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Abstract

Solar water splitting is a relevant principle for the production of “green” hydrogen fuel. A

wealth of different designs has been envisioned to produce hydrogen using sunlight. Among

those designs Photoelectrochemical (PE) water splitting offers possible advantages regard-

ing components integration and costs. This technology requires blending many materials

requirements in a single component, such as solar light absorption, high electric conductivity,

resistance to photocorrosion, and electrocatalytic properties. To achieve this goal it is neces-

sary to build materials with emerging properties by discovering complex architectures at the

micrometric and nanometric scales that can overcome bulk material limitations.

Materials of interest for application as photoanode for PE water splitting are metal oxides

because of their resistance to corrosion. In this thesis I focused on two of these oxides, namely

hematite (α-Fe2O3) and monoclinic tungsten oxide (mWO3) since these materials have a rel-

atively narrow band gap allowing absorption of a significant part of sun’s irradiance. In a

photoanode they were implemented as thin films on a conductive substrate. I proposed to

investigate inexpensive and upscalable structuration processes for the formation of such pho-

toanodes thin films with a controlled microstructure and studied the impact of such structures

on the film PE performance.

Self-assembly strategies are bottom-up approaches which allow to grow structures with

original morphologies at a low cost compared to top-down techniques such as lithography. I

was particularly interested in strategies that would grant a fine control of the feature sizes.

Two different processing techniques were implemented, a polymer templated sol-gel route and

Electrohydrodynamic Lithography (EHL). Both techniques allowed to obtain metal oxides

structures at the meso- to nanoscale. The polymer templated sol-gel route was the most

successful strategy. It allowed to produce microspheroids with a tungsten oxide core and a

hematite nanometric overlayer with control on the structure dimensions.

In addition to an in depth understanding of the different bottom-up approaches investi-

gated, I proposed a complete description of the relationship between form and function in

the film composed of tungsten oxide / hematite microspheroids. These films have significant

photonic features linked to their original morphology and I discussed how their photoactivity

is influenced by light trapping in these films.
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Chapter 1

General Introduction

This thesis is focused on the implementation of metal oxide with innovative microstructures

for application in a solar water splitting system. In this chapter I first analyse the economic,

political and environmental relevance of hydrogen production from the sun energy. Then I

depict the different technologies that could make the advent of “green hydrogen” possible and

an extensive review of the functional materials that are at the core of these devices. It will

become clear that metal oxides constitute a promising family of material for this application.

However, because many requirements are needed in order to split water using sunlight, these

oxides bear strong intrinsic limitations. Solutions to overcome these drawbacks are considered,

with an emphasis on micro and nanostructuration which is the main topic of this thesis.

1.1 Solar hydrogen production: rationale, designs and

challenges

Fossil fuels have been driving for over one century the development of our civilization due to

their abundance and high energy density. However coal, oil and natural gas are nowadays

recognized as environmentally harmful and are becoming a scarce resource. Since these fuels

constitutes 87%1 of the modern world energy consumption we need to find an environmentally

friendly and renewable alternative. The diversification of fuel sources would also help to

counter the globally growing number of energy security threats.
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Alternative fuels include biodiesels, electricity, ethanol, hydrogen, natural gas and propane2.

Among those fuels, hydrogen and electricity are the only zero tailpipe emission candidates.

However hydrogen, unlike electricity, can be directly stored and transported. This is a major

advantage of hydrogen over electricity, since the latter cannot decouple demand and resource.

Another hydrogen asset is its use in most fuel cells. Fuel cells can be more efficient than

internal combustion engines in converting chemical energy to mechanical energy. Internal

combustion engines are limited by Carnot thermodynamic efficiency and have maximum the-

oretical efficiencies in the 40 to 60% range whereas fuel cells efficiencies are not limited by

temperature and have higher theoretical values, up to 83%. Despite their high efficiencies, fuel

cells are considered to be still too expensive and unstable to be a viable economic alternative

to combustion engines. Ongoing research and development have brought about new materials

and devices that damp these limitations and this technology is already reaching on the market.
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Figure 1.1: Volumetric energy density as a function of
gravimetric energy density of common hydrocarbons
and hydrogen in liquid phase3.

Hydrogen chemistry makes this molecule

an alternative fuel of choice. Yet its phys-

ical properties require significant structural

changes before it can replace petroleum in our

everyday life. Hydrogen has the lowest molec-

ular weight of all molecules. This property re-

sults in a very low mass density compared to

gasoline or diesel. It implies that liquid hydro-

gen stores 5 times less hydrogen bonds than

gasoline in the same volume and 3 times more

hydrogen bonds for the same mass (fig. 1.1).

This property is accentuated by the fact that

hydrogen is in gas phase at ambient temper-

ature and pressure and needs compression to

get close to its liquid density. Other physical

properties linked to H2 low molecular weight

makes it hard to handle. Its low viscosity and high permeability in solids that make it prone

to leakage. All these properties makes storage of hydrogen fuel a technical challenge. Even if

hydrogen fuel is lighter than hydrocarbonates, implementing larger and leakage free tanks lead

to an overall increased weight. It is not an issue for stationary applications where buried tanks

can be implemented and volume and weight are not an issue. But for mobile applications,
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solutions are developed to compress hydrogen and reach volumetric energy densities that are

close to the liquid phase value. Cryo-compressed tanks4–6, for example, is one of the successful

technologies. Car testing showed a 1050 km autonomy with this technology6, exceeding the

benchmark of around 500 km for electric cars. Alternatively, rather than storing hydrogen

in a tank, a possibility is to capture hydrogen at the surface and in the bulk of materials.

Taking advantage of the smallness of the hydrogen molecule that makes it permeable to many

materials, some of them can be converted to hydrides at ambient temperature. In this case

hydrogen is absorbed inside the material, stabilized in a solid form as hydride ions, providing

a high volumetric energy density. This hydrogen can be subsequently desorbed by heating

the hydride material. This method is not yet established and research in this field aims at

reducing the cost of the hydrides and their weight.

Nonetheless hydrogen storage is only the tip of the iceberg when it comes to an imple-

mentation as an alternative to fossil fuels. The smallness of the hydrogen molecule makes it

permeable in most of the metals used in cars and in the industry, like steel, aluminium and

magnesium. Whereas this property is beneficial for hydrogen storage, it is detrimental for

the structural properties of the absorbing material. Hydrogen poisoning decreases the metal

ductility and makes it brittle. In addition to phase transition of the metal that decrease their

mechanical lasting, embrittlement can occur when the hydride ions react and form gas inside

the bulk of the material.

The many challenges that hinder the change from an oil economy to a hydrogen econ-

omy calls for significant investments. A strong momentum needs to be generated to stir the

socio-economical entities from short-term fixes of the status-quo, such as increasing internal

combustion engine efficiencies, improving fossil fuels quality and capturing greenhouse gases

emissions.

The depletion of cheap energy resources threatens energetic independence of governments.

On the political side actions have been taken to decrease energy consumption and promote

new energy sources. Hydrogen is globally considered as a viable alternative fuel and funding

programs are implemented all over the world. Some government have also initiated programs to

palliate the lack of infrastructures. In Europe, Germany has programmed the implementation

of 50 refuelling stations by 20157. In Switzerland, since 2012, bus fleets powered with fuel

cells have been introduced8. More recently Empa, the Swiss Federal Laboratories for Material

Science and Technology, has designed and built a solar to H2 refueling gas station called the
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“Future Mobility” demonstrator9. In the US biodiesels and electricity are the two major

players but hydrogen technologies are also funded. Most of the effort towards hydrogen is

located in California with funding for 28 new refuelling stations10. Japan also shows interest

in hydrogen fuels with 100 stations planned for 201611. But the pioneer in adopting the

hydrogen economy is Iceland, which proposed in 2001 to get 20% of its vessel powered by

hydrogen in 202012. Large hydro- and geothermal resources would ease the energy transition

in this country. Nevertheless this early commitment is now stagnating and no significant leap

towards a hydrogen economy has yet been made13.

The main drive for change may come from the industry. Oil companies have little interest in

being the driving force for a change not withstanding that they are ready to provide hydrogen

gas if the market demands it. But the automakers are interested in alternative fuels because of

the political pressure for lower CO2 emissions. In this context fuel cell technology is attractive,

not only because it reduces CO2 emissions, but also because it converts chemical energy

directly to electricity. The availability of electrical power allows stripping off cars from their

bulky mechanical parts. This advantageous feature could also be achieved with batteries, but

fuel cell vehicles have higher autonomy than their electric counterpart. Therefore hydrogen

fuel become more lucrative for longer travel distances and could complement electric vehicles

for these applications. Ford, Daimler and Renault-Nissan have teamed up to decrease the cost

of fuel cell technology and reach the market by 201714. One goal of this association is also to

promote the development of hydrogen infrastructures. Toyota and BMW have also concluded

to a similar consortium and Toyota has planned the commercialization of a fuel cell car by

201515.

If governments and industries have made one step towards the transition to alternative

fuels, including hydrogen, it does not imply that these fuels will be produced in a renewable

and eco-friendly fashion. In the case of hydrogen, most of the current hydrogen production is

based on the reaction of hydrocarbons or coal with water that also lead to the formation of

carbon oxides by-products according to the water-gas shift reaction: H2O+CO −−⇀↽−− H2+CO2.

A substitute of choice to avoid the production of “black hydrogen” would be water electrolysis.

Water can be split to form hydrogen and oxygen gases using electrical energy. This method is

attractive as water is close to be an inexhaustible resource on earth and the reaction products

are carbon-free. However this method can only be considered a viable solution if the electricity

driving the reaction comes also from sustainable and green sources.
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Producing a clean, sustainable energy requires solutions adapted to each territory re-

sources. This so-called “energy mix” will diverge from the current centralized energy grid

to a decentralized system. Production of hydrogen by water electrolysis is symbiotic to this

perspective. Indeed this method does not require bulky and expensive facilities, making it

suited for on-site applications. In addition, hydrogen can be stored, which allows to decouple

the energy consumption from the availability of the energy source. This is a crucial advantage

when considering resources such as wind and solar energy which are intermittent by nature.

In this context, solar hydrogen, i.e. the production of hydrogen by using sun energy, is a vast

untapped resource. This technology would be a solution of choice in countries of the southern

hemisphere where yearly irradiance is elevated.

photons electron/holeOpairs

oxygen

hydrogen

holes

electrons

1.OlightOabsorption
(semiconductor)

2.OchargeOseparation

3.OHEROcatalysis

4.OOEROcatalysis

Figure 1.2: Physical and chemical processes required to split water using photons. HER stands for Hydrogen
Evolution Reaction and OER stands for Oxygen Evolution Reaction.

However splitting water using sunlight is challenging since it requires gathering in one

device many physico-chemical properties (fig. 1.2). A wide variety of designs have been im-

plemented. These designs range from all-in-one solutions like photocatalysis, where particles

or molecules in water absorb sunlight and produce both hydrogen and oxygen, to disjointed

systems like Photovoltaic (PV) electrolysis, where a solar cell is wired to an electrolyser. But

the required physical and chemical processes (fig. 1.2) are similar in all architectures. It is

especially true for the designs involving two physically separated electrodes. These devices

offer the advantage of physically separating the produced hydrogen and oxygen gases, provid-

ing pure products and avoiding the formation of the highly flammable 2:1 oxyhydrogen gas

(knallgas). In the case of systems comporting two separated electrodes, Jacobsson et al. 16

showed that one technology can easily be converted into another, making the advance in one

sub-field relevant for the whole field. Figure 1.3 shows three different architectures involving

separated electrodes and shows that the three concepts are equivalent in terms of their main

physico-chemical features. We will now see in more details all the processes that lead to the

formation of hydrogen using sunlight.
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3. cathode

Figure 1.3: Possible designs that regroup the properties presented in figure 1.2 and their schematic energy
band diagram: a. PV-electrolysis, double junction solar cell. b. Photoelectochemical water splitting assisted
by a single junction solar cell. c. Photoelectochemical water splitting.

The driving force of the process is the absorption of photons and their conversion to charge

carriers (fig. 1.2 1.). This property is achieved by a semiconductor. These materials possess an

energy gap between their valence and conduction electrons. If a photon with a higher energy

than this band gap propagates inside the material it can be absorbed. The photon energy is

absorbed by promoting the transition of an electron from the valence band to the conduction

band, leaving a hole in the valence band. Due to the presence of a band gap, this electron

remains excited on longer timescales than its thermal relaxation would allow and it may be

collected. However to avoid that the electrons radiate and return to their ground state, charge

separation is needed (fig. 1.2 2.). The wavelengths of the visible range, from 300 to 1000 nm,

constitute the wavelengths where the sun outputs most of its power. Hence semiconductor

band gaps in the range 1 to 2 eV are preferred for solar powered applications.

The photogenerated electron/hole pairs can diffuse, drift or recombine in the semicon-

ductor. Recombination occurs if the electron/hole pair is not separated spatially on faster

time-scales than their thermal relaxation. Diffusion is the propagation of charges following a

concentration gradient. Charges can accumulate at these interfaces if the kinetics of charge

transfer at the semiconductor interfaces is slow compared to charge generation kinetics, lead-

ing to diffusion opposed to the current flow. An asymmetric junction is necessary in order to

promote the drift of charges to the surface against diffusion and recombination. This junction

is obtained by contacting the semiconductor with a material comporting different densities of
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states. In a PV-cell this new material is usually another semiconductor. The band diagram of

the PV-electrolysis design (fig. 1.3 a.) shows two PV-cells connected in series. Each PV cell is

a stack of a n-type semiconductor and a p-type semiconductor. When these two semiconduc-

tors are contacted, charges flow between them until their Fermi levels equilibrate. This new

equilibrium results in a gradient of electronic density as a function of the distance from the

interface, called the space-charge layer. Within the space-charge layer, photogenerated charge

carriers drift, following the potential gradient, and can reach the material surface before re-

combination. In this case the space-charge layer results from solid state physics, however it

can also be obtained by contacting the semiconductor surface with a gas or a liquid. This

effect is used for example in Photoelectrochemical Cell (PEC) (fig. 1.3 b. and c.) where metal

oxides photoanodes and/or photocathodes are dipped in water. In that case water molecules

bond to the metal oxide surface forming hydroxyl groups. These new orbitals result in new

electronic states at the surface, the so-called “surface states”. Like for the semiconductor

heterojunction, a space-charge layer is formed when the Fermi level of the surface states and

the semiconductor equilibrates. The band diagrams in figure 1.3 b. and c. show examples of

space-charge layer in photoanodes and photocathodes resulting from the formation of surface

states.

We have seen that a semiconductor under illumination can behave as a current generator.

However, this photocurrent will not evolve hydrogen and oxygen unless different catalytic

properties are met (fig. 1.2 3. and 4.). Indeed water splitting does not rely only on the

number of charge carriers that reach the interface with water. This reaction is endothermic

and requires also its internal energy to be provided by the electric potential difference between

the photogenerated electrons and holes. Water splitting (reaction (1.5)) occurs through two

redox reactions, the Oxygen Evolution Reaction (OER) and the Hydrogen Evolution Reaction

(HER). For each half reaction different reactants and products can be considered (reactions

(1.1) to (1.4)). The reduction reaction (1.1) and oxidation reaction (1.2) are preponderant at

low pHs while the reduction reaction (1.3) and oxidation reaction (1.4) are preponderant at

high pHs. While the reduction (E0
red) and oxidation (E0

ox) potential energies are pH-dependent,

the internal energy of the water splitting reaction remains constant (∆E = E0
red−E0

ox = 1.23V ).

Therefore the difference in potential energy between electrons and holes would need to be at

least of 1.23V in order to split water.
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4 H+
(aq) + 4 e−

E0
red1−−−⇀↽−−− 2 H2(g) (1.1)

2 H2O(l) + 4 h+
E0
ox1−−−⇀↽−−− 4 H+

(aq) + O2(g) (1.2)

4 H2O(l) + 4 e−
E0
red2−−−⇀↽−−− 2 H2(g) + 4 OH−(aq) (1.3)

4 OH−(aq) + 4 h+
E0
ox2−−−⇀↽−−− 2 H2O(l) + O2(g) (1.4)

2 H2O(l)

∆E−−⇀↽−− 2 H2(g) + O2(g) (1.5)

Nevertheless a cell delivering these 1.23V of photovoltage is not sufficient to split water.

Overpotentials arise from the kinetics of water electrolysis. These kinetic aspects are usually

gathered in three categories, namely activation, concentration and resistance overpotentials.

Activation overpotentials relate to the kinetics of charge transfer at the electrode/liquid inter-

face. It includes the kinetics of chemisorption of the reactants on the electrode, the kinetics

of reaction with the electrode charges and the kinetics of desorption of the reaction products.

These aspects constitute the catalytic properties of an electrode. A good catalyst accelerates

the charge transfer processes and thus lowers the activation overpotentials. In water splitting,

activation overpotentials are especially present at the anode where the surface must store and

transfer four holes at the same reaction site. Hence most of current research is focused on

anodes and photoanodes development. Other overpotentials can also arise from a low con-

centration of charge carriers at the electrodes surface. This concentration overpotential is

linked to the solution conductivity, i.e. the ionic strength of the solution and the kinetics of

diffusion of the ions. Yet not only ions must reach reaction centers, the photogenerated charge

carrier must also drift to these sites. The electrical resistance that can build up between the

charge generation regions and the solid/liquid interfaces also lead to significant overpotentials.

These resistance overpotentials are a consequence of the cell design. For example in the case

of PV-electrolysis (fig. 1.3 a.), wiring the PV to electrodes result in contact and cable resis-

tance, whereas for more integrated systems like photoelectrodes (fig. 1.3 b. and c.) the light

absorption region is in microscopic proximity with the catalytic sites.

We have seen that the different designs for water splitting using sun’s energy bear the same

physico-chemical properties. The main difference lies in the scale of the spatial separation

between the light absorber and the catalyst. In a photoelectrode the distance between these

two features is nanometric to micrometric whereas this distance is macroscopic in the case

of a PV-cell connected to an electrode. This separation makes PV-electrolysis development

easier considering that light convertion and catalysis can be optimized separately. The solar

F. Boudoire Self-assembled Photonic Mesostructures for Water Splitting Photoanodes



CHAPTER 1. GENERAL INTRODUCTION 25

cell materials can be optimized for visible light absorption and charge separation and does not

need to be corrosion resistant and catalytically active. De facto photoelectrode implementation

is challenging because all these requirements have to be satisfied by one material.

On one hand the physical separation in PV-electrolysis relaxes the materials requirements.

But on the other hand wiring the components together leads to increased resistance overpo-

tentials and more photovoltage is needed from a solar cell than from a photoelectrode. The

overpotentials in PV-electrolysis are further increased because their current densities are typ-

ically 102 to 104 times higher than photoelectrodes current densities. Indeed for a constant

electrical impedance (Z), linked to the different kinetic resistances presented previously, in-

creasing the current (I) leads to an increase of the overpotential (V) according to Ohm’s law

(U = Z × I). The overpotentials increase in an ohmic fashion at low current densities. At

higher current densities, according to Tafel’s empirical equation, the overpotentials increase

becomes exponential. In the end typical values of photovoltage needed to split water in the

case of PV-electrolysis is around 2V while it usually ranges from 1.5 to 1.8 volts in the case

of PEC.

So each design bears different challenges, but in the end what will decide the preponderance

of a given strategy is the cost of the produced hydrogen. This would promote aspects such

as material costs and stability rather than device Solar-To-Hydrogen (STH) efficiency. It is

difficult to estimate the cost of hydrogen from the emerging solar-to-hydrogen devices. Krol

and Grätzel 17 proposed estimated cost for PV-electrolysis around $8/kg whereas PE water

splitting, due to its compact device integration and lower material costs, could lead to cheaper

hydrogen, in the $3-5/kg range. In this thesis we will focus on the development of a photoanode

for PE water splitting that could fit for example in designs depicted in figure 1.3 b. and c.,

using the so-called “two-step” photoexitation systems. In the next sections we will see the

materials of interest for such a device, the importance of light management to overcome these

materials limitations and how to achieve this light management by a control of the photoanode

microstructure.

1.2 Candidate materials for photoanode thin films

Photoanodes for PE water splitting are typically composed of a thin film coated on a trans-

parent conductive substrate. These transparent substrates are required because for most
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applications, light which is not absorbed by the photoanode can be used by other devices,

such as a solar cell or a photocathode. Classic conductive transparent substrate are obtained

by coating a nanometric conductive thin film, Indium Tin Oxide (ITO) or Fluorinated Tin Ox-

ide (FTO), on a glass slide. Thin films composed of semiconductor materials are subsequently

deposited, by physical or chemical means, at these substrate surfaces. The semiconductor thin

film composition will determine the critical properties of the photoanodes. As mentioned in

the previous section, photoanodes have to gather a wide range of properties, namely resistance

to corrosion, visible light absorption, charge carrier separation and OER catalysis. We will see

in more details these constraints imposed to photoanode thin films and candidates materials

that could fulfill these requirements.

Firstly let us consider the semiconductor band gap requirements. Most of the sun’s ir-

radiance is located at wavelengths between 300 nm and 1000 nm, i.e. in the visible range.

In order to absorb a large part of this wavelength range the semiconductor band gap has to

be smaller than 3 eV. Indeed, the longest wavelength (λmax) that a semiconductor of band

gap Eg can absorb is limited to λmax = hc
Eg

, with h the Planck’s constant and c the speed of

light. Longer wavelengths with less energy will not be absorbed. Hence a semiconductor with

a 3eV band gap is already absorbing light only up to 400nm wavelength. Nevertheless small

band gaps also mean a low photovoltage. We have seen in the previous section that 1.5 to

1.8V of potential difference between photogenerated electrons and holes are typically needed

in order to split water in a PEC. This means that decreasing the semiconductor band gap

in order to absorb more of sunlight will be detrimental for the photoanode performance as

more additional bias will be needed to split water. As a consequence, the semiconductor band

gap has to offer a tradeoff between light absorption and photovoltage. Figure 1.4 shows the

band edge position of candidate materials for photoanodes. These semiconductors absorb in

the visible and near-UV range and possess a valence band below the OER potential. Their

conduction band is close to the HER potential and need only limited additional bias potential

in order to split water.

Solar cells are usually composed of non-oxide semiconductors, for example n-doped silicon

and GaAs (fig. 1.4, Si band edges are shifted to lower energies when n-doped), that absorb

light at visible wavelength that could also be implemented in photoanodes. These photoan-

odes can potentially deliver high photocurrents but have a stability issue. During operation

the photogenerated holes tend to oxidize the photoanode surface instead of oxidizing water.

Protective coatings have been developed in order to shield this kind of photoanodes from cor-
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Figure 1.4: Band edge position of different photoanode materials versus OER and HER energy potentials,
pH = 2. Band edge values from Bak et al. 18 , Chun et al. 19 , Van de Walle and Neugebauer 20 , Ding et al. 21 .

rosion. Obtaining a continuous, conductive and stable film on top of such photoelectrodes is

challenging. Yet significant advances have been made by different groups. Kenney et al. 22

stabilized n-Si for 80 hours using a nickel ultra-thin film. More recently Hu et al. 23 developed

ultrathin “electrically leaky” amorphous TiO2 thin films that allowed stabilization of n-Si,

GaAs, and GaP photoanodes for more than 100 hours. In addition to the issue on stability,

such photoanodes have poor charge transfer kinetics to the electrolyte and require a catalyst

at their surface to drive the OER reaction.

Another class of non-oxide/mixed-oxide semiconductor, tantalum (oxy)nitrides, such as

TaON and Ta3N5, have optimal band edges position compared to HER and OER energy

potentials (fig. 1.4). Murphy et al. 24 calculated STH theoretical efficiencies close to the hypo-

thetical theoretical maximum, associated with the relatively small band gaps and opportune

band edge positions. The application of such materials as photocatalysts was first investigated

by Hitoki et al. 25,26 . These semiconductors are suited for one-step photoexitation strategies

using a sacrificial reagent25–27. The implementation as a photoanode was also investigated

and showed significant photocurrents28. Still self-oxidation by the photogenerated holes is

here again a strong concern and the surface of those materials passivates within minutes in

operando conditions.

In this context oxides are the solution of choice in terms of stability against photocorrosion.
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Many oxides have a valence band energy maximum which is far more positive than the OER

energy potential. Hence photogenerated holes will thermodynamically tend to oxidize water

rather than the metal cations when accumulating at the reaction centers.

The seminal work from Fujishima and Honda 29 introduced TiO2 in the anatase phase as

the first metal oxide investigated for photolysis of water. This material has a large band

gap (3.2 eV, fig. 1.4) and can drive the overall water splitting reaction. But as we have seen

before, such a large band gap leads also to poor solar light absorption and TiO2 absorbs

only Ultraviolet (UV) light, i.e. 4% of the irradiance from the sun. Band gap narrowing

could be achieved for use as photoanode material by different doping strategies30–34. Still

the lattice defects introduced by atom substitution can act as recombination centers for the

photogenerated charge carriers and impede the photoanode performance. Another strategy to

overcome the low absorption of TiO2 in the visible range is the sensitization by a dye molecule.

Seminal work by Anderson et al. 35 showed that photocatalyst molecules adsorbed at the TiO2

surface could transfer photogenerated electrons to the semiconductors while oxidizing water.

If these molecules absorb light at longer wavelengths than TiO2, significant light absorption

in the visible range can be achieved.

Since the discovery of the photoelectrochemical properties of TiO2 different oxides have

been scrutinized for photoanodes. Hematite (α-Fe2O3), tungsten trioxide (WO3) and more

recently bismuth vanadate (BiVO4) are heavily studied as they gather most of the properties

required by a photoanode material. All these oxides are abundant on earth, i.e. relatively

inexpensive, and resistant to photocorrosion in a broad range of pHs.

Hematite has the smallest band gap of these three oxides, in the 1.9 to 2.2 eV range. It

absorbs yellow to ultraviolet light, and gets from this optical property its red-brown color.

This absorption in the visible range makes it the oxide with highest theoretical STH efficiency

in the 15% range36. Hematite is stable at neutral to basic pHs and this material constitutes

a photoanode of choice for alkaline photoelectrolysis.

However, like many oxides, hematite possesses a short charge carrier recombination length

compared to its absorption depth. Hematite has an indirect band gap37, which makes it

relatively transparent. Indeed, for a semiconductor with an indirect band gap, the maximal

valence band energy level has a different crystal momentum as the minimal conduction band

energy level. Hence to excite an electron from the valence band to the conduction band, not

only absorption of a photon is required but also absorption of a lattice phonon. The photons
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can carry the energy required to excite an electron but cannot provide the required momentum,

and the electron needs also to absorb a lattice phonon in order to reach the valence band.

Hence the probability of electron transition through an indirect band gap semiconductor like

hematite is low and light has to travel in the crystal lattice over a long distance. As a hint on

the hematite film thickness needed to absorb a photon, considering Lambertian absorption,

it can be deduced from the work of Marusak et al. 38 that hematite’s optical thickness is 44.6

nm at a wavelength of 400 nm.

So on one hand hematite is a transparent material and photon absorption occurs over

several tenth of nanometer from its surface. But on the other hand the photogenerated holes

have to travel to the semiconductor surface to oxidize water while electrons have to reach the

FTO back contact. As a consequence, the material has also to gather good electron conduc-

tivity and hole conductivity. Hematite doping has been implemented by different research

groups39–41. A successful strategy is n-doping of hematite, with Si4+ or Ti4+ for example, that

lead to an increase of the majority charge carriers (electrons) and balance the poor electronic

conductivity of hematite. Then the diffusion of minority charge carrier (holes) to the surface

have also to be addressed. Since hematite’s band gap is indirect, the recombination of pho-

togenerated electrons and holes is less likely than in a direct band gap semiconductor since

it requires phonons to shift the excited electron momentum. So recombination is more likely

to occur at lattice defects in this material. Most synthesis techniques are prone to introduce

lattice defects in hematite. These defects may increase the charge carrier concentration but

they usually act as recombination centers. Hence the minority charge carrier diffusion length

before recombination is in the nanometric range. It was estimated by different authors37,42 to

be ranging from 1 to 5 nm and was confirmed experimentally by the author in this thesis.

The combination of extremely short minority charge carrier recombination length and large

light absorption depth is one of the major limitations to the use of hematite as photoanode

material. Indeed the transparency issue of hematite could be undertaken by increasing the

hematite film thickness. This is typically done with silicon solar cells, which also possess an

indirect band gap and are implemented with thicknesses in the sub-millimeter range. However,

the poor conductivity of hematite leads to a tremendous decrease in photocurrent as soon

as the thickness is exceeding the 10th of nanometer range. We will see in section 1.3 how

this limitation can be overcome by non-Lambertian absorption scheme using nanostructuring

strategies.
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Another concern when dealing with hematite is the charge transfer at the hematite /

liquid junction. The surface of a material in contact with another medium has a different

atomic structure than its bulk. Hence the surface has particular molecular orbitals leading

to new electronic states called “surface states”. Holes accumulate at these states and can

either participate to the OER or recombine with thermalized electrons from the conduction

band43. The impact of the recombination at surface states has been characterized using

hole scavengers in solution42,44,45. A hole scavenger can suppress recombination of hole at

surface states by speeding up the OER kinetics. The impact of surface recombination can

be characterized by comparing the photocurrent response with and without a hole scavenger.

It was shown that surface recombination leads to overpotential in the 0.4 – 0.6V range42,45.

Klahr et al. 46 investigated the role of the surface states during operation using impedance

spectroscopy. They proved that surface state not only act as recombination centers but also

strongly mediate the charge transfer to water. They even showed that most of holes transferred

to water are actually coming from these states rather than from the valence band.

Also, because of the slow kinetics of charge transfer, holes tend to accumulate at the

hematite surface and this accumulation promotes charge recombination at surface states. This

issue regarding charge injection kinetics is linked to the low catalytic activity of hematite. The

OER proceeds through a 4-electrons oxidation of water but the modalities of this reaction are

not known. Different authors47,48 proposed for example that iron would store holes upon

being oxidized. Since it would be difficult thermodynamically to store 4 holes by oxidation of

only one iron, it is probable that multiple iron sites are involved in the splitting of one water

molecule and the low probability of such event would create a kinetic bottleneck.

Different surface treatments have been applied to hematite in order to increase its Faradaic

efficiency. The goal is to passivate the surface states that have slow kinetics towards water

oxidation49,50 and to promote catalytic centers, sometimes even adding supplementary elec-

trocatalyst material at hematite surface41,51–54.

In these different studies the nature of the surface states remained unclear. First clues

about their nature was brought by Braun et al. 55 who achieved an operando investigation of

these surface states using soft X-ray spectroscopy. By developing a custom in-situ cell they

could perform oxygen Near Edge X-ray Absorption Fine Structure (NEXAFS) measurement

at the hematite/water interface while applying a bias potential and shining simulated solar

light on the sample. They identified not one but two electron-hole states that only appear
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in the oxygen NEXAFS spectra upon illumination and application of a bias higher than 100

mV vs Reversible Hydrogen Electrode (RHE). These two hole states, which were already

hypothesized by Kennedy and Frese 37 thirty years ago, were attributed to different electron

hopping mechanisms. The lowest energy level corresponds to a metal to ligand charge transfer

(Charge Transfer Band (CTB)) and the highest energy levels would correspond to a metal to

metal charge transfer (Upper Hubbard Band (UHB)). While both kind of holes participate to

water splitting their different energy level position impact their reactivity. On one hand the

UHB energy would be located between the conduction band and the OER potential, hence

it would promote charge recombination rather than charge transfer to oxidize water. On the

other hand the CTB would be located near the valence band depletion layer and would be

more favorable to water oxidation and less prone to recombination. It is therefore possible

that the different overlayers investigated in the literature49,50 passivate the UHB and promote

the CTB.

Another oxide that has been under heavy scrutiny since the seventies is monoclinic tungsten

trioxide (mWO3). It has a band gap in the 2.5 to 2.7 eV range and therefore can absorb light

up to 450 nm wavelength, giving this material an intense yellow color. The wider band gap of

this material compared to hematite lead to lower theoretical efficiencies. But in practice this

oxide is usually easier to implement as an efficient photoanode due to a larger hole diffusion

length of 150 nm56. The increased band gap of mWO3 also comes with a down shift of its

valence band which provide more potential energy for the holes to oxidize water. In addition

WO3 exhibits good catalytic properties towards the OER. Hence very low onset potentials

are obtained for this material, around 0.2 V vs AgCl at pH=7, against 0.6 V vs Ag/AgCl for

hematite.

Another oxide that has drawn attention since the seminal work of Kudo et al. 57 is bismuth

vanadate (BiVO4) in the monoclinic scheelite structure. Like most metal oxides this material

suffers from poor charge separation and conduction. Similar approaches as in the case of

hematite have been investigated, like N-doping by substitution of V5+ by Mo6+, and W6+,

allow to increase the majority charge carrier concentration58,59. A fine control of a spray

pyrolysis process even allowed Abdi et al. 60 to produce BiVO4 photoanodes with a gradient

doping of tungsten. This interesting approach leads to a strong band bending from an intrinsic

to a highly N-doped extrinsic bismuth vanadate and promotes charge separation.

Research has also focused on discovering new stable metal oxides phases that could gather
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all the properties required by a photoanode material and compete with the currently investi-

gated metal oxides. High throughput combinatorial approaches61–63 have been used in order

to identify candidates in two and three cations systems. Resulting from these studies differ-

ent potential photoanode materials were identified, for example FeVO4
63. Nevertheless the

intricate interplay of nanostructure and microstructure effects in addition to the material com-

position makes it difficult to assess if the observed difference in photocurrent can actually be

attributed to the chemical composition of the samples.

We have seen that different metal oxides satisfy some of the many criteria required by

a photoanode i.e. visible light absorption, resistance to photocorrosion and low-costs. Yet

they all suffer from poor charge separation and diffusion coupled to a relative transparency.

We have already summarized different strategies to improve charge collection by tuning the

photoanode material composition at the bulk and the surface. We will see in the next section

that additional improvements can be achieved by controlling the electrode nanostructure and

microstructure in order to manage light and photogenerated charges flow.

1.3 Photoanodes architectures at the meso and nanoscales

for light and charges management

The implementation of smart nanostructuring and microstructuring has been widely used to

overcome materials limitations in the field of heterogeneous catalysis and in the field of pho-

tovoltaics64. The strategies implemented in these fields can generally be adapted to improve

photoelectrodes performances and efficient systems described in the literature always rely on

the original properties emerging from the photoelectrode structure. In general the design of a

photoanode structure aims at improving one or several of the properties required in order to

split water using the energy from sun’s photons (fig. 1.2): light absorption, charge separation

and OER catalysis. I will focus on the strategies applied to metal oxide photoanodes but the

exposed strategies can usually be applied to any kind of material.

Perfect single crystals usually exhibit poor catalytic activity compared to highly textured

surfaces. Somorjai 65 calls rough surfaces “flexible” surfaces where numerous surface defects

lead to a thermodynamically favored restructuration of atoms and bonds compared to single
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crystals where strong ordering at the surface make atomic rearrangement more “rigid”. This

is one reason to the poor performance of single crystals compared to polycrystalline samples.

Another advantage of nano and microstructuring photoanodes is the increase of surface

area. Large surface areas increase the proximity of photogenerated holes in the material bulk

to the solid/liquid interface. This design can overcome recombination of charges due to the

short minority charge carrier diffusion length in metal oxides. In the case of hematite for ex-

ample, today’s benchmark efficiencies are obtained with highly faceted hierarchical nanostruc-

tures, the so-called “cauliflowers” from Kay et al. 66 . The structure help driving the minority

charge carriers to the semiconductor/liquid junction while silicon doping is employed in order

to increase the majority charge carriers concentration and obtain good electron collection.

This strategy has given rise to a wide range of hematite nanostructures such as nanorods67,

nanotubes68 and stellates69. A similar strategy was employed with mWO3 by different au-

thors70–74. Solarska et al. 74 for example used 2.5 µm thick films to absorb light efficiently

while the path length for holes was maintained below the hole diffusion length of the oxide

(150 nm56) as a result of the nanoparticulate nature of the film. Nevertheless high surface

areas have one major drawback, they decrease the photoanode photovoltage64,75. Increased

surface area leads to a decrease of charge concentration at the surface that damps the split-

ting of quasi Fermi levels76–79. As a consequence a ten fold increase in surface area leads to a

potential drop of 0.6V75.

Another architecture that can improve both charge separation and photovoltage consist

in stacking different metal oxides in n-n heterojunctions. We have seen in section 1.1 that

efficient water splitting can be achieved using a photoanode and a photocathode in series

using a 2 photons configuration in order to reach the required photopotential. This dual

band gap strategy can also be achieved within one photoelectrode in order to obtain increased

photovoltages and improve charge separation. In a photoanode the goal is to match the band

edge position of each semiconductor in order to favor electron flow to the back contact and

hole flow to water. To achieve this effect the valence band of the semiconductor in contact

with water must be closer to the OER potential than the valence band of the semiconductor

in the rear. This way the holes can be driven efficiently to water. In order to also drive

electrons to the back contact the conduction band of the semiconductor in the rear must also

be closer to the HER potential than the semiconductor contacting water. This strategy is

usually implemented in highly structured photoanodes in order to maximize charge collection.

Different groups80–82 have used for example N doped silicon as a support for different metal
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oxides. The advantage is that the metal oxide can shield the silicon from corrosion while the

band edges of silicon are generally well aligned with those of the oxide in order to achieve

a successful heterojunction. Nevertheless pinholes in the oxide overlay can easily lead to

the dissolution of the silicon and compromise the electrode stability. Other groups83–85 have

oriented their research towards all-oxide n-n heterojunctions. In these studies tungsten oxide

constitutes the rear semiconductor with a high surface area and is conformally coated with

another metal oxide. Sivula et al. 83 and Mao et al. 85 studied WO3/α-Fe2O3 heterojunctions

and showed improved light absorption and photocurrents compared to bare WO3 samples.

Su et al. 84 showed the implementation of a different system, a WO3/BiVO4 heterojunction,

that also showed similar improvement. In a sense the work of Abdi et al. 60 that I described

previously, where a gradient of tungsten doping was implemented in BiVO4 photoanodes, also

constitute an extreme case of all-oxide n-n heterojunction.

We have seen that structuration of photoanodes can lead to improved catalysis and charge

separation. Besides these aspects, rough photoelectrodes also benefit from improved absorp-

tion properties. Indeed smooth surfaces at the nanoscale and microscale strongly reflect light

by specular reflection. In addition, under normal light incidence and without reflective back

reflector, refracted light only propagates once in smooth films. On the contrary textured

surfaces scatter light thus decreasing reflection. Scattering centers also deviate incident rays

from normal incidence and increase light path in the material hence increasing the absorption

depth. This property is very interesting when working with metal oxides since these materials

are relatively transparent because of their indirect band gap. For that reason micrometric

thin films are usually implemented in order to absorb solar light. A clever light manage-

ment in photoanodes can allow decreasing the film thickness and therefore improving current

collection. A lot of different light trapping schemes have been investigated in the field of pho-

tovoltaics such as plasmonic nanoparticles, antireflective coatings, back reflectors, photonic

crystal microstructures, and photonic resonators (see fig. 1.5). Most of these strategies have

also been applied to photoelectrodes.

Plasmonic effects occurring in metal nanoparticles are sometimes used in order to improve

absorption properties of photoactive devices. Gold or silver nanoparticles are deposited at the

photoactive material surface or embedded in the material bulk (fig. 1.5 a.). For such particles,

conduction band electrons can oscillate in an Electromagnetic (EM) field, for example light

EM field. Depending on the relative size of the particle compared to light wavelength the

electron oscillations can enter resonance and form an intense EM field localized in the vicinity
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b.  Antireflectiona.  Plasmonics c.  Back-reflection d.  Photonic crystal

e.  Resonator

no
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matching
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light substratephotoactive material
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Figure 1.5: Different light trapping approaches: a. Plasmonic metal nanoparticles at the surface and in the
bulk of the photoanode thin film; b. Reflection with and without antireflection layers; c. Metal back reflector
to obtain total internal reflection; d. Light trapping in a photonic crystal structure; e. Light trapping in a
photonic resonator structure.

of the nanoparticle. Warren and Thimsen 86 exposed different motivations for the use of

plasmonic metal nanoparticles in photoelectrodes. If the nanoparticles are located near the

surface they can act as an antenna and confine light near the photoanode surface. This way

light absorption is promoted near the semiconductor/liquid junction reducing the distance

that holes have to travel in order to reach water. The plasmonic resonance decays within a

few femtoseconds either by reemitting a photon or by emitting a “hot electron”. Therefore the

plasmonic nanoparticles can also act as a sensitizer by injecting photoexcited electrons in the

semiconductor material conduction band. Plasmon enhanced light absorption was achieved in

mWO3 photoanodes by Solarska et al. 87 using silver nanoparticles. They coated tungsten oxide

on top of a silver film constituted of nanoislands in order to shield the metal from corrosion

during processing and operation. Thimsen et al. 88 also reported the use of plasmonic gold

nanoparticles to improve hematite light absorption. Hematite absorption was indeed improved

by the presence of such nanoparticles. Still the photocurrent obtained from these films were

decreased compared to control samples and Thimsen et al. 88 proposed that the metal particles

promote surface recombination. In order to avoid these recombination phenomena Thomann

et al. 89 embedded the gold particles in silica shells and showed photocurrent enhancements
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at the wavelengths of resonance of the nanoparticles. More recently Gao et al. 90 also showed

strong plasmonic enhancements of hematite ultra-thin films coated on gold nanopillar arrays.

We have seen that textured surfaces in general are less reflective that flat and smooth

surfaces. Additional strategies can be implemented in order to decrease reflection. Metal

oxides have a high refractive index leading to a strong optical contrast with the ambient

medium where light propagates before reaching the surface. At normal incidence on a flat

surface the reflectance (R) can be calculated as a function of the semiconductor refractive

index (n1) and the medium refractive index (n0):

R =

(
n0 − n1

n0 + n1

)2

(1.6)

In the case of metal oxides in water the reflectance is significant, in the 10 to 30% range. The

simplest way to decrease reflection is to use an index-matching thin film at the semiconductor

surface (fig. 1.5 b.). It is straightforward to deduce from eq. (1.6) that the optimal refractive

index of this matching-layer is the geometrical mean of the refractive index of the semicon-

ductor and the ambient medium. Another way to provide a smooth transition of refractive

index at the semiconductor surface is to use a layer with a graded refractive index (fig. 1.5 b.).

This property is often called the moth’s eye effect as it is present on the surface of moth eyes.

These lepidoptera eyes are covered with an array of closely packed submicrometric nipples.

Due to the subwavelength inter-distance and size of these features compared to incident light

wavelengths in the visible range, we can regard the structure as nanoscopic. In the nanoscopic

regime we can consider that light waves propagate in the structures without being influenced

by each individual feature but rather by the ensemble of those structures. In the case of the

moth eye, the nipples have a paraboloid shape and the averaged macroscopic refractive index

in which light propagates undergoes a smooth gradient from the tip of the nipples to their

basal plane. As a consequence visible light undergoes a smooth transition from the medium to

the moth eyes and reflection is negligible. Dewan et al. 91 showed that the moth eyes nipples

parabolic shape was optimal for antireflection but other complex structures such as cones are

also a suitable alternative. This effect has been exploited for silicon and GaAs solar cells92–94,

but has not yet been studied in photoelectrochemical systems.

If reflection should be avoided at the semiconductor/liquid interface this phenomenon is

beneficial at the semiconductor/substrate interface (fig. 1.5 c.). Reflective metal back contact

such as aluminium or silver are often used in the PV industry95. Recently Dotan et al. 96
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used this approach to obtain resonant total internal reflection in photoanodes composed of an

ultra-thin Ti-doped hematite film. The cell they used was V-shaped to achieve an incidence

of light above the critical angle corresponding to hematite index of refraction and obtain total

internal reflection. The challenging part of this strategy is to shield the reflective metal back

reflector from oxidation during hematite processing and cell operation.

We have seen that the control of light reflection at the semiconductor / liquid interface

could increase light path in this material, in the best case scenario leading to resonant total

internal reflection. Similar effects can also be achieved without implementing additional layers

around the photoactive material by a fine control of the photoanode nano- and microstructure.

Such fine control allows the implementation of photonic structures that can guide and trap

light directly within their bulk. One example of these photonic devices are photonic crystals

(fig. 1.5 d.). Such metamaterials are dielectrics with a microstructure that exhibits a long

range periodicity, in one or multiple dimensions, at the lengthscale of the light wavelength.

When light propagates inside such materials it sees a periodic dielectric constant. Therefore

light’s wavefunction inside this kind of material can be described by a Bloch wavefunction.

At some particular energy light can be confined inside the material in Bloch modes. This

kind of light confinement was used already in photoanodes as a well-known process allows to

assemble this kind of microstructures easily. This process involves the impregnation by a sol

of a 3-dimentional lattice of latex beads obtained by a Langmuir–Blodgett or sedimentation

deposition. Pyrolysis of the beads and impregnated sol leads to the formation of an inverse

opal photonic crystal structure. Such structures were for example implemented for WO3 by

Chen et al. 97 . They showed that adjusting the slow Bloch modes wavelengths to the optical

absorption of WO3 increased significantly the obtained photocurrents.

Another way to trap light inside a photoactive material is to use a microstructure that can

act as a photonic resonator (fig. 1.5 e.). Spheres and cylinders with mesoscopic dimensions

compared to incident light wavelengths can act as resonators. Due to the curved surface of

the resonator the angle between the propagation direction and the surface can be higher than

the critical angle for total internal reflection. In that case the EM field intensity of trapped

light is increased upon multiple reflection inside the resonator and constructive interferences.

Depending on the relationship between the resonator size and the incoming light wavelength

different confined modes can be observed. This effect has been investigated by Grandidier

et al. 98,99 to be used with thin film silicon solar cells. A strategy to decrease solar cells cost

is to decrease the thickness of the p-i-n silicon heterojunction. To achieve high absorption in
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such thin films Grandidier et al. 98,99 proposed to deposit an overlay of optically resonant silica

microspheres. Indeed, in addition to light trapping within the resonator bulk, an evanescent

EM field is usually leaking from the resonator. They managed to use this leaking field and

couple it in the underlying solar cell to improve light absorption.

A wealth of different studies showed that managing the flow of light and electrons inside

photoanodes can loosen material requirements. In section 1.1 we have seen that PE water

splitting systems have to be low cost in order to compete with existing technologies such

as PV-electrolysis. However most of the material required processing steps to implement

complex photoanode architectures are expensive. The core topic of this thesis is to study

inexpensive self-organization and self-assembly of matter towards the formation of original

photoanode architectures and the properties thereof. We will see now in more details the

challenges imposed by such an approach and the different solutions discussed throughout this

thesis.

1.4 Conclusions and aims of this thesis

To sum up, monoclinic tungsten oxide (mWO3) and hematite have emerged as promising

photoanode materials for PE water splitting (section 1.2). These oxides are inexpensive,

earth-abundant and gather both a suitable band gap for visible light absorption and a high re-

sistance to photocorrosion. Their major limitation comes from the coupling of a short minority

charge carrier diffusion length and a high transparency. Complex material architectures at the

nanometer and micrometer scales allow achieving short distances for holes diffusion without

compromising light absorption. Since metal oxide photoanodes benefit from the low cost of

their constituents, the technique employed to control the photoanode structure should also be

inexpensive in order to keep the photoanode cost as low as possible. In addition a successful

process for the production of materials for solar energy conversion should also be upscalable.

A back-of-the-envelope calculation17 shows that world energy consumption could be fulfilled

by covering an area close to the surface of France with 10% efficient solar panels. Even if such

coverage is not achievable in practice, this calculation shows that a production process with a

fast output is required if solar energy has to become more than a niche application. Therefore

we focused our work on cheap and upscalable processing techniques that would still grant us

a high control of the structures morphology.
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Well-established micropatterning techniques are usually involving top-down approaches.

Inkjet printing for example can write a pattern on a surface directly from a preset design. Pho-

tonic devices were implemented with submicrometric resolution100 but the very slow through-

put of this technique in terms of surface area does not make it practical for solar energy

applications. Photolithography is another widely used micropatterning method. Direct im-

print of light projection through a mask on a photocurable polymer and subsequent etching

steps allows to write structures down to the diffraction limit of light (≈ 100 nm). Higher res-

olutions can be obtained using interferences phenomena but the mask design becomes more

complex. This technique requires expensive mask and numerous preparation steps that also

make it unpractical for very large scale applications.

The advantage of top-down approaches is the high control they provide towards microstruc-

ture design since the desired patterns can be directly printed on surfaces. Nevertheless they

are not cost effective for mass production of micro and nanopatterned surfaces. Bottom-up

approaches, where matter assembles by itself into the desired structures, offer a cheaper and

upscalable alternative. We have already discussed some of those assemblies while reviewing

photoanodes architectures. For example the latex beads used to produce photonic crystals

photoanodes101–103 are self-assembling in the opal structure by sedimentation. The latex beads

themselves self-organize in spheres with a strongly monomodal distribution by emulsion poly-

merization104? .

In this thesis we will see two different solutions towards the formation of metal oxide pho-

toanodes with original microstructures. The first three following chapters will be focused on

the synthesis, photoelectrochemical and optical properties of micrometric and submicrometric

oblate spheroids with controlled size distribution. In a first chapter we will study the forma-

tion of these structures by using a polymer templated sol-gel process. In a second chapter we

investigate the PE water splitting properties of these films. In the third chapter their opti-

cal properties will be studied through a simulation model validated experimentally. In that

chapter we will see the relationship between the material optical properties and its photoelec-

trochemical response. The last chapter will detail the results obtained with an alternative

self-organization method, namely electrohydrodynamic destabilization.
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ence of Plasmonic Au Nanoparticles on the Photoactivity of Fe2O3 Electrodes for Water

Splitting. Nano Letters, 11(1):35–43, January 2011.

89. . Isabel Thomann, Blaise A. Pinaud, Zhebo Chen, Bruce M. Clemens, Thomas F.

Jaramillo, and Mark L. Brongersma. Plasmon Enhanced Solar-to-Fuel Energy Conver-

sion. Nano Letters, 11(8):3440–3446, August 2011.

90. . Hanwei Gao, Chong Liu, Hoon Eui Jeong, and Peidong Yang. Plasmon-Enhanced

Photocatalytic Activity of Iron Oxide on Gold Nanopillars. Acs Nano, 6(1):234–240,

January 2012.

91. . Rahul Dewan, Stefan Fischer, V. Benno Meyer-Rochow, Yasemin Oezdemir, Saeed

Hamraz, and Dietmar Knipp. Studying nanostructured nipple arrays of moth eye facets

helps to design better thin film solar cells. Bioinspiration & Biomimetics, 7(1):016003,

March 2012.

92. . Yi-Fan Huang, Surojit Chattopadhyay, Yi-Jun Jen, Cheng-Yu Peng, Tze-An Liu,

Yu-Kuei Hsu, Ci-Ling Pan, Hung-Chun Lo, Chih-Hsun Hsu, Yuan-Huei Chang, Chih-

Shan Lee, Kuei-Hsien Chen, and Li-Chyong Chen. Improved broadband and quasi-

omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature

Nanotechnology, 2(12):770–774, December 2007.

93. . Young Min Song, Si Young Bae, Jae Su Yu, and Yong Tak Lee. Closely packed and

aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike

shape transfer. Optics Letters, 34(11):1702–1704, June 2009.

Self-assembled Photonic Mesostructures for Water Splitting Photoanodes F. Boudoire

http://dx.doi.org/10.1016/j.jpowsour.2012.02.112
http://dx.doi.org/10.1039/c1ee02875h
http://dx.doi.org/10.1002/anie.201002173
http://dx.doi.org/10.1021/nl1022354
http://dx.doi.org/10.1021/nl201908s
http://dx.doi.org/10.1021/nn203457a
http://dx.doi.org/10.1088/1748-3182/7/1/016003
http://dx.doi.org/10.1038/nnano.2007.389
http://dx.doi.org/10.1364/OL.34.001702


50 CHAPTER 1. GENERAL INTRODUCTION

94. . Z. N. Yu, H. Gao, W. Wu, H. X. Ge, and S. Y. Chou. Fabrication of large area

subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography

and liftoff. Journal of Vacuum Science & Technology B, 21(6):2874–2877, November 2003.

95. . J. Muller, B. Rech, J. Springer, and M. Vanecek. TCO and light trapping in silicon

thin film solar cells. Solar Energy, 77(6):917–930, 2004.

96. . Hen Dotan, Ofer Kfir, Elad Sharlin, Oshri Blank, Moran Gross, Irina Dumchin, Guy

Ankonina, and Avner Rothschild. Resonant light trapping in ultrathin films for water

splitting. Nature Materials, 12(2):158–164, February 2013.

97. . Xiaoqing Chen, Jinhua Ye, Shuxin Ouyang, Tetsuya Kako, Zhaosheng Li, and Zhigang

Zou. Enhanced Incident Photon-to-Electron Conversion Efficiency of Tungsten Trioxide

Photoanodes Based on 3D-Photonic Crystal Design. Acs Nano, 5(6):4310–4318, June

2011.

98. . Jonathan Grandidier, Dennis M. Callahan, Jeremy N. Munday, and Harry A. Atwa-

ter. Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery

Modes in Dielectric Nanospheres. Advanced Materials, 23(10):1272–1276, March 2011.

99. . Jonathan Grandidier, Raymond A. Weitekamp, Michael G. Deceglie, Dennis M.

Callahan, Corsin Battaglia, Colton R. Bukowsky, Christophe Ballif, Robert H. Grubbs,

and Harry A. Atwater. Solar cell efficiency enhancement via light trapping in printable

resonant dielectric nanosphere arrays. Physica Status Solidi A-applications and Materials

Science, 210(2):255–260, February 2013.

100. . K. K. B. Hon, L. Li, and I. M. Hutchings. Direct writing technology-Advances and

developments. Cirp Annals-manufacturing Technology, 57(2):601–620, 2008.

101. . Xiaoqing Chen, Zhaosheng Li, Jinhua Ye, and Zhigang Zou. Forced Impregnation Ap-

proach to Fabrication of Large-Area, Three-Dimensionally Ordered Macroporous Metal

Oxides. Chemistry of Materials, 22(12):3583–3585, June 2010.

102. . Siva Krishna Karuturi, Chuanwei Cheng, Lijun Liu, Liap Tat Su, Hong Jin Fan, and

Alfred Iing Yoong Tok. Inverse opals coupled with nanowires as photoelectrochemical

anode. Nano Energy, 1(2):322–327, March 2012.

F. Boudoire Self-assembled Photonic Mesostructures for Water Splitting Photoanodes

http://dx.doi.org/10.1116/1.1619958
http://dx.doi.org/10.1016/j.solener.2004.03.015
http://dx.doi.org/10.1038/NMAT3477
http://dx.doi.org/10.1021/nn200100v
http://dx.doi.org/10.1002/adma.201004393
http://dx.doi.org/10.1002/pssa.201228690
http://dx.doi.org/10.1016/j.cirp.2008.09.006
http://dx.doi.org/10.1021/cm100751w
http://dx.doi.org/10.1016/j.nanoen.2012.01.001


CHAPTER 1. GENERAL INTRODUCTION 51

103. . Siva Krishna Karuturi, Jingshan Luo, Chuanwei Cheng, Lijun Liu, Liap Tat Su, Al-

fred Iing Yoong Tok, and Hong Jin Fan. A Novel Photoanode with Three-Dimensionally,

Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells. Ad-

vanced Materials, 24(30):4157–4162, August 2012.

104. . J. Ugelstad, K. H. Kaggerud, F. K. Hansen, and A. Berge. Absorption of Low-

molecular Weight Compounds In Aqueous Dispersions of Polymer-oligomer Particles .2.

Step Swelling Process of Polymer Particles Giving An Enormous Increase In Absorption

Capacity. Makromolekulare Chemie-macromolecular Chemistry and Physics, 180(3):737–

744, 1979.

Self-assembled Photonic Mesostructures for Water Splitting Photoanodes F. Boudoire

http://dx.doi.org/10.1002/adma.201104428
http://dx.doi.org/10.1002/macp.1979.021800317


Chapter 2

Self-assembly of tungsten oxide

microspheroids

A wealth of complex microstructures can be obtained by using polymers. These chain-like

molecules are composed of repeating units, formed from monomers, that bond to form chains

that can extend to several thousands of these units. A polymer, or a polymer blend, can

self-assemble from monomers or from crosslinking between multiple polymer chains into ar-

chitectures that can be controlled by processing parameters. These structures can be “frozen”

upon drying or precipitation of the polymer. A well-established strategy to obtain complex

microstructures is for example polymer blend demixing. In the frame of this thesis we are

interested in converting these polymer structures into metal oxide structures. This can be

achieved by loading the polymer with a metal oxide precursor, before or after the polymer

self-assembly, and then heating up the system at a temperature where the polymer will de-

compose and evaporate while the metal oxide will be formed from its precursors. This kind

of polymer templated technique has been used already, in the production of high porosity

metal oxides photoanodes1–3 and more complex architectures such as inverse opals photonic

crystals4. In this chapter we will discover an original approach involving the use of a polyelec-

trolyte and a tungsten salt in an aqueous solution containing ammonia (NH3). Upon thin film

casting and subsequent pyrolysis we will see that an original microstructure can be obtained,

composed of micrometric oblate spheroids of monoclinic tungsten trioxide. The focus of this

chapter is to unravel the phenomena that lead to these oxide spheroids self-assembly and to

identify the parameters of influence on the microspheroids size and shape.
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2.1 Introduction

I want to use polymer assemblies that can act as template for novel metal oxides thin films

microstructures. Our goal is to obtain a strong interaction between a metal salt precursor and

the polymer in order to enclose the metal salt inside polymeric structures. In order to keep this

process inexpensive I chose water as medium for this self-assembly process. Hence I had to use

compounds that are highly soluble in water to obtain homogeneous solutions, suited for casting

on the FTO glass substrates used to produce the photoanode assembly. I used Ammonium

Meta-Tungstate (AMT) as metal salt precursor for mWO3. This specie is more soluble in

water for a wider range of pHs than alternative salts like Ammonium Para-Tungstate (APT),

tungstic acid (H2WO4) and tungsten chloride (WCl6). The polymer I chose for this study was

a polyelectrolyte, Poly(4-styrenesulfonic acid) (PSS). Polyelectrolytes are polymers bearing

ionizable groups. These groups can hydrolyse, making polyelectrolytes soluble in water. In

addition PSS is known for its ability to self-assemble in solution in layer-by-layer self-assembly

processes and into nanometric domains5–8.

I found that addition of ammonium ions to a water based solution containing PSS and

AMT was leading upon casting to a monolayer of tungsten rich spheroidal domains enclosed

in a polymer matrix. Upon pyrolysis these domains become mWO3 oblate tungsten spheroids

while the polymer is pyrolysed. I propose here to explain this self-assembly process based

on optical measurements realized on solutions, during spin coating and after spin coating the

films. In particular I will emphasize the influence of ammonia (NH3) concentration, which

triggers the spheroids formation upon casting.

2.2 Materials and methods

2.2.1 mWO3 microspheroids synthesis route

The mWO3 thin film composed of microspheroids is casted from an aqueous solution containing

PSS, AMT and NH3. In the present study various amounts of ammonia have been investigated

with concentrations ranging between 0 mol/L and 4.5 mol/L. The concentrations of AMT (0.5

mol/L) and PSS (0.2 mol/L) were kept constant. These solutions are prepared in 3 steps. First

an aqueous ammonia solution (5 mol/L, Sigma-Aldrich) is diluted in Deionized (DI) water in
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order to obtain the desired ammonia concentration. Then AMT powder (Sigma-Aldrich) is

added to the solution which is stirred until full dissolution. A PSS aqueous solution is then

added to the solution and the mixture is further stirred for 5 minutes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14cm

mWO3

bare
FTO glass

Figure 2.1: 1.5×1.5 cm and 10×10 cm photoanodes obtained by spin coating at 3000 rpm and pyrolysis at
500◦C of a PSS (0.2 mol/L) / AMT (0.2 mol/L) / NH3 (0.2 mol/L) solution on FTO glass. These photoanodes
are composed of a monolayer of micrometric mWO3 spheroids.

The final solution containing 4.5 mol/L of NH3 was spin coated on FTO glass slides of

1.5×2.5 cm (fluorinated tin-oxide coated aluminoborosilicate glass, 10 Ω.sq−1 from Solaronix)

using a Primus STT15 (ATM group) spin coater. Different spin coating speeds were investi-

gated, from 1000 to 6000 rpm, with an acceleration of 3000 rpm/s and a holding time of 60

seconds. The resulting films were then pyrolysed at 500◦C for 2 hour, with a heating ramp

of 5◦C/min. This whole synthesis is simple and easily upscalable. The samples used for char-

acterization have a size of 1.5×2.5 cm, but photoanodes with dimensions close to 10×10 cm

could also be obtained with the same synthesis process (fig. 2.1).

2.2.2 Scanning X-ray transmission microscopy

Scanning Transmition X-ray Microscopy (STXM) was used in order to probe the chemical

composition of the different domains obtained in thin films upon casting of PSS / AMT /

NH3 solutions. This spectroscopy technique allows to record X-ray absorption spectra of small

areas with nanometric dimensions. By scanning a sample surface, a mapping of the sample

chemical composition can be obtained with a resolution at the nanoscale. This experiment

was realized at Helmholtz Zentrum’s Bessy II synchrotron in Berlin, beamline U41-FSGM,
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end station U41-TXM. The samples were prepared by spin coating of PSS / AMT / NH3

solutions at the surface of silicon nitride (Si3N4) windows, 200 nm thick, from SPI Supplies.

2.2.3 Conductometric and PH-metric titration

I realized titration experiments in order to understand how the compounds in the PSS / AMT

/ NH3 solutions react with each other’s. Titrations are usually performed by preparing a first

solution, the analyte, in which a second solution is poured, the titrant. The variations in con-

ductivity of the analyte with titrant addition are proportional to addition and/or consumption

of ions and give quantitative information on the chemical reaction between the titrant and the

analyte. The variations of pH are related to the concentration of hydronium ions in solution,

recorded through variations of surface potential when ions adsorb at the electrode surface,

according to the relation: pH = -log([H3O+]). An increase of the volume of solution occurs

during titration, leading to a dilution of the analyte. This dilution of the analyte can shift

its chemicals concentrations to a range where no structures form upon casting and where the

chemical reactions are possibly different from the one encountered in the solution used for spin

coating. To avoid this issue it was necessary to prepare a large number of solutions with fixed

concentration of PSS and AMT and different concentrations of NH3.

2.2.4 Optical measurements: dynamic light scattering, in-situ in-

terferometry and static light scattering

In order to study the formation of structures in solution, during and after casting, optical mea-

surements were performed. Dynamic Light Scattering (DLS) proved to be a useful technique

for the study of solutions. DLS relies on the fact that particles in solution scatter light in all

directions. These multiple scattered light fields interfere with each other leading to a speckle

pattern that can be recorded by a Charge-Coupled Device (CCD) camera, with one picture

each δt ≈ 1 µs. Each snapshot is correlated to the first snapshot (t = 0) and a correlation

coefficient is calculated. This correlation coefficient is comprised between 0 and 1 and repre-

sents the extent of change of the speckle pattern over time. The evolution of the correlation

coefficient over time is called a correlogram and constitutes the raw data obtained from the

DLS instrument. The correlation coefficient evolution over time (C(t)) can be modeled by a

sum of exponential decays:
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C(t) =
n∑

i=1

Ai exp(−Γi t) (2.1)

Where each time constant (Γi) correspond to a diffusion coefficient (Di) in solution:

Di =
Γi

q2
(2.2)

q =
4 π n

λ
sin

(
θ

2

)
n : particle refractive index

θ : laser angle of incidence

λ : laser light wavelength

And each diffusion coefficient (Di) relates to a radius of gyration (Ri) through the Stokes-

Einstein formula:

Ri =
k T

6 π η Di

(2.3)

k : Boltzmann’s constant

T : temperature

η : medium dynamic viscosity

I also investigated in-situ interferometry during spin coating. In that case sapphire glass

slides, from Stettler sapphire AG, were used as substrates in order to avoid effects linked to

the FTO glass roughness. This technique allows to follow interference variations over time,

occurring during spin coating due to the decrease of film thickness (fig. 2.2). This method

was also used in the literature to monitor other structural changes, such as phase separation9.

In these experiments an increase in scattering due to the formation of micrometric domains

during spin coating leads to a decrease in the reflected intensity over time.
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t
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film

substrate

constructive interference destructive interference

film thickness decrease over time

photodiode

red laser

spin coater
sample

Figure 2.2: In-situ interferometry during spin coating. Left: Experimental setup. Right: Schematic represen-
tation of interference phenomena recorded during spin coating.

Finally angle resolved Static Light Scattering (SLS) was used on films after their spin

coating in order to confirm the results obtained with in-situ interferometry. These experiments

were performed on the same films used in the interferometry study, which were coated on

sapphire glass. In this experiment a monochromatic laser is pointed orthogonally to the

sample surface while recording the scattered intensity with a detector rotating around the

sample (fig. 2.3).

laser

rotating detector

scattering sample

Figure 2.3: Angle resolved SLS, experimental setup.

2.3 Results and discussion

After spin coating of an aqueous solution of ammonium tungstate and PSS at high concen-

tration of ammonia, the microstructure of the film was studied by Scanning Electron Mi-

croscopy (SEM) (fig. 2.4 a.) and STXM (fig. 2.5). SEM micrographs show that upon spin

coating of the aqueous ammonium tungstate / PSS solution, micrometric domains are stabi-

lized into droplets embedded in a matrix. This electron micrograph was realized by recording

secondary electrons and the matrix appears darker than the droplets due to charging effects.
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This contrast is not linked to the film topography but rather to differences in electric con-

ductivity. The film surface before pyrolysis is indeed flat at the nanometer scale (annex 6,

fig. A.2).

a.

b.

c.

5 μm

5 μm

1 μm

Figure 2.4: Ammonium tungstate / PSS film surface
(spin coating speed 3000 rpm): a. SEM picture before
pyrolysis (top view). b. SEM picture after pyrolysis
(top view). c. SEM picture after pyrolysis (side view).
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Figure 2.5: Scanning X-ray absorption microscopy
(STXM) pictures at the O K-edge, the C K-edge and
the N K-edge, before pyrolysis.

X-ray absorption with spatial resolution was also recorded on this film (fig. 2.5). STXM

images prove that the matrix, between the droplets, is formed by the polymer, since the

absorption at the carbon K-edge is higher in these regions. The droplets have a higher ab-

sorption of X-rays at the oxygen K-edge and can therefore contain some remaining water. Less

absorption contrast is obtained at the nitrogen K-edge, because the substrates used for the

STXM measurements are silicon nitride windows, also containing nitrogen in an amorphous

phase. Nevertheless, a fine structure is present in the nitrogen K-edge spectra recorded inside

the droplets which is absent outside the droplets. A similar peak at the nitrogen K-edge was

observed by different authors10,11 in (NH4)2SO4 samples. This spectral feature corresponds to

the well-known nitrogen 1s→π∗ transition in ammonium ions and proves the localization of

ammonium tungstate inside the droplets.

This correlated SEM and STXM studies prove that polystyrene sulfonic acid is forming

vesicles enclosing the ammonium tungstate precursor. A monolayer of those vesicles is coated
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onto the substrate during the spin coating. Upon pyrolysis the polymer vesicles act as microre-

actors constraining the mWO3 crystallization to spheroid shape with controlled dimensions

(fig. 2.4 b. and c.). The phase and crystallinity of the mWO3 phase was confirmed by X-ray

diffraction (annex 6, fig. A.1).

I would like to understand how the microspheroids form from solution upon casting. One

important observation I made is that the microspheroids forms only at high concentrations

of ammonia. Therefore I decided to investigate the impact of ammonia concentration on the

solution chemistry.

I observed that microspheroids form upon casting of PSS / AMT / NH3 solutions when

the concentration of NH3 was higher than a critical value situated around 0.5 mol/L. In order

to understand the reactions that occur in solution upon addition of NH3, conductometric and

pH-metric measurements were conducted on solutions containing a fixed concentration of PSS

and AMT and various concentrations of NH3. The pH and conductivity of these solutions

were measured and plotted versus the concentration of NH3 (fig. 2.6).
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Figure 2.6: pH-metric (blue circles) and conductometric (red circles) titration curves obtained by fixing the
concentrations of PSS (0.2 mol/L) and AMT (0.5 mol/L) and varying the concentration of NH3. The blue
line is the result of the pH modelization and the red curve the result of the conductivity modelization.
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The pH and conductivity were modeled using the following reactions:

• Model reactions for AMT with AH2 standing for (NH4)6H2W12O40(H2O)10, AH– stand-

ing for [(NH4)6HW12O40(H2O)10]– and A2– standing for [(NH4)6W12O40(H2O)10]2–:

Reaction of AH2 with water:

AH2 + H2O
Ka11−−−⇀↽−−− AH− + H3O+

Ka11−−
[H3O+][AH−]

[AH2]
(2.4)

Reaction of AH– with water:

AH− + H2O
Ka12−−−⇀↽−−− A2− + H3O+

Ka12−−
[H3O+][A2−]

[AH−]
(2.5)

Balance of tungsten:

[AH2] + [AH−] + [A2−]−−[AH2]0 (2.6)

• Model reactions for PSS with PS−SO3H standing for the protonated sulfonic groups,

and PS−SO3
– standing for the deprotonated sulfonic groups:

Reaction of PSS with water:

PS−SO3H + H2O
Ka2−−⇀↽−− H3O+ + PS−SO3

−

Ka2−−
[H3O+][PS−SO3

−]

[PS−SO3H]
(2.7)

Balance of sulfur:

[PS−SO3H] + [PS−SO3
−]−−[PS−SO3H]0 (2.8)
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• Model reaction for NH3:

NH3 + H2O
Kb−−⇀↽−− NH4

+ + OH−

Kb
−− [OH−][NH4

+]

[NH3]
(2.9)

Balance of nitrogen:

[NH3] + [NH4
+]−−[NH3]0 (2.10)

• Autoionization of water:

2 H2O
kw−−⇀↽−− OH− + H3O+

kw−−[OH−][H3O+] (2.11)

Using a balance of charges I calculate the pH and conductivity:

[PS−SO3
−] + [AH−] + 2 [A2−] + [OH−]−−[NH4

+] + [H3O+] (2.12)

Considering all of the equilibrium relations and mass balances described previously (equa-

tions 2.4 to 2.11), the equation 2.12 can be expressed as a function of x−−[H3O+] in a polynomial

of degree 6:

x6 × Kb

+ x5 × ( Ka11 Kb + Ka2 Kb + [NH3] Kb + kw )

− x4 × ( [AH2]0 Ka11 Kb − [PS−SO3H]0 Ka2 Kb − Kb kw + Ka11 Ka12 Kb + Ka2 Ka11 Kb +

[NH3] Ka11 Kb + [NH3] Ka2 Kb + Ka11 kw + Ka2 kw )

−x3× (2[AH2]0Ka11Ka12Kb− [PS−SO3H]0Ka2Ka11Kb− [AH2]0Ka2Ka11Kb +Ka2Ka11Ka12Kb +

[NH3] Ka11 Ka12 Kb + [NH3] Ka2 Ka11 Kb − Ka11 Kb kw − Ka2 Kb kw − [AH2]0 Ka11 kw −
[PS−SO3H]0 Ka2 kw + Ka11 Ka12 kw + Ka2 Ka11 kw − kw

2 )

−x2 × ( [PS−SO3H]0 Ka2 Ka11 Ka12 Kb − 2 [AH2]0 Ka2 Ka11 Ka12 Kb + [NH3] Ka2 Ka11 Ka12 Kb −
Ka11 Ka12 Kb kw − Ka2 Ka11 Kb kw − 2 [AH2]0 Ka11 Ka12 kw − [PS−SO3H]0 Ka2 Ka11 kw −
[AH2]0 Ka2 Ka11 kw + Ka2 Ka11 Ka12 kw − Ka11 kw

2 − Ka2 kw
2 )
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− x × ( Ka2 Ka11 Ka12 Kb kw − [PS−SO3H]0 Ka2 Ka11 Ka12 kw − 2 [AH2]0 Ka2 Ka11 Ka12 kw −
Ka11 Ka12 kw

2 − Ka2 Ka11 kw
2 )

−Ka2 Ka11 Ka12 kw
2

= 0

Solving this polynomial equation allows calculating the pH and the conductivity (κ):

pH = -log10(x)

κ = κ(H3O+) · x +κ(NH4
+) ·

Kb · [NH3] · x
kw

+ Kb · x
+κ(OH–) ·

kw

x
+κ(PS−SO3

–) ·
Ka1 · [PS−SO3H]0

x + Ka

+κ(AH–) ·
[AH2]0

1 +
x

Ka11

+
Ka12

x

+ κ(A2–) ·
2Ka12 · [AH2]0

Ka12 + x +
x2

Ka11

The model parameters have the following values:

pKa11 = 8

pKa12 = 8

pKa2 = 1

pKb = 4.3

[AH2]0 = 0.6 mol/L

[PSS]0 = 0.3 mol/L

κ(A−)=0 S.(mol/L)−1.cm−1

κ(A2−)=0 S.(mol/L)−1.cm−1

κ(PS−SO3
−)=0.05 S.(mol/L)−1.cm−1

κ(H3O+)=0.3498 S.(mol/L)−1.cm−1

κ(OH−)=0.1986 S.(mol/L)−1.cm−1

κ(NH4
+)=0.0735 S.(mol/L)−1.cm−1

This model is in good agreement with the experimental data (fig. 2.6). Therefore the

reactions in solution can be described by a deprotonation of the polymer, which was also

observed in our previous studies, and the reaction of tungstate specie that acts as a diacid.

I am showing here the most probable reaction of AMT with NH3 but any reaction involving

two protons can be considered. It is also interesting to see that there is a discrepancy for

high concentrations of NH3 between the model and experimental data in the conductometry

measurement. The experimental data is decreasing while the model is increasing. In this
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region it seems that the conductivity cannot be described by considering chemical reactions

only. This discrepancy occurs in the range where microspheroids are obtained upon casting and

could be a consequence of an aggregation of the polymer. When aggregates form the polymer

conductivity is decreased, resulting in a molar conductivity decrease. This phenomenon is

commonly used to determine critical micelle concentration12,13.

In order to see if the chemical reactions described in the previous section lead to the

formation of aggregates in solution I used DLS on the same solutions that were used for the

titration experiment. Figure 2.7 shows the evolution of the correlation coefficient over time as a

function of the NH3 concentration in solution of 0.2 mol/L of PSS and 0.5 mol/L of AMT. The

inversion point of the correlation coefficient curves shift to longer times from 0 to 0.5 mol/L of

NH3 and then saturates to around 10 µs. This correlation lag time corresponds to sizes in the

range 5 to 15 nm. The trend of the shift can easily be characterized by plotting the correlation

coefficient value at the shortest recorded time as a function of the NH3 concentration (fig. 2.8).
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Figure 2.7: DLS correlograms as a function of the NH3

concentration in a solution of 0.2 mol/L PSS and 0.5
mol/L AMT.
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Figure 2.8: Correlation coefficient at 0.5 µs as a func-
tion of the concentration of NH3. The correlation co-
efficient increases when the whole correlogram shifts
to longer time scales.

The shift observed in the correlation curves with increasing concentration of NH3 relates

well with the titration curves reported in the previous section (see fig. 2.9, c.). The onset of

saturation of the correlation curves at 0.5 mol/L of NH3 occurs just after the first pH jump

observed with titration, and the shift occurs during this pH jump. It therefore seems to be

a relation between the aggregation of the polymer and its deprotonation. These chemical
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processes also relate to the microspheroid formation upon spin coating. Before the full de-

protonation of the polymer and saturation of the correlation curves shift no microspheroids

can be observed upon spin coating (fig. 2.9 a.) whereas microspheroids could be observed in

certain regions after this threshold (fig. 2.9 b.).
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Figure 2.9: a. SEM of a film spin coated from a 0.2 mol/L PSS / 0.5 mol/L AMT and 0.49 mol/L NH3, no
microspheroids are observed. b. SEM of a film spin coated from a 0.2 mol/L PSS / 0.5 mol/L AMT and 0.65
mol/L NH3, microspheroids are observed in some regions. c. Evolution of the pH and correlation coefficient
at 0.5 µs as a function of the NH3 concentration in a 0.2 mol/L PSS / 0.5 mol/L AMT solution.

This first DLS study shows that the polymer needs to be deprotonated in order to form

the nanometric aggregates observed in solution. In addition this aggregate formation occurs

at the same concentration as the microspheroid formation meaning these two aspects can be

related. I wanted then to know whether the presence of the tungsten salt (AMT) in solution

is necessary for the aggregates to form.

I measured DLS in solutions of the polymer (PSS) with different concentrations of NH3

and no tungsten salt. In that case the inversion point of the correlation curves never reaches

timescales that are measurable with the DLS instrument (fig. 2.10), meaning no particles
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can be detected. The characteristic length increases also while deprotonation occurs but

then decreases again when adding more NH3 (fig. 2.11). We have seen already that SEM

and Atomic Force Microscopy (AFM) studies of the films in that case did not show any

microspheroid formation upon spin coating. Therefore the presence of AMT is necessary both

for the microspheroid formation upon spin coating and for the formation of aggregates in

solution observed with DLS.
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Figure 2.10: DLS correlograms as a function of the
NH3 concentration in a solution of 0.2 mol/L PSS
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Figure 2.11: Correlation coefficient at 0.5 µs as a func-
tion of the concentration of NH3. The correlation co-
efficient increases when the whole correlogram shifts
to longer time scales.

The fact that the polymer forms aggregates in solution only when AMT is present points to

studies in the literature on “polymer domain” formation in polyelectrolyte solutions. Studies

on PSS solutions started in the 1950s7,8,15,16 and show that this polyelectrolyte exists in a

dispersed state at all pH values, but as coils and aggregates when the solution ionic strength

is high. Further studies on the impact of salt addition to PSS solutions by Zhang et al. 14 ,

using neutron and light scattering, show that the presence of salt leads to the formation of

a polymer “cobweb” with two characteristic lengthscales (see fig. 2.12). The first lengthscale

corresponds to the interchain distance (ξd) which they estimated between 8 and 16 nm using

neutron scattering. The second lengthscale is the overall domain size (Rg) and was estimated

by light scattering to range between 50 and 100 nm.

This theory is interesting but there is one major discrepancy between the light scattering
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results of Zhang et al. 14 and ours. They observe with DLS a radius of gyration Rg which

ranges from 50 to 100 nm, whereas in my DLS experiment the observed length is in the 5 to

15 nm range and rather matches the interchain distance (ξd). Therefore I wanted to prove

that ionic strength can be the cause of the presence of the aggregates observed with DLS in

the AMT / PSS / NH3 system.

Rg

PSS chain
counterion cloud

Figure 2.12: Scheme of a polymer
domain, adapted from Zhang
et al. 14 .

In order to test whether high ionic strengths can lead to the

appearance of the characteristic 5 to 15 nm lengthscale observed

with DLS on deprotonated PSS solutions containing AMT, I re-

placed this salt by NaCl. I investigated different concentrations

of NaCl, ranging from 0 to 1 mol/L. DLS experiments on these

solutions (figs. 2.13 and 2.14) clearly demonstrate that when

increasing the amount of salt, hence the ionic strength in solu-

tion, the correlograms shift until they reach the typical 5 to 15

nm length I also observed with AMT. Therefore the polymer

domain formation seems to be linked to a deprotonation of the

polymer and the compensation of its charge by ions in solution.
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Figure 2.13: DLS correlograms as a function of the
NaCl concentration in a solution of 0.2 mol/L PSS
and 5 mol/L NH3
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I also investigated whether spin coating of the NaCl / PSS

/ NH3 solutions could lead to microspheroids formation. Nevertheless, when coating these
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films, I obtained fractal patterns similar to those already reported in the literature for this

system17 (see fig. 2.15). The article by Samanta and Mukherjee 17 reports that these patterns

are formed first by a precipitation of NaCl excess species and then the aggregation of the

polymeric domains containing additional NaCl on these first pattern. This may be a reason

why I did not obtain microspheroids with NaCl, the main driving force for pattern formation

being in that case the excess NaCl precipitation.

Figure 2.15: SEM
of fractal patterns
obtained when coating
the NaCl/PSS/NH3

solutions.

I learned from this DLS and SEM study that the PSS forms nano-

metric domains in solution when it is deprotonated and when the

solution ionic strength is high. In the case of AMT, the polymer

is probably stabilized by AMT ions, [(NH4)6HW12O40(H2O)10]– and

[(NH4)6W12O40(H2O)10]2–. In addition when these nanometric domains

form, the microspheroids are also appearing during spin coating. Hence

the polymeric domains may be aggregating upon casting to form the mi-

crospheroids. To gain a better understanding of the transition that could

occur from the polymeric domains to the microspheroids obtained upon

spin coating I have performed static light scattering experiments during

casting and after casting of the AMT / PSS/ NH3 solutions.

In-situ interferometry allows following interferences variations over time occurring during

spin coating due to the decrease of film thickness. But this technique was also used in the

literature to monitor other structural changes, such as phase separation9. An increase in

scattering due to the formation of microspheroids during spin coating could be observed by a

decrease in the reflected intensity over time.

Due to vibrations of the spin coater leading to oscillations of the reflected laser I used a

band pass filter to increase the signal to noise ratio (see fig. 2.16 a.). The resulting spectra are

not valid in the first 3 seconds because the frequency of the spin coater oscillations and the

frequency of the interferences are similar in this region (grayed regions in c2.16). The treated

data after 3 seconds was used for analysis.

For two different spin coating speeds, 1500 rpm (fig. 2.16 b.) and 2000 rpm (fig. 2.16

c.), coating a solution that forms microspheroids leads to a decrease of the reflected intensity

(blue curves in fig. 2.16) while the reflection on film that do not form microspheroids remains

relatively constant (red curves in fig. 2.16). This trend may be caused by an increase of the

scattering over time, consequence of the microspheroid formation during coating.
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Figure 2.16: a. Raw interferogram (green line) and the same interferogram with the band pass treatment (blue
line). b. Films spin coated at 1500 rpm: film with spheroids (0.2 mol/L PSS / 0.5 mol/L AMT / 5 mol/L
NH3, blue line) and film without spheroids (0.2 mol/L PSS / 0.5 mol/L AMT / 0.25 mol/L NH3, red line). c.
Films spin coated at 2000 rpm: film with spheroids (0.2 mol/L PSS / 0.5 mol/L AMT / 5 mol/L NH3, blue
line) and film without spheroids (0.2 mol/L PSS / 0.5 mol/L AMT / 0.25 mol/L NH3, red line)

In order to verify whether this decrease in intensity can really be attributed to an increase

of scattering over time I measured the scattering pattern of a film composed of microspheroids

just after its spin coating. Significant scattering effects from the spheroids could be observed

for wavelengths between 400 and 700 nm (see fig. 2.17). UV-visible spectroscopy (fig. 2.18)

shows that below 400 nm more scattering is expected but the polymer is absorbing light

significantly at these wavelengths leading to scattering spectra with very low signal to noise

ratios. Hence scattering effects are significant at the wavelength where the laser operate (650

nm) in the in-situ interferometry experiments. The decrease in reflected light in this in-situ

experiment can therefore be linked to light scattering.
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Figure 2.17: Angular scattering patterns as a function
of the incident laser wavelength, from a film composed
of microspheroids (0.2 mol/L PSS / 0.5 mol/L AMT
/ 5 mol/L NH3)
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Figure 2.18: UV-visible transmission spectroscopy
spectra from the substrate (sapphire, pink line); from
a film without spheroids (0.2 mol/L PSS / 0.5 mol/L
AMT / 0.25 mol/L NH3, no spheroids, red line);
from a film with spheroids (0.2 mol/L PSS / 0.5
mol/L AMT / 5 mol/L NH3, spheroids, green line);
difference spectra between the film with spheroids
and the film without, multiplied by 5 for visibility;
and amount of scattered intensity from a film with
spheroids (spheroids scattering, blue line with blue ci-
cles).

2.4 Conclusions

I have discovered, using DLS, that PSS nanometric domains form in solution when the polymer

is deprotonated and when the solution ionic strength is high. In addition, coupling DLS

and SEM experiments showed that the apparition of the polymer domains in solution and

the formation of microspheroids upon casting occur at similar NH3 concentration. There

is therefore a relationship between these two aspects. One hypothesis is that the nanometric

domains aggregate during spin coating into micrometric objects. In-situ interferometry during

spin coating seems to show that light scattering appears during the spin coating process and

increases until the film dries completely. Light scattering experiments after spin coating

confirmed that this decrease in reflectivity during spin coating can be related to a scattering

effect. This in-situ study seems to corroborate that the microspheroids appear during the

coating process and could therefore emerge from the nanodomains in solution.
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These self-assembled micrometric domains obtained upon spin coating can be converted

to mWO3 by a simple pyrolysis step. This facile synthesis route offers an inexpensive and

upscalable way to obtain mWO3 photoanodes with an original microstructure. In the next

chapter we will see that these spheroids can be coated with a nanometric layer of hematite

to obtain an all-oxide heterojunction photoanode and we will characterize the PE response of

those films.
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Chapter 3

Photoelectrochemical water splitting

with hematite coated mWO3

microspheroids

In the previous chapter we have seen how mWO3 can self-assemble in a film constituted of

a monolayer of oblate spheroids. When coated with a hematite overlayer this film constitute

a photoanode for photoelectrochemical applications involving an all-oxide heterojunction. I

will study in this chapter the PE behavior of those films. In addition we will see that the

microspheroids size distribution can be controlled by tuning a single processing step. We

will examine in particular the impact of the microspheroids size distribution on the film PE

characteristics.

3.1 Introduction

Hydrogen production by solar water splitting in photoelectrochemical cells (PEC) is one of

the technologies that could lead to economically viable hydrogen economy. This technology

is based on photo-electrolysis of water and allows to split water into O2 (anode) and H2

(cathode). If photoactive materials are used to harness solar light, and provide the electric

voltage needed to split water, H2 is produced without generation of harmful byproducts and

can be easily collected at the cathode. Compared to other solar hydrogen technologies, PEC
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cells are beneficial in terms of system integration since PEC electrodes combine light absorption

and electrocatalysis.

A major problem encountered when developing photoelectrode materials based on inor-

ganic semiconductors is the combination of a low conductivity and limited light absorption.

In the present study I propose to address this fundamental limitation by combining two dif-

ferent approaches: matching the electronic structure and optical properties of two different

semiconductors and controlling their microstructure.

Tungsten oxide (mWO3) and hematite (α-Fe2O3) have been extensively studied as pho-

toanode materials for solar water splitting. These two oxides possess a valence band at energy

lower than the oxygen evolution reaction potential, allowing to catalyze this reaction by pro-

viding photogenerated holes at their surface. Moreover their narrow band gap allows light

absorption in the near UV by the tungsten oxide and in the visible range by hematite. State

of the art hematite photoelectrodes, prepared by atmospheric pressure chemical vapor depo-

sition, reach 3.3 mA.cm−2 at 1.43 VRHE
1, while mWO3 photoelectrodes can reach around 3

mA.cm−2 at the same potential for micrometer thick films2. Some studies aimed at coupling

hematite and mWO3 in an oxide heterojunction3–6. Coupling these two oxides in a hetero-

junction would allow absorption of up to 35% of the solar power spectrum. In addition, a

depletion layer that can improve the separation of the photogenerated hole/electron pairs is

forming at the mWO3/hematite junction, emerging from a favorable matching of the valence

and conduction bands in those materials.

Such design is nevertheless hindered by the low conductivity of metal oxides. This is

particularly true for hematite and Kennedy and Frese7 reported that the charge carrier diffu-

sion length in hematite was close to 5 nm and further studies by Le Formal et al.8 point to

even shorter lengths (1-2 nm). This diffusion length is one order of magnitude shorter than

hematite’s optical thickness (44.6 nm at a wavelength of 400 nm9). Therefore, the full capabil-

ity of hematite cannot be achieved in the case of a flat thin film geometry where increasing the

film thickness would lead to more charge carrier accumulation (charging) and decreasing the

film thickness would lead to less light absorption. In the present study I propose to decouple

light absorption from the metal oxide film thickness using controlled microstructures.
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3.2 Material and methods

3.2.1 Photoanodes preparation

Spin coating Pyrolysis Fe(NO3)3 spin coating
and pyrolysis

hematite mWO3

FTOglassa. b. c. d.

Figure 3.1: Flow sketch of the mWO3 microspheroids self-organization and hematite coating. a. PSS vesicle
suspension in an ammonium tungstate solution for spin coating. b. Polymer film enclosing ammonium
tungstate, after spin coating on FTO coated glass. c. mWO3 spheroids after the first pyrolysis. d. Finalized
film after Fe(NO3)3 / ethanol spin coating and pyrolysis.

The films preparation consists of four steps, depicted in fig. 3.1. The first step of the process

consists in preparing a PSS / AMT / NH3 as described in section 2.2.1, with a high concen-

tration of ammonia in order to obtain PSS / AMT nanodomain formation (fig. 3.1 a.). This

solution is spin coated on fluorinated tin-oxide coated aluminoborosilicate glass, 10 Ω/sq from

Solaronix (fig. 3.1 b.). Different spin coating speeds are applied, ranging from 1000 rpm to

6000 rpm. The other spin coating parameters are kept constant, the holding speed is reached

within 2 seconds and the holding time is 60 seconds. The spin coater used in this study is

a Primus STT15 from ATMgroup. After spin coating the films are pyrolysed at 500◦C for 2

hours and result in a tungsten oxide layer constituted of micrometric spheroids, sintered on

the FTO surface (fig. 3.1 c.). The last step of the thin film preparation is the deposition of a

hematite thin film overlay (fig. 3.1 d.). This thin film is obtained by spin coating Fe(NO3)3,

dissolved in ethanol, at 6000 rpm for 60 seconds (holding speed reached within 2 seconds).

By tuning the Fe(NO3)3 concentration between 0.0125M and 0.5M, hematite thin films with

thicknesses ranging from a few nanometers to 30 nm have been obtained.
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3.2.2 Photoelectrochemistry

The photoelectrochemical measurements were performed with a Voltalab PGZ402 potentiostat

from Radiometer Analytical using a three electrode setup. A platinum electrode was used as

counter electrode and a Ag/AgCl electrode was used as reference electrode. The measurement

were carried under AM 1.5 illumination from a Lot-Oriel solar simulator. The electrolyte used

in this study was a 0.05mol/L Phosphate Buffered Saline (solution) (PBS).

3.3 Results and discussion

An ultra-thin hematite film was casted on top of the mWO3 film composed of spheroids, self-

assembled according to the process described in the previous chapter. This film was produced

by pyrolysis of a spin coated Fe(NO3)3 salt dissolved in ethanol. By tuning the concentration

of Fe(NO3)3 different hematite thicknesses were obtained. Due to the strong scattering linked

to the mWO3 microstructure, the thickness of the hematite layer coated on the mWO3 could

not be measured by UV-visible spectroscopy. Therefore, the hematite films were first casted on

transparent substrates (bare FTO glass) and analyzed by absorption spectroscopy (annex 6,

fig. B.1). Characteristic hematite spectra were obtained. Assuming a Lambertian absorption

and negligible reflection, the film thicknesses was calculated using the Beer-Lambert law:

L =
A

α
(3.1)

In this relation, L is the film thickness, α the absorption coefficient of hematite for a

wavelength of 400 nm and A the absorbance measured at 400 nm. The absorption coefficient

value of hematite at 400 nm was set to 2.24×10−2 nm−1 according to Marusak et al. 9 . A linear

relationship (annex 6, fig. B.2) was observed between the Fe(NO3)3 concentration ([Fe(NO3)3])

and the hematite film thickness upon pyrolysis (L): L = 52× [Fe(NO3)3]

No photocurrent was observed for these plain hematite films casted on bare FTO sub-

strates, for all screened thicknesses. In order to observe the influence of the film thickness on

the photocurrent, hematite ultra-thin films with thicknesses ranging from a few nanometer to

30 nm were casted on microstructured mWO3 thin films. Due to the junction formed with

mWO3, and light trapping effects, a significant contribution of hematite to the photocurrent
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could be recorded. Similar wetting behavior was observed experimentally when casting the

iron solution on bare FTO substrates and mWO3 coated FTO substrates. In addition charg-

ing effects in hematite, which will be discussed in details later in this paper, have a similar

evolution as a function of the Fe(NO3)3 concentration when coated on mWO3 and on bare

FTO substrates (annex 6, fig. B.3). We therefore conclude that the observations of hematite

thicknesses performed on bare FTO substrates can be applied to the mWO3 coated FTO

substrates case.

The curve presented in fig. 3.2 a. (light blue) shows a characteristic photocurrent/voltage

signature obtained with the mWO3 film composed of spheroids, coated with an ulta-thin

hematite overlayer. This curve can be deconvoluted into two sigmoids. One of the sigmoids

corresponds to the photocurrent generated by the mWO3, which has an onset potential at

around 0.2 V vs Ag/AgCl (yellow curve) and the second sigmoid corresponds to hematite,

with an onset potential positioned at around 0.6 V vs Ag/AgCl (red curve). This differ-

ence is linked to a down shift of the conduction band in mWO3 compared to hematite that

provides mWO3 with a better catalytic activity regarding the oxygen evolution reaction. A

systematic study of the charging effects observed when chopping the light and monitoring the

photocurrent response allowed quantifying the recombination length of the charge carrier in

our hematite films (fig. 3.2 a., deep blue curve). When measuring the photocurrent at dif-

ferent potentials while opening / closing the light incident to the sample with a frequency of

1 Hz, transient phenomena can be characterized. These transient phenomena correspond to

charging / discharging effects that are linked to the poor conductivity of hematite8,10,11. In a

similar approach to Le Formal et al. 8 the discharging occurring in hematite after opening of

the light shutter can be fitted by a single exponential:

J(t) = (J(t0)− J(t∞)) e
t−t0
τ (3.2)

In this formula, J(t∞) is the photocurrent density at equilibrium, t0 is the time when the

light shutter is opened and τis the characteristic decay time of the exponential. One example

of this fitting procedure is presented in fig. 3.2 b. When plotting J(t0) − J(t∞), which gives

the amplitude of charging, depending on the hematite thickness (fig. 3.2 c.), it is obvious

that the charge carrier recombination is hindered when the hematite thickness is below 10

nm. This drastic decrease in charging for hematite films with a few nanometer thicknesses

is well matching the values reported in the literature for the charge carrier recombination
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length in hematite7,8. The optimal photocurrent has been obtained for a hematite thickness

of 5 nm, where the film is thin enough for efficient charge carrier collection. The decrease

in photocurrent observed for hematite thickness of 1-3 nm can be attributed to lower light

absorption. Therefore the optimized hematite thickness that has been used to study the impact

of light trapping is 5 nm, which constitutes a good compromise between light absorption and

charge carrier transport.
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Figure 3.2: a. Typical curve obtained when chopping the light at 1Hz while recording the photocurrent at
different potentials versus Ag/AgCl reference electrode in PBS electrolyte (pH = 7). The blue curve is the
result of such measurement on a mWO3 film made of spheroids (processed at 2000 rpm) with a 5 nm thick
hematite overlayer. The yellow and red curves represent the two sigmoids that can be fitted to the photocurrent
at equilibrium, they correspond to mWO3 and hematite respectively. b. Example of decay observed for a 30
nm hematite thin film and the corresponding exponential fitting according to equation 3.2. c. Dependency of
the charging amplitude over the film thickness.

A strong advantage procured by the bottom-up approach implemented in this study is the

possibility to easily control the mWO3 spheroid sizes in the micrometric to submicrometric

range. By changing one parameter of the mWO3 film casting, the spin coating speed, different

film thickness are obtained. The polymer nanodomain aggregation upon casting is strongly

influenced by the film thickness which is directly related to the spin coating speed. After

pyrolysis of films processed at different spin coating speeds, mWO3 thin films composed of

spheroids with different size distributions are obtained. AFM scans and SEM imaging per-

formed on these films show that the spheroid diameter varies from 1.2 µm to 0.5 µm. Their

aspect ratio is constant and approximately equal to 1/3 (height/diameter) for all the screened

spin coating speeds. To probe the photoelectrochemical properties of the films, photocur-

F. Boudoire Self-assembled Photonic Mesostructures for Water Splitting Photoanodes



CHAPTER 3. WATER SPLITTING AT HEMATITE COATED WO3 MICROSPHEROIDS 79

rent densities at varying potentials were measured on the films with different spheroid size

distributions. These films were measured at pH = 7 in a 0.05M PBS electrolyte. Different

behaviors were obtained depending on the mWO3 microstructure (fig. 3.4). For all microstruc-

tures a similar shape of the photocurrent was obtained, allowing a clear distinction between

hematite and mWO3 contributions to the photocurrent densities. The photocurrents show a

clear trend, an increase of the hematite contribution to the photocurrent and a decrease of

the mWO3 contribution to the photocurrent when decreasing the mWO3 spheroid sizes (i.e.

increasing the spin coating speed).
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Figure 3.3: Photocurrents obtained at different applied bias for thin films coated at different spin coating
speeds.

In order to characterize these variations quantitatively, a deconvolution of the photocurrent

into two sigmoidal contributions was performed on each photocurrent / voltage curve, using

a similar procedure as the one presented in fig. 3.2 a. In the Figure 3.4 a. and b., the values

of the deconvoluted contribution of mWO3 and hematite photocurrents at 0.9 V vs Ag(AgCl)

were plotted for the different microstructures. The trend observed in the contribution of each

oxide shows that the photoactivity of hematite is increasing while the photoactivity of mWO3

is decreasing when the spheroid sizes are decreasing. An additional information obtained

through this deconvolution is that the onset potentials for mWO3 and hematite are invariant

with the different microstructures, hence the change in microstructure do not influence the

catalytic properties of the oxides.

In addition I compared the photocurrent density obtained with a flat mWO3 film, coated
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Figure 3.4: Photocurrent densities at 0.9V vs Ag/AgCl (current density under illumination - dark current
density) as a function of the spin coating speed. Contributions from: a. hematite; and b. mWO3; deconvoluted
from the photocurrent presented in fig. 3.3

with hematite, to the photocurrent densities obtained with microstructured films (annex 6,

fig. B.4). The photonic effects provide a two to four fold enhancement of mWO3 photoactivity

(fig. 3.4 b.). Hematite already benefits from a significant photoactivity in the flat film design

because of the heterojunction with mWO3. Nevertheless for the smallest spheroid sizes a 1.5

fold enhancement is observed for this oxide (fig. 3.4 a.).

3.4 Conclusions

In this chapter I presented the PE behavior of mWO3 films composed of spheroids that were

further coated with a hematite ultra-thin film. A comprehensive analysis of the charging effects

in the hematite ultra-thin film overlay was also conducted. A good compromise between light

absorption and charge carrier collection was obtained by correlating the hematite film thickness

to its charging behavior. The spheroids size distribution can be easily tuned in the micrometric

to submicrometric range by changing a simple process step, the spin coating speed. Samples

were prepared with a 5 nm ultra-thin hematite film overlay on the mWO3 films composed

of spheroids with different size distributions. A significant contribution of hematite to the

photocurrent was observed when coated on the light trapping mWO3 spheroids whereas no

photocurrent could be measured with the same hematite ultra-thin film coated on bare FTO

glass. Tuning the spheroids sizes allowed an in depth study of the impact of this microstructure

change on the overall photoanode photocurrent. We observed that the contribution of hematite

is increased while the contribution of mWO3 is decreased when decreasing the spheroid sizes.

In the next chapter I focus on the optical properties of the photoanode composed of
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microspheroids. Indeed this microstructure show a strong photonic response in the far field

meaning that light interacts significantly with the spheroids. We will see how the different

photonic regimes obtained when changing the spheroid sizes impact light absorption in these

films and relate with the PE trends described in this chapter.
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Chapter 4

Light Trapping Properties of the

all-oxide Microspheroids

In this chapter we will see that the spheroid microstructure shows a strong interaction with

light at visible wavelengths. A theoretical study of this photonic response allowed us to

understand the interaction of light with the microstructure and showed that microspheroids

can trap visible light through different photonic processes. The prevalence of different photonic

regimes when changing the spheroids size is shifting the localization of light inside the film. I

will determine how these different regimes impact light absorption inside the photoanode and

can explain the photoelectrochemical behaviors described in the previous chapter.

4.1 Introduction

Light trapping strategies were developed recently to increase light absorption in thin hematite

films1,2. Dotan et al. 1 used reflecting coatings and took advantage of resonant light trapping

using multiple reflections in a flat hematite film on a reflective surface. Gao et al. 2 used

nanostructured gold films to obtain both surface plasmons and light trapping effects. In the

present case our hematite coated mWO3 spheroids can combine light management and the

production of an all-oxide heterojunction.

Dielectric spheroids of near wavelength dimensions are known to support confined resonant

modes3–5. mWO3 is a material of choice in order to confine light, since it possesses a high
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refractive index for visible light wavelengths (2.2 to 3.7 for crystalline mWO3
6) and provide a

strong refractive index contrast compared to the ambient medium, which in the present case

is an aqueous electrolyte. By coating these mWO3 spheroids with an ultra-thin hematite film,

a semiconductor heterojunction is achieved and charge carrier recollection is enhanced. At the

same time the interaction of light with the microstructure allows to decouple light absorption

and thickness of the hematite film.

We have seen in the precedent chapter that this strategy has successfully enhanced the

obtained photocurrents densities compared to a non-microstructured film. In the present

chapter I will elucidate the photonic effects at the origin of this improvement.

4.2 Materials and methods

4.2.1 Ultraviolet-visible (UV-vis) transmission spectroscopy

Transmission spectroscopy was performed using a Varian Carry R© 50 UV-vis spectrometer. The

samples were held with the substrate facing the detector and the film facing the laser probe

and was oriented orthogonally to the beam direction. The spectra were recorded between 300

and 800 nm with a step of around 1nm.

4.2.2 Finite-difference time-domain simulations

A commercial-grade simulator based on the Finite-Difference Time-Domain (FDTD) method

was used to perform the calculations7. One model was created for each spin coating speed.

Each model involves 67 oblate coated spheroids with a diameter distribution derived from

image processing on SEM images. The mean distance and height of the spheroids was ob-

tained by image processing on SEM images and AFM scans respectively. The spheroids were

displayed to form a periodic triangular array respecting the experimental mean spheroid dis-

tance. Perfectly matched layers, parallel to the modeled film surface, were used before and

after the film. The refractive index of the medium was given a value of 1.33 (water), the

refractive index for mWO3 was obtained from Hutchins et al. 6 and the refractive index for

hematite was obtained from the University of Waterloo online database8.
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4.3 Results and discussion

It appears that the light trapping function of our films is closely related to their microstructure.

A strong attenuation peak was observed in absorption spectroscopy experiments (fig. 4.1 b.)

for all screened spheroid sizes (fig. 4.1 a.). This peak position is strongly influenced by the

characteristic dimensions of the coated spheroids. These features could not be attributed to the

chemical composition of the films, since they do not emerge from the absorption of hematite

or mWO3 but rather from the interaction of light with the microstructure. These attenuation

peaks are related to diffraction phenomena, and far field scattering patterns (not shown here)

shows photonic jets forming at wavelengths where the absorption peaks are significant. Tuning

the spheroids size distribution allows to tune the wavelength range of this light interaction

with the microstructure, with a shift of the attenuation feature to shorter wavelengths when

decreasing the spheroid sizes.
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Figure 4.1: Correlation between the tungsten oxide microstructure and the far field scattering attenuation
peak of the mWO3 films composed of spheroids, processed at different spin coating speeds: a. AFM line scans
of the surfaces; b. UV-vis absorption spectroscopy performed in water on the different films; c. Simulated
attenuation spectra using the FDTD method.

In order to understand how the light behaves for these different regimes and to see whether

light trapping can be achieved in such microstructures, numerical simulations were performed.

Specifically, the distribution of the electric field inside the spheroids upon simulated solar

light illumination was mathematically modeled. A commercial-grade simulator based on the
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finite-difference time-domain method was used to perform the calculations7. The films mi-

crostructure was modeled by oblate coated spheroids with height and diameter representative

of the size distributions obtained by SEM and AFM image processing.
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Figure 4.2: Photocurrent densities at 0.9V vs Ag/AgCl (current density under illumination - dark current
density) as a function of the spin coating speed. Contributions from: a. hematite; and b. mWO3 (see
chapter 3). Calculated total power absorbed under simulated solar light conditions in: c. hematite; and d.
mWO3

In order to validate the microstructure modelization, far field projections of the electric

field were calculated and simulated attenuation spectra were obtained for each microstructure

(fig. 4.1 c.). When comparing simulated and experimental attenuation spectra a quantitative

match is observed between the attenuation peak position and width, due to scattering, for

each microstructure. Therefore the model implemented in the simulation is representative of

the experimental conditions and can be used to gain quantitative understanding of the light /

microstructure interaction. Moreover FDTD simulation is based on classical electrodynamic

and is neglecting quantum size effects. Therefore the close match between simulation and

experiments proves that the attenuation peak observed experimentally, as well as the blue

shift of this peak when decreasing the microspheroids dimensions is a consequence of the film

microstructure, and possible quantum size effects on light absorption can be neglected. The

electric field distributions inside hematite and mWO3 were obtained from the simulation. It

is therefore possible to integrate the electric field inside hematite and mWO3 and calculate

the power absorbed in each materials using the divergence of the Poynting vector:
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Pabs = −0.5 ω |E|2 k (4.1)

with ω the angular velocity, E the electric field, and k the imaginary part of the refractive

index. By integrating the power absorbed over the wavelength range between 300 and 800 nm,

taking into account the irradiance of 1 sun at AM 1.5, the total power absorbed in each oxide

under simulated solar conditions has been obtained for the different microstructures (fig. 4.2

c. and d.). As shown in fig. 4.2 c. and d., when decreasing the spheroid sizes (increasing the

spin coating speed), the power absorbed in hematite is increased while the power absorbed in

mWO3 is decreased. These tendencies can be explained by changes in the interaction of light

with the film depending on the spheroid size distribution.
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In order to explain the origin of this shift

I performed a series of near-field simulations

of the electric field distribution as a func-

tion of the microspheroid size and light wave-

length (fig. 4.3). In these simulations only

one spheroid is considered, with a radius de-

termined by the mean radius obtained ex-

perimentally for three different spin coating

speeds. Two photonic regimes are observed

as a function of the relationship between the

spheroid dimensions and the incoming light

wavelength. In the first regime, light wave-

length is smaller than the spheroid radius

and strong resonant modes are observed while

near-field scattering is weak. In the second

regime, light wavelength is equivalent to the

spheroid radius, the resonant modes intensity

is decreased while the scattered field inten-

sity increases. This explains why light con-

finement is shifting from mWO3 to hematite

when decreasing the spheroid sizes. When spheroids sizes are decreased, the confined modes

intensities are decreased inside the spheroids while light is scattered more efficiently concen-
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trated between and at the surface of the spheroids.

4.4 Conclusions

Tuning the structures sizes allowed an in depth study of the impact of the light/microstructure

interaction on the overall photoanode photocurrent. Simulation of the photonic effects inside

the microstructure, using an oblate coated spheroids modelization, quantitatively matched

experimental results and allowed to calculate the power absorbed by each oxide. The variations

in simulated power absorbed showed a strong correlation with the photocurrent. It is therefore

possible that light trapping effects inside the spheroids have a strong influence on hematite

and mWO3 photoactivities, with photocurrent values ranging from single to double depending

on the spheroid sizes.

It is worth noting that the variations in simulated power absorbed / photoactivity is

decreasing in mWO3, whereas it is increasing in hematite when the spheroid sizes is decreasing.

Light is concentrated toward the surface of the spheroids when the spheroids size is decreasing

and a compromise therefore needs to be achieved using spheroid sizes in the middle of the

screened dimensions range (spin coating speed: 2500-3000 rpm, spheroid height ≈ 250 nm and

diameter ≈ 750 nm).

Taking advantage of the same self-assembly technique, a possible outlook of this study

would be the implementation of more complex microstructures. The present study was fo-

cused on a monolayer of mWO3 spheroids but multiple vesicle layers can be coated on the

substrate. Preliminary results already show that it is possible to obtain such mWO3 films with

micrometric light scattering centers displayed on multiple layers. This would allow to take

advantage of more photonic effects, such as near field focusing that is another photonic feature

of oblate spheroids9, and also an increase of the photoanode surface and thickness. Never-

theless the produced multilayered films were showing a decrease in photocurrent compared to

the films composed of a single layer. Maybe the charge conduction length is inhibiting current

collection in these thicker films.
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Chapter 5

Electrohydrodynamic lithography

In this chapter I will present an alternative structuration technique that was also investigated

during this thesis, namely EHL. We have seen that tailoring hematite thin film nanostruc-

ture is particularly interesting since this oxide’s function is closely related to its structure

when implemented as a photoanode in water splitting solar cells. In this study, electrohy-

drodynamic destabilization was designed to grow hematite nanodroplets with morphologies

controlled by a master electrode. A polymer/iron salt film was destabilized by electrohy-

drodynamic destabilization and the resulting structures were pyrolysed to achieve crystalline

α-Fe2O3 nanodroplets of 30 nm height and 70 nm radius. NEXAFS spectroscopy proved that

the structures contain ferrihydrite, which is converted into hematite during pyrolysis, while

the polymer was decomposed. Homogeneous nanoparticle precipitation in the bulk of the

polymer, due to encapsulation of the iron precursor in the polymer matrix, is accounted for

the good preservation of the structures. This study represents the first step towards the use of

electrohydrodynamic destabilization for nanostructuring of hematite thin films, with a control

over the feature size.

5.1 Introduction

Metal oxide thin films based on nanopillar array have been suggested as efficient photoan-

ode systems for solar water splitting and hydrogen fuel generation in photo-electrochemical
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cells1.Iron oxides such as α-Fe2O3 (hematite) are low-cost, environmentally benign and abun-

dant semiconductors for use as such photoanodes. But hematite has the major disadvantage

that its optical thickness is large (118 nm at λ=550 nm)2 compared to its charge carrier re-

combination length (2-4 nm)3. To overcome this drawback, various approaches for micro- or

nano-structuring of iron oxide into nanopillar, nanorod and nanotube arrays, for example by

aqueous chemical growth4 or anodization5,6 have been investigated. Here I present a novel and

simple method of obtaining iron oxide structures, taking advantage of the self-organisation

occurring in molten polymers subjected to an external electric field. This phenomenon is

known as electrohydrodynamic destabilization (EHD) and has been previously used to tailor

micrometric droplets or pillar arrays7,8. The polymer structures obtained by Heier et al. 9 ,

with spatially modulated electric fields, show that the sizes and aspect ratios obtained can

be controlled using parameters such as the electric field strength and the lateral field mod-

ulation. The control provided by such heterogeneous electric fields has been exploited by

Schaffer et al. 10 to achieve features with lateral dimensions down to 140 nm using a struc-

tured electrode. Moreover this electrolithographic phenomenon is a determining factor in the

upscaling of the destabilized region11. The use of this technique to oxide films has been ini-

tiated by Voicu et al. 12 . They destabilized titanium alkoxide-alcohol solutions and obtained

micrometric TiO2 patterns. To the best of our knowledge no other attempt has been made to

use EHD to structure inorganic materials. Our study focuses on the development of electro-

hydrodynamic destabilization for the high-fidelity conversion of polymer/iron salt structures

obtained by EHD destabilization into hematite (α-Fe2O3) structures. The strategy adopted is

to encapsulate an iron salt in a polymer thin film and then tailor the polymer structure using

EHD. After structuring, the film is pyrolysed at 500◦C in an air vented furnace to decompose

the polymer matrix, whilst at the same time converting the iron to hematite.

5.2 Materials and methods

The thin film for destabilization was spin-coated from an aqueous solution on a silicon wafer.

This solution was prepared by mixing 0.5M in pyridyl groups of Poly(4-vinylpyridine) (P4VP)

(Mw ≈ 60,000, Sigma Aldrich) and 0.5M of FeCl3 (reagent grade, 97% anhydrous, Sigma

Aldrich) in double deionized water, leading to a 1:1 molar ratio between pyridyl groups and

aqueous iron chloride. The resulting aqueous solution is acidic with a pH of 1.5. The spin

coating was realized using a Primus STT15 spin-coater from ATMvision AG, with a holding
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time of 60 seconds at a spinning speed of 6000 rpm which was reached within 2 seconds.

After spin-coating, the thin film was air-dried at room temperature for at least 2 days. The

resulting film has a thickness of 180-200 nm (profilometer), and is flat with only nanometer

scale roughness (Fig. 5.1 a.).
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Figure 5.1: The two adjacent electrodes used for
thin film destabilization. 5×5µm AFM scan of: a.
P4VP/FeCl3 thin film surface before destabilization,
b. nanostructured aluminium thin film as obtained by
evaporation (master electrode), c. Size distribution of
the master electrode features

This film was then melted under an elec-

tric field, facing a nanostructured aluminium

electrode (Fig. 5.1 b. and c.). The nanos-

tructured electrode acts as a master electrode

and controls the size of the features develop-

ing at the surface of the polymer film. Since

the present study is focused on controlling the

size of the hematite structures, no attempts

has been made to use a master electrode pos-

sessing an organized pattern as in the study

of Voicu et al. 12 . The electrode nanostructure

is obtained by evaporating aluminium in vac-

uum onto a silicon substrate. Aluminum evap-

oration pellets, 99.9996% pure, were thermally

evaporated using a Univex 300 thermal evapo-

rator from Oerlikon Leybold Vacuum. Arslan

et al. 13 showed that vapour phase aluminium

deposited on a silicon oxide surface followed

with high fidelity the droplet deposition and

coalescence model described by Family and Meakin 14 and obtained aluminium islands of

nanometric dimensions after less than 2 minutes deposition. In the present study, the mas-

ter electrode contains ten times larger droplets than the clusters obtained by Arslan. Since

the droplet growth follows the Family and Meakin model, this difference is accounted for the

longer deposition time (15-20 minutes), leading to more material coalescence and therefore

larger features.

An air gap of less than 140-160 nm separated the polymer film surface and the master

electrode. In order to maintain this submicrometric gap, SU8-2000 photoresist was spin coated,

developed and etched on the master electrode surface to obtain a spacer. The wafers were

then contacted and pressed together (see annex 6, chapter 6). The entire assembly was placed
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in an oven for 3 hours at 180◦C and 0.01 mbar vacuum with a bias of 50 V applied to the

wafers.The heating temperature of 180◦C was chosen to melt the P4VP film, which has a glass

transition temperature in the range 140-150◦C15,16. After heating, the assembly was cooled

to room temperature while maintaining the 50 Volt bias. After destabilization the films were

heated in an air vented furnace at 500◦C for 2 hours, using a heating ramp of 5◦C.min−1.

5.3 Results and discussion

The destabilization of the P4VP/FeCl3 thin film results in the formation of two different kinds

of features: oblate droplets with sub-micrometer size, and droplets with nanometer size (Fig.

5.2 a.). Using complementary Matlab and Fiji procedures (see annex 6, chapter 6) the nano-

metric distribution has been mathematically separated from the submicrometric distribution

by using a high pass filter (Fig. 5.2 and 5.3). The size distribution of the nanometric features

(Fig. 5.2 b.) and of the master electrode (Fig. 5.1 c.) match quantitatively. Therefore,

the nanometric droplets observed on the thin film surface most likely originate from hetero-

geneities in the electric field9. Where a feature of the master electrode is present the air gap

is smaller, leading to a local enhancement of the electric field in the film. The electrostatically

induced pressure is higher on the melted film surface in the regions facing a feature of the

electrode, and the film surface replicates the electrode features. Since the mean height of the

master electrode features is 26 nm and the air gap is in the 140-160 nm range, the increase

in electrostatic pressure where a feature of the master electrode is present is in the range of

12 to 14%. In contrast, the sub-micrometric droplets originate from the average electric field.

Indeed their order of magnitude matches the typical micrometer scale features obtained using

homogeneous electric field for thin polymer film destabilization7,8. Although larger homoge-

neous electric field leads to smaller features, the minimum size that these features can reach

is limited by viscous effects17.

To convert this polymeric structure into an oxide, the film was pyrolysed at 500◦C in

air. This thermal oxidative treatment allows precipitation and pyrolysis of iron oxide inside

the film, whilst simultaneously decomposing the polymer matrix. The film features are well

preserved after pyrolysis (Fig. 5.3). Their shrinkage is not homogeneous; the radius distribu-

tion is almost invariant, while the height distribution significantly decreases. The calculated
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shrinkage for the submicrometric and nanometric height distributions are 32% and 36% re-

spectively.
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Figure 5.2: a. 5×5 µm AFM scan of the film sur-
face after electrostatic destabilization (50V), b. high
frequency features and their size distribution, c. low
frequency features and their size distribution.
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Figure 5.3: a. 5×5 µm AFM scan of the electrostatic
destabilized film surface after pyrolysis at 500◦C in air,
b. high frequency features and their size distribution,
c. low frequency features and their size distribution.

The resultant film consists of a homogeneously distributed structure of nanometric parti-

cles, around 30 nm in diameter (Fig. 5.4) and I propose that the iron chloride is homogeneously

distributed within the pristine P4VP/FeCl3 thin film and evolves into nanoparticles during the

pyrolysis. The homogeneous nanoparticle precipitation in the bulk of the polymer accounts

for the low shrinkage of the features.

In order to analyse the molecular structure of the thin film before and after pyrolysis (on

5 × 5 mm silicon wafers), near edge X-ray absorption fine structure (NEXAFS) spectroscopy

measurements have been carried out at the experimental station SurICat, Optics beamline at

BESSY-II, Helmholtz Zentrum Berlin. NEXAFS spectra provide distinctive features that are

characteristic of the structure and bonding environment of an atom18. The screened energies

correspond to the nitrogen K-edge (395 eV to 403 eV), the oxygen K-edge (520 eV to 560

eV) and the iron L-edge (700 eV to 730 eV). Excitation at the nitrogen edge is expected

to correspond to an excitation of the nitrogen from the pyridine groups of the polymer, and

excitation at the iron and oxygen edges have been chosen in order to identify iron oxide phases.

These NEXAFS spectra were recorded using the Total Electron Yield (TEY) technique, by
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Figure 5.4: Scanning electron micrograph of the pyrolysed film, a. top view of the film surface, b. tilted view
of the film surface.

measuring the current drain to ground normalized to the incident photon flux. The sampling

depth in TEY measurements probes mostly the surface and sub-surface of the samples. The

energy resolution is 66 meV at 400 eV. NEXAFS measurements at the nitrogen K-edge of

samples prior to pyrolysis present two prominent spectral features at 398.6 eV and 400.0

eV (Fig. 5.5) corresponding to the transition from the 1s atomic nitrogen orbital to the π*

molecular orbitals of the pyridine. The presence of two features prior to pyrolysis, with a shift

of around 1.4 eV probably corresponds to partial protonation of the P4VP nitrogen. Pease and

Russel 17 recorded NEXAFS spectra at the nitrogen edge of both neutral and fully protonated

P4VP and obtained peaks at 398.9 eV and 400.4 eV for the neutral form and protonated form

respectively. The same shift of 1.5 eV between protonated and neutral nitrogen has also been

observed in polyaniline samples by Hennig et al. 19 . The partial protonation of the polymer

can be linked to the low pH (1.5) of the aqueous solution used for the spin coating of these

films. This partial protonation could lead to the separation of the polymer into hydrophilic

(protonated) and hydrophobic (neutral) regions and Millan et al. 20,21 have studied P4VP/iron

hydroxide nanocomposites proposing that hydrophilic regions encapsulate the iron ions. When

the iron ions precipitate, this encapsulation allows the stabilization of iron nanoparticles within

the bulk of the polymer.
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Figure 5.5: Nitrogen K-edge spectra of a P4VP/FeCl3
thin film before and after pyrolysis in air at 500◦C
(blue curves). The red curve correspond to neutral
P4VP and the green curve to fully protonated P4VP
as measured by Fujii et al. 22 (reproduced with per-
mission of the authors).

It should be noted that Millan et al. 20 in-

duced deprotonation of PVP compounds by

addition of NaOH and observed deprotona-

tion onset at pH = 3.0. In our case no

NaOH was added to the solutions before cast-

ing and the solution pH was 1.5. It is there-

fore possible that the observed deprotonation

of P4VP in our films is not occurring in so-

lution but upon spin coating of the polymer.

After pyrolysis, no pyridine nitrogen K-edge

peaks are observed, providing strong evidence

that the polymer is fully combusted. Simi-

lar results have been obtained by Elmaci and

Hacaloglu 23 for P4VP homopolymers.

NEXAFS spectra obtained at the Fe L-

edge show multiplet peaks corresponding to

the transition from the 2p to the 3d orbitals

(Fig. 5.6). Two sets of features can be observed, one in the L3 region (705-717 eV) and

one in the L2 region (717-725 eV). For ease of spectral assignment, the spectra have been

deconvoluted. The doublet observed in each region arises from the splitting of the 3d orbital

of iron into two degenerate orbitals with eg and t2g symmetry due to the spin orbit cou-

pling. Close inspection of the L3 peak at around 708 eV shows noticeable differences between

the pre-pyrolysis and the post-pyrolysis samples. In the post-pyrolysis sample, the peak is

sharper, with well-defined eg and t2g features with a width of around 1.2 eV. Spectra of iron

oxide compounds with different structures containing Fe(III) have been studied by Peak and

Regier 24 who observed that the presence of tetrahedral coordinated Fe(III) in compounds

with predominantly octahedral coordinated Fe(III) tends to broaden the L3 peak, because the

tetrahedral and the octahedral forms show proximate but not identical main peak positions.

This suggests that our pre-pyrolysis sample does not yet fully constitute an iron oxide with

octahedral Fe(III) centres, but still contains a significant amount of iron in a non-octahedral

coordination geometry, which could be interpreted as presence of oxygen vacancies. In con-

trast, post-pyrolysis samples contain predominantly octahedral Fe(III) centres.

The O K-edge spectra also give relevant information about the structure. The pre-pyrolysis
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Figure 5.6: a. Fe L-edge spectra of a P4VP/FeCl3 thin
film before (blue curve) and after pyrolysis at 500◦C
(red curve). b. Fe 2p 3/2 region before (blue curve)
and after pyrolysis (red curve). c. Fe 2p 3/2 region
for ferrihydrite (blue curve) and hematite (red curve),
reproduced from24.
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Figure 5.7: O K-edge spectra of a P4VP/FeCl3 thin
film before (bottom) and after pyrolysis at 500◦C
(top).

samples show a set of three peaks in the pre-edge region while the post-pyrolysis sample shows

only two (Fig. 5.7). The peaks at 528.9 eV and 530.2 eV correspond to the transitions from

the O 1s levels of O 2p to the Fe eg and t2g orbitals and the highest energy peak at 531.6 eV,

which is only present before pyrolysis, has previously been observed in goethite samples by

Todd et al. 25 and assigned to the transition from the O 1s levels of OH− to the Fe 3d orbitals.

To summarise the Fe L-edge and O K-edge NEXAFS data, pre-pyrolysis samples contain

both tetrahedral and octahedral Fe(III) centres indicating that the iron does not initially

precipitate in an akaganèite form, as in the P4VP/akaganèite nanocomposite material only

containing octahedral centres obtained by Millan et al. 21 . Oxidic structures containing both

tetrahedral and octahedral Fe(III) centres include ferrihydrite (Fe2O3.1/2H2O) or maghemite

(γ-Fe2O3). The O K-edge spectra further refine this structural elucidation and the strong peak

observed at around 532 eV prior to pyrolysis is characteristic of an -OH group supporting the

initial precipitation of ferrihydrite rather than maghemite. After pyrolysis, the Fe L-edge and

O K-edge spectra perfectly match the spectra reported for hematite24–26. These data indicate

that after spin-coating the aqueous FeCl3 precipitates into ferrihydrite which is converted into

hematite upon pyrolysis.
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5.4 Conclusions

This study shows that it is possible to destabilize thin polymer films loaded with an iron

containing precursor. Self-organized nanostructures may be grown by means of a master

nanostructured master electrode. After the electric field assisted self-organization, the film can

be pyrolised, allowing the simultaneous combustion of the polymer and conversion of the iron

into hematite. This chemical conversion is achieved with conservation of the nanostructure.

These results are promising and introduce a methodology for the conversion of polymer-

stabilized nanostructures to metal oxides nanostructures. The control offered by this technique

on hematite structure opens the way to comprehensive studies of the nanostructure influence

on the photoelectrochemical behavior of this material. Using this technique, even complex

architectures involving oxides heterojunction could be developed, based on the destabilization

of multilayered thin films established by Morariu et al. 27 .

Despite the successful implementation of this electrohydrodynamic lithography method to

structure hematite no photoelectrochemical activity could be measured using a conventional

photoelectrochemical setup with these films. This lack of photoelectrochemical activity can

stem from a simple technical issue. The silicon wafer conductivity is low compared to the

typical conductive transparent substrates used in photoelectrochemical water splitting stud-

ies. These kinds of substrates could not be implemented in this study since they are not

atomically flat and resulted in electric spark and a discharge of the film surface, preventing

its destabilization.
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Chapter 6

Final Conclusions and Outlooks

We have seen that thin films of metal oxides such as hematite and tungsten oxide are suited

for applications as photoanodes for PE water splitting. They have appropriate band gaps

for sunlight absorption and are stable against photocorrosion. Nevertheless they are limited

by their poor charge conduction lengths. I have proposed two different strategies in order to

structure thin films of these metal oxides to decrease the length that charges needs to travel

through these oxides and avoid recombination. These strategies were based on a self-assembly

of the microstructures, allowing for an inexpensive overall process compared to conventional

lithography techniques. In addition, the self-assembled structures possess peculiar geometries

that are prone to provide light trapping properties to the thin films. As a result, absorption

could be increased inside the photoactive material and compensate for the metal oxide film

thinness.

A first self-assembly strategy consisted in the preparation and casting of a solution con-

taining a polyelectrolyte (PSS), a tungsten salt (AMT) and a relatively large concentration

of ammonium hydroxide. Upon spin coating of this solution, tungsten rich micrometric do-

mains are formed and were converted into mWO3 oblate spheroids upon pyrolysis. I have

discovered that the micrometric domains formation result from the aggregation of nanometric

PSS domains, where the polyelectrolyte is deprotonated and its charge stabilized by a cloud

of counterions (NH+
4 ). A possible outlook of this study is to test what are the possible alter-

natives to AMT to form similar self-assembled structures. Seminal results show that other

ammonium salts such as ammonium vanadate (NH4VO3) can also lead to the formation of
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micrometric spheroidal domains. Nevertheless I did not achieve such kind of structuration

with other salts so far, due their precipitation in solution or during spin coating.

The aforementioned self-assembly process provides an inexpensive and upscalable route to

coat a monolayer of mWO3 micrometric spheroids on conductive FTO glass substrates. I used a

subsequent sol-gel process in order to obtain an ultra-thin overlayer of hematite on top of these

structures, hence producing a structured photoanode involving an all-oxide n-n semiconductor

heterojunction. Such structured electrodes are two-times more photoactive than a similar

heterojunction implemented as a flat smooth film. They also exhibit strong photonic features

that could be observed in the far field using UV-vis transmission spectroscopy. Interestingly, by

varying a single parameter of the self-assembly process, namely the spin coating speed, different

size distributions of the spheroids could be achieved. Films with different microspheroids size

distribution could thereby be obtained. I gained a basic understanding of the relationship

between light trapping and photoactivity of these films by experimenting their PE response

and their far-field photonic properties and by simulating the light propagation inside the

microstructures. I have shown that such microspheroids can support photonic resonant modes

at their core while part of the trapped light is scattered and confined at the surface and

between the spheroids. Different prospects can result from this discovery. I started for example

to investigate the formation and performance of multilayered films. I have observed that

multiple layers of microspheroids can be obtained, for instance by dip coating, and also that

the spheroids can be coated on an underlying mWO3 flat film. Different emerging photonic

properties can be expected from such geometries. In the case of multiple layers of spheroids,

the formation of a photonic band gap comparable to photonic crystals, that can also occur in

amorphous structures1–3. In the case of a monolayer of spheroids on top of a flat film, deviation

of light from normal incidence by the spheroids can lead to the formation of guided modes

inside the underlying flat film. A decrease in PE response was observed when implementing

these multilayered structures, maybe because of the increased majority charge carrier path

length linked to increasing photoanode thickness.

A second self-assembly process, EHL, was also investigated. I have shown that a melted

P4VP polymer film loaded with an iron salt (FeCl3) could be destabilized in an electric field.

The resulting features are domes that can be “frozen” upon cooling of the film below its glass

transition temperature. A hierarchical structure was obtained. It is composed of nanometric

droplets mimicking the counter electrode features and micrometric domes which are resulting

from the overall average electric field applied between the electrodes. Upon pyrolysis of this
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film the structures are preserved and the iron precursor is converted to hematite. Despite the

successful use of EHL to obtain original micrometric to nanometric structures no photoelec-

trochemical response could be measured on these films. This lack of function was attributed

to the poor electronic conductivity of the substrates used in order to perform the EHL desta-

bilization. Further investigation are needed in order to apply this self-organization process on

conductive substrates such as FTO glass.

In fine I have proven that different structuration strategies relying on polymer self-assembly

can be successfully implemented to obtain metal oxide thin film with original morphologies.

The resulting films may have emerging photonic properties linked to their microstructure

that can improve the performances of metal oxide thin films used as photoanode for water

splitting. In addition the control provided by the self-assembly process on the microstructure

size distribution can be used to gain basic understanding into the photonic mechanisms linked

to this performance increase.
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Figure A.1: Red curve: Crystalline mWO3 reference spectra scanned from Kuntz et al. [2010]∗; Blue curve:
X-Ray diffraction spectra of the powder obtained after pyrolysis of 0.5M ammonium tungstate / 0.5M poly(4-
styrenesulfonic acid) aqueous solution.

∗Joshua D. Kuntz, Octavio G. Cervantes, Alexander E. Gash, and Zuhair A. Munir. Combustion and
Flame, 157 (8):1566-1571, August 2010. doi:10.1016/j.combustflflame.2010.01.005.
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Figure A.2: AFM scan of the film surface obtained by
spin coating of an ammonium tungstate/PSS aqueous
solution, on FTO glass. Some halos with diameter
comparable to the spheroid diameter obtained after
pyrolysis are visible. The height of these features is
lower than 50 nm and the roughness from the FTO
substrate is not visible, suggesting a flat and continu-
ous film.

Y
 [µ

m
]

X [µm]
0 2 4 6 8

2

4

6

8

10

0

80

160

240

320

400

Z
 [n

m
]

Figure A.3: AFM scan of the film surface obtained
after pyrolysis of the film presented in fig. A.2. The
film is no more continuous and the mWO3 spheroids
are now clearly visible. It is possible to observe the
FTO substrate roughness between the spheroids.
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Figure B.1: UV-visible absorption spectroscopy of
hematite films of different thickness obtained by spin
coating of solutions composed of Fe(NO3)3 at different
concentrations, dissolved in pure ethanol.
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Figure B.2: Variation of the thickness calculated
from Beer-Lambert law at 400 nm depending on the
Fe(NO3)3 concentration used to prepare the hematite
film (blue circles). The full line represent the linear fit-
ting leading to the relationship: L = 54× [Fe(NO3)3]
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Figure B.3: Comparison of the photocurrent transient
amplitude at 0.9V vs Ag/AgCl when different concen-
trations of Fe(NO3)3 are spin coated on bare FTO
glass substrates and on the microstructured mWO3

films
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Figure B.4: Comparison of the photocurrents obtained
with hematite coated on bare FTO glass (green line),
hematite coated on a flat mWO3 film (red line) and
hematite coated on microstructured mWO3 (blue line)
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C.1 Details of the setup used for the electrohydrody-

namic destabilization

a. b. screw

ram

PDMS

DC

Al thin films
Si wafers

P4VP/FeCl3 thin film
photoresist spacer

Al foil

Figure C.1: a. Photograph of the assembly under operation, b. sketch of the assembly design for the electro-
hydrodynamic destabilization
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C.2 NEXAFS spectra with/without electrohydrodynamic

destabilization, before pyrolysis
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Figure C.2: NEXAFS spectra of the P4VP / FeCl3 thin films with electrohydrodynamic destabilization (blue
lines) and without electrohydrodynamic destabilization (red lines); a. At the N K-edge; b. at the O K-edge;
c. at the Fe L-edge.
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C.3 Matlab - Fiji code for image processing

The purpose of this code is to determine the height and radius distribution of the two

kinds of features present on the surface of the film after destabilization. The quality of these

measurements can be observed in Figure C.3 which represents graphically the results obtained

after image processing.

a. b.

Figure C.3: a. AFM image, processed with a low pass filter, b. AFM image, processed with a high pass filter.
On pictures a. and b. the red lines represent the position of the diameter measurements and the cross the
position of the height measurements.

The Matlab procedures are used for pre- and post-processing of the data and the Fiji macro

has been developed in order to process the images.
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Matlab: write a text image readable by Fiji from the AFM raw data:

clear();
close all;

% import the raw data from the AFM which is a three column vector ...
containing x, y and z coordinates

data=importdata('postAnnealing4.txt');

% make a matrix Z out of the z coordinates
numRaw=512;
for i=1:length(data)/numRaw

Z(1:numRaw,i)=data((i−1)*numRaw+1:i*numRaw,3);
end

% during AFM scan 128 lines of 512 points are scanned, to obtain a squared ...
matrix each 128 line of the matrix is repeated 4 times:

for i=1:size(Z,2)
for j=1:size(Z,1)/size(Z,2)

squareMatrix(:,j+4*(i−1))=Z(:,i);
end

end
Z=squareMatrix;

% the scale is set to 10 nanometers and the minimum set to zero to obtain ...
a convenient format for handling in Fiji:

Z=Z*10ˆ8;
Z=Z−min(min(Z));

% writing the Z matrix to a text file
save textImage.txt Z −ASCII

figure(1), imshow(Z,[min(min(Z)) max(max(Z))]);
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Fiji: Macro for image processing:

//define the cutoff values for the low pass filter (sub−micrometric ...
features) and the high pass filter (nanometric features)

var lowPassLim=30;
var highPassLim=10;

//SEPARATION OF THE NANOMETRIC AND SUBMICROMETRIC FEATURES

//open text image created in Matlab from the AFM data
run("Text Image... ", "open=C:\\Users\\Florent\\Desktop\\textImage.txt");
rename("data");

//apply the low pass filter
selectWindow("data");
run("Duplicate...", "title=submicrometric");
run("Bandpass Filter...", "filter large=100000 filter small=lowPassLim ...

suppress=None tolerance=5 autoscale"); //low pass filter
saveAs("Text Image", "C:\\...\\submicrometric.txt"); //saving the ...

processed image for Matlab

//apply the high pass filter
selectWindow("data");
run("Duplicate...", "title=nanometric");
run("Gaussian Blur...", "sigma=2"); //Gaussian blur is applied to remove ...

the noise
run("Bandpass Filter...", "filter large=highPassLim filter small=0 ...

suppress=None tolerance=5 autoscale"); //high pass filter
saveAs("Text Image", "C:\\...\\nanometric.txt"); //saving the processed ...

image for Matlab

//MEASURING FEATURE DIAMETER AND LOCAL MAXIMA COORDINATES

run("Set Measurements...", " feret's redirect=None decimal=3"); ...
//definition of the measurement: diameter

//measurements for the submicrometric distribution:

//diameter measurement
selectWindow("submicrometric");
run("Duplicate...", "title=segmentationSubmicrometric");
run("8−bit"); //an 8−bit image is needed to process the orignal image to a ...

binary image
run("Convert to Mask"); //binarize the image
run("Watershed"); //the watershed procedure allows segmentation of joining ...

features
run("Analyze Particles...", "size=0.25−Infinity circularity=0.00−1.00 ...

show=Masks display exclude clear"); //diameter measurement of ...
segmented features

saveAs("Results", "C:\\...\\diameterSubmicrometric.txt"); //saving the ...
diameter measurement for Matlab

rename("diameterSubmicrometric");
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Matlab: find the maxima values from the maxima coordinate:

clear();
close all;

% loading the data saved in Fiji

submicrometric = importdata('submicrometric.txt');
nanometric = importdata('nanometric.txt');

dataImport = importdata('maximaNanometric.txt');
maximaNanometric =dataImport.data;

dataImport = importdata('maximaSubmicrometric.txt');
maximaSubmicrometric =dataImport.data;

dataImport = importdata('diameterSubmicrometric.txt');
diameterSubmicrometric =dataImport.data;

dataImport = importdata('diameterNanometric.txt');
diameterNanometric =dataImport.data;

% finding the heights corresponding to the maxima coordinates on the image ...
processed with a low pass filter (submicrometric features) and ...
representing both diameter and maxima positions for control

maxima=maximaSubmicrometric(:,2:3);
diameter=diameterSubmicrometric;

Z= submicrometric;
figure(1), imshow(Z,[min(min(Z)) max(max(Z))]); % the result of this plot ...

is shown in Fig. 2 a.)
hold on;
for i=1:length(maxima)

yPos=maxima(i,1)+1; % read the y coordinate from the maxima number i
xPos=maxima(i,2)+1; % read the x coordinate from the maxima number i
heightSubmicrometric(i)=Z(xPos,yPos);
plot(yPos, xPos,'+'); % plot the maxima position

end
% plotting the diameter position
for i=1:length(diameter)

if(diameter(i,5)≥90)
plot([diameter(i,3);...

diameter(i,3)−diameter(i,2)*cosd(diameter(i,5))],...
[diameter(i,4);...
diameter(i,4)+diameter(i,2)*sind(diameter(i,5))]);

else
plot([diameter(i,3);...
diameter(i,3)+diameter(i,2)*cosd(diameter(i,5))],...
[diameter(i,4);...
diameter(i,4)−diameter(i,2)*sind(diameter(i,5))]);

end
end
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hold off;

% finding the heights corresponding to the maxima coordinates on the image ...
processed with a high pass filter (nanometric features), same procedure ...
as the one employed for the submicrometric distribution

maxima=maximaNanometric(:,2:3);
diameter=diameterNanometric;
Z= nanometric;
figure(2), imshow(Z,[min(min(Z)) max(max(Z))]); % the result of this plot ...

is shown in Fig. 2 b.
hold on;
for i=1:length(maxima)

yPos=maxima(i,1)+1;
xPos=maxima(i,2)+1;
heightNanometric(i)=Z(xPos,yPos);
plot(yPos, xPos,'+');

end
for i=1:length(diameter)

if(diameter(i,5)≥90)
plot([diameter(i,3);...

diameter(i,3)−diameter(i,2)*cosd(diameter(i,5))],...
[diameter(i,4);...
diameter(i,4)+diameter(i,2)*sind(diameter(i,5))]);

else
plot([diameter(i,3);...
diameter(i,3)+diameter(i,2)*cosd(diameter(i,5))],...
[diameter(i,4);...
diameter(i,4)−diameter(i,2)*sind(diameter(i,5))]);

end
end

hold off;

% converting the data back to nanometer scale:
rescaledRadiusSubmicrometric=diameterSubmicrometric(:,2)/2*5000/512;% ...

known distance: 5000 nm, corresponding to 512 pixels. The radius is ...
chosen over the diameter because it gives a better appreciation of the ...
features aspect ratio when compared to the height

rescaledHeightSubmicrometric=heightSubmicrometric*10;% the scale was set ...
for convienience to 10 nm in the first part of the Matlab code

rescaledRadiusNanometric=diameterNanometric(:,2)/2*5000/512;
rescaledHeightNanometric=heightNanometric*10;

1
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