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Stable Marriages and Search Frictions

Stephan Lauermanna, Georg Nöldekeb

aDepartment of Economics, University of Michigan, USA
bFaculty of Business and Economics, University of Basel, Switzerland

Abstract

Stable matchings are the primary solution concept for two-sided matching markets with non-
transferable utility. We investigate the strategic foundations of stability in a decentralized match-
ing market. Towards this end, we embed the standard marriage markets in a search model with
random meetings. We study the limit of steady-state equilibria as exogenous frictions vanish.
The main result is that convergence of equilibrium matchings to stable matchings is guaranteed
if and only if there is a unique stable matching in the underlying marriage market. Whenever
there are multiple stable matchings, sequences of equilibrium matchings converging to unstable,
inefficient matchings can be constructed. Thus, vanishing frictions do not guarantee the stability
and efficiency of decentralized marriage markets.

JEL classification: C78, D83.
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1. Introduction

This paper considers a two-sided matching market with nontransferable utility: agents on
each side of the market match with at most one agent from the other side of the market, and
agents cannot make transfers. Following standard practice, we refer to such a market as a mar-
riage market and use the corresponding terminology; see Roth and Sotomayor [26]. The central
theoretical problem in a marriage market is to determine who will match with whom. The con-
cept of stable matchings introduced in Gale and Shapley [17] provides an answer: a matching is
stable if no matched agent prefers to be single and no pair of agents prefers each other to their
assigned partner in the matching.

Most of the recent literature on matching considers questions of economic design in cen-
tralized markets. However, many of those markets that are analyzed using stability concepts,
including the marriage market in its literal sense, are decentralized. Roth and Sotomayor [26,
p.22] conjecture that even in a decentralized market, we might expect matchings to be stable if
frictions are negligible in the sense that “the agents have a very good idea of one another’s pref-
erences and have easy access to each other.” The purpose of this paper is to test this conjecture.
In particular, we assume complete information about preferences and ask whether “easy access”
to potential partners implies the stability of matchings.
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To investigate this question, we embed a marriage market in a search model with random
meetings and investigate the limit of steady-state equilibria in the search model when search
frictions vanish. Our approach is thus akin to the one in the literature on convergence to compet-
itive equilibria in dynamic matching and bargaining games, surveyed in Osborne and Rubinstein
[24] and Gale [16].1 The concern motivating our paper is the same as the one motivating this
literature, namely, to investigate the strategic foundations of stable outcomes in decentralized
markets. The key difference is that we consider the nontransferable utility case.

In the underlying marriage market that we consider, there are a finite number of men and
women. All individuals have strict preferences over mates and staying single; no further restric-
tions on preferences are imposed. In the search model there are continua of men and women
with each individual in the marriage market represented by one of a finite number of types. The
rate at which men and women meet one another is determined by the size of the population of
agents searching for a potential partner according to a continuous contact function. If a man
and a woman meet, they decide whether to accept each other. If both accept, the agents leave
as a matched pair. Otherwise, both continue searching. The opportunity cost of rejecting a part-
ner and waiting for a better match is an exogenous risk that an agent will have to abandon the
search and remain single. Exogenously arriving unmatched men and women keep the stock of
agents who are searching for partners from depleting. We study the matchings that result from
steady-state equilibria and refer to these as equilibrium matchings.

Due to the randomness inherent in the contact process and the risk of exogenous exit, dif-
ferent agents of the same type will obtain different outcomes in a steady-state equilibrium. The
equilibrium matchings arising in the search model thus correspond to fractional matchings as
considered in Roth et al. [28]. We find it convenient to refer to matchings in which all agents
of the same type receive the same match as simple matchings and to reserve the term fractional
matchings for matchings that are not simple; the term matching encompasses both possibilities.
The distinction between simple and fractional matching patterns plays a key role in our analysis.

In the search model the speed of the contact process determines how difficult it is to access
potential partners and will thus serve as our measure of frictions. To investigate whether equi-
librium matchings approximate stable matchings when search frictions are small, we study those
matchings in the marriage market that can be obtained as limits of equilibrium matchings in the
search model as the speed of the contact process goes to infinity. We refer to these matchings
(both, simple and fractional) as limit matchings.

Our first main result, Proposition 1, is that a simple matching is a limit matching if and only
if it is stable. At first glance, this result may seem to settle the question motivating this paper
in the positive. It does not. The reason is that Proposition 1 does not preclude the existence
of fractional limit matchings. To obtain firm conclusions about the stability of limit matchings,
we need to address the existence of fractional limit matchings and their properties. Our second
main result, Proposition 2, shows that fractional limit matchings exist if and only if there is more
than one stable matching in the underlying marriage market. Fractional limit matchings have
undesirable properties. We show that fractional limit matchings fail to satisfy a weak stability
requirement that is implied by all existing stability notions for fractional matchings. In addition,
fractional limit matchings are inefficient.

1A rather different approach to the emergence of stable matchings in marriage markets with decentralized decision
making is pursued by Roth and Vande Vate [27]. They demonstrate that starting from any initial matching, the process
of allowing randomly chosen “blocking pairs” of myopic agents to match converges to a stable matching. Their model
abstracts from the strategic considerations and frictions that are at the heart of our approach.
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Taken together, our results identify a dichotomy between those marriage markets that have a
unique stable matching and those that do not. In the first case, all equilibrium matchings converge
to the unique stable matching when frictions vanish. In the second case, vanishing frictions do
not imply stability.2

Our analysis is driven by two characterization results. The first of these, given in Lemma 7,
provides necessary and sufficient conditions for a matching to arise as the equilibrium outcome
in the search model. Theorem 1 builds on Lemma 7 to obtain a concise characterization of limit
matchings in terms of the parameters of the underlying marriage market. These results not only
yield Propositions 1 and 2, but also provide more general insights into the structure of equilibria
with search frictions. We demonstrate this in Section 5 by obtaining counterparts to our limit
results for the case of small search frictions.

Three key features differentiate our model and results from related contributions investigating
the limits of steady-state equilibria in search models for vanishing frictions.

First, as we have already noted above, the literature on convergence to competitive equilibria
in dynamic matching and bargaining games considers transferable utility, whereas we assume
utility to be nontransferable. This difference is critical to our analysis. The reason is that with
nontransferable utility agents may disagree about whether or not to form a match.3 For example,
if a woman strictly prefers to match with the man she has met and the man is indifferent as to
either accepting the match or continuing to search, there is no inducement the woman can offer
to the man to break his indifference.4 Such disagreements play, as we demonstrate in Corollary
4, an essential role in our construction of fractional limit matchings.

Second, the composition and size of the stock of searching agents are endogenously de-
termined by agents’ acceptance decisions and, in addition, depend on the speed of the contact
process. Consequently, whether an agent has “easy access” to attractive partners depends not
only on the search frictions per se, but also on the equilibrium behavior of all other agents and
the properties of the contact function. Taking these effects into account differentiates our work
from the two existing papers, namely Eeckhout [13] and Adachi [1], that investigate convergence
to stable matchings in frictional search models with nontransferable utility: Adachi [1] assumes
that the distribution of agents searching for a partner is exogenous, whereas Eeckhout [13] con-
siders the special case of a market in which identical measures of men and women meet each
other according to a contact function with constant returns to scale, thus eliminating many of the
complications we encounter in our more general setting. Indeed, dealing with the endogeneity
of the stock is one of the main challenges in proving our characterization of limit matchings.
We believe that taking these effects into account is not only of technical but also of economic
interest.5

2A similar dichotomy has been observed in related problems. Sönmez [33] studies a general class of indivisible goods
allocation problems, including the marriage market investigated here as a special case, and finds that there exists a Pareto
efficient, individual rational, and strategy-proof solution only if the core correspondence is “essentially single-valued.”
Bloch and Diamantoudi [3] study a non-cooperative game of coalition formation and identify conditions which imply that
all equilibria are efficient (in the sense of no-delay ) and generate stable outcomes. In a marriage market these conditions
are satisfied if the market itself and any “submarket” have a unique stable matching.

3 In contrast, if transfers are possible, agents always agree whether a match should be formed, because the available
surplus from the match is either positive or not. Smith [31] uses the observation that disagreements about matchings in
social settings are common as an argument for the nontransferable utility model.

4Such indifferences may arise in equilibrium despite our assumption that preferences are strict because continuation
payoffs are determined endogenously to equilibrate the market.

5Burdett and Coles [6] and Shimer and Smith [30] discuss the importance of the feedback effect from agents’ decision
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Third, we consider the general version of the marriage model as introduced in Gale and Shap-
ley [17], in which multiplicity of stable matchings is a common occurrence. This is in contrast to
most of the literature studying search models with nontransferable utility which follows Becker
[2] in assuming that agents agree on the ranking of their potential partners.6 In such models with
vertical heterogeneity, there is a unique stable matching featuring positive assortative matching.7

Our analysis not only shows that in models with vertical heterogeneity the convergence to a sta-
ble outcome is assured, but also demonstrates that this result is not robust. Clearly, to reach the
latter conclusion, it is essential to consider more general preference structures.

The papers most closely related to ours are Eeckhout [13] and Adachi [1]. These authors also
consider the relationship between stable matchings in a marriage market and the equilibrium
matchings in a search model when frictions become negligible. Both papers find convergence
to stable matchings. This is consistent with our findings: The underlying marriage market in
Eeckhout [13] features vertical heterogeneity and thus has a unique stable matching. Adachi
[1], who considers general preferences as we do, eliminates fractional limit matchings from
consideration by requiring an agent to accept a partner whenever the agent is indifferent as to
accepting the partner or continuing to search.

Section 2 introduces the marriage market model, discusses stable matchings, and introduces
the notions of coherent and regret-free matchings that play a key role in our analysis. Section 3
embeds the marriage market in a search model, defines equilibrium matchings, and notes some
of their properties. We present our limit results for the case of vanishing frictions in Section 4.
As a byproduct of our convergence analysis, we obtain results for search with small frictions.
These are noted in Section 5. Section 6 concludes.

2. Marriage Market

2.1. Agents and Preferences

There are two finite, disjoint sets of agents: the set M of men and the set W of women.
Each agent has a complete, transitive, and strict preference ordering over the set of agents on the
other side of the market and the prospect of remaining single. We assume that the extension of
this preference to the set of corresponding lotteries has an expected utility representation. We
represent these preferences for a man m ∈ M by the utilities u(m, h) ∈ R, where h ∈ W ∪{m}, and
for a woman w ∈ W by v(h,w) ∈ R, where h ∈ M∪{w}. We normalize the utility of staying single
to zero, that is u(m,m) = v(w,w) = 0 holds for all m ∈ M, resp. w ∈ W. As preferences are strict,
we have u(m,w) , 0 and v(m,w) , 0 for all (m,w) ∈ M ×W as well as u(m,w) , u(m,w′) and
v(m,w) , v(m′,w) for all (m,w) ∈ M ×W, w′ , w ∈ W, and m′ , m ∈ M. To avoid trivialities,
we assume that there is at least one pair of agents (m,w) such that (m,w) find each other mutually
acceptable, that is, u(m,w) > 0 and v(m,w) > 0 holds.

We refer to a tuple (M,W; u, v) satisfying the above assumptions as a marriage market.

to the steady-state distribution of types. In the context of the literature on convergence to competitive equilibria, Gale
[15] has pioneered the investigation of models in which the stock of searching agents is endogenously determined and
offers extensive discussion. See Lauermann [20] for further discussion.

6Burdett and Coles [7] and Smith [32] survey the literature. Notable contributions include McNamara and Collins
[21], Johnstone et al. [18], Burdett and Coles [6], Morgan [23], Eeckhout [13], Bloch and Ryder [4], Smith [31]. Burdett
and Wright [9] and Burdett et al. [8] also study search models with nontransferable utility, but consider a model with
match-specific random shocks in which all agents on the same side of the market are identical ex-ante.

7See Eeckhout [14] and Clark [10] for more general conditions ensuring uniqueness of stable matchings.
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2.2. Matchings and Payoffs

A matching is given by an assignment matrix x ∈ R|M|×|W | satisfying∑
w∈W

x(m,w) ≤ 1 for all m ∈ M, (1)∑
m∈M

x(m,w) ≤ 1 for all w ∈ W, (2)

x(m,w) ≥ 0 for all (m,w) ∈ M ×W. (3)

If the assignment matrix in the above definition of a matching satisfies x(m,w) ∈ {0, 1} for all
(m,w) ∈ M ×W, we say that the matching is simple; otherwise, it is fractional.

The interpretation of a simple matching is straightforward: x(m,w) = 1 indicates that man m
and woman w are matched, whereas x(m,w) = 0 indicates that they are not. The constraints in (1)
– (3) ensure that no individual has more than one partner in a simple matching. Simple matchings
can also be described (Roth and Sotomayor [26, Definition 2.1]) by a matching function µ :
M ∪ W → M ∪ W satisfying µ(m) ∈ W ∪ {m}, µ(w) ∈ M ∪ {w}, and µ2(h) = h for all m ∈ M,
w ∈ W, and h ∈ M ∪W. For every matching function having these properties, setting

x(m,w) = 1⇔ µ(m) = w⇔ µ(w) = m (4)

produces the unique assignment matrix describing the corresponding simple matching (and vice
versa).

The interpretation of fractional matchings8 depends on the context. One possibility is to
view fractional matchings as describing lotteries over simple matchings.9 In this interpretation,
x(m,w) is the probability that a match between man m and woman w is formed, x(m,m) :=
1 −

∑
w∈W x(m,w) is the probability that man m remains single, and x(w,w) := 1 −

∑
m∈M x(m,w)

is the probability that woman w stays single. Given any matching x, we say that h ∈ M ∪W is
fully matched if x(h, h) = 0, partially matched if 0 < x(h, h) < 1, and unmatched if x(h, h) = 1
holds. Types (m,w) ∈ M ×W are partners if x(m,w) > 0 holds.

With every matching x, we associate the payoff vectors U(x) ∈ R|M| and V(x) ∈ R|W | given
by

U(m; x) =
∑
w∈W

x(m,w)u(m,w), (5)

V(w; x) =
∑
m∈M

x(m,w)v(m,w). (6)

Recall that we have normalized the utility from staying single to zero. Hence, these payoffs
correspond to the expected utilities of the matching x.

8Fractional matchings are studied (among others) by Vande Vate [35], Rothblum [29], Roth et al. [28], Kesten and
Ünver [19], Echenique et al. [12].

9The Birkhoff-von Neumann theorem implies that every such lottery can be represented by an assignment matrix
satisfying (1) – (3) and every such assignment matrix corresponds to a lottery over simple matchings. See Budish et al.
[5] for an extensive discussion in the context of assignment problems.
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2.3. Individual Rationality and Pairwise Stability
A matching x is individually rational if

x(m,w) > 0⇒ u(m,w) ≥ 0 and v(m,w) ≥ 0 (7)

holds and it is pairwise stable if

there is no (m,w) ∈ M ×W s.t. u(m,w) > U(m; x) and v(m,w) > V(w; x). (8)

For simple matchings, we can use (4) to rephrase individual rationality and pairwise stability
in terms of the matching function describing the simple matching. For simple matchings we have
U(m; x) = u(m, µ(m)) and V(w; x) = v(µ(w),w), so that such a matching is individually rational
if and only if u(m, µ(m)) ≥ 0 holds for all m and v(µ(w),w) ≥ 0 holds for all w. It is pairwise
stable if and only if there does not exist (m,w) ∈ M × W such that u(m,w) > u(m, µ(m)) and
v(m,w) > v(µ(w),w) holds. These are the requirements that the simple matching is not blocked
by any individual (individual rationality) or any pair of agents (pairwise stability), cf. Roth and
Sotomayor [26, p. 21].

Under the lottery interpretation of fractional matchings, (7) corresponds to an ex-post indi-
vidual rationality requirement. In contrast, (8) means that there is no blocking pair at the ex-ante
stage before the outcome of the lottery (that is, a simple matching) is realized. While other for-
mulations of individual rationality and pairwise stability for fractional matchings are possible,
conditions (7) – (8) turn out to be the ones most relevant for our subsequent analysis.

2.4. Stable Matchings
A simple matching is stable if it is individually rational and pairwise stable. We recall the fact

that every marriage market has a stable simple matching (Gale and Shapley [17]). Furthermore,
our assumption that there is a mutually acceptable pair (that is, a pair satisfying u(m,w) > 0 and
v(m,w) > 0) implies that in every stable simple matching there exists (m,w) ∈ M ×W such that
x(m,w) = 1 holds. (Equivalently, µ(h) , h holds for some h ∈ M ∪W.)

We extend stability to fractional matchings following Vande Vate [35] and say that a match-
ing x is stable if and only if there exist stable simple matchings x1, . . . , xk such that x is a con-
vex combination of x1, . . . , xk.10 Under the lottery interpretation of fractional matchings offered
above, this means that stable fractional matchings can be obtained as lotteries over stable simple
matchings.

Since the set of agents who are unmatched is the same for all stable simple matchings (see
Roth and Sotomayor [26, Theorem 2.22]) and stable matchings, by definition, are convex com-
binations of stable simple matchings, every stable matching satisfies x(h, h) ∈ {0, 1} for all
h ∈ M ∪ W. Recalling our definition of a partially matched agent, we have the following re-
sult, which we record as a lemma for later reference.

Lemma 1. Let x be a stable matching. Then there are no partially matched agents in x.

As alternative stability notions for fractional matchings have been proposed in the literature,11

we observe that for fractional matchings Lemma 1 is the only implication of stability that we use
in our subsequent analysis.

10See Roth et al. [28] for the equivalence between this definition and the one given in Vande Vate [35].
11The stability notion by Vande Vate [35] used here has a natural interpretation as an ex-post stability requirement.

From an ex-ante perspective, the notion of a strongly stable matching introduced in Roth et al. [28] may be more appeal-
ing. Our results continue to hold when using this alternative stability definition.
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2.5. Coherent and Regret-Free Matchings

The definitions and results in this subsection are not standard, but essential for our character-
ization of limit matchings in Section 4.

Definition 1. A matching is coherent if it is individually rational and pairwise stable, i.e., (7) –
(8) hold. A matching is regret-free if

x(m,w) > 0⇒ u(m,w) ≥ U(m; x) and v(m,w) ≥ V(m; x). (9)

A simple matching is, by definition, coherent if and only if it is stable. For fractional match-
ings, this is not the case.12 Under the lottery interpretation of fractional matchings, regret-
freeness can be understood as the requirement that any pair of agents who are matched with
a strictly positive probability in x weakly prefer to match with each other, rather than returning
to the ex-ante stage before the outcome of the lottery is realized.

Every simple matching is regret-free because the two inequalities in (9) hold as equalities if
x(m,w) = 1. For fractional matchings, however, condition (9) has substantial bite.

Lemma 2. Let x be a regret-free matching. Then every fully matched agent has a unique partner.
In particular, 0 < x(m,w) < 1 implies that m and w are partially matched.

Proof. Suppose x satisfies (9). Assume m ∈ M is fully matched. Using x(m,m) = 0 and (5) we
have ∑

w∈W

x(m,w) [u(m,w) − U(m; x)] = 0.

Because x satisfies (9), all the summands on the left side of this equality are positive. Hence,
all summands are equal to zero. Consequently, x(m,w) = 0 holds for all w satisfying u(m,w) −
U(m; x) , 0. Because preferences are strict, it follows that there is w ∈ W satisfying x(m,w) = 1.
Hence, m has a unique partner. An analogous argument shows that every fully matched w ∈ W
has a unique partner. Consequently, 0 < x(m,w) < 1 implies 0 < x(m,m) < 1 as well as
0 < x(w,w) < 1 (because neither m nor w can be unmatched or fully matched if 0 < x(m,w) < 1
holds).

The intuition behind Lemma 2 is simple: if every partner of an agent provides a payoff at
least as high as the average payoff an agent receives, then it must either be the case that the agent
only has one partner or it must be the case that there is a strictly positive probability that the
agent remains unmatched. After all, in contrast to the children in Lake Wobegon, not all partners
can be better than average.

As a straightforward implication of Lemmas 1 and 2, we obtain the result that stability and
regret-freeness are incompatible for fractional matchings.

Lemma 3. Let x be a regret-free fractional matching. Then x is unstable.

Proof. Let x be a regret-free fractional matching. By the definition of a fractional matching,
there exists a pair (m,w) ∈ M ×W such that 0 < x(m,w) < 1 holds. Lemma 2 then implies that
m and w are partially matched in x. By Lemma 1, this implies that x is unstable.

12This point is illustrated by the example below.
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The problem with regret-free fractional matchings is deeper than the instability identified in
Lemma 3. Let us say that a matching is strongly inefficient if there exists a pair (m,w) ∈ M ×W
satisfying

u(m,w) > 0, v(m,w) > 0, x(m,m) > 0, and x(w,w) > 0. (10)

In words, (10) means that both m and w stay single with strictly positive probability even though
man m and woman w find each other acceptable. Hence, by the simple device of increasing
x(m,w) to x′(m,w) = x(m,w) + min{x(m,m), x(w,w)} the payoff of both m and w can be strictly
increased (without affecting the payoff of any other agent), thus generating a Pareto improvement.

Lemma 4. Let x be a regret-free and individually rational fractional matching. Then x is strongly
inefficient.

Proof. Let x be a regret-free and individually rational fractional matching. As in the proof of
Lemma 3, we obtain the existence of a pair (m,w) such that 0 < x(m,w) < 1, x(m,m) > 0,
and x(w,w) > 0 holds. Because x is individually rational, the inequality x(m,w) > 0 implies
u(m,w) > 0 and v(m,w) > 0. Hence, x is strongly inefficient.

We illustrate the above definitions and results with a simple example.

Example. Consider a marriage market with two men, M = {m1,m2}, and two women, W =

{w1,w2}. Preferences are described by the bi-matrix

w1 w2
m1 2, 1 1, 2
m2 1, 2 2, 1

where the first entry in the cell corresponding to (mi,w j) is the payoff u(mi,w j) and the second
entry is the payoff v(mi,w j). In this example, all matchings are individually rational. There are
two stable simple matchings given by the assignment matrices

xM =

[
1 0
0 1

]
and xW =

[
0 1
1 0

]
.

The matching xM is the men-optimal matching, whereas the matching xW is the women-optimal
matching; see Roth and Sotomayor [26, Definition 2.11].

There is one additional coherent and regret-free matching, namely the fractional matching

x∗ =

[ 1
3

1
3

1
3

1
3

]
,

resulting in the payoffs U(mi; x∗) = V(w j; x∗) = 1 for i, j = 1, 2.
As implied by Lemma 3, x∗ is unstable as each agent stays unmatched with probability 1/3,

whereas in a stable matching all agents are matched for sure. As implied by Lemma 4, x∗ is
strongly inefficient; a Pareto improvement would obtain from switching to the stable fractional
matching

x′ =

[ 1
2

1
2

1
2

1
2

]
.

�
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3. Search

3.1. Search Process and Steady States
We embed a marriage market (M,W; u, v) in a continuous-time search model with a con-

tinuum of agents, similar to the search model studied by Burdett and Coles [6]. To do so, we
re-interpret the sets M and W as the set of possible types for men and women, respectively. For
each m ∈ M and w ∈ W, new agents of the corresponding type are born at a constant flow rate that
is equal to η > 0. Newborn agents start searching for partners and continue doing so until they
either match with an agent of the opposite sex or exit the search process without having found a
partner. Agents exit as unmatched singles at an exogenous rate δ > 0.13 On the individual level,
the exit rate acts like a discount rate and is a convenient way to model the opportunity costs of
waiting for a better match. We thus do not consider any additional, explicit time discounting
and assume the payoff of an agent of type h who exits the search process in a partnership with
another agent (or single) is the one from the underlying marriage market.

Let f (m) > 0 denote the mass of men of type m searching for a partner and let f denote
the corresponding vector of masses. Define f̄ =

∑
m∈M f (m). Similarly, let g(w) > 0 denote

the mass of women of type w searching for a partner, let g be the corresponding vector, and
define ḡ =

∑
w∈W g(w). We suppress time indices because we consider steady states. The mass

of meetings between men and women that occur per unit time is given by λ · C( f̄ , ḡ). We refer
to C : R2

+ → R+ as the contact function and to the parameter λ > 0 as the speed of the contact
process.14 Only minimal assumptions are imposed on the contact function.

Assumption 1. The contact function C is continuous and is strictly positive if and only if both
of its arguments are strictly positive.

The contact functions commonly considered in the labor market search literature (Petrongolo
and Pissarides [25]) satisfy Assumption 1, except for the linear matching function (Diamond and
Maskin [11]), which violates the requirement that there are no meetings if the mass of men or
women is zero; see Stevens [34].

We assume that the contact process is random in the sense that the fraction of meetings
involving a man of type m and a woman of type w is given by f (m) · g(w)/( f̄ · ḡ). Defining
c : R2

++ → R++ by

c( f̄ , ḡ) =
C( f̄ , ḡ)

f̄ · ḡ
, (11)

all men in the market thus meet women of type w at rate

γ(w; f , g) = λ · c( f̄ , ḡ) · g(w) > 0, (12)

and all women in the market meet men of type m at rate

φ(m; f , g) = λ · c( f̄ , ḡ) · f (m) > 0. (13)

13Our model of entry and exit is the one from Burdett and Coles [6]. As noted by Eeckhout [13], assuming that there
is (i) a fixed population of infinitely lived agents who (ii) exit the search process only if they have found a partner and
(iii) enter the search process when their partnership dissolves due to exogenous separation, yields identical steady-state
conditions; see Shimer and Smith [30] and Smith [31].

14We refer to C as a contact function rather than as a matching function because in our model not every meeting
between agents needs to result in a match.
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If two agents meet, they observe each other’s type and simultaneously decide whether to
accept each other or not. If both accept, the agents leave the search process as a matched pair.
If at least one agent rejects the match, both return to search. In line with our focus on steady
states, we assume that all agents use time and history independent strategies. In addition, we
restrict attention to strategy profiles that are symmetric in the sense that all agents of the same
type use the same strategy. We may thus use a pair of functions βM : M × W → [0, 1] and
βW : M × W → [0, 1] to describe a strategy profile, where 0 ≤ βM(m,w) ≤ 1 specifies the
probability that a man of type m accepts a match with a woman of type w and, symmetrically,
0 ≤ βW (m,w) < 1 specifies the probability that a woman of type w accepts a match with a man
of type m. Let

α(m,w) = βM(m,w) · βW (m,w) ∈ [0, 1] (14)

denote the resulting probability that a meeting between a man of type m and a woman of type
w results in a match. We use α ∈ [0, 1]|M|×|W | to denote the corresponding matrix of acceptance
probabilities.

Definition 2. A steady state is a tuple ( f , g, α) satisfying

η = f (m)

δ +
∑
w∈W

α(m,w)γ(w; f , g)

 for all m ∈ M, (15)

η = g(w)

δ +
∑
m∈M

α(m,w)φ(m; f , g)

 for all w ∈ W. (16)

The left side of equations (15) – (16) represent the inflow of newborn agents of a given type.
The right side is the corresponding outflow of single and matched agents. In a steady state these
flows balance.

3.2. Payoffs and Equilibria
Given a steady state ( f , g, α), the probability that a man of type m is in a match with a woman

of type w when exiting from the search process is

p( f ,g,α)(m,w) =
α(m,w)γ(w; f , g)

δ +
∑

w′∈W α(m,w′)γ(w′; f , g)
. (17)

To see this, observe that δ +
∑

w′∈W α(m,w′)γ(w′; f , g) is the exit rate of such a man, so that the
expression on the right side of (17) is the probability of exiting in a match with w conditional on
exit. Similarly, the probability that a woman of type w exits the search process in a partnership
with a man of type m is given by

q( f ,g,α)(m,w) =
α(m,w)φ(m; f , g)

δ +
∑

m′∈M α(m′,w)φ(m′; f , g)
. (18)

The expected payoffs associated with a steady state are therefore

U(m; p( f ,g,α)) =
∑
w∈W

p( f ,g,α)(m,w)u(m,w), (19)

V(w; q( f ,g,α)) =
∑
m∈M

q( f ,g,α)(m,w)v(m,w). (20)
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An equilibrium is a steady state in which the acceptance probabilities α are consistent with
the requirement that agents’ acceptance decisions maximize their expected payoffs. Due to the
stationarity of the environment, the continuation payoff of an agent who rejects a match and
returns to the search process is as given in (19)– (20). Consequently, the optimality of strategies
requires15

βM(m,w) =

0 if u(m,w) < U(m; p( f ,g,α)),
1 if u(m,w) > U(m; p( f ,g,α)),

(21)

and

βW (m,w) =

0 if v(m,w) < V(w; q( f ,g,α)),
1 if v(m,w) > V(w; q( f ,g,α)).

(22)

Observe that conditions (21) – (22) allow agents to randomize their acceptance decisions when
indifferent as to whether to accept the current partner or continuing to search.

Conditions (21) – (22) are easily seen to imply that the acceptance probabilities α(m,w) as
determined by (14) satisfy

α(m,w) =

0 if u(m,w) < U(m; p( f ,g,α)) or v(m,w) < V(w; q( f ,g,α)),
1 if u(m,w) > U(m; p( f ,g,α)) and v(m,w) > V(w; q( f ,g,α)).

(23)

Vice versa, for any acceptance probabilities satisfying (23), there exist corresponding strategies
satisfying (21) – (22). Just as we have done for steady states, we may thus define equilibria in
terms of the stocks of agents searching for partners and the acceptance probabilities.

Definition 3. An equilibrium is a steady state ( f , g, α) that satisfies condition (23) for all (m,w) ∈
M ×W.

3.3. Steady-State Matchings and Equilibrium Matchings

As shown in Lemma 5 below, the steady-state matching probabilities from the search model
correspond directly to matchings in the underlying marriage market. Thus, even though the
search model allows for the formation of inter-cohort partnerships and features a continuum of
agents—whereas the underlying marriage market envisions a single cohort with a finite number
of agents—there is a natural way to map equilibria of the search model into matchings.16

Definition 4. A steady state ( f , g, α) induces the matching x, if the matching x satisfies

x = p( f ,g,α) = q(p, f ,α). (24)

A matching x is a steady-state matching if it is induced by some steady state ( f , g, α); it is an
equilibrium matching if it is induced by some equilibrium ( f , g, α).

15We eliminate the dominated strategies in which an agent rejects a potential match that provides strictly higher utility
than continued search.

16Such an interpretation of equilibrium outcomes relative to the static benchmark is conventional in the search litera-
ture: See, for example, Gale [15] and Lauermann [20].
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Condition (24) is the requirement that for all pairs of types (m,w), x(m,w) is the probability
that a man of type m (resp. a woman of type w) will exit the search process in a match with a
woman of type w (resp. a man of type m). By (19) – (20) this condition ensures that in the steady
state ( f , g, α) every agent obtains matching probabilities and expected payoffs that are identical
to the ones the agent obtains in the induced matching x in the underlying marriage market.

The following lemma establishes a one-to-one relationship between steady states and steady-
state matchings: every steady state induces a unique matching and every steady-state matching
is induced by a unique steady state. To simplify notation, we let σx =

∑
m∈M x(m,m) and τx =∑

w∈W x(w,w) for any matching x.

Lemma 5. Let ( f , g, α) be a steady state. Then x given by

x(m,w) =
λ

η
α(m,w)c( f̄ , ḡ) f (m)g(w). (25)

is the unique matching induced by ( f , g, α). Vice versa, if x is a steady-state matching then
( f , g, α) given by

f (m) =
η

δ
x(m,m), (26)

g(w) =
η

δ
x(w,w), (27)

α(m,w) =
δ2x(m,w)

ηλc( η
δ
σx,

η
δ
τx)x(m,m)x(w,w)

, (28)

is the unique steady state inducing x.

Proof. See Appendix A.

It is immediate from equation (25) that a steady-state matching satisfies x(m,w) > 0 if and only
if the steady state inducing it satisfies α(m,w) > 0. Using the equilibrium requirement (23) it
follows that every equilibrium matching is regret-free as defined by (9). As every agent has the
option of rejecting all those potential partners generating a strictly negative payoff, it is also clear
that equilibrium matchings are individually rational. We thus state without further proof:

Lemma 6. Every equilibrium matching is individually rational and regret-free.

The following lemma characterizes the set of all steady-state and equilibrium matchings in
terms of the parameters (M,W; u, v) of the marriage market and the parameters (η, δ, λ,C) of the
search model. Despite its simplicity, the result is important because it enables us to conduct the
subsequent analysis without any explicit reference to the underlying steady states or equilibria.
Instead, we can focus directly on the induced matchings and their properties. The lemma uti-
lizes the one-to-one-relationship between steady states and steady-state matchings established in
Lemma 5.

Lemma 7. A matching x is a steady-state matching if and only if

x(m,w) ≤
ηλ

δ2 c(
η

δ
σx,

η

δ
τx)x(m,m)x(w,w) (29)
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holds for all (m,w) ∈ M×W. A matching x is an equilibrium matching if and only if, in addition,

x(m,w) =

0 if u(m,w) < U(m; x) or v(m,w) < V(w; x),
λη

δ2 c( η
δ
σx,

η

δ
τx)x(m,m)x(w,w) if u(m,w) > U(m; x) and v(m,w) > V(w; x)

(30)

holds for all (m,w) ∈ M ×W.

Proof. See Appendix A.

The characterization of steady-state matchings in Lemma 7 shows how the speed λ of the contact
process affects which matchings are feasible outcomes of the search process. In particular, be-
cause Assumption 1 ensures that the function c is strictly positive on R++, it is immediate from
(29) that every matching satisfying x(h, h) > 0 for all h ∈ M ∪ W (that is, there are no fully
matched agents) is a steady-state matching for sufficiently large λ. It follows that every matching
can be obtained as the limit of a sequence of steady-state matchings as the speed of the contact
process converges to infinity. This shows that the restriction to steady-state matchings does not
cause any divergence between what is feasible in the underlying marriage market and what is
feasible in the search model as the speed of the contact process goes to infinity. Consequently,
the results that we describe in the following can be attributed to the properties of equilibrium
matches, as given by the optimality conditions (30), rather than to some more superficial differ-
ence between the two settings we consider.

To illustrate the role of Lemma 7 and provide some intuition for our subsequent results, we
return to the example introduced in Section 2.5.

Example (continued from Section 2.5). Consider acceptance probabilities of the form

α =

[
1 0
0 1

]
,

which result if men accept only their respective preferred partner types, while women accept all
types. Lemma 5 implies that every steady-state matching that is induced by a steady state with
these matching probabilities must be of the form

x(s) =

[
s 0
0 s

]
,

with 0 < s < 1. For every such s there is a unique λ(s) such that for x(s), the inequality in (29)
holds as an equality for the pairs (m1,w1) and (m2,w2). By Lemma 7, x(s) is therefore a steady-
state matching if and only if λ ≥ λ(s). Moreover, provided that s ≥ 1/2, the matching x(s) also
satisfies (30). It then follows from Lemma 7 that x(s) is an equilibrium matching for λ = λ(s).
It is not difficult to see from (29) that for s → 1, λ(s) → ∞. Thus, the men-optimal simple
stable matching xM is the limit of equilibrium matchings as the speed of the contact process
converges to infinity. Of course, an analogous construction can be used to show that there exists
an equilibrium matching approximating the women-optimal matching xW for large contact speed.

Consider now the coherent and regret-free fractional matching

x∗ =

[ 1
3

1
3

1
3

1
3

]
.

Because there is no fully matched agent in x∗, it follows from Lemma 7 that there exist λ such
that for all λ ≥ λ this matching is a steady-state matching (cf. the discussion after the statement of
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Lemma 7). Moreover, as x∗ is coherent and regret-free, (30) holds: because x∗ is regret-free, the
first condition holds; because x∗ is pairwise stable, there is no pair of types for which the second
set of inequalities applies. It follows from Lemma 7 that x∗ is an equilibrium matching whenever
it is a steady-state matching, that is, whenever λ ≥ λ holds. The key feature of the optimal
strategy profile supporting x∗ as an equilibrium outcome is that every agent accepts his or her
favorite partner with probability 1 and randomizes the acceptance decision in case the meeting
is with the less desirable partner. This randomization is such that the probability of exiting the
search process in a match with the less desirable partner is 1/3. Such randomization is optimal
because given x∗ each agent is indifferent towards accepting their less desirable partner. �

4. Matching with Vanishing Frictions

In this section, we consider a fixed marriage market (M,W; u, v). We investigate the limit of
equilibrium matchings as the search process becomes frictionless, in the sense that the speed of
the contact process λ converges to infinity. Throughout, the parameters δ > 0, η > 0 and the
contact function C are kept fixed.

Definition 5. A matching x∗ is a limit matching if there exists a sequence (λk) converging to
infinity and a sequence of matchings (xk) converging to x∗ such that for all k the matching xk is
an equilibrium matching for the search model with parameters (η, δ, λk,C).

It is easy to see that the individual rationality and regret-freeness of equilibrium matchings
(cf. Lemma 6) is preserved in the limit. The following theorem establishes that strengthening
individual rationality to coherency yields a necessary and sufficient condition for a matching to
be a limit matching. This result holds without any restrictions on the structure of the underlying
marriage market and for all contact functions satisfying Assumption 1.

Theorem 1. A matching is a limit matching if and only if it is coherent and regret-free.

Proof. See Appendix B.

The intuition for the coherency of limit matchings is straightforward. Suppose that there
exists a pair of types (m,w) violating the pairwise stability condition (8) in the limit matching x∗.
For sufficiently large λk, the optimality of equilibrium strategies then implies that every meeting
between agents of types m and w results in a match. Provided that the rate at which such agents
meet each other converges to infinity, this implies that the limit matching satisfies x∗(m,w) = 1,
contradicting the assumption that the pairwise stability condition is violated for these types.

The difficulty in making this intuition precise is that it is far from obvious that meeting rates
converge to infinity as the speed of the matching technology converges to infinity.17 The prob-
lem is that an increase in the speed at which agents match (and thus exit from search) implies a
reduction in the steady-state masses of agents, reducing the matching rates as given in (12) and
(13). Furthermore, given the weak assumptions we have imposed on the contact function, such

17This is in contrast to a “cloning model”, such as the one studied by Adachi [1]. In a cloning model, the steady-
state masses ( f , g) are taken as given so that the population share of each type is strictly positive and constant along the
sequence. Therefore, the matching rate necessarily converges to infinity as the speed of the contact process does so.
Hence, in such a model, the counterpart to the necessary conditions for limit matchings in Theorem 1 is straightforward.
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a reduction in the steady-state stocks may reduce c( f̄ , ḡ), introducing a second effect counter-
vailing the increase in the speed of the contact process. Taken together, these effects generate
the possibility that the meeting rate for some type of agent may converge to a finite limit as λ
converges to infinity. Indeed, sequences of steady-state matchings with this property are easily
constructed. The main subtlety in proving the coherency of limit matchings is to exclude this
possibility for sequences of equilibrium matchings. In doing so, we exploit the continuity of the
contact function imposed in Assumption 1 and make use of the characterization of regret-free
matchings in Lemma 2.

The main challenge in proving the sufficiency of the conditions in Theorem 1 lies in showing
that every coherent and regret-free fractional matching can be obtained as limit matching. In
essence, given such a matching x∗, we must construct a sequence of equilibria such that, for
every pair of types (m,w) satisfying 0 < x∗(m,w) < 1, the associated sequence of matching
probabilities converges to an interior limit. This in turn requires that along the sequence at least
one of the types m and w is indifferent between accepting the match with his or her designated
partner, whereas the other type weakly prefers to accept the match.

As we have noted in Section 2.5, a simple matching is stable if and only if it is coherent. In
addition, every simple matching is regret-free. Theorem 1 therefore implies:

Proposition 1. A simple matching is a limit matching if and only if it is stable.

Because stable simple matchings exist, Proposition 1 implies the existence of a simple limit
matching as a by-product.

If one restricts attention to simple matchings, Proposition 1 indicates that the sets of limit
matchings and stable matchings are identical. For fractional matchings, however, this equiva-
lence breaks down. In fact, from the characterization of limit matchings in Theorem 1 and the
results obtained in Lemmas 3 and 4, it is immediate that fractional limit matchings, should they
exist, are unstable and strongly inefficient. This prompts our next result, which states a necessary
and sufficient condition for the existence of fractional limit matchings.

Proposition 2. Fractional limit matchings exist if and only if there exists more than one stable
simple matching.

Proof. See Appendix C.

The proof of Proposition 2 shows that a marriage market (M,W; u, v) possesses a regret-
free and coherent fractional matching if and only if there exists more than one stable simple
matching. To the best of our knowledge, this is a novel result. Combining it with Theorem 1
yields Proposition 2. To obtain the result that the existence of a regret-free and coherent frac-
tional matching implies the existence of multiple simple matchings, we show that given any
such fractional matching it is possible to construct two distinct stable simple matchings. These
two simple matchings support the original fractional matching in the sense that the union of any
agent’s partners in the two simple matchings coincides with his or her set of partners in the frac-
tional matching. Proving the other direction of the equivalence in the statement of Proposition
2 is harder and relies on the lattice-structure of the set of stable simple matchings; see Roth and
Sotomayor [26, Chapter 3]. The difficulty is that not every pair of stable simple matchings sup-
ports a coherent and regret-free fractional matching. However, any two stable simple matchings,
which have the property that all men have the same preferences over these two matchings and
that there is no stable simple matching “between” those two in the men’s preference ordering,
support a coherent and regret-free fractional matching. In fact, our proof shows more, namely,
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that for every pair of such consecutive stable simple matchings there is exactly one coherent and
regret-free fractional matching supported by this pair. The proof is then completed by the ob-
servation that consecutive stable simple matchings exist whenever there is more than one stable
simple matching. In particular, if there are exactly two stable simple matchings in the marriage
market, then – as illustrated by the example discussed in Sections 2.5 and 3.3 – there is a unique
regret-free and coherent fractional matching and, thus, a unique fractional limit matching.

As an immediate consequence of the preceding results, we have the result advertised in the
abstract.

Corollary 1. If there is a unique stable matching in the underlying marriage market, then this
matching is the unique limit matching. If there are multiple stable matchings in the underlying
marriage market, then there exist unstable and strongly inefficient limit matchings.

Proof. Suppose there is a unique stable matching, which then must be simple. From Proposition
1 this matching is a limit matchings and there are no other simple limit matchings. Because
of Proposition 2, there are no fractional limit matching. Therefore, the unique stable simple
matching is the unique limit matching.

Suppose that there is more than one stable matching and, thus, more than one stable simple
matching. From Proposition 2, this implies that a fractional limit matching exists. From Theorem
1, this fractional matching is coherent and regret-free. From Lemmas 3 and 4, it is unstable and
strongly inefficient.

5. Matching with Small Frictions

Our analysis of the limit behavior of equilibrium matchings for vanishing frictions implies
a number of results for the structure of equilibrium matchings with small frictions, that is, for
sufficiently high but finite λ. We believe that some of these results may be of independent interest
and thus present them here. Doing so should also help to clarify the structure of the proofs for
our limit results. As in Section 4, we treat the parameters of the marriage market (M,W; u, v) and
the parameters (η, δ,C) as given.

We first observe that in the process of proving Theorem 1 and Proposition 2 we have es-
tablished a simple lower bound for the number of equilibria. In particular, for small frictions
existence of equilibria is assured.18

Corollary 2. Let n ≥ 1 denote the number of stable simple matchings in the marriage market.
Then there exists λe > 0 such that for all λ > λe at least 2n − 1 equilibria in the search model
exist.

Proof. In a marriage market with n stable simple matchings, there are at least n − 1 distinct
pairs of consecutive stable matchings (corresponding to those pairs connected by a branch of the
lattice of stable matchings; cf. Roth and Sotomayor [26, Section 3.2]). Lemma 13 in Appendix
C then implies that there are at least n − 1 distinct coherent and regret-free fractional matchings.
As every stable simple matching is coherent and regret-free it follows that there are at least 2n−1

18There are very few existence results for equilibria in search models with nontransferable utility in which the distribu-
tion of searching agents is endogenously determined, as it is in our model. In particular, Burdett and Coles [6] and Smith
[31] establish existence for any level of frictions, but consider models with a unique stable matching in the underlying
marriage market and impose stringent restrictions on the search technology.
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coherent and regret-free matchings. Label these matchings xi with i = 1, . . . , 2n − 1. Lemma 9
in Appendix B establishes that for each of the matchings xi there exists λei

> 0 such that for
any λ > λei

an associated equilibrium matching, that we label xλi , can be constructed such that
these matchings satisfy limλ→∞ xλi = xi. As the matchings x1, . . . , x2n−1 are distinct, it follows
that there exist λe ≥ maxi λei

such that xλi , xλj holds for all i , j and λ > λe, establishing the
existence of 2n − 1 distinct equilibrium matchings for all such λ. As the relationship between
equilibrium matchings and equilibria is one-to-one (cf. Definition 3 and Lemma 5), this implies
the existence of 2n − 1 distinct equilibria for λ > λe.

The intuition why (for small frictions) there should be at least as many equilibria in the search
model as there are stable simple matchings in the underlying marriage market is straightforward
and captured by our discussion of the example in Section 3.3.19 Consider any given type h. If
the agents of all other types only accept those matches involving a partner at least as attractive
as the one assigned to them in a given stable simple matching x, then for small frictions agents
of type h will also find it optimal to follow the same rule. Given such a strategy profile and a
corresponding steady state, we have an equilibrium in which only those meetings between pairs
of agents for whom x(m,w) = 1 holds, will form.20 The additional equilibria whose existence is
asserted in Corollary 2 correspond to fractional limit matching.

From Corollary 2, uniqueness of stable matchings is a necessary condition for the uniqueness
of equilibrium when frictions are small. The following result addresses the question whether this
condition is also sufficient. We first demonstrate that the acceptance probabilities are uniquely
determined for small frictions. This is intuitive: for sufficiently large λ, agents’ expected payoffs
must be close to their payoffs in the stable matching, and, for these payoffs, the only matches
accepted by both agents in a meeting are those between types that are partners in the stable
matching. Still, multiple steady-states may be compatible with the same acceptance behavior.
This is because Assumption 1 imposes only very weak conditions on the contact function. Using
the characterization of steady-state matchings in Lemma 7, we can exclude this possibility for
the prominent example of a quadratic contact function as studied, for instance, in Shimer and
Smith [30] and Smith [31].21

Corollary 3. Suppose there is a unique stable matching x∗ in the marriage market. Then there
exists λq > 0 such that for all λ > λq equilibrium acceptance probabilities are uniquely deter-
mined and given by α(m,w) = x∗(m,w) ∈ {0, 1}. If the contact function is quadratic,

C( f̄ , ḡ) = f̄ · ḡ, (31)

equilibrium is unique for λ > λq.

19Just as we did in the discussion of the example, the following heuristic discussion takes for granted what we have
established in the proof of Theorem 1, namely, that despite the endogeneity of the population small frictions imply “easy
access” to potential partners (cf. the discussion following the statement of Theorem 1). It also takes for granted that for
the strategy profile under consideration there exists a corresponding steady state when frictions are sufficiently small –
which is another implication of the proof of Theorem 1.

20 This source of multiplicity is distinct from the source of multiplicity observed in Burdett and Coles [6, Example 3]
who demonstrate that (for sufficiently high frictions) there may be multiple equilibria even when there is a unique stable
matching. The multiplicity in Burdett and Coles is driven by the endogenous population of agents searching for a partner.
The multiplicity of equilibria we discuss here also arises in a model with a fixed population; see Adachi [1].

21While the structure of our argument is different, the role of the quadratic contact function in it is the same as in
Shimer and Smith [30] and Smith [31], namely, to ensure that there is a unique steady state associated with a given
strategy profile.
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Proof. See Appendix D.

We have noted in Section 2 that our equilibrium definition allows agents to randomize their
acceptance decisions when indifferent and indicated in the Introduction that this assumption is
important for our results. Our final result demonstrates that, as suggested by the discussion of
our example in Section 3.3, such mixing plays no role in obtaining stable simple matchings as
limit matchings, but is essential in constructing equilibria with associated matchings converging
to fractional limit matchings.

Corollary 4. Given a sequence (λk) converging to infinity, let ( fk, gk, αk) be a sequence of equi-
libria with induced steady-state matchings xk converging to a limit matching x∗. If x∗ is simple,
then for all k sufficiently large, αk(m,w) ∈ {0, 1} for all pairs of types (m,w). If x∗ is fractional,
then for all k sufficiently large, there exists a pair of types (m,w) such that 0 < αk(m,w) < 1,
u(m,w) = U(m; xk), and v(m,w) > V(w; xk).

Proof. For simple x∗ the result follows from the argument given in the first part of the proof of
Corollary 3 leading up to Equations (D.3) and (D.4).

For every fractional limit matching x∗, the proof of Lemma 10 establishes the existence of
a pair (m,w) such that (a) 0 < x∗(m,w) < 1, (b) 0 < x∗(m,m) < 1, (c) 0 < x∗(w,w) < 1,
(d) u(m,w) = U(m; x∗) and, (e) v(m,w) > V(w; x∗); see the right-most parts of Equations (C.1)
and (C.2). The continuity of the expected payoffs and the convergence of xk imply that for
sufficiently large k, v(m,w) > V(w; xk). Moreover, from Equation (28), the first three of these
conditions imply that for every sequence of equilibria with induced matchings (xk) converging
to x∗, for k sufficiently large, the acceptance probability must satisfy 0 < αk(m,w) < 1. This,
v(m,w) > V(w; xk), and the equilibrium condition (23) imply u(m,w) = U(m; xk).

When combined with Proposition 1, Corollary 4 implies that a matching can be obtained as
the limit of a sequence of “pure” equilibria if and only if it is a stable simple matching. Thus, we
verify that the result by Adachi [1]—who restricts attention to strategy profiles in which agents
accept when indifferent and obtains the set of stable simple matchings as the counterpart to our
limit matchings—continues to hold when the stock is endogenous and, in addition, we identify
the ruling out of mixed acceptance decisions as critical for such a conclusion. The second part
of the conclusion in Corollary 4 implies further that a weaker restriction on agents’ strategies,
namely requiring indifferent agents to accept a match if the partner strictly prefers doing so, will
also eliminate all fractional limit matchings.22

In our view, allowing for mixed acceptance decisions is natural. First, with an endogenous
stock, simple examples demonstrate that mixed acceptance decisions are necessary to ensure
equilibrium existence for all parameters. Second, the inability to offer an inducement to break
the indifference of a partner is a central feature of the nontransferable utility setup. Strikingly,
our analysis isolates precisely this feature as causing the existence of unstable and inefficient
limit matchings.

6. Concluding Remarks

In this paper, we have revisited the classical marriage problem and its solution concept,
namely, stability, in a frictional decentralized environment. We have demonstrated that when

22We are grateful to an anonymous reviewer for noting this implication of our analysis.
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frictions vanish, the set of equilibrium matchings converges to the set of stable matchings if and
only if there is a unique stable matching. Otherwise, additional, unstable and inefficient fractional
matchings arise in the limit.

Many of the marriage markets considered in the economic literature possess a unique stable
matching. It is thus an important class of marriage markets for which our Corollary 1 con-
firms the conjecture by Roth and Sotomayor [26] that stable matchings approximate equilibrium
matchings in marriage markets with negligible frictions. However, our analysis reveals that the
uniqueness of stable matchings plays an essential role in obtaining this conclusion.
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Appendix A. Proofs of Lemmas 5 and 7

Proof of Lemma 5. Let ( f , g, α) be a steady state and let x satisfy (25). Clearly, every steady
state induces at most one matching. Hence, to establish the first claim in the lemma, it suffices to
show that x satisfies (24) and the conditions for a matching, (1) – (3). From (15), we have

1
η

f (m) =
1

δ +
∑

w∈W α(m,w)γ(w; f , g)
.

Substituting this expression into (25), using the definition of γ(w; f , g) that is given in (12), and
the definition of p( f ,g,α) from equation (17), establishes the equality between the first and the sec-
ond expression in (24). An analogous calculation using (13), (16), and (18) establishes equality
between the first and the third expression in (24). It is immediate from (25) that x(m,w) ≥ 0
holds for all pairs (m,w). From (17) and (24) we have

∑
w∈W x(m,w) =

∑
w∈W p( f ,g,α)(m,w) ≤ 1.

From (18) and (24), we have
∑

m∈M x(m,w) =
∑

m∈M q( f ,g,α)(m,w) ≤ 1.
Let x be a steady-state matching and let ( f , g, α) be a steady state inducing it. Summing (25)

over all w and using (12) and (15), we obtain

x(m,m) = 1 −
∑
w∈W

x(m,w) = 1 − f (m)
∑
w∈W

α(m,w)γ(w; f , g)/η =
δ

η
f (m) > 0,

implying (26). An analogous argument using (13) and (16) yields

x(w,w) = 1 −
∑
m∈M

x f ,g,α(m,w) = 1 − g(w)
∑
m∈M

α(m,w)φ(m; f , g)/η =
δ

η
g(w) > 0,

implying (27). To obtain (28), substitute from (26) – (27) into (25) and solve for α(m,w). �

Proof of Lemma 7. Let x be a steady-state matching. From Lemma 5, the steady-state ( f , g, α)
inducing x satisfies (28). Since ( f , g, α) is a steady-state, α satisfies α(m,w) ≤ 1 for all (m,w),
implying (29).
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Suppose x is a matching satisfying (29) for all (m,w) ∈ M×W. We show that there is a steady
state, defined by (26) – (28), that induces x. First, (29) implies that x(m,m) > 0 and x(w,w) > 0
hold for all m and w.23 Therefore, (26) – (27) define strictly positive stocks ( f , g). In addition,
the acceptance probabilities α as given by (28) are well-defined and satisfy 0 ≤ α(m,w) ≤ 1 for
all (m,w). It remains to show that the tuple ( f , g, α) defined this way is indeed a steady state and
induces x. Using (26) – (28) we obtain

f (m)
η

δ + λc( f̄ , ḡ)
∑
w∈W

α(m,w)g(w)

 = x(m,m) +
∑

w∈W x(m,w),

g(w)
η

δ + λc( f̄ , ḡ)
∑
m∈M

α(m,w) f (m)

 = x(w,w) +
∑

m∈M x(m,w),

for all m ∈ M and w ∈ W. The right sides of these equations are equal to 1. It follows that
(15) and (16) are satisfied. Hence, ( f , g, α) is a steady state. Reversing the substitutions yielding
Lemma 5, we have that ( f , g, α) induces x. Hence, every matching satisfying (29) is a steady-state
matching.

Equation (28) holds whenever a matching x is induced by the steady state ( f , g, α). Therefore,
(23) implies that every equilibrium matching satisfies (30). Conversely, if a steady-state matching
x satisfies (30), then the steady state that induces it satisfies (23). Thus, a steady-state matching
x is an equilibrium matching if and only if it satisfies (30). �

Appendix B. Proof of Theorem 1

Throughout the following proof, we set δ = 1 and η = 1 to simplify notation. Doing so
is without loss of generality because the effects of the parameters δ and η may be subsumed in
the contact function. More precisely, given any parameters (η, δ, λ,C) of the search model, there
exists a contact function Ĉ such that a matching x is a steady state (or equilibrium) matching
for the parameters (η, δ, λ,C) if any only if it a steady state (or equilibrium) matching for the
parameters (1, 1, λ, Ĉ).24 We prove the Theorem using two lemmas.

Lemma 8. If x∗ is a limit matching, then it is coherent and regret-free.

Proof. Let x∗ be a limit matching, and let (λk) and (xk) be the corresponding sequences satisfying
the properties in Definition 5. For all m ∈ M and w ∈ W define the corresponding sequences of

23Suppose, for instance, x(m,m) = 0. Then, (29) implies x(m,w) = 0 for all w and, thus, x(m,m) = 1−
∑

w x(m,w) = 1,
a contradiction.

24For (σ, τ) ∈ R2
+ define

Ĉ(σ, τ) =
1
η

C(
η

δ
σ,
η

δ
τ).

and for (σ, τ) ∈ R2
++ let ĉ(σ, τ) = Ĉ(σ, τ)/(στ). Then,

η

δ2 c(
η

δ
σ,
η

δ
τ) =

1
η

C( ηδσ,
η
δ τ)

ηστ
=

Ĉ(σ, τ)
στ

= ĉ(σ, τ),

so that a matching x satisfies (29), resp. (30), given the parameters (η, δ, λ,C) if and only if x satisfies the same conditions
given the parameters (1, 1, λ, Ĉ).

20



meeting rates (φk(m)) and (γk(w)) by 25

φk(m) := λkc(σxk , τxk )xk(m,m), (B.1)
γk(w) := λkc(σxk , τxk )xk(w,w). (B.2)

Throughout we assume that φk(m) and γk(w) converge to φ∗(m) ∈ R ∪ {∞}, and γ∗(w) ∈ R ∪ {∞}
for all m and w, respectively.26

We first show that x∗ is individually rational and regret free. Suppose that x∗(m,w) > 0
holds. As xk converges to x∗, there exists K, such that for all k > K we have xk(m,w) > 0. As
xk is an equilibrium matching, Lemma 6 implies u(m,w) ≥ 0 and v(m,w) ≥ 0. Therefore, x∗ is
individually rational. Similarly, Lemma 6 implies u(m,w) ≥ U(m; xk) and v(m,w) ≥ V(w; xk)
for all k > K. As U(m; ·) and V(w, ·) are continuous in x, it follows that u(m,w) ≥ U(m; x∗) and
v(m,w) ≥ V(w; x∗) hold. Hence, x∗ is regret-free.

It remains to show that x∗ is pairwise stable. Suppose not. Then there exists a pair (m,w) for
which

u(m,w) > U(m; x∗) and v(m,w) > V(m; x∗). (B.3)

Because xk converges to x∗, there exists K such that u(m,w) > U(m; xk) and v(m,w) > V(m; xk)
holds for all k > K. From (30), this implies

xk(m,w) = λkc(σxk , τxk )xk(m,m)xk(w,w), (B.4)

for such k.
From the definition of payoffs in (5) and (6) we can write

xk(m,m)U(m; xk) =
∑
w∈W

xk(m,w) [u(m,w) − U(m; xk)] ,

xk(w,w)V(w; xk) =
∑
m∈M

xk(m,w) [v(m,w) − V(w; xk)] .

Using (30) to infer

xk(m,w) [u(m,w) − U(m; xk)] = xk(m,w) max [0, u(m,w) − U(m; xk)] ,
xk(m,w) [v(m,w) − V(w; xk)] = xk(m,w) max [0, v(m,w) − V(w; xk)] ,

yields

xk(m,m)U(m; xk) =
∑

w′∈W

xk(m,w′) max
[
0, u(m,w′) − U(m; xk)

]
,

xk(w,w)V(w; xk) =
∑

m′∈M

xk(m′,w) max
[
0, v(m′,w) − V(w; xk)

]
,

25Let ( fk , gk , αk) be an equilibrium inducing xk . Recall that we have set δ = η = 1. From (26) – (27), we thus have
fk(m) = xk(m,m) and gk(w) = xk(w,w). Substituting into (12) and (13), shows that the interpretation of the following
expressions as meeting rates is appropriate.

26This assumption is without loss of generality: If x∗ is a limit matching with the sequence xk converging to it, then
there exists a subsequence of xk such that the limits φ∗(m) and γ∗(w) are well-defined.
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and, thus,

xk(m,m)U(m; xk) ≥ xk(m,w) [u(m,w) − U(m; xk)] ,
xk(w,w)V(w; xk) ≥ xk(m,w) [v(m,w) − V(w; xk)] .

Using (B.4), xk(h, h) > 0 for all h ∈ M ∪ W (cf. the proof of Lemma 7), and the definitions of
φk(m) and γk(w) in (B.1) and (B.2), this implies

U(m; xk) ≥ γk(w) [u(m,w) − U(m; xk)] ,
V(w; xk) ≥ φk(m) [v(m,w) − V(w; xk)] .

Because U(m; xk) and V(w; xk) converge to the finite limits satisfying (B.3), these inequalities
imply

φ∗(m) < ∞ and γ∗(w) < ∞. (B.5)

It is immediate from (B.1), (B.2), and (B.5) that either x∗(m,m) = x∗(w,w) = 0 must hold or that
z∗ = limk→∞ λkc(σxk , τxk ) exists and is finite. The following argument excludes the second possi-
bility. Finiteness of z∗ implies that φ∗(m′) < ∞ and γ∗(w′) < ∞ holds for all m′ ∈ M and w′ ∈ W.
Using (29), this implies x∗(m′,w′) = 0 whenever x∗(m′,m′) = 0 or x∗(w′,w′) = 0 holds (because
x∗(m′,w′) ≤ φ∗(m′)x∗(w′,w′) and x∗(m′,w′) ≤ γ∗(w′)x∗(m′,m′)). Consequently, x∗(m′,m′) = 0
implies x∗(m′,m′) = 1 −

∑
w′∈W x∗(m′,w′) = 1, which is a contradiction. Hence, finiteness of

z∗ implies that x∗(m′,m′) > 0 holds for all m′ ∈ M. Similarly, we obtain x∗(w′,w′) > 0 for all
w′ ∈ W. In particular, we have σx∗ =

∑
m′∈M x∗(m,m) > 0 and τx∗ =

∑
w′∈W x∗(w′,w′) > 0.

Because the contact function C is strictly positive whenever both of its arguments are strictly
positive, we obtain c(σx∗ , τx∗ ) > 0. Hence, z∗ = limk→∞ λkc(σxk , τxk ) = ∞, which is a contradic-
tion.

Hence, (B.5) implies x∗(m,m) = 0 and x∗(w,w) = 0 and, thus (from (29)), x∗(m,w) = 0.
From Lemma 2, as x∗ is regret-free, x∗(m,m) = 0 and x∗(w,w) = 0 imply that there exist w′

and m′ such that x∗(m,w′) = 1 and x∗(m′,w) = 1. Using (29) again, we have xk(m,w′) ≤
φk(m)xk(w′,w′) for all k, so that x∗(m,w′) = 1 and x∗(w′,w′) = 0 (which is implied by x∗(m,w′) =

1) implies φ∗(m) = ∞. (An analogous argument implies γ∗(w) = ∞.) This is a contradiction to
(B.5). Hence, x∗ is pairwise stable.

Lemma 9. Let x∗ be a coherent and regret-free matching. Then there exists λe > 0 such that for
all λ > λe, an equilibrium matching xλ exists and limλ→∞ xλ = x∗ holds. In particular, x∗ is a
limit matching.

Proof. Let x∗ be a coherent and regret-free matching. For any r ∈ R+ define the matching xr

given by

xr(m,w) =

x∗(m,w) if x∗(m,w) < 1,
(1 − 1

r+1 ) if x∗(m,w) = 1.
(B.6)

Because x∗ is a matching, xr satisfies (1) – (3). Thus, xr is a matching. Furthermore, we have

lim
r→∞

xr = x∗. (B.7)

In the following we will show that for any sufficiently large λ ∈ R+ we can find a value r(λ) ∈ R+

such that
xλ := xr(λ)
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is an equilibrium matching for the search model with parameters (1, 1, λ,C). Furthermore, we
will show that

lim
λ→∞

r(λ) = ∞, (B.8)

holds. Combining (B.7) and (B.8) we have limλ→∞ xλ = x∗, proving the lemma.
We define the function h : R+ × R+ → R by

h(λ, r) = λ

(
1

r + 1

)2

c(σxr , τxr ) −
(
1 −

1
r + 1

)
. (B.9)

As x∗ is regret-free, Lemma 2 ensures that σxr > 0 and τxr > 0 holds for all r,27 ensuring that
c(x̄M

r , x̄
W
r ) is well-defined and strictly positive for all r. In addition, as the mapping r → xr is

continuous and c is continuous, it follows that h is a continuous function. Next, we argue that for
any λ ∈ R++ we have

h(λ, 0) > 0 > −1 = lim
r→∞

h(λ, r). (B.10)

The first inequality in (B.10) is immediate from c(σx0 , τx0 ) > 0. It remains to establish the
equality in (B.10) which is equivalent to

lim
r→∞

(
1

r + 1

)2

c(σxr , τxr ) = 0. (B.11)

Suppose σx∗ · τx∗ > 0 holds, ensuring that c(σx∗ , τx∗ ) is well-defined. From (B.7) and the con-
tinuity of c, this implies (B.11). Suppose σx∗ = 0. As x∗ is regret-free, Lemma 2 then implies
that x∗ is a simple matching. From (B.6), it then follows that xr(m,m) = 1/(r + 1) holds for all
m ∈ M and xr(w,w) ∈ {1/(r + 1), 1} holds for all w ∈ W. Hence, we have σxr = |M| /(r + 1) and
τxr ≥ |W | /(r + 1), implying(

1
r + 1

)2

c(σxr , τxr ) =

(
1

r + 1

)2 C(σxr , τxr )
σxr · τxr

≤
1

|M| |W |
C(σxr , τxr ),

where we have used the definition of c in (11) for the equality. As the contact function C is
continuous, satisfies C(0, τx∗ ) = 0, and xr converges to x∗, this implies (B.11). An analogous
argument establishes (B.11) for the case τx∗ = 0. Hence, (B.10) holds.

From (B.10) and the continuity of h in r it follows that for every λ > 0 there exists r(λ) such
that

h(λ, r(λ)) = 0 (B.12)

holds. As limλ→∞ h(λ, r) = ∞ holds for any given r ∈ R we have (B.8). It remains to establish
that for sufficiently large λ the matching xλ is an equilibrium matching. We begin by establishing
that for sufficiently large λ, the matching xλ is a steady-state matching.

Let λs be such that x∗(h, h) > 1/(r(λ + 1) holds for all λ > λs and h ∈ M ∪ W for which
x∗(h, h) > 0 holds. (As there is a finite number of types and (B.8) holds, the existence of such a

27If there exists (m,w) such that x∗(m,w) = 1 holds, then we have xr(m,w) = 1 − 1/(r + 1), xk(m,w′) = 0, and
xk(m′,w) = 0 for all w′ , w and m′ , m. Consequently, xr(m,m) = xr(w,w) = 1/(r + 1) > 0 holds, implying σxr > 0
and τxr > 0. If there exists no (m,w) such that x∗(m,w) = 1 holds, then (B.6) implies xr = x∗. In addition, Lemma 2
implies that no agent is fully matched in x∗. Consequently, σx∗ = σxr > 0 and τx∗ = τxr > 0 hold.
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λs is assured.) We now show that for all λ > λs the matching xλ is a steady-state matching for
the search model with parameters (1, 1, λ,C). Using Lemma 7, we have to show

xλ(m,w) ≤ λc(σxλ , τxλ )xλ(m,m)xλ(w,w) (B.13)

for all (m,w) ∈ M ×W. Consider (m,w) satisfying x∗(m,w) = 1. Then

xλ(m,w)
λ · c(σxλ , τxλ )xλ(m,m)xλ(w,w)

=
1 − 1

r(λ)+1

λ · c(σxλ , τxλ )
(

1
r(λ)+1

)2 = 1, (B.14)

where the first equality uses (B.6) to infer xλ(m,w) = 1 − 1/(r(λ) + 1) as well as xλ(m,m) =

xλ(w,w) = 1/(r(λ) + 1) from x∗(m,w) = 1, and the second equality is from (B.12). It follows
that (B.13) holds with equality. Consider (m,w) satisfying 0 < x∗(m,w) < 1. As x∗ is regret-free,
Lemma 2 and (B.6) then imply x∗(m,m) = xλ(m,m) > 0 and x∗(w,w) = xλ(w,w) > 0. Hence,

xλ(m,w)
λ · c(σxλ , τxλ )xλ(m,m)xλ(w,w)

=
x∗(m,w)

λ · c(σxλ , τxλ )x∗(m,m)x∗(w,w)

<
1 − 1

r(λ)+1

λ · c(σxλ , τxλ )
(

1
r(λ)+1

)2

= 1,

where the inequality uses that λ > λs implies x∗(m,m) > 1/(r(λ) + 1), x∗(w,w) > 1/(r(λ) + 1),
and x∗(m,w) < 1 − 1/(r(λ) + 1). It follows that (B.13) holds with strict inequality. Finally, from
(B.6), x∗(m,w) = 0 implies xλ(m,w) = 0, so that (B.13) trivially holds for all (m,w) satisfying
x∗(m,w) = 0.

Using Lemma 7, it remains to show that there exists λe ≥ λs such that for λ > λe the condition

xλ(m,w) =

0 if u(m,w) < U(m; xλ) or v(m,w) < V(w; xλ),
λc(σxλ , τxλ )xλ(m,m)xλ(w,w) if u(m,w) > U(m; xλ) and v(m,w) > V(w; xλ)

(B.15)

hold for all (m,w) ∈ M ×W.
From (B.6) the payoffs associated with xλ are given by

U(m; xλ) =


(
1 − 1

r(λ)+1

)
U(m; x∗) if x∗(m,m) = 0,

U(m; x∗) if x∗(m,m) > 0,
(B.16)

and by

V(w; xλ) =


(
1 − 1

r(λ)+1

)
V(w; x∗) if x∗(w,w) = 0,

V(w; x∗) if x∗(w,w) > 0.
(B.17)

In both cases, Lemma 2 is used to exclude the possibility that x∗(h, h) = 0 holds when h has more
than one partner in x∗.

From (B.7), the continuity of the payoff functions (or directly from (B.16) – (B.17)), and
(B.8), there exists λe ≥ λs such that for all λ > λe the following implications hold for all m ∈ M
and w ∈ W:

u(m,w) < U(m; x∗)⇒ u(m,w) < U(m; xλ), (B.18)

v(m,w) < V(w; x∗)⇒ v(m,w) < V(w; xλ), (B.19)
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Fix any λ > λe. To show that (B.15) holds for all (m,w) ∈ M ×W, we consider three cases and
establish that (B.15) holds in each of these cases. As each pair (m,w) ∈ M × W belongs to at
least one of these cases, this finishes the proof.

Case 1: x∗(m,m) = 1 or x∗(w,w) = 1: Consider m satisfying x∗(m,m) = 1. We then have
x∗(m,w) = xλ(m,w) = 0 for all w ∈ W, implying U(m; x∗) = U(m; xλ) = 0. Now consider any
w ∈ W. If u(m,w) < 0, it is immediate that (B.15) holds. Hence, suppose u(m,w) > 0. We
have to show that v(m,w) ≤ V(w; xλ) holds, as this implies that xλ(m,w) = 0 is consistent with
(B.15). If x∗(w,w) > 0, then the inequality v(m,w) ≤ V(w; xλ) is immediate from V(w; xλ) =

V(w; x∗) and the pairwise stability of x∗. If x∗(w,w) = 0, the pairwise stability of x∗ implies
v(m,w) < V(w; x∗). (To obtain the strict inequality here, we use the strictness of preferences
together with the implication from Lemma 2 that there exists m′ , m such that x∗(m′,w) = 1,
implying V(w; x∗) = v(m′,w) for some m′ , m.) The desired result then follows from (B.19).

An analogous argument using (B.18) shows that (B.15) holds for all (m,w) satisfying x∗(w,w) =

1.

Case 2: x∗(m,m) = 0 or x∗(w,w) = 0: Consider m satisfying x∗(m,m) = 0. Lemma 2 then
implies that there exists w′ ∈ W such that x∗(m,w′) = 1 and, thus, U(m; x∗) = u(m,w′) as well
as V(w′; x∗) = v(m,w′). By the individual rationality of x∗ and the strictness of preferences, we
have u(m,w′) > 0 and v(m,w′) > 0. From (B.16) and (B.17) we then have u(m,w′) > U(m; xλ)
and v(m,w′) > V(w′; xλ). Consequently, (B.15) requires that (B.13) holds with equality for
the pair (m,w′), which is ensured by construction of r(λ), cf. (B.14). Consider now w , w′.
Because x∗(m,w′) = 1 we have x∗(m,w) = 0 and, thus, xλ(m,w) = 0. We have to show that
xλ(m,w) = 0 is consistent with (B.15). If u(m,w) < U(m; x∗), then (B.18) implies u(m,w) <
U(m; xλ), establishing the desired conclusion. If u(m,w) > U(m; x∗) (the case of equality cannot
arise because U(m; x∗) = u(m,w′) holds for some w , w′ and preferences are strict), the pairwise
stability of x∗ implies v(m,w) < V(w; x∗). By (B.19) this implies v(m,w) < V(w; xλ), establishing
the desired conclusion. Hence, we conclude that (B.15) holds for all (m,w) with x∗(m,m) = 0.

An analogous argument shows that (B.15) holds for all (m,w) satisfying x∗(w,w) = 0.

Case 3: 0 < x∗(m,m) < 1 and 0 < x∗(w,w) < 1: Using (B.6), (B.16), and (B.17), we have
xλ(m,w) = x∗(m,w), U(m; xλ) = U(m, x∗), and V(w; xλ) = V(w; x∗). Pairwise stability of x∗
then implies that there does not exist such (m,w) satisfying u(m,w) > U(m; xλ) and v(m,w) >
V(m; xλ). Because x∗ is regret-free, xλ(m,w) > 0 also implies u(m,w) ≥ U(m; xλ) as well as
v(m,w) ≥ V(w; xλ). Therefore, (B.15) holds for all (m,w) satisfying 0 < x∗(m,m) < 1 and
0 < x∗(w,w) < 1.

Appendix C. Proof of Proposition 2

In the following, it is often more convenient to identify simple matchings with their matchings
functions, instead of using the assignment matrices (cf. Section 2.2).

We establish Proposition 2 through a sequence of lemmas. We begin by establishing that
the existence of a coherent and regret-free fractional matching implies the existence of multiple
stable simple matchings. By Theorem 1, this proves one direction of the equivalence claimed in
Proposition 2.

Lemma 10. If there exists a fractional matching x that is coherent and regret-free, then there
exist two distinct stable simple matchings µ1 , µ2.

25



Proof. Let x be a fractional matching that is coherent and regret-free. Let

Px(m) = {w ∈ W : x(m,w) > 0} and Px(w) = {m ∈ M : x(m,w) > 0}

denote the sets of partners in this matching. We now construct µ1 and µ2. Let µ1(h) = h if
x(h, h) = 1. For all other agents, let µ1(m) = argmaxw∈Px(m) u(m,w) and µ1(w) = argminm∈Px(w) v(m,w),
respectively. By the strictness of preferences, the function µ1 : M ∪W → M ∪W is uniquely de-
fined. Similarly, let µ2(h) = h if x(h, h) = 1. For all other agents, let µ2(m) = argminw∈Px(m) u(m,w)
and µ2(w) = argmaxm∈Px(w) v(m,w), respectively. We show in the following that µ1 and µ2 are
stable simple matchings that satisfy µ1 , µ2.

We begin by verifying that µ1 and µ2 are simple matchings. It is immediate from the defi-
nitions that for i = 1, 2 the conditions µi(m) ∈ W ∪ {m} and µi(w) ∈ M ∪ {w} are satisfied for
all m and w. Hence, our task is to verify that for i = 1, 2 the condition µ2

i (h) = h holds for all
h ∈ M ∪ W. For h satisfying x(h, h) = 1 this is immediate. Consider h satisfying x(h, h) = 0.
Because x is regret-free, Lemma 2 implies that every such agent has a unique partner h′ , h and
h′ is in turn the unique partner of h. Consequently, we have µ2

1(h) = µ2
2(h) = h for all such agents.

It remains to consider h satisfying 0 < x(h, h) < 1, that is, the set of partially matched agents.
Let Mx and Wx denote the sets of partially matched men and women, respectively, in the

matching x. As x is regret-free, Lemma 2 implies that these sets are not empty. Because every
agent in Mx ∪Wx has at least one partner (otherwise the agent would be unmatched), the set of
partners Px(h) is not empty for all h ∈ Mx ∪ Wx. Furthermore, for all h ∈ Mx ∪ Wx we have
Px(h) ⊂ Mx ∪Wx. (If, say, m ∈ Mx has a partner w′ ∈ W \Wx, then w′ must be fully matched.
From Lemma 2, this implies x(m,w′) = 1, implying m < Mx.) Hence, for i = 1, 2 we have
µi(Mx) ⊆ Wx and µi(Wx) ⊆ Mx.

We use the individual rationality of x for the first inequalities in the following displayed
expressions,

u(m, µ1(m)) > (1 − x(m,m))u(m, µ1(m)) ≥
∑

w∈Px(m)

x(m,w)u(m,w) = U(m; x),

v(µ2(w),w) > (1 − x(w,w)v(µ2(w),w) ≥
∑

m∈Px(w)

x(m,w)v(m,w) = V(w; x),

for all m ∈ Mx and w ∈ Wx. Hence, we have

u(m, µ1(m)) > U(m; x) and v(µ2(w),w) > V(w; x), (C.1)

for all m ∈ Mx and w ∈ Wx.
Because x is pairwise stable, (C.1) implies

v(m, µ1(m)) ≤ V(µ1(m); x) and u(µ2(w),w) ≤ U(µ2(w); x)

for all m ∈ Mx, respectively for all w ∈ Wx.
Because x is regret free, these inequalities must, in fact, hold with equality, so that we obtain

v(m, µ1(m)) = V(µ1(m); x) and u(µ2(w),w) = U(µ2(w); x), (C.2)

for all m ∈ Mx and w ∈ Wx. From the first equality in (C.2), µ1(m) = µ1(m′) = w implies
v(m′,w) = v(m,w) and thus, from strictness of preferences, m = m′. Hence, the restriction
of µ1 to Mx, denoted by η1 in the following, is an injection into Wx. An analogous argument
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using the second equality in (C.2) shows that the restriction of µ2 to Wx, denoted by η2, is an
injection into Mx. Because the sets Mx and Wx are finite it follows (as a trivial application of
the Cantor-Bernstein-Schröder theorem) that η1 and η2 are bijections. Let η−1

1 : Wx → Mx and
η−1

2 : Mx → Wx denote the corresponding inverses. To establish that µ1 and µ2 are simple
matchings, it remains to show that η−1

1 (w) = µ1(w) and η−1
2 (m) = µ2(m) holds for all w ∈ Wx and

m ∈ Mx. Consider w ∈ Wx. From the first equality in (C.2), we have v(η−1
1 (w),w) = V(w; x).

Observing that η−1
1 (w) is a partner of w and that (because x is regret-free and preferences are

strict) all other partners m of w satisfy v(m,w) > V(w; x), the desired conclusion η−1
1 (w) = µ1(w)

follows. An analogous argument yields η−1
2 (m) = µ2(m) for all m ∈ Mx.

Consider any m ∈ Mx. Substituting w = µ1(m) into the second inequality in (C.1), we have
v(µ2(µ1(m)), µ1(m)) > V(µ1(m); x). From the first equality in (C.2), this implies µ2(µ1(m)) , m.
Because Mx is not empty, it follows that µ1 and µ2 are different. To complete the proof of
the lemma, it remains to show that µ1 and µ2 are stable. Let xi denote the assignment matrix
corresponding to µi. By construction, xi(m,w) = 1 implies that (m,w) are partners in x, that is,
we have x(m,w) > 0. Because x is individually rational, it follows that µi is individually rational.
Next, by the construction of µ1 and µ2 we have

U(m; x1) = U(m; x2) = U(m; x) for all m < Mx,

V(w; x1) = V(w; x2) = V(w; x) for all w < Wx.

From (C.1) and (C.2) we have:

U(m; x1) > U(m; x2) = U(m; x) for all m ∈ Mx,

V(w; x2) > V(w; x1) = V(w; x) for all w ∈ Wx.

In particular, for i = 1, 2 we have U(m; xi) ≥ U(m; x) for all m ∈ M and V(w; xi) ≥ V(w; x) for
all w ∈ W. As x satisfies (8) it follows that x1 and x2 satisfy (8). Hence, µ1 and µ2 are stable.

To prove the converse of Lemma 10 and, thus by Theorem 1, to finish the proof of Proposition
2, we rely on some well-known results about the structure of the set of stable simple matchings.
Given any two simple matchings µ1 and µ2, define µ1 >M µ2 if u(m, µ1(m)) ≥ u(m, µ2(m)) holds
for all m ∈ M and u(m, µ1(m)) > u(m, µ2(m)) for at least one m. Define µ1 >W µ2 in an analogous
way. If µ1 and µ2 are both stable, then [26, Theorem 2.13]

µ1 >M µ2 ⇔ µ2 >W µ1. (C.3)

Two stable simple matchings µ1 and µ2 are consecutive [26, p. 61] if µ1 >M µ2 holds and there
does not exist a stable simple matching µ3 between µ1 and µ2, that is, satisfying µ1 >M µ3 >M µ2.
Consecutive stable simple matchings exist if and only if there is more than one stable simple
matching: If there is more than one stable simple matching, the men-optimal stable matching µM

and the women-optimal stable matching µW (Roth and Sotomayor [26, Definition 2.11]) satisfy
µM >M µW . The set of simple matchings is finite, therefore there exists a matching µ′ such that
µM and µ′ are consecutive. To finish the proof of Proposition 2, it thus suffices to show that
coherent and regret-free fractional matchings exist if consecutive stable simple matchings exist.
The following lemmas establish this.

Lemma 11. Let µ1 and µ2 be consecutive stable simple matchings. Then there does not exist
(m,w) ∈ M ×W satisfying

u(m, µ1(m)) > u(m,w) > u(m, µ2(m)) and v(µ2(w),w) > v(m,w) > v(µ1(w),w). (C.4)
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Proof. 28 Let µ1 and µ2 be consecutive stable simple matchings for the marriage market (M,W; u, v).
Consider changing all man’s preferences such that µ2(m) becomes the least acceptable partner in
the marriage market, that is consider a marriage market (M,W; u′, v) satisfying u′(m, h) = u(m, h)
if u(m, h) ≥ u(m, µ2(m)) or h = m holds and u′(m, h) < 0 otherwise for all m ∈ M. Then µ2 is
the women-optimal matching in (M,W; u′, v). Now take any man m such that µ1(m) , µ2(m)
holds. This implies that man m is matched in both µ1 and µ2. Let (M; W, u′′, v) be the marriage
market which differs from (M,W; u′, v) only in that woman µ2(m) is unacceptable for man m,
that is u′′(m, µ2(m)) < 0 holds. Now consider an application of the women-proposing Gale-
Shapley algorithm to the marriage market (M,W; u′′, v), taking the matching µ2 as the start-
ing point of the algorithm and beginning with a rejection step in which man m rejects woman
µ2(m). Because the matching µ1 is consecutive to µ2, the algorithm – which corresponds to
the breakmarriage algorithm from McVitie and Wilson [22] – stops at the matching µ1 (see the
proof of Theorem 4 in McVitie and Wilson [22, Section 4.1]). Further, because µ1(m) , m,
the algorithm stops the first time that man m receives a proposal from a woman w such that
u′′(m,w) > 0 ⇔ u(m,w) > u(m, µ2(w)) holds. It follows that man m does not receive a proposal
from any woman w satisfying the first condition in (C.4). On the other hand, every woman w for
which the second condition in (C.4) holds, must make a proposal to m. It follows that there does
not exists (m,w) ∈ M ×W satisfying (C.4).

We say that the simple matchings µ1 and µ2 support the fractional matching x if the assign-
ment matrices x1 and x2 associated with µ1 and µ2 satisfy

x(m,w) = 0⇔ [x1(m,w) = 0 and x2(m,w) = 0], (C.5)
x(m,w) = 1⇔ [x1(m,w) = 1 and x2(m,w) = 1], (C.6)

for all (m,w) ∈ M ×W.

Lemma 12. Suppose the fractional matching x is supported by the consecutive stable simple
matchings µ1 and µ2. If

U(m; x) = u(m, µ2(m)) and V(w; x) = v(µ1(w),w) (C.7)

holds for all m ∈ M and w ∈ W, then x is coherent and regret-free.

Proof. Let x, µ1 and µ2 satisfy the conditions in the statement of the lemma, and let x1 , x2
denote the assignment matrices associated with µ1 and µ2.

Because µ1 and µ2 support x, (C.5) implies that x(m,w) > 0 only holds if either x1(m,w) = 1
or x2(m,w) = 1 (or both) hold. As x1 and x2 are individually rational this implies u(m,w) > 0.
Hence, x is individually rational.

From (C.6) for any pair (m,w) that satisfies x(m,w) = 1, it must be that U(m; x) = u(m,w)
and V(w; x) = v(m,w). Hence, condition (9) holds for such pairs. To verify that x is regret-
free, it remains to consider pairs (m,w) for which 0 < x(m,w) < 1. From (C.5) and (C.6),
either x1(m,w) = 1 or x2(m,w) = 1 (but not both) hold. Consider the first of these cases. In
this case, u(m,w) = u(m, µ1(m)) ≥ u(m, µ2(m)) and v(m,w) = v(µ1(w),w), where the inequality
is from µ1 >M µ2. Condition (C.7) then implies u(m,w) ≥ U(m; x) and v(m,w) = V(w; x),

28We are grateful for an anonymous referee who suggested the following proof based on the logic of the breakmarriage
algorithm from McVitie and Wilson [22].
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establishing that (9) holds. In the second case, it must be that u(m,w) = u(m, µ2(m)) and
v(m,w) = v(µ2(w),w) ≥ v(µ1(w),w), where the inequality is from µ1 >M µ2 and (C.3). As
in the previous case, (C.7) then implies (9). Hence, x is regret-free.

It remains to show the pairwise stability of x. Suppose, to the contrary, that there is a pair
(m,w) ∈ M ×W violating (8). Condition (C.7) then implies

u(m,w) > u(m, µ2(m)) and v(m,w) > v(µ1(w),w). (C.8)

By the stability of µ2, the first of these inequalities implies v(µ2(w),w) ≥ v(m,w), whereas from
stability of µ1 the second inequality implies u(m, µ1(m)) ≥ u(m,w). From Lemma 11, at the most
one of the inequalities v(µ2(w),w) ≥ v(m,w) and u(m, µ1(m)) ≥ u(m,w) can be strict. Suppose
the first inequality holds with equality. Because of the strictness of preferences, this requires
µ2(w) = m, and, therefore, U(m, µ2(m)) = u(m,w), which contradicts the first inequality in (C.8).
Similarly, if u(m, µ1(m)) = u(m,w) holds, then v(m,w) = v(µ1(w),w), which contradicts the
second inequality in (C.8). Therefore, there is no pair (m,w) satisfying (C.8), proving that x is
pairwise stable.

To conclude the proof of Proposition 2, it remains to show that if µ1 and µ2 are consecutive
stable simple matchings, then there exists a fractional matching x that is supported by µ1 and µ2
and satisfies (C.7). This is implied by the following lemma, which proves the stronger result that
such a fractional matching x exists whenever µ1 >M µ2 holds.

Lemma 13. Let µ1 and µ2 be stable simple matchings such that µ1 >M µ2. Then there exists a
fractional matching x that is supported by µ1 and µ2 and satisfies conditions (C.7).

Proof. Let M̃ = {m ∈ M | µ1(m) , µ2(m)} and W̃ = {w ∈ W | µ1(w) , µ2(w)}. As µ1 , µ2,
we have M̃ , ∅ and W̃ , ∅. As µ1 and µ2 are both stable, the set of unmatched agents in these
matchings is the same (Roth and Sotomayor [26, Theorem 2.22]). Therefore, µi(M̃) = W̃ and
µi(W̃) = M̃ hold for i = 1, 2. Define an oriented graph whose nodes are M̃ ∪ W̃ as follows: (i)
there is an arc from m ∈ M̃ to w ∈ W̃ if µ1(m) = w, and (ii) there is an arc from w ∈ W̃ to m ∈ M̃
if µ2(w) = m. Because every node in this finite graph has a unique direct successor and a unique
direct predecessor, it follows that the graph is the union of a set of disjoint directed cycles. Let
m1w1m2w2 . . .m`w`m`+1 with m`+1 = m1 be such a cycle and consider the set of equations

u(m1,w`) = x(m1,w`)u(m1,w`) + x(m1,w1)u(m1,w1)
v(m1,w1) = x(m1,w1)v(m1,w1) + x(m2,w1)v(m2,w1)
u(m2,w1) = x(m2,w1)u(m2,w1) + x(m2,w2)u(m2,w2)
v(m2,w2) = x(m2,w2)v(m2,w2) + x(m3,w2)v(m3,w2)

. . . . . .

v(m`,w`) = x(m`,w`)v(m`,w`) + x(m`+1,w`)v(m`+1,w`).

Because the direct predecessor of each node is distinct from its direct successor, it must be that
` > 1. For i = 1, · · · , ` the following inequalities are satisfied:

u(mi,wi) > u(mi,wi−1) > 0, (C.9)
v(mi+1,wi) > v(mi,wi) > 0, (C.10)

where we set w0 = w`, and where the first inequality in (C.9) is from µ1 >M µ2, the second
inequality from the individual rationality of µ2, and in both cases the strictness of the inequality
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is from the strictness of preferences. Because of (C.3), an analogous argument yields (C.10).
Using these properties, we now argue that the above systems of equations has a solution that
satisfies

x∗(mi,wi) > 0, x∗(mi+1,wi) > 0, (C.11)
x∗(mi,wi) + x∗(mi+1,wi) < 1, x∗(mi,wi−1) + x(m1,wi) < 1 (C.12)

for all i = 1, · · · , `.
We construct a solution as follows. For any c ∈ [0, 1], let x(m1,w`) = c. Using (C.9), the

first equation determines x(m1,w1) ∈ [0, 1) as a strictly decreasing, affine function h1 of c, which
satisfies h1(1) = 0. Substitute x(m1,w1) = h1(c) into the next equation, and note that (C.10)
determines x(m2,w1) ∈ (0, 1) as a strictly increasing affine function h2 of c. Proceeding in this
fashion until the last equation is reached, this iterative procedure defines a strictly increasing and
affine mapping from [0, 1] into (0, 1). This function has a unique fixed point 0 < c∗ < 1. Let
x∗(m`+1,w`) = x∗(m1,w`) = c∗ and use h1, h2, · · · to determine the remaining values. This yields
a solution that satisfies (C.11). The inequalities in (C.12) are then implied by (C.9) and (C.10).

Apply this argument to all cycles; and complete the specification of x∗ by setting x∗(m,w) = 0
for (m,w) satisfying x1(m,w) = x2(m,w) = 0 and by setting x∗(m,w) = 1 for (m,w) satisfying
x1(m,w) = x2(m,w) = 1, where x1 and x2 are the assignment matrices corresponding to µ1 and
µ2. By construction, x∗ satisfies (1) – (3) as well as (C.5) and (C.6). Thus, x∗ is a fractional
matching supported by µ1 and µ2. For m < M̃ the matching x∗ satisfies U(m; x∗) = u(m, µ1(m)) =

u(m, µ2(m)) so that (C.7) is satisfied. Similarly, (C.7) holds for w < W̃. For m ∈ M̃ we have (as
x∗ solves the set of equations given above):

u(m, µ2(m)) = x∗(m, µ1(m))u(m, µ1(m)) + x∗(m, µ2(m))u(m, µ2(m)).

As U(m; x∗) is given by the right side of this equation, (C.7) holds. Similarly, for w ∈ W̃ we have

V(w; x) = v(µ1(w),w) = x∗(µ1(w),w)v(µ1(w)),w) + x∗(µ2(w),w)v(µ2(w),w),

yielding (C.7) for those types.

Appendix D. Proof of Corollary 3

Let x∗ be the unique stable matching. By Lemma 9, there exists λe such that for all λ > λe
an equilibrium matching xλ exists. By Corollary 1, we have limλ→∞ xλ = x∗.29 For λ > λe,
let αλ denote the acceptance probabilities of the equilibrium inducing xλ. By Lemma 5, this is
well-defined.

Because the payoff functions are continuous, limλ→∞ U(m; xλ) = U(m; x∗) and limλ→∞ V(w; xλ) =

V(w; x∗), for all sequences of equilibrium matchings. Because the number of types is finite, we
may therefore choose λq ≥ λe such that for all λ > λq and all equilibrium matchings xλ for λ,

u(m,w) < U(m; x∗)⇒ u(m,w) < U(m; xλ), (D.1)

v(m,w) < V(w; x∗)⇒ v(m,w) < V(w; xλ) (D.2)

29Suppose not. Because the set of matchings is compact, we can then find a sequence (λk) converging to infinity such
that the associated sequence (xk) of equilibrium matchings with xk = xλk converges to some x̂ , x∗. This contradicts
Corollary 1.
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hold for all (m,w). We now restrict attention to λ > λq.
Because x∗ is a simple matching, we have x∗(m,w) ∈ {0, 1} for all pairs (m,w). Consider any

pair (m,w) satisfying x∗(m,w) = 0. Because preferences are strict and x∗ is stable, this implies
either u(m,w) < U(m; x∗) or v(m,w) < V(w; x∗), or both. Therefore, from (D.1) – (D.2) and the
optimality condition for equilibrium strategies, cf. (23),

x∗(m,w) = 0⇒ αλ(m,w) = 0. (D.3)

Consider any pair (m,w) satisfying x∗(m,w) = 1. We then have U(m; x∗) = u(m,w) > 0 and
V(w; x∗) = v(m,w) > 0, where the inequalities are from the individual rationality of x∗. Because
(D.3) implies xλ(m,w′) = xλ(m′,w) = 0 for all m′ , m and w′ , w and because xλ(h, h) > 0
holds for all h, we have u(m,w) > U(m; xλ) and v(m,w) > V(w; xλ). Therefore, the optimality
condition for equilibrium strategies implies

x∗(m,w) = 1⇒ αλ(m,w) = 1. (D.4)

As x∗(m,w) ∈ {0, 1} holds for all pairs (m,w), (D.3) – (D.4) imply that the equilibrium acceptance
probabilities αλ are uniquely determined and satisfy αλ(m,w) = x∗(m,w) for all (m,w).

Suppose the contact function is given by (31). Using (11) and (31), the conditions characterizing
equilibrium matches from Lemma 7 reduce to

x(m,w) ≤
ηλ

δ2 x(m,m)x(w,w) (D.5)

and

x(m,w) =

0 if u(m,w) < U(m; x) or v(m,w) < V(w; x),
λη
δ2 x(m,m)x(w,w) if u(m,w) > U(m; x) and v(m,w) > V(w; x).

(D.6)

From (D.3),
x∗(m,w) = 0⇒ xλ(m,w) = 0. (D.7)

We have also shown that for all (m,w) satisfying x∗(m,w) = 1, the inequalities u(m,w) >
U(m; xλ) and v(m,w) > V(w; xλ) hold. Using (D.6),

x∗(m,w) = 1⇒ xλ(m,w) =
λη

δ2 xλ(m,m)xλ(w,w). (D.8)

Because every m ∈ M and every w ∈ W has at most one partner in the simple matching x∗, we
can use (D.3) and (D.4) to infer that

x∗(m,w) = 1⇒ xλ(m,m) = xλ(w,w) = 1 − xλ(m,w). (D.9)

Consequently, we can rewrite the right side of (D.8) as

xλ(m,w) =
λη

δ2 (1 − xλ(m,w))2. (D.10)

Equation (D.10) has a unique solution xλ(m,w) in the interval [0, 1]. Since in every stable simple
matching, either x∗(m,w) = 0 or x∗(m,w) = 1, the equilibrium matching xλ(m,w) is therefore
uniquely determined for all pairs (m,w) via (D.7) and (D.8). From Lemma 5, uniqueness of the
equilibrium matching implies uniqueness of equilibrium, finishing the proof. �
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