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ABSTRACT

A new cyclic decadepsipeptide was isolated from Chaetosphaeria

tulasneorum with potent bioactivity on mammalian and yeast cells.

Chemogenomic profiling in S. cerevisiae indicated that the Sec61

translocon complex, the machinery for protein translocation and

membrane insertion at the endoplasmic reticulum, is the target. The

profiles were similar to those of cyclic heptadepsipeptides of a distinct

chemotype (including HUN-7293 and cotransin) that had previously

been shown to inhibit cotranslational translocation at the mammalian

Sec61 translocon. Unbiased, genome-wide mutagenesis followed by

full-genome sequencing in both fungal and mammalian cells identified

dominant mutations in Sec61p (yeast) or Sec61a1 (mammals) that

conferred resistance. Most, but not all, of these mutations affected

inhibition by both chemotypes, despite an absence of structural

similarity. Biochemical analysis confirmed inhibition of protein

translocation into the endoplasmic reticulum of both co- and post-

translationally translocated substrates by both chemotypes,

demonstrating a mechanism independent of a translating ribosome.

Most interestingly, both chemotypeswere found to also inhibit SecYEG,

the bacterial Sec61 translocon homolog. We suggest ‘decatransin’ as

the name for this new decadepsipeptide translocation inhibitor.
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INTRODUCTION

Most secretory and membrane proteins are translocated across or

inserted into the plasma membrane of bacteria or the endoplasmic
reticulum of eukaryotes by the conserved SecY/Sec61 translocon

complex (Park and Rapoport, 2012; Shao and Hegde, 2011). The

core translocon consists of SecY or Sec61a (Sec61p in yeast) in
bacteria and eukaryotes, respectively, forming a protein-conducting

channel with its ten transmembrane domains (TM1–TM10), and of

two peripherally attached single- to triple-spanning subunits SecG

or Sec61b (Sbh1p), and SecE or Sec61c (Sss1p). In its idle state, the

potential pore is closed by a central constriction ring of six

predominantly hydrophobic residues and a lumenal plug helix that

blocks the periplasmic or luminal cavity. Substrate proteins are

targeted either co- or post-translationally to the SecYEG/Sec61

complex. In the former case, a hydrophobic signal sequence is

recognized by signal recognition particle (SRP) to bring the

nascent-chain–ribosome complex to the SRP receptor in the

appropriate membrane allowing the ribosome to bind to

cytoplasmic loops of SecY/Sec61a. Alternatively, substrates are

synthesized into the cytosol and reach the translocon pos-

translationally, which, in eukaryotes involves the Sec62–Sec63–

Sec66–Sec72 complex. Somehow the signal sequence engages with

the translocon and intercalates as a helix in between TM2 and TM7

of SecY/Sec61a, which form a lateral gate into the lipid bilayer

(Gogala et al., 2014; Park et al., 2014; Voorhees et al., 2014) In the

process, the hydrophilic sequence is inserted into the pore, pushing

away the plug and the constriction residues that act as a gasket

around the polypeptide (Park and Rapoport, 2011). It is not clear

how signal peptides with diverse primary sequences that only share

a general hydrophobic character initiate translocation.

Chemical inhibitors have frequently been useful tools to

elucidate the molecular mechanisms of complex processes. A

general translocation inhibitor is eeyarestatin, a chemical most

likely binding to the translocon and preventing the transfer of the

nascent-chain–ribosome complex from the SRP–SRP receptor

targeting complex to the translocon in mammalian cells (Cross

et al., 2009). Apratoxin A, a cyanobacterial metabolite, has been

shown to inhibit cotranslational translocation in vitro (Liu et al.,

2009), but the blocked step is unknown. Furthermore a group of

closely related cyclic heptadepsipeptide inhibitors including

HUN-7293, CAM741 (Besemer et al., 2005) and a simplified

version thereof called cotransin (Garrison et al., 2005) have been

found to inhibit cotranslational translocation of VCAM1 and

other specific substrates (Maifeld et al., 2011; Westendorf et al.,

2011). Photoaffinity labeling has identified Sec61a as the target

(MacKinnon et al., 2007), which was confirmed by isolation of

resistance mutations in SEC61A1 (MacKinnon et al., 2014).

Using in vitro translation–translocation assays, it has been shown

that SRP-dependent targeting and binding of the ribosome, and

interaction of the signal with the translocon in the cytosolic

vestibule, are unaffected by these cyclic heptadepsipeptide

inhibitors, but signal insertion is blocked (Besemer et al., 2005;

Garrison et al., 2005; MacKinnon et al., 2014). The origin of

signal specificity of inhibition is not clear (Harant et al., 2006).

1Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel,
Switzerland. 2Novartis Institutes for BioMedical Research, Novartis Campus, 4056
Basel, Switzerland. 3Howard Hughes Medical Institute, Harvard Medical School,
240 Longwood Avenue, Boston, MA 02115, USA. 4Department of Cell Biology,
Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
5Congenomics, LLC, 60 Gates Farm Road, Glastonbury, CT 06033, USA.
6Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue,
Cambridge, MA 02139, USA.

*Authors for correspondence (martin.spiess@unibas.ch;
dominic.hoepfner@novartis.com)

Received 6 November 2014; Accepted 15 January 2015

� 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 128, 1217–1229 doi:10.1242/jcs.165746

1217

mailto:martin.spiess@unibas.ch
mailto:dominic.hoepfner@novartis.com


Jo
ur

na
l o

f C
el

l S
ci

en
ce

In this study we identified a new bioactive cyclodepsipeptide
that inhibits cell growth. To identify its target, we used yeast

chemogenomic profiling and unbiased genome-wide mutagenesis,
followed by selection and sequencing of resistant clones in yeast
and mammalian cells. All assays identified the endoplasmic
reticulum (ER) translocon component Sec61 as the conserved

target in eukaryotic cells. Biochemical characterization of the
inhibition mechanism in both yeast and mammalian cells indicated
that the compound blocks all translocation through the Sec61

channel. We thus suggest ‘decatransin’ as the name for this new
decadepsipeptide translocation inhibitor.

RESULTS
Isolation of a new decadepsipeptide from Chaetosphaeria
tulasneorum with potent biological activity
Screening new compounds of natural origin for growth inhibition
of HCT116 human carcinoma cells identified compounds of the
saprophyte fungus Chaetosphaeria tulasneorum with potent
activity. Scaled up cultivation, isolation, purification and

structure elucidation (see Materials and Methods as well as
supplementary materials) led to the discovery of a cyclic
decadepsipeptide (Compound 1, Fig. 1A).

The presence of the non-proteinogenic amino acids pipecolic
acid and homoleucine at positions 2, 6 and 9, and 3, 4 and 7,
respectively, indicated that the compound had been synthesized by

a non-ribosomal peptide synthetase (NRPS). NRPSs are large
multienzymes with a modular organization of catalytic domains,
namely the adenylation (A), peptidyl carrier protein (PCP) and

condensation (C) domains, responsible for the activation of, transfer
of amino acids as thioesters and peptide bond formation,
respectively. Using a software to predict microbial natural
product pathways (Bachmann and Ravel, 2009), multiple NPRSs

were identified in the genome of Chaetosphaeria tulasneorum. The
NRPS responsible for the biosynthesis of the compound was
expected to contain ten modules and four N-methyltransferases. Of

the predicted NRPSs, three contained ten modules. The pattern of
eight-residue signature sequences that define A-domain selectivity
(Stachelhaus et al., 1999) uniquely identified a single NRPS with

DPFMYLGI in the A domains at positions 2, 6 and 9, and
DAWTYGVA at positions 3, 4 and 7, corresponding to the
positions of pipecolic acids and homoleucines, respectively
(Fig. 1A,B). In addition, N-methyltransferases were present at

positions 4, 5, 7 and 10, consistent with the observed N-methylation
patterns. Finally, the synthetase had a terminal condensation
domain (CT) catalyzing the cyclization of NRPS products in fungi

(Gao et al., 2012). The presence of a 2-hydroxy-acid dehydrogenase
gene in the neighborhood of the NRPS (Fig. 1C) supported
incorporation of a 2-hydroxy-amino acid at position 1, and thus

peptide closure through an intermolecular ester bond, which is the
hallmark of the depsipeptide family. Genes encoding L-pipecolate
oxidase and 2-isopropylmalate synthase were also found close to

this megasynthetase gene (Fig. 1C; supplementary material Table
S1). These genes are likely involved in pipecolic acid and
homoleucine biosynthesis, respectively (Field et al., 2004; He,
2006). In summary, sequence analysis identified the NRPS and

accessory genes involved in the synthesis of the decadepsipeptide.

Yeast chemogenomic profiling identifies the Sec61
translocon complex as the site of action
Although the compound showed potent growth inhibition of
mammalian cell lines, such as HCT116 human colon carcinoma

cells and COS-1 monkey kidney cells at IC50 30–140 nM, it also

inhibited growth of the yeast S. cerevisiae at IC50 ,2 mM
(Fig. 1A), thus enabling us to apply chemogenomic profiling to

identify target proteins or pathways (Giaever et al., 1999).
Haploinsufficiency profiling (HIP) and homozygous profiling
(HOP) are based on S. cerevisiae heterozygous and homozygous
deletion collections (Hoon et al., 2008). HIP indicates proteins or

pathways directly affected by the compound, whereas HOP
reveals synthetic effects and identifies compensating factors or
pathways. The results are visualized by plotting the relative

growth reduction of individual strains by the compound
(sensitivity) versus a measure of significance (z-score, see
Materials and Methods). The cyclic decadepsipeptide produced

profiles that revealed haploinsufficiency for all components of the
Sec61–Sec63 core complex (Fig. 2A, HIP), as well as synthetic
growth defects after homozygous deletion of the three non-

essential genes SBH1, SEC66 and SEC72 of the Sec61–Sec63
complex (Fig. 2A, HOP). This strongly indicated that the Sec61–
Sec63 translocon is the target of the inhibitor. Dose–response
growth experiments using individual strains with compound 1

fully validated the HIP result (supplementary material Fig. S1B).
The only other hypersensitive HIP strain of the original library,
CWC21 (involved in RNA splicing), was found to contain a

heterozygous frame-shift mutation in the SEC63 gene responsible
for the phenotype (supplementary material Fig. S2).

Comparing the decadepsipeptide profile to archived datasets

identified a striking similarity with the HIP and HOP profile of a
cyclic heptadepsipeptide, denoted compound 2 (Fig. 2B,C).
Structural similarity searches with compound 1 did not reveal

any similarity to compound 2 [Tanimoto coefficient ,0.25 for the
entire molecule, and 0.26 when only comparing the scaffolds
(Bender and Glen, 2004)] or any other relevant hits, indicating that
they constitute distinct chemotypes. However, the structure of

compound 2 is almost identical to HUN-7293 and its derivatives,
the cotransins, which have been previously characterized as
mammalian translocon inhibitors (Besemer et al., 2005; Garrison

et al., 2005) (Fig. 2B). With an IC30 of 200 mM, HUN-7293 was
less effective on wild-type yeast than compound 2 and the
decadepsipeptide by a factor of 30 and 100, respectively, but

produced very similar HIP and HOP profiles at this higher
concentration (Fig. 2D). Pairwise comparison of HIP z-scores
(Fig. 2F) confirmed conserved hits and thus the conserved
mechanism of action of the new decadepsipeptide and the

heptadepsipeptide and cotransin chemotype. It is interesting to
note that prominent hits in the HOP profiles of the decadepsipeptides
were strains where IPT1 (inositolphosphotransferase) or SUR1

(mannosylinositol phosphorylceramide synthase) have been deleted,
suggesting a new genetic link between the Sec61–Sec63 translocon
and lipid metabolism.

Genome-wide mutagenesis in yeast identifies mutations in
Sec61 that confer resistance
To identify the direct target of the inhibitors using an orthogonal
approach, we performed unbiased, genome-wide chemical
mutagenesis and selection for resistance to the inhibitors in
parallel for S. cerevisiae and for mammalian HCT116 cells. In

drug-efflux-compromised yeast, we obtained 45 colonies resistant
to 30 mM compound 1. These resistant cells were mated with
wild-type cells, and the heterozygous clones maintained the

resistance, indicating that the underlying mutations were
dominant. Direct Sanger sequencing of the SEC61, SEC62 and
SEC63 gene loci revealed 13 different single-amino acid

mutations exclusively in SEC61 (Fig. 3A, top; Table 1). The
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mutant alleles were introduced into drug-efflux-compromised
wild-type cells, replacing the wild-type copy of SEC61. The

resulting cells were all viable and retained resistance equivalent

to the original resistant colonies, demonstrating that the SEC61

gene encoded the critical target of compound 1. Several

mutations increased the IC50 value by more than 100-fold,

Fig. 1. Structure and biosynthesis of a novel bioactive decadepsipeptide. (A) Structure, molecular mass and growth inhibition potency of compound 1, a
new decadepsipeptide produced by Chaetosphaeria tulasneorum. Dose–response curves for HCT116 and yeast cells are shown in Fig. 4B and supplementary
material Fig. S1. In addition, the domain organization and proposed assembly line of the matching NPRS is shown. A, adenylation; C, condensation; CT,
terminal condensation; PCP, peptidyl carrier protein; M, methylation. Backbone methylations are labelled A–D in the structures. The peptide intermediates are
attached as thioesters to the PCP domains. (B) Modules and specificity signatures of the A-domain binding pockets in the matching NPRS. (C) Genomic
context of the NRPS for the decadepsipeptide (Orf3): Orf2, pipecolate oxidase; Orf4, 2-hydroxyacid dehydrogenase; Orf5, 2-isopropylmalate synthase; Orf1 and
Orf6, other NRPSs. DNA and protein sequences are provided in supplementary material Table S1.
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whereas others only caused moderate increases in the inhibitory
concentration (Table 1; Fig. 3B). Given that the Sec61 translocon

had also been shown to be the target of the heptadepsipeptide
chemotype (compound 2, compound 3; HUN-7293 and
cotransin), we tested for cross-resistance to compound 2.

Except for mutations G97D, A186T and G430D, which were
completely sensitive to compound 2, the mutants were cross-
resistant to compound 2 (Table 1; Fig. 3C). This indicates
similar, yet distinct, modes of action of the deca- and hepta-

depsipeptide inhibitors on Sec61. In addition, we also tested our
existing library of Sec61p mutants that had been isolated in the
context of membrane protein topogenesis (Junne et al., 2007)

with respect to sensitivity to compounds 1 and 2 (supplementary
material Fig. S3). Mutation of the six residues of the constriction

ring, partial and full deletion of the plug domain, and deletion of
TM2 also resulted in strong resistance to both inhibitors.

Genome-wide mutagenesis in mammalian cells supports
target conservation
We also performed genome-wide mutagenesis of human HCT116
cells using ethyl methanesulfonate (EMS) and N-ethyl-N-
nitrosourea (ENU). Owing to limited availability of the new
decadepsipeptide, mutagenized cells were cultured in the

presence of 1 mM compound 2. After 2 weeks, 12 strongly
growing colonies were picked for further characterization. The
majority of the clones showed more than 20-fold increased IC50

for compound 2 (Fig. 4A). With the exception of one single
clone, they also were cross-resistant to compound 1, however,

Fig. 2. HIP and HOP suggest that the compounds inhibit the Sec61–Sec63 translocon. (A) HIP HOP profile of the decadepsipeptide compound 1, plotting
sensitivity versus z-score. Gray and black dots represent strains with deletions in essential and non-essential genes, respectively. HIP and HOP strains related
to Sec61–Sec63 translocon function are prevalent. The dubious ORF YLR379w is labeled with a circle and grouped with the SEC61 HIP strain because it
substantially overlaps with the SEC61 gene and its deletion affects both ORFs. The CWC21 strain is marked with an asterisk because follow-up analysis
revealed that hypersensitivity of this strain is not due to the heterozygous CWC21 deletion but to a SEC63 background mutation (supplementary material Fig.
S2). (B) Structure and activity of a new heptadepsipeptide compound 2 and of the closely related known translocation inhibitor compound 3 (HUN-7293).
(C,D) HIP and HOP profiles of the two heptadepsipeptides as described for A. (E) Reproducibility of HIP profiling is demonstrated by z-score alignment of two
independent experiments with compound 1. (F) Comparison of the activities of compounds 1–3 by pair-wise HIP z-score alignment.
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most of them only had a 2–3-fold increased IC50 values (Fig. 4B).
Resistance was specific because no change was observed in

sensitivity to the control compound taxol (Fig. 4C).
To identify the resistance-conferring mutations, the genomic

DNA was isolated from ten resistant clones and two sensitive

parental samples, and used to prepare exon-enriched libraries for
Illumina sequencing. The resulting reads were aligned to the human
genome, and variants [single nucleotide polymorphisms (SNPs) and
insertions/deletions (indels)] were called for each of the samples and

then filtered according to several quality metrics (e.g. sequencing
depth). Variants in the parental sample were excluded. For further
analysis, we considered only missense and nonsense mutations in

coding regions. We further excluded missense SNPs that were not
predicted to be deleterious to protein function (see Materials and
Methods). Finally, we included only mutations in genes that were

expressed according to RNAseq analysis of the parental samples.
Applying these three filters, the gene with the highest number of

mutations was SEC61A1, which encodes Sec61a1, the human
ortholog of yeast Sec61, with mutations in eight out of the ten clones

(Fig. 4D). Based on the SNP patterns, the ten clones originated from
eight independent progenitors. The two M65R and two D60E clones
showed highly similar SNP patterns, whereas the patterns of the two

S71F clones indicated independent events (Table 3). We further
sequenced the SEC61A1 cDNA of six additional resistant HCT116
clones obtained by N-ethyl-N-nitrosourea (ENU) mutagenesis, all
six of which also harbored mutations (Table 3). The mutated

residues D60, R66 and S71 of human Sec61a1 correspond to D61,
R67 and S72 in yeast Sec61p, which also produced resistance when
mutated (Fig. 3). Thus the identical mutations S71F in Sec61a1 and

S72F in Sec61p have even been identified independently in different
species, although yielding different levels of resistance. In
summary, selection for resistant clones identifies the Sec61

translocon as the conserved target of deca- and hepta-depsipeptide
inhibitors in both yeast and mammalian cells.

Fig. 3. Selection of yeast mutants resistant to the inhibitors. (A) Thirteen different single amino acid mutations were identified in SEC61 of chemically
mutagenized drug-efflux-compromised yeast cells selected for resistance to 30 mM compound 1 on plates. Their positions are indicated in the model of the yeast
Sec61 complex (Junne et al., 2006) shown in stereo in the top panel. Below, previously studied Sec61p single point mutants that were found to be resistant (see
Table 2) are similarly presented. In the middle, the Sec61p sequence is schematically shown as a bar with numbered transmembrane domains. The newly
selected and the old resistance mutations are indicated above (with their frequency of occurrence) and below, respectively. Mutations resistant to both
compounds 1 and 2 are shown in red if they have a prl phenotype, and in blue if not. Mutations resistant only to compound 1 (not prl) are shown in cyan, those
resistant only to compound 2 in green (not prl) or orange (prl). The weak mutants are indicated by lighter shades. (B,C) Dose–response curves of wild-type yeast
strains in liquid cultures expressing the indicated Sec61p point mutants for compound 1 and compound 2, respectively. Moderate to high resistance to
compound 1 (against which they were originally selected) was validated for all mutations. They were also resistant to compound 2, with the notable exception of
G97D, A186T and G430D. Resulting IC50 and r2 values are listed in Table 1. Boxes and circles indicate independent replicate experiments. Dose–response
curves for resistant mutants shown in the lower part of A are presented in supplementary material Fig. S3.
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The compounds inhibit both co- and post-translational
protein translocation into the ER
To test translocon function directly in the presence or absence
of these compounds, yeast cells were metabolically labeled
with [35S]methionine for 5 min, and translocation of

dipeptidylaminopeptidase B (DPAPB) and carboxypeptidase Y
(CPY) into the ER was assessed based on the glycosylation and
processing pattern after immunoprecipitation and SDS-PAGE.

DPAPB and CPY are established co- and post-translationally
translocated substrates, respectively. Both the decadepsipeptide
compound 1 and the heptadepsipeptide compound 2 effectively
inhibited co- and post-translational translocation as is apparent in

a reduction of the glycosylated and an increase of the
unglycosylated forms (Fig. 5A). Inhibition of post-translational
translocation demonstrates that the mechanism of action is

independent of SRP and SRP receptors and thus of protein
targeting to the translocon, as has already been concluded for the
cotransins from in vitro translation–translocation experiments

(Garrison et al., 2005), and is independent of the presence of a
translating ribosome.

Inhibition was dependent on the concentration (Fig. 5B) as

well as on pre-incubation time (Fig. 5C,D): compound 2
required ,30 min to reach maximal levels, and compound 1
even longer. This time dependence most likely reflects the
penetration kinetics of the compounds (the time required to

cross the cell wall and plasma membrane). In general, CPY
translocation appeared to be more sensitive to inhibition than
that of DPAPB.

Both types of inhibitors also acted on non-natural, generic
signal sequences made of 13 or 16 consecutive leucine residues
(Fig. 5E). This underlines the independence of the action

mechanism of these inhibitors from the specific signal sequence
in yeast. In agreement with the target conservation in mammalian
cells, both compounds similarly inhibited translocation in
mammalian COS-1 cells, as shown in Fig. 5F for the

asialoglycoprotein receptor H1, a type II membrane protein,
and derivatives with generic signal-anchors made of Leu13 or
Leu25 segments.

Cross-species activity allows detection of a putative,
conserved binding site
The conserved action of both chemotypes on the fungal
and human Sec61p homologs and conserved mutations
that confer resistance across species raised the question as

to whether bacterial translocons also can be targeted by
compounds 1 and 2. We performed in vitro translocation
experiments on purified E. coli translocons reconstituted into

lipid membranes as described previously (Bauer et al., 2014).
Both compounds inhibited translocation of a pro-OmpA model
substrate in a dose-dependent fashion (Fig. 5G) with estimated
IC50 of 10 mM for compound 1 and 90 mM for compound 2.

Interestingly, deletion of the SecY plug domain conferred
resistance to both chemotypes as shown by a considerable shift
of the curves.

Most prl mutations confer resistance to Sec61 inhibitors
The identified resistance-conferring mutations are conspicuously

concentrated in or close to the plug domain (Fig. 3A; Fig. 4D,

and see MacKinnon et al., 2014). Plug mutations have

previously been found to cause a prl phenotype, i.e. the

suppression of signal sequence mutations (Emr et al., 1981).

prl mutations specifically destabilize the closed state of the

translocon, and thereby facilitate pore opening, reducing the

stringency for signal acceptance by the translocon. We tested the

new resistant Sec61p mutants for a prl phenotype. Five of the 13

newly isolated resistant mutants indeed suppressed the

translocation defect of CPYD3 in which the hydrophobic core

of the signal peptide was truncated by three residues (Fig. 5H).

All of them carry mutations involving the plug, four in the plug

domain itself and one (G47D) in TM1 pointing towards it. From

our older collection (Table 2), all prl mutants except one (I86T)

were significantly resistant to at least one of the inhibitors. The

correlation between the prl phenotype and resistance suggests

that the inhibitors bind to the closed state of the wild-type

translocon. In prl mutants this state is destabilized, resulting in

reduced binding affinity for the compounds.

Table 1. Inhibitor sensitivity of yeast Sec61p mutants selected by their resistance to compound 1

Sec61
CPY

Compound 1 Compound 2

mutation Color codea prl

translation
defect

IC50
b

(mM) r2c
IC50 ratio
to control Phenotype

IC50
b

(mM) r2c
IC50 ratio
to control Phenotype

Wild-type – 2 – 1.2 0.985 1 S 0.5 0.980 1 S
G47D Red + – 100 0.977 83 R .200 – .100 R
A71D Red + – 3 0.996 2.5 (R) 1.4 0.999 2.8 (R)
S72F Red + – .200 – .100 R .200 – .100 R
E79K Red + – .200 – .100 R .200 – .100 R
G81D Red + – 3.6 0.997 3 (R) .200 – .100 R
P84L Blue 2 – .200 – .100 R .200 – .100 R
T87I Blue 2 – .200 – .100 R .200 – .100 R
G97D Cyan 2 – .200 – .100 R 0.3 0.997 0.6 S
A186T Cyan 2 – 2.4 0.993 2 (R) 0.3 0.998 0.6 S
A298T Blue 2 – .200 – .100 R .200 – .100 R
S307F Blue 2 – .200 – .100 R .200 – .100 R
G430D Cyan 2 – 3.7 0.996 3.1 (R) 0.5 0.986 1 S
A446T Blue 2 – 2.7 0.995 2.3 (R) 1.3 0.999 2.6 (R)

The Sec61p mutants isolated as resistant to compound 1 were tested for the prl phenotype and CPY translocation defects as in Junne et al. (Junne et al., 2007).
S, sensitive; R, resistant (IC50 at least 50-fold higher than wild-type); (R), moderately resistant (IC50 at least two-fold higher than wild-type). aThe color code of
mutations conferring resistance to at least one compound corresponds to that used in Fig. 3A, lower panel; bcorresponding IC50 curves are shown in
supplementary material Fig. S3; cr2 values are shown where a sigmoidal curve could be fitted.
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DISCUSSION
Here, we present an integrated study of a new bioactive

decadepsipeptide from its isolation and the identification of the
responsible megasynthetase of the producer organism by genome-
sequencing and in silico analysis to the determination of the
conserved target in yeast and mammalian cells, as well as in

bacteria, using genomic assays and biochemical analysis of the
inhibited processes. Given that this compound inhibits co- and
post-translational translocation across the Sec61/SecYEG

translocon, we propose to name it decatransin. The name also
alludes to the cotransins, a group of heptadepsipeptide
compounds without detectable molecular similarity that have

previously been described as mammalian translocon inhibitors.
The activity of decatransin on the yeast S. cerevisiae allowed for

chemogenomic profiling to rapidly home in on the Sec61 complex

as the potential fungal target: our high-resolution HIP and HOP
platform (Hoepfner et al., 2014) identified all core subunits of the
heptameric translocon complex. Essentially the same profile was
obtained for a new yeast active heptadepsipeptide (compound 2) of

the cotransin chemotype and for the original inhibitor HUN-7293
(compound 3).

Mutagenesis followed by sequencing of resistant clones
confirmed Sec61 as their primary binding protein. Although

this approach has a long history in yeast, to our knowledge this is
the first study where an unbiased, genome-wide mutagenesis
approach, followed by whole-genome-sequencing has identified
the drug target in mammalian cells. Although the cotransin target

in mammalian cells had already been well documented
previously, this analysis was also performed as proof of
principle. Wacker et al. (Wacker et al., 2012) have pioneered

this approach for two substances with known binding proteins,
using spontaneous resistance and total RNA sequencing.
However, in that study the approach failed to unambiguously

identify the targets. In our case, the analysis yielded Sec61 as the
best-scoring candidate. This might be due to our strategy of
inducing mutations rather than selecting spontaneously resistant

clones. Multiple mutagenesis experiments in fungi and
mammalian cells have revealed that there is a bias towards
chromosomal aberrations and SNPs in pleiotropic drug-resistance
genes if spontaneous mutants are selected and sequenced (Nyfeler

et al., 2012; Richie et al., 2013; Sadlish et al., 2013; Shimada
et al., 2013). The underlying mechanism might be that amino acid

Fig. 4. Selection of resistant mutants in human cells. HCT116 cells were mutagenized and selected for resistance to compound 2. Dose–response validation
of 12 resistant clones with identified SEC61A1 mutations against compounds 2 (A) and 1 (B), and against taxol (C). The mean6s.d. of triplicate determinations
are shown. The mutations selected here for resistance to compound 2 and of the recently identified mutations by MacKinnon et al. (MacKinnon et al., 2014)
conferring resistance to cotransin CT08 [Maifeld et al., 2011; a compound closely related to compound 3 (HUN-7293)] are shown in the stereo model of the
human Sec61 complex in in red and gray, respectively. Below, Sec61a1 is shown as a bar with its transmembrane domains numbered. Red, the single mutations;
yellow, the double mutation; gray, the mutations shown by MacKinnon et al. (MacKinnon et al., 2014).

RESEARCH ARTICLE Journal of Cell Science (2015) 128, 1217–1229 doi:10.1242/jcs.165746

1223



Jo
ur

na
l o

f C
el

l S
ci

en
cemutations in the essential, primary target can often be deleterious,

and these cells are rapidly outcompeted. Thus in the absence of a

strong selective pressure there is a bias against spontaneous
mutations in these genes, in contrast to drug efflux components or
gene copy alterations that have no detrimental phenotype under

laboratory conditions.
It has been shown previously that the cotransins allow SRP-

dependent targeting and binding of the ribosome–nascent-chain

complex to the mammalian translocon (Besemer et al., 2005;
Garrison et al., 2005). Our experiments show that decatransin, as

well as a member of the cotransin family, are not limited to the
inhibition of human or mammalian translocation, but act similarly

on fungal and bacterial translocation. Their action is not specific
to co-translational (SRP-dependent) translocation, but also
inhibits post-translational (SRP-independent) substrates. Thus

the presence of a ribosome bound to the translocon complex is not
essential.

By extensive in vitro crosslinking of arrested nascent chains,

MacKinnon et al., (MacKinnon et al., 2014) have recently showed
that cotransin prevents the signal sequence from inserting into the

Fig. 5. See next page for legend.

RESEARCH ARTICLE Journal of Cell Science (2015) 128, 1217–1229 doi:10.1242/jcs.165746

1224



Jo
ur

na
l o

f C
el

l S
ci

en
ce

translocation pore. The signal-anchor of TNFa could be

crosslinked – preferentially by its C-terminal end and in a
pattern suggesting a helical conformation – with cysteine residues
engineered into Sec61a at the cytosolic top of the lateral gate

(MacKinnon et al., 2014). To understand how the inhibitor blocks
signal insertion we identified the resistance mutations. The five
mutations causing resistance to cotransin CT08 recently

published by MacKinnon et al. (MacKinnon et al., 2014)
localize to the plug and to the lumenal end of the lateral gate
helices TM2 and TM3. The conspicuous concentration to plug

and lower gate suggested that this part of the structure constitutes
the cotransin-binding site. Given that the affected residues point
to the interior of the translocon in the closed state, the inhibitor
could only bind there directly in an open conformation. Inhibitor

binding was thus proposed to stabilize the plug and the partially
opened gate, thereby preventing the signal from entering. The

five mutations identified independently in human Sec61a1 in our
study also localize to the same region, all in the plug domain. R66
was mutated in both studies to a total of three different residues
(I, G and K). Given that the various affected plug residues point

in very different directions, they are not likely to all contact the
inhibitor directly.

In yeast, we identified a higher number of 22 mutations in 21

different residues conferring resistance to decatransin and/or
cotransins; 16 mutations in 15 different residues were resistant to
both chemotypes, indicating similar mechanisms of action. Several

mutations also localize to the plug and gate region. In some
instances, the same homologous residues were mutated, in one case
even with the same amino acid exchange (S72F in yeast and S71F

in human). However, the yeast mutations are distributed over a
larger area than could be covered by a compact cyclic deca- or
hepta-depsipeptide, suggesting conformational or allosteric effects
to cause resistance by many mutations.

A variety of different mutations have previously been found to
mediate the suppression of signal peptide defects, the prl (‘protein
localization’) phenotype described in bacteria (Emr et al., 1981;

Junne et al., 2007; Smith et al., 2005) and yeast (Junne et al.,
2007). prl mutations specifically destabilize the closed state of
the translocon, facilitating signal entry and initiation of peptide

insertion and translocation. Mutations of the plug domain,
constriction ring residues or of the lateral gate showed this
phenotype, as well as mutations at other positions. The fact that

almost all prl mutants showed some level of resistance to
inhibition might be explained by ‘flexibilization’ of the
interaction surfaces to reduce the binding affinity of the
inhibitors. This might suggest that the inhibitors bind to the

closed translocon or an early state of channel opening and
stabilize it, thereby preventing signal insertion.

It is striking that both decatransin and cotransins inhibit

translocons as distant in evolution as E. coli, yeast and man.
Although the Sec61a subunit shares almost 60% identity between
yeast and man (including 11 of 16 residues of the plug domain),

there is less than 17% identity between the two eukaryotic
sequences and bacterial SecY, with no sequence conservation in
the plug. It thus appears unlikely that there are conserved specific
inhibitor–protein interactions. Like signal sequences, the

inhibitors are oligopeptides of hydrophobic (although in part
unusual) amino acids. It is conceivable that they engage with the
translocon in a similar manner as natural signals do – up to the

point where their circular structure prevents the next step, such as
the formation of an extended helix to intercalate into the lateral
gate and contact the lipid phase. This state might block the

translocon for an incoming signal. Destabilizing mutations
(including the prl mutants) might allow for sufficient flexibility
in the translocon to rapidly release the depsipeptides. According

to this hypothesis, mutations that directly block inhibitor binding
would also interfere with signal entry and might not be viable.

MATERIALS AND METHODS
Producer strain isolation and full genome sequencing
A fungal strain closely related to Chaetosphaeria tulasneorum, as

determined by Internal Transcribed Spacer sequencing (White et al.,

1990), was isolated from maple leaf debris in Germany. The genome was

determined using Roche/454 sequencing and the Roche/454 Newbler

assembler v.2.6. Two sequencing libraries were prepared, one shotgun

library which generated 1,277,077 reads with an average read length of

Fig. 5. The compounds inhibit translocation by the yeast, human, and
bacterial Sec61/SecYEG translocons. (A) Yeast cells expressing CPY or
DPAPB (typical post- and co-translationally translocated substrates,
respectively) were preincubated for 30 min with 1% DMSO with or without
decadepsipeptide compound 1 (Cmp1) or cotransin heptadepsipeptide
compound 2 (Cmp2) to a final concentration of 100 mM, labeled for 5 min
with [35S]methionine in the continued presence or absence of the
compounds, and analyzed by immunoprecipitation, gel electrophoresis and
autoradiography. p1 and pp indicate glycosylated proCPY in the ER lumen
and untranslocated preproCPY. g and u indicate the glycosylated and
unglycosylated forms of DPAPB. The position of molecular mass standards
with their weight in kDa is indicated. (B) Dose-dependence of translocation
inhibition for DPAPB and CPY was analyzed by metabolic labeling as above,
using the indicated concentrations of compound 1 or 2 after preincubation
for 30 min. 0 and 0* indicate labeling without or with DMSO, respectively, in
the absence of inhibitors. (C) The time-course of inhibition was analyzed by
metabolic labeling of DPAPB and CPY, as above, using a fixed
concentration of 10 mM compound 1 or compound 2, and the indicated
preincubation times of 0–30 min. (D) Quantification of translocation inhibition
experiments as in C. Squares are used for DPAPB, circles for CPY, open
symbols for compound 1, and filled symbols for compound 2. The mean6s.d.
of two independent experiments are shown. (E) H1*, a protein derived from
the mammalian type II membrane protein H1, with its natural signal-anchor
sequence, or generic hydrophobic sequences composed of Leu13 or Leu16
were expressed in yeast and analyzed for inhibition of translocation by
compounds 1 and 2 as in A. The unglycosylated, and the two- and three-fold
glycosylated forms are indicated by 0, 2 and 3, respectively. (F) To
analyze the effect on translocation in mammalian cells, COS-1 cells were
transfected to express the asialoglycoprotein receptor H1 or derivatives in
which the hydrophobic core of its signal-anchor was replaced by generic
sequences of Leu13 or Leu25. Cells were labeled for 30 min with
[35S]methionine in the presence or absence of the indicated concentrations
of compound 1 or 2. H1 and its derivatives were immunoprecipitated and
analyzed by gel electrophoresis and autoradiography. (G) To analyze
inhibition of translocation in E. coli, purified SecA and SecYEG derivatives
[full-length lacking cysteine residues (DCys and WT) or with deletion of plug
residues 60–74 (D60-74 and DPlug)] were reconstituted into proteolipsomes.
Radiolabeled proOmpA-DHFR (a post-translationally translocated fusion
protein) was incubated in the presence of the indicated compound
concentrations with ATP or without (–ATP). Translocation of the substrate
was measured by proteinase K treatment followed by gel electrophoresis and
autoradiography. The presented dose–response curves are mean6s.d.
based on quantification of three experiments. (H) Sec61p mutants isolated
by their resistance to 30 mM compound 1 were analyzed for their ability to
suppress the translocation defect of CPYD3 (CPY with a mutant signal
sequence lacking three apolar residues) by analyzing metabolic labeling of
cells expressing CPYD3 or, as a control, CPY for 5 min, followed by
immunoprecipitation, SDS-gel electrophoresis, and autoradiography.
Glycosylation to the p1 forms indicates translocation into the ER lumen,
whereas the unglycosylated preproCPY form is cytosolic. As a control, the
material in the first lane was deglycosylated by endoglycosidase H (endoH)
digestion. The fraction of translocated products is indicated as the
percentage of the total (mean6s.d.; n53).
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676 bp, and a paired-end library with pair distance average of 2768 bp

and a pair distance standard deviation of 692 bp. The paired-end library

was sequenced twice, yielding a total of 953,342 paired reads with a peak

depth of 29. Sequences were assembled using the Newbler 2.6 assembler

with default options, except for specifying the scaffolding and four

processors. A total of 50 scaffolds were generated, with an average

size of 843,301 bp and an N50 of 2,374,876 bp (the average contig

size within these scaffolds was 124,629 bp; N50 scaffold contig size

Table 2. Inhibitor sensitivity of previously described Sec61 mutants

Sec61
CPY

Compound 1 Compound 2

mutation
Color
codea prl

translation
defect

IC50*
[mM] r2**

IC50 ratio
to control Phenotype

IC50
b

[mM] r2c
IC50 ratio
to control Phenotype

Wild-type – 2 2 0.8 0.995 1 S 0.7 0.998 1 S
66A Red + 2 .100 – .100 R .100 – .100 R
66G Red + (+) .100 – .100 R .100 – .100 R
66S Red + (+) .100 – .100 R .100 – .100 R
66W Red 6 (+) .100 – .100 R .100 – .100 R
Dplug Red + (+) .100 – .100 R .100 – .100 R
Dtip Red + + .100 – .100 R .100 – .100 R
DTM2 – n.d. + .100 – .100 R .100 – .100 R
W35R – 2 2 0.8 0.994 1 S 0.5 0.975 0.71 S
D61N Red + 2 .100 – .100 R .100 – .100 R
L63N Red + 2 2.9 0.978 3.63 (R) .100 – .100 R
R67C Red + + .100 – .100 R .100 – .100 R
E79G Red + 2 .100 – .100 R .100 – .100 R
I86T – + 2 1.5 0.991 1.88 S 0.4 0.989 0.57 S
I91T – 2 + 1.1 0.972 1.38 S 0.2 0.804 0.29 HS
Q93R – 2 2 1 0.986 1.25 S 0.4 0.974 0.57 S
Q96R – 2 2 0.8 0.993 1 S 0.7 0.997 1 S
L131P Orange + 2 0.6 0.974 0.75 S .100 – .100 R
S161T Orange + 2 0.5 0.967 0.63 S .100 – .100 R
D168A – 2 2 1 0.976 1.25 S 0.4 0.982 0.57 S
T185K Blue 2 2 .100 – .100 R .100 – .100 R
P200L – 6 2 1.1 0.981 1.38 S 0.8 0.998 1.14 S
K284E Green 6 2 1.1 0.971 1.38 S 1.6 0.977 2.29 (R)
P292S – 2 + 1.3 0.981 1.63 S 0.8 0.979 1.14 S
M400K – 2 2 0.8 0.991 1 S 0.7 0.999 1 S
M450K Blue 2 2 3.2 0.893 4 (R) 2.2 0.968 3.14 (R)

These Sec61 mutants have previously been characterized by Junne et al. (Junne et al., 2006; Junne et al., 2007; Junne et al., 2010). prl phenotype and CPY
translocation defects were analyzed by Junne et al. (Junne et al., 2007). S, sensitive; HS, hypersensitive (IC50 at least two-fold lower than wild-type); R, resistant;
(R), moderately resistant (IC50 at least two-fold higher than wild-type); n.d., not determined. aThe color code of mutations conferring resistance to at least one
compound corresponds to that used in Fig. 3A, lower panel; bcorresponding IC50 curves are shown in supplementary material Fig. S3; cr2 values are shown
where a sigmoidal curve could be fitted.

Table 3. Identified SEC61A1 mutations in compound 2-resistant HCT116 colonies

Compound 1 Compound 2

Colony#
Mutation in
Sec61a1 Codon change Sequencing Cluster

IC50
a

(mM) r2b
IC50

a

(mM) r2b

WT – – – – 0.14 0.99 0.05 0.97
1 S71F TCT.TTT Genome-wide 1 0.25 0.99 22.28 0.99
2 M65R ATG.AGG Genome-wide 5 0.79 .0.99 .30 –
3 R66I AGA .ATA Genome-wide 8 0.18 0.99 7.63 0.99
4 M65R ATG.AGG Genome-wide 5 0.81 .0.99 .30 –
5 D60E GAC.GAA Genome-wide 3 0.42 0.99 7.31 0.99
6 D60E GAC.GAA Genome-wide 3 0.48 0.99 8.71 0.99
7 D60G GAC.GGC Genome-wide 6 6.22 .0.99 .30 –
8 S71F TCT.TTT Genome-wide 2 0.37 0.98 8.56 0.99
9 None Genome-wide 4 0.6 0.99 12.15 0.98
10 None Genome-wide 7 1.04 .0.99 12.12 0.98
11 S71P TCT.CCT SEC61A1 – 0.55 .0.99 .30 –
12 S71P TCT.CCT SEC61A1 – – – – –
13 S71F TCT.TTT SEC61A1 – – – – –
14 S71F TCT.TTT SEC61A1 – – – – –
15 I41D; R66K ATC.AAC; AGA.AAA SEC61A1 – 0.11 0.99 10.61 0.99
16 I41D; R66K ATC.AAC; AGA.AAA SEC61A1 – – – – –

For description of colony genotype analysis, see Materials and Methods. aCorresponding IC50 curves are shown in Fig. 4A,B; br2 values are shown where a
sigmoid curve could be fitted.
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594,413 bp). Gene modeling and prediction of the genome was

undertaken using Augustus (Keller et al., 2011). Augustus must be

trained on each new fungus, and we used the CEGMA software (Parra

et al., 2007) to provide an initial training set of spliced genes. In parallel,

total RNA was isolated from the fungus using the RNeasy plant mini kit

(Qiagen). RNA-seq libraries were prepared using an Illumina RNA prep

kit, and sequenced using the Illumina HiSeq2000 platform. A total of 80

million 76-bp paired-end reads were generated. We supplemented the

genome data with RNAseq following the Augustus RNAseq tutorial.

Using the gene predictions from Augustus, we predicted protein

sequences. In addition, we identified all open reading frames .500

amino acids within the genome. Finally, we used Tophat 2.0.4 (http://ccb.

jhu.edu/software/tophat/index.shtml) and Cufflinks 2.0.2 (http://

cufflinks.cbcb.umd.edu) to identify the putative transcripts in the

mRNA sample, and protein sequences were predicted from these.

Using NCBI Blast with both Swissprot and the NCBI Non-Redundant

protein data files, the predicted sequences were annotated. AntiSMASH

was used to find secondary metabolite gene clusters.

Fermentation conditions, compound purification and
structure elucidation
The strain was cultivated in 200-ml shake flasks with 60 ml main culture

medium (yeast extract 2 g/l, malt extract 1.6 g/l, soy protein 2 g/l, glucose

20 g/l, MgSO4 2 g/l, KH2PO4 2 g/l) at 28 C̊ and 200 rpm for 8 days after

inoculation with 1.5 ml of a 6-day preculture (agar 1 g/l, yeast extract

4 g/l, malt extract 15.6 g/l). Compounds were isolated by normal and

reversed phase chromatography. The structure was determined by mass

spectroscopy and 1D- and 2D-NMR experiments. The spectroscopic

methods structural and spectral data for compound 1 can be found in the

supplementary materials (supplementary material Table S2).

Chemogenomic profiling – HIP and HOP
The growth-inhibitory potency of test substances was determined using

wild-type S. cerevisiae BY4743. The optical density at 600 nm (OD600)

of exponentially growing cultures in rich medium was recorded with a

robotic system. Twelve-point serial dilutions were assayed in 96-well

plates with a reaction volume of 150 ml; the start OD600 was 0.05.

Solutions containing DMSO were normalized to 2%. IC30 values were

calculated using logistic regression curve fits generated by TIBCO

Spotfire v3.2.1 (TIBCO Software Inc.).

HIP, HOP and microarray analysis were performed as described

previously (Hoepfner et al., 2014). Sensitivity was computed as the

median absolute deviation logarithmic (MADL) score for each compound

and concentration combination. z-scores are based on a robust parametric

estimation of gene variability from .3000 different profilings and were

computed as described in detail in previously (Hoepfner et al., 2014).

Growth curves
HIP and HOP profiles were validated by picking the individual strains

from the HIP and HOP collections (OpenBiosystems, cat. number

YSC1056 and YSC1055) and testing log-phase cultures in 96-well

microtiter plates in YPD medium with serial dilutions of the compound.

The assay volume was 150 ml/well, start OD600 was 0.01, DMSO was

normalized to 2%. Curves were calculated by taking the 11 h OD600

measurements and applying a logistic regression curve fit in TIBCO

Spotfire v3.2.1. Strain HO/YDL228C was used as the wild-type reference.

Selection of resistant S. cerevisiae cells
Strain BY4743D8 (Hoepfner et al., 2012) was incubated with 2.5% EMS

until only 50% of the cells formed colonies. A total of 26107

mutagenized cells were plated on two 14-cm dishes with synthetic

complete medium (0.7 g/l Difco Yeast Nitrogen Base without amino

acids, 0.79 g/l MPbio CSM amino acid mixture, 2% glucose) containing

30 mM compound 1. After 4 days, 45 resistant colonies were isolated.

Resistance due to mutated SEC61 was confirmed by cloning the

corresponding mutations into fresh BY4743 cells and recording dose–

response curves in YPD medium with serial dilutions of compounds 1 or

2 at 200 mM maximum concentration and 11 serial dilutions. DMSO was

normalized to 2%. Curves were fitted by logistic regression curve fitting

in TIBCO Spotfire v3.2.1 (TIBCO Software Inc.).

Selection and sequencing of resistant HCT116 cells
HCT116 cells were mutagenized by incubating with 2% EMS for 60 min

aiming to kill 30% of the cells. A total of 16107 mutagenized cells were

plated and allowed to recover for 1.5 doubling times under standard

conditions (10% FBS supplemented medium, 5% CO2, 37 C̊). Compound

2 was added at the minimal inhibitory concentration (MIC; 1 mM) when

they were 50–80% confluent, and medium was changed every 3–4 days.

Resistant colonies appeared within 2–4 weeks. Resistance was confirmed

by retesting the cells for growth in a dilution series from one tenth to

one hundred times the IC50 (0.3 mM). For growth assays, CellTiter-

Glo (Promega) cell viability assay reagent was used according to the

manufacturer’s instructions. The envision system was used for the

readout, and IC50 values were determined by using the logistic regression

curve fit function in TIBCO Spotfire v3.2.1.

Stable resistant colonies were tested in growth curves with compound

1, compound 2 and taxol. Ten colonies were expanded to extract genomic

DNA and total RNA for sequencing using the Qiagen ALL Prep DNA/

RNA kit (Qiagen) and were quantified by Qubit Fluorometric

quantification (Life Technologies). 100 ng DNA was fragmented using

a Covaris E210 ultrasonicator to an average length of 300 bp. The DNA

was end-repaired, and Illumina-compatible sequencing libraries were

prepared using the NuGen DR ultralow library kit. Libraries were then

multiplexed and captured using a combination of NuGen blockers and

Agilent SureSelect XT capture oligonucleotides following the NuGen

recommendations. Libraries for transcriptome sequencing were prepared

using the TruSeq v2 mRNA sequencing protocol (Ilumina Corp.).

Sequencing was performed on an Illumina HiSeq2500 using TruSeq v3

sequencing chemistry on a HiSeq v3 paired end flowcell. The read length

for all sequencing runs was 26 76 bp, according to manufacturer’s

instructions (Illumina). Sample demultiplexing was performed using

CASAVA v1.8.2 with FASTQC v0.10.0.

SNP analysis
The raw sequence reads were aligned to the human genome (hg19) using

BWA version 0.5.9 (Li and Durbin, 2009). SNPs were called in two

different ways. GATK version 1.6-11 was used to call SNPs for each of

the resistant samples as well as for two samples of the unmutagenized

reference strain HCT116 (McKenna et al., 2010). The SNPs of the two

reference strain samples were then subtracted from the SNPs of the

resistant samples. Secondly, we used a slightly modified version of the

SNP calling method described previously (Wacker et al., 2012) to obtain

SNPs at positions where the resistant mutant differs from the parental

strain. SNPs were only kept if called against both of the reference strain

samples. The combined set of SNPs from both methods was annotated

using VEP for Ensembl v71 (Li and Durbin, 2009; McKenna et al., 2010;

McLaren et al., 2010).

In vivo translocation assays in yeast and COS-1 cells
Yeast strain RSY1293 {mata, ura3-1, leu2-3,-112, his3-11,-15, trp1-1,

ade2-1, can1-100, sec61::HIS3, [YCplac111 (LEU2 CEN) containing

SEC61]} was used (Pilon et al., 1997). The substrate proteins dipeptidyl

aminopeptidase B (DPAPB), carboxypeptidase Y (CPY), and CPYD3

with C-terminal triple HA epitope tags were described by Junne et al.

(Junne et al., 2007), and H1* and derivatives by Goder et al. (Goder et al.,

2004). All were cloned into pRS426 with a GPD promoter. Yeast cells

expressing substrate proteins were in vivo pulse-labeled for 5 min with

150 mCi/ml [35S]methionine and [35S]cysteine (PerkinElmer Life and

Analytical Sciences, Boston, MA), lysed with glass beads, heated to 95 C̊

for 5 min with 1% SDS, cleared by centrifugation, subjected to

immunoprecipitation, and analyzed by SDS-gel electrophoresis and

autoradiography as described previously (Junne et al., 2006). Compound

1 and 2 were added in DMSO (#1% of the medium) 0–30 min before

and during the labeling period. Signals were quantified using a

phosphoimager. Mutant sec61 sequences were cloned into YCplac111

(LEU2 CEN) and introduced into VGY61 {mata, ura3-1, leu2-3,-112,
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his3-11,-15, trp1-1, ade2-1, can1-100, sec61::HIS3, [YCPlac33 (URA3

CEN) containing SEC61]} (Goder et al., 2004), and the wild-type SEC61

plasmid was eliminated using 5-fluororotic acid for metabolic labeling

experiments. COS-1 cells were grown, transfected, and labeled as

previously described (Goder and Spiess, 2003). Inhibitors were added in

DMSO (#1% of the medium) during the labeling period. H1, H1Leu13,

and H1Leu25 were as described previously (Wahlberg and Spiess, 1997).

Bacterial in vitro translocation assay
In vitro translocation assays with purified components from

Escherichia coli were performed essentially as described previously

(Bauer et al., 2014). SecA (residues 1–831 with all cysteine residues

replaced by serine residues and a C-terminal His6 tag) and SecYEG

(with all cysteine residues replaced by serine residues and with a N-

terminal His6 tag in SecE) as well as a derivative in which the plug

domain of SecY (residues 60–74) was deleted were purified. The

SecYEG complexes were reconstituted into proteolipsomes containing

E. coli polar lipid extract. pOA-DHFR, a fusion of the first 175 amino

acids of proOmpA and E. coli dihydrofolate reductase, was synthesized

and radiolabeled with [35S]methionine by in vitro translation with

rabbit reticulocyte lysate (Promega) as described previously (Bauer and

Rapoport, 2009).

Proteoliposomes containing 0.1 mM SecYEG were mixed with 0.4 mM

SecA, 5 mM ATP and pOA-DHFR diluted 1:50 from the reticulocyte

lysate in buffer containing 50 mM Hepes-NaOH pH 7.5, 50 mM KCl and

5 mM MgCl2. The mixture was split into equal volumes and incubated

with different concentrations of compounds 1 or 2 or DMSO for 30 s on

ice. Translocation was then initiated by incubation for 5 min at 37 C̊.

Translocation of pOA-DHFR was tested by proteinase K treatment

followed by SDS-PAGE and autoradiography.
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