epitaxy. The data presented in Chapter 7 were

measured on two QDs, one from the n-i-p structure (sample A) and one from the Schottky

diode structure (sample B).

In sample B, the self-assembled QDs are embedded in a p-doped Schottky diode [1, 2] as

shown in Fig. C.1(a). The order of the layers in sample B is:

1. substrate

50 nm i-GaAs

2. “cleaning” superlattice

30 periods AlAs/GaAs 2 nm/2 nm

3. buffer layer

50 nm i-GaAs

4. back contact

50 nm p+-GaAs, C-doping level ∼ 2.0×1018 cm−3

5. tunnelling barrier

25 nm i-GaAs

6. active layer

InGaAs QDs (diameter ∼ 20 nm, height ∼ 5 nm) with centre wavelength 950 nm.

7. capping layer

10 nm i-GaAs

8. blocking barrier

111 periods AlAs/GaAs 3 nm/1 nm

9. cap

10 nm i-GaAs

10. Schottky gate

6 nm Au

Sample A (n-i-p-structure) is inverted and uses epitaxial gates, with a tunnel barrier also of

25 nm i-GaAs. This sample is described in detail in Chapter 4.

The background doping of as-grown GaAs is p ∼ 2.5× 1013 cm−3; two-dimensional electron

gases grown under similar conditions at 4.2 K have mobilities > 5× 106 cm2/Vs.
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C.1 The semiconductor p-doped quantum dot Sample

Sample structure

InGaAs: QDs
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d

G
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s =  50 nm
Figure C.1 | (a) Structure of sample B and (b) the corresponding energy band diagram. The Fermi energy

is pinned to the valence band edge of the back contact by the high doping. The figures are to scale with respect

to length.

C.1.1 dc Stark shift

The number of positive carriers (holes) confined to the QD can be precisely controlled by the

gate voltage Vg: the device works in the Coulomb blockade regime. A change of gate voltage

yields a change of the QD’s local potential φ by

∆φ =
∆Vg
λ

(C.1)

where λ denotes the sample’s lever arm, defined as the ratio of back contact to gate distance

d and tunnel barrier thickness. For sample A, λ = 12.98 and for sample B, λ = 19.56. The

exciton energy E is detuned with respect to the constant laser photon energy by exploiting the

dc Stark effect,

∆E = p∆F, ∆F =
∆Vg
d

(C.2)

with Stark shift coefficient (dipole moment) p and electric field F . The Stark shift is determined

by recording the resonance position in Vg for several laser frequencies, the laser frequency

measured in each case with an ultra-precise wavemeter. The Stark shift is linear in ∆F for
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Figure C.2 | Power broadening: X1+ power dependence on sample B. (a) RF linewidth versus in situ

photodiode measurement on the laser power. The fit to the two-level model uses parameters γ = 2.85 ± 0.05

µeV, radiative linewidth of the exciton Γ21 = 0.68± 0.1 µeV and γ2 ≤ 0.1 µeV. The resulting relation between

the Rabi coupling and the photo current (I = αΩ2) is α = 0.833 nA/µeV2. (b) Maximum RF counts versus

photodiode current. The line is the fit to the two-level model with RF = RF0ρ22. The fit results in the same α

as the linewidth dependence, including the additional parameter RF0 = 47± 1 kcts/s.

the small range of Vg used here. For sample A we determine a Stark shift for the positively

charged trion X1+ of p = 0.0165 µeV cm/V and for sample B, 0.0076 µeV cm/V.

C.1.2 Rabi couplings

The Rabi couplings in the quantum devices are determined by taking advantage of the depen-

dence of the optical resonance linewidth on the resonant excitation power. In an ideal 2-level

system, the power broadening effect increases the optical linewidth [3]. For the resonantly

driven system, the total decoherence rate of the upper level is Γ0 = Γ21 + γ2, where Γ21 corre-

sponds to the radiative decay (Γ21 = ~/τr) and γ2 the pure dephasing of the upper level. The

optical linewidth Γ and the population of the upper level ρ22 at zero detuning for the two level

system are [3]

Γ =

√
Γ2

0 + 2Ω2

(
1 +

γ2

γ21

)
+ γ (C.3)

and

ρ22 =
Ω2

Γ21Γ2
0 + 2Ω2

· Γ− γ
Γ

. (C.4)

The inhomogeneous broadening of the linewidth is included with the term γ which describes

a spectral fluctuation with a Lorentzian probability distribution. The experimental data

(linewidth, RF signal at the resonance) are both described by (Γ, ρ22) with the same pa-

rameter set.
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(a)

↓ z

↑↓, ⇓ z

↑↓, ⇑ z

⁺ߪ⁻ߪ

|δ1||δ2|

Ω1Ω2

Γ31

γ3

γ2

Γ32

Γ12

Γ211

3

2

Figure C.3 | 3-level Λ-system. The energetically split ground state levels |1〉 and |2〉 are coupled by two

optical fields Ω1 and Ω2, respectively, to a common upper level, |3〉. All incoherent decay processes (radiative

decay, spin relaxation, exciton dephasing and spin dephasing) are included.

The conversion of the power measured in transmission to the Rabi energy can be determined

by fitting to both linewidth and RF signal, Fig. C.2(a),(b). The pure dephasing turns out to

be negligible: γ2 � Γ21.

A phonon-induced dephasing process as observed at very high Rabi couplings [4] and in

pulsed experiments [5] is negligible at these Rabi couplings.

C.2 Theoretical model

The resonance fluorescence experiment is described by means of the density matrix formalism

[6] including a Markovian coupling to the environment via the Lindblad formalism [7]. The

master equation is solved in the steady state limit and the dependence of the population of

the upper level on the probe laser detuning is calculated numerically in order to simulate

the probe spectrum. We solve the equations numerically: we do not rely on the results in the

perturbative limit. Spectral fluctuations of the exciton are taken into account via a convolution

of the density matrix result with a Lorentzian function, thereby accounting for the measured

RF linewidths [8]. Finally, the mutual coherence of the two lasers used in the experiments is

also included in the model, again with a convolution.

C.2.1 Density matrix formalism 3-level system

The Hamiltonian of a 3-level Λ-system in Fig. C.3 is a combination of the bare QD state

energies and the interactions induced by the laser fields (semiclassical approximation).
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C The decoupling of the hole spin from the nuclear spins

H = H0 +Hint

H0 = ~ω1 |1〉 〈1|+ ~ω2 |2〉 〈2|+ ~ω3 |3〉 〈3| (C.5)

The interaction part of the Hamiltonian, which contains the interaction of the optical field

of the laser with the QD, is given by

Hint = −dE. (C.6)

The interaction is described by the dipole approximation, including the optical excitation field:

E = E0 · cos(ωext) =
1

2

(
eiωext + e−iωext

)
E0 (C.7)

with the field amplitude E0 and the frequency of the excitation laser ωex. We take the optical

field inside the interaction part of the Hamiltonian as linearly polarized along the x-direction,

because of the excitation axis of the microscope head [9]. Therefore the dipole moment between

the ground |1〉 and excited state |3〉 can be written as

Hint = −d ·E = −exE

= −e(|3〉 〈1|x13 + |1〉 〈3|x31)E (C.8)

= −(|3〉 〈1|+ |1〉 〈3|)dxE,

with dx = ex31 as the matrix element of the atomic dipole moment and x11 = x33 = 0, and the

electric field E. The parameters dx and x31 are assumed to be real. The Rabi frequency Ω is

a general representation of the coupling strength between the quantum states and the driving

source, the optical excitation is defined as

Ωex = dxE0/~. (C.9)

Hence the interaction Hamiltonian becomes

Hint = −~
2

Ωex

(
|3〉 〈1|+ |1〉 〈3|

)(
eiωext + e−iωext

)
(C.10)

In the Heisenberg presentation the transition operators |3〉 〈1| and |1〉 〈3| oscillate with eiω31t

and e−iω31t, respectively. This results in quickly varying terms ei(ω31+ωex)t and e−i(ω31+ωex)t,

which are neglected via the rotating-wave approximation. This two terms correspond the

fact of photon emission while population creation, and photon absorption while population
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C.2 Theoretical model

annihilation. Applying equally considerations for a second laser field, the Hamiltonian for the

three level system in Fig. C.3 under pump-probe excitation becomes:

H = H0 +Hint (C.11)

=
~
2

 0 0 Ω2e
iω2t

0 2ω12 Ω1e
iω1t

Ω2e
−iω2t Ω1e

−iω1t 2ω13


The diagonal terms represent the energy difference between the states |1〉 and |2〉 (~ω12) and

between the states |1〉 and |3〉 (~ω13). The Rabi couplings of the probe and pump laser are Ω1

and Ω2, respectively.

The Schrödinger equation for this Hamiltonian

i~
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 (C.12)

leads to the coupled equations:

i~

 ċ1

ċ2

ċ3

 =
~
2

 0 0 Ω2e
iω2t

0 2ω12 Ω1e
iω1t

Ω2e
−iω2t Ω1e

−iω1t 2ω13

 ·
 c1

c2

c3

 , (C.13)

where |Ψ〉 =
∑

i ci |i〉. The diagonal terms represent the energy difference between the states

|1〉 and |2〉 (~ω12) and between the states |1〉 and |3〉 (~ω13). The Rabi couplings of the probe

and pump laser are Ω1 and Ω2, respectively. The Hamiltonian exhibits a time dependence

via the coherent optical excitation. Changing the system to the rotating frame of the laser

eliminates this dependence. The new variables ((c̃1, c̃2, c̃3)) in the rotating frame are:

c1 = c̃1 ċ1 = ˙̃c1

c2 = c̃2e
−i(ω2−ω1)t ċ2 = [ ˙̃c2 − i(ω2 − ω1)c̃2]e−i(ω2−ω1)t

c3 = c̃3e
−iω2t ċ3 = [ ˙̃c3 − iω2c̃3]e−iω2t

(C.14)

The new time-independent Hamiltonian follows inserting Eq. C.14 into Eq. C.13

i~

 ˙̃c1

˙̃c2

˙̃c3

 =
~
2

 0 0 Ω2

0 2(δ1 − δ2) Ω1

Ω2 Ω1 −2δ2

 ·
 c̃1

c̃2

c̃3

 (C.15)
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C The decoupling of the hole spin from the nuclear spins

Here δ2 = ω2−ω13 and δ1 = ω1−ω23 are the detunings of the pump and probe laser frequencies

with respect to the corresponding transition.

The density matrix formalism is a convenient way to solve the Schrödinger equation. This

formalism describes the mixed state, a statistical ensemble of quantum states, with the density

operator defined as

ρ̂ =
N∑
k

pk |ψk〉 〈ψk| . (C.16)

The Schrödinger equation transforms with the density matrix of Eq. C.16 to

i~
∂

∂t
ρ̂ = [Ĥ, ρ̂] (C.17)

There are two physical meanings of the density matrix elements. The diagonal elements ρnn

correspond to the population in the state |ψn〉, whereas the off-diagonal elements ρnm are the

coherences between the two states.

The density matrix formalism takes the coherent and non-coherent properties of the QD into

account. The combined master equation is the von Neumann equation. The coherent system

is given with the Hamiltonian Eq. C.15. Non-coherent relaxation and dephasing processes are

included via the Lindblad formalism.

∂

∂t
ρ̂ = Λρ̂ (C.18)

The Lindblad operator Λ is defined as [7]

Λρ̂ =
N∑
ij

[γij |j〉 〈i| ρ̂ |i〉 〈j| −
γij
2

(|j〉 〈j| ρ̂+ ρ̂ |i〉 〈i|))]. (C.19)

The extended von Neumann equation including both, the coherent and the non-coherent,

processes is

i~
∂

∂t
ρ̂ = [H, ρ̂] + iΛρ̂ (C.20)

The following non-coherent processes are included (Fig. C.3): radiative decay from |3〉 to |2〉
(rate Γ32) and from |3〉 to |1〉 (rate Γ31); relaxation between the hole spin ground states |2〉
and |1〉 (in both directions, rates Γ21 and Γ12); pure hole spin dephasing (of state |2〉 at rate

γ2); pure electron spin dephasing (of state |3〉 at rate γ3).
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The master equation, Eq. C.20, results in 9 equations, the optical Bloch equations for this

3-level atom:

iρ̇11 =
1

~

[
Ω2

2

(
ρ31 − ρ13

)
+ i
(
ρ33Γ31 + ρ22Γ21 − ρ11Γ12

)]
iρ̇22 =

1

~

[
Ω1

2

(
ρ32 − ρ23

)
+ i
(
ρ33Γ32 − ρ22Γ21 + ρ11Γ12

)]
iρ̇33 =

1

~

[
Ω1

2

(
ρ23 − ρ32

)
+

Ω2

2

(
ρ13 − ρ31

)
− iρ33

(
Γ31 + Γ32

)]
iρ̇12 =

1

~

[
Ω2

2
ρ32 −

Ω1

2
ρ13 + ρ12

(
δ2 − δ1 −

i

2

(
Γ12 + Γ21 + γ2

))]
iρ̇13 =

1

~

[
Ω2

2

(
ρ33 − ρ11

)
− Ω1

2
ρ12 + ρ13

(
δ2 −

i

2

(
Γ12 + Γ31 + Γ32 + γ3

))]
(C.21)

iρ̇23 =
1

~

[
Ω1

2

(
ρ33 − ρ22

)
− Ω2

2
ρ21 + ρ23

(
δ1 −

i

2

(
Γ21 + Γ31 + Γ32 + γ2 + γ3

))]
iρ̇21 =

1

~

[
− Ω2

2
ρ23 +

Ω1

2
ρ31 + ρ21

(
− δ2 + δ1 −

i

2

(
Γ12 + Γ21 + γ2

))]
iρ̇31 =

1

~

[
Ω2

2

(
ρ11 − ρ33

)
+

Ω1

2
ρ21 − ρ31

(
δ2 +

i

2

(
Γ12 + Γ31 + Γ32 + γ3

))]
iρ̇32 =

1

~

[
Ω1

2

(
ρ22 − ρ33

)
+

Ω2

2
ρ12 − ρ32

(
δ1 +

i

2

(
Γ21 + Γ31 + Γ32 + γ2 + γ3

))]
The system of linear Bloch equations is solved, for instance for the population ρ33 of the upper

state |3〉, in the steady state (t→∞):

RF(δ2, δ1) = βRFρ33. (C.22)

where βRF is a scaling factor to link the calculated population to the signal in the experiment.

C.2.2 Coherent population trapping model

Coherent population trapping is a spectroscopic quantum interference phenomenon which arises

in a three level Λ-system like the one in Fig. C.3. The two ground states |1〉 and |2〉 are coupled

individually to a common upper level |3〉 by a “pump” and a “probe” laser with the Rabi

couplings Ω2 and Ω1. The two-photon resonance is fulfilled when the frequency difference of

the two lasers is equal to the Zeeman–splitting of the ground states. Then a “dark” state is

formed, a superposition of the two ground states with no amplitude from the common upper

level. The signature of the dark state in optical spectroscopy measurements is a dip in the

resonance fluorescence signal or in the probe absorption spectrum. The dip “visibility” is a

sensor of the hole spin coherence in the ground state [8, 10]. The dip depth is sensitive to the
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C The decoupling of the hole spin from the nuclear spins

coherence time T2 of the hole spin (see Chapter 2 and for a coherent spin (1/T2 � Ω2
2/Γr) the

dip goes to zero. An increase in the dip width can be associated with ensemble averaging (i.e.

the dephasing time T ∗2 ) resulting from a fluctuating dip position.

In a semiconductor device the inherent charge noise [11] leads to a broadening of the exciton

resonance, term γ in Eq. C.3, a fluctuation in the energy of the upper level. However the

ground state coherence in the form of the CPT dip prevails [8]. The dark state is robust even

if the upper level is shifted by an energy y as in this case the pump and the probe detunings

both experience the same shift. However, the spectral fluctuations have a significant influence

on the CPT envelope [8] and are included by convolution of the density matrix calculations

with a probability distribution L1(y):

CPT(δ2, δ1) = βRF

∫
ρ33

(
δ2 − y, δ1 − y

)
L1(y)dy (C.23)

L1(y) represents a Lorentzian function reflecting the Lorentzian RF experimental lineshapes.

Finally, a second convolution is required to account for the finite mutual coherence of the

pump and probe lasers:

CPT′(δ2, δ1) =

∫
CPT

(
δ2, δ1 − x

)
L2(x)dx (C.24)

In the mathematics we assign the laser phase noise to the probe laser only. The measured

mutual coherence of the two lasers is a Lorentzian function L2(y) with a linewidth of 2.0 MHz

(8.2 neV).

The Λ-system modelled so far consists of three energy levels. A real X1+ in an in-plane

magnetic field is a more complex 4-level system. The 3-level system is adequate under certain

conditions. First, the Λ-system description is valid for a small detuning range near the two

photon resonance where the spectrally well-separated fourth level has no influence. Secondly,

the model assumes that the pump couples |1〉 ↔ |3〉 but not |1〉 ↔ |2〉. This second condition

is met well for sample A but not for sample B. In sample B, the hole Zeeman splitting is

rather small, just 6.2 µeV at 3.00 T. A pump laser tuned into resonance with |1〉 ↔ |3〉
results additionally to a weak coupling |1〉 ↔ |2〉. (Note that to detect RF with our dark–field

technique, the pump and probe laser have the same polarization.) This unwanted coupling

reduces our ability to achieve high fidelity spin pumping [12] and it also reduces the lifetime of

the dark state. This issue is important for sample B but much less so for sample A. A complete

theoretical description involves four levels and three laser couplings. A rotating frame does

not exist and the problem is complex. We can safely use the 3-level model for sample A; we

can safely extract Zh from sample B and we include here the additional coupling in an ad hoc

manner described below.
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Figure C.4 | (a) CPT resonance of sample A (n-i-p) with the density matrix model (red line) using Ω2 =

0.40, δ2 = 0.1 µeV and Ω1 = 0.06 µeV. δ1 is tuned with respect to the pump frequency. (b) Zoom-in of the CPT

dip. (c) CPT dip of Sample B (p-i-Schottky) with the density matrix model (red line) using Ω2 = 0.49, δ2 = 0.0

µeV and Ω1 = 0.049 µeV.

The parameters in the equations for the density matrix are now linked to the experiment. The

Rabi energies of the probe and the pump laser, ~Ω1 and ~Ω2, respectively, are experimentally

determined by power broadening fits of the linewidth and the count rates of an 2-level system

(see the section on Rabi couplings). The radiative decay rates are set to be equal and half of

the radiative decay of the positive charged exciton X1+ (Γ32 = Γ31 = 1
2Γr). Γr is determined

from the the exciton decay curves after pulsed excitation, 0.7 ± 0.1 µeV [13]. The relaxation

time of the hole spins in the ground state is set to be Γ12 = Γ21 = ~/T1 with T1 = 1 ms [12].

The pure dephasing rate of the ground states γ2, which represents the decoherence rate of the

hole spin, is determined with a lower bound of T2 > 1 µs from different fits to the dip depth.

The remaining parameters are dependent on the sample structures, n-i-p-structure (A) and

p-i-Schottky (B). The scaling factor βRF (Eq. C.22) is determined by the RF count rate in the

experiment. The FWHM of the Lorentzian L1(y), which describes the exciton linewidth, is 2.5

µeV for the low–noise sample A. Sample B shows a broader linewidth (Fig. C.3), reflecting a

higher noise level and the FWHM is 4.0 µeV at 3.00 T. The pure level dephasing of the upper

level γ3 broadens the envelope of the transition. γ3 is set to zero (sample B), for (A) a small

value of 10 ns (0.07 µeV) can be determined from the fit to the RF envelope.

Fig. C.4 shows density matrix model along with the measured RF signals. For sample A, Fig.

C.4(a), the model reproduces not just the envelope but also the dip (b) perfectly. For sample

B, the fit to the envelope close to the CPT dip is good, but the theory predicts a “deeper” dip

than the one observed experimentally, a consequence of the influence of the pump laser on the

probe transition, as described below.
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Figure C.5 | CPT data on sample B with different pump detunings, δ2. (a) δ2 = −1.1 µeV; (b) δ2 = 0.0;

(c) δ2 = +3.4 µeV. The data are modeled with the 3-level density matrix system with an artificially lowered T2

and an adjustment of the fit parameter βRF. In all three cases, Ω2 = 0.49 µeV and Ω1 = 0.049 µeV. (a) T2 = 4

ns; (b) T2 = 20 ns; (c) T2 = 60 ns. Each plot shows in addition the calculated result for T2 = 1 µs.

C.3 The CPT dip on sample B

The CPT dip on sample B does not go all the way to zero, Fig. C.4. Fig. C.5 shows how the

CPT develops as the pump is detuned. A red-detuned pump worsens the CPT, Fig. C.5(a);

a blue-detuned pump improves it, Fig. C.5(c) as compared to the case of zero detuning, Fig.

C.5(b).

To shed some light on this behaviour, we explore the details of the dynamic nuclear polar-

ization (DNP). In the regime of dragging, the QD resonance is locked to the laser: DNP is

established. This means that the Zeeman splitting of the exciton Ze depends on the pump

detuning δ2. By probing the lower energy “vertical” transition, this change in Ze, ∆Ze, can be

measured (Fig. 7.3(a) of Chapter 7). Fig. C.6 plots −∆Ze/2 versus δ2 for sample B. The slope

turns out not to be 1 as might be expected for perfect dragging but −0.70. This 0.7 factor

is included in the data analysis of Fig. 7.3 in Chapter 7. With this as input, this leads to a

simple interpretation of Fig. C.5.

The QD on the p-i-Schottky sample B has a very small hole Zeeman splitting of just 6.2

µeV at 3.00 T, larger than the optical linewidth but not hugely so. The pump drives its

own transition on resonance but it can drive also the probe transition weakly: the detuning is

insufficient to suppress this coupling completely. One hypothesis is that this unwanted coupling

of the probe transition with the pump laser can destroy the dark state. The data in Fig.s C.5

and C.6 are consistent with this hypothesis. On blue-detuning the pump by ∆δ2, the upper

level of the Λ-system is blue-detuned by 0.70∆δ2 such that the detuning of the same laser to

the probe transition is increased by 0.30∆δ2: the unwanted coupling is lessened, and the CPT
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Figure C.6 | Dependence of the lower energy “vertical” transition on pump detuning under dragging for

sample B. A linear fit to the data shows that ∆Ze/2 = −0.70δ2.

improves. Conversely, on red-detuning the pump by ∆δ2, the upper level of the Λ-system is

red-detuned by 0.70∆δ2 such that the detuning of the same laser to the probe transition is

decreased by 0.30∆δ2: the unwanted coupling is increased, and the CPT worsens. The origin

of the 0.70 factor is in itself probably related to the unwanted coupling of the probe transition

by the pump: it may influence the DNP.

A full model to describe sample B would require a 3-level system with 3 laser couplings and

a model to describe the detuning dependence of DNP. This is complex: a rotating frame does

not exist; DNP is hard to describe quantitatively. Instead, we take the pragmatic approach

of describing the unwanted coupling of the probe transition by the pump laser as a decay

mechanism of the dark state: we describe it simply by adjusting the hole spin decoherence

time T2. This is very successful, as shown in Fig. C.5. We would comment that, first, a

detailed understanding of DNP is not necessary to deduce the anisotropic part of the hole

hyperfine interaction, the main result in Chapter 7. Secondly, these unwanted coupling effects

are suppressed in sample A. The gradient of the ∆Ze versus δ2 dependence increases to 0.93;

the CPT dip is fully formed.

C.4 Stability of the dark state

The assertion of a low-noise device is supported by demonstrating a stable dark state. The

robustness of the dark state is probed by stopping the probe laser scanning in the centre of the

dip. With constant pump and probe frequencies, the RF signal is then recorded, Fig. C.7. The

constant RF signal in Fig. C.7 shows that the hole spin stayed in the dark state throughout.
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Figure C.7 | Time-dependent representation of a CPT measurement with Ω2 = 0.49 µeV and Ω1 = 0.049

µeV. The probe detuning was tuned until the dip centre was reached after which it was held constant. Plotted

is the RF signal versus time thereafter. The dark state is maintained over a time exceeding one hour.
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[2] R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia,

W. Schoenfeld, and P. M. Petroff, Nature (London) 405, 926 (2000).

[3] R. Loudon, The Quantum Theory of Light (Oxford University Press, 2010).

[4] A. J. Ramsay, A. Gopal, E. M. Gauger, A. Nazir, B. W. Lovett, A. M. Fox, and M. S.

Skolnick, Phys. Rev. Lett. 104, 017402 (2010).

[5] S. M. Ulrich, S. Ates, S. Reitzenstein, A. Löffler, A. Forchel, and P. Michler, Phys. Rev.
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