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Abstract

The introduction of copulas, which allow separating the dependence structure of a multivariate
distribution from its marginal behaviour, was a major advance in dependence modelling. Copulas
brought new theoretical insights to the concept of dependence and enabled the construction of a
variety of new multivariate distributions. Despite their popularity in statistics and financial mod-
elling, copulas have remained largely unknown in the machine learning community until recently.
This thesis investigates the use of copula models, in particular Gaussian copulas, for solving vari-
ous machine learning problems and makes contributions in the domains of dependence detection
between datasets, compression based on side information, and variable selection.

Our first contribution is the introduction of a copula mixture model to perform dependency-seeking
clustering for co-occurring samples from different data sources. The model takes advantage of the
great flexibility offered by the copula framework to extend mixtures of Canonical Correlation
Analyzers to multivariate data with arbitrary continuous marginal densities. We formulate our
model as a non-parametric Bayesian mixture and provide an efficient Markov Chain Monte Carlo
inference algorithm for it. Experiments on real and synthetic data demonstrate that the increased
flexibility of the copula mixture significantly improves the quality of the clustering and the inter-
pretability of the results.

The second contribution is a reformulation of the information bottleneck (IB) problem in terms
of a copula, using the equivalence between mutual information and negative copula entropy. Fo-
cusing on the Gaussian copula, we extend the analytical IB solution available for the multivariate
Gaussian case to meta-Gaussian distributions which retain a Gaussian dependence structure but
allow arbitrary marginal densities. The resulting approach extends the range of applicability of IB
to non-Gaussian continuous data and is less sensitive to outliers than the original IB formulation.

Our third and final contribution is the development of a novel sparse compression technique based
on the information bottleneck (IB) principle, which takes into account side information. We
achieve this by introducing a sparse variant of IB that compresses the data by preserving the
information in only a few selected input dimensions. By assuming a Gaussian copula we can
capture arbitrary non-Gaussian marginals, continuous or discrete. We use our model to select a
subset of biomarkers relevant to the evolution of malignant melanoma and show that our sparse
selection provides reliable predictors.
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Chapter 1

Introduction

Analysis of dependence is a central task in statistics and many well-known problems revolve
around this concept. While the connection to dependence is readily apparent for contingency
tables and independence tests, other techniques such as regression and variable selection can
also be seen as essentially dependence questions. Furthermore, since any multivariate model
involves a dependence structure, the task of specifying, or estimating, this structure is at the
heart of high-dimensional modelling. The introduction of copulas, which use random vectors
with uniform marginals to separate the dependence structure of a multivariate distribution from
its marginal behaviour, was a major advance in dependence modelling. Copulas brought new
theoretical insights to the concept of dependence and enabled the construction of a variety of
new multivariate distributions. Although copula models have been very popular in statistics and
financial modelling (Genest et al., 2009), until recently they have remained largely unknown in the
machine learning community. As stated in Elidan (2013), this is especially surprising considering
the central role probabilistic graphical models, which also focus on high-dimensional dependency
structures, play in the field of machine learning. Naturally, an important direction of research
on copulas in machine learning deals with constructing and estimating multivariate distributions
or graphical models. The first work to bridge the gap between the two fields, Kirshner (2007),
introduced tree-averaged copula densities. In other key developments, Liu et al. (2009) estimated
high-dimensional sparse networks using a Gaussian copula and Elidan (2010) introduced a more
general approach to graphical models using local copulas. There are many natural connections and
potential synergies between copulas and various machine learning techniques, also going beyond
the construction of multivariate models.

This thesis focuses on applying copulas to three different machine learning problems, showing how
the additional flexibility inherent to copula models can improve the existing solutions. We first
consider the problem of detecting potential dependencies between two datasets of co-occurring
samples. Going beyond methods that assume global linear dependence, such as Canonical Cor-
relation Analysis, we extend the Bayesian non-parametric dependency-seeking clustering method
introduced in Klami and Kaski (2008). We show that by using a Gaussian copula we can avoid
the model mismatch problems, which can undermine the reliability of dependence detection, while
retaining a highly efficient inference. The second problem we consider is data compression with
relevance information solved in the Information Bottleneck (IB) framework (Tishby et al., 1999).
Although an analytical solution to the IB compression problem is available in the special case of
jointly Gaussian variables, no such solution is known for the general case. The resulting optimisa-
tion problem for discrete data, for example, involves an iterative algorithm with no guaranties of
global convergence. Using a model based on a Gaussian copula, we extend the analytical solution
to continuous meta-Gaussian variables (variables with a Gaussian copula and arbitrary marginals),
thus substantially increasing the IB’s domain of applicability, and establish strong connections be-
tween the IB problem and copulas, showing that the problem depends only on the copula of the
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data considered. Turning our attention to the problem of variable selection, we introduce a mod-
ified version of the IB which, due to the introduction of a new constraint, is able to identify the
most informative dimensions in the data. In order to be able to perform variable selection for the
numerous mixed (continous-discrete) datasets, such as those arising in the medical and biological
fields, we further generalise our previous meta-Gaussian IB to discrete variables.

This thesis is organised as followed. Chapter 2 introduces the mathematical concepts required
for the subsequent developments and provides a basic summary of probabilistic models, mixture
models, Bayesian inference, Markov Chain Monte Carlo, and statistical dependence. Chapter
3 is dedicated to copulas, introducing the main definitions and some major results. The first
main contribution of this thesis, a new copula mixture model for dependency-seeking clustering,
is presented in Chapter 4. Before presenting our second innovation, Meta-Gaussian information
bottleneck (MGIB) in Chapter 6, we introduce the Information Bottleneck problem in Chapter 5.
Chapter 7 is dedicated to a new variable selection method based on the IB principle, for which we
also extend MGIB to mixed data.
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Chapter 2

Background

This chapter provides a summary of the main concepts, theory and results needed for subse-
quent developments. Most of the background notions required come from probability theory and
statistics but some algorithmic aspects will also be covered. We follow the notation conventions
of probability theory and will use some measure theoretical concepts when needed. While this
formalism requires some preliminaries, it provides a level of precision which, we hope, facilitates
understanding. It also constitutes a unifying framework for continuous and discrete variables,
which will be useful in Chapter 7. Moreover, using some formal definitions from probability the-
ory enables a proper description of stochastic processes such as the Dirichlet process which will
play an important role in Chapter 4.

2.1 Probability spaces and random variables

Probability spaces and random variables. We denote a probability space by (Ω,F ,P) and a
measurable space by (E,E ), where F ,E are σ-algebras on Ω, E respectively, and P is a probability
measure (pm) on F . Random variables (rv) will be written in capital letters: X,Y , whereas
observations will be denoted by small letters: x, y. A random variable X is a measurable map
from the probability space to a measurable space (Ex,Ex), where Ex is called the sample space.
In other words, a random variable is an (F ,Ex)-measurable map X : Ω → Ex. The distribution
of X is the probability measure on (Ex,Ex) implicitly defined by the probability measure P:

µX(A) = P ◦X−1(A) = P{X ∈ A}, ∀A ∈ Ex. (2.1)

The sample space Ex can take various forms. For univariate random variables common choices
are R, N or subsets of them. Multivariate random variables will typically take values in product
spaces of the form Rd or Nd, where d represents the number of dimensions which can be infinite 1.

σ-algebra and product spaces. When the sample space is a topological space, a natural
choice of σ-algebra is the Borel σ-algebra which is the smallest σ-algebra generated by the open
sets. Measurable sets are then called Borel sets. We denote the smallest σ-algebra generated by a
collection of sets Ui, i ∈ J , for an index set J , by σ(Ui). For product spaces another natural choice
of σ-algebra is the product σ-algebra defined as the smallest σ-algebra generated by products of

1In the literature, a random variable is sometimes defined as a measurable function taking values in R or R̄.
Since the thesis focuses on dependence we use another convention which directly extends the notion of random
variable to multi-dimensional sample spaces.
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measurable sets (measurable w.r.t. to their respective σ-algebras). As an example, we briefly
consider the case of Ex = Rd, d ≤ ∞, equipped with the Euclidean metric. The product σ-algebra

on Rd is σ
(∏d

i=1Bi

)
, where Bi ∈ B(R) are Borel sets in R, whereas the Borel σ-algebra on Rd

is B(Rd) = σ(Ui), where Ui are the open sets in Rd. In the case of Rd the product and the Borel
σ-algebras are equal but this does not hold anymore for uncountable products spaces.

Cumulative distribution function. We give in (2.1) the distribution of a random variable.
Under particular conditions there exists a simpler method to characterise a random variable using
a function instead of a measure: the cumulative distribution function. If we consider of a random
variable with sample space Ex = Rd, d <∞, and Ex = B(Rd), it is sufficient to specify the value

of µX(A) for all sets of the form A =
∏d
i=1(−∞, xi], xi ∈ R. The underlying principle justifying

this simplification is that these sets form a π-system generating B(Rd), see Çinlar (2011). As a
consequence, the distribution of X can equivalently be defined using a function FX : Rd → [0, 1] :

FX(x) = µX (
∏
i(−∞, xi]) = P{X1 ≤ x1, . . . , Xd ≤ xd}, ∀x = (x1, . . . , xd), (2.2)

and FX is called the cumulative distribution function of X.

Density and probability mass function. Another convenient method for characterising a
random variable is to use a density function. Let X be a random variable with sample space
Ex = Rd, d <∞, and Ex = B(Rd). We further assume that µX is a σ-finite distribution (i.e. EX
is a countable union of measurable sets with finite measure). If µX is absolutely continuous w.r.t
the Lebesgue measure λ on Rd, the Radon-Nikodym theorem ensures the existence of a positive
measurable function f : Rd → R+ such that

µX(A) =

∫
A

fdλ, ∀A ∈ B(Rd), (2.3)

f is then called the density of X. If X takes values in a finite or countably infinite subset of Rd
with probability one, it is called a discrete random variable. Discrete variables clearly cannot be
absolutely continuous w.r.t λ, however an analogue to density functions exists for the discrete case.
Instead of specifying a probability measure we can use a probability mass function f : Rd → [0, 1]
defined by

fX(x) = µX({x}). (2.4)

From which it naturally follows that

µX(A) =
∑
a∈A

µX({a}) =
∑
a∈A

fX(a) =

∫
A

fX(a)dm(a), (2.5)

where m is the counting measure on Rd.

Marginal distributions. Consider a multivariate random variable X = (Xj)j∈J , having an
arbitrary number of dimensions indexed by a set J (possibly uncountable). The univariate distri-
butions of the different dimensions of X, called the marginal distributions µXj , are the measures
on (Exj ,Exj ) defined by

µXj (A) = P{Xj ∈ A} = µX(Ex1 × · · · ×A× · · · × Exd), ∀A ∈ Exj . (2.6)

By extension and depending on the context, the term marginal distribution can also denote the
joint distribution of any finite subset of dimensions.
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Stochastic processes. Infinite-dimensional random variables are often considered in the con-
text of stochastic processes. A stochastic process is an indexed family of univariate random
variables on the same sample space.

Definition 2.1 (Stochastic process). A stochastic process with state space (E,E ) and index set
T is a collection {Xt, t ∈ T} of random variables on (E,E ).

We write (Xt) for simplicity. The set T can be finite, infinite countable or uncountable. The
index t is often interpreted as time when T = N or T = R+. We denote the product space by
ET =

∏
t∈T E which is the set of all functions f : T → E. We can look at a stochastic process from

different perspectives. We can envisage it as a collection of univariate rv, as in the above definition,
but we can also consider it as a random function: for every fixed event ω ∈ Ω a stochastic process
constitutes a function from the index set to the state space. The functions

pω : T → E,

t 7→ Xt(ω),

are elements of the product space ET called the paths of (Xt). A stochastic process randomly
selects one path which is called the realisation or the observed stochastic process. A third view on
stochastic processes, closely related to the random function view, is to consider it as a (possibly
infinite) dimensional random variable on a product space:

X : Ω→ ET ,

ω 7→ pω.

Since a random variable is a measurable map, for the above specification to be complete we still
have to specify a σ-algebra on ET . We are interested in stochastic processes measurable with
respect to the Borel σ-algebra B(ET ) on the product space. The distribution µX = P ◦ X−1 of
the stochastic process is then a measure on (ET ,B(ET )). We call µX the probablility law of the
stochastic process. When the index set is countable, B(ET ) is also the σ-algebra generated by the
product sets ∏

t∈TAt = {a ∈ ET |at ∈ At, At ∈ E , ∀t ∈ T},
for which |{t ∈ T |At 6= E}| < ∞. In this case, Kolmogorov extension theorem 2 ensures that the
distribution of X on B(ET ) exists and is uniquely determined by the values of its final dimensional
projections

P{Xt1 ∈ A1, . . . , Xtn ∈ An}, ∀n ∈ N, Ai ∈ E ,

subject to the condition that these final dimensional projections are consistent, see Çinlar (2011)
for more details.

Well-known examples of stochastic processes include Markov chains and Gaussian processes (of
which the Wiener process is a special case). In Bayesian statistics, the Dirichlet process has a
special role since it defines a measure over distributions and can thereby define priors. Consider a
measurable space (H,H ). The probability law of a Dirichlet process G is a measure on the space
of all probability measures on H, i.e. µG is a measure on the set

M = {µ : H → [0, 1]| µ is a probability measure} ⊂ RH .

More precisely, a Dirichlet process is specified by two parameters: the base measure G0 on (H,H )
and a real valued parameter α. The characteristics of a Dirichlet process are given in the following
definition.

Definition 2.2. A Dirichlet process with state space (E,E ) = ([0, 1],B([0, 1])), base measure G0

and concentration α > 0 is the stochastic process G with index set T = H defined by

(Gt1 , . . . , Gtn) ∼ Dir(αG0(t1), . . . , αG0(tn)), ∀n ∈ N, ∀PH , (2.7)

2In the general case of uncountable T , the theorem ensures the existence and unicity of the disctribution on the
product σ-algebra E T ⊆ B(ET ).
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where ti ∈ PH , G0 is a measure on (H,H ), and PH denotes a measurable partition of H 3. We
use the following notation

G ∼ DP(α,G0). (2.8)

The set T in the above definition differs from the intuitive idea of an index set since T = H is a
σ-algebra, and, as a consequence, each component of G is indexed by a set. In (2.7) the indices
t1, . . . , tn are restricted to a partition PH instead of the entire σ-algebra H , this simplification
is induced by the special form of the Dirichlet distribution which draws finite discrete probability
distributions. Each component Gt, t ∈ H is a rv with values is the real unit interval. However,
since we impose that any finite collection follows a Dirichlet distribution, a group of n marginal
variables Gt1 , . . . , Gtn takes values in the (n− 1)-dimensional simplex. The paths

pω : T =H → E = [0, 1]

A 7→ GA(ω)

of a Dirichlet process are special functions, they are almost surely 4 probability measures on
(H,H ). Since G : Ω → ET = [0, 1]H is a random variable taking values in the space of all
functions from H to the [0, 1] interval, µG actually is a distribution on the space of probability
measures M .

Conditional distributions To close this section on the basics of probability theory we provide
below a short summary on conditional distributions, these being essential to Bayesian statistics.
We first need to introduce the concept of conditional expectation of a random variable. Consider
a positive random variable X with state space (E,E ) and let A be a sub-σ-algebra of F . The
conditional expectation of X given A , denoted by EA (X), is any random variable X̄ such that

1. X̄ is A -measurable.

2. E(V X) = E(V X̄), for every A -measurable positive random variable V.

This definition can be extended for general random variables (not necessarily positive) by decom-
posing the variable in a positive and a negative part. The intuitive interpretation of conditional
expectations is that EA (X) is the random variable which best estimates X based on the informa-
tion provided by A . It can be shown that two random variables fulfilling the above requirements
are almost surely equal, we can therefore speak of the conditional expectation when referring to
such a variable. Conditional distributions are built using conditional expectations. We first in-
troduce the conditional probability of a set H ∈ F given A which is the random variable defined
by

PA (H) = EA (IH). (2.9)

The conditional distribution of X given A is any transition probability kernel from (Ω,A ) into
(E,E )

K : Ω× E → [0, 1] (2.10)

(ω,B) 7→ Kω(B), (2.11)

such that
PA (X ∈ B) = K(B). (2.12)

We also recall that, by definition of a transition probability kernel, Kω(.) defines a measure on
E for every fixed ω, and K·(B) is a random variable measurable w.r.t. the σ-algebras A ,E for
every fixed B ∈ E . We can finally define the conditional distribution of X given another random

3PH = {H1, . . . , Hn} such that Hi ∈ H , ∪ni=1Hi = H, Hi ∩Hj = ∅ for i 6= j.
4i.e. the statement holds up to nullsets
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variable Y as the conditional distribution of X given the σ-algebra generated by Y : σ(Y ). Denote
by µ the joint distribution of (X,Y ), the conditional probability of Y ∈ B|X ∈ A is given by the
stochastic kernel K fulfilling

µ(A×B) =

∫
A

µX(dx)K(x,B), (2.13)

and the conditional distribution of Y |X is the kernel L defined by

Lω(B) = K(X(ω), B). (2.14)

For every realisation x = X(ω) of X, Lω defines a measure on E denoted by µY |X(.) for simplicity.
We further use the notation fY |X for the corresponding density of probability mass function.

2.2 Statistical Models

Statistics can roughly be described as the science (some authors say art) of drawing conclusions
from data. More precisely, we can identify two goals of statistical modelling: prediction, we want
to be able to predict some quantities associated to the data, and understanding, we want to
extract information about the data generation process. A necessary assumption is that the data
generation process contains some randomness, meaning that the data could have differed slightly
from the particular set we analyse. This slight difference consist in the error caused by pure
randomness in the process or by measurements uncertainties. Assuming some randomness is not
in contradiction with perfectly determined systems since the random part could be constituted
only of measurements imprecisions or could represent imperfect knowledge about the generation
process. As described in length in Breiman (2001) they are two main types of statistical models:
data modelling assumes the data was produced following a stochastic law which we try to identify,
algorithmic modelling directly tries to answer a data related question (e.g. which variables are
more important) using an algorithmic approach. Since algorithmic modelling does not assume
any precise distribution for the data, it offers more flexibility and its standard methods can be
applied to a large variety of data sets. However, this also implies that traditional statistical
analysis methods including tests, confidence intervals and asymptotic results, are not applicable.
Another often encountered criticism towards algorithmic techniques is their lack of interpretability.
Whereas very good predictions can be achieved, the results are often not readily interpretable and
do not provide the same insight as a fitted probability model. On the other hand, probabilistic
modelling also raises some concerns. While the vast majority of work in statistics has been
dedicated to probabilistic models, lack of fit issues arising from assuming an inadequate or too
restrictive distribution often are still underestimated. This thesis will focuses on probabilistic
data models, trying to address some lack of fit problems by enlarging the panel of distributions
available to solve various tasks. We start by formally introducing parametric and non-parametric
data models, both from the frequentist and the Bayesian point of view.

Definition 2.3 (Parametric model). A parametric model is a family of the form {µθX |θ ∈ Θ},
where the distributions are indexed by θ and Θ is a subset of Rd, d ∈ N/{0}.

A parametric model is a family of distributions where each element is uniquely specified by the
value of θ, called the parameter of the family. This parameter can have an arbitrary large number
of dimensions with the restriction that its dimensionality d must be fixed. In the context of
parametric models the task of statistical estimation is to choose within the family the distribution
best suited to the data, where “best suited” still needs to be precisely defined. Using a parameter
space with many dimensions, the class of available distributions can become very large, however
the flexibility of probabilistic models can be further increased by relaxing the assumption of a
parameter space with fixed dimensionality. Despite being inherently parametric, such models
are called non-parametric models. Their distinctive characteristic is that the dimension d of
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the parameter space remains unbounded during the estimation procedure. More precisely, this
means that the number of parameters is allowed to vary with the sample size: as we see new
observations we are allowed to reconsider the number of parameters needed to adequately describe
our sample. When the number of observations tends to infinity this number can potentially become
arbitrarily large. Non-parametric models are therefore also called infinite dimensional models 5.
A classic example of non-parametric model is Parzen density estimator (Parzen, 1962) which is
parameterized by a global bandwidth and one location parameter per observation.

We will in this thesis adopt a Bayesian approach to statistical modelling and we therefore present a
brief introduction to Bayesian statistics, highlighting its relationship to the frequentist point view.
Bayesian inference is a probabilistic data analysis technique which conducts inference conditional
on the observed data. The (possibly multivariate and infinite dimensional) parameter θ of the
probabilistic model assumed is considered as random, in a sense we will make precise below, and
inference consists in determining its posterior distribution conditioned on the data. Assuming the
probability model is correct, the posterior distribution contains all available information about
the parameter. Point estimates of parameters, confidence intervals and hypothesis testing can
therefore be constructed from the posterior. The distribution of the parameters before any data
has been seen is called the prior distribution. It does not describe a potential variability of θ,
which is typically assumed to be a fixed unknown variable, the randomness of the parameter
rather reflects our uncertainty about its precise value. The term probability is this context is
used in the sense of a measure of uncertainty. To be more precise we should add here that this
uncertainty measure is conditional under particular conditions which includes assumptions made
(e.g. a particular probability model assumed) and eventual additional prior information available.
In particular situations, prior information concerning the parameters might be available, e.g. from
expert knowledge, in other cases one wants to introduce as little information as possible prior to
data observation and a most uninformative prior distribution is sought. The latter perspective is
treated in the framework of objective Bayes. In particular, reference priors which are designed to
have a minimal effect on the posterior inference, are based on information theoretical principles
and include Maximum entropy or Jeffrey’s prior as special cases. A general introduction to
Bayesian statistics is provided in Bernardo (2011) and details on reference priors can be found in
Berger et al. (2009). We summarise below a few facts highlighting how Bayesian statistics relates
to the traditional frequentist analysis.

1. In the frequentist perspective randomness expresses the fact that repeated experiments will
not provide identical observations. Bayesians also consider that randomness can express
uncertainty about the state of the word.

2. The parameter θ is considered as a fixed unknown both in the frequentist and Bayesian
perspectives, however Bayesians consider that θ can be viewed as random in the sense of
probability as measure of uncertainty.

3. Frequentist statistics is concerned with the efficiency of a statistical procedure on repeated
similar problems 6. Inference takes into account the particular data sets at hand along with
other realisations which were not observed but could potentially be observed, averaging is
performed over the possible data X. On the other hand, Bayesian statistics makes inference
conditioned on the observed data, averaging is performed over the parameter of interest.

We give below the definition of a Bayesian parametric model, as explained above the parameter θ
is a random variable, we thus need to equip the parameter state space Θ with a σ-algebra, denoted
by A .

5Terminology should be considered with care since the term non-parametric has multiple meanings in the
literature.

6In Bayarri and Berger (2004) the precise meaning of the frequentist principle is explained in more details, in
particular it is emphasized that accuracy must be considered for the same task applied to multiple problems.
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Definition 2.4 (Bayesian parametric model). A Bayesian parametric model is a family of con-
ditional distributions {µX|θ| θ ∈ MΘ}, where MΘ is the set of all (F ,A )-measurable functions
from Ω to Θ.

Definition 2.4 is based on conditional distributions but inference is simplified if we consider a
model based on conditional densities. When there exists a measure ν such that µX|θ � ν for
every member µX|θ of our parametric model, � denoting absolute continuity, we can directly
work with a Bayesian family of densities. A Bayesian parametric density model is a family of
conditional densities {fX|θ| θ ∈ MΘ}, where the densities are all defined w.r.t. to the same
measure ν. Recalling that we are interested in the posterior distribution of the parameter given
the data, the next question arising is how can we actually calculate this distribution. Bayes
theorem provides a formula for the posterior distribution of Bayesian parametric density models.
This result shows that when the parametric family is dominated, i.e. there exists a measure ν
with respect to which every family member is absolutely continuous, the posterior distribution is
absolutely continuous w.r.t. to the prior.

Theorem 2.1 (Bayes theorem). Consider a Bayesian parametric family density model {fX|θ| θ ∈
MΘ} with prior measure µθ on the parameter sample space Θ. The posterior distribution µθ|X is
absolutely continuous w.r.t. µθ and has Radon-Nikodym derivative:

dµθ|X=x

dµθ
(θ0) =

fX|θ=θ0(x)∫
fX|θ=θ0(x)dµθ(θ0)

, (2.15)

for every x which is not in the set N =
{
y ∈ E|

∫
fX|θ=θ0(y)µθ(dθ0) ∈ {0,∞}

}
.

It can be shown that observations actually occur in N with probability zero, and thus equation
2.15 holds for every data we actually observe. As for traditional models we can also define non-
parametric Bayesian models. Handling a potentially increasing number of dimensions for the
parameter seems difficult given the fact that a prior probability on the parameter space needs
to be defined. Since the prior distribution need to be defined and fixed 7 prior to conducting
inference, the prior will typically be defined on an infinite-dimensional space, leaving therefore
enough potential degrees of freedom to explain new observations. In Orbanz (2008), the adaptivity
of such models is stressed, also pointing out that their main characteristic is not the infinite
dimensionality but their ability to explain any fixed number of observations. Explaining any finite
sample will effectively require only a finite subset of dimensions, and the infinite-dimensionality
is needed to potentially explain any fixed, but arbitrarily large, sample.

2.2.1 Mixture model

When standard distributions do not show a structure rich enough to explain the data, mixture
models offer more flexible alternatives. To obtain more complex models mixture models combine
two distributions by conditioning and integration. An intuitive representation is given by a two-
staged sampling procedure: draw the value of a first random variable, then sample from a second
distribution which depends on the first obtained value. Let X,Z be random variables taking values
in the measurable spaces (Ex,Ex) , (Ez,Ez) . We will work with the conditional distribution of X
given Z, which requires to impose some conditions on the chosen spaces. A sufficient condition to
insure the existence of conditional distributions is to consider Polish spaces equipped with Borel
σ-algebras.

Consider the family of the conditional distributions of X given Z:

{µX|Z |Z ∈MEz},
7The data can also be used to determine a suitable prior but we do not include this first step when speaking of

inference.
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where MEz is the space of (F -Ez)-measurable functions. If the family is dominated i.e. if there
exists a measure ν on Ex such that µX|Z � ν for every member µX|Z in the family, then the
family of distributions can be represented as a family of densities:

{fX|Z |Z ∈MEz}. (2.16)

By integrating fX|Z=z over z using µZ , the distribution of Z, we recover a density function
depending on x only:

fX(x) = fX|µZ (x) =

∫
Ez

fX|Z=z (x) dµZ(z). (2.17)

The notation fX|µZ in (2.17) emphasizes that the density of X depends on µZ , to be more precise
fX is parametrized by µZ . The formulation (2.16) looks similar to a Bayesian model but, in the
case of a mixture model, the variable Z is not the parameter of interest and is integrated out, the
parameter of the model being µZ . Previous remarks are summarised in the following definition.

Definition 2.5 (Mixture model). A mixture model is a family of the form{∫
Ez

fX|Z=z (x|z) dµZ(z) | µZ is a pm on Ez

}
.

In a Bayesian mixture model the parameter, which is here µZ , is a random variable. Thus to
obtain the Bayesian version of the model described in 2.5 one has to define a prior distribution
for µZ , i.e. a prior distribution over distributions.

Finite mixture

When Z is a discrete random variable taking only a finite number of different values, the obtained
model, called a finite mixture, has a simplified formulation and becomes easier to interpret. In the
finite case, we assume that Z has a probability mass function fZ which puts mass p1, . . . , pK ∈
R+\0,

∑
k pk = 1, on a finite number of points θ1, . . . , θK ∈ Ez:

fZ(z; p, θ) =

K∑
k=1

pkδθk(z) (2.18)

where p = (p1, . . . , pK) and θ = (θ1, . . . , θK). Combining (2.17) and (2.18) we find (by exchanging
the sum with the integral and then integrating) that the density of X can be rewritten as a
weighted sum of K densities:

fX(x; p, θ) =

K∑
k=1

pkfX|θk(x) (2.19)

From equation (2.19) we can see that each observation of fX is generated from one of the K
densities fX|θ1 , . . . , fX|θK with probabilites p1, . . . , pK . Introducing the latent variables of the ob-
servations’ class assignments Ci, i ∈ {1, . . . , n} defined by Ci = k if xi is an observation generated
from the density fX|θk , we can generate observations xi from fX in a two-staged process:

1. Draw a class assignment c from Ci|p ∼ mult(p1, . . . , pK , 1).

2. Draw xi from Xi|{Ci = c} ∼ fX|θc .

A Bayesian finite mixture requires only to specify prior distributions for θ and p, avoiding the
more complicated task of defining a prior for µZ . The prior for θ depends on the particular model
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considered. A standard prior for p is the conjugate to the multinomial distribution, the Dirichlet
distribution denoted Dir(α):

f(p1, . . . , pK−1;α) =
1

B(α)

K∏
i=1

pαi−1
i ; pK = 1−

K−1∑
i=1

pi, (2.20)

where α = (α1, . . . , αK) ∈ RK+\0 and the normalising constant is the Beta function expressed using
the Gamma function:

B(α) =

∏K
i=1 Γ(αi)

Γ(
∑K
i=1 αi)

Example: finite Gaussian mixture A finite Gaussian mixture is a mixture model having
Gaussian conditional densities fX|θk :

fX|θk(x) =
1

(2π)d/2|Σk|1/2
exp

(
−1

2
(x− µk)

T
Σ−1
k (x− µk)

)
(2.21)

where θk = (µk,Σk) and assuming X has dimension d. To fully specify this example from a
Bayesian perspective we need to provide prior distributions for the parameters p and θ. The
parameters will have different posterior distributions depending on the class but all have the same
prior distribution and share common hyperparameters (the parameters of the prior distribution).
We give an example of conjugate finite Gaussian mixture model which is fully characterise by the
following set of equations:

1. The class probabilities are a priori Dirichlet distributed

(p1, . . . , pK)|α ∼ Dir
( α
K
, . . . ,

α

K

)
, (2.22)

with hyperparameter α ∈ R+\0.

2. The parameters θ1, . . . , θK are a priori independent with the following densities

Σk|∆, ν
iid∼ IW (∆, ν) (2.23)

µk|Σk,m, κ
ind∼ N

(
m,κ−1Σk

)
, k = 1, . . . ,K, (2.24)

where the hyperparameters are ν > 0,∆ ∈ Rd×d and κ > 0,m ∈ R.

3. The latent variables are a priori iid multinomial

Ci|p
iid∼ mult(p1, . . . , pk, 1), i = 1, . . . , n.

4. The components of the mixture fX|θk are normal densities as in equation (2.21)

Xi|Ci, θ
ind∼ Nd (µCi ,ΣCi) , i = 1, . . . , n.

5. Finally the multivariate density fX is as in equation (2.19)

fX(x) =

K∑
k=1

pkfX|θk(x|θk).
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Infinite mixture

Infinite mixture models encompass the cases where we do not restrict Z to a finite number of values.
The density fX cannot be reduced to equation (2.19) and its general form must be retained. In a
Bayesian framework, this implies that µZ , which is considered as a random variable, needs a prior
distribution and we face the problem of defining a distribution over the infinite dimensional space
of distributions on Ez:

M = {µZ : Ez → [0, 1] | µZ is a probability measure} (2.25)

Keeping the issue of its construction for later, assume that µM is a measure on M. We can then
integrate over M using µM and the unconditional density takes the following form:

fX(x) =

∫
M

∫
Ez

fX|Z=z(x)dµZ(z)dµM . (2.26)

Equation (2.26) provides the unconditional form of a Bayesian infinite mixture model, where our
parameter µZ is a random measure with prior distribution µM . A closer look at the space M
reveals that it has a product structure, a feature which we can take advantage of to construct the
measure µM . Indeed, an element of M being a function from Ez to a real interval, M actually is a
set of functions and can be written using the product form M = REZ . This, in particular, implies
that random variables taking values in M also have a product structure indexed by EZ .

Dirichlet process mixture

If we could construct µM such that its samples are almost surely discrete distributions, i.e. every
µZ sampled from µM is a discrete distribution with probability one, the density fX would take the
form of a sum, similar to equation (2.19), but infinite instead of limited to K components. In the
case of a finite Ez a solution is known, the Dirichlet distribution constitutes a distribution over
finite discrete distributions (i.e. discrete distributions on a finite set). The idea underlying the
Dirichlet process Ferguson (1973) is to construct an extension to the infinite case, going from the
distribution to a stochastic process. The Dirichlet process was already introduced in Definition 2.2,
where the desired stochastic process was constructed by specifying its finite dimensional margins,
and, as previously mentioned, draws of a Dirichlet process are a.s. discrete distributions (Blackwell,
1973).

We recall that a Dirichlet process G : Ω → M is parametrized by a base measure G0 ∈ M and a
concentration parameter by α ∈ R+\0, and admits the following product representation:

G =
∏
A∈Ez

G(A).

The stochastic process G can be seen as a function from the product space Ω × Ez to the real
line. For every fixed measurable set A, G(A) : Ω→ [0, 1] is a random variable, and for every fixed
event ω, G(ω) : Ez → [0, 1] is a measure on the parameter space (Ez,Ez). This later property
reveals that G can also be interpreted as a random measure on the parameter space. A classic
way to construct a stochastic process, i.e. by specifying all finite margins and then make use of
Kolmogorov extension theorem (Kolmogorov, 1950) to obtain the infinite dimensional extension,
would require here to specify the value of the process for every Borel set A ∈ Ez. However, as
mentioned in Section 2.1, in the particular case of the Dirichlet process we can actually restrict
ourself to the set of measurable finite partitions of Ez

PEz = {(Hj)j∈J |J is finite, Hj ∈ EZ ∀j, ∪j∈JHj = EZ , Hi ∩Hj = ∅ for i 6= j}, (2.27)

and the Dirichlet process G is characterised by∏
i=1,...,m

G (Ai) ∼ Dir (αG0(A1), . . . , αG0(Am)) , ∀m ∈ N,∀ (Ai)i=1,...,m ∈ PEz . (2.28)
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Equation (2.28) is often written with the following form:

(G (A1) , . . . , G (Am)) ∼ Dir (αG0(A1), . . . , αG0(Am)) . (2.29)

The base measureG0 can be seen as the mean of the Dirichlet process since E[G(A)] = G0(A),∀A ∈
Ez. The concentration parameter α plays the role of an inverse variance, larger values correspond-
ing to more concentrated mass around G0. However, draws from G do not become arbitrarily
close to G0 as α increases. Indeed, if G0 is a continuous measure draws from G, which are dis-
crete measures, always are singular with G0. Existence and uniqueness of the Dirichlet process
can be proven by different methods, besides using Kolmogorov extension theorem 8 as mentioned
previously, a stick-breaking construction is introduced in Sethuraman (1994) and a proof based on
Pólya urn schemes is given in Blackwell and MacQueen (1973). Since this later scheme provides a
helpful representation to perform Gibbs sampling (refer Section 2.3.3) we detail it below. A Pólya
sequence with parameters G0, α is a sequence of random variables Zi, i ≥ 1 such that for every
A ∈ Ez

P(Z1 ∈ A) =
G0(A)

G0(Ez)
(2.30)

P(Zn+1 ∈ A|Z1, . . . , Zn) =
Gn(A)

Gn(Ez)
, with Gn = αG0 +

n∑
i=1

δZi . (2.31)

Define a new measure G∗n by G∗n(A) = Gn(A)/Gn(Ez), Blackwell and MacQueen (1973) showed
that G∗n converges with probability one to a discrete measure G∞ which is distributed according
to a Dirichlet process

G∞ ∼ DP(α,G0). (2.32)

Assuming G0(Ez) = 1, equation (2.31) becomes

P(Zn+1 ∈ A|Z1, . . . , Zn) =
α

α+ n
G0(A) +

1

α+ n

n∑
i=1

δZi(A), (2.33)

and we can write the predictive distribution of Zn+1|Zn as

Zn+1|Z1, . . . , Zn ∼
α

α+ n
G0 +

1

α+ n

n∑
i=1

δZi . (2.34)

Equation (2.34) gave rise to the famous urn scheme metaphor of the Dirichlet process and can be
interpreted the following way: imagine that each value in the space Ez is a unique colour, and
the observations from Z are obtained by drawing a coloured ball and assigning its colour to be
the observed value of Z. Imagine also that an urn is kept to collect previously seen balls. At the
beginning of the sampling process the urn is empty and we draw a colour from the distribution G0.
In addition, we paint a ball with that observed colour and drop it in the urn. In the subsequent
steps, we either:

a) With probability n
α+n , we draw a previously seen colour by taking (at random) a ball from

the urn, replace the ball in the urn, paint a new ball with this colour and drop it in the urn
as well.

b) With probability α
α+n , sample a new colour from G0, paint a new ball with this colour and

drop it in the urn.

8Kolmogorov’s theorem give the existence and unicity on the product σ-algebra
⊗

A∈Ez
B(R) but we actually

are interested in the Borel σ-algebra on M , B(M).
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2.3 Markov Chain Monte Carlo sampling

2.3.1 Monte Carlo Methods

Different, more or less restrictive, definitions of Monte Carlo (MC) methods exist in the literature.
MC can roughly be described as a class of algorithms based on random sampling but the following
description, which largely agrees with the definition found in Anderson (1999), provides a more
precise definition.

Monte Carlo methods are algorithms approximating an expectation by the sample mean of
a function of simulated random variables.

The above definition might seem restrictive but many problems, such as computing probabilities,
integrals or discrete sums, can be reformulated as the computation of an expectation. The key
idea in MC methods is to approximate the expectation to be computed by the mean of a large
number of samples from the distribution. Consider a random variable X : Ω → Rd, d < ∞, with
density, in the continuous case, or probability mass function, in the discrete case, denoted by fX .
The expected value of a function of X

E(g(X)) =

∫
g(x)fX(x)dµ(x),

where µ is either the Lebesgue or the counting measure on Rd, can be approximated by the Monte
Carlo estimate

ĝ(x) =
1

n

n∑
i=1

g(xi), (2.35)

where xi, i = 1, . . . , n are samples from the distribution of X. The key part in the above process is
sampling from µX , which is obviously not always possible or easy to achieve, and there exist differ-
ent MC methods tackling the problem, the most famous being rejection sampling and importance
sampling. These techniques, however, scale badly with dimensionality and we need more complex
algorithms to handle higher dimensional problems. Markov Chain Monte Carlo (MCMC) methods
provide powerful alternative solutions by building a Markov Chain which admits our distribution
of interest µX as stationary distribution. Before developing on MCMC, we briefly present some
introductory notions on Markov Chains.

2.3.2 Markov Chains

Markov chains are Markov processes in discrete time, however, to simplify the exposition, we
directly define the concept required for MCMC: homogeneous Markov chains.

Definition 2.6 (Homogeneous Markov Chain). A homogeneous Markov chain on (Rd,B(Rd))
with transition kernel K is a discrete time stochastic process (Xt)t∈N with values in (Rd,B(Rd))
such that

P{Xt+h ∈ A|σ(Xt; t ≥ 0)} = Kh(Xt, A), ∀A ∈ B(Rd), (2.36)

where Kh is the h-th iterate 9 of K and t ∈ N, h ∈ N \ {0}.

The distribution of X0 is called the initial distribution. The transition kernel is the mechanism
controlling the evolution of the stochastic process over time by prescribing, as its name indicates,

9We recall that the product of two kernels is: (KQ)(x,A) =
∫
K(x,dy)Q(y,A).
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the transition probabilities from one state to the next. The main characteristic of a Markov chain,
expressed in equation (2.36), is that the probability of a future state does not depend on the
entire history of the process but only on the current state. In Definition 2.6, the chain is called
homogeneous because the kernel K is constant over time. Under certain regularity conditions,
which we do not detail here 10, Markov chains stabilise over time and adopt an equilibrium
distribution, defined below in 2.38.

• A distribution π on (Rd,B(Rd)) satisfying:

π(A) =

∫
K(x,A)π(dx), ∀A ∈ B(Rd),∀x ∈ Rd, (2.37)

is a stationary distribution of the chain.

• A stationary distribution π on (Rd,B(Rd)) satisfying:

π(A) = lim
h→∞

Kh(x,A), ∀A ∈ B(Rd), (2.38)

for π-almost all x, is an equilibrium distribution of the chain.

2.3.3 Markov Chain Monte Carlo

Most of the traditional theory on Markov chains assumes a known transition kernel and inves-
tigates the properties of the resulting stochastic process. MCMC approaches the problem from
another angle, a desired equilibrium distribution π is first chosen to be the target distribution,
i.e. the distribution from which we want samples. The aim of MCMC is then to construct a
stochastic kernel, and thereby a Markov chain admitting the target distribution as equilibrium.
The empirical distribution of samples generated by the chain will approximate the distribution
of interest (sometimes up to a proportionality constant). Two different methods leading to such
Markov chains will be used in later chapters and are shortly introduced below: Metropolis-Hastings
(Metropolis et al., 1953), (Hastings, 1970) and Gibbs sampling (Gelfand and Smith, 1990). To
construct the desired transition kernel K we assume that π has a density w.r.t. some σ-finite
measure µ (e.g. the Lebesque measure) and K has the form

K(x,dy) = k(x, y)µ(dy) + r(x)δx(dy), (2.39)

for some real-valued function k with k(x, x) = 0 and where r(x) = 1 −
∫
k(x, y)µ(dy). Equation

(2.39) can be interpreted as a decomposition of K in one part controlling the probability to leave
state x and another part steering the probability of staying in state x. It can be shown that if k
satisfies the detailed balance condition

π(x)k(x, y) = π(y)k(y, x), (2.40)

then π is stationary for the chain defined by K, and under further conditions Kn converges to
π when n → ∞. The problem has thus been reduced to the choice of the function k. The
detailed balance condition (2.40) can be interpreted as a requirement of reversibility or symmetry
in the chain. While collecting approximated samples of π using MCMC techniques, convergence
issues should be accounted for. In particular, the first b-th samples should be discarded, where
b is an integer to determine, since the chain needs a certain time to converge. This first period
before convergence is called the burn-in period. One should finally also bear in mind that samples
emerging from a Markov chain are by definition not independent.

10An ergodic Markov chain, i.e. an irreducible, aperiodic and positive recurrent chain, will adopt an equilibrium
distribution.
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Metropolis-Hastings sampling

Assume there exists a transition kernel Q(x, dy) = q(x, y)µ(dy) from which we can sample. In
general, q will not satisfy condition (2.40) and the main idea of Metropolis-Hasting (MH) is to
correct q to obtain a new kernel which does. This correcting factor is defined as

α(x, y) =

{
min

(
π(y)q(y,x)
π(x)q(x,y) , 1

)
, if π(x)q(x, y) > 0

1, if π(x)q(x, y) = 0
. (2.41)

The transition kernel of the MH chain finally is

KMH(x, dy) = q(x, y)α(x, y)µ(dy) + r(x)δx(dy), (2.42)

where r(x) = 1 −
∫
q(x, y)α(x, y)µ(dy). Algorithm 1 exposes the MH sampling process. Further

introductory details on MH sampling can be found in Chib and Greenberg (1995).

Algorithm 1 Metropolis-Hastings Sampling

Input: Target distribution π, initial state x0, transition kernel Q.
Results: Approximated samples from π.
for t = 1, . . . , n do

Draw y from Q;

Set xt+1 =

{
y, with probability α(xt, y)

xt, with probability 1− α(xt, y)
;

end for
Return the samples xb, . . . , xn, where b represents the burn-in period.

Gibbs sampling

Assume X = (X1, . . . , Xd) is distributed according to π, let f be a function of X and define the
following transition kernel

K(x,A) = P{X ∈ A|f(X) = x}. (2.43)

The kernel K defined in (2.43) admits π as stationary distribution. The idea underlying Gibbs
sampling is to sample in turn from the full conditionals by setting fi(X) = X(i) and defining
the conditional kernels Ki(x,A) = P{X ∈ A|X(i) = x(i)}. The Gibbs transition kernel is finally
defined by K = K1 . . .Kd and still admits π as stationary distribution. The sampling procedure
is given in Algorithm 2.3.3 and more details can be found in Gelfand (2000).

Algorithm 2 Gibbs Sampling

Input: Target distribution π, initial state x0.
Results: Approximated samples from π.
for t = 1, . . . , n do

Sample Xt+1,1|Xt,2, . . . , Xt,d

for j = 2, . . . , d− 1 do
Sample Xt+1,j |Xt+1,1, . . . , Xt+1,j−1, Xt,j+1, . . . , Xt,d

end for
Sample Xt+1,d|Xt+1,1, . . . , Xt+1,d−1

end for
Return the samples xb, . . . , xn, where b represents the burn-in period.
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Gibbs sampling for Dirichlet process mixture

We denote again the latent variable of the observations assignments by Ci, i = 1, . . . , n. Define
C(i) = {C1, . . . , Cn}/{Ci} and Z(i) analogously. The conditional posterior distributions of the
parameters are:

Zi|Z(i), C(i) ∼ α

α+ n− 1
G0 +

1

α+ n− 1

k(i)∑
j=1

n
(i)
j , (2.44)

where k(i) is the number of mixture components when we do not consider the observation xi and

n
(i)
j is the number of observations in component j. The posterior distribution of the parameter Zi

for observation i given the data X, the remaining parameters Z(i) and class assignments C(i) is

Zi|X,Z(i), C(i) ∼ qi,0Gi,0 +

k(i)∑
j=1

qi,j , (2.45)

where

qi,j =

{
c α hi (xi) for j = 0

c n
(i)
j fXi|Zj (xi) else

, (2.46)

and

1. Gi,0 is the posterior distribution of Z knowing only the observation xi.

2. hi (xi) is the marginal density ofXi evaluated at xi obtained by integrated over the parameter
Zi using the prior measure G0.

hi (xi) =

∫
fXi|Z=z (xi) dG0 (z) , (2.47)

3. c is a normalisation constant to ensure that
∑k(i)

j=1 qi,j = 1, i = 1, . . . , n.

From equation (2.45) we can see that the posterior distribution of the assignments are:

P
{
Ci = j|X,Z(i), C(i)

}
= qi,j . (2.48)

2.4 Dependence and measures of it

2.4.1 Introduction

Copula is primarily a concept of dependence since it aims at distinguishing joint and marginal
behaviours of a random variable. In order to later clarify the relationship between copula and
dependence we provide in this section an introduction to stochastic dependence. As we will see,
dependence of random variables is often difficult to measure even though it seems very intuitive.
We therefore start by defining a simpler concept: the absence of dependence or independence.

Stochastic independence is defined for a collection of different objects, e.g. events, random variables
or stochastic processes, but always relates to the definition of independent σ-algebras.
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Definition 2.7 (Independency). A collection of σ-algebras F1, . . . ,Fd ⊆ F is an independency
if

E(X1 . . . Xd) = E(X1) . . .E(Xd), (2.49)

for all positive random variables X1, . . . , Xd measurable w.r.t., respectively, F1, . . . ,Fd. We call
the members of an independency independent. An infinite collection is an independency if every
finite subset is.

In the above definition the expectation of the different variables’ product can be decomposed as
the product of the marginal expectations, meaning that the multivariate quantity E(X1 . . . Xd)
actually depends solely on univariate quantities E(X1) . . .E(Xd), and this must hold for all ran-
dom variables which are ”relevant” for the considered σ-algebras. This concept can be naturally
extended to random variables by considering the σ-algebras they generate.

Definition 2.8 (Independent random variables). A collection X = {Xt, t ∈ T} of random vari-
ables with index set T is independent if {σ(Xt), t ∈ T} is an independency. The random variables
Xt, t ∈ T are then called independent.

Definition 2.8 is a natural extension of Definition 2.7 but might not seem as intuitive as the
following characterisation, a proof of which can be found in Çinlar (2011).

Proposition 2.1. The random variable X = (X1, . . . , Xd) has independent dimensions X1, . . . , Xd

if and only if the joint distribution is the product of the marginal distribution:

µX = µX1 × · · · × µXd . (2.50)

Independence also affects conditional distributions, the conditional distribution of X given Y is
equal to the marginal distribution of X when both variables are independent :

µ(A×B) =

∫
A

µX(dx)K(x,B) =

∫
A

µX(dx)µY (B) = µX(A)µY (B). (2.51)

In summary, independent variables live in a product space and are determined by the product
measure on that space. This means that potential information about the realisation of one vari-
able is irrelevant to our knowledge about the other variables’ outcomes. When variables are not
independent, complete or partial knowledge about one variable can affect our predictions concern-
ing the remaining variables, this is expressed by a deviation of the conditional distribution from
the unconditional distribution. Stochastic dependence occurs whenever random variables are not
independent, however dependence is a complex concept for which there exists various definitions
corresponding to different types of dependence. We will not provide an exhaustive exposition of
dependence related concepts, as this research area is too vast to be completely reviewed here, but
will instead present selected examples. Dependence can be characterised in different ways. First,
we can verify if random variables fulfill certain dependence properties, i.e. conditions designed
to express dependence in a particular way. Amongst the most prominent dependence properties
counts linear dependence which envisage dependence as a linear relationship between variables,
further examples are given by 2.2 and 2.3 below. A second possibility consists in defining when
a multivariate random variable is more dependent than another, thereby creating a stochastic
ordering of all random variables w.r.t. dependence. We will not cover stochastic ordering and
point to Joe (1997) for an introduction. Finally, a third approach consists in defining a function of
the random variables which captures and summarises their dependence, such functions are called
dependence measures. Note that some dependence properties can be defined using dependence
measure, e.g. the strength of linear dependence between two univariate random variables is mea-
sured by the linear correlation coefficient defined below and variables are called linearly dependent
if their coefficient is strictly larger than zero.
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Example 2.1 (Linear dependence). The linear correlation between two univariate rv measures
their linear dependence:

ρl(X1, X2) =
cov(X1, X2)√

var(X1)var(X2)
.

Example 2.2 (Positive orthant dependence). An example of a broader scoped dependence prop-
erty is positive orthant dependence. A multivariate random variable X is positive upper orthant
dependent if

P (Xj > aj , j = 1, . . . , d) ≥
∏d
j=1P (Xj > aj), ∀aj ∈ R, (2.52)

and is positive lower orthant dependent if

P (Xj ≤ aj , j = 1, . . . , d) ≥
∏d
j=1P (Xj ≤ aj), ∀aj ∈ R. (2.53)

X is called positive orthant dependent when it satisfies both (2.52) and (2.53). The intuitive idea
behind this dependence property is that dimensions are more likely to take large (respectively
small) values together than independently.

Example 2.3 (Tail dependence). This dependence property is concerned with the probability
of joint extreme events, tail dependence appears when rare events have a tendency to appear
jointly in different dimensions. More precisely, tail dependence is measured by the tail dependence
coefficients which are defined for the 2-dimensional case as

λL = lim
u↘0

P
(
X2 ≤ F−1

2 (u)|X1 ≤ F−1
1 (u)

)
, (2.54)

for the lower tail dependence coefficient and as

λU = lim
u↗0

P
(
X2 > F−1

2 (u)|X1 > F−1
1 (u)

)
, (2.55)

for the upper tail dependence coefficient. When a tail coefficient is larger than zero the variable is
said to have asymptotic dependence and this dependence becomes stronger when the coefficient’s
value approaches one.

2.4.2 The axiomatic approach

This sections aims at further clarifying the idea of dependence, bearing in mind that copula are, at
least in the case of continuous variables, the right tool to capture dependence. The few examples
given above already express a noticeable variety of dependency concepts. This variety naturally
raises the question of the choice of a dependence measure. Influential work on this subject has
been done by Rényi, in Rényi (1959) he introduces a list of desired properties which a good
dependence measure should satisfy, the Rényi postulates, and examine different existing measures
in the light of this set of axioms. Of the measures considered, which include the linear correlation
coefficient, only Gebelein’s maximal correlation (Gebelein, 1941) fulfills all requirements. Whereas
Rényi originally formulated his axioms for bivariate variables only, we present below the postulates
extended to the d-dimensional case. Much work on dependence was first done for the bivariate
case, and if some properties are straightforward to adapt for higher dimensions, others are more
difficult to generalise which sometimes leads to different multivariate versions. Of the postulates
presented below, axioms (A), (B), (C), (D), (F) are trivial extensions of the bivariate case whereas
axioms (E) and (G) are less straightforward extensions 11.

(A) δ(X) is defined for any random variable X = (X1, . . . , Xd) such that, with probability one,
Xj is not a constant, ∀j = 1, . . . , d, .

11The original formulation of axiom (E) for the bivariate case is: δ(X) = 1 if either X1 = g(X2) or X2 = g(X1)
for some real valued, measurable function g.
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(B) For any permutation of the dimensions σ = (j1, . . . , jd) we have

δ(X1, . . . , Xd) = δ(Xj1 , . . . , Xjd). (2.56)

(C) 0 ≤ δ(X) ≤ 1.

(D) δ(X) = 0 if and only if X1, . . . , Xd are independent.

(E) δ(X) = 1 if there exists an index i and a real valued, measurable function g such that
Xi = g(X(i)) with probability one, where X(i) denotes the variable X with dimension i
removed.

(F) For every injective transformation T ofX, T (X) = (T1(X1), . . . , Td(Xd)), δ remains invariant

δ(T (X)) = δ(X). (2.57)

(G) If (X1, X2) is bivariate Gaussian, then we obtain the absolute value of the linear correlation
δ(X) = |ρl(X1, X2)|.

Axiom (A) excludes measures based on the variance which might not be defined. Axiom (B)
expresses the intuitive requirement that a dependence measure should be invariant w.r.t. the
order of the dimensions, and, in the particular bivariate case, should be symmetric. Axiom (F)
adds another desired property of invariance, namely invariance to injective transformations of the
margins. Whereas axiom (D), which provides an unambiguous characterisation of independence, is
widely adopted, axiom (E) implicitly defines perfect dependence as the case where one dimension is
almost surely a measurable function of the others and some authors suggested modified versions of
it. In Bell (1962), Bell compares Gebelein’s maximal correlation S with two possible normalisations
of Shannon’s mutual information (see also Section 2.5.2) and, on the basis on his analysis, proposes
some revisions of Rényi’s postulates. Arguing that S might take the value one too often, he first
suggests to replace the ”if“ statement in postulate (E) by an equivalence relationship and proposes
two alternative (non equivalent) versions of axiom (E). He then also suggests using a less restrictive
version of axiom (G). We give below the multivariate generalisations of his revised postulates.

(E2a) δ(X) = 1 if and only if there exists an index i and a real valued, measurable function g such
that Xi = g(X(i)), with probability one.

(E2b) δ(X) = 1 if and only if every variable can be expressed as a function of the others, i.e. for
every i there exists some real valued, measurable function gi such that Xi = gi(X

(i)), with
probability one.

(G2) If (X1, X2) is bivariate Gaussian, then δ(X) is a strictly increasing function of the linear
correlation’s absolute value |ρl(X1, X2)|.

The work in Bell (1962) focuses on strictly positive probability spaces, i.e. in which every mea-
surable set of probability zero is the empty set. In particular, his analysis does not encompass
continuous variables and he leaves open the question of a possible extension to arbitrary random
variables. This problem is later considered in Joe (1989) where several normalisations of Shannon’s
mutual information for continuous and discrete variables are introduced. Dependence measures
based on mutual information will be treated in Section 2.5.2. The case of continuous variables
is also developed in Micheas and Zografos (2006). A multivariate extension of Rényi’s postulates
is proposed where some adaptations are made to suit the continuous case. In particular a less
strict formulation of axiom (C) is adopted, axioms (E) is adapted accordingly, and axiom (G) is
replaced by axiom (G2) to maintain coherence between the postulates:

(C3) 0 ≤ δ(X) ≤ γ where γ ∈ [0,∞].
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(E3) δ(X) = γ if there exists an index i and a real valued, measurable function g such that
Xi = g(X(i)) with probability one.

In axiom (C3), γ is allowed to be infinite, this relaxation was introduced to account for the fact
that the continuous versions of some discrete measures might take infinite values. Note that
axioms (C) and (C3) implicitly assume that no distinction is made between positive and negative
dependence since all values are restricted to the positive axis. Further adjustments to Réniy’s
postulates have been made in Schweizer and Wolff (1981) where it is argued that some of Rényi’s
conditions are too strong. Axiom (G2) is again adopted in place of (G) and weak convergence
condition is added, but maybe the most interesting deviations from the original set of postulates
concern axioms (E) and (F). A multivariate version of these modified axioms is given by

(E4) δ(X) = 1 if and only if for some j there exist strictly monotone functions gi such that
Xi = gi(Xj), j 6= i, with probability one.

(F4) For every strictly increasing transformation T (X) = (T1(X1), . . . , Td(Xd)), δ remains invari-
ant δ(T (X)) = δ(X).

Postulate (E4) is similar to (E2b) with the important difference that the function gi must be
strictly increasing. Strictly increasing functions are again introduced in (F4) in place of the
injective functions in the original formulation. Since every strictly increasing function is also
injective, this new axiom constitutes a less strong condition on T . Whereas the original set
of axioms considers dependence as a type of association along some measurable function, the
postulates introduced in Schweizer and Wolff (1981) consider only association along measurable
strictly monotone functions. Measures fullfiling these axioms are therefore also called measures of
monotone dependence. A link can at this point be drawn to copulas: as explained in Chapter 3,
copulas are invariant to strictly increasing transformations.

2.4.3 Measures of dependence

We introduce classical measures of dependence which we broadly classify in three groups: measures
based on linear correlation, concordance measures and distance measures. Some measures are
included for completeness are will not be discussed in details.

Linear correlation based. Already mentioned in example 2.1, the linear correlation coefficient
was amongst the first dependence measures to be introduced and remains one of the most widely
used.

Definition 2.9 (Linear correlation). The linear correlation coefficient between two univariate rv
is defined as

ρl(X1, X2) =
cov(X1, X2)√

var(X1)var(X2)
=

E ((X1 − EX1)(X2 − EX2))√
E ((X1 − EX1)2) E ((X1 − EX1)2)

.

Definition 2.10 (Maximal correlation). The maximal correlation is defined for bivariate variables
by

S(X1, X2) = sup
f,g

ρl(f(X1), g(X2)), (2.58)

where the supremum is taken over all measurable functions for which ρl is defined.

If we additionally require that f, g in Definition 2.10 fulfill: E[f(X1)] = E[g(X2)] = 0 and
E[f(X1)2] = E[g(X2)2] = 1, we obtain Gebelein’s maximal correlation.
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Concordance measures. Concordance in a multivariate random variable can be intuitively
understood as a type of ”agreement” between the different dimensions i.e. we expect them to
be small together or large together. Interestingly, the first attempts to formalise this concept
(Consonni and Scarsini, 1982) restricted the definition to random variables in the same Fréchet
class, meaning variable having same margins, before it was generalised to any continuous variables
using copula in Scarsini (1984). As for the general case of dependence measures, concordance
measure have first been studied for bivariate variables. Consider two pairs of continuous bivariate
variables X = (X1, X2) and Y = (Y1, Y2) with cdfs Fx and Fy, the pair X is more concordant
than Y if

Cx(u, v) ≥ Cy(u, v), ∀u, v ∈ [0, 1], (2.59)

where Cx and Cy are the copulas of X and Y , respectively. Concordance as introduced in equation
(2.59) defines a partial stochastic ordering and Scarsini (1984) considers the task of measuring
concordance as the construction of a total ordering compatible with (2.59). We present concor-
dance measures as a particular type of dependence measures, however, measures of concordance
do not in general satisfy all postulates mentioned in the previous section. Concordance consid-
ers dependence in a particular way: dependence is seen as monotone association and takes into
account the type of monotonicity (increasing or decreasing). Concordance measures are therefore
signed measures, traditionally taking values in [−1, 1]. A set of postulate analogue to Rényi’s
axioms but specially tailored for concordance was proposed in Scarsini (1984). We do not detail
them here but it is interesting to note that invariance to strictly increasing transformations (which
is not included in the set of axioms) follows as a natural consequence. Concordance as defined in
(2.59) is well-defined for every continuous variable but cannot be used in the presence of discrete
margins since the unicity of the copula does not hold anymore. This later case is also treated in
Scarsini (1984) where a more involved definition of concordance is introduced for discrete vari-
ables. The work on concordance mentioned above was limited to the bivariate case and extensions
were proposed in Taylor (2007) and Dolati and Úbeda Flores (2006). Even though the definition
of concordance we give in equation (2.59) is based on copulas, the most well-known concordance
measures, in particular Spearman’s rho Spearman (1904) and Kendall’s tau Kendall (1938), were
originally defined independently and without resorting to copula. It appeared only later that these
measures could effectively be reformulated using copulas.

Definition 2.11 (Spearman’s rho). For two univariate rv X1, X2 with marginal distribution func-
tions F1, F2 Spearman’s rho is given by:

ρS(X1, X2) = ρl(F1(X1), F2(X2))

Definition 2.12 (Kendall’s tau). Consider two univariate rv X1, X2 and independent copies
X̃1, X̃2. Kendall’s rank correlation is:

τ(X1, X2) = P
(

(X1 − X̃1)(X2 − X̃2) > 0
)
− P

(
(X1 − X̃1)(X2 − X̃2) < 0

)
.

Definition 2.13 (Blomqvist’s beta). Denote by x̃1 and x̃2 the median of two continuous univariate
rv X1, X2. Blomqvist beta coefficient is:

β(X1, X2) = P ((X1 − x̃1)(X2 − x̃2) > 0)− P ((X1 − x̃1)(X2 − x̃2) < 0) .

Distance measures. An intuitive method of measuring dependence is to consider the distance
between the variable of interest X and the random variable X0 having the same margins but
independent dimensions. Consider X = (X1, . . . , Xd) distributed according to µ with marginal
distributions µ1, . . . , µd, the variable X0 is then distributed according to the product measure
µ0 = µ1 ⊗ · · · ⊗ µd. The crucial point is then the choice of a suitable metric for the space of
measures. A classical choice of distance between two measures µ and ν has the form

d(µ, ν) = sup
g∈D
|
∫
gdµ−

∫
gdν|, (2.60)
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where D is a set of measurable functions fulfilling particular properties. Every choice for D then
leads to a new distance, e.g. choosing the set of Lipschitz functions with Lipschitz constant 1 we
obtain the Wasserstein distance. If proper distance measures can be used, we will see in Section
2.5.2 that one of the most prominent measure of dependence, the Kullback-Leibler divergence, does
not satisfy all properties of a distance but has an interesting interpretation in terms of Information
Theory.

2.5 Information Theory

2.5.1 Introduction and entropy

Information theory is centered around the questions of describing and transmitting information.
Describing information involves coding, compressing with potential loss; transmitting informa-
tion involves communication channels and interpretation of the received signal. C.E. Shannon
described the fundamental problem of information transmission, or communication, as the task of
”reproducing at one point either exactly or approximately a message selected at another point“.
Important aspects of that description are the facts that the reproduction might be not be exact,
meaning that loss of information occurred, and that the message is selected from a set of possi-
ble messages, implying that a good communication system should consider all potential messages
rather than a particular instance. One aspect which is however not apparent in that description is
that the source of information is assumed to be stochastic. Information theory first elaborates the
theory of information transmission, thereby describing its fundamental properties and the achiev-
able performances. It then is also concerned with providing coding schemes which would ideally
approach the best theoretical performance. Information theory mostly originated from work con-
ducted at the AT&T Bell Laboratories with first papers in the 1920s (Nyquist, 1928), (Hartley,
1928) and the seminal paper by C.E. Shannon (Shannon, 1948) where the basis of the field were
set. Far from being limited to the electrical engineering perspective on communication, informa-
tion theory has strong connexions and applications to many other fields like Physics, Economics,
Computer Science and Statistics. We cover in this section only the information-theoretical con-
cepts required for subsequent chapters, which constitute a very little part of the field and suggest
Cover and Thomas (1991) for a broad introduction or Gray (1990) for an in-depth coverage.

A fundamental information theoretical concept is the notion of entropy. Entropy measures the
degree of uncertainty inherent to a stochastic distribution, i.e. how uncertain the outcome from
that distribution is. Entropy was first defined for distributions on a finite set, we thus naturally
start with the definition for discrete variables.

Definition 2.14 (Discrete Entropy). Consider a discrete random variable X : Ω → E with
probability mass function f : E → [0, 1]. The entropy of X is:

H(X) = −
∑
x∈E

f(x) log f(x) = −Ef [log f(X)], (2.61)

where we use the convention 0 log(0) = 0.

Note that in the above definition the state space E can be a product space, e.g. a subset of Rd,
and the case of multivariate random variable is thereby covered. When entropy is defined using
the natural logarithm as in (2.61), it is said to be measured in nats. Another standard usage
defines H with the base 2 logarithm, and it is then measured in bits. Both versions slightly differ
in interpretation but remain the same in essence. Definition 2.14 might at first seem obscure but
a look at some properties of H reveals why it is a sensible measure of uncertainty.
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1. H is a continuous function of f(x).

2. If all outcomes x ∈ E are equally likely, i.e. f(x) = cst, then H is an increasing function of
card(E).

3. H(X) = 0 if and only if f(x∗) = 1 for some x∗ ∈ E and f(x) = 0 for x ∈ E \ {x∗}, i.e. the
entropy is null only when the outcome is certain.

4. For fixed n = card(E), the maximum value of H is attained when f(x) = 1
n ,∀x and is

H(X) = log(n), i.e. the entropy is maximal when all events are equiprobable.

The first two properties above were part of a set of three desirable characteristics Shannon required
for his definition of entropy (we do not detail here the more technical third characteristic which
prescribes the behaviour of H in the case of successive sampling steps). These three requirements
are actually sufficient to uniquely determine the functional form of H up to a multiplicative
constant, thereby also providing a further justification for its particular form. The entropy does
not depend on the particular values taken by X but uniquely on their probabilities, it as such is
invariant to permutations in E and can be reformulated in terms of partitions, see Gray (1990).

Entropy for continuous variables can be defined similarly. We first rewrite the discrete entropy
(2.61) as

H(X) = −
∫
E

f(x) log f(x)dm(x), (2.62)

where m is the counting measure. This new expression for the entropy leads to the following
extension for continuous variables.

Definition 2.15 (Differential entropy). Consider a continuous random variable X : Ω→ E with
distribution µ and density f w.r.t. the Lebesgue measure λ. The entropy of X is

H(X) = −
∫
E

f(x) log f(x)dλ(x) = −
∫
E

log(
dµ

dλ
)dµ = −Eµ

[
log(

dµ

dλ
)

]
. (2.63)

Even if both definitions are very similar, differential entropy is not considered as a strict generali-
sation of discrete entropy because some interesting properties of the discrete case do not carry over
to the continuous extension. Whereas 0 ≤ H(X) ≤ log(card(E)) for a discrete X, the differential
entropy can be negative or infinite and loses its interpretation as uncertainty measure. To gain
a little more insight on differential entropy, example 2.4 considers the case of a uniform random
variable.

Example 2.4 (Entropy of the uniform distribution). For X ∼ Unif[a, b] we have:

H(X) = −
∫

[a,b]

1

b− a
log

(
1

b− a

)
dx = log(b− a). (2.64)

As mentioned above, differential entropy is not a perfect generalisation of the discrete case. The
following example illustrates the relationship between discrete and differential entropy. Consider
a real random variable X with density f . X can be approximated by a serie of discrete variables
Xn, n ∈ N. We first partition the real line in a collection of intervals of length 1

2n :

∆n,k =
[ k

2n
;
k + 1

2n

)
. (2.65)

Xn is then defined as

Xn =
k

2n
, where k ∈ Z is such that X ∈ ∆n,k. (2.66)

25



We can compute the entropy of Xn:

H(X) = −
∑
i∈Z

P(X = i) logP(X = i) = −
∑
k∈Z

P(Xn ∈ ∆n,k) logP(Xn ∈ ∆n,k). (2.67)

We have that P(Xn ∈ ∆n,k)
n→∞−−−−→ 0 and H(Xn)

n→∞−−−−→ ∞, meaning that the entropy of the
discrete approximations Xn does not converge to the differential entropy of X. Under further
assumptions on the density f we can show, see Ihara (1993), that

lim
n→∞

H(Xn)− n log(2) = H(X). (2.68)

Differential entropy is not an absolute but a relative quantity, (2.68) shows that we need to take
the partition size into account to find H(X). Another illustration of that fact is that H is not
invariant to changes of coordinates X ′ = g(X). Another measure turns out to be better suited to
continuous distributions, this measure, called relative entropy, do not evaluate the uncertainty of a
distribution but provides a similarity measure between the distribution of interest and a reference
distribution. Relative entropy actually is the opposite of the Kullback-Leibler divergence which
was introduced in Kullback and Leibler (1951) as a ”distance” between probability measures.
Before introducing the Kullback-Leibler divergence we define the conditional entropy which will
also provide a connection to the (discrete or differential) entropy.

Definition 2.16 (Conditional entropy). Let X,Y be random variables taking values in, respec-
tively, Ex and Ey. We assume that the variables are both discrete or both continuous, and f will
denote the joint probability mass function or density according to the case. The Y margin of f
will be denoted by fy. The conditional entropy of X given Y is

H(X|Y ) = −
∫
Ex×Ey

f(x, y) log
f(x, y)

fy(y)
dν(x, y), (2.69)

where ν is the counting measure for discrete random variables and the Lebesgue measure for
continuous random variables.

Expression (2.69) can be interpreted as the expectation w.r.t. to the joint distribution of the log
conditional fx|y. We conclude this section on entropy by the following list of properties valid for
discrete and differential entropy.

1. H(X,Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X),

2. H(X|Y ) ≤ H(X), with equality if and only if X is independent of Y ,

3. H(X,Y ) ≤ H(X) +H(Y ), with equality if and only if X is independent of Y .

The first property can be interpreted as the result of a two step process: first fix Y (or X), then
choose X|Y (or Y |X), the total entropy finally is the sum of the entropies in each step. The
second property expresses that knowledge reduces entropy unless that knowledge is irrelevant.
The third property, which is obtained by combining the two preceding ones, shows that potential
dependency between X and Y reduces the entropy of their joint distribution.

2.5.2 Mutual Information

In this section we introduce the concept of mutual information between two random variables, also
called negative relative entropy, which turns out to be a special case of Kullback-Leibler divergence

26



(KL divergence). The Kullback-Leibler divergence is itself a special member of the family of f-
divergences and, as its name indicates, provides a measure of the dissimilarity between probability
measures.

We consider the task of discriminating between two probability measures. In Kullback and Leibler
(1951), the ”distance” between two measures is described using a statistical approach: how dif-
ficult would it be to discriminate between between them based on observations ? Consider two
probability measures µ1, µ2 on (E,E ) such that µ1, µ2 are absolutely continuous w.r.t. to each
other, i.e. µ1 � µ2 and µ2 � µ1. Assume that there exists a measure λ such that µ1 � λ, µ2 � λ
and assume further that there exist functions fi, i = 1, 2 fulfilling µi(A) =

∫
A
fi(x)dλ(x), A ∈ F .

If λ is the Lebesgue measure then fi, i = 1, 2 are the traditional density functions, and if λ is the
counting measure then fi, i = 1, 2 are probability mass functions. Denote by Hi the hypothesis
that an observation x originates from the population with measure µi. The information contained
in x to discriminate between H1 and H2 is defined as (Kullback and Leibler, 1951):

log

(
f1(x)

f2(x)

)
.

This pointwise definition leads to the KL divergence which is defined as the mean information to
discriminate between H1 and H2 per observation from µ1.

Definition 2.17 (Kullback-Leibler divergence). The Kullback-Leibler divergence between the two
measures µ1, µ2 is:

Dkl(µ1 ‖ µ2) =

∫
log

f1(x)

f2(x)
dµ1(x) =

∫
log

f1(x)

f2(x)
f1(x)dλ(x). (2.70)

We define the KL divergence between f1 and f2 similarly. For rv X1, X2 we simply use the
corresponding distributions: Dkl(X1 ‖ X2) = Dkl(µ1 ‖ µ2).

Definition 2.17 assumes that µ1 and µ2 are absolutely continuous w.r.t. each other. If µ1 and µ2 are
singular (µ1⊥µ2) meaning that ∃A ∈ E with µi(A) = 0 and µj(A) > 0, j 6= i, we can then perfectly
discriminate between the measures and we extend Definition 2.17 by setting Dkl(µ1 ‖ µ2) = ∞.
Definition 2.17 applies to continuous and discrete variables: if λ is the Lebesgue measure then
f1, f2 are the density functions, and if λ is the counting measure then f1, f2 are probability
mass functions. The KL divergence is not a proper distance between distributions since it is not
symmetric and does not satisfy the triangle inequality, it however has interesting properties. In
particular, the following proposition justifies its use as a divergence measure.

Proposition 2.2 (Properties of KL divergence). Let ν, µ1, . . . , µn be measures satisfying the re-
quirements of Definition 2.17

1. Dkl(µ1 ‖ µ2) ≥ 0 with equality if and only if f1 = f2 up to λ-null sets.

2. If limn→∞Dkl(ν ‖ µn)→ 0 then limn→∞ ||ν − µn||TV = 0, where

||ν − µn||TV = sup
P(E)

∑
i

|ν(Ai)− µn(Ai)|,

denotes the total variation, the supremum being taken over the finite partitions of E.

We can recognise in the first property given in Proposition 2.2 the first of the three axioms needed
to define a distance, and the second property means that convergence in KL divergence implies
convergence in total variation.

As mentioned in Section 2.4.3, a dependence measure can be obtained by measuring the ”distance”
or divergence between the distribution of interest and the product measure having the same
margins. In the case of two univariate variables, using the KL divergence leads to the definition
of mutual information.
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Definition 2.18 (Mutual information, univariate case). Consider the random variable Z =
(X,Y ). The mutual information between X and Y is defined as

I(X;Y ) = Dkl(Z ‖ Z0), (2.71)

where Z0 is bivariate with independent margins X and Y .

Mutual information is also an information theoretical quantity and can be interpreted as a reduc-
tion in entropy. The following properties can be directly obtained from the definitions:

1. I(X;Y ) = H(X) +H(Y )−H(XL, Y ).

2. I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

Mutual information is, like similarity measures, inherently a bivariate concept: it provides a
measure of the information between two random variables X and Y . However, X and Y can
perfectly be multivariate, in which case we simply need to be careful in the choice of the reference
variable Z0. Denote by µX , respectively, µY the distributions of X and Y , and by µ the joint
distribution of (X,Y ).

Definition 2.19 (Mutual information). The mutual information between X and Y (or equivalently
between µX and µY ) is defined as

I(X;Y ) = Dkl(µ ‖ µX ⊗ µY ), (2.72)

where µX ⊗ µY is the product measure of µX and µY .

Another closely related quantity is the multi-information of one multivariate random variable
which is a measure of the dependency contained in its joint distribution.

Definition 2.20 (Multi-information). The multi-information of a joint distribution µ with mar-
gins µ1, . . . , µd is defined as

I(µ) = Dkl(µ ‖ µ0), (2.73)

where µ0 is the product measure µ1 ⊗ · · · ⊗ µd. The multi-information of a rv X with joint
distribution µ is defined as I(X) = I(µ).

The following proposition clarifies the relation between mutual and multi-information.

Proposition 2.3 (Mutual and multi-information). Consider X and Y as in Definition 2.19. The
mutual information between X and Y can be rewritten as

I(X;Y ) = I(X,Y )− I(X)− I(Y ),

where I(X,Y ) denotes the multi-information of the vector (X,Y ).

Proof. We denote by fXY the joint density function (or probability mass function in the case
of discrete variables), fX and fY denote the density of, respectively, X and Y , f0 denotes the
corresponding density products.

I(X,Y )− I(X)− I(Y ) = Eµ log

(
fxy(X,Y )

f0(X,Y )

)
− EµX log

(
fx(X)

f0(X)

)
− EµY log

(
fy(Y )

f0(Y )

)
= Eµ log

(
fxy(X,Y )

f0(X,Y )

)
− Eµ log

(
fx(X)

f0(X)

)
− Eµ log

(
fy(Y )

f0(Y )

)
= Eµ log

(
fxy(X,Y )

f0(X,Y )

f0(X)

fx(X)

f0(Y )

fy(Y )

)
= Eµ log

(
fxy(X,Y )

fx(X)fy(Y )

)
= I(X;Y ).
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Chapter 3

Copulas

3.1 Introduction

A historical perspective. Copulas have received a lot of attention in recent years. The rapid
development of research on copulas, starting in the late nineties, was mainly driven by applications
in the domain of finance where non-Gaussian multivariate models are sought e.g. for log-returns.
An informative study of the advent of copulas in this area is given in Genest et al. (2009). For a
comprehensive introduction to copula methods in finance see Cherubini et al. (2004), a broader
introduction to quantitative methods in the field can be found in McNeil et al. (2005). The drastic
increase of copula models’ popularity has also been a source of criticism (Mikosch, 2006), but they
remain the tool of choice for many applications. Another interesting opinion on copulas’ wide
usage was given in Embrechts (2009).

The story of copulas, however, started long before these recent developments. Already in 1951,
M.R. Fréchet considered the problem of finding the set of 2-dimensional distributions compatible
with given univariate margins (Fréchet, 1951), this set is now called the Fréchet class. Work on the
same subject was also conducted by R. Féron in Féron (1956) which studies the three-dimensional
case. The term copula was first introduced by A. Sklar (Sklar, 1959) who formulated a theorem
fundamental for the theory of copulas, today known as Sklar’s theorem. The genealogy of his work
on probability theory and his research collaborations are related in Sklar (2009).

A logical perspective. In Sklar (2009), A. Sklar relates his first serious engagement with
probability theory, which happened in the context of number theory, and how, when starting to
work under Karl Menger’s direction, he decided to revisit probability theory in depth ”from the
ground up”. He explains how his re-development of probability ran into difficulties when it came
to multivariate random variables. Indeed, if variables with independent dimensions are easily
constructed in the product space, introducing dependency poses a much more complex problem.
It is striking that, whereas independence admits a concise definition, a lot of work has been
conducted on defining dependence measures. We will come back to the link between copula and
dependence measures in Section 3.4 but first elaborate on the task of constructing multivariate
random variables. Assume that the problem of constructing various univariate rv is satisfyingly
solved and that we have at hand a sufficient variety of univariate distributions represented by
their cumulative distribution functions F1, . . . , Fd. How can a multivariate rv with fixed known
margins be constructed ? Are all types of dependence possible or do we encounter restrictions ?
As shown in Fréchet (1951) and Hoeffding (1940), restrictions already appear in the 2-dimensional
case. Denote by Π(F1, . . . , Fd) the class of all d-dimensional rv having the prescribed margins,
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also called the Fréchet class. In the bivariate case, Π admits a lower and an upper bound, both
having a closed form as a function of F1, F2. More precisely, there exist cdfs Fm and FM such
that for all F ∈ Π we have

Fm(x1, x2) ≤ F (x1, x2) ≤ FM (x1, x2),∀x1, x2 ∈ R, (3.1)

moreover the bounds are given by

Fm(x1, x2) := max(0, F1(x1) + F2(x2)− 1) and FM (x1, x2) := min(F1(x1), F2(x2)). (3.2)

Both inequalities in (3.1) remain valid for the d-dimensional case with the difference that Fm is
not guaranteed to be a cdf anymore, and thus in general Fm 6∈ Π. Once the bounds are known,
the next natural step is to try to characterise Π more precisely using a parameterized form for
every element in the set. Convex combinations of Fm and FM do not cover the entire set Π
since the independent distribution F1(x1)F2(x2) does not admit this form, and more complex
representations are sought. A complete characterisation of the d-dimensional distributions in Π
can be obtained using the so-called probability transformation, which transforms a univariate rv to
a uniformly distributed one, and copulas, which are marginally uniform multivariate distributions.
The following proposition recalls the useful quantile and probability transformations.

Proposition 3.1. (Quantile and Probability transformations) Consider a univariate cdf F with
generalised inverse F←, F←(y) = inf{x ∈ R|F (x) ≥ y}. The following relations hold:

1. If U ∼ Unif(0, 1) then F←(U) ∼ F.

2. If X ∼ F and F is continuous then F (X) ∼ Unif(0, 1).

Proof. Both transformations are obtained using basic properties of cumulative distribution func-
tions as follows.

1. ∀x ∈ R, P(F←(U) ≤ x) = P(U ≤ F (x)) = F (x), where in the first equality we used that F
is right-continuous (holding for every distribution function).

2. ∀u ∈ [0, 1], P(F (X) ≤ u) = P(F← ◦ F (X) ≤ F←(u)) = P(X ≤ F←(u)) = F ◦ F←(u) = u.
The first equality holds because F← is strictly increasing for a continuous F. The second
equality holds for every cdf F and the last equality is true for continuous F .

Using Proposition 3.1, any multivariate rv with given margins can be constructed in a two stages
process. First, the margins are (independently from each other) mapped to uniform random vari-
ables using the probability transformation 3.1 (2). Second, the newly obtained uniform variables
are combined to form a multivariate rv using a multivariate cdf with uniform margins, this cdf is
then the copula of the constructed rv.

We give bellow two equivalent definitions of copulas, starting with the most concise version, and
present the basic results in the field.

Definition 3.1 (Copula). A d-dimensional copula is a cumulative distribution function C :
[0, 1]d → [0, 1] with standard uniform marginal distributions i.e. Cj ∼ Unif(0, 1),∀j.

An equivalent but self-contained definition is:

Definition 3.2 (Copula). A d-dimensional copula is a function C : [0, 1]d → [0, 1] such that:
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1. C(u1, . . . , ud) is an increasing function in each component ui.

2. C(u1, . . . , ud) = ui if uj = 1,∀j 6= i and ui ∈ [0, 1].

3. For all (a1, . . . , ad), (b1, . . . , bd) ∈ [0, 1]d with ai ≤ bi,∀i we have

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(u1,i1 , . . . , ud,id) ≥ 0,

where uj,1 = aj and uj,2 = bj.

The first condition must hold for any cdf. The second ensures that the margins are uniform and
the third that the mass of any d-dimensional rectangle ×di=1[ai, bi] is non-negative.

The connection between copulas and multivariate random variables is formalised in Sklar’s the-
orem (Sklar, 1959) which states that any d-dimensional rv adopts a copula representation, and,
conversely, that any construction using copulas leads to a well-defined rv. The theorem provides
an equivalence relationship between copulas and multivariate rv with given margins. As we will see
later, it indeed is an equivalence (in the mathematical sense of the term) for continuous variables,
however the introduction of discrete margins breaks the perfect correspondence.

Theorem 3.1. (Sklar).

1. Let F be a joint cumulative distribution function with margins F1, . . . , Fd. Then there exists
a copula C : [0, 1]d → [0, 1] such that

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) ,∀xj ∈ [−∞,+∞]. (3.3)

Moreover, if the margins are continuous, then that copula is unique. Otherwise, the copula
is uniquely determined on F1(R̄)× · · · × Fd(R̄) .

2. Conversely, if C is a copula and F1, . . . , Fd are univariate cdfs, then F defined as in (3.3)
is a multivariate cdf with margins F1, . . . , Fd and copula C.

Proof. For simplicity we give here a proof for the continuous case only. A proof of the general
case was given in Schweizer and Sklar (1983).

1. (a) Existence of C:
Consider a multivariate random variable X with distribution function F and continuous
margins F1, . . . , Fd. For any cdf F the following holds:

F (x1, . . . , xd) = P (F1(X1) ≤ F1(x1), . . . , Fd(Xd) ≤ Fd(xd)) .

Using the probability transformation 3.1 (2), we have that F1(X1), . . . , Fd(Xd) are
uniformly distributed and thus the multivariate distribution of (F1(X1), . . . , Fd(Xd)) is
a copula, which we denote by C, and we finally obtain:

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) .

(b) Unicity :
If we evaluate expression (3.3) at xi = F←i (ui), for 0 ≤ ui ≤ 1, i = 1, . . . , d, we obtain:

F (F←1 (u1), . . . , F←d (ud)) = F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) = C (u1, . . . , ud) ,

which shows unicity. In the last equality we used that Fi ◦ F←i (ui) = ui since Fi is
continuous.
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2. Assume that C is a copula and that F1, . . . , Fd are univariate cdfs. Consider a random
vector U = (U1, . . . , Ud) having cumulative distribution function C. Since C is a copula it
is clear that Ui ∼ Unif(0, 1), i = 1, . . . , d. Define X = (F←1 (U1), . . . , F←d (Ud)) . We can then
compute the distribution of X:

P (X1 ≤ x1, . . . , Xd ≤ xd) = P (F←1 (U1) ≤ x1, . . . , F
←
d (Ud) ≤ xd)

= P (U1 ≤ F1(x1), . . . , Ud ≤ Fd(xd)) , since Fi is right-continuous,

= C (F1(x1), . . . , Fd(xd)) , by definition of U. (3.4)

Equation (3.4) shows that X has copula C. From Proposition 3.1 we know that Xi ∼ Fi,∀i,
which concludes the proof.

The unicity of the copula for continuous distributions showed in Theorem 3.1 permits the following
definition and characterisation.

Definition 3.3 (Copula of F , copula of X). If F is a continuous cdf, then the unique copula C
given by Theorem 3.1 is called the copula of F . For a rv X with continuous cdf F we define the
copula of X analogously.

Corollary 3.1. The copula of a continuous cdf F with margins F1, . . . , Fd can be written as

C(u1, . . . , ud) = F (F←1 (u1), . . . , F←d (ud)).

Sklar’s theorem ensures that combining univariate cdfs using a copula always leads to a valid
distribution with the required margins. Moreover, at least for the continuous case where copula
unicity is ensured, it provides a theoretical justification for the original idea of using the probability
transformation to construct multivariate rvs by asserting that any multivariate distribution indeed
adopts such a representation.

The copula construction of multivariate rvs can also be represented as a latent variables model
where the quantile transformation is applied on a set of marginally uniform hidden variables. The
following generative model defines a rv X with margins F1, . . . , Fd which still has copula C if the
margins are continuous.

Definition 3.4 (Copula latent variables model). For a d-dimensional copula C and univariate
cdf F1, . . . , Fd we define:

(U1, . . . , Ud) ∼ C (3.5)

Xi = F−1
i (Ui), i = 1, . . . , d. (3.6)

The random vector resulting from Definition (3.4) has margins F1, . . . , Fd for any choice of the
marginal cdfs, in particular, this construction remains valid when discrete margins are used.
However, in the presence of discrete margins, several choices of copulas could lead to the same
distribution for X. We will come back to issues arising with discrete margins in Section 3.6.

3.2 Standard Copulas

Sklar’s theorem makes explicit the relationship between a multivariate distribution and its mar-
gins. It becomes clear that arbitrary cdfs F1, . . . , Fd can be combined to form a multivariate
distribution, and that copulas can be used to create new multivariate models with the desired
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margins and dependence properties. On the other hand copulas can be extracted from existing
multivariate distributions to later be used for combining other margins. Such copulas obtained
from multivariate distributions are called implicit copulas. Implicit copulas extracted from a con-
tinuous distribution have the form given in Corollary 3.1. Unfortunately but not surprisingly,
the variety of interesting implicit copulas is limited, especially in higher dimensions. The most
prominent examples of implicit copula are found in the class of elliptical copulas which includes
the Gaussian and the Student-t copulas. Elliptical copulas are copulas extracted from elliptical
distributions which we define below.

Definition 3.5 (Elliptical distribution). A d-dimensional rv X has an elliptical distribution with
parameters µ,Σ and φ, written X ∼ Ed(µ,Σ, φ), if the characteristic function of X − µ is a
function φ of the quadratic term tTΣt only:

ϕX−µ(t) = φ(tTΣt), (3.7)

where µ ∈ Rd, Σ is a d× d symmetric positive definite matrix and φ : R→ R.

We briefly recall that the characteristic function ϕ of a d-dimensional rv X is defined as

ϕX : Rd → R, ϕX(t) = E
[
exp(itTX)

]
,

where i is the imaginary unit. The function φ is must fulfill certain requirements we do not detail
here. We list below a few properties of elliptical distributions, for a complete introduction see
Cambanis et al. (1981).

1. In one dimension, elliptical distributions coincide with symmetric distributions.

2. Elliptical distributions are radially symmetric.

3. For a given elliptical rv X the representation (3.7) is not unique. To obtain a unique
formulation we can additionally require that φ and Σ satisfy cov(X) = Σ.

4. If a density exists it has the form |Σ|− 1
2 g
(
(X − µ)TΣ−1(X − µ)

)
for some non-negative

real-valued function g.

5. The marginal distributions also are elliptical with the same function φ.

The most famous member of the elliptical family is the d-dimensional Gaussian distribution
Nd(µ,Σ) which can be obtained by setting φ(u) = exp(−u/2) and has the following density
function:

f(x;µ,Σ) = (2π)−
d
2 |Σ|− 1

2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (3.8)

A Gaussian variable having zero mean and identity covariance matrix is called standard normal
or standard Gaussian distributed. Another interesting example of elliptical distribution is the
Student-t distribution.

Example 3.1 (Student-t distribution). The d-dimensional Student-t density with parameters µ,Σ
and degrees of freedom ν is

f(x; Σ, µ, ν) = c(d, ν)|Σ|− 1
2

(
1 +

1

ν
(x− µ)TΣ−1(x− µ)

)− ν+d2

, (3.9)

where the constant value is

c(d, ν) = (νπ)−
d
2

Γ(ν+d
2 )

Γ(ν2 )
.

It has mean µ and covariance matrix ν
ν−1Σ.
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The Student-t copula and the Gaussian copula are then naturally the copulas extracted from the
corresponding distributions and can be represented in the form given by Corollary 3.1. Since
the Gaussian copula plays a prominent role in the subsequent chapters we will discuss it in more
details in Section 3.5.

Definition 3.6 (Gaussian copula). The copula of a multivariate Gaussian rv X ∼ Nd(µ,Σ) is
called Gaussian copula with parameter matrix P , where P is the correlation matrix of X. We
denote a Gaussian copula by CGP or simply CP when the context is unambiguous.

Knowing the simple form of a Gaussian density it might seem surprising that the Gaussian copula
(which is a cumulative distribution function) does not have a simple closed form but can be
expressed as multivariate integral. Note that CGP depends on the correlations of X but not on
the mean or variance which are properties of the margins. This means that the class of all
Gaussian variables having correlation matrix P share the same copula CGP , regardless of their
respective mean and variance. This invariance w.r.t. the mean and variance is a consequence of
one important property of copulas, the invariance of copulas to strictly increasing transformations
(see Section 3.3). It can easily be seen that standardising the margins can be achieved by applying
the successive transformations Φµ,Σ and Φ−1, which are both strictly increasing. Similarly, the
Student-t copula depends only on the correlation matrix corresponding to Σ and the degrees of
freedom ν. We denote the correlation matrix corresponding to a covariance matrix Σ as P(Σ).
The Gaussian and Student copulas are amongst the few interesting implicit copulas which can be
used with large dimension d. The majority of copulas used in higher dimensions are “constructed”
rather than derived since the variety of “natural” (meaning not created using a copula) multivariate
cdfs available is limited. We present below some fundamental copulas. More information about
the principal types of copula can be found in Joe (1997) or Nelsen (1999).

Independence between dimensions is represented by the independence copula.

Definition 3.7 (Independence copula). The independence copula is defined by Cπ(u1, . . . , ud) =∏d
j=1 uj .

Due to the product structure of Cπ, distributions with copula Cπ clearly have independent dimen-
sions. In the continuous case, there is an equivalence relationship between independence copula
and independent margins: a continuous rv has independent dimensions if and only if it has cop-
ula Cπ. In the discrete case, the independence copula still implies independent margins but the
reverse does not hold, see also Section 3.6. At the other end of the dependency spectrum, perfect
positive dependence is obtained with the comonotonicity copula.

Definition 3.8 (Comonotonicity copula). The comonotonicity copula is defined by CM (u1, . . . , ud) =
min{u1, . . . , ud}.

In Definition 3.8 we can recognise the Fréchet upper bound from (3.1). In the axiomatic approach
to dependence presented in Section 2.4.2, perfect dependence was defined in axiom (E4) as oc-
curring when all dimensions are strictly increasing functions of one of them. It can be shown
(see McNeil et al. (2005)) that a perfect positive dependent rv in the sense of axiom (E4) with
continuous margins must have the comonotonicity copula. The copula CM is also the multivariate
cdf of the random variable (U, . . . , U), where U ∼ Unif(0, 1). As previously mentioned the Fréchet
lower bound, representing perfect negative dependence is a copula only in two dimensions. In this
case, it is also the distribution of (U, 1− U), where U ∼ Unif(0, 1).

If significant work has been conducted on the properties of known copulas, the search for new
copulas is also a prolific area of research. There is a large diversity in copulas, and far from
aiming at a thorough review, we briefly mention a few more names. Three famous examples in
the parametric familiy of Archimedean copula are Gumbel, Clayton and Frank copulas. Whereas
the Frank copula is radially symmetric with no tail dependence, the other two are asymmetric
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copulas with tail dependence, the Gumbel copula exhibiting upper tail dependence and the Clayton
copula lower tail dependence. Archimedean copulas have a simple parametric form which can be
extended to any number of dimensions, however additional conditions are required to ensure that
the resulting form indeed is a copula (McNeil and Nešlehová, 2009). Recently, paired-copula models
were introduced as a general method to obtain high-dimensional copulas by combining bivariate
copulas. In particular, regular vines models provide very flexible structures in high dimensions for
which inference remains feasible (Bedford and Cooke, 2001).

3.3 Further properties of copulas

We present in this section some important properties of copulas. A fundamental characteristic
of copulas is their invariance to strictly increasing transformations of continuous margins. This
invariance property was already required in the axiomatic approach to dependence (axiom (F4)
in Section 2.4.2), and any dependence measure based on the copula will then naturally satisfy
this condition. Since strictly increasing functions are order preserving, this invariance also implies
that any measure based on the ranks will depend on the copula only.

Proposition 3.2. Consider a rv X = (X1, . . . , Xd) with continuous margins and copula C. If
T1, . . . , Td : R→ R are strictly increasing functions then (T1(X1), . . . , Td(Xd)) also has copula C.

Proposition 3.2 already appeared in Schweizer and Wolff (1981). A thoroughly detailed proof of
it can be found in Embrechts and Hofert (2013), we give below a proof closer to the formulation
found in McNeil et al. (2005), which first requires the following result.

Lemma 3.1. Consider a real-valued rv X and an increasing function T : R → R, then {X ≤
x} ⊂ {T (X) ≤ T (x)} and: P(T (X) ≤ T (x)) = P(X ≤ x) + P(T (X) = T (x), X > x). A proof can
be found in McNeil et al. (2005).

Proof of Proposition 3.2. First, we show that the distribution of Ti(Xi), i = 1, . . . , d, is given by
F̃i which we define by F̃i(y) = Fi ◦ T←i (y).

F̃i(y) = P (Xi ≤ T←i (y)) , by definition,

= P (T←i ◦ Ti(Xi) ≤ T←i (y)) , since Ti is strictly increasing,

= P (Ti(Xi) ≤ y) + P (Xi = T←i (y), Ti(Xi) > y) , by Lemma 3.1,

= P (Ti(Xi) ≤ y) , since Fi is continuous.

For u1, . . . , ud ∈ [0, 1] we can write:

C (u1, . . . , ud) = P (F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud) , by definiton of C,

= P
(
F̃1 ◦ T1(X1) ≤ u1, . . . , F̃d ◦ Td(Xd) ≤ ud

)
,

since F̃i ◦Ti(x) = Fi ◦T←i ◦Ti(x) = Fi(x). Since F̃i is the distribution of Ti(Xi) the above equality
shows that C is also the copula of (T1(X1), . . . , Td(Xd)) .

In the presence of discrete margins, we need to impose an additional condition on the functions
T1, . . . , Td to ensure that (T1(X1), . . . , Td(Xd)) still admits C as one of its copulas: these functions
must be continuous (Embrechts and Hofert, 2013). Beside being continuous multivariate functions
in the interval [0, 1], copulas have the advantage of being Lipschitz with constant 1: for all u =
(u1, . . . , ud) and v = (v1, . . . , vd) we have

|C(u)− C(v)| ≤
d∑
j=1

|uj − vj |. (3.10)
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Copulas are not necessarily differentiable, however when the d-th order partial derivatives exist
we define the copula density which simply is the density function corresponding to the cdf C.

Definition 3.9 (Copula density). If a copula C has a density function c(u1, . . . , ud) = ∂C(u1,...,ud)
∂u1...∂ud

we call c the copula density of C.

The copula density provides a very useful formula for the density of a continuous rv which can be
expressed as a product the copula density and the marginal densities.

Proposition 3.3. If F with copula C and margins F1, . . . , Fd is absolutely continuous wrt the
Lebesgue measure on Rd, then its density is given by:

f(x1, . . . , xd) = c (F1(x1), . . . , Fd(xd))

d∏
j=1

fj(xj), (3.11)

where c(u1, . . . , ud) = ∂C(u1,...,ud)
∂u1...∂ud

is the copula density of C.

Proof.

f(x1, . . . , xd) =
∂dC (F1(x1), . . . , Fd(xd))

∂x1 . . . ∂xd

=
∂dC (F1(x1), . . . , Fd(xd))

∂F1(x1) . . . ∂Fd(xd)

∂F1(x1)

∂x1
. . .

∂Fd(xd)

∂xd

= c (F1(x1), . . . , Fd(xd))

d∏
j=1

fj(xj),

In cases where c has a simple closed form we can obtain an analytical expression for f using (3.11).
This is true for the multivariate normal case as we will see in Section 3.5.

3.4 Measures of dependence revisited

There is a fundamental link between copulas and measures of dependence. As pointed out in
Schweizer and Wolff (1981), any property of a continuous joint distribution which is invariant to
strictly increasing transformations depends only on its copula. It is therefore natural to define
dependence measures which are functions of the copula only. Such measures also have the prac-
tical advantage that their estimation requires to estimate the copula only instead of the whole
distribution. Interestingly, widely used dependence measures which had been defined without
any references to copulas can be reformulate as functions of the copula only. This is the case of
Spearman’s rho and Kendall’s tau as stated in the following proposition.

Proposition 3.4. Consider two continuous univariate rv X1, X2 having a joint cdf F and copula
C. Spearman’s and Kendall’s rank correlations can then be expressed as:

τ(X1, X2) = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1,

ρS(X1, X2) = 12

∫ 1

0

∫ 1

0

(C(u1, u2)− u1u2) du1du2.
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Proof. We give a proof for τ only, the case of ρS being solved analogously. Starting with Definition
2.12 we successively obtain:

τ(X1, X2) = P
(

(X1 − X̃1)(X2 − X̃2) > 0
)
− P

(
(X1 − X̃1)(X2 − X̃2) < 0

)
= P

(
(X1 − X̃1)(X2 − X̃2) > 0

)
−
{

1− P
(

(X1 − X̃1)(X2 − X̃2) > 0
)}

= 4P
(
X1 − X̃1 > 0, X2 − X̃2 > 0

)
− 1

= 4

∫
R2

F (x)dF (x)− 1 = 4

∫
[0,1]2

C(u1, ud)dC(u1, u2)− 1.

In the last equality we used the probability transformation to substitute ui = Fi(xi), i = 1, 2.

It should not be too surprising that τ and ρS depend only on the copula since it is known that both
can be reformulated as functions of the observations’ ranks and ranks are preserved by strictly
increasing increasing transformations. Proposition 3.4 also leads to an interesting interpretation
of Spearman’s rho which appears to be the integral of the difference between the copula of interest
C(u1, u2) and the independence copula Cπ(u1, u2) = u1u2. Spearman’s rho can therefore also be
considered as a divergence measure between C and Cπ (see also Section 2.4.3). Schweizer and
Wolff (1981) studies different variants of divergences between C(u1, u2) and Cπ, amongst which
are the L1, L2 and L∞ distances, and provides interesting comparisons and examples. We do not
introduce the multivariate generalisations of τ and ρS , which are not unique and have a slightly
more complicated form, for more information on the subject see Joe (1990).

3.5 Gaussian copula models

Copula models can be interpreted as latent variables models for which the hidden variables have
uniform margins on [0, 1]d. The Gaussian copula model can be interpreted as a Gaussian latent
variables model: starting with a multivariate Gaussian variable we transform the margins to obtain
a rv with a Gaussian copula but new margins, as formalised in Definition 3.10 and illustrated in
Figure 3.1.

Figure 3.1: Starting with a jointly Gaussian rv X̄ ∼ Nd(0, P ), we can apply several transformations
to obtain the desired margins. If we want to construct a rv with marginal cdfs Fi, i = 1, . . . , d,
we can first use the probability transformation Φ to obtain a marginally uniform rv U , and then
use the quantile transformations F−1

i to achieve the desired margins. When Fi, i = 1, . . . , d are
continuous F−1

i , i = 1, . . . , d are strictly increasing functions and, since Φ also is strictly increasing,
the resulting rv X has the same Gaussian copula as X̄.

Definition 3.10 (Gaussian copula model). Let P be a correlation matrix and Fi, i = 1, . . . , d be
univariate, continuous or discrete, cdfs. A Gaussian copula model is constituted of the following
elements:

X̄ ∼ Nd(0, P ) (3.12)

Xi := F−1
i (Φ(X̄i)), i = 1, . . . , d (3.13)
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In the above definition, we could have chosen for the latent variable any other Gaussian distribution
N (µ,Σ) such that P(Σ) = P without changing the distribution of X, meaning that the latent
variables are only identifiable if we fix their mean and variance. Gaussian copula models enable
to construct multivariate distributions combining a Gaussian dependence structure and arbitrary
margins. The model defined in 3.10 remains valid when discrete margins are used but requires
particular care in estimation and interpretation, we will discuss inference in presence of discrete
margins in Chapter 7. When all margins are continuous, any variable with a Gaussian copula can
be represented using the normal scores as latent variables as explained in the following proposition.

Proposition 3.5. Consider a random vector X with continuous margins F1, . . . , Fd and Gaussian
copula CP . If the density f of X has a connected support then the vector of the normal scores is
jointly Gaussian:

X̃ :=
(
Φ−1 (F1(X1)) , . . . ,Φ−1 (Fd(Xd))

)
∼ Nd(0, I).

Proof. We first show that X̃ has copula CP . Since the univariate Gaussian cdf Φ is strictly
increasing, Φ−1 is also strictly increasing. If f has a connect support then F is a strictly increasing
function F : supp(f)→ [0, 1]. Using Proposition 3.2 it immediately follows that X̃ has copula CP .
From Proposition 3.1 it is clear that X̃ has standard Gaussian margins. The proposition follows
then directly from the unicity of the copula representation for continuous variables in Theorem
3.1.

We mentioned in Section 3.2 that the Gaussian copula does not have a convenient analytical form,
however it has the advantage of having a copula density of a similar form to the Gaussian density.

Proposition 3.6. The copula density of a Gaussian copula CP is given by:

cP (u1, . . . , ud) = cP (Φ(x̃1), . . . ,Φ(x̃d)) = |P |− 1
2 exp

{
−1

2
x̃T (P−1 − I)x̃

}
, (3.14)

where x̃j = Φ−1(uj) for uj ∈ [0, 1], j = 1, . . . , d.

Proof. The d-dimensional Gaussian density with mean (µ1, . . . , µd), correlation matrix P and
variance (σ2

1 , . . . , σ
2
d) can be written as

f(x) = (2π)−
d
2 |P |− 1

2
1∏d

j=1 σj
exp

{
−1

2
x̃TP−1x̃

}
, (3.15)

where x = (x1, . . . , xd) and x̃ = (x̃1, . . . , x̃d) with x̃j =
xj−µj
σj

. Equation (3.15) can then be

rewriten as

f(x) = |P |− 1
2 exp

{
−1

2
x̃T (P−1 − I)x̃

} d∏
j=1

1

σj
φ(x̃j), (3.16)

where φ denotes the univariate standard normal density N (0, 1). Combining equations (3.16) and
(3.11) we obtain the assertion.

Finally, another very useful property of Gaussian copulas is that independent dimensions can, as
for a jointly Gaussian distribution, be identified by looking at at correlation matrix.

Proposition 3.7 (Gaussian copula independence structure). If a continuous random variable
X = (X1, . . . , Xd) has a Gaussian copula CP , then a zero entry in P implies independence between
the corresponding dimensions.
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Proof. Since uncorrelated dimensions in a jointly Gaussian distribution implies independence,
Proposition 3.3 shows that the Gaussian copula density cP must factorise accordingly. This
implies (using Proposition 3.3 again) that the density of X also factorises accordingly, which by
definition means independence.

3.6 Copula for discrete marginals

Copulas appear as a natural method to model dependence for continuous distributions: given a
random variable X with distribution F , there exists a unique copula C such that F (x1, . . . , xd) =
C(F1(x1), . . . , Fd(xd)), and C admits the representation C(u1, . . . , ud) = F

(
F−1

1 (u1), . . . , F−1
d (ud)

)
.

The copula of F can be obtained from the joint distribution using the margins but it does not
depend on them and it appears as a “margin-free” representation of F . Moreover, as we have seen,
many dependence properties, like the rank correlations or the tail dependence parameter, depend
on the copula only. The situation is however far less straightforward when discrete margins are
involved. A complete and accessible account on the problems encountered is given in Genest and
Nešlehová (2007), we also mention the interesting Nešlehová (2007). In the following we try to
clarify the main issues and challenges of copula modeling in the discrete case.

1. Lack of uniqueness in Sklar’s representation.
If F is multivariate with discrete margins, Sklar’s Theorem gives the existence of a corre-
sponding copula but garanties unicity only on the range of the margins:

Range{F1, . . . , Fd} := F1(R̄)× · · · × Fd(R̄).

This lack of unicity implies that there exists a set CF of copulas such that:

F (x1, . . . , xd) = CF (F1 (x1) , . . . , Fd (xd)) , ∀CF ∈ CF . (3.17)

Denote by AF the set of functions A : [0, 1]d → [0, 1] for which equation (3.17) holds i.e.
F (x1, . . . , xd) = A (F1 (x1) , . . . , Fd (xd)). It is clear that CF ⊂ AF , but both sets are not
equal. In particular, the function defined by

B(u1, . . . , ud) = F
(
F−1

1 (u1), . . . , F−1
d (ud)

)
, ui ∈ [0, 1],

which gives the copula of F in the continuous case is a member of AF but is not a copula. B
is not even a distribution function since F−1

i is not right-continuous when Fi is discrete. We
can also easily see that the distribution of (F1(X1), . . . , Fd(Xd)), which is the copula of F is
the continuous case, is not a copula anymore since its margins are not uniformly distributed.
The natural question to ask next is: how different are members of CF ? The answer is not
completely encouraging. Carley (2002) derived lower C−F and upper C+

F bounds for CF . In
general the set CF is not small and copula based measures of dependence like Kendall’s τ or
Spearman’s ρS can take significantly different values for C−F and C+

F .

2. The dependence structure is not characterized by the copula alone.
As mentioned above, the values of τ and ρS do not agree on the spectrum of CF , although
these quantities are uniquely defined for the joint distribution F (see Definition 2.12 and
2.11). This fact indicates that the dependence structure is not completely characterized
by the copula when margins are discrete. For example, mutual independence is not fully
characterized by the independence copula Π(u1, u2) = u1u2. Consider a joint distribution
constructed using discrete margins F1, F2 and copula C. If C = Π then X1 and X2 are
independent, but independence between X1 and X2 does not imply that C = Π.
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3. Consequences for the latent variable representation.
When using a copula model we implicitly assume that X = (X1, . . . , Xd) with margins
F1, . . . , Fd is a transformation of a multivariate random vector U = (U1, . . . , Ud) with copula
CU and uniform margins, the transformation being given by Xi = F−1

i (Ui). When X has
continuous margins the relationship between X and U is one-to-one, however in the discrete
case X can be generated using different latent vectors U . The copula of the latent vector
CU uniquely determines the copula of X but the converse is not true.

3.7 Copula with conditional distributions

Conditional distributions are important building blocks for high-dimensional models like Bayesian
networks (BN) and play an important role in recently developed models such as Copula Bayesian
networks (CBN) (Elidan, 2010) or Vines (Bedford and Cooke, 2001). We therefore present a few
results showing how copulas behave with conditional distributions.

We first mention that Sklar’ s Theorem can also be applied to conditional distributions, meaning
that if F denotes the conditional cdf of X given Y , then there exists a conditional copula Cy such
that

F (x|y) = Cy(F1(x1|y), . . . , Fd(xd|y) | y). (3.18)

We use the notation Cy to emphasize that the copula in equation (3.18) is a conditional distribution
on Y . When F is absolutely continuous its density has the form

f(x|y) = cy(F1(x1|y), . . . , Fd(xd|y) | y)

d∏
j=1

fj(xj |y), (3.19)

where cy is the copula conditional density and fj(xj |y) are the conditional marginal densities. The
density represented in (3.19) remains impracticable for modelling since it involves only conditional
densities on the right-hand side. Elidan (2010) proposes another parametization of a conditional
density fX|Y which combines the unconditional marginal densities with a copula quotient.

Proposition 3.8 (Copula parametrization of the conditional density). Consider the rv X and Y
with conditional density fX|Y . Denote by fXi the margins of X and by fYi the margins of Y , which
we assume to be strictly positive. For simplicity we write F (xi) instead of FXi(xi) in the notation
of the copulas. There exists a copula density function c(F (x1), . . . , F (xp), F (y1), . . . , F (yq)) such
that:

fX|Y (x|y) =
c(F (x1), . . . , F (xp), F (y1), . . . , F (yq))

cm(F (y1), . . . , F (yq))

p∏
j=1

fXj (xj), (3.20)

where cm is the marginal copula density of c with the components F (x1), . . . , F (xp) integrated out.
The converse is also true, starting with a copula density for (X,Y ) the right hand side of (3.20)
give the conditional density fX|Y .

Proof. Using Sklar’s theorem we know that there exists copula densities cXY and cY such that

f(X,Y )(x, y) = cXY (F (x1), . . . , F (xp), F (y1), . . . , F (yq))

p∏
j=1

fXj (xj)

q∏
k=1

fYq (yq),

fY (y) = cY (F (y1), . . . , F (yq))

q∏
k=1

fYq (yq).

Since the marginal densities are strictly positive, we can then rewrite the conditional density as

fX|Y (x|y) =
f(X,Y )(x, y)

fY (y)
=
cXY (F (x1), . . . , F (xp), F (y1), . . . , F (yq))

cY (F (y1), . . . , F (yq))

p∏
j=1

fXj (xj)

40



Finally since fY is a marginal density of f(X,Y ) we have that

cY (uy1, . . . , u
y
d) =

∫
cXY (ux1 , . . . , u

x
p , u

y
1, . . . , u

y
q)dux1 . . . du

x
p , uxi , u

y
j ∈ [0, 1]∀i, j, (3.21)

which can also be rewritten as

cY (uy1, . . . , u
y
d) =

∂qCXY (1, . . . , 1, uy1, . . . , u
y
q)

∂uy1 . . . ∂u
y
q

. (3.22)

This new copula representation of a conditional density is central to the construction of Copula
Bayesian networks since it can be used to introduce copulas into directed graph models as shown
by following result.

Proposition 3.9 (Graph Decomposition). Consider a direct acyclic graph G and a rv X with
copula density c(F1(x1), . . . , Fp(xp)) and strictly positive margins f1(x1), . . . , fp(xp). If f(x) the
joint density of X decomposes according to G then the copula density c(F1(x1), . . . , Fp(xp)) also
decomposes according to G.

c(F1(x1), . . . , Fp(xp)) =

p∏
i=1

ci,pa(Fi(xi), F (pai1), . . . , F (paik))

cpa(F (pai1), . . . , F (paik))
, (3.23)

where pai = {pai1 , . . . , paik} denotes the parents of Xi and we write F (paij) instead of Fpaij (paij)
for simplicity. ci,pa and cpa denote the copula of (Xi, pai1 , . . . , paik) and (pai1 , . . . , paik), respec-
tively.

Proof. Using the strict positivity of the marginal densities and the graph decomposition we obtain:

c(F1(x1), . . . , Fp(xp)) =
f(x)∏p

i=1 fi(xi)
=

∏p
i=1 fXi|pai(xi|pai)∏p

i=1 fi(xi)
, (3.24)

Using Proposition 3.8 then gives

c(F1(x1), . . . , Fp(xp)) =
1∏p

j=1 fj(xj)

p∏
i=1

ci,pa(Fi(xi), F (pai1), . . . , F (paik))

cpa(F (pai1), . . . , F (paik))
fi(xi), (3.25)

which completes the proof.
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Chapter 4

Copula Mixture Model

4.1 Introduction

This chapter presents a new model for detecting dependencies which demonstrates how the flex-
ibility offered by copula models can help in solving model-mismatch issues occurring with too
restrictive modelling. We use copulas to significantly increase the scope of existing models while
retaining efficient inference in a Bayesian setup. The general problem we consider is of detecting
potential dependencies between two datasets of co-occuring observations. When different types
of measurements concerning a same underlying phenomenon are available, often appearing in the
form of co-occurring samples, combining them is more informative than analysing them separately.
First, if we assume that these different measurements, also referred to as the different views, are
generated by several data sources with independent noise, analysing them jointly can increase
the signal to noise ratio. Second, only a combined analysis can take into consideration the de-
pendencies existing between the different types of measurements. As pointed out in Klami and
Kaski (2007), possible dependencies between the views often contain some of the most relevant
information about the data. Dependency modelling captures what is common between the views,
i.e. the shared underlying signal, and in many applications where several experiments are designed
to measure the same object this shared aspect is the focus of interest.

The task of detecting dependencies has traditionally been solved by Canonical Correlation Analysis
(CCA). This method can however detect only global linear dependency. When the data express
not only one global dependency but different local dependencies, a mixture formulation is more
adequate. Fern et al. (2005) introduces a mixture of local CCA model which groups pairs of points
expressing together a particular linear dependency between the two views. This model is adapted
to cases where the data express several different local correlations, but it still focuses exclusively on
linear dependencies since it assumes that within each cluster the two views are linearly correlated.

Dependency-seeking clustering goes one step further in the generalisation process by assuming
that the views become independent when conditioned on the cluster structure. The aim is to
perform clustering in the joint space of the multiple views, while focussing explicitly on inter-view
dependencies 1. In the case of two views, the objective is then to group the co-occurring pairs of
datapoints according to their inter-view dependency pattern such that when the cluster assign-
ments are known these views become independent. As a consequence, the group structure now has
a semantic interpretation in terms of dependency with the partition capturing the dependencies.

1The term inter-view dependencies refers to the dependence structure between the different views, whereas
intra-view dependencies refers to the dependence structure between the different dimensions of one view.
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The starting point of existing dependency-seeking methods is the probabilistic interpretation of
CCA given in Bach and Jordan (2005) which provides the mathematical formalism on which
dependency-seeking techniques are first based. In Klami and Kaski (2007) a Dirichlet prior Gaus-
sian mixture for dependency-seeking clustering is introduced. However, as pointed out in Klami
et al. (2010), when the data are not normally distributed, this method can suffer from a severe
model mismatch problem. On application to non-normally distributed data these models have
to increase the number of clusters to achieve a reasonable fit. Additional clusters are used to
compensate for the inadequate Gaussian assumption. The components of these mixtures will not
only be used to reflect differences in dependence structures but will also be used to approximate
a non-Gaussian distribution. As a result some points expressing a similar inter-view dependence
can be assigned to different groups and the interpretation of the clusters in terms of dependencies
is lost. Moreover, the model needs to find a compromise between the cluster homogeneity and the
approximation of a non-Gaussian mixture, so that non-homogenous clusters might emerge. Figure
4.1 illustrates how several Gaussian components can be used to approximate a beta density. An
exponential family dependency-seeking method is proposed in Klami et al. (2010) to overcome
this problem. This model can however be too restrictive when the views are multidimensional.
Although the 1-dimensional exponential family covers many interesting distributions, only a few
of them have convenient multivariate forms. In particular their dependence structure between
dimensions is often very restrictive. Another restriction of that model is that all the dimensions in
all the views must have the same univariate distribution whereas in practice different data sources
are likely to produce differently distributed data.
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1

2
3

4
5

Beta density
Gaussian densities
Sum of the Gaussian densities

Figure 4.1: Gaussian components approximating a beta density.

To overcome these limitations we take advantage of the copulas framework to build a dependency-
seeking clustering method suitable for data with any type of continuous densities. We use Gaussian
copulas to construct Dirichlet prior mixtures of multivariate distributions with arbitrary continu-
ous margins, the only restriction being that a density must exist. The model combines the adapt-
ability of Bayesian non-parametric mixtures with the flexibility of copula-based distributions. Our
approach focusses on Gaussian copulas for two main reasons. Firstly, their parametrisation us-
ing a correlation matrix covers many different dependence patterns ranging from independence to
comonotonicity (perfect dependence). Secondly, the model can be reformulated using multivariate
Gaussian latent variables which enables efficient MCMC inference.
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4.2 Dependency-seeking clustering

Consider a p-dimensional random variable X and a q-dimensional rv Y which constitute two
different sources of information about an object of interest. For example, several corporal mea-
surements of a patient and the levels of different drugs administrated can serve as two sources
of information about a medical treatment. We assume that X and Y have co-occurring samples(
x(1p),1, . . . , x(1p),n

)
and

(
y(1q),1, . . . , y(1q),n

)
with x(1p),i ∈ Rp and y(1q),i ∈ Rq, i = 1, . . . , n. The

probabilistic interpretation of CCA given by Bach and Jordan (2005) uses the following latent
variable formulation:

Z ∼ Nd (0, Id) ,

(X,Y ) |Z ∼ Np+q (WZ + µ,Ψ) ,

where µ = (µx, µy) ∈ Rp+q, W =

(
Wx

Wy

)
∈ R(p+q)×d, 1 ≤ d ≤ min (p, q) and the covariance matrix

Ψ has a block diagonal form:

Ψ =

(
Ψx 0
0 Ψy

)
. (4.1)

They showed that the maximum likelihood estimate of W is connected to the canonical directions
and correlations:

Ŵx = Σ̃xUxMx, Ŵy = Σ̃yUyMy,

where Σ̃x, Σ̃y are the sample covariance matrices, and Ux and Uy are the first d canonical directions.
Mx and My are matrices such that MxM

T
y = Pd where Pd is the diagonal matrix containing the

first d canonical correlations. Based on the above formulation, the following dependency-seeking
clustering model is derived in Klami and Kaski (2008) :

Z ∼ Mult (θ) , (4.2)

(X,Y ) |Z ∼ Np+q (µz,Ψz) , (4.3)

where Ψz has a block structure as in (4.1):

Ψz =

(
Ψzx 0

0 Ψzy

)
, (4.4)

and µz is a mean vector depending on Z. The latent variable Z now represents the clustering
assignment. A key property of this model is the block diagonal structure of the covariance matrix
Ψz. This special form implies that given the cluster assignment the two views are independent,
thereby enforcing the cluster structure to capture all the dependencies, see Figure 4.2. This model
however explicitly makes a conditional Gaussian assumption and can perform badly when data
within a cluster are non-normally distributed as mentioned in Section 4.1. To relax this normality
assumption, we present a dependency-seeking clustering model constructed using Gaussian copulas
which can be applied to almost any type of continuous data.
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Figure 4.2: Simulated example of Gaussian data expressing a non-uniform dependence pattern be-
tween views 1 and 2. The points in the two bottom clouds have an inter-view dependence between
their respective second components (corr(X2, Y 2) = 0.8), whereas the points in the two upper
clouds show inter-view dependence between their respective first dimensions (corr(X1, Y 1) = 0.6).
The result of dependency-seeking clustering is represented by the colour-coded clusters. The upper
clouds are divided along the horizontal axis which is the dimension showing inter-view dependence,
and the bottom clouds are divided along the vertical axis. The stronger vertical inter-view de-
pendence in the bottom clouds causes a finer split in three coloured clusters, whereas the slightly
weaker horizontal dependence between the upper groups causes a further split in two coloured
clusters.

4.3 Multi-view clustering with meta-Gaussian distributions

4.3.1 Model specification

Our model is based on a Gaussian copula CP parametrized by a correlation matrix P . Using
Sklar’s theorem 3.1 with CP , we can construct multivariate distributions with arbitrary margins
and a Gaussian dependence structure. These distributions, called meta-Gaussian distributions,
provide a natural way to extend models based on a multivariate normality assumption. To avoid
the various issues occurring with copula modelling for discrete margins we restrict our model to the
continuous case. As the latent variable representation of the Gaussian copula model 3.10 precisely
expresses, when using a Gaussian copula we do not attempt to directly model the correlation of
the original variables, but instead we first apply the transformation Φ−1 (Fj( . )) to every margin
to obtain normally distributed variables Φ−1 (Fj(Xj)) ∼ N1 (0, 1) and then use P to describe their
correlation. A determining advantage of using a Gaussian copula is that zero values in P encode
independence between the corresponding marginal variables. Therefore, if P has a block diagonal
structure as in (4.1), the conditional independence of X|Z and Y |Z, which was a key property of
equation (4.3), will be preserved in a meta-Gaussian model. Moreover, as mentioned in Section
3.5, absolutely continuous distributions constructed using a Gaussian copula have a density of the
convenient form:

f(x) = |P |− 1
2 exp

{
−1

2
x̃T (P−1 − I)x̃

} d∏
j=1

fj(xj), (4.5)
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where x̃j = Φ−1 (Fj(xj)) , x = (x1, . . . , xd), x̃ = (x̃1, . . . , x̃d). We denote this density by M(θ, P ),
where θ is the vector containing all parameters of the marginal distributions.

Consider the two rv X = (X1, . . . , Xp) and Y = (Y1, . . . , Yq) . We assume their joint distribution
is a Dirichlet prior mixture (DPM) given by:

f(X,Y )(x, y) =

∫ ∫
f(X,Y )|θ,P (x, y)dµθ,PdµG(λ,G0),

where µG is the distribution of a Dirichlet process (Ferguson, 1973) with base distribution G0 and
concentration parameter λ. The novelty here is the choice of f(X,Y )|θ,P . We model the marginal
distributions and the dependence structure separately to allow for more freedom:

1. The margins can be arbitrary continuous distributions (providing the corresponding density
exists):

Xj |θ = Xj |θxj ∼ FXj |θ, j = 1, . . . , p,

Yj |θ = Yj |θyj ∼ FYj |θ, j = 1, . . . , q,

where θ =
(
θx1 , . . . , θ

x
p , θ

y
1 , . . . , θ

y
q

)
. Note here that FXj |θ can be different types of distribu-

tions for the multiple dimensions j.

2. The dependence structure is then specified by a Gaussian copula CP with correlation matrix
P having a block diagonal structure as in (4.1).

3. Finally the constructed multivariate distribution will have the form:

F(X,Y )|θ,P (x, y) = CP
(
FX1|θ (x1) , . . . , FYq|θ (xq)

)
. (4.6)

4.3.2 Bayesian inference

Separating the modelling task between specification of the margins and specification of the depen-
dence structure simplifies the choice of the prior distributions. If we assume a priori independence
for θ and P we can specify prior distributions for the margins and separately choose a prior for the
parameters of the copula CP . We specify independent prior distributions for the blocks Px and Py,

where P =

(
Px 0
0 Py

)
. For Px and Py we choose the marginally uniform prior given in Barnard

et al. (2000). This prior is a multivariate distribution on the space of correlation matrices with
uniform margins, i.e. Pij is a uniform variable for i 6= j, and is connected to the inverse-Wishart
distribution: if a covariance matrix Ψ ∈ Rd×d is standard inverse-Wishart distributed with pa-
rameter Id and d+ 1 degrees of freedom, then the corresponding correlation matrix R follows the
marginally uniform prior distribution. The density of R is explicitly given by

f (R|d+ 1) ∝ |R|
d(d−1)

2 −1

(
d∏
i=1

|R(i)|

)− (d+1)
2

, (4.7)

where |R| is the determinant of R and R(i) is the ith principal sub-matrix of R.

Inference can be done using MCMC sampling methods for Dirichlet process mixture models. We
use a sampling scheme for models with non-conjugate prior given in Neal (2011). The method,
detailed in Algorithm 3, is composed of three steps: a modified Metropolis-Hastings step, partial
Gibbs sampling updates and an update of the parameters θ, P. In the third step we need to update
the parameters of every cluster according to their posterior distribution. Since we cannot sample
directly from this conditional posterior we developed a sampling scheme similar to the algorithm
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proposed in Hoff (2007). The main idea is to overparametrize the model by introducing a normally
distributed latent vector (X̃, Ỹ ). The variables in the complete model are then given by:

(X̃, Ỹ ) ∼ Np+q(0,Σ),

(X,Y ) ∼M(θ, P ),

G ∼ DP(λ,G0),

(θ, P ) ∼ G,

where Σ is a covariance matrix with corresponding correlation matrix P and DP denotes a Dirichlet
process distribution with base measure G0 and concentration parameter λ. The sampling scheme
for Dirichlet process mixtures we use is based on explicit cluster assignments which we will denote
by C. Introducing a latent Gaussian vector leads to the following reformulation of X and Y :

Xj = (FXj |θ)
−1(ΦΣjj (X̃j)), j = 1, . . . , p,

Yj = (FYj |θ)
−1(ΦΣj+p,j+p(Ỹj)), j = 1, . . . , q,

and the correlation matrix P can be obtained as

P = P(Σ) = DΣD, with D = diag(Σ
− 1

2
11 , . . . ,Σ

− 1
2

p+q,p+q), (4.8)

or equivalently

Pij =
Σij√
ΣiiΣjj

, i, j = 1, . . . , p+ q. (4.9)

As explained in Section 3.5, the class of all Gaussian distributions with covariance Σ shares
the same copula CP(Σ) which makes the overparametrization possible. We can easily see from
equation (4.9) that zero entries in Σ and P match, and the block matrix structure is preserved
when using the new parametrization. Figure 4.3 gives a representation of the complete model. In
the MCMC scheme we can easily sample Σ conditioned on (X,Y ), (X̃, Ỹ ) and θ, since we can use
the conjugacy property of prior and conditional likelihood. A sample of the correlation matrix
can be obtained as P(X̃, Ỹ ), the correlation matrix of the random vector (X̃, Ỹ ). The posterior
updates of the parameters are detailed in Algorithm 4. We use a Metropolis-within-Gibbs scheme
which introduces MH updates in a Gibbs sampling algorithm. The Gibbs scheme is composed of
three steps and successively samples from the following conditional distributions:

θ|Σ, (X̃, Ỹ ), (X,Y ),

(X̃, Ỹ )|θ,Σ, (X,Y ),

Σ|(X̃, Ỹ ), θ, (X,Y ).

Updates for the parameter θ are drawn for one dimension at a time, conditioned on the other
dimensions, using a Metropolis-Hastings Algorithm (see Algorithm 1 in Chapter 2). The choice
of the transition kernel Q used in the MH algorithm will be steered by the particular form of
the marginal distribution considered. Updates of (X̃, Ỹ ) are obtained similarly using MH for one
dimension at a time. A sample from the posterior of Σ is easily obtained since the Gaussian distri-
bution of (X̃, Ỹ ) is conjugate to the inverse Wishart distribution of Σ. The notations θ?j ,P(X̃)?j
in Algorithm 4 are used to emphasize that the corresponding vector or matrix is considered as a
function of θj , X̃j and parameters for the other dimensions are treated as constants.

Figure 4.3: Graphical representation of the infinite copula mixture model with base measure G0

and concentration λ. Left side: the original model, right side: the model augmented for sampling,
where C denotes cluster assignment.
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Algorithm 3 Markov Chain Sampling

C1, . . . , Cn are the latent variables of the cluster assignments.
θCi and PCi are the parameters specific to cluster Ci.
n−i,c is the number of datapoints in cluster c excluding observation i.
C−i = {C1, . . . , Ci−1, Ci+1, . . . , Cn}.
repeat

for i = 1, . . . , n do
if there exists k such that Ck = Ci then

Create a new cluster C∗i with parameters θ∗ and P ∗ drawn from G0;

Change Ci to C∗i with probability min

(
1, λ

n−1

f(X,Y )|θ∗,P∗ (x,y)

f
(X,Y )|θCi ,PCi (x,y)

)
;

else
Draw C∗i from C−i with P(C∗i = c) = n−i,c/(n − 1). Change Ci to C∗i with probability

min

(
1, n−1

λ

f(X,Y )|θ∗,P∗ (x,y)

f
(X,Y )|θCi ,PCi (x,y)

)
;

end if
end for
for i = 1, . . . , n do

if there exists k such that Ck = Ci then
Choose a new value for Ci with P(C∗i = c) ∝ n−i,c

(n−1)f(X,Y )|θc,P c(x, y);

end if
end for
for c ∈ {C1, . . . , Cn} do

Update the parameters θc and P c as described in Algorithm 4.
end for

until stopping criterion

Algorithm 4 Posterior updates of (θ, P ) | (X,Y )

For clarity we omit the cluster index c.

1.Sample θ|Σ, (X̃, Ỹ ), (X,Y )
for j = 1, . . . , p do

Draw θxj using Metropolis-Hastings;

θxj ∼ f(θxj |θx−j , X̃,X) ∝M(θx?j ,P(X̃))π(θj)
end for
Apply the same procedure for Y ;

2. Sample (X̃, Ỹ )|θ,Σ, (X,Y )
for j = 1, . . . , p do

Draw X̃j using Metropolis-Hastings;

X̃j ∼ f(X̃j |X̃−j , θ,Σ, X) ∝M(θ,P(X̃)?j)N (0,Σx)
end for
Apply the same procedure for Ỹ ;

3. Sample Σ|(X̃, Ỹ ), θ, (X,Y ):
Draw Σx ∼ N (0,Σx)IW(p+ 1, Ip)

∼ IW(Ip +
∑n
i=1 X̃(1p),iX̃

T
(1p),i, p+ 1 + n);

Apply the same procedure to obtain Σy.
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4.4 Experiments

4.4.1 Simulated data

We simulate two different 2-dimensional multi-view data sets with Gaussian intra-view dependence
structure. The marginal distributions are Gaussian in the first view, and beta or exponential in
the second. Each data set is composed of two clusters which can be identified only by considering
the inter-view dependencies. We first simulated data points with a single cluster structure in each
view but a strong positive dependence between the first dimensions of the views, i.e. between
X1 and Y 1. In a second step we separated the data in two groups of unequal size and randomly
permuted their order within groups to suppress any inter-view dependency within these groups.
Figure 4.4 (bottom left panel) shows the resulting cluster structure in the joint space of the two
views recovered by the copula mixture model. Parameters used for the simulations can be found
in Table 4.1.

Table 4.1: Parameters used for the simulations.

Simulation 1
view 1: Normal µ (0, 0)

σ2 (1, 1)
(Px)12 0.9

view 2: Beta α (3, 1)
β (1, 10)
(Py)12 −0.5

Simulation 2
view 1: Normal µ (0, 0)

σ2 (1, 1)
(Px)12 0.9

view 2: Exponential λ (2.5, 2.5)
(Py)12 0.9

We compared the copula mixture (CM) with three other methods: a Dirichlet prior Gaussian
mixture for dependency-seeking clustering (GM) as derived in Klami and Kaski (2007), a non-
Bayesian mixture of canonical correlation models (CCM) Vrac (2010) Fern et al. (2005) and a
variational Bayesian mixture of robust CCA models (RCCA) Viinikanoja et al. (2010). CCM and
RCCA both assume that the number of clusters is known or can be determined as explained in
Viinikanoja et al. (2010). In our comparison experiments we gave as input for both methods the
correct number of clusters, giving them the advantage of this extra knowledge. Results presented
in Figure 4.5 show that CM applied with the correct marginal distributions’ form produces a
better classification. GM does not perform well on those data sets because the number of clusters
is overestimated; the model compensates for the inadequate Gaussian assumption by multiply-
ing the number of components and additional clusters are created to approximate non-Gaussian
distributions. Since the number of clusters in a Dirichlet prior Gaussian mixture can be reduced
by imposing a too-strong prior on the variances, we modified the prior information to enforce
artificially high variances in the second view until the mixture is forced to create no more than
two clusters. We report both results obtained with less (GM1) and more (GM2) informative pri-
ors. As can be seen in Figure 4.4, when strong prior information is used to artificially reduce the
number of clusters, the GM cannot recover the true cluster structure. CCM and RCCA used with
the correct number of clusters as input perform comparatively, or better than the GM but clearly
worse than CM for those data sets having non-linear inter-view dependencies.

4.4.2 Real data

We perform a combined analysis of two data sets providing information about the regulation of
gene expression in yeast under heat shock; each data set being treated as one view. The first
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Figure 4.4: Scatterplot of the simulated data in the Gaussian view (first view, top panel), in the
beta view (second view, middle panel) and in the joint space of the normal scores for the two
views where the two clusters can be clearly identified (bottom panel). The clustering results are
shown for the copula mixture (CM) and the Gaussian mixture with two different priors (GM1
and GM2). CM perfectly recovers the true cluster structure, whereas a model mismatch problem
prevents GM to find the correct clustering.
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Figure 4.5: Boxplot of the adjusted rand index over 100 (Gaussian-beta data on the left panel) and
50 (Gaussian-exponential data on the right panel) simulations for the copula mixture (CM), the
Gaussian mixture with two different priors (CM1 and CM2), the non-Bayesian mixture of CCA
(CCM), and the robust CCA mixture (RCCA). Friedman’s test with post-hoc analysis rejected,
for both experiments, the null hypothesis of equal medians between CM and every other method
(P-value < 0.005).
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Figure 4.6: Histogram of the binding affinity scores for the binding factors GAT1 and YAP1. The
estimated densities of the 8 clusters discovered by CM are represented as colored lines in the top
panel. Estimated densities of the 14 clusters found by GM are shown in the bottom panel. The
black dashed lines represent the total density resulting of the mixture.

data set (published in Gasch et al. (2000)) provides genes expression values measured at 4 time
points. The second data set (given in Harbison et al. (2004)) contains binding affinity scores
for interactions between these genes and 6 different binding factors. Similar data have already
been analysed in Klami and Kaski (2007). 5360 genes present in both views are clustered using
a Gaussian dependency-seeking clustering model (GM) and using the copula mixture (CM). CM
uses Gaussian marginals in the first view and beta marginals in the second view. Here the choice
of the beta distribution is motivated by the fact that observations in the second view are restricted
to the [0, 1] interval. For the univariate Gaussian margins we choose normal and inverse-gamma
priors for mean and variance respectively, whereas for the beta margins both shape parameters
have gamma priors. GM uses the standard conjugate prior 2.

For different values of the concentration parameter λ ∈ {0.01, 0.1, 1, 5, 10}, CM consistently es-
timates 8 clusters whereas GM estimated between 13 and 15 clusters. In this section we report
the results obtained with λ = 1. As we observed with the simulated data more clusters need to
be created by the Gaussian mixture to compensate for the model mismatch. This phenomenon
is illustrated in Figure 4.6. The interpretation of the clustering then becomes very arduous since
these additional clusters cannot be distinguished from those capturing the dependencies. Another
interpretation problem clearly arises in the Gaussian model when we look at the estimated intra-
view correlations. Two negative effects accumulate here; first correlation can be an inadequate
dependence measure for non-normally distributed data, and second the additional split in many
components can change the cluster-specific intra-view dependence as illustrated in Figure 4.7.

To understand what information one could gain by dependency-clustering, we perform three ad-
ditional clustering of the same data: first we cluster the datapoints on each view separately, then

2The use of conjugate prior does not, in general, increase the number of clusters as shown in Rasmussen and
Görür (2010).
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Figure 4.7: Correlations estimated with GM (left panel) and correlations of the normal scores
estimated by CM (right panel) between HSF1 and the five other binding factors. In the Gaussian
model the correlation between HSF1 and YAP1 seems to vary drastically with the clusters. In
CM this correlation has stable positive values for all clusters with the exception of the last cluster.
Since the binding factors HSF1 and YAP1 are both activated by the substance menadione as
explained in Hohmann and Mager (2003), we can expect that their binding affinities are positively
correlated and independent of the cluster.

we cluster them in the complete product space of the joint views, i.e. without imposing the
constraint of a block structure on the correlation matrix. Priors and hyperparameters are kept
constant over experiments. CM finds four clusters in the first view as well as in the second view.
Clustering in the product space with full correlation matrix again leads to four groups. Figure 4.8
illustrates how the three main clusters found in the complete product space are further separated
by dependency-seeking clustering, showing dependencies between the two views.

As mentioned in section 4.1, GM cannot exclusively focus on compact clusters because it needs
to find a compromise between the cluster homogeneity and the approximation of a non-Gaussian
mixture. As a result, non-homogenous clusters might emerge which are needed to fit the margins
despite model mismatch. To test if this phenomenon is present here, we perform a gene ontology
enrichment analysis (GOEA) using GOrilla Eden et al. (2009). GOEA is used to test if some
of the biological processes associated with the genes are over-represented in the clusters, thereby
providing a quality measure for the clustering. The analysis shows that 3 out of 14 clusters (these 3
clusters representing together 17,3% of the data points) found by GM do not express any significant
enrichment. By contrast, all 8 clusters produced by CM express a highly significant enrichment
and every cluster can be associated with a specific biological processes, e.g. the two largest clusters
can be interpreted as groups of genes involved in organelle organization and meiosis respectively.
The clear difference in the enrichment analysis results between GM and CM demonstrates that
the quality of the clustering is indeed impaired when a model with inadequate margins is used.

4.5 Conclusion

A fundamental aspect in dependency-seeking clustering is that the partition possesses a semantic
interpretation in terms of dependency: the dependencies are captured by the cluster structure.
This interpretation is however only valid when the model is rich enough to properly fit each view,
which can be particularly difficult to achieve for non-Gaussian data with existing models. This
task becomes even more arduous when the dimensions of the views increase since the model then
needs to adequately fit every margin while allowing for a sufficiently rich intra-view dependence
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Figure 4.8: The bottom panel represents in different colors the cluster indices for all genes (re-
ordered by cluster assignment) as obtained using dependency-seeking clustering with CM. The top
panel shows the cluster indices obtained when clustering in the complete product space, i.e using
CM with a full correlation matrix instead of a restricted block diagonal matrix. This illustrates
how existing groups are further separated into smaller clusters expressing inter-view dependencies.

structure. The copula mixture model offers enough flexibility to cover both aspects: the margins
can be specified separately for each dimension and the Gaussian copula allows for a wide range
of intra-view dependencies. Using a Gaussian copula also facilitates the inference and we provide
an efficient MCMC scheme. Experiments on simulated data show that the copula mixture model
significantly improves the clustering results. In a large-scale real-world clustering problem of
genes expression data and genes binding affinities, the dependency-seeking copula mixture model
produces a clustering solution that significantly differs from those obtained on the single views or on
the product space, and from that obtained by the standard Gaussian model which clearly suffered
from model-mismatch problems. Detailed analysis of the functional annotation of the genes in
the clusters discovered by dependency-seeking CM shows that the induced cluster structure allows
a plausible biological interpretation in that the groups are clearly enriched by genes involved in
distinct biological processes.
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Chapter 5

The Information Bottleneck

5.1 Introduction

In the previous chapter we presented a copula-based model for dependency-seeking clustering
which opened the scope of dependency-seeking models to a vast range of the new applications
while retaining efficient inference due the properties of the Gaussian copula. Another interesting
method which can benefit from the flexibility of copula models is the Information Bottleneck
(IB). Before presenting in Chapter 6 a new copula-based model with attractive properties and
showing the deep connections between copulas and the IB method, we dedicate this chapter to
the presentation of the IB method.

The Information Bottleneck method was first introduced in Tishby et al. (1999) as a novel informa-
tion compression technique. IB takes an original approach on compression by considering for the
first time the relevance of information. In the early formulation of information theory (Shannon,
1948), the problem of information transmission is formulated independently from the notion of
meaningful information. We, however, intuitively think of communication as the transmission of a
certain meaning, which constitutes the heart of a message containing also less significant elements.
The IB method formalises the intuitive idea that relevance of information could be crucial for ef-
fective compression. The tools best adapted to obtain a mathematical formulation of the concept
of relevance actually already exist in information theory, and, as we will see below, take the form
of mutual information. Compression, or more exactly lossy compression, was traditionally treated
in the framework of rate distortion theory (see Cover and Thomas (1991) for more details). The
main idea is that the loss incurred by compression can be expressed as an average distortion of
the reconstructed signal, then a trade-off inevitably occurs between distortion and compression
rate. Even if the choice of a distortion function is of decisive importance, it is not treated in rate
distortion theory and standard functions such as the Hamming distortion or the squared error dis-
tortion are often used by default. As pointed out in Tishby et al. (1999), the distortion function
implicitly performs feature selection on the transmitted information and an arbitrary choice might
select irrelevant features. For many coding problems we however have an indirect knowledge of the
relevant features, e.g. in a speech recognition task the features of interest are those which enable
to identify the speaker. The central idea of IB is precisely to model this indirect knowledge using
a relevance variable, in the speech recognition example this variable would encode the speaker’s
identity. The task then becomes to compress the signal while preserving information about the
relevance variable, meaning preserving the relevant information.
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5.2 The Information Bottleneck problem

Consider two random variables, possibly multivariate, X and Y with values in the measurable
spaces X and Y. To be consistent with the IB literature, we use p(x, y) to denote the joint
probability mass function for discrete variables and the joint density for continuous variables. For
simplicity, in both cases we refer to p(x, y) as the joint “probability distribution” by a slight abuse
of language. In this context X is interpreted as a signal for which we want to obtain a compressed
version in the form of another random variable T . We assume that the joint distribution p(x, y) is
known and the task is to determine the compression T . Instead of considering a distortion function
to guide the compression as in rate distortion theory, IB introduces the concept of relevant or
meaningful information. The relevant information takes the form of the random variable Y , the
relevance variable. The aim is then to construct a compressed representation T of X that is most
informative about Y . To fully specify T we have to determine its joint distribution with X and
Y denoted by p(x, y, t). Since T is a compression of X it is independent of Y given X:

p(t|x, y) = p(t|x), (5.1)

and the variables satisfy the following Markov relation

T ↔ X ↔ Y.

This relation also expresses the fact that the compression T cannot contain more information
about Y than the original data X. The conditional independence property implies that the full
joint distribution can be factorised as

p(x, y, t) = p(y, t|x)p(x) = p(y|x)p(t|x)p(x). (5.2)

Since p(x, y) is assumed known, determining p(t|x) is enough to fully specify the joint distribution
p(x, y, t). The IB model is illustrated in Figure 5.1.

Figure 5.1: Graphical representation of the conditional independence structure of IB.

The IB problem is formulated using information-theoretical concepts only. Compression and
relevance are both measured in terms of mutual information:

1. I(X;T ) measures how close T is to the original signal and a high value means low compres-
sion.

2. I(Y ;T ) measures the information contained in T about Y and a high value means that the
relevant information is well preserved.

The compression task can then be formulated as a variational problem which encompasses the
need for compression and the information preservation target.

Definition 5.1 (IB variational problem).

min
p(t|x)

L | L ≡ I(X;T )− βI(T ;Y ), (5.3)

where the minimum is taken over all possible conditional distributions of T given X.
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The Lagrange parameter β > 0 determines the trade-off between compression of X and preserva-
tion of information about Y , a large value will favour informativeness whereas a small value will
put emphasis on compression.

The variational problem 5.1 is formulated in general terms, for discrete and continuous variables
X,Y . However, in general, no analytical solution is available and Tishby et al. (1999) focuses
on the discrete case for which they provide an iterative optimisation method. Their iterative
algorithm is based on the characterisation of the stationary points of problem 5.1 given in the
following theorem.

Theorem 5.1 (Formal solution to the IB problem). For a given β, a conditional distribution of
T given X is a stationary point of (5.3) if and only if:

p(t|x) =
p(t)

Z(β)
exp (−βDKL(p(y|x) ‖ p(y|t)) , (5.4)

where Z(β) denotes the normalisation constant.

A remarkable feature of Theorem 5.1 is that the Kullback-Leibler divergence between p(y|x) and
p(y|t) appears on the right hand side, suggesting that it is the appropriate distortion measure for
our compression problem. This theorem, however, cannot be used to find stationary points in
practice since the term p(t|x) also appears on the right hand side of equation 5.4:

p(t) =
∑
x∈X

p(t|x)p(x), (5.5)

p(y|t) =
1

p(t)

∑
x∈X

p(x, y)p(t|x). (5.6)

The structure of equation (5.4) suggests using a fixed point method to obtain stationary points, and
the generalised Blahut-Arimoto algorithm introduced in Tishby et al. (1999) alternates between
self-consistent computations of p(t|x), p(t) and p(y|t) as detailed in Algorithm 5. The resulting
discrete T then defines “soft” clusters of X, the conditional probability mass function p(t|x)
giving the probability that the observation x is assigned to cluster t. Algorithm 5 converges to a
stationary point of (5.3), see Slonim (2002) for a detailed proof, however, it is not guaranteed to
attain the global optimum.

Algorithm 5 Generalised Blahut-Arimoto

Random initialisation of p(m)(t|x) with m = 1;
repeat

Set p(m)(t) =
∑
x∈X p

(m)(t|x)p(x);

Set p(m)(y|t) = 1
p(m)(t)

∑
x∈X p(x, y)p(m)(t|x);

Update p(m+1)p(t|x) = p(m)(t)
Z(m+1)(β)

exp (−βDKL(p(y|x) ‖ pm(y|t));
Set m to m+ 1;

until Convergence criterion satisfied.

In the case of continuous X and Y , a similar set of self-consistent equations for p(t|x), p(t) and
p(y|t) are obtained:

p(t) =

∫
X
p(t|x)p(x)dx, (5.7)

p(y|t) =
1

p(t)

∫
X
p(x, y)p(t|x)dx, (5.8)

p(t|x) =
p(t)

Z(β)
exp (−βDKL(p(y|x) ‖ p(y|t)) , (5.9)
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which also translate into two coupled eigenvector problems for ∂ log p(x|t)/∂t and ∂ log p(y|t)/∂t,
but a direct solution of this problem is very difficult in practice and no iterative algorithm applica-
ble to the general continuous case is known. This indicates that to make the IB method applicable
in practice with continuous variables more assumptions are required. As we will see in the next
section, the IB problem for continuous variables can be solved for one special case: when X and
Y are jointly multivariate Gaussian distributed. The problem then becomes analytically tractable
and obtaining T can be reduced to solving an eigenvalue problem.

5.3 Gaussian IB

Gaussian IB (GIB), introduced in Chechik et al. (2003) and developed in more details in Chechik
et al. (2005), is the first IB method applicable to continuous variables. As explained in the
previous section, a set of self-consistent equations also exist in the continuous case but no practical
algorithm emerges. The particular properties of Gaussian distributions simplify the IB problem
considerably and a solution can be derived analytically. Simplifications arise primarily from the
closure properties of the Gaussian family which imply that an optimal compression T can always be
found within the set of Gaussian variables. The solution T then provides a continuous compression
of X instead of the soft clustering obtained in the discrete case. The analytical expression obtained
for T can be readily used to solve problems of a real-world scale and, further, gives a precious
insight into the IB mechanism. We present in this section the main theoretical results on GIB,
proofs will often be briefly sketched as the complete exposition is rather technical and we instead
focus on explaining the main ideas behind the results derived from Chechik et al. (2005) and
Globerson and Tishby (2004).

Assume that the random vectors X and Y are jointly Gaussian distributed with zero mean and
variance Σ:

(X,Y ) ∼ N
(

0p+q,Σ =

(
Σx ΣTxy
Σxy Σy

))
, (5.10)

where p is the dimension of X, q is the dimension of Y and 0p+q is the zero vector of dimension
p+q. A key property of the Gaussian case in that an optimal compression T can be found amongst
the random variables which are jointly multivariate Gaussian distributed with the vector (X,Y ).
This result proven in Globerson and Tishby (2004) is expressed in the following lemma.

Lemma 5.1 (Gaussian optimality). When X and Y are jointly Gaussian, the global optimum of
problem (5.3) is attained for a compression T which is also jointly Gaussian with (X,Y ).

The proof of Lemma 5.1 uses the entropy power inequality and is rather technical. However, the
authors provides an interesting intuition about this result noting that, since the joint distribution
of X,Y carries only second order correlations, potential higher order moments in the distribution
of T would not bring additional information. Lemma 5.1 implies that T can be expressed as a
noisy linear transformation of X

T = AX + ξ, ξ ∼ N (0p,Σξ), A ∈ Rp×p, (5.11)

where the noise term ξ is independent of X. The optimal compression is then given by

T ∼ N (0p,Σt) with Σt = AΣxA
T + Σξ, (5.12)

and the minimisation problem (5.3) is reduced to an optimisation task over A,Σξ:

min
A,Σξ
L|L ≡ I(X;T )− βI(T ;Y ). (5.13)

Since the noise variance can be set to the identity matrix Σξ = Ip, as shown in Lemma 5.2, the
problem further simplifies to finally become an optimisation over A only.
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Lemma 5.2. Consider a pair (A,Σξ) where A ∈ Rp×p and Σξ is a full-rank covariance matrix.

Then there exists Ã ∈ Rp×p such that L(Ã, Ip) = L(A,Σξ).

Proof. The covariance matrix Σξ can be decomposed as Σξ = LDLT where D is a diagonal matrix

and L is orthonormal. A straightforward calculation then verifies that Ã :=
√
D−1LA satisfies

L(Ã, Ip) = L(A,Σξ).

The fact that optimisation problem 5.13 is ultimately independent of Σξ can be intuitively under-
stood: the noise term ξ do not carry any information about Y and therefore an optimal projection
A should be determined independently. The noise variance can be fixed before optimisation is
performed, it however remains a necessary component which fixes the scale of the problem. Having
reduced the original IB problem to the optimisation task minA L|L ≡ I(X;T )− βI(T ;Y ) we can
compute a solution analytically as shown in the following theorem.

Theorem 5.2 (Gaussian IB solution). The transformation matrix A is given by:

A =


[
0T ; . . . ; 0T

]
0 ≤ β ≤ βc1[

α1v
T
1 ; 0T ; . . . , 0T

]
βc1 ≤ β ≤ βc2[

α1v
T
1 ;α2v

T
2 ; 0T ; . . . ; 0T

]
βc2 ≤ β ≤ βc3

...

 , (5.14)

where vT1 , . . . , v
T
p are left eigenvectors of Σx|yΣ−1

x sorted by their corresponding increasing eigen-
values λ1, . . . , λp. The critical β values are βci = (1− λi)−1, and the αi coefficients are defined by

αi =
√

β(1−λi)−1
λiri

with ri = vTi Σxvi. In the above, 0T is a p-dimensional row vector and semicolons

separate rows of A.

We can see from equation (5.14) that the optimal transformation of X is a combination of weighted
eigenvectors of Σx|yΣ−1

x . The number of selected eigenvectors, and thus the effective dimension of
T , depends on the parameter β and changes at each critical point βci . Since every coefficient αi
vanishes at the corresponding critical βci , the change in A remains smooth as a function of β.

Proof. We give a proof sketch which underlines the main ideas of the proof. We first compute
the conditional and unconditional covariance matrices involving T . Recalling that the matrices
Σx,Σy,Σxy are assumed known we obtain:

Σxt = cov(X,T ) = cov(X,AX + ξ) = Acov(X,X) + cov(X, ξ) = AΣx, (5.15)

Σyt = cov(Y, T ) = cov(Y,AX + ξ) = Acov(Y,X) + cov(Y, ξ) = AΣxy, (5.16)

Σt|x = cov(AX + ξ|X) = cov(AX|X) + cov(ξ|X) = Σξ = I, (5.17)

Σt|y = cov(AX + ξ|Y ) = cov(AX|Y ) + cov(ξ|Y ) = AΣx|yA
t + Σξ = AΣx|yA

t + I. (5.18)

Using the following notation Σx̄t =

(
Σx ΣTxt
Σxt Σt

)
we obtain expressions for the mutual informa-

tions involved:

1

2
I(X;T ) = log

(
|Σx||Σt|
|Σx̄t|

)
= log |Σt|+ log

(
|Σx|

|Σx||Σt − ΣxtΣ
−1
x Σtxt|

)
= log |Σt| − log |Σt|x| = log(|AΣxA

t + I|),
1

2
I(Y ;T ) = log |Σt| − log |Σt|y| = log(|AΣxA

t + I|)− log(|AΣx|yA
t + I|). (5.19)

The objective function can then be rewritten as

L = log |Σt| − log |Σt|x| − β log |Σt|+ β log |Σt|y|
= (1− β) log |AΣxA

t + I|+ β log |AΣx|yA
t + I|, (5.20)
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and the derivative w.r.t. A is

dL
dA

= (1− β)(AΣxA
t + I)−12AΣx + β(AΣx|yA

t + I)−12AΣx|y. (5.21)

Setting equation (5.21) to zero and rearranging the terms we obtain a necessary condition for the
existence of a minimum:

β − 1

β

[
(AΣx|yA

t + I)(AΣxA
t + I)−1

]
A = A

(
Σx|yΣ−1

x

)
. (5.22)

We can recognise in equation (5.22) the form of a special eigenvalue problem for which the eigen-
values depend on A. The solution A must then be in the span of the eigenvectors of Σx|yΣ−1

x . This
implies that A can expressed in the form A = WV where the rows of V are the left normalised
eigenvectors of Σx|yΣ−1

x and W is a weight matrix. By substituting A = WV in (5.22), and after
more derivations detailed in Chechik et al. (2005), we find the form described in Theorem 5.2.
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Chapter 6

Meta-Gaussian Information Bottleneck

6.1 Introduction

The information bottleneck method (IB) introduced the concept of relevant information in the data
compression problem, offering a new perspective on signal compression. Although the IB method
beautifully formalises the compression problem under relevance constraints, the practical solution
of this problem remains difficult, particularly in high dimensions. As mentioned in the previous
chapter, the IB optimisation problem has no available analytical solution in the general case.
When all variables are discrete, it can be solved iteratively using the generalized Blahut-Arimoto
algorithm which, however, requires to estimate the joint distribution of the potentially high-
dimensional variables X and Y . A formal analysis of the difficulties of this estimation problem was
conducted in Shamir et al. (2010). In the continuous case, this iterative algorithm is not applicable
in practice, moreover, estimation of multivariate densities becomes arduous and can be a major
impediment to the practical application of IB. A notable exception is the case of joint Gaussian
(X,Y ) for which an analytical solution for the optimal representation T exists. The optimal T
is jointly Gaussian with (X,Y ) and takes the form of a noisy linear projection of eigenvectors of
the normalised conditional covariance matrix. The existence of an analytical solution opens new
application possibilities and IB becomes practically feasible in higher dimensions (Hecht et al.,
2009). Finding closed form solutions for other continuous distribution families remains an open
challenge. The practical usefulness of the Gaussian IB (GIB), on the other hand, suffers from its
missing flexibility and the statistical problem of finding a robust estimate of the joint covariance
matrix of (X,Y ) in high-dimensional spaces.

With the aim of extending the GIB analytical solution to a larger class of models, we present
in this chapter a reformulation of the IB problem for continuous variables in terms of copulas.
Compression and relevance in IB are defined in terms of mutual information (MI) which, as
we will see, bears an interesting relationship to copulas: mutual information equals negative
copula entropy (Ma and Sun, 2008). Interestingly, although these two concepts were developped
independently, they rejoin because both aim at capturing the “pure” dependency structure of
random variables. In this work, we demonstrate that IB is completely independent of the marginal
distributions of X,Y . The IB problem in the continuous case is in fact to find the optimal copula
(or dependence structure) of T and X, knowing the copula of (X,Y ). We focus on the case
of Gaussian copulas and on the consequences of the IB reformulation for the Gaussian IB. We
show that the analytical solution available for GIB can naturally be extended to multivariate
distributions with Gaussian copula and arbitrary marginal densities, also called meta-Gaussian
densities. Moreover, we show that the GIB solution depends only a correlation matrix, and not
on the variance. This allows us to use robust rank correlation estimators instead of unstable
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covariance estimators, and gives a robust version of GIB. It opens new possible applications of IB
to continuous data and provides a solution more robust to outliers.

6.2 Copula and Information Bottleneck

6.2.1 Copula formulation of IB.

At the heart of the copula formulation of IB is the following identity: for a continuous random
vector Z = (Z1, . . . , Zd) with density f(z) and copula density cZ(u), multi-information is the
negative differential entropy of the copula density (Ma and Sun, 2008):

I(Z) ≡ Dkl(f(z) ‖ f0(z)) =

∫
Rd

log

(
f(z)

f0(z)

)
f(z)dz,

=

∫
Rd

log

(∏d
j=1 fj(z)cZ(F1(z), . . . , Fd(z))∏d

j=1 fj(z)

)
d∏
j=1

fj(z)cZ(F1(z), . . . , Fd(z))dz,

=

∫
[0,1]d

cZ(u) log cZ(u)du = −H(cZ), (6.1)

where u = (u1, . . . , ud) ∈ [0, 1]d, Dkl denotes the Kullback-Leibler divergence, and f0(z) =
f1(z1)f2(z2) . . . fd(zd). For continuous multivariate X, Y and T , equation (6.1) implies that:

I(X;T ) = Dkl(f(x, t) ‖ f0(x, t))−Dkl(f(x)||f0(x))−Dkl(f(t)||f0(t)),

= −H(cXT ) +H(cX) +H(cT ),

I(Y ;T ) = −H(cY T ) +H(cY ) +H(cT ),

where cXT is the copula density of the vector (X1, . . . , Xp, T1, . . . , Tp) and the first equation follows
from Proposition 2.3. The above derivation then leads to the following proposition.

Proposition 6.1. Copula formulation of IB
For continuous variables the Information Bottleneck minimisation problem 5.1 can be reformulated
as

min
cXT
L | L = −H(cXT ) +H(cX) +H(cT )− β{−H(cY T ) +H(cY ) +H(cT )}. (6.2)

The minimisation problem defined in 5.1 is solved under the assumption that the joint distribution
of (X,Y ) is known, this now translates in the assumption that the copula copula density cXY (and
thus cX) is assumed to be known. The density cT is entirely determined by cXT , and using the
conditional independence structure, we show that cY T is also determined by cXT and cXY . Since
the joint density of (X,Y, T ) decomposes as

f(x, y, t) = f(t, y|x)f(x) = f(t|x)f(y|x)f(x), (6.3)

and using Theorem 3.9 (Elidan, 2010), we see that the corresponding copula density then also
decomposes as

cXY T (ux, uy, ut) = RT |X(ux, ut)RY |X(ux, uy)cX(ux), (6.4)

where

RT |X(ux, ut) =
cXT (ux, ut)

cX(ux)
, (6.5)

RY |X(ux, uy) =
cXY (ux, uy)

cX(ux)
, (6.6)

ux ∈ [0, 1]p, uy ∈ [0, 1]q, ut ∈ [0, 1]p. (6.7)
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We can finally rewrite the copula density of (Y, T ) as

cY T (uy, ut) =

∫
cXY T (ux, uy, ut)dux =

∫
cXT (ux, ut)cXY (ux, uy)

cX(ux)
dux, (6.8)

which shows that cY T is indeed fully determined by cXT and cXY . The IB optimisation problem
then reduces to finding an optimal copula density cXT and in order to construct the compression
variable T , the only relevant aspect is the copula dependence structure between X,T and Y .

6.3 Meta-Gaussian IB

6.3.1 Meta-Gaussian IB formulation

The above reformulation of IB is of great practical interest when we focus on the special case of the
Gaussian copula. The only known case for which a simple analytical solution to the IB problem
exists is when (X,Y ) are joint Gaussians. Equation (6.2) shows that actually an optimal solution
does not depend of the margins but only on the copula density cXY . From this observation the idea
naturally follows that an analytical solution should also exist for any joint distribution of (X,Y )
which has a Gaussian copula, and that regardless of its margins. We show below in Proposition
6.2 that this is indeed the case. The notation X̃ and Ỹ is used to represent the normal scores:

X̃ = (Φ−1 ◦ FX1(X1), . . . ,Φ−1 ◦ FXp(Xp)). (6.9)

Since copulas are invariant to strictly increasing transformations the normal scores have the same
copulas as the original variables X and Y .

Proposition 6.2. Optimality of meta-Gaussian IB
Consider rv X,Y with a Gaussian dependence structure and arbitrary margins:

FX,Y (x, y) ∼ CP (FX1
(x1), . . . , FXp(xp), FY1

(y1), . . . , FYq (yq)), (6.10)

where FXi , FYi are the marginal distributions of X,Y and CP is a Gaussian copula parametrized
by a correlation matrix P . Then the optimum of the IB minimisation problem is obtained for
T ∈ T , where T is the set of all rv T such that (X,Y, T ) has a Gaussian copula and T has
Gaussian margins.

Before proving proposition 6.2 we give a short lemma.

Lemma 6.1. T ∈ T ⇔ (X̃, Ỹ , T ) are jointly Gaussian.

Proof. 1. If T ∈ T then (X,Y, T ) has a Gaussian copula which implies that (X̃, Ỹ , T ) also
has a Gaussian copula. Since X̃, Ỹ , T all have normally distributed margins it follows that
(X̃, Ỹ , T ) has a joint Gaussian distribution.

2. If (X̃, Ỹ , T ) are jointly Gaussian then (X̃, Ỹ , T ) has a Gaussian copula which implies that
(X,Y, T ) has again a Gaussian copula. Since T has normally distributed margins, it follows
that T ∈ T .

Proposition 6.2 can now be proven by contradiction.
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Proof of proposition 6.2. Assume there exists T ∗ /∈ T such that:

L(X,Y, T ∗) := I(X;T ∗)− βI(Y ;T ∗) < min
p(t|x),T∈T

I(X;T )− βI(T ;Y ) (6.11)

Since (X̃, Ỹ , T ) has the same copula as (X,Y, T ), we have that I(X̃;T ) = I(X;T ) and I(Ỹ ;T ) =
I(Y ;T ). Using Lemma 6.1 the right hand part of inequality (3.17) can be rewritten as :

min
p(t|x),T∈T

L(X,Y, T ) = min
p(t|x),T∈T

L(X̃, Ỹ , T ) = min
p(t|x̃),(X̃,Ỹ ,T )∼N

L(X̃, Ỹ , T ). (6.12)

Combining equations (3.17) and (6.12) we obtain:

I(X̃;T ∗)− βI(Ỹ ;T ∗) < min
p(t|x̃),(X̃,Ỹ ,T )∼N

I(X̃;T )− βI(T ; Ỹ ).

This is in contradiction with the optimality of Gaussian information bottleneck, which states that
the optimal T is jointly Gaussian with (X,Y ). Thus the optimum for meta-Gaussian (X,Y ) is
attained for T with normal margins such that (X,Y, T ) also is meta-Gaussian.

Corollary 6.1. The optimal projection T o obtained for (X̃, Ỹ ) is also optimal for (X,Y ).

Proof. By the above we know that an optimal compression for (X,Y ) can be obtained in the set of
variables T such that (X̃, Ỹ , T ) is jointly Gaussian, since L̃ = L it is clear that T o is also optimal
for (X,Y ).

As a consequence of Proposition 6.2, for any random vector (X,Y ) having a Gaussian copula
dependence structure, an optimal projection T can be obtained by first calculating the vector of
the normal scores (X̃, Ỹ ) and then computing T = AX̃ + ξ. A is here entirely determined by the
covariance matrix of the vector (X̃, Ỹ ) which also equals its correlation matrix (the normal scores
have unit variance by definition), and thus the correlation matrix P parametrizing the Gaussian
copula CP . In practice the problem is reduced to the estimation the Gaussian copula of (X,Y ). In
particular, for the traditional Gaussian case where (X,Y ) ∼ N (0,Σ), this means that we actually
do not need to estimate the full covariance Σ but only the correlations. In summary, the main
idea in MGIB is that the IB problem for meta-Gaussian data can be solved by applying GIB in
the space of the normal scores (X̃, Ỹ ), and we can apply GIB to meta-Gaussian data as long as
we can make inference on two elements: P and the underlying Gaussian variables, which in the
continuous case are simply the normal scores (X̃, Ỹ ).

6.3.2 Meta-Gaussian mutual information

We derive in this section an expression for the mutual information of a meta-Gaussian pair X,Y .
The multi-information for a meta-Gaussian random vector Z = (Z1, . . . , Zd) with copula CPz .

I(Z) = I(Z̃) = − 1
2 log |cov(Z̃)| = − 1

2 log |Σz̃| = − 1
2 log |corr(Z̃)| = − 1

2 log |Pz|, (6.13)

where |.| denotes the determinant. The mutual information between X and Y is then

I(X;Y ) = − 1
2 log |P |+ 1

2 log |Px|+ 1
2 log |Py|, with P =

(
Px Pyx
Pxy Py

)
. (6.14)

It is obvious that the formula for the meta-Gaussian is similar to the formula for the Gaussian
case

IGauss(X;Y ) = − 1
2 log |Σ|+ 1

2 log |Σx|+ 1
2 log |Σy|, (6.15)
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but uses the correlation matrix parametrizing the copula instead of the data covariance matrix.
The two formulas are equivalent when X,Y are jointly Gaussian.

In the following we additonally provide a direct derivation of the multi-information for a meta-
Gaussian random vector Z = (Z1, . . . , Zd).

I(Z) = Dkl(f(z) ‖ f0(z)) =

∫
[0,1]d

cZ(u) log cZ(u)du, u = (u1, . . . , ud),

=

∫
|P |− 1

2 exp
{
− 1

2 (Φ−1(u))T (P−1 − I)Φ−1(u)
}

log
[
|P |− 1

2 exp
{
− 1

2 (Φ−1(u))T (P−1 − I)Φ−1(u))
}]

du,

where Φ−1(u) = (Φ−1(u1), . . . ,Φ−1(ud)). We use the change of variable g(z̃) = g(z̃1, . . . , z̃d) :=
(Φ(z̃1), . . . ,Φ(z̃d)) = (u1, . . . , ud). The Jacobian matrix of the transformation is diagonal with
elements Dg(z̃)jj = Φ′(z̃j) and its determinant is det(Dg) = 2π−d/2 exp{− 1

2 z̃
T Iz̃}. We then

obtain:

I(Z) =

∫ +∞

−∞
|P |− 1

2 exp
{
− 1

2 z̃
T (P−1 − I)z̃

}
log
[
|P |− 1

2 exp
{
− 1

2 z̃
T (P−1 − I)z̃

}]
det(Dg)dz̃,

=

∫
|P |− 1

2 exp
{
− 1

2 z̃
TP−1z̃

}
exp

{
1
2 z̃
T Iz̃

} [
log(|P |− 1

2 )− 1
2 z̃
T (P−1 − I)z̃

]
2πd/2 exp{− 1

2 z̃
T Iz̃}dz̃,

=

∫
2πd/2|P |− 1

2 exp
{
− 1

2 z̃
TP−1z̃

} [
log(|P |− 1

2 )− 1
2 z̃
T (P−1 − I)z̃

]
dz̃,

= EN (0,P )

[
log(|P |− 1

2 )− 1
2 z̃
T (P−1 − I)z̃

]
= log(|P |− 1

2 )− 1
2EN (0,P )[z̃

TP−1z̃]+ 1
2EN (0,P )[z̃

T Iz̃],

= log(|P |− 1
2 )− 1

2d+ 1
2d

= − 1
2 log |P |.

6.3.3 Semi-parametric copula estimation

As explained in Section 6.3.1, to apply MGIB we need to perform inference on the correlation
matrix P and on the underlying standard Gaussian variables. In the continuous case, the hidden
variables are given by the normal scores which suggests using the empirical cumulative distribution
function and a semi-parametric estimation framework. Semi-parametric copula estimation has
been studied in Genest et al. (1995), Tsukahara (2005) and Hoff (2007). The main idea is to
combine non-parametric estimation of the margins with a parametric copula model, in our case
the Gaussian copulas family. If the margins F1, . . . , Fd of a random vector Z are known, P can
be estimated by the matrix P̂ with elements given by:

P̂(k,l) =
1
n

∑n
i=1 Φ−1(Fk(zik))Φ−1(Fl(zil))[

1
n

∑n
i=1 [Φ−1(Fk(zik))]

2 1
n

∑n
i=1 [Φ−1(Fl(zil))]

2
]1/2 , (6.16)

where zik denotes the i-th observation of dimension k. P̂ is assured to be positive semi-definite.
If the margins are unknown we can instead use the rescaled empirical cumulative distributions:

F̂j(t) =
n

n+ 1

(
1

n

n∑
i=1

Izij≤t

)
. (6.17)

The estimator resulting from using the rescaled empirical distributions (6.17) in equation (6.16)
is given in the following definition.
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Definition 6.1 (Normal scores rank correlation coefficient). The normal scores rank correlation
coefficient is the matrix P̂n with elements:

P̂n(k,l) =

∑n
i=1 Φ−1(R(zik)

n+1 )Φ−1(R(zil)
n+1 )∑n

i=1

(
Φ−1( i

n+1 )
)2 , (6.18)

where R(zik) denotes the rank of the i-th observation for dimension k. The estimator (6.18)
have been studied in Boudt et al. (2012) showing good efficiency and robustness properties, also
comparing favourably with Kendall and Spearman correlation measures. Using (6.18) we compute
an estimate of the correlation matrix P parametrizing cXY and obtain the transformation matrix
A as detailed in Algorithm 6.

Algorithm 6 Construction of the transformation matrix A

1. Compute the normal scores rank correlation estimate P̂n of the correlation matrix P
parametrizing cXY :
for k, l = 1, . . . , p+ q do

Set the (k, l)-th element of P̂n to
∑n
i=1 Φ−1(

R(zik)

n+1 )Φ−1(
R(zil)

n+1 )∑n
i=1(Φ−1( i

n+1 ))
2 as in equation (6.18) and where

the i-th row of z is the concatenation of the i-th rows of x and y: zi∗ = (xi∗, yi∗) ∈ Rp+q.
end for

2. Compute the estimated conditional covariance matrix of the normal scores: Σ̂x̃|ỹ = P̂nx −
P̂nxy(P̂ny )−1P̂nyx.

3. Find the eigenvectors and eigenvalues of Σ̂x̃|ỹ(P̂nx )−1.

4. Construct the transformation matrix A as in equation (5.14).

6.4 Results

6.4.1 Simulations

We tested meta-Gaussian IB (MGIB) in two different setting, first when the data is Gaussian
but contains outliers, second when the data has a Gaussian copula but non-Gaussian margins.
We generated a training sample with n = 1000 observations of X and Y with dimensions fixed
to dx = 15 and dy = 15. A covariance matrix was drawn from a Wishart distribution centered
at a correlation matrix populated with a few high correlation values to ensure some dependency
between X and Y . This matrix was then scaled to obtain the correlation matrix parametrizing
the copula. In the first setting the data was sampled with N (0, 1) margins. A fixed percentage of
outliers, 8%, was then introduced to the sample by randomly drawing a row and a column in the
data matrix and replacing the current value with a random draw from the set [−6,−3]∪[3, 6]. In the
second setting data points were drawn from meta-Gaussian distributions with three different type
of margins: Student with df = 4, exponential with λ = 1, and beta with α1 = 0.5 = α2. For each
training sample two projection matrices AG and AC were computed, AG was calculated based on
the sample covariance Σ̂n and AC was obtained using the normal scores rank correlation P̂n. The
compression quality of the projection was then tested on a test sample of n = 10′000 observations
generated independently from the same distribution (without outliers). Each experiment was
repeated 50 times. Figure 6.1 shows the information curves obtained by varying β from 0.1 to
200. The mutual informations I(X;T ) and (Y ;T ) can be reliably estimated on the test sample
using (6.13) and (6.18). The information curves start with a very steep slope, meaning that a small
increase in I(X;T ) leads to a significant increase in I(Y ;T ), and then slowly saturate to reach
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their asymptotic limit in I(Y ;T ). The best information curves are situated in the upper left corner
of the figure, since for a fixed compression value I(X;T ) we want to achieve the highest relevant
information content (I;T ). We clearly see in Figure 6.1 that MGIB consistently outperforms GIB
in that it achieves higher compression rates.
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Figure 6.1: Information curves for Gaussian data with outliers, data with Student, Exponential
and Beta margins. Each panel shows 50 curves obtained for repetitions of the MGIB (red) and
the GIB (black). The curves stop when they come close to saturation. For higher values of β
the information I(X;T ) would continue to grow while I(Y ;T ) would reach its limit leading to
horizontal lines, but such high beta values lead to numerical instability. Since GIB suffers from
a model mismatch problem when the margins are not Gaussian, the curves saturate for smaller
values of I(Y ;T ).

6.4.2 Real data

We further applied MGIB to the Communities and Crime data set from the UCI repository 1.
The data set contains observations of predictive and target variables. After removing missing
values we retained n = 2195 observations. In a pre-processing step we selected the dx = 10
dimensions with the strongest absolute rank correlation to one of the relevance variables. Plotting
empirical information curves as in the synthetic examples above was impossible, because even
for this setting with drastically decreased dimensionality all mutual information estimates we
tried (including the nearest-neighbor graph method in Pál et al. (2010)) were too unstable to
draw empirical information curves. To still give a graphical representation of our results we show
in Figure 6.2 non-parametric density estimates of the one dimensional compression T split in 5
groups according to corresponding values of the first relevance variable. We used GIB, MGIB
and Principal Component analysis (PCA) to reduce X to a 1-dimensional variable. For PCA
this is the first principal component, for GIB and MGIB we independently selected the highest
value of β leading to a 1-dimensional compression. It is obvious from Figure 6.2 that the one-
dimensional MGIB compression nicely separates the different target classes, whereas the GIB and
PCA projections seem to contain much less information about the target variable. We conclude
that similar to our synthetic examples above, the MGIB compression contains more information
about the relevance variable than GIB at the same compression rate.

1http://archive.ics.uci.edu/ml/
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Figure 6.2: Parzen density estimates of the univariate projection of X split in 5 groups according
to values of the first relevance variable. We see more separation between groups for MGIB than for
GIB or PCA, which indicates that the projection is more informative about the relevance variable.

6.5 Conclusion

We present a reformulation of the IB problem in terms of copula which gives new insights into data
compression with relevance constraints and opens new possible applications of IB for continuous
multivariate data. Meta-Gaussian IB naturally extends the analytical solution of Gaussian IB to
multivariate distributions with Gaussian copula and arbitrary marginal density. It can be applied
to any type of continuous data, provided the assumption of a Gaussian dependence structure
is reasonable, in which case the optimal compression can easily be obtained by semi-parametric
copula estimation. Simulated experiments showed that MGIB clearly outperforms GIB when the
marginal densities are not Gaussian, and even in the Gaussian case with a tiny amount of outliers
MGIB has been shown to significantly benefit from the robustness properties of rank estimators.
In future work, it would be interesting to see if the copula formulation of IB admits analytical
solutions for other copula families.
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Chapter 7

Sparse Meta-Gaussian information bottleneck

7.1 Introduction

Dimensionality reduction is an important domain of research for which a large variety of techniques
have been developed. Given observations of a multivariate random variable X, the aim is to con-
struct a new representation of the data with reduced dimensionality. Amongst the most prominent
methods, Principal Component Analysis (PCA) and Canonical Component Analysis (CCA) have
been extensively studied and extended. Other classical techniques include Factor Analysis and
methods for manifold modeling. Every dimensionality reduction technique first needs to define
what is important in the data and should therefore be preserved, e.g. PCA aims at preserving
the variance. In this respect, dimensionality reduction is related to the data compression problem
where the question of defining what is relevant is implicitly answered by the choice of a distortion
function, i.e. a function evaluating the loss incurred by compression. As seen in Chapter 5, an
interesting alternative to distortion functions is given by the Information bottleneck method (IB).
Instead of evaluating the distortion between the compression T and original data X, IB introduces
a relevance variable Y . An important advantage of IB is that compression and information are
solely expressed in information-theoretic quantities. While some choices of distortion function or
dependence measure (e.g. correlation) are not suitable for certain types of data, mutual infor-
mation is a very general and theoretically well-founded dependence measure (Joe, 1989). In this
chapter, we present a new sparse compression technique based on the information bottleneck prin-
ciple, i.e. we perform feature selection with relevance information. This is achieved by introducing
a sparse variant of IB in which T is built using only a few selected dimensions of the original data.
Efficient IB algorithms were limited to discrete data before the introduction of Gaussian IB (GIB),
which has later been generalised to the continuous meta-Gaussian distributions as explained in
Chapter 6. However, the compression achieved by existing IB methods is usually not sparse and,
therefore cannot be used for feature selection. Our model is an extension of MGIB, we impose
sparsity on the projection obtained through MGIB and thereby select a sparse set of features. Our
method shares some similarities with sparse regression techniques like Lasso (Tibshirani, 1996)
but is based on different, less restrictive assumptions and achieves sparsity without imposing any
norm penalty. To our knowledge, there exists no IB method to accommodate mixed distributions,
i.e. distributions with continuous and discrete margins, without resorting to discretisation of the
continuous dimensions. Besides introducing sparsity, we extend MGIB to mixed data by con-
sidering discrete margins as the result of a discretisation process of hidden continuous variables.
This extension is motivated by the high prevalence of mixed data in many domains where feature
selection is sought, especially in the medical and biological fields (de Leon and Chough, 2013).
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7.2 Sparse IB

We first assume that the underlying Gaussian variables of our copula model and P are known. As
explained in Chapter 6, we can assume that these hidden variables are centered and scaled, i.e.
are N (0, P ) distributed. Inference will be discussed in Section 7.3. To achieve sparse compression
we consider the MGIB model, for which the optimal compression is given by AX + ξ, but restrict
A to the class of diagonal matrices. If we denote by a = (a1, . . . , ap) ∈ Rp the vector of the
diagonal entries of A, the resulting projection is the vector AX = (a1X1, . . . , apXp). By varying
the Lagrange parameter of the minimisation problem, the vector a becomes sparse and thereby
selects only a few dimensions of X. As for the case of a full projection matrix we can assume
that the noise components are uncorrelated with unit variance i.e. Σξ = I. Our IB minimisation
problem for standard normal variables is

min
A:A∈D+

p

L|L ≡ I(X;T )− βI(T ;Y ), (7.1)

where D+
p is the set of positive diagonal matrices as explained below and (see equation (5.19))

I(X;T ) = 2 log(|APxAt + I|), (7.2)

I(Y ;T ) = 2 log(|APxAt + I|)− 2 log(|APx|yAt + I|). (7.3)

Optimisation here is simplified by two convenient properties:

1. For any symmetric positive definite matrix B and diagonal matrix D, log |DBD + I| =
log |BD2 + I| depends only on the squared entries D2

ii. It is therefore sufficient to consider
the space of positive diagonal matrices in Rp, denoted by D+

p . In the following we use the
notation A := D2.

2. log |BA + I| is concave in A and strictly monotone increasing in every component Aii.
Concavity directly follows from the concavity of log |B| and the fact that A 7→ BA+ I is an
affine function.

The variational problem (7.1) can be rewritten as a constrained optimisation problem (see also
(Chechik et al., 2005)):

min
A:A∈D+

p

I(X;T ) s.t. I(T ;Y ) ≥ κ′, (7.4)

for some κ′ ≥ 0. Using the Schur complement formula for conditional Gaussian covariance we
obtain

min
A:A∈D+

p

log |PxA+ I|︸ ︷︷ ︸
2I(X;T )

s.t. log |PxA+ I| − log |QA+ I|︸ ︷︷ ︸ ≥ κ′
2I(T ;Y )

, (7.5)

where Q = Px−PxyP−1
y PTxy is the conditional covariance matrix of X given Y . The corresponding

Lagrangian then is

L′(A, β) = log |PxA+ I| −
p∑
j=1

ηjAjj − β(log |PxA+ I| − log |QA+ I| − κ′), (7.6)

where ηj is the Lagrange parameter for the j-th non-negativity constraint. Nontrivial solutions for
the original IB with full matrix A exist only for β > 1, see Chechik et al. (2005). We transform the
IB problem into an equivalent form that exchanges objective function and constraint. Introducing
a new Lagrange parameter λ = (β − 1)/β, 0 < λ < 1, and dividing (7.6) by β, we arrive at the
new Lagrangian

L(A, λ) = log |QA+ I| −
p∑
j=1

εjAjj + λ(κ− log |PxA+ I|), (7.7)
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with εj =
ηj
β , κ ≥ 0. The corresponding minimisation problem can then be rewritten as

min
A:A∈D+

p

log |QA+ I|︸ ︷︷ ︸
:=f(a)

s.t. log |PxA+ I|︸ ︷︷ ︸
:=g(a)

≥ κ, (7.8)

which amounts to minimising a concave function f(a) over a convex set {b ∈ Rp|g(b) ≥ κ}. Thus,
the global minimum is attained at the boundary g(a) = κ. Note that for κ = 0 the constraint
is always satisfied and there is a unique minimum at a = 0. While we cannot characterise all
stationary points of the Lagrangian problem as formulated in (7.6), the minimisation problem (7.8)
has a particular form (concave function over a convex set) for which algorithms with guaranteed
convergence to a globally optimal solution exist (Benson and Horst, 1991). A Matlab code for this
method is available online1. However, this algorithm is not efficient in higher dimensions and we
therefore propose a log barrier interior point method detailed later in Algorithm 7.

The solution set S of optimisation problem (7.8) is defined as the set of points a∗ in the non-
negative orthant of Rp which are global minima for a certain value of κ:

S = {a∗ ∈ Rp+ s.t. ∃ κ ≥ 0 for which a∗ is a solution of (7.8)}.

In the following theorem, we show that for an interval [0, κc2], S is a curve parametrized by κ,
meaning that to every κ in this interval corresponds a unique point in S. In the following we
assume that Px and Py are random matrices of maximal rank and write Φ := Q−1,Ψ := P−1

x . We
denote points in S by a∗ = (a∗1, . . . , a

∗
p).

Theorem 7.1. With probability one, there exist κc2 > κc1 > 0 such that:

1. If κ ∈ [0, κc1] then

a∗i =

{
eκ − 1 if i = argminj(Qjj) =: if ,
0 else.

2. If κ ∈ [κc1, κ
c
2] then

a∗i =

 G(κ; Ψ,Φ) if i = is,
c1a
∗
is

+ c0 if i = if ,
0 else

where c1 = |Ψ|−Φ22

|Ψ|−Φ11
, c0 = |Ψ|(Φ11−Φ22)

|Ψ|−Φ11
and

G(κ; Ψ,Φ) = −|Ψ|(1 + c1) + c0
2c1

+

(
(|Ψ|(1 + c1) + c0)2

4c21
− |Ψ|(c0 + 1− eκ)

c1

)0.5

,

The value of is can be determined by searching over the p − 1 possible combinations (if , i)
and choosing the dimension is which gives the minimal value of f(a).

We use the term critical values to designate κc1, κ
c
2. We call if the most informative dimension of

X and is the second most informative dimension. Theorem 7.1 tells us that, for small enough κ
values, the solution set is a curve parametrized by κ which starts at the point zero, runs along
the if -axis until c0 is reached, and then takes the form of a straight line with slope c1, see Figure
7.1 for an illustration. We therefore call S the solution path. We prove this result in three steps
given by Lemma 7.1, Lemma 7.2 and Lemma 7.3.

Lemma 7.1 (Most informative dimension). The most informative dimension is the dimension
if with the smallest corresponding entry in Q, i.e. if = argmini(Qii). Moreover, when only one
component if of a is non-zero, a∗if = eκ − 1.

1http://www.mathworks.com/matlabcentral/fileexchange/36247-function-for-global-minimisation-of-a-concave-
function
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Figure 7.1: Objective function f (filled contours, colour coded) and constraint g (thick blue contour
lines). The solution path is depicted by the red line. Above the critical constraint value (in this example
the κc

1 ≈ 0.8 contour line), all solutions lie on the line a∗2 = c1a
∗
1 + c0 with positive slope c1, below the

critical value, the solution path is a vertical line at the origin, i.e. solutions are sparse (a∗1 = 0).

Proof. For every possible choice of i = 1, . . . , p, the value of ai is uniquely determined by the
constraint:

κ = g(ai) = log((Px)iiai + 1) = log(ai + 1), (7.9)

which implies that ai = eκ − 1. The optimal if is then determined by the minimum value of
f(ai) = log(Qiiai + 1) = log(Qii(e

κ − 1) + 1).

Lemma 7.2 bellow provides an analytical solution in the case p = 2. In the following we denote
the partial derivatives of a real function f of a by ∂f

∂ai
(a) = fai .

Lemma 7.2 (2-dimensional case). Assume p = 2 and, w.l.o.g. that the most informative dimen-
sion is if = 2. Let c1, c0, G(κ; Ψ,Φ) be defined as in Theorem 7.1. The first critical value is
κc1 = log(c0 + 1), and with probability one, κc1 > 0. Moreover, the optimal a∗ is given

1. for every κ ∈ [κc1,∞) by

a∗2 = c1a
∗
1 + c0, (7.10)

a∗1 = G(κ; Ψ,Φ), (7.11)

2. for every κ ∈ [0, κc1] by a∗2 = eκ − 1, a∗1 = 0.

Proof. We first determine the set of stationary points with strictly positive components. When
ai > 0, i = 1, 2, the non-negativity constraints are inactive and εi = 0, i = 1, 2. Stationary
points are characterised by a vanishing Lagrangian gradient ∇L = 0, which here means that
∇f(a) = λ∇g(a). When p = 2, this proportionality condition is equivalent to the orthogonality
condition −ga2fa1 + ga1fa2 = 0. Adding the constraint g(a) = κ leads to a system of 2 equations
in 3 variables (a1, a2 and κ) which implicitly defines the set of all stationary points with strictly
positive components: {

H̃12 : fa2ga1 − fa1ga2 = 0

H̃0 : g(a)− κ = 0
, (7.12)

To solve the above system we first need to to compute the partial derivatives fai , gai . Rewriting
f(a) = log(|Q||Q−1 + A|) = log |Q|+ log |Φ + A| and g(a) = log |corrx|+ log |Ψ + A|, we directly
obtain

faj =
|Φ +A|[−j]

|Φ +A|
, gaj =

|Ψ +A|[−j]

|Ψ +A|
. (7.13)

From expressions 7.13 we can see that H̃12 can advantageously be replaced by

H12 : |Φ +A||Ψ +A|(fa2ga1 − fa1ga2) = 0. (7.14)
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Further, H̃0 can be replaced by H0 : |Px||Ψ + A| − eκ = 0. We solve system (7.12) in two steps.
First, using H12 we obtain an expression for a2 as a function of a1, leading to equation (7.10).
Second, we replace a2 in H0 by expression (7.10), leading to equation (7.11). Finally, we can
compute the critical value κc1 by solving a∗1 = G(κ; Ψ,Φ) = 0 for κ.

A straightforward derivation leads to

H12 = (Φ11 + a1)(Ψ22 + a2)− (Φ22 + a2)(Ψ11 + a1).

Setting H12 to zero gives:

a2 =

(
Ψ22 − Φ22

Ψ11 − Φ11

)
a1 +

Φ11Ψ22 − Φ22Ψ11

Ψ11 − Φ11
,

from which we can identify

c1 =
Ψ22 − Φ22

Ψ11 − Φ11
, c0 =

Φ11Ψ22 − Φ22Ψ11

Ψ11 − Φ11
. (7.15)

Noting that Ψ11 = Ψ22 = |Ψ|, we find the final expressions for c0 and c1.

We further set H0 to zero and replace a2 by c1a1 + c0 to obtain:

|Px||Ψ +A| = |Ψ|−1|Ψ +A| = eκ,

(Ψ11 + a1)(Ψ22 + c1a1 + c0)−Ψ2
12 = |Ψ|eκ,

a2
1 + a1

|Ψ|(1 + c1) + c0
c1

+
|Ψ|(c0 + 1− eκ)

c1
= 0. (7.16)

We can recognise in (7.16) a quadratic equation of the form a2
1 + ra1 + s = 0. Since we assumed

that dimension 2 is the most informative we have that c0 > 0 and the solution for a1 is then

given by a1 = − r2 +
(
r2

4 − s
)0.5

leading directly to equation (7.11). Finally, we can compute the

critical value κc1 by noting that a1 = 0 is equivalent to |Φ|(c0 + 1− eκ)/c1 = 0 which implies that
c0 + 1− eκc1 = 0.

Solutions for κ ≤ κc1 are given by Lemma 7.1. The probability of c0 being equal to zero is null, i.e.
P{c0 = 0} = 0, since P{Q11 = Q22} = 0 for random correlation matrices Px and Py. This implies
that κc1 > 0 with probability one and there always exist values of κ for which the 1-dimensional
solution is optimal.

We come back to the general p-dimensional case with the following result.

Lemma 7.3 (General p-dimensional case). In the p-dimensional problem, with probability one,
the following statements hold:

1. There is an non-empty interval [κc1, κ
c
3] for which the global optimum is attained with two

active dimensions.
2. There is an non-empty interval [κc1, κ

c
2] for which the global optimum is attained in a fixed

2-dimensional subspace.

Proof. Assume w.l.o.g. that the most informative dimension is if = 1. As seen in the proof of
Lemma 7.2, stationary points with strictly positive components are characterised by ∇f(a) =
λ∇g(a). A new dimension j 6= 1 becomes active when faj = λgaj .

We prove the first statement by contradiction. Assume that there exists no global optimum having
exactly two non-zero components, this means that when varying κ, solutions ”jump” from one to
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(at least) three non-zero components2. In particular, at the jumping point a∗ = (a∗1, 0, . . . , 0) two
equations of the form {

H1m : famga1 − fa1gam = 0
H1s : fasga1 − fa1gas = 0

(7.17)

for m, s 6= 1 with m 6= s must be fulfilled. When only the component a∗1 is non-zero, both equations
in (7.17) are linear in a∗1. We can therefore eliminate a∗1 from the above system and are left with
one equation in Px and Q only.

(Px)2
1mQ11(Q11 −Qss) + (Px)2

1sQ11(−Q11 +Qmm) + [Q11(Q2
1s −Q11Qss)+

Q11(−Q2
1m −Qmm +Q11Qmm) + (Q2

1mQss −Q2
1sQmm)] = 0 (7.18)

However, since Px, Py are random matrices, the probability that equation (7.18) holds is null. We
can therefore conclude that with probability one there is only one other dimension m 6= 1 for
which fam = λgam . This implies that there exist κc3 > κc1 ≥ 0 such that exactly two dimensions
are active.

We now prove the second statement. We restrict ourself w.l.o.g to the interval [0, κc3] where the
global optimum is attained only with one or two dimensions. The most informative dimension if
being fixed, there are p−1 different possible 2-dimensional subspaces. We can apply Lemma 7.2 to
each subspace separately to obtain p−1 different values of the first critical κ: 0 < κc1,1 < · · · < κc1,p.
Since each κc1,i is a function of different entries in Ψ and Φ (see Lemma 7.2), and recalling that
Px, Py are random matrices, we can see that all values κc1,1, . . . , κ

c
1,p are indeed distinct. The

solution path S leaves the if axis when the first solution with two non-zero components becomes
optimal, i.e. when κ = κc1,1 and we can finally set κc1 := κc1,1. In the interval [κc1,1, κ

c
1,2[ only one

2-dimensional subspace can contain global optima, namely the subspace having first critical value
κc1,1. We can therefore set κc2 := κc1,2.

We solve optimisation problem (7.8) using a log barrier interior point method detailed in Algorithm
7. Algorithm 7 starts by minimising f for a large value of the constraint κ such that all dimensions
are selected, and then successively decreases κ until finally a unique dimension remains active.
Even if we cannot prove that the solution path obtained with Algorithm 7 connects only global
minima, we can verify that it reaches the globally optimal 2-dimensional subspace. This was
indeed in the case in all simulations conducted.

Additional check for Algorithm 7. As an additional check of the path of stationary points
obtained with Algorithm 7, we verify that this path does not have any bifurcations. We thereby
insure that no other path connecting stationary points rejoins or diverges from the obtained
path. A classical way to study bifurcations in 1-dimensional manifolds is provided by the Implicit
function theorem. We first need to derive a set of equations which characterise the set of stationary
points. For a stationary point a∗ with strictly positive components, the non-negativity constraints
are inactive and εj = 0, ∀j. Stationary points are characterised by a vanishing Lagrangian
gradient ∇L = 0, meaning that ∇f(a∗) = λ∇g(a∗). This proportionality condition can be
translated into an orthogonality condition which eliminates λ: ∇f(a∗) must be orthogonal to the
(p − 1)-dimensional hyperplan orthogonal to ∇g(a∗). Constructing a basis (g1

⊥, . . . , g
p−1
⊥ ) of this

hyperplan we obtain p − 1 orthogonality conditions: ∇f · gi⊥ = 0, i = 1, . . . , p − 1. Adding the
constraint g(a) = κ leads to a set of p equations in p+ 1 variables (a and κ). In the following we
denote the partial derivatives of a real function f of a by ∂f

∂ai
(a) = fai , and the matrix of partial

derivatives for a vector-valued function F by JaF . We further assume that Px, Px|y have full rank

and write Φ := P−1
x|y ,Ψ := P−1

x . In the p-dimensional case, the hyperplan orthogonal to ∇g is

2The case of a jump from a = (0, . . . , 0) to a least three active dimensions can similarly be excluded.
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Algorithm 7 Optimisation of sparse MGIB

1. Denote the entries of A by a ∈ Rp and fix the set of κ values: κ ∈ {κ0 > κ1 > · · · > κm};
2. Initialisation step with κ = κ0:

compute amax ∈ Rp: amax
j = (eκ − 1)/(Px)jj ;

set am := 1/
∑
j(a

max
j )−1 ;

compute λ1, . . . , λp the eigenvalues of Px;

compute c = argmin[0,am]f1(v), v ∈ R with f1(v) =
[∑

j log(λj) +
∑
j log(λ−1

j + v)− κ
]2

;

set a = (c+ δ, . . . , c+ δ) for a small δ > 0;
3. Optimisation for κ ≥ κ0:
for κ ∈ {κ0, . . . , κm} do

for ε→ 0 do
Set a∗ = argminf2(w) where w ∈ Rp, W is the diagonal matrix with elements w and
f2(w) = log |Px|yW + I| − ε log

[
log |PxW + I| − κ

]
− ε
∑
j log(wj);

end for
Exclude the dimensions corresponding to zero elements in a∗ from the minimisation;

end for

(p− 1)-dimensional and a basis for it is given by g1
⊥, . . . , g

p−1
⊥ , where the vectors gi⊥ have −gai+1

at position i, gai at position i+ 1 and 0 otherwise. The set of stationary points is then implicitly
defined by the equation H = 0, where H : Rp+1 → Rp is defined by

H(a, κ) =


H1(a, κ)

...
Hp−1(a, κ)
Hp(a, κ)

 =


∇f(a) · g1

⊥(a)
...

∇f(a) · gp−1
⊥ (a)

g(a)− κ

 . (7.19)

By the Implicit function theorem we know that if |JaH(a∗)| 6= 0 for some point a∗ ∈ S, then
in a neighbourhood of a∗ the solution path S has no bifurcation. While running Algorithm 7
we therefore regularly check that this determinant remains non-zero: the algorithm proceeds by
successive optimisation steps with decreasing κ values {κ0 > · · · > κm} and for each value obtains
an optimum a∗(κ), for every such optimum we can then verify that |JaH(a∗)| 6= 0. This operation
can be efficiently conducted since the computation of all partial derivatives ∂Hi/∂aj requires only
two matrix inversions. Indeed, for i = 1, . . . , p− 1 we have

∂Hi

∂aj
(a) = fai+1,ajgai + fai+1

gai,aj

− fai,ajgai+1
− faigai+1,aj , (7.20)

fai = (Φ +A)−1
ii , gai = (Ψ +A)−1

ii ,

fai,aj = (−1)i+j(Φ +A)−1
ij − (Φ +A)−1

ii (Φ +A)−1
jj ,

gai,aj = (−1)i+j(Ψ +A)−1
ij − (Ψ +A)−1

ii (Ψ +A)−1
jj ,

where fai,aj = ∂2fi
∂ai∂aj

(a) and gai,aj = ∂2gi
∂ai∂aj

(a). The remaining elements of the Jacobian are given

by ∂Hp/∂aj(a) = gaj = −((Ψ +A)−1
jj )2 for j = 1, . . . , p.

7.3 Inference for mixed continuous-discrete data.

To make our model applicable to mixed data we use Gaussian hidden variables and, as in MGIB,
apply GIB to these underlying variables. This approach is based on the fact that every ordinal
categorical variable can be assumed to be a quantised version of an underlying continous one
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(Joe, 1989). Our model can be applied to data with any combination of continuous and ordinal
discrete margins. Copula models have mainly been used with continuous margins since for any
continous mutlivariate cdf F = (F1, . . . , Fn) Sklar’s theorem ensures the existence and the unicity
of the copula C such that F (v1, . . . , vn) = C(F1(v1), . . . , Fn(vn)). However, the copula construc-
tion C(F1(.), . . . , Fn(.)) stills leads to a valid cdf when all or some of the margins are discrete.
As explained in Chapter 3 (Section 3.6), the main difficulty in copula modeling with discrete
margins arises from the fact that uniqueness of the copula is guaranteed only on the range of
the margins and traditional estimation techniques face an unidentifiability problem (Genest and
Nešlehová, 2007). Despite this unidentifiability issue, efficient methods for copula estimation have
recently been developed (Pitt et al., 2006), (Smith and Khaled, 2012). We follow the Bayesian
semiparametric approach for Gaussian copula introduced in Hoff (2007) and consider the following
model:

(X̄1, . . . , X̄p, Ȳ1, . . . , Ȳq) ∼ N (0, P ), (7.21)

Xj = F−1
Xj

(Φ(X̄j)), Yl = F−1
Yl

(Φ(Ȳl)), j = 1, . . . , p, l = 1, . . . , q, (7.22)

where F−1
Xj
, F−1

Yl
are the generalised inverse of arbitrary, continuous or discrete, cdfs. We assume

a parametric form for the copula, namely Gaussian, but not for the margins which are treated
nonparametrically. Equation (7.22) imply that Xj ∼ FXj , Yl ∼ FYl . Unlike in the continuous
case, the underlying Gaussian variables X̄ = (X̄1, . . . , X̄p), Ȳ = (Ȳ1, . . . , Ȳq) are not of the form
(Φ−1 ◦ FX1

(X1), . . . ,Φ−1 ◦ FXp(Xp)). When some margins are discrete, estimates based on the
empirical marginal distributions (Liu et al., 2009) or on the rank correlation cannot be used.
To make inference on P and (X̄, Ȳ ) we use the marginal likelihood method introduced in Hoff
(2007) and detailed below. This method has the advantage of being able to handle missing values
and rank-deficient correlation matrices when the number of observations is smaller than the total
number of dimensions: n < p+ q.

Inference method detailed. To simplify the notation we write Z := (X,Y ) for the (p + q)-
dimensional random variable formed by concatenation of X and Y . Similarly, we use Z̄ := (X̄, Ȳ ).
The observed data matrix is denoted by (zij), where the ith row zi∗ = (xi1, . . . , xip, yi1, . . . , yiq) is
the ith observation of (X,Y ), and the corresponding unobserved realisations of Z̄ are denoted by
(z̄ij). Even without assuming any knowledge about the margins, the observed data (zij) provides
some information about (z̄ij). Since the marginal cdfs are non-decreasing, a certain ordering of
the observations must be preserved and the following holds:

zmj < znj ⇒ z̄mj < z̄nj , ∀m,n, j. (7.23)

Note that the converse implication does not hold since in the case of discrete observations ties can
be involved. From (7.23) we can conclude that observations of Z̄ must lie in the set D :

D :=
{

(z̄ij) ∈ Rn×(p+q)|aij < z̄ij < bij

}
, (7.24)

where the bounds for each z̄ij are defined as

aij = max
l 6=i
{z̄lj : zlj < zij} (7.25)

bij = min
l 6=i
{z̄lj : zlj > zij}. (7.26)

The set D is the set of all latent observations compatible with the (per column) ordering of the
observed data. For continuous data, D reduces to the set of latent observations having the same
ranks (for every dimension) as the observed data. Since the event Z̄ ∈ D occurs with probability
one whenever Z is observed, the distribution of the observed data can then be written as:

p(Z|P, FX , FY ) = p(Z, Z̄ ∈ D|P, FX , FY ) = Pr(Z̄ ∈ D|P ) p(Z|Z̄ ∈ D, P, FX , FY ), (7.27)

where FX = {FX1
, . . . , FXp}, FY = {FY1

, . . . , FYq}. The last equality in (7.27) follows from the
fact that the event Z̄ ∈ D depends only on the copula parameters P and is independent of the
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margins. Equation (7.27) provides a decomposition of the data distribution as a product of two
terms. Importantly, the first term depends only on the parameter of interest P , the dependence of
the data on the margins being confined to the second term. The marginal likelihood approach then
estimates P using Pr(Z̄ ∈ D|P ) only, treating FX and FY as nuisance parameters. Conducting
Bayesian inference, we are interested in the posterior distribution,

p(P |Z̄ ∈ D) ∝ p(P ) p(Z̄ ∈ D|P ), (7.28)

where p(P ) denotes the prior distribution of the correlation matrix P . Since p(P |Z̄ ∈ D) cannot
be analytically calculated, we use a Monte Carlo Markov Chain algorithm to obtain samples
from the posterior. The Gibbs sampling scheme alternates between sampling the hidden variables
and sampling the correlation matrix. As explained in Hoff (2007), it is considerably simpler to
obtain samples for P in an indirect fashion by first sampling from the posterior distribution of a
covariance matrix Σ which is then projected onto the corresponding correlation matrix. Consider
a model based on a covariance matrix Σ and a multivariate Gaussian variable K ∼ N (0,Σ). We
impose that Σ admits P as underlying correlation matrix (P(Σ) = P ). Then the variable Z̄ is
simply a scaled version of K and it is clear that Z̄ ∈ D and K ∈ D are equivalent. Posterior
inference for P(Σ)|K ∈ D is equivalent to inference for P |Z̄ ∈ D as long as the chosen prior
for Σ induces the same prior for P . By introducing the covariance matrix Σ we overparametrize
our model, we introduce a variance component which is unnecessary for the model specification
but simplifies considerably the sampling procedure since we can use the conjugacy properties of
Gaussian likelihood and Wishart prior. When required, samples of Z̄ can simply be obtained by
scaling samples of K. For computational efficiency, we reparametrize the algorithm from Hoff
(2007) in terms of precision matrix, thereby avoiding repetitive matrix inversions in Algorithm
8. Algorithm 8 implements the Bayesian inference procedure described in further details below.
We denote the precision matrix by B = Σ−1. The prior distribution of B is Wishart: p(B) ∼
Wishart(ν,B0). The following summaries our basic modelling assumptions:

B ∼ Wishart(ν,B0), (7.29)

Pij =
B−1
ij√

B−1
ii B

−1
jj

, ∀i, j, (7.30)

K1∗, . . . ,Kn∗|B
iid∼ N (0, B−1), (7.31)

where Ki∗ = (Ki1, . . . ,Ki(p+q)). Since B and K have conjugate distributions the posterior distri-
bution of B|K is again Wishart:

B|K ∼Wishart
(
ν + n,

(
B0 +KTK

)−1
)
, (7.32)

where n is the number of observations. Gibbs sampling consists of three steps:

1. Sample K|B,K ∈ D.

2. Sample B|K,K ∈ D = B|K following equation (7.32).

3. Compute P with components Pij =
B−1
ij√

B−1
ii B

−1
jj

.

Whereas steps 2 and 3 above are straightforward, the sampling of K is more involved. In step 1,
we sample K iteratively over observations i = 1, . . . , n and dimensions j = 1, . . . , p+ q. Although
K1∗, . . . ,Kn∗|B are iid, by conditioning on the event K ∈ D both the independence property and
the equal distribution property are lost. Indeed, the condition K ∈ D expresses a certain ordering
over K1∗, . . . ,Kn∗ imposed by the observed data Z. The imputed realisations of the hidden
variables no longer are iid Gaussian but follow each a different truncated Gaussian distribution:

Ki∗|B,K−i∗,K ∈ D ∼ T N (0, B−1, ai∗, bi∗), (7.33)
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where ai∗ = (ai1, . . . , ai(p+q)) and similarly bi∗ = (bi1, . . . , bi(p+q)). We sample one dimension of
Ki∗ at a time, conditioned on the others. Useful closure properties of the multivariate Gaus-
sian remain valid in the case of a truncated distribution and, in particular, the one-dimensional
conditional distributions are still Gaussian. We precisely sample from the following conditionals:

Kij |B,K ∈ D,K−i,−j ∼ T N
(
µij , σ

2
j , aij , bij

)
,

where µij = ki,−jB−j,j/(−Bjj) and σ2
j = 1/Bjj . Here ki,−j denotes the ith observation from the

previous sweep from which dimension j has been removed, similarly B−j,j denotes the jth column
of B from which the row j has been removed.

Algorithm 8 Imputation of K and P .

0. The prior distribution of B is Wishart(ν,B0);
1. Update K:
for j = 1, . . . , p+ q do

Set σj := 1/Bjj ;
for r ∈ unique{z1j , . . . , znj} do

set lower bound to a := max{kij |zij < r};
set upper bound to b := min{kij |zij > r};
for i ∈ {1, . . . , n}|zij = r do

compute µij := ki,−jB−j,j/(−Bjj);
sample kij ∼ T N (µij , σ

2
j , a, b) from a truncated Gaussian;

end for
end for

end for

2. Sample B ∼Wishart
(
ν + n,

(
B0 +KTK

)−1
)

.

3. Compute P : Pij = (B−1)ij/
√

(B−1)ii(B−1)jj .

7.4 Experiments

7.4.1 Simulated data

Simulation: Comparison between different IB methods. We generate training samples
with n = 1000 observations (xi, yi), i = 1, . . . , n and dimensions fixed to p = 15, q = 15. The
samples are drawn from a meta-Gaussian distribution (i.e. in the form of (6.10)) in two steps.
First, we generate the Gaussian hidden variables (X̄, Ȳ ), then using the margin transformations
(7.22) we obtain samples of (X,Y ). P is obtained by scaling a covariance matrix drawn from a
Wishart distribution. We use a Wishart distribution centered at a correlation matrix P0 populated
with some high correlation values to ensure some dependency between X and Y . In our first
experiment we compare the following methods:

1. MGIB bound : MGIB is applied to observations of the continuous hidden variables X̄, Ȳ .
These hidden variables are not observable in practice and MGIB bound provides an upper
bound on achievable information curves.

2. MGIB : We apply MGIB to observations {(xi, yi), i = 1, . . . , n} of the mixed variables without
adjustment for mixed data i.e. using the model introduced in Chapter 6.

3. Sparse MGIB : We apply sparse MGIB (no adjustment for mixed data) to {(xi, yi)}.
4. MMGIB : Mixed Meta-Gaussian IB is MGIB for mixed data applied to {(xi, yi)}.
5. Sparse MMGIB : Sparse version of MMGIB applied to {(xi, yi)}.

We assess the efficiency of the different compression matrices A obtained by the above methods
on a test set with 5000 observations. The compression T is calculated using the projection matrix

77



A obtained on the training data and the mutual information I(X̄;T ), I(Ȳ ;T ) are calculated using
the formula for meta-Gaussian variables given in Chapter 6. Simulations are conducted with mixed
margins for X and Y . For each dimension we use one of the following distributions: Student t4,
Binomial(2, 0.5) or Binomial(10, 0.5). By varying the parameter κ between 0.1 and 80 we can
represent I(Y ;T ) as a function of I(X;T ) and obtain the information curves. Each experiment
is repeated to obtain the 50 curves for each method (shown in the left panel of Figure 7.2). We
can see that some information was lost during the discretisation process I(X;Y ) < I(X̄, Ȳ ),
and therefore the most effective compression (green curves) is obtained when applying MGIB to
X̄, Ȳ (not observable in practice). MMGIB (blue curves) performs clearly better than MGIB (red
curves) on mixed data and achieves a compression rate closer to the MGIB bound. The left panel
of Figure 7.2 also illustrates the difference between sparse and traditional IB. The information
curves for sparse IB lie slightly below the traditional IB curves since less information can be
captured when A is restricted to a diagonal matrix. However, sparse and traditional IB curves
tend to the same value I(Y ;T ) as I(X;T ) increases.

Simulation: Feature selection. To test the efficiency of sparse MMGIB in selecting relevant
dimensions of X, we generate data such that only some dimensions of X were informative about
Y . This is achieved by using a correlation matrix P0 with only a few non-zero entries and a
Wishart distribution with high degrees of freedom. The margins of X and Y were again mixed,
following either a Beta(0.5, 0.5) or a Binomial(10, 0.5) distribution. The center and right panels
of Figure 7.2 show simulations conducted with two different choices for P0. On the left panel
three dimensions of X are strongly informative about Y with corresponding values of 0.8 in P0

and the remaining dimensions represent noise with correlations in P0 close to 0. The right panel
represents a more difficult situation: three dimensions of X have corresponding values of 0.8 in P0,
three other dimensions 0.6, and finally three more dimensions 0.4. Both panels show the solution
paths for the 15 entries of A, each line corresponding to one dimension of X. The information
curve obtained is shown in red with the corresponding κ values. On the center panel, the most
informative dimensions (green curves) are selected first and can be clearly distinguished from the
noise (gray dashed curves). On the right panel, the most informative dimensions (green curves)
appear first again. Then, as κ increases, the remaining informative dimensions (blue and lilac
curves) are selected as well. The noise dimensions are always selected last, when the value of κ
becomes higher, to allow I(X;T ) to reach the required level of 0.5κ.

Figure 7.2: Left: the figure shows 50 (overlapping) information curves for each method. MGIB bound
(green curves) provides a benchmark. MMGIB (blue curves) achieves a better compression than MGIB
(red curves). Sparsity in T is achieved at the price of a small decrease in efficiency (dashed curves).
Center and right: Solution paths for the 15 entries of A and corresponding information curve with κ
values. The two panels represent results for different P0, the more complex configuration can be seen on
the right. Green curves correspond to very informative dimensions of X (correlation 0.8 in P0), blue and
lilac curves to informative dimensions (corr. of 0.6 and 0.4 in P0, respectively), and gray dashed curves
represent noise (corr. 0 in P0).
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7.4.2 Real data

We consider a real world problem from computational biology. A recurring and important task
in medical prognosis is to identity biomarkers relevant to the disease evolution (Fuchs and Buh-
mann, 2011). Identification of a small number of key variables provides additional insight into
the disease’s mechanisms, and is crucial for cost-effective prognosis and therapy optimisation. We
consider this selection problem in the context of cutaneous malignant melanoma (MM), the most
common cause for fatalities in skin cancer. A first promising approach to identify biomarkers im-
portant for survival prediction was reported in (Meyer et al., 2012). Data was available in the form
of immunohistochemical (IHC) expressions of 70 candidate biomarkers measured for 364 patients.
Additionally, 9 different clinical observations were available which reflected experts’ opinion about
the stage of the tumor or directly characterised the severeness of the disease in terms of survival
times. Focusing exclusively on survival information (and ignoring all other clinical attributes), a
7 marker signature which is used to separate the patients into a low-risk and high-risk group has
been proposed in (Meyer et al., 2012). In particular, the signature is defined via a risk-score of
the form

score(x) =

∑7
i=1(βixi)αi∑7

i=1 αi
, αi =

{
1 if xi is measured
0 if xi is missing

where βi are the regression coefficients of a univariate Cox model and xi are are the IHC expression
measurements of the 7 markers. A convincing statistical interpretation of the selected markers,
however, remains unclear: the selection proceeded in several stages where only univariate tests
have been used. Moreover, the relation of the biomarkers to established prognosis-related clinical
observations like the pathological Tumor-Node-Metastasis (pTNM) staging or the Clark level was
ignored in the model.

Our sparse MGIB model is best adapted to this problem, since the data falls into two groups
which nicely fit into our framework: the 70 markers constitute the candidate features X, whereas
the 9 clinical observations can be used for the target variable Y . Defining a signature of molecular
markers might be seen as finding the best sparse compression of the biomarkers’ expression on
a molecular level which is still informative with respect to the clinical data in the second group.
Further, the technical specifications of this dataset also perfectly fit into our mixed-data Bayesian
framework: most of the expression levels are represented as ordered factors in a semi-quantitative
scoring system with 5 levels, but other variables like survival times are continuous in nature, and
roughly 10% of all values are missing. Repeated experiments conducted to a final selection of 6
markers as explained in the left panel of Figure 7.3.

Interestingly, our information-theoretic analysis method which is not particularly tailored to sur-
vival prediction could nicely reproduce the survival regression results in (Meyer et al., 2012): using
our set of 6 markers (containing 4 markers which were already part of the original 7 markers sig-
nature) in the same “signature” formalism also led to clear separation of low-risk and high-risk
patients on an independent test cohort. The right panel of Figure 7.3 shows Kaplan-Meier esti-
mates of two different patient groups separated by using the risk-score defined above applied to
our signature. The βi coefficients were calculated on the training set described above but the 6
markers expressions were measured on an external test cohort of 221 patients. We see that the
6 markers selected using our method indeed provide highly effective prognosis predictors. Given
the relatively small number of patients, the differences in p-values (2 · 10−4 for our signature
vs. 2 · 10−5 reported in panel A of Figure 6 in (Meyer et al., 2012)) are probably not too relevant.
This observation is corroborated by the fact that the effect of regular updates on the the patients’
censoring status from new follow-up reports have led to even bigger differences for the individual
signatures in the past. We conclude that our sparse IB model can indeed by used as a high-quality
prognosis predictor, even though it was not specifically designed for survival regression. The real
advantage of the IB model, however, is its capability to extract many more details about the in-
teraction between markers and a rich set of clinical measurements. Much could be said about the
interpretation of the joint (X,Y )-correlation matrix obtained within the semi-parametric copula
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Figure 7.3: Top: boxplots of the elements Aii in the diagonal projection matrix computed on the
basis of 50 consecutive samples from the posterior distribution of the correlation matrix in the Gibbs
sampler (features that are identically zero are not shown). The solution path was always cut at the same
compression level (which typically lead to 6-8 selected features). Red boxes represent markers already
identified in (Meyer et al., 2012). For our signature we select the 6 markers with a median above zero.
Bottom: Kaplan-Meier plots of the two patient groups from the test cohort resulting from thresholding
the risk score computed from the markers {MTAP, CD20, AKT.3, BCL.X, beta.Catenin, S1P1} at the
median.

framework. Due to space constraints, however, we focus here only on one particularly interesting
aspect, namely the reversal of the roles of X and Y , resulting in a sparse compression of the
clinical variables Y subject to a constraint of preserving information about the molecular markers
X. Figure 7.4 shows the corresponding solutions paths. Interestingly, it turns out that the disease
specific event status for overall survival contains by far the most information about the molecu-
lar markers. This dominance of the disease specific event status over classical prognosis-related
quantities like the T score or the clark level is interesting for the following reason: it basically
shows that the classical clinical indicators fail to capture all relevant disease-specific information
contained in the molecular data, showing that quantitative analysis of the biomarkers’ expression
patterns indeed adds valuable information about prognosis and survival in addition to the expert’s
macroscopic scoring/staging estimates.

Figure 7.4: Solution paths for 9 diagonal entries of A when the roles of X and Y are reversed.

80



7.5 Conclusion

Sparse Meta-Gaussian IB provides a very flexible method for sparse compression with side informa-
tion. By assuming a Gaussian copula, it encompasses a wide class of distributions with arbitrary
non-Gaussian margins (continuous or discrete). Using relevance information, we do not need to
impose any norm penalty to obtain sparsity. Our Bayesian framework for copula estimation can
handle large-scale high dimensional datasets with potentially missing values. Our log barrier inte-
rior point algorithm is efficient even in high dimensions. Moreover, we prove that the two globally
best input features can be found in arbitrary dimensions in an efficient way, thereby also providing
an additional validation of the results obtained with our algorithm. Finally, we demonstrate in a
clinical application that our model can compete with state-of-the-art survival prediction methods,
while additionally allowing for an in-depth analysis of relevance- and interaction patterns between
molecular markers and clinical measurements. We conclude that the proposed model is a highly
flexible analysis tool which has the potential to significantly advance the field of exploratory data
analysis within a well-defined information-theoretic framework.
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Chapter 8

Conclusion

Although copulas are beginning be seen as a useful tool in machine learning, their use remains
marginal. The goal of this thesis is to show how copulas can be incorporated into several estab-
lished machine learning, resulting in wider applicability and improved results on non-Gaussian
data. We summarize the contributions of this thesis to the solutions of three different problems
below.

Detection of dependencies. We considered the problem of detecting dependencies between
two sets of co-occurring samples, concentrating on meta-Gaussian data in which we infer a clus-
ter structure that has a semantic interpretation in terms of dependencies. We build on the
dependency-seeking clustering method for Gaussian variables of Klami and Kaski (2007) which is
based on the idea of discovering clusters to capture the dependencies. However, when applied to
non-Gaussian data, the clusters found by this method are used to approximate the non-Gaussian
structure of the true clusters and thus lose their interpretation in terms of dependence. We
proposed a Bayesian non-parametric generalization of this approach which overcomes the model
mismatch issues occurring when the Gaussian assumption is too restrictive by enlarging the class
of distributions covered, offering a wider range of application for dependency-seeking clustering.

Compression with relevance information. We then turned our attention to the Information
Bottleneck approach to the problem of compression in presence of relevance information. We
established a strong connection between IB method and copulas by showing that the method can
be reformulated entirely in terms of a copula. This view allows us to avoid the difficult multivariate
density estimation problem by focusing on the underlying copula, resulting in improved robustness
and efficiency. Although an analytical solution is available for Gaussian distributions, solving the
general problem can only be achieved by an iterative procedure. As a result, applications of the
IB method were previously limited to Gaussian and low-dimensional discrete and Gaussian data.
By taking advantage of the flexibility of a Gaussian copula model, we generalised the efficient
analytical solution to meta-Gaussian variables and thereby provided an efficient IB method for a
much larger class of continuous data.

Feature selection with relevance information. Building on our IB method for meta-Gaussian
data, we proposed a new approach to feature selection in presence of relevance information, which
identifies the most informative features w.r.t. the relevance variable. We adapted the classic IB
problem to perform hard feature selection by constraining the diagonal of the projection matrix
to be sparse and forcing the off-diagonal elements to be zero. We solve the resulting contrained
IB problem using a tailored interior point method which remains efficient in high dimensions and
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derive interesting convergence properties for it. The resulting Bayesian estimation technique can
handle target copulas for discrete, continuous or mixed distributions and easily deal with missing
values.
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