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Abstract

Nanostructured samples, be it semiconducting or metallic ones, have received consid-

erable experimental and theoretical attention due to the manifold of possibilities to

investigate fundamental physics. Not only are they viable candidates for realizations

of qubits, the key ingredient of quantum computation, but the surrounding solid makes

it a testing ground for many-body physics. Novel quantum mechanical effects, such as

topological phases and electron-mediated ferromagnetic nuclear spin ordering, are pre-

dicted to emerge in such systems. Low temperatures are crucial for these many-body

effects as the energies scales involved are typically very small. State of the art electron

transport experiments reach an electron temperature of roughly 10 mK. In order to

reach sub-millikelvin electron temperatures, we develop a novel type of refrigerator

aimed at cooling nanostructured samples, where nuclear demagnetization refrigera-

tors are integrated into every measurement lead, directly cooling the electrons therein.

Hence circumventing the limitation of electron-phonon coupling which is drastically

suppressed at the lowest temperatures due to its T 5 dependence.

We implement various kinds of electron thermometers to measure the electron tem-

perature in typical samples. In metallic Coulomb blockade thermometers (CBTs), we

observe a deviation from the electron-phonon cooling mechanism, indicating that we

succeed in cooling samples through the conduction electrons. Further, we investigate a

quantum dot in a typical GaAs device. The quantum dot thermometer is operated in

deep Coulomb blockade and probes the Fermi edge of the surrounding electron reservoir

both through direct transport and a proximal charge sensing device. After consider-

able tuning effort an electron temperature of 10 mK is extracted. Our experiments

show that the temperature reading is very susceptible to the electrostatic environment,

emphasizing the importance of the surrounding solid and demonstrating the difficulty

to implement a temperature sensor at the lowest temperatures. More importantly

the low electron temperatures open the possibility for very sensitive measurements of
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back-action effects of the charge sensor or the charge stability of the material.

After optimizing the chip socket and improving the filtering in the system, an

electron temperature of 5.2 mK ± 0.3 mK in a CBT is measured after demag-

netization. By measuring the temperature dependent I-V curves of a normal

metal/insulator/superconductor (NIS) tunnel junction, we implement yet another

thermometer, which we employ as both primary and secondary thermometer. On top

of that, we demonstrate with the help of reentrant features in the fractional quantum

Hall regime, cooling of electrons in a high mobility GaAs two-dimensional electron gas

(2DEG) below the base temperature of our dilution refrigerator.

Using our low electron temperatures, we investigate high mobility GaAs 2DEG devices

in large magnetic fields. In our samples the typical signature of the quantum Hall

effect is dramatically altered, resulting in a quantized longitudinal resistance. We can

show that this quantization, which occurs only at the lowest temperatures, is due to

a large electron density gradient in the 2DEG. As we show subsequently for the ν =

5/2 fractional quantum Hall state, the electron density gradient heavily influences the

extraction of the energy gap between the ground and excited state. Being a candidate

for one of the above mentioned topologically non-trivial ground states, our findings

could have important consequences for the fabrication of ν = 5/2 fractional quantum

Hall state samples.

Additionally, we measure the electrical resistance anisotropy in both natural graphite

and highly ordered pyrolytic graphite (HOPG), comparing macroscopic samples, with

exfoliated, nanofabricated specimens of nanometer thickness. In nanoscale samples,

independent on the graphite type, we find a very large c-axis resistivity ρc – much

larger than expected from simple band theory – and non-monotonic temperature de-

pendence. This is similar to macroscopic HOPG, but in stark contrast to macroscopic

natural graphite. A recent model of disorder-induced delocalization is consistent with

our transport data. Furthermore, Micro-Raman spectroscopy reveals clearly reduced

disorder in exfoliated samples and HOPG, as expected within the model.
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1

1 Introduction

Ever since Max Planck put forward quantized units of energy [1], quantum physics has

truly revolutionized physics, helping to understand the microscopic workings of our

universe. To this day in particle physics novel elementary particles are predicted and

detected [2]. But quantum physics has also shaken up condensed matter physics, as

many properties of condensed matter can only be accurately described with quantum

mechanical principles [3]. Besides band theory, the introduction of quasiparticles in

order to describe collective behavior in a solid has been amongst the most success-

ful approaches. The reason might be that the quasiparticle description captures the

essentials of collective behavior, but still employs a simple particle picture. Bosonic

phonons as fundamental excitation of lattice vibration are needed to explain the lat-

tice heat capacity and its temperature dependence [4]. Mass-renormalized quasiparticle

in Landau-Fermi liquids[5] are able to capture the interaction between electrons and

thus predict many properties of an interacting electron gas, e.g. the T 2 dependence of

electrical conductivity in a metal at the lowest temperatures [3].

In the meantime, condensed matter physics can be considered the modern playground

for particle physics, as efforts of many research groups concentrate on investigating

novel types of quasiparticles within the solid state, inspired by concepts and ideas

which have been around for a long time. Additionally, the solid state offers many more

possibilities to realize novel types of states of matter - tailored quasiparticles, designed

on paper or fortuitously discovered in exotic materials. Composite fermions [6], heavy

fermions [7, 8], Dirac fermions [9, 10], Majorana fermions [11, 12], Bose condensates

[13, 14] of pure bosons and paired fermions, topologically trivial or non-trivial[15–17]

and even particles with non-integral statistics [18, 19] have been predicted and some

of them observed in condensed matter systems. Instead of building a huge accelerator,

one “only” has to ensure that within a solid the energy separation between the many-

body ground state and the first excited state is large compared to all other energy
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scales. This can either be done by choosing materials wisely or even synthesize them

purpose specific, such that the energy protection of the collective ground states is large

enough. Another approach is to reduce the magnitude of all other involved energies,

namely by reducing temperature. Low temperature physics has always been promoting

discoveries of collective behavior from superconductivity [20], Kondo physics [21, 22]

to superfluidity in 4He [23] and more surprisingly in 3He [24].

By now, experimental studies of quantum effects are not restricted to macroscopic man-

ifestations anymore. Modern measurement techniques have enabled observation and

manipulation of single atoms. Further, progress in fabrication techniques has promoted

creation of a plethora of nanostructured devices with energy scales within reachable

experimental temperatures [25, 26], allowing for the creation of artificial, tunable atoms

[27], offering a versatile instrument to investigate the meso- and nanoscopic behavior

of electrons and their coupling to the environment.

Simultaneously to the advancement of device fabrication allowing wide tunabilty, quan-

tum mechanics has changed another discipline in the last decades: Information tech-

nology. On the one hand side transistor sizes approach the quantum realm, but more

importantly it has been postulated that algorithms harvesting the properties of entan-

gled superpositions of quantum states will outperform classical algorithms in certain

tasks [28]. The fundamental constituent of such a quantum computer is a so called

quantum bit (qubit), which has to be manipulated coherently. The proposed physical

implementation of qubits are manifold, among them are photons [29], trapped ions

[30] or currents in superconducting LC circuits [31]. Another promising candidate are

electrons with their charge [32] or their spin [33], confined to nanostructures. The elec-

tron based realizations often require low temperatures, as coupling to the environment

is strong due to the electronic charge. This makes the qubit more vulnerable to its

surrounding, but also easier to manipulate and read-out. The electron spin on the

other hand offers a more protected qubit basis. Among the fundamental questions for

the development of a quantum computer is how and how fast the qubit decoheres [34].
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For the case of electrons, it has been found that the inverse of the decoherence time

scales with a power law in temperature [35], again suggesting benefits from low electron

temperatures. For electron spin qubits, nuclear spin fluctuations in the host material

have been identified as the main decoherence mechanism. Lower temperatures would

allow for larger nuclear spin polarizations. For a two dimensional GaAs/GaAlAs het-

erostructure, it has even been predicted that below ∼ 1 mK the nuclear spins should

align ferromagnetically due to an electron mediated interaction between the nuclei

[36, 37], suppressing fluctuations completely. Such a phase transition is of course inter-

esting in its own right, as the transition temperature is supposed to be electron density

dependent, and constitutes another new state of matter.

Motivated by the ample reasons to explore unprecedented low temperatures, this the-

sis describes the effort to reduce electron temperatures in metallic and semiconducting

nanostructured samples using an adiabatic nuclear refrigeration technique. In chap-

ter 2 first an introduction to fundamental cryogenic principles and relations will be

given and then the implementation and performance of the experimental apparatus

aimed at cooling electrons in typical devices to sub-millikelvin temperatures will be

described. In Chapter 3 electron thermometry experiments with Coulomb blockaded

metallic structures will be presented and limitations of the cooling technique are dis-

cussed. Experiments investigating deep Coulomb blockade thermometry in quantum

dots are presented in chapter 4, including a discussion about the thermometer limi-

tations. Chapter 5 describes an improved setup and subsequent experiments, demon-

strating that electrons in metallic structures cool to ∼ 5 mK. Measured devices include

both Coulomb blockade thermometers (CBT) and normal/insulator/superconductor

(NIS) junctions. Finally also the cooling of electrons in a two-dimensional electron gas

(2DEG) below the base temperature of the dilution refrigerator is shown by means of

reentrant features in quantum Hall measurements. A recent experiment on high mobil-

ity 2DEGs is described in chapter 6, where the detrimental effects of density gradients

in the detection of the exotic ν=5/2 state are investigated. Chapter 7 discusses our
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possible evidence of bulk disorder induced lifting of Anderson localization along the

c-axis in the layered material graphite, yet another interesting state of matter – already

known for a long time, but surprisingly still not understood today.
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2 Nuclear Refrigeration for Nanoelectronics

Due to the decoupling of different degrees of freedom at the lowest T , a key ingredient

for reaching unprecedented electron temperatures in semiconductor devices is the actual

refrigeration technique. Commercially available dilution refrigerators can reach base

temperatures of below 10 mK.With home-built, optimized setups, even temperatures of

2 mK can be reached in continuous operation mode. Our approach is a different one, as

we adopt the well established technique of adiabatic nuclear demagnetization (AND) for

cooling [38–40]. AND is used to achieve the lowest temperatures in condensed matter,

it is a single shot technique, but allows in principle to cool the coldest part in the

refrigerator to ≤ 100 µK, potentially reducing temperature by factor 100 or even more

compared to a commercial DR. Double demagnetization stages can be used to achieve

even lower temperatures. Using this technique the lowest electron temperature reported

to date is 1 µK in Pt [41], for the nuclear system the record stands at 300 pK reached

in Rh nuclear spins [42]. Another beneficial effect is that coupling the electronic system

to a nuclear refrigerator (NR) at the lowest temperatures is much easier than coupling

it to the 4He/3He mixture in a DR, as NRs can be chosen to be metallic. Although the

scope of this thesis is rather coupling electrons in semiconductors to the coldest part of a

given refrigerator, we first have to establish successful AND. After outlining the physical

principles governing heat transport at low T , an introduction to the working principle

of AND will be given and the design of the home-built nuclear demagnetization unit will

be presented. In the second part of this chapter the demagnetization stage performance

is discussed by means of heat leaks, lowest temperatures reached and demagnetization

efficiency.
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2.1 Thermal Conductance of Solid Matter

2.1.1 General Concepts

In a cryogenic apparatus the coldest parts are inevitably connected to room tempera-

ture and heat will flow accordingly. In order to build a refrigerator, it is very important

to understand how all parts of the refrigerator are coupled to each other. Heat flow is

described by a linear response theory, where a potential gradient (temperature) causes

a flow of a current (heat). The linear relation between the two is characterized by a

constant (heat/thermal conductivity). Elementary excitations can carry energy and

therefore will participate in thermal conductance in order to equalize the energy differ-

ence. Among these excitations are electron and phonons, but also more exotic particles

like magnons and neutral modes in quantum Hall edge states [43]. Because the elemen-

tary excitation can differ for different materials, the heat conductivity is depending on

the specific material. Thus an appropriate choice of materials is paramount for proper

operation of the experimental apparatus at T � 1 K. We will first discuss some mech-

anisms of heat transport for different material types and then discuss what happens at

material interfaces.

2.1.2 Heat Conductivity

The rate of heat flow per unit area resulting from a temperature gradient can be written

as

q̇ = −κ∇T. (2.1)

As the transport of heat carriers, i.e. elementary excitations, is usually not ballistic,

heat conduction is a diffusive process. By applying transport theory in its simplest

form (i.e. kinetic gas theory) one finds for the thermal conductivity
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κ = 1
3cmvλ = cmv

2τ, (2.2)

where cm is the the molar heat capacity, λ is the mean free path, τ the scattering

rate and v is the velocity of the particles. We are now interested in the temperature

dependence of Eq. 2.2 especially in the low temperature regime.

Considering phonons, it is important that at low temperatures the sound velocity is

independent of temperature [44]. According to the Debye Model, the molar vibrational

heat capacity due to phonons cph ∝ T 3

ΘD
, where ΘD is the Debye temperature. For

T � ΘD, the number of thermally excited phonons is small, thus the mean free path

is not dominated by phonon-phonon scattering, but rather by scattering at crystal

defects and boundaries. It turns out that for the case of dominant scattering at crystal

irregularities the mean free path is temperature independent, such that κph ∝ T 3.

In the case of electrons, the Fermi velocity is temperature independent as well. Below

the Fermi temperature, the molar heat capacity of free electrons decreases linearly

with temperature, ce = γT , where γ is the Sommerfeld constant. Below the Debye

temperature, electron scattering with lattice defects and impurity dominates, as the

number of phonons is small and thus λ is temperature independent as well - hence

κe ∝ T . The two channels of heat conductance are additive. Because of the lack

of free electrons, in insulators κph dominates and becomes rather weak at the lowest

temperatures due to its cubic T dependence. In superconducting metals there are

also no free electrons available at the Fermi energy because of the superconducting

gap ∆. Only the phonons and the remaining quasiparticles, which are exponentially

suppressed at temperatures below the critical temperature TC , can contribute to the

thermal conductance. Hence below the critical temperature Tc of the superconductor

the thermal conductance approaches the conductance of an insulator with the cubic

T dependence. In normal metals on the other hand, heat conduction is typically

dominated by electrons, providing a rather good thermal conductance at the lowest T .

The dominance of electronic heat conduction manifests itself in a particular nice way
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through the Wiedemann-Franz law, which relates thermal conductivity and electrical

conductivity. It allows for an easy determination of the thermal conductivity of a

metal by measuring the electrical conductivity. This is helpful as thermal conductivity

measurements are typically rather involved. In the defect scattering limit (i.e. at

lowest T ) the mean free path is not temperature dependent. This means that the

electrical conductance is constant. The T dependence of the thermal conductivity is

solely carried by the heat capacity ce, which is linear in temperature. Thus the ratio

between thermal and electrical conductivity should be proportional to T . For a more

qualitative consideration take a density n of electrons with effective mass m∗ in a

metal. Due to the Fermi-Dirac distribution around the Fermi energy (εF ), we can use

the relations v2
F = 2εF

m∗ and ce = π2

2
kBT
εF
nkB. Further by plugging into Eq. 2.2, we find

κ = π2

3
τ

m∗
k2
BnT. (2.3)

By employing the Drude electrical conductivity σ = ne2τ
m∗ the relation of thermal and

electrical conductivity can be written as

κ

σ
= π2

3
k2
B

e2 T = L0T, (2.4)

where L0 is the Lorenz number. Due to more exotic scattering mechanisms (e.g. the

Kondo effect) this temperature dependence can be altered at the lowest temperatures

and it has been observed that the Lorenz number can vary for different types of metals

for various reasons [39]. In summary, plugging Eq. 2.4 into Eq. 2.1, the electronic

contribution to the heat flow between two points at electron temperatures Te,1 and Te,2

is

Q̇e = π2k2
B

6e2R

(
T 2
e,1 − T 2

e,2

)
, (2.5)

where R is the electrical resistance between the two points. Generally, it is clear that
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in order to achieve the highest thermal conductance, often desired in low temperature

experiments, one should use the highest purity metals, as in those defect scattering is

suppressed. An easy method to characterize the purity of metals is through their elec-

trical resistance. By measuring the electrical resistivity ρ both at room temperature,

where it is dominated by phonon scattering and at 4.2 K, where impurity scattering

dominates, one can extract the residual resistivity ratio (RRR)

RRR = ρ300 K

ρ4.2 K

. (2.6)

2.2 Cooling of Solid Matter

Cooling an object involves putting it into thermal contact with a colder reservoir.

The temperature gradient will cause energy to flow from the object with the larger

temperature towards the reservoir with a lower temperature. The thermal equilibrium

temperature of the object to be cooled is determined by the rate of heat flow, the

thermal conductivity κ and the heat leaking into the object - Q0. This assumes of

course that the reservoir is large enough, or that the heat is efficiently and continuously

removed so that it keeps the initial temperature.

2.2.1 Thermal Boundary Resistance

So far we have considered the heat conductivity within a material. Often one has to

combine different materials in an experimental apparatus for practical reasons. At the

interface between materials different effects come into play. The thermal boundary

resistance, or Kapitza resistance, RK is also temperature dependent. For non noble

metals like Cu or Al usually a oxide layer covers the surface, which is detrimental

for the thermal conductance across this boundary. For Al, the oxide layer is almost

unavoidable, thus it is very inefficient to bring materials just in contact with Al, they

should be fused together instead. The Cu surface slowly degrades over time. A way
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to prevent oxidation is to cover Cu with a more noble metal like Au. With this Au

plating technique, a pressed contact can stay efficient for very long time. Generally

the preferred contact types for permanent connections between materials are fused or

welded joints as they provide much better thermal contact.

An especially high thermal resistance is observed between liquid helium and metals,

because of the large sound velocity difference. Hence an acoustic mismatch exists at

liquid helium-metal interfaces. As the work horse of low temperature physics is the

dilution refrigerator (DR), where a liquid helium mixture is the coldest point, this is a

very important technical concern. Snell’s law of refraction for phonons is

sinαh
sinαs

= vh
vs
, (2.7)

for the angles α at which the phonons cross the boundary. Because the sound velocity

in helium vh is roughly a factor 10 smaller than the phonon velocity in the solid (vs), the

critical angle for total reflection is θc ∼ 3◦; above this angle phonons from the helium

cannot enter the solid. Taking the angle distribution and in addition the transmission

coefficient into account, it turns out that only a very small fraction of phonons from

the helium can enter the solid (one per ∼ 105 [5]). Therefore the cold helium and the

surrounding pieces are rather inefficiently coupled. Additionally it can be shown that

for liquid helium-metal interfaces RK ∝ A−1T−3, where A is the contact area. As a

consequence, to allow for efficient thermal coupling at the DR base T, the contact area

between liquid helium can be increased i.e. by surface roughening of the metal or by

using metal sinters [45].

2.2.2 Electron-Phonon Coupling

Interestingly, as thermal conductance generally is reduced with temperature, the dif-

ferent degrees of freedom within a material tend to become decoupled at the lowest

temperatures. The different systems of elementary excitation can then individually be



2.3 Adiabatic Nuclear Demagnetization 11

described because they reach equilibrium among themselves on a much faster time scale

than coupling to other degrees of freedom. For example in the case of electron-phonon

coupling the heat flow is given by

Q̇e−ph = ΣΩ(T 5
ph − T 5

e ), (2.8)

where Ω is the volume and Σ is the material dependent electron-phonon coupling con-

stant [44]. Due to the strong temperature dependence at the lowest temperatures the

heat flow is suppressed between electrons and phonons. It thus becomes increasingly

difficult to cool the electron system through lattice phonons at lower temperatures, as

for example in a DR. It may be that phonons are at much lower temperatures, while

the electron temperature lies well above that, due to a small heat leak. For the imple-

mentation of a refrigerator for low electron temperatures it is more desirable to cool

the electrons through a different system. Fortunately, the coupling between nuclei and

conduction electrons is much more efficient down to low temperatures. The coupling

mechanism is due to electromagnetic interaction between the magnetic moments of

electrons and nuclei, the so called hyperfine interaction. This can be used in a so called

nuclear demagnetization stage, as described below.

2.3 Adiabatic Nuclear Demagnetization

The thermodynamics of the nuclear demagnetization for our purposes is completely

described by a non-interacting ensemble of nuclei with spin I and magnetic moment

µn subjected to a magnetic field B. The Zeeman energies of the different spin states

are given by

EZ,m = −mµngnB (2.9)

where gn is the nuclear g-factor and the magnetic quantum number m runs from −I

to +I. One can then write in the high temperature limit (kBT � EZ,m) the molar

nuclear spin entropy as
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Sn = R ln(2I + 1)− λnB
2

2µ0T 2
n

(2.10)

where R is the molar gas constant, µ0 is the vacuum permeability, Tn the nuclear

temperature and λn the molar Curie constant. From the relation CB = T
(
∂S
∂T

)
B
, one

finds the Schottky law for the nuclear specific heat

Cn,B = λnB
2

µ0T 2
n

. (2.11)

Notably both the entropy and the specific heat are functions of (B/T ) only.

AND is a single shot technique, which can be divided into three sub steps. First the

NR is exposed to a high magnetic field of several Tesla (Bi). The heat of magnetization

generated by the polarization of the nuclear spins is removed by a continuously oper-

ating refrigeration technique, typically a DR, which has to be thermally coupled to the

NR very well. Precooling the NR to an initial temperature (Ti) builds up a significant

spin polarization, resulting in a reduction of the nuclear spin entropy, according to

Eq. 2.10. Then the DR and the NR are thermally decoupled with a so called heat

switch, otherwise heat will leak into the NR from the DR. In the last step, the demag-

netization field is ramped down very slowly to a final field Bf at nuclear temperature

Tf , in order to preserve the nuclear spin population. During an ideal adiabatic process,

the nuclear spin entropy then stays constant S(Bi/Ti) = S(Bf/Tf ), which results in

Bi

Ti
= Bf

Tf
. (2.12)

Therefore for a given precooling temperature Ti the ratio between initial field and final

field determines the final temperature. One cannot demagnetize to arbitrarily low

Bf because of the internal field of the NR. Secondly, at the lowest temperatures the

condition kBT � EZ,m does not hold and internal interactions will align the magnetic

moments. Generally the two restrictions are avoided in our experiments as we keep
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Bf above several tens of mT. For these fields EZ,m ∼ 40 µK, which is well above the

lowest temperatures achieved in our setup (Tf ∼ 180 µK). As will be shown below the

residual heat leak of the system stops us from demagnetizing to fields comparable to

the internal field of Cu (0.4 mT) – the NR warm up before reaching this B-field scale.

2.3.1 Coupling of the Nuclear Spins to the Environment

The spin-spin relaxation time needed to establish thermal equilibrium among the nu-

clei, τ2, is very short (τ2 ∼1 ms for typical metals) [39]. Thus one can assume thermal

equilibrium among the nuclei with the temperature Tn. In order to cool the electronic

system, a thermal equilibrium has to be reached between the different heat reservoirs

in the NR. As described above, at the lowest temperatures different reservoirs typically

tend to be rather well decoupled. Fortunately, the coupling between nuclei and con-

duction electrons is efficient down to low temperatures. The hyperfine interaction is

the electromagnetic interaction between the magnetic moments of nuclei and electrons.

The dominant hyperfine term is the Fermi-contact interaction for electrons with a finite

charge density at the site of the nucleus. Thus in metals with valence electrons in the

s-shell, hyperfine coupling is especially strong. Generally, only conduction electrons

near the Fermi energy can interact with the nuclei, because the electron has to have

an accessible empty energy state at the energy difference corresponding to the small

energy exchanged with the nucleus. Because of this participation of electrons close to

the Fermi edge only, the time τ1 the nuclei need to come into equilibrium with the con-

duction electrons can be linked to the electron temperature Te through the Korringa

law

τ1Te = κ, (2.13)

where κ is the Korringa constant, a material parameter describing the strength of the

hyperfine coupling. For insulators there are no conduction electrons, therefore the

Korringa constant gets very small, rendering time scales very long (τ1 >> 1 day at
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temperatures below 1 mK). Superconductors suffer from the same problem as at the

Fermi energy there are no energy states available. For normal metals, the Korringa

constant is higher, especially for metals with s-orbital conduction electrons, making the

relaxation times experimentally accessible (τ1 ∼ 1h). Thus only metals are suitable for

nuclear refrigeration.

So far we only considered the situation where the electrons sit at a constant temperature

Te and the nuclei equilibrate to this electron temperature. If one considers the actual

case of nuclear refrigeration, where the cold nuclei have to pull the hotter electrons to

lower temperatures, both temperatures Tn and Te will change. The heat flow between

the two baths is given by

Q̇ = nCeṪe = −nCn,BṪn, (2.14)

where Ce, Cn,B is the specific heat of the conduction electrons and the nuclei respec-

tively and n is the number of moles of the NR.

With the definition of the spin relaxation time
(
dT−1

n

dt
= −T−1

n −T−1
e

τ1

)
and the Korringa

law (2.13) one finds for the rate of change of the nuclear temperature

Ṫn = (Te − Tn)Tn
κ

. (2.15)

By plugging this into Eq. 2.14, the rate of change of temperature for the conduction

electrons becomes

Ṫe = −(Te − Tn)
(
TnCn,B
κCe

)
. (2.16)

This results in an altered relaxation time, such that the effective time constant becomes

τ eff1 = τ1Ce
Cn,B + Ce

≈ τ1Ce
Cn,B

, (2.17)

the approximation is justified because the Ce is much smaller than Cn,B in an external

magnetic field B. For the same reason τ eff1 is much shorter than τ1, thus the conduction
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electrons follow the nuclear spin temperature rather quickly, while Tn stays almost

constant.

2.3.2 Influence of an External Heat Load

In a more realistic scenario the demagnetization is not a reversible and non-adiabatic

process, because of an external heat load. Heat will flow from the outside to the

electrons and from there to the nuclei. This results in a temperature gradient between

the electrons and the nuclei, finally causing both systems to warm up. The cooling

capacity of the nuclei is given by

∫
Q̇dt =

∫
nCn,BdT . (2.18)

From the rate of change of the nuclear temperature (2.15) and the definition of the

nuclear specific heat one finds

Q̇ = nCn,Bf
Ṫn = (Te − Tn)

nλnB
2
f

µ0κTn
. (2.19)

This can be rewritten as

Te
Tn

= 1 + µ0κQ̇

nλnB2
f

, (2.20)

thus Te is lifted above the nuclear temperature when a heat load is present, and the

effect is most pronounced at low final demagnetization fields. Due to the reduction in

heat capacity at lower fields and the heat leak there exists an optimum in Bf for which

the electron temperature is minimal, which is given by:

Bf,opt =

√√√√µ0κQ̇

nλn
. (2.21)

Another important property of a nuclear demagnetization stage is the time it can stay
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below a certain temperature, as due to the finite heat leak, both the electrons and the

nuclei will heat up with time. Because the rate of change of the nuclear temperature

is given by

Ṫn = Q̇

nCn,Bf

, (2.22)

the time to warm-up the nuclei from temperature Tn,1 to a higher temperature Tn,2 can

be expressed as

t =
(
nλnB

2
f

µ0Q̇

)
(T−1

n,1 − T−1
n,2). (2.23)

This relation can be very useful. For a given Bf the heat leak into the NR can be

estimated from the time t it takes to warm up the nuclei. Further, if for some reason

reliable thermometry is not possible at the lowest temperature, the temperature can

be estimated with Eq. 2.23, if a known amount of heat is applied to the NR [40].

2.3.3 Practical Considerations

A suitable nuclear refrigerant has to meet several criteria. Of course, a considerable part

of the NRs’ isotopes should possess a nuclear spin I > 0 and a large as possible nuclear

Curie constant λn for a large specific heat and thus a large cooling power. As discussed

above, an efficient coupling between the nuclei and the conduction electrons is needed,

thus the NR should be a metal with a small Korringa constant κ. On the other hand the

NR should not become superconducting, because of low thermal conductance and poor

coupling between nuclei and electrons of the superconductor. Further the NR should

not exhibit an electronic magnetic ordering transition, because the nuclei would align

along this internal field. These requirements can be contradictory as high electronic

density at the Fermi-edge for good coupling to the nuclei also enhances electronic

magnetism and superconductivity. Further, the material should be available in high

purity and easily machinable. It turns out that only few materials meet the above

mentioned criteria, among them In, Nb, Cu and PrNi5. In (Nb) has a large nuclear

spin (I = 9/2), but exhibit superconductivity at fields below ∼ 30 mT (200 mT). Like
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in many other AND experiments, in our setup Cu is used as NR, due to its reasonably

large nuclear spin (I = 3/2) and Curie constant (λn/µ0 = 3.22·10-6 µJ K T-2 mol -1)

[39]. Further, the Korringa constant is also sufficiently low (κ = 1.27 K s). Using

Cu as NR allows to demagnetize to very low final fields (Bf ∼ 10 mT) and therefore

enables very low temperatures Tf < 50 µK. But successful demagnetization requires a

very small heat load on the NR. Further, demagnetization experiments with Cu can

be demanding as the precooling temperature should be on the order of ∼ 10 mK in a

magnetic fields of ∼ 8 T. If experiments have less stringent requirements for the lowest

temperatures, PrNi5 can be a better choice. Due to its large hyperfine enhancement

PrNi5 demagnetization stages can reach Tf ∼ 0.4 mK with less demanding constraints

on superconducting solenoids and precooling temperature (Ti ∼ 25 mK, Bi ∼ 5 T).

Recently, AND has been demonstrated on a so called pulse-tube setup with PrNi5 as

NR [46].

In order to ensure an efficient performance of the demagnetization refrigerator, one

should limit external heat loads to a minimum. Obvious external heat leaks include

residual heat flow from the warmer parts of the refrigerator to the coldest part through

residual gas particles, via the heat switch or along the mechanical support. By proper

choice of materials and operation in a low pressure environment (presidual ≤ 10-5 mbar)

these heat leaks can be reduced to below 1 nW. Because thermal radiation from higher

temperatures can be much larger, all microkelvin temperature parts have to be guarded

by radiation shields. Another concern is heat coupled into the low T environment

by radio frequency (RF) radiation via the electrical measurement lines from room

temperature. In order to avoid these effects, our measurement lines are feed through

thermocoax or twisted pairs in order to attenuate radiation. Further, the sample

measurement leads are equipped with low T filters (discussed in more detail below).

We additionally operate the experiment in a shielded room, where no power supply is

operated inside the room. All power lines and magnet leads are filtered upon entering

the room. Preamplifiers operated inside the room run on an external battery.



18 2 Nuclear Refrigeration for Nanoelectronics

Mechanical vibrations stemming from mechanical pumps, sound or building activities

can cause heating as well. The experiment is therefore placed on a pneumatically

damped table. Additional mass is placed on the table in order to reduce the resonance

frequency of the system, decoupling it from higher vibrational frequencies. All gas lines,

potentially mediating pump vibrations, pass through a sandbox and a concrete block

to reduce these vibrations. All of these measures help to suppress eddy current heating,

occuring when a time dependent magnetic field Ḃ is inducing currents in conducting

materias, i.e if parts of the refrigerator move in a magnetic field gradient. Along similar

lines, we build a rigid support structure around the NR. Of course ramping during

demagnetization always implies a finite Ḃ and eddy currents consequently generate

heat. In principle, there is an optimal geometry for the Cu plates, but it turns out

that for sufficiently low demagnetization rates (Ḃ ≤ 1 T h-1), dimensions of the NR of

2-3 mm are sufficient to suppress heating to an acceptable level (Q̇eddy ≤ 10 nW). We

therefore do not use any slitting techniques to further reduce eddy current heating. In

any case, conducting loops in which changing magnetic flux gives rise to eddy currents

should be minimized, thus all rings in the support structure have a nonconducting slit.

Moreover there are time-dependent, internal heat leaks, sometimes referred to as heat

release. Materials containing hydrogen can release a significant amount of energy over

a very long time scale, due to the so called ortho-para conversion of hydrogen [47].

Essentially hydrogen gets trapped in a metastable excited energy state at higher tem-

peratures and only very slowly relaxes to the ground state, which emits heat to the

surrounding. Therefore we try to reduce the use of hydrogen containing materials to

a minimum. That means that for thermal and electric insulators, where plastic is the

material of choice, we use hydrogen-free Teflon or very little epoxy or nylon. Further

the NR is made from high purity, low hydrogen concentration Cu (NOSV). Another

internal source of heat are relaxations of structural tunneling systems within a solid.

Especially for amorphous materials like ceramics, this can be a significant contribu-

tion to the heat leak with a very broad distribution of relaxation times [5]. As will
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be discussed below, it could have been the case that exactly such an effect was a ma-

jor obstacle in our efforts to cool electrons to temperatures below 10 mK, underlining

the paramount importance of all material and design considerations for a successful

operation of a nuclear demagnetization refrigerator.

2.4 Design of the Refrigerator

The nuclear demagnetization unit is displayed schematically in Fig. 2.1. We follow

a recent proposal and realization of a nuclear refrigerator prototype developed in our

group [48]. The most important feat of the setup is that every sample wire passes

through its own, separate NR (colored red, Fig. 2.1 (a)), providing excellent thermal

contact between the NR and the sample, even at the lowest temperatures. It is im-

portant to keep all wires electrically isolated from each other to perform transport

measurements. The presented setup consistes of 21 parallel NRs, allowing for quite

sophisticated transport experiments.

Each NR plate consists of 1 mol of Cu (4N, RRR ∼ 480, red in Fig. 2.1 (a)), situated

at the center of a demagnetizing field (Bdemag). On the upper side, the Cu NRs are

connected with high conductivity Ag wires (5N, RRR ∼ 1,000, light blue) through an

Aluminum heat switch (green) to the mixing chamber (MC) of a dilution refrigerator

(DR). For efficient thermalization of the Cu during precooling, the thermal resistance

between the NR and the MC must be minimized. To this end we use Ag wire with

1.27 mm diameter, which are spot welded to the Cu plates, and in the MC sintered

to Ag nanoparticles (light blue) [45]. The surface areas are measured with the BET

method [49] and determined to be ∼ 2.5 m2 per sinter. The heat switches are “C”-

shaped pieces of annealed high purity Al (5N) fused to the Ag wires on both ends [50].

The heat switch magnet is used to switch between a thermally conducting state (Al in

the normal state) and a thermally insulating state (Al in the superconducting state),

where the requirement on the solenoid is given by the critical field BC,Al ∼ 10.5 mT

[51]. The switching ratio of thermal conductances in the “closed” (normal) and the
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Figure 2.1: (a) Schematic of the Nuclear Refrigerator Setup. Only 6 NR are shown
for simplicity. Each NR plate is 0.25 × 3.2 × 9.0 cm3, amounting to 1 mol of Cu per
plate. The distance from the bottom of the MC to the center of the Cu pieces 35
cm. (b) Cooling scheme with thermal resistances of the nuclear refrigerator setup.
Different colors indicate potentially different temperatures in the steady state. Further
the location of the three independent solenoid fields is indicated.

“open” (superconducting) state can reach 107 at temperatures well below the critical

temperature of the superconductor [39], where excited quasiparticles are highly sup-

pressed in the superconductor. (∼100 mK for Al with TC ∼ 1.1K). The Al pieces are

roughly placed on a fixed radius in order to minimize differences in the stray field of

the heat switch magnet. The field we apply to “close” the switches is 25 mT. Between

the heat switch magnet and the demagnetization solenoid a canceled field region exists,

where field sensitive devices like thermometers are placed.

On the lower side of the NRs the plates are connected by Ag wire to a ceramic chip

socket (Macor, black), where a chip carrier (Macor) can be plugged into. Gold-plated

metal pins ensure a press contact, resulting in an electrical resistance of ∼ 100 mΩ

at room temperature (RRR ∼ 10). The contacts of the sample are wire bonded (Au
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wire, yellow) to contact pads on the chip carrier (Ti/Au, evaporated onto the Macor).

A sample magnetic field (BS, up to 9T) can be controlled independently from the

demagnetization field.

For stability reasons the whole NR array is held together with dental floss and rigidly

attached to a metallic support structure (not shown in Fig. 2.1), which is thermalized

to the MC of the DR. Electrical and thermal insulation between the NRs and, more

importantly, to the support structure is ensured through Teflon spacers. In the original

design of the demagnetization stage, below the NR network, the sample socket is held

in place by three Macor rods attached to the support structure for excellent thermal

insulation and stabilization. In the course of transport experiments we became aware

that Macor might not be a suitable low temperature material, either being responsible

for a significant heat leak, or developing a high heat capacity at the lowest T , making

it difficult to cool. As discussed below, in later experiments, we replace both the Macor

chip socket/carrier by a silver epoxy version and the supporting rods by Vespel (SP-22)

rods, because we suspect the ceramic to cause quite significant heat release, inhibiting

further cooling.

Probably the weakest thermal link between the device and the NR occurs at the

Schottky barriers of the metal-semiconductor contacts (RAg3, RHyp < Rcontact, see

Fig. 2.1 (b)). In steady state, the parasitic heat leaking into the device will equal

the heat leaving it through the thermal links to the NRs, setting the lowest achievable

temperatures. Metallic nanostructures will benefit from comparatively higher conduc-

tivity metal-metal contacts.

2.5 Refrigerator Performance

The MC temperature (TMC) is measured with a Cerium Manganese Nitrate (CMN)

thermometer bolted to the support structure, which itself is thermally connected to the

DR through its own Ag sinter in the MC. Characterization of the NRs is carried out by

monitoring the electron temperature TCu of the Cu plates. Nine RuO2 chip resistors
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labeled A-I are mounted on the chip carrier and electrically connected to 16 of the 21

NRs, with each resistor using a pair of NR as its leads. The chip resistors are calibrated

against the MC temperature between 20 mK and 100 mK, and then temperature can be

extrapolated for lower temperatures. Further two Lanthanum Cerium Manganese Ni-

trate (LCMN) thermometers are placed in the compensated field region and connected

to an individual NR through a Ag wire. Unfortunately at the lowest temperatures all

thermometers suffer from saturation (Tsat,RuO2 ∼ 2 mK, Tsat,LCMN ∼ 1 mK). This is

expected in the case of the chip resistors, but rather unexpected for LCMN thermome-

ters, as the Curie temperature for LCMN usually is below a millikelvin [52]. But a

deviation from Curie-Weiss behavior below 3 mK has been reported before [53]. We

suspect that a possible hydration of the paramagnetic salt causes the mediation of the

dipole-dipole interaction, resulting in a higher Curie temperature [54].

In order to test the demagnetization stage properties further, we place temperature

independent resistors (Rheater ∼120 Ω) on some NRs to apply heat to specific NRs.

We first characterize the demagnetization stage by means of heat leaks and precooling

times. The performance of the demagnetization stage is then tested by measuring

the lowest nuclear and electron temperatures. We finally chart the demagnetization

efficiencies such that the final temperature can be determined from the precooling

temperature.

2.5.1 Heat Leak

A key figure of merit of every demagnetization stage is the heat leak into the NR.

One can divide these heat leaks into a static heat leaks i.e. radiation, residual heat

conduction through vacuum and heat release from materials and dynamic heat leaks,

i.e. eddy currents during ramping of the magnetic field. The lower the heat leak, the

longer the NR can stay at the lowest temperatures and thus the longer the time window

for experiments before warming up again. Further, the heat leak potentially keeps the

lowest electron temperature significantly above the nuclear temperature.
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Figure 2.2: The temperature of the NR versus the applied power for three different
NR. The markers are measurements for different LCMN thermometers (purple,green) as
well as a RuO2 chip resistor thermometer (red). The solid lines represent fits assuming
a dominant phonon dislocation scattering mechanism (κph ∝ T 2). The extracted heat
leaks from the fits are on the same order of magnitude, below 1 nW mol-1
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One way of measuring the residual heat leak is by applying a given amount of heat to

a NR at base temperature of the dilution fridge [48]. By knowing the heat conduction

mechanism one can extrapolate back to zero power applied, in order to estimate the

residual heat leak Q̇0. At base T , with the heat switches in the “closed” position, the NR

and the MC are at roughly the same temperature. No significantly higher temperature

of the NR can be detected, which is, due to very good thermal conductance to the

MC expected and a first (not very stringent) requirement for successful operation of

the nuclear stage. In order to be more sensitive, the heat switches are switched to the

superconducting state, decoupling the NR and the MC. Now, the residual heat leak can

lift the NR temperature already significantly above the DR base T due to the highly

reduced thermal conductance. In order to characterize the thermal conductance, we

apply a known power Papp to a NR with a resistive heater placed on the NR. Further

we assume a phonon dislocation scattering mechanism through the heat switch as

the lowest thermal resistance between NR and MC [55]. The equilibrium situation is

described by

Papp = nA
(
T 3
Cu − T 3

MC

)
− Q̇0, (2.24)

where n is the number of moles of Cu and A is a geometry and material dependent

prefactor. By plotting TCu versus Papp for several applied powers, we can fit Eq. 2.24 in

order to extract A and more importantly Q̇0 (n = 1 mol is held constant). Figure 2.2

shows so called power curves for three different NRs. Two power curves are recorded

with LCMN thermometers (purple, green) and the third with a calibrated RuO2 chip

resistor (red). As LCMN thermometers are not precise anymore at higher temperatures,

we only fit TCu(Papp) for TCu ≤ 70 mK. The phonon dislocation mechanism fits agree

nicely with the data (solid lines in Fig. 2.2), although at the highest temperatures there

is a deviation. This might be due to the lack in precision in the LCMN measurement,

but the discrepancy also shows up in the RuO2 curve. Most likely the deviation stems

from an additional heat transport channel through the heat switch, possibly due to
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Figure 2.3: The inverse temperature of the NR is plotted against time for three
different Bdemag, 0.2 T (green), 0.25 T (purple) and 0.5 T (red). The solid black lines
are fits using Eq. 2.23, with only the static heat leak Q̇0 as a free parameter. The
extracted Q̇0 agree for the three different Bdemag, are below 1 nW mol-1 independent
of Bdemag . The heat switches are in the “open” state for this measurement. The inset
shows the precooling of the nuclear refrigerator. TCu is plotted as a function of time, at
Bdemag = 9 T and the heat switches are in the “closed” state. A linear fit to the data
in the log-log plot shows a slope of -0.31, corresponding to TCu ∝ t−0.31, in agreement
with expected behavior.

an increased number of quasiparticles at elevated temperatures. For all three fits A

is 8 ± 1 · 10-5 W mol-1 K-3. The parasitic heat leak Q̇0 per mol, deduced from the

fit, lies between 0.7 and 0.9 nW mol-1. This is sufficiently low, but far away from the

state of the art heat leak of Q̇0 ∼ 5 pW mol-1 [56]. We suspect that most of the heat

leaks through the Teflon spacers and nylon screws holding together the NR array and

attaching it to the support structure [57]. Additionally, we determine the heat leak

at Bdemag = 0.2 T, which is measured to be below 1 nW as well (data not shown).

From field sweeps around zero B-field we estimate the dynamic heat leak, due to eddy

current heating, to be ∼ 20nW for a sweep rate of 1 T h-1 and ∼ 8nW for 0.5 T h-1.

Another way of determining the residual heat leak is to ramp the demagnetization coil

to a finite field Bdemag 6= 0, have the heat switches in the “closed” position and let the
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NR precool for some time. After the heat switches are “opened”, effectively reducing

the heat conduction between MC and NR by orders of magnitude, the temperature of

the NR will increase due to the parasitic heat leak. The dynamics of this warm up

are governed by Eq. 2.23. By plotting the inverse of the NR temperature TCu versus

time, one can extract the residual heat leak by fitting a line, as the slope is given by

− µ0Q̇
nλnB2

demag
. Figure 2.3 plots 1/TCu as a function of time for three different Bdemag. We

again extract heat leaks below 1 nW mol-1 for all Bdemag. At longer times the residual

heat leak and the heat removed through the heat switches start to balance and the

temperature saturates. For Bdemag = 0.5 T, due to the quadratic dependence of the

heat capacity on B-field, this starts to happen after more than 9 hours.

2.5.2 Demagnetization Efficiency

Given a heat leak sufficiently low for nuclear cooling, we now evaluate the demagnetiza-

tion process itself. After ramping Bdemag to Bi = 9 T, the NR heat up to 60 mK or more

(depending on the exact ramp rate), but than rapidly cool below 20 mK again. After 2

days of precooling the NR reach Ti ∼ 13 mK, as displayed in the inset of Fig. 2.3. The

time dependence of the precooling temperature is in good agreement with the behavior

expected (TCu ∝ t−1/3). This is true as long as the DR has a cooling power ∝ T 2, the

specific heat of the nuclei is proportional to T−2, and they are connected through a

metallic link with κ ∝ T [39] (assuming that RK does not play a role).

With Ti ∼ 13 mK accessible within 2 days, we next try to characterize the demagnetiza-

tion process itself. Figure 2.4 shows the resistance of several chip resistors RRuO2 during

a series of ramps from 9 T to 0.2 T. The inset in Fig. 2.4 shows the parallel NR network

with the corresponding chip resistors attached to them. Bdemag is decreased linearly in

time using two sequential ramps at 1 T h-1 from 9 T to 1 T (for most scans we stop and

let equilibrate at 5 T and at 2 T), and at 0.125 T h-1 from 1 T to 0.2 T. RRuO2 values

increase upon demagnetization, clearly indicating cooling. Further, RRuO2 continues

to increase between the individual B-field ramps, reflecting a thermal lag between the
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Figure 2.4: Resistance RRuO2 of the RuO2 chip resistors versus the Bdemag during
demagnetization indicating cooling of all NRs. Inset: Arrangement of Cu plates in the
parallel NR network with chip resistor and LCMN arrangement.

thermometers and the Cu plates. Looking at the rate of cooling, the RuO2 thermome-

ters are sensitive to the ramping of the field, as cooling is faster once the magnetic field

has stopped ramping (not visible in Fig. 2.4). Upon resuming ramping after a stop at

constant Bdemag some chips show a decrease in RRuO2 , indicating sensitivity to eddy

current heating in the NR. Applying the temperature calibration obtained at higher

temperaturs to RRuO2 (not shown), one can extract a minimal Te ∼ 2 mK for the chip

resistors, but applying heat to the Cu plates demonstrates that this temperature is

saturated.

We follow the approach of previous experiments and try to extrapolate the NR tem-

peratures based on warm up curves [48]. Because of the thermal lag between NRs and

chip resistors and the not so clear amount of Cu a single resistor is connected to, we

focus on warm up curves measured with the LCMN. The inset of Fig. 2.5 shows the

electron temperature measured by the LCMN versus Bdemag during a demagnetization

run (Ti = 13 mK). As before Bdemag is ramped linearly from 9 T to 1 T (equilibration

stop at 2 T), and at 0.125 T h-1 from 1 T to Bf , for this particular demagnetization
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for details. Inset: Cooling of the LCMN during demagnetization to 0.05 T, the dashed
black line represents 100% efficiency.

Bf = 0.05 T. There is a clear deviation of TCu from the expected behaviour for a

demagnetization efficiency of 100% (dashed line). As will be discussed below, this is

both due to a saturation of the LCMN thermometer at low T and a manifestation of

the non-adiabatic character of the demagnetization process.

We extrapolate Tf and Te of the NRs reached after demagnetizing to Bf by plotting

the inverse LCMN temperature (T−1
e ) versus time t under an applied power Q̇app in

Fig. 2.23. At first, T−1
e is not showing a change at all, demonstrating the saturation

of the LCMN, but then eventually decreases. The warm up is described by Eq. 2.23,

where the slope of T−1
n (t) is given by the ratio Q̇/B2

f . In the range in which the LCMN

is not saturated (between 3 mK and 15 mK) we use a linear fit to determine T−1
e (t)

(solid black line in Fig. 2.5) to account for the warm-up. By calculating back to t = 0,

we determine the initial Te. From T−1
e (t) and Eq. 2.20, we determine T−1

n (t) (dashed

black line in Fig 2.5) and consequently Tf . Please note that we add the parasitic

heat leak Q̇0 ∼ 0.7 nW to the applied heat, such that Q̇ = Q̇0 + Q̇app. The slope
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of the “fitted” T−1
n (t) agrees nicely with the slope expected from Bf and Q̇. In the

upper panel of Fig. 2.5 a warm-up curve after a demagnetization to Bf = 0.2 T with

Q̇app = 20 nW is plotted. We extract Te = 0.59 ± 0.01 mK and Tf = 0.50 ± 0.01 mK.

It is worth noticing that at this Bf , with a heat leak of 0.7 nW, the NRs stay below

1 mK for 51 hours. Previously, Te and Tf after demagnetizing to Bf were determined

by recording the time t necessary to warm up the Cu plate completely (T−1
e , T−1

n → 0)

and then employing Eq. 2.20 and Eq. 2.23 [39, 48]. We emphasize that the previously

used method gives very similar Te and Tf as we extracted with our procedure.

Finally, we try to explore the limits of the nuclear demagnetization refrigerator by

demagnetizing to lower Bf (Bf,opt ∼ 20 mT). The bottom panel of Fig. 2.5 displays

a warm-up curve after a demagnetization to Bf = 0.05 T and Q̇app = 5 nW. The

extracted temperatures (using the method described above) are Te = 0.26 ± 0.01 mK

and Tf = 0.18 ± 0.01 mK, further demonstrating the successful operation of a parallel

NR network in the sub-millikelvin range. When demagnetized to Bf = 0.05 T other

Cu plates behave similarly (detected with the RuO2 chip resistors). Although some

chip resistors warm up when ramping to fields below ∼ 0.2 T, most likely because of

a too high heat leak due to eddy current heating. This has already been observed in

the prototype experiment [48, 58], where first thermometers would heat up at around

1 T. Thus the field range where this warm up occurs has been significantly reduced

with the second generation setup, hence also lower temperatures can be achieved with

the present setup.

Due to the saturation of the thermometers below 1 mK and due to the non-adiabatic

character of the demagnetization, we can only determine Te and Tf by measuring the

warm-up under an applied heat. For future experiments it is not practicable though to

warm up the NR right after every demagnetization run. We thus attempt to pre-chart

the demagnetization efficiencies ξBf
(Bf ) = Ti/Te

Bi/Bf
in order to predict the final electron

temperatures through the precooling temperatures Ti. After several demagnetization

runs we find the reproducible efficiencies: ξ5T = 92±2%, ξ2T = 81±2%, ξ1T = 77±3%
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Figure 2.6: Demagnetization efficiency ξ extracted from warm-up curves against the
final magnetic field Bf of the demagnetization run (blue markers). A theoretical curve
using Eq. 2.20 and assuming a heat leak of Q̇ = 100 nW is added (solid black line).

and ξ0.2T = 51± 5%. The dependence of the efficiency ξ on Bf is displayed in Fig. 2.6

(blue). The nonadiabicity (ξ < 100%) stems from the finite heat leak to the Cu plates,

most likely because of eddy current heating during the ramping of the field. The

nonadiabicity becomes worse at lower magnetic fields due to the smaller heat capacity

of the nuclei. The solid black line in Fig. 2.6 is the calculated ξ(Bf ) using Eq. 2.20 and

the definition of ξ(Bf ). For unknown reasons we have to assume an unrealistically high

heat leak of 100 nW, in order to somehow reproduce the measured ξ. This is much

higher than the dynamic heat leak we extracted from sweeps around zero B-field. We

note that in order to find a better matching of the calculated ξ to our data, one has

to incorporate a static heat leak which is ∝ B2 [58]. This might be consistent with

vibrations in a magnetic field gradient, causing eddy current heating. On the other

hand we do not observe that the static heat leak depends on magnetic field. Thus the

discrepancy between measured and calculated ξ is at present not fully understood.
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Abstract

We present an improved nuclear refrigerator reaching 0.3mK, aimed at mi-

crokelvin nanoelectronic experiments, and use it to investigate metallic Coulomb

blockade thermometers(CBTs) with various resistances R. The high-R devices

cool to slightly lower T , consistent with better isolation from the noise envi-

ronment, and exhibit electron-phonon cooling ∝ T 5 and a residual heat-leak of

40 aW. In contrast, the low-R CBTs display cooling with a clearly weaker T -

dependence, deviating from the electron-phonon mechanism. The CBTs agree

excellently with the refrigerator temperature above 20mK and reach a minimum-

T of 7.5± 0.2mK.

This chapter was published in Rev. Sci. Instrum. 83, 083903 (2012).
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3.1 Motivation

Advancing to even lower temperatures can open the door for the discovery of new

physics: for example, submillikelvin temperatures in quantum transport experiments

could lead to novel nuclear-spin physics [36, 37] in nanoscale semiconductor devices

[59] or could facilitate the study of non-Abelian anyons, Majorana fermions and topo-

logical quantum computation in fractional quantum Hall samples [60, 61]. However,

cooling of nanoscale devices below T∼ 1mK is a formidable challenge due to poor ther-

mal contact as well as microwave and other heating, often resulting in device and/or

electron temperatures raised well above the refrigerator temperature. Therefore, sig-

nificant progress beyond the status quo in both cooling techniques and thermometry

is necessary.

3.2 Strategy to Approach Submilikelvin Sample Tempera-

tures

One approach to overcome these difficulties uses Ag sinters [38–40] to thermalize the

sample wires [62], pioneered by the Florida group [63, 64]. Another approach — pur-

sued by our Basel group [48] — is to use nuclear cooling [38–40] on the sample wires,

with the potential to advance well into the microkelvin range. Thermometry in this

regime [38–40] typically faces similar challenges as cooling nanostructures and is ideally

integrated on-sample. Among numerous sensors [65], Coulomb blockade thermometers

[66] (CBTs) are simple to use and self-calibrating yet offer high accuracy, demonstrated

down to 20mK [67]. Here, we present an improved nuclear refrigerator (NR) for cool-

ing nanoelectronic samples and use it to investigate CBTs and their mechanisms of

cooling.
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3.2.1 Nuclear Refrigerator and Microwave Filtering Scheme

We employ a novel scheme for cooling electronic nanostructures into the microkelvin

regime by thermalizing each sample wire directly to its own, separate nuclear refrig-

erator [48]. In this scheme, the sample cools efficiently through the highly conducting

wires via electronic heat conduction, bypassing the phonon degree of freedom since it

becomes inefficient for cooling at low T . A prototype of this refrigerator presented in

Ref. [48] has been significantly improved in a second generation system, briefly outlined

below and in Fig. 3.1.

th
er

m
oc

oa
xe

s 
1.

6 
m

10
0 

dB
 fo

r f
 >

 3
 G

H
z

microwave filters &
thermalizers, Ag epoxy

100 dB  f > 200 MHz

RC filters, 2 - pole
10 kHz BW

heat switches
Al 5N, Bc ~ 11 mT

10 mK 0.3 mK

Ag wires 5N
1.27 mm Ø

sample holder, CBTs 
20 wires + Au plane
(plug-in, ceramic)

nuclear refrigerators
Cu plates, 21 x 1 mol

π-filters, 1 nF
3 MHz BW

Faraday
cage

10 mK

~ 300 K

heat exchangers
Ag sinter 3 m2

mixing chamber

VSD
Al2O3 tunnel
junction

island Al & 
cooling fin
300µm3 Cu

64 junctions
63 islands

x
7 rows

metallic Coulomb blockade 
thermometer array

3He/4He mixture

0.2 T solenoid

9 T solenoid #2

9 T solenoid #1

0.3 mK

Figure 3.1: Layout of novel nanosample microkelvin refrigerator and CBT array.
Radiation shields (not drawn) are attached to the still and cold plate (∼ 50mK). The
RC filters are 820 Ω / 22 nF and 1.2 kΩ / 4.7 nF. The 21 NR plates are 0.25 × 3.2 ×
9.0 cm3 each, amounting to 64 g Cu per plate.

A network of 21 parallel NRs is mounted on a rigid tripod intended to minimize vi-
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brational heating. Two separate 9T magnets allow independent control of the NR and

sample magnetic field.

Several stages of thermalization and filtering are provided on each sample wire (see

Fig. 3.1). After π-filter and thermocoax [68], each lead passes through a Ag-epoxy

microwave filter [69], followed by a RC filter. Each wire then feeds into a Ag-sinter

in the mixing chamber, emerging as a massive high-conductivity Ag wire. After Al

heat-switches with fused joints, each lead traverses a separate Cu-NR via spot welded

contacts, terminating in an easily-exchangeable chip carrier plugged into Au-plated pins

which are spot welded to the Ag wires. Therefore, excellent thermal contact (< 50 mΩ)

is provided between the bonding pads and the parallel network of 21 Cu pieces — the

micro kelvin bath and heart of the nuclear refrigerator — while maintaining electrical

isolation of all wires from each other and from ground, as required for nanoelectronic

measurements.

3.2.2 Performance of the Nuclear Refrigerators

The performance of the NRs is evaluated in a series of demagnetization runs. The tem-

perature TCu of the Cu pieces is obtained using a standard technique [39, 40, 48]: after

demagnetization, we apply power on heaters mounted on some of the NRs and evaluate

the warm-up time-dependence TCu(t) measured with Lanthanum Cerium Magnesium

Nitrate (LCMN) thermometers above 2mK. This allows us to determine both the tem-

perature TCu of the Cu-NRs after demagnetization as well as a small field-offset. For

each demagnetization run, the NRs are precooled to Ti ∼ 12mK in a Bi = 9T magnetic

field and then demagnetized to temperatures as low as Tf ∼ 0.3mK after the field has

been slowly ramped down to Bf ∼ 0.135T, giving efficiencies (Ti/Tf )/(Bi/Bf ) & 60%.

Reruns showed excellent repeatability, allowing us to chart TCu for various Bf , depend-

ing on the precooling temperature Ti. Note that the electron temperature TCu will be,

due to the finite heat leak, lifted above the nuclear temperature, therefore demagne-

tization efficiencies are slighly different for electron temperatures, see chapter 2. To
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Figure 3.2: CBT normalized differential conductance g/gT versus source-drain dc bias
VSD for various NR temperatures TCu as color-coded, with resulting TCBT (δg method,
see text) given adjacent to each trace. Data from a 67 kΩ, 175 kΩ and 4.8 MΩ CBT is
shown. Dashed curves are fits to a model (see text). Note lower noise in low-R sensors
due to larger resulting currents.

determine TCu during the CBT experiments, we use the LCMN thermometers above

2mK, warm-up curves at the lowest Bf and in-between, the pre-charted TCu values.

3.3 Electron Temperature Measurements

3.3.1 CBT Sample Overview

The network with 21 NRs allows measurements of several CBTs (2-wire each). The

CBT devices are Au-wire bonded and glued to the Au backplane of the chip carrier

which is also cooled with a NR. Each CBT consists of 7 parallel rows of 64 Al/Al2O3

tunnel-junctions in series with an area of 2µm2 fabricated using e-beam lithography

and shadow evaporation. The process used allows oxidation at elevated temperatures,

giving junction resistances up to 1 MΩ/µm2. Each island extends into a large cooling fin

made from Cu, since Cu gives excellent electron-phonon (EP) coupling. A small B ∼
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150mT is applied perpendicular to the sensor wafer to suppress the superconductivity

of the Al. The differential conductance through a CBT sensor was measured with a

standard lock-in technique adding a small ac excitation Vac to a dc bias VSD. Note that

only 1/64 of the applied voltage drops across each junction and the sensor resistance

is 64/7 times the junction resistance Rj, assuming identical junctions.

3.3.2 CBT Performance for Different Sensors

We investigated CBTs with various R, see Fig. 3.2. Due to Coulomb blockade effects,

the conductance around VSD = 0 is suppressed below the large-bias conductance gT .

Both width and depth δg = 1 − g(VSD = 0)/gT of the conductance dip are related to

the CBT electron temperature TCBT . To extract TCBT , we perform fits (dashed curves)

using a numerical model from Ref. [70]. We find excellent agreement between model

and data (see Fig. 3.2). Independently, TCBT can be obtained [70] from the conductance

dip δg = u/6 − u2/60 + u3/630 with u = EC/(kBTCBT ) and charging energy EC . We

first extract EC at high-T assuming TCu = TCBT and then use this EC to extract

TCBT from δg everywhere. While both methods produce very similar TCBT (deviating

slightly only at the lowest T ), the δg approach makes no a priori assumptions about

the cooling mechanism, allowing us an unbiased investigation, though now requiring

high-T calibration against another thermometer. All TCBT values given here are from

the δg method.

3.4 CBT Cooling Mechanism

3.4.1 Theoretical Model including EP and WF Cooling

The thermalization properties of TCBT of the lowest and highest R CBTs are displayed

in Fig. 3.3 for a wide range of TCu from 0.5mK to 100mK. As seen, excellent agreement

is found between TCBT and TCu at high temperatures, as expected. Further, TCBT is

seen to lie well above TCu at the lower temperatures (see Fig. 3.2 and 3.3), decoupling
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fully from TCu well below 10mK. We note that Vac was experimentally chosen to avoid

self-heating. Also, the 4.8 MΩ sensor reaches lower temperatures than the other, lower

impedance CBTs, consistent with better isolation from the environment, since the

power dissipated is proportional to V 2
env/Rj, with environmental noise voltage Venv.

To model the CBT thermalization[70], we write down the heat flow Q̇i onto a single

island i with electron temperature Ti:

Q̇i =
V 2
j

Rj

+
∑
±

π2k2
B

6e2Rj

(T 2
i±1 − T 2

i )− ΣΩ(T 5
i − T 5

p ) + Q̇0 (3.1)

where Q̇0 is a parasitic heat leak and Vj is the voltage drop across the junction, appear-

ing here in the Joule heating term. Σ is the Cu EP coupling constant, Ω = 300µm3 the

island volume and Tp the phonon bath temperature assumed to be equal to TCu. This

is well justified by the high thermal conductance between the NRs and bonding pads.

Note that at T � 1K, the sample-to-Au-backplane interface resistance (Kapitza) is

small compared to the EP coupling resistance [70]. Within this model, two cooling

mechanisms are available: Wiedemann-Franz (WF, T 2 term) and EP cooling. Note

the strong T 5 dependence of the EP term, ultimately rendering WF cooling dominant

at sufficiently low T . Assuming one mechanism and simplifying to only one island

gives a saturation curve TCBT = (T pS +T pCu)1/p, with a CBT saturation temperature TS

and an exponent p, corresponding to p = 2 for WF-electron cooling and p = 5 for EP

cooling.

3.4.2 Measured Cooling Power-Laws versus Theory

We study the mechanism of thermalization by fitting the saturation curve first to

the 4.8 MΩ data. We find very good agreement, giving p = 4.9 ± 0.4 (see Fig. 3.3),

indicating that EP coupling presents the dominant cooling mechanism, limiting TCBT

to 9.2mK even though TCu = 0.75mK. Using Q̇0 = ΣΩT 5
CBT , a small parasitic heat

leak Q̇0 = 40 aW results for each island, with Σ = 2 × 109 Wm−3K−5 from Ref. [70].
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We speculate that Q̇0 could be caused by electrical noise heating such as microwave

radiation, intrinsic residual heat release from materials used or other heat sources.

Considering the high-R junctions and correspondingly weak WF cooling, it is not

surprising that EP coupling is dominant here.
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Figure 3.3: CBT electron temperature TCBT versus NR temperature TCu for 4.8 MΩ
(open markers) and 67 kΩ sensors (filled markers, same axes on inset as main figure).
Below 10mK, the data is obtained in 3 demagnetization sweeps (blue markers) with
B = 9T, 5T, 2T, 1T and 0.4T in a typical run, ramped at 1T/h above 1T and
0.5T/h below. Error bars are about the size of the markers. Purple curves are TCBT
saturation curves (see text).

When analogously examining the low-R sensors, on the other hand, we find p = 3.9±0.4

and TS = 13.4mK for the 67 kΩ sensor (see inset Fig. 3.3), and even p = 2.7± 0.2 and

TS = 6.9±0.1mK for a 134 kΩ sensor (not shown) mounted on a conventional dilution

refrigerator (base-T ∼ 5mK) with improved filtering and chip carrier. Note that TS is

the extrapolated TCu = 0 saturation-T . The lowest T measured here was 7.5±0.2mK.

These power-laws far below p = 5 indicate that EP cooling is no longer dominant

but, rather, a more efficient mechanism p < 5 takes over at the lowest-T in the low-R

sensors.
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3.5 Summary

In summary, we have demonstrated operation of the NRs down to 0.3mK while the

CBTs cool as low as 7.5mK. Though the high-R sensor is obviously cooled by EP cou-

pling, the low-R sensors, interestingly, appear to be entering a different cooling regime.

However, the low-R sensors have slightly higher TCBT given the same environment, con-

sistent with stronger coupling to the environment. The lowest CBT temperatures are

limited by the parasitic heat leak, which is drained by the cooling channels available.

To further improve the sensor performance, the cooling-fin volume can be increased or

the heat leak can be reduced, potentially using improvements in microwave shielding

and filtering, e.g. using on-chip capacitors, metal planes or alternative array designs.

Such efforts will strongly enhance thermalization if a more efficient cooling mecha-

nism is indeed present, since otherwise, in the EP regime, reducing Q̇0 by 5 orders of

magnitude will only reduce TCBT by a factor of ten.

An alternative avenue based on quantum dot CBTs, e.g. in GaAs, might also be

rewarding, taking advantage of a much larger EC and level spacing ∆. The resulting

reduced sensitivity to the environment might allow a single dot to be used, rather than

an array, cooling the reservoirs directly via the WF term, rather than through a long

series of junctions.
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Abstract

We present measurements of the electron temperature using gate defined

quantum dots formed in a GaAs 2D electron gas in both direct transport and

charge sensing mode. Decent agreement with the refrigerator temperature was

observed over a broad range of temperatures down to 10mK. Upon cooling nu-

clear demagnetization stages integrated into the sample wires below 1mK, the

device electron temperature saturates, remaining close to 10mK. The extreme

sensitivity of the thermometer to its environment as well as electronic noise com-

plicates temperature measurements but could potentially provide further insight

into the device characteristics. We discuss thermal coupling mechanisms, address

possible reasons for the temperature saturation and delineate the prospects of

further reducing the device electron temperature.

This chapter was published in JLTP Vol. 175, 5, 784 (2014).
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4.1 Introduction

Two-dimensional electron gases (2DEGs) are a versatile, widely-used experimental

platform in low temperature solid state physics because of their nearly ideal two-

dimensional nature and the possibility to confine electrons to almost arbitrary shapes

using gate voltages. Groundbreaking experiments have been realized in these sys-

tems, including artificial atoms [27, 71, 72], the integer and fractional quantum Hall

effect [15, 16] and spin qubits [33, 59]. In many experiments, the temperature of the

2DEG is much higher than the temperature TMC of the dilution refrigerator mixing

chamber due to various reasons, including poor thermal coupling and insufficient fil-

tering. However, a wide range of phenomena contain small energy scales and are only

accessible at very low temperatures. These include novel nuclear spin quantum phases

in 2D [36, 37] and in interacting 1D conductors [73, 74] and multiple impurity [75] or

multiple channel [76, 77] Kondo physics. Further, studies of fragile fractional quantum

Hall states, including candidates for non-Abelian physics such as the ν = 5/2 state [78],

would benefit from low temperatures, possibly opening the doors for topological quan-

tum computation [60].

To our knowledge, the lowest reliable temperature reported in a 2DEG is 4mK [62, 63]

in a fractional quantum Hall experiment, with sintered silver heat exchangers attached

to the sample wires in a 3He cell. In Ref. [63], a PrNi5 demagnetization stage at

0.5mK was used to cool the liquid 3He, well below the 4mK of the 2DEG sample. For

quantum Hall samples loaded into a chip holder in vacuum, slightly higher temper-

atures 9 . . . 13mK were reported [79–81]. Interestingly, in Ref. [80] (supplementary),

the refrigerator base temperature was below 6mK and the temperature measured with

a Coulomb blockaded quantum dot was 16 ± 3mK. The lowest GaAs quantum dot

temperature measurement reported is 12mK [82, 83], as far as we know.

We note that apart from noise measurements [79], electron temperature measurements

in the (fractional) quantum Hall regime are of rather qualitative nature, usually lacking
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a well-known temperature dependent effect to extract temperature from. Instead, some

temperature dependent feature, typically a longitudinal resistance peak [62, 63, 80], is

used, assuming a specific temperature dependence (e.g. linear) – resulting in estimates

of temperature, rather than absolute temperature values. A quantum dot thermometer,

on the other hand, is in principle a primary thermometer capable of reading absolute

temperatures [71]. However, compared to quantum Hall samples, a quantum dot device

operates at significantly larger resistance (typically & 1 MΩ). Thus, essentially the

entire voltage drops over the dot, presumably making it more susceptible to electronic

noise.

For any device electron thermometer, it is very instructive to compare the electron tem-

perature with a suitable calibrated refrigerator thermometer over a broad temperature

range. Ideally, both thermometers should agree very well, demonstrating effective op-

eration of the device thermometer – in a much more convincing way than agreement at

any single, isolated temperature. In addition, at the lowest refrigerator temperatures,

often a saturation of the device temperature becomes apparent, either due to improper

thermometer operation or insufficient device thermalization (or both). The functional

form of the deviation of the device temperature from the refrigerator temperature in

principle contains important information about the device cooling mechanism [84], if

the thermometry is accurate enough and functioning properly. Previous reports have

shown quantum dot thermometers to agree well with the refrigerator thermometer over

a broad range of rather high temperatures T & 100 mK [85–87], with the best reaching

down to about 50 mK [43, 83, 88–90] – but not to lower temperatures.

These examples indicate that cooling of a 2DEG embedded in a semiconductor such as

e.g. GaAs is a difficult task. The main reason is the weakening of the electron-phonon

interaction in the 2DEG ∝ T 5 [63, 91, 92] at low temperatures. Therefore, at very

low temperature, the system benefits from cooling through the conduction electrons

(Wiedemann-Franz mechanism, ∝ T 2 [39, 93]), where heat transfer is mediated through

the electrical contact to the sample. For typical semiconductor devices with compar-
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atively large contact resistances, this comparably weak coupling makes the sample

vulnerable to heat leaks, e.g. high frequency radiation or dissipative heating. Addi-

tionally, the weakening of the electron-phonon interaction significantly complicates the

thermal coupling of the insulated sample wires to the coldest part of the refrigerator.

Recently, we have proposed a way to overcome these limitations by integrating a cop-

per nuclear refrigerator into each of the electrical sample wires connected to an elec-

tronic transport sample, providing efficient thermal contact to a bath at low mK or

microkelvin temperature [48]. For efficient precooling of the nuclear refrigerators as

well as for regular dilution refrigerator operation, every sample wire is connected to a

sintered silver heat exchanger located in the plastic mixing chamber (facilitating su-

perfluid leak-tight feedthroughs) of the dilution refrigerator with a base temperature of

9mK. Further, to minimize the effect of high-frequency radiation, all electrical lines are

filtered extensively using thermocoax cables, cryogenic Ag-epoxy microwave filters [69]

and double-stage RC filters of bandwidth 30 kHz. The measurement setup is described

in detail in reference [84]. In semiconductor samples such as GaAs 2DEGs, the ohmic

contacts will probably present the largest electrical and thermal impedance in this

cooling scheme.

4.2 Quantum Dot Thermometry

Gate defined GaAs quantum dots in deep Coulomb blockade are used as a thermometer

directly probing the electron temperature T in the surrounding 2DEG by measuring the

thermal smearing of the Fermi edge [71]. As shown in Fig. 4.1(a), the quantum dot is

coupled to two electron reservoirs via left and right tunnel barriers with tunnel rates ΓL

and ΓR. In the symmetric case ΓL = ΓR = Γ, the direct current through the quantum

dot is approximated by IDC = eΓ/2 assuming sequential tunneling, with e the electron

charge. In the temperature broadened Coulomb blockade regime (hΓ � kBT , with

Boltzmann constant kB and Planck constant h), the narrow dot level with broadening

∼ Γ acts as a variable energy spectrometer which can resolve and directly map the
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Fermi-Dirac (FD) distribution in the current through the dot. The energy of the

spectrometer can be tuned by capacitively shifting the dot energy level with a gate,

e.g. the plunger gate at voltage VP . With a sufficiently large DC source-drain bias

VSD � kBT/e, the chemical potential of source and drain reservoirs can be individually

resolved, separately giving the distribution functions of each reservoir when sweeping

the plunger gate voltage VP through both source and drain chemical potentials.

(b)(a)

Figure 4.1: (a) Schematic for a temperature measurement using a single quantum
dot. Low tunnel rates to the left and right reservoir, ΓL and ΓR respectively, result
in an energetically sharp quantum dot level which can be tuned with the plunger gate
VP . By sweeping the dot level through the source-drain window eVSD, given by the
difference in chemical potentials µL − µR, the temperature of each reservoir can be
extracted individually; the thermally smeared Fermi-Dirac distributions (∝ kBT , here
TR > TL) are mapped with the measured current IDC . (b) Working principle for the
charge sensing measurement: the dot level can be swept through the Fermi level at
chemical potential µ using the top gate voltage wl. The average occupation probability,
which again reflects the Fermi-Dirac distribution (i.e. temperature TS) in the double
dot reservoir, is probed by the conductance gs through a charge sensing quantum dot
capacitively coupled to the dot. For details see text.

To stay in the single level transport regime, the bias VSD has to be small compared to

the excited state energy ∆. To obtain the temperature from each distribution function,

the gate lever arm α is required for the conversion from gate voltage to energy. The

separation ∆VP in gate voltage between the inflection points of the two FD distributions

can be taken from the plunger gate sweep IDC(VP ) at a fixed, known bias VSD. This

measurement gives the lever arm α = eVSD/∆VP without additional measurements and

delivers the temperatures TL and TR of the left and right reservoir, respectively, from a

single IDC(VP ) sweep. This allows a temperature measurement without calibration by
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another thermometer, thus constituting a primary thermometer. As an alternative, the

differential conductance through the dot can be measured using a small AC voltage,

resulting in the derivative of the FD function [71].

We note that here, the device is operated in a highly non-linear regime where the dot

current IDC depends only on the tunneling rate Γ but is – to lowest order – independent

of the applied bias kBT � VSD � ∆ once the dot level is well within the transport

window spanned by source and drain chemical potentials. However, the electrons

traversing the dot are injected at a high energy VSD � kBT into the reservoir with the

lower chemical potential. These hot electrons will relax their energy and thereby cause

heating in the 2DEG reservoir. The currents and biases used here are rather small,

typically giving heating powers ∼ IDCVSD below 1 fW. Nevertheless, this heat will need

to be removed, e.g. through the ohmic contacts or the phonon degree of freedom. We

experimentally choose the bias VSD small enough to avoid measurable heating.

For ultra-low temperatures, one critical aspect of the quantum dot thermometer is the

requirement to have a dot level much sharper than the FD distribution to be probed

and resolved. The broadening of the dot level is given by lifetime broadening: the

finite time an electron spends on the dot, defined by its escape rate ∼ Γ, introduces

an uncertainty on its energy through the time-energy Heisenberg uncertainty principle.

In gate defined dots, the tunneling rate Γ can be tuned widely over many orders of

magnitude with gate voltages, affording broad flexibility. While Γ can easily be made

sufficiently small to satisfy hΓ� kBT even at the lowest temperatures, reduced Γ also

suppresses the dot current IDC ∼ eΓ/2. Taking 2hΓ = kBT , an upper bound on the

dot current of I ∼ 1 pA·ϑ results, where ϑ is the temperature in mK. Thus, to be

clearly in the temperature broadened regime, currents far below these upper bounds

are required, setting a practical limit of order of 10mK as the lowest temperature that

can be measured with the current setup.

An integrated charge sensor directly adjacent to the quantum dot [94, 95] makes it

possible to overcome this limitation: a measurement of the average dot charge occu-
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pation while sweeping the dot level through a charge transition [96] reflects the FD

distribution under similar conditions as described before. However, the dot-reservoir

tunneling rate Γ can now be made essentially arbitrarily small, ensuring hΓ � kBT

even for temperatures well below 1mK. This is possible because the size of the charge

sensor signal is nearly independent of Γ and the charge sensor remains operational for

arbitrarily small Γ. The distribution function is conveniently measured when the dot

tunneling is fast compared to the data acquisition rate, avoiding complications due

to real time detection of single electron tunneling. The current through the charge

sensor still gives rise to phonon or photon emission [97] and generally causes heating,

analogous to a current flowing directly through the dot as discussed above. However,

the sensor and its reservoirs can be electrically isolated and spatially separated some-

what from the dot, reducing heat leaks and coupling strength [98] and improving the

situation compared to a direct current through the quantum dot. Nevertheless, the

sensor biasing will need to be experimentally chosen to minimize such heating effects.

Similar thermometry can also be performed in a double quantum dot configuration,

where charge transitions involving a reservoir can be used to measure the FD distribu-

tion and the corresponding temperature, see Fig. 4.1(b). The relevant double dot lever

arm can be extracted again from finite bias measurements [99] or can be calibrated at

elevated temperatures where it is safe to assume TMC = TL,R with the temperature of

the left and right reservoir TL,R, respectively. It is worth noting that in a double dot,

the thermal smearing of the reservoirs can be essentially eliminated when studying in-

ternal transitions such as inter-dot tunneling, allowing measurements with a resolution

much better than the reservoir temperature [99]. Nevertheless, internal double dot

transitions can also be used for reservoir thermometry depending on the dot config-

uration [96]. Similarly, in optically active semiconductor quantum dots, the reservoir

temperature can be irrelevant, and the optical line width is limited by the lifetime

and/or other noise sources such as semiconductor charge instabilities or nuclear spin

noise [100].
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Interestingly, the energy levels of the double dot can easily be configured (e.g. suffi-

ciently far away from the triple points or bias triangles) so that no net current can flow

through the double dot even at some finite bias (here always assuming sequential tun-

neling only), avoiding dissipative heating originating from the double dot altogether.

Despite the absence of current flow, the system can still easily be probed with a charge

sensor, and the reservoir temperature can be extracted as described above. A simi-

lar situation can also be exploited in a single dot with one barrier tuned to be very

opaque [101]. The biasing of the charge sensor nevertheless still dissipates energy, as

already described.

4.3 Thermometry with Direct Transport

The quantum dots were fabricated with standard UV and ebeam lithography and

evaporation of Ti/Au depletion gates. The single quantum dot (SQD) layout, see inset

of Fig. 4.2(b), was adapted from Ref. [102], giving access to the few electron regime

in transport measurements. The 2DEG is formed at a single AlGaAs/GaAs interface,

located 110 nm below the surface, with charge carrier density n = 2.8 · 1011 cm−2

and mobility µ = 280′000 cm2/(Vs). This wafer was chosen because of excellent charge

stability. The devices were cooled down without positive voltage bias on the gates. The

ohmic contacts are non-magnetic, made from AuGe/Pt, and optimized for minimal

contact resistances, typically . 100 Ω. The direct current IDC through the dot was

measured with a 3Hz low-pass filter.

We now show how the reservoir temperatures TL and TR can be extracted from a

measurement of the current IDC through the dot at finite applied bias VSD as a function

of the plunger gate voltage VP , as shown in Fig. 4.2(a). The plunger gate VP allows us

to shift the energy of the dot level through both source and drain chemical potentials

without significantly changing the reservoir tunneling rates for a small change of VP :

more negative VP capacitively shifts the dot level to higher energy. A finite current

flows through the dot when the dot energy level is located within the transport window,
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see Fig. 4.1(a). Otherwise, no current can flow, either due to a lack of filled electron

states when the dot energy is above the higher chemical potential reservoir, or due to

a lack of empty states the dot electron can tunnel into when the dot energy is below

the lower chemical potential reservoir. The transitions between zero and finite current

IDC each reflect the distribution function of the respective reservoir, and can be fit by

a FD function of the form

IFD(VP ) = I1

[
exp

(
α(VP − VP0)
kBTL,R

)
+ 1

]−1

+ I0, (4.1)

with step height I1, offset current I0 and plunger gate offset VP0. For a given step

height I1 and lever arm α, the temperature is essentially given by the slope of the

transition, where lower temperature corresponds to a steeper, sharper curve. A rising

(falling) step is obtained by the choice of the relative sign of I0 and I1. We note that

this fit function will only apply in a rather narrow window of energy (i.e. plunger gate

voltage) around the transition, since other effects not captured by the FD function

alone can also play a role, such as local density of states variations due to the finite

size lead reservoirs. The FD function gives high quality fits to the data within the

measurement noise, see Fig. 4.2(a), and delivers separate temperatures TL,R for the left

and right reservoirs, respectively. The right reservoir was connected to the current

preamplifier and gives slightly higher temperatures TR > TL, see Fig. 4.2(a). Swapping

the current preamplifier to the other reservoir inverts the situation. Upon increasing

TMC , we have observed better agreement with TL than with TR, thus we will focus

on TL. The weak dependence of dot current on VP in the high current state can arise

e.g. due to variations in the local density of states in the leads, but is not part of the

transition region fit by the FD function. The DC bias voltage was reduced until no

effects on the extracted temperatures were observed, typically VSD < 100 µV at the

lowest temperatures – still allowing to clearly separate the two flanks.

Despite significant noise on the IDC data, the error-bars on the temperatures extracted

from the individual FD fits are rather small . 10 %, see Fig. 4.2(a), plus . 10 %
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error from uncertainty of the lever arm α. A further uncertainty (typically about

. 20%) becomes apparent when the fits are performed over a large number (of order

10) of repeated current traces under nominally identical conditions, see Fig. 4.2(b).

This uncertainty is due to charge instabilities and resulting random telegraph noise –

occasionally directly identifiable in the data as a discrete switch – as well as slow drifts

in the 2DEG material and quantum dots, or external influences. Semiconductor charge

noise is known for a long time and has been studied extensively, see e.g. Refs. [100, 103,

104] and references therein. We note that the sensitivity to such disturbances becomes

more pronounced at lower temperature, already requiring an energy jitter of much less

than ∼ 1µeV at 10mK – a quite remarkable charge stability [100]. The severity of such

charge noise depends sensitively on the detailed dot gate voltage configuration as well

as the wafer material and fabrication procedure, and can become negligible at elevated

temperatures due to increased thermal broadening. Current traces with obviously

apparent switching events are not included in the ensemble of traces used to extract

temperature. Nevertheless, charge switching is not always directly identifiable, and the

fluctuating temperatures extracted from the FD fits upon repeating the measurement

are predominantly due to charge noise. A switch occurring during the scan at the

transition is the only obvious source we are aware of that could lead to both a narrowing

or a broadening of the FD distribution, resulting in artificially fluctuating temperatures

extracted from the FD fits, as seen in the experiment.
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Figure 4.2: (a) DC current IDC through the single quantum dot as a function of
plunger gate voltage VP at refrigerator temperature TMC = 9mK, showing a high cur-
rent region (dot level between source and drain chemical potential) and a low current
region (dot level outside source-drain window). These regions are separated by the
Fermi-Dirac distributions in each reservoir, separately giving TL and TR from Fermi-
Dirac fits (solid curves). The error bars shown here are the uncertainties from the FD
fits only. An additional uncertainty of . 10% arises from the error on the lever arm.
The right reservoir is connected to the current preamplifier and slightly warmer than
the left reservoir. (b) Average temperature 〈TL〉 obtained over several repeated TL
measurements, as a function of refrigerator temperature TMC . The dot configuration
was not changed during this temperature sweep. The error bars shown are the statisti-
cal errors from repetition of the TL measurement. An additional uncertainty of . 10%
on 〈TL〉 needs to be added to the error bars shown, arising from the uncertainty of the
lever arm. Inset: SEM picture of a device similar to the one measured (P: plunger
gate, scale bar: 200 nm).

Due to the sizable charge noise, we cannot use an individual temperature measurement

as in Fig. 4.2(a), but rather have to gather statistics in order to obtain a more reliable

measure of temperature. In Figure 4.2(b), we extract the average temperature of the

left reservoir 〈TL〉 measured with the quantum dot at fixed configuration for several

refrigerator mixing chamber temperatures TMC , measured with a Cerium-Magnesium-

Nitrate (CMN) thermometer. The CMN thermometer was calibrated using a standard

fixed point device with 6 superconducting transitions between 1.2K and 96mK, giving

excellent agreement between fixed point device and CMN. A calibrated RuO2 resistor

(also in very good agreement with the fixed points) was used to extend the CMN

calibration range to lower temperatures, giving excellent agreement with the CMN

to below 20mK. Almost identical CMN temperatures are obtained in the range from
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10mK to 200mK, regardless of whether a Curie law or a Curie-Weiss law is used to

calibrate the CMN thermometer [39].

The standard deviation resulting from the repeated current traces is used to give the

error bars on 〈TL〉 in Fig. 4.2(b). The lever arm uncertainty . 10% is in addition to the

error bars shown. As seen in Fig. 4.2(b), we find decent agreement between 〈TL〉 and

TMC within the error bars over the temperature range from ∼ 20mK to ∼ 130mK.

At the lowest temperatures, however, 〈TL〉 appears to saturate at ∼ 20mK for the

particular gate configuration used for this temperature sweep. When the measurement

is further optimized and the tunnel rates are decreased a bit more (trading off current

signal amplitude), the lowest temperature we extract in direct current through the

dot is 〈TL〉 = 11 ± 3mK (including all errors) averaged over several traces similar to

the data shown in Fig. 4.2(a). This is within the error bars of the base temperature

TMC = 9mK. Given agreement between 〈TL〉 and TMC over a wide temperature range,

we can be confident that the sample is well thermalized and the dot thermometer is

properly working, reading a reliable temperature despite charge noise.

4.4 Thermometry with Charge Sensing

We now turn to thermometry with a charge sensor adjacent to a double quantum dot

device. The design of the device was adapted from Ref. [105], see inset of Fig. 4.3(a),

employing quantum dots as very sensitive charge detectors, directly adjacent on either

side of the double dot. Here, we focus on data from one of the sensors since the other

sensor gave very similar results. A GaAs 2DEG material very similar to the wafer used

for the single dots was used, again experimentally tested to exhibit excellent charge

stability. The differential conductance gs = dI/dV of the charge sensing quantum dot

was measured with standard analog lock-in technique with an AC bias voltage ≤ 2µV.

The sensor bias voltage was carefully experimentally restricted to avoid excess heating.

The voltage and current noise of the measurement setup was carefully monitored and

minimized, with optimal rms values of 0.5 µV and 50 fA, respectively.
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Figure 4.3: (a) Change in differential conductance δgs of the sensor on the right side
measured as a function of the voltage on the left wall wl and right wall wr of the double
dot. The average of each vertical trace was subtracted to improve visibility. The charge
stability diagram shows the honeycomb structure typical of a double dot. The absolute
electron occupation (n,m) is labeled, indicating the charge state in the left and right
dot, respectively. Inset: SEM picture of a device similar to the one measured (d/s:
drain/source, scale bar: 400 nm, red dots: DQD, blue dot: charge sensing quantum
dot). The colored dots refer to the estimated positions but not the actual sizes of
the quantum dots. (b) Sensor differential conductance gs as a function of wl and VSD
around the (0,0) to (0,1) transition, allowing extraction of the lever arm α, see text.

The sensitivity of the charge sensor can be defined as 2|g1 − g2|/(g1 + g2) = |∆g|/gavg

with the conductance values g1 and g2 corresponding to the charge states before and

after the transition and gavg = (g1 + g2)/2. The charge sensor was operated in the

lifetime broadened regime, tuned on a steep slope of a Coulomb blockade peak, giving

excellent sensitivities of up to 100%. This is clearly superior to typical quantum point

contact charge sensors, as previously reported [105]. Even better sensitivities could be

achieved when tuning the sensor dot into the temperature broadened regime, where

much narrower, sharp peaks result. However, staying on such a sharp peak becomes

experimentally difficult due to parasitic capacitive coupling between double dot gates

and the sensor dot. Once the sensor is shifted to a region where the slope is very

small (e.g. a Coulomb blockade valley with nearly vanishing conductance), the charge

sensitivity is lost. Already in the lifetime broadened sensor regime used here, changes

on the double dot gate voltages needed to be carefully compensated on the plunger

gate of the sensor dot in order to maintain charge sensitivity.
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The double dot charge stability diagram, as measured with the charge sensor, is shown

in Fig. 4.3(a) as a function of gate voltage on the left wall wl and right wall wr of

the double dot, as labeled in the inset. The typical honeycomb pattern as expected

for a double dot [99] is observed. Each dot can be emptied of all electrons (bottom

left), as evidenced by the absence of further charge transition lines in the diagram at

more negative gate voltages. This allows us to label the double dot charge state (n,m),

indicating the absolute electron occupation in the left and right dot, respectively. A

couple of additional weak charge transitions are also appearing with slopes deviating

from those occurring in the honeycomb of the double dot, presumably due to some

nearby charge traps in the semiconductor. These are also related to the charge noise

as seen in the temperature measurements.
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Figure 4.4: (a) Sensor differential conductance gs (sensor dot on the right side) as
a function of gate voltage wl at TMC = 9mK, showing the transition from the (0,0)
to (0,1) charge state. The reservoir temperature TS is extracted from a FD fit (black
curve) to sensor data, as indicated. Inset: Similar measurement with corresponding
fit at TMC = 132mK showing 132.6± 7.0mK. (b) Series of repeated TS measurements
in the same dot configuration with an average temperature 〈TS〉 = 10.3 ± 4.4mK
(dashed line: average; gray shaded area: standard deviation). Inset: Corresponding
sensor conductance gs as a function of gate voltage Vwl versus trace number. (c) Sen-
sor conductance gs of the right charge sensor as a function of VSD at the transition
from (0,0) to (0,1), with FD fit (black curve) and extracted temperature (see text) as
labeled. (d) Reservoir temperature TS extracted with the sensor from several repeated
wl sweeps (see inset) versus trace number, showing an abrupt change of the electronic
dot configuration after three sweeps, which increases the temperature reading from
18mK to 52mK. The systematic lever arm error of . 8% is to be added to all error
bars here in (a) through (d).

The reservoir temperature can again be extracted, here from the charge sensor signal

with analogous FD fits to any of the charge transitions in the honeycomb involving

one of the reservoirs. The data are fitted using Eq. (4.1) by replacing currents I with

sensor conductances gs as well as VP and VP0 with wl and wl0, respectively. As before,
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the corresponding lever arm is required for the conversion from gate voltage to energy,

and is extracted from measurements at high enough temperatures where double dot

reservoir temperature TS measured with the sensor is equal to TMC . Bias triangles

were not accessible in the regime the double dot was operated here due to tunnel

rate asymmetries. We note that the inter-dot tunnel rate was tuned to be very small

for the temperature measurements, with the double dot operated in a gate voltage

configuration different from the one shown in Fig. 4.3(a).

Alternatively, the same charge transition can be followed for various double dot source-

drain voltages VSD applied to the reservoir involved in the transition, as shown in

Fig. 4.3(b). Due to a finite capacitance of this reservoir to the dot, this gives an

upper bound for the lever arm and the extracted temperature. However, the lever arm

extracted at high temperature turns out to be the same as the upper bound (within the

error bars of 10%), thus indicating that the reservoir-dot capacitance is small compared

to the total dot capacitance for the configurations used in our device – at least at the

very low tunnel rates utilized here. Hence, the slope of the charge transition line in

the wl-VSD plot gives the inverse of the lever arm. The lever arm error of . 10% needs

to be added to all temperatures appearing in this section (unless noted otherwise) as

a systematic rather than fluctuating error, i.e. affecting all temperatures in the same

way. All temperature measurements shown here were carried out at the transition from

(0,0) to (0,1), although similar results were obtained for other transitions.

Figure 4.4(a) shows a charge sensor measurement through the (0,0)-(0,1) transition

and a FD fit at TMC = 9mK, resulting in TS = 10.8± 1.2mK. While the sensor mea-

surements give very good agreement with the FD fits at elevated temperatures (see

Fig. 4.4(a) inset, giving TS = 132.6± 7.0mK at TMC = 132mK) over a broad temper-

ature range, the charge sensor temperature measurement again becomes more difficult

at the lowest temperatures. The inset of Fig. 4.4(b) shows the sensor signal for the

same charge transition repeated a few times under identical conditions. Both the po-

sition and width of the transition is seen to fluctuate as a function of time, resulting
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in fluctuating temperatures TS extracted with the FD fit, see Fig. 4.4(b), similar as

described for temperature measurements via current through the dot. The error bars

shown here (and also in Fig. 4.4(d)) are from the FD fit only. In addition, the con-

figuration of the sensor can also affect the extracted temperatures, typically resulting

in elevated temperatures for stronger sensor-double dot coupling. Thus, at lower tem-

perature, smaller sensor step heights are required, making fitting more difficult. As

before, curves displaying obvious switching events are not considered for determining

temperature.

We can also use the double dot source-drain voltage VSD instead of gate voltage to

drive the charge transition and directly obtain a temperature value without needing

a lever arm, since the reservoir-dot capacitance is small here, as previously discussed.

In this way, we obtain an upper bound on the reservoir temperature which here is

close (within 10%) to the actual temperature. Such a VSD charge transition measure-

ment is illustrated in Fig. 4.4(c), again for the (0,0)-(0,1) transition, and gives a very

similar temperature as obtained from the gate sweep. The undershoot before and the

overshoot after the rising edge has been observed in several measurement curves at

the lowest temperatures, both by sweeping VSD or a gate, though it is not seen in

some other traces, e.g. Fig. 4.4(a). These features are only seen for certain gate voltage

configurations, and their origin is not currently understood.

The extreme sensitivity of the charge transition to the electrostatic environment is

demonstrated in Fig. 4.4(d). While scanning the same transition 30 times, an abrupt

change in the charge configuration during the fourth scan has altered the charge sen-

sor conductance considerably, even inverting the sign of the sensor response to the

dot charge transition. This switching event caused the apparent FD fit temperature

to change from 18mK to 52mK. While the sensor conductance and double dot con-

figuration can be strongly altered by a local charge rearrangement, the temperature

of the large reservoirs was most certainly not affected by this single switching event.

Thus, the lower temperature 18mK reflects the reservoir temperature both before and
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after the switching event, while the higher temperature is artificially elevated due to

improper dot/sensor configuration. Scanning charge transitions different from (0,0)

to (0,1) revealed similar temperatures but also suffered from the same problems with

charge instabilities.

4.5 Discussion

After considerable experimental efforts due to the pronounced sensitivity to electronic

noise and device charge instabilities, we approach mixing chamber base temperature

with both methods, direct transport and charge sensing. By using the nuclear refriger-

ator (TNR < 1mK [84]), no further reduction of the electron temperature was observed,

in contrast to measurements with other thermometers mounted in the same refriger-

ator in subsequent cool downs, see chapter 5. In the direct transport measurements,

we might suspect lifetime broadening of the quantum dot level as a limiting factor.

But the temperatures obtained with the charge sensor are not evidently lower than the

temperatures measured in direct transport, despite much lower dot tunneling rates.

In direct transport, dissipative heating from the voltage drop over the dot will eventu-

ally become significant at sufficiently low T . Estimates of the electron temperature T

assuming dominant Wiedemann-Franz cooling, an ohmic contact resistance of 100 Ω,

VSD = 100µV and a current of 8 pA (Γ/2 = 50MHz) indicate that the temperature

is only increased by ∆T = 0.3mK above the bath temperature at TMC = 10mK. At

a much lower temperature TNR = 1mK, however, the electron temperature is esti-

mated to rise to T = 2.8mK due to poor thermal contact. This strong increase is

due to the ohmic contact resistance, which could potentially be further reduced with

improved fabrication. In addition, the voltage bias VSD can also still be made much

smaller, since a temperature of TNR = 1mK corresponds to a broadening of the FD

distribution of only ∼ 0.1µV, thus still leaving room to fulfill eVSD � kBT .

Our experiments indicate that the electronic noise and external disturbances in the

measurements setup play a very important role: excess voltage noise clearly increases
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the temperatures extracted. Filtering and shielding can be further improved, though

already in the present experiment, a significant amount of work was invested [84].

We obtain noise levels as low as several hundred nanovolts across the dot measured

at room temperature, but significantly less at the cold device due to filtering. The

electron temperature here becomes independent of the noise power at the lowest noise

levels, indicating that electronic noise is not the only or not the dominating limitation.

The role of the charge sensor as a noise source and possible effects of coupling, back

action [98] or sensor heating require further investigation.

The devices used here have outstanding charge stability, with noise on the dot energy

level well below 1µeV [90, 100, 103, 104], making possible temperature measurements

as low as ∼ 10mK presented here. Still, device charge instabilities present a serious

obstacle if much lower temperatures are to be reached, already severely impeding the

measurements here. The temperature measurement would benefit from faster mea-

surements, thus cutting off the noise spectrum at the lowest frequencies and reducing

the effect of random telegraph noise. The obvious trade-off is increased signal noise

at faster measurement speeds. We emphasize that the charge switching noise exceeds

other setup noise such as the voltage sources on the gates, preamplifiers and Johnson

noise of the sample wires.

Besides semiconductor charge instabilities, the GaAs nuclear spins can also act as a

noise source, giving rise to a fluctuating Zeeman splitting and thus broadening of the

single electron energy level (though the energy of a spin singlet would be immune to

this noise). With GaAs hyperfine coupling constant A = 90µeV [106] and number of

nuclear spins N ∼ 105 to 106 enclosed in the electron wave function [107], the resulting

energy fluctuations are of order A/
√
N ∼ 0.1µeV, and become a limiting factor for

T . 1mK. Finally, heat release from sample holder or other components can also be

a limiting factor, resulting in temperatures decaying slowly over a timescale of days.

This is difficult to quantify in the present experiment due to the rather large error bars

on the extracted temperatures.
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In conclusion, we have measured the reservoir electron temperature T with a GaAs

quantum dot in both direct transport and charge sensing. We find decent agreement

with a CMN thermometer over a broad temperature range down to 10 ± 3mK. Cur-

rently, the main limitations are charge switching noise in the GaAs device, external

electronic noise, heating effects due to the charge sensor as well as potential heat re-

lease at the lowest temperatures. Even lower temperatures might be achievable by

further improving the setup and device, e.g. by better shielding and filtering, choosing

materials with lower heat release and possibly optimizing the wafer material and device

fabrication.

Acknowledgements

We would like to thank G. Frossati, G. Pickett, V. Shvarts, P. Skyba, P. Stano,

M. Steinacher and A. de Waard for valuable inputs. This work was supported by

Swiss Nanoscience Institute (SNI), NCCR QSIT, Swiss NSF, ERC starting grant, and

EU-FP7 MICROKELVIN and SOLID.



60 5 Electron Thermometry in an Improved Setup

5 Electron Thermometry using Metallic Nanos-

tructures and the Quantum Hall Regime in an

Improved Experimental Setup

L. Casparis, D. Maradan, M. Palma, D.M. Zumbühl

Department of Physics, University of Basel, CH-4056 Basel, Switzerland

A. Feshchenko, M. Meschke, J. P. Pekola

Low Temperature Laboratory (OVLL), Aalto University, 00076 Aalto, Finland

Abstract

A wide range of phenomena in solid state physics contain small energy scales

and are therefore only accessible at very low temperatures. To achieve low tem-

peratures in nanoelectronic devices, we use a nuclear refrigerator setup and inves-

tigate different kinds of electron thermometers. Here, we present measurements

on a normal-metal / insulator / superconductor (NIS) junction which we use

as a secondary and primary electron thermometer. The I-V curve maps the

convolution of the Fermi-Dirac distribution of the normal metal with the su-

perconducting BCS density of states. For secondary thermometry, we extract

the size of the thermally broadened gap and observe that the NIS thermometer

starts to saturate at temperatures below 20 mK. For primary thermometry, we

fit the I-V curves in the linear regime right at the edge of the superconducting

gap, where the slope is given by T only. We observe very good agreement of the

mixing chamber temperature and the NIS thermometer between 100 and 45 mK.

When using the nuclear refrigerators to cool the Cu stage below 1 mK, the NIS

temperature saturates at ∼ 5 mK.
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5.1 Introduction

The saturation of the electron temperature Te at ∼ 10 mK in both metallic Coulomb

blockade thermometers (CBT, chapter 3) and GaAs two dimensional electron gases

(2DEG, chapter 4) is a disappointment, as the NRs of our demagnetization stage cool

well below 1 mK (chapter 2). Apparently the parasitic heat leak to the sample is too

large compared to the thermal conductance between the NR and the sample. Because

we suspect the parasitic heat leak to be dominated by either external radiation or

internal heat release of the used ceramic [5], we build a new chip carrier containing

another filtering stage. The Macor socket is replaced by a homemade Ag-epoxy chip

socket [108], which is cooled with a separate NR and rigidly attached to the support

structure with three 15 cm long Vespel rods (SP-22), instead of Macor rods. We

suspect internal transitions in the Macor to have caused heat release. Ag-epoxy is

polymer based and therefore contains hydrogen, causing heat release as well, but due

to its good electrical conductivity it can be more efficiently cooled than Macor. Before

passing into the chip socket, all twenty measurement leads pass through a newly added

Ag-epoxy microwave filter, similar to the microwave filter used at MC level [69]. The

sample is mounted on a removable chip carrier (Ag epoxy) and is plugged with Au-

plated pins into Au-plated jacks in the chip socket. The Au wire bond to the sample is

done directly on the Au-plated pin. The filtered low T Faraday cage is completed by

a thin Ag foil shield, which is screwed and glued to the chip socket.

Another approach would be to reduce the thermal resistance between between NR and

sample, i.e. by decreasing the Ohmic resistance to the 2DEG, an approach we also

pursue [109].

After the above described change of the setup, we report in this chapter on the lowest

electron temperatures to date in both metallic CBTs (∼ 5 mK), as well as normal

metal/insulator/superconductor (NIS) tunnel junction thermometers (∼ 5 mK). Fur-

ther, we demonstrate cooling of electrons in a 2DEG below the base T of the dilution
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refrigerator (DR) by examining reentrant states in the fractional quantum Hall regime,

although we are not able to establish an exact electron temperature, due to the unde-

fined nature of the thermometer.

5.2 Coulomb Blockade Thermometry

In order to test the altered setup, we use two types of CBTs. Two-dimensional junction

arrays, equivalent to the ones described in chapter 3, are used as secondary thermome-

ters. The second type of CBTs investigated is a linear junction array, where 8 junctions

are connected in series. This geometrically permits for larger metallic islands between

the tunnel junctions, allowing for smaller charging energies EC , as well as enhancing

the cooling through electron-phonon coupling due to the larger volume Ω of the island.

5.2.1 Two-Dimensional CBT Arrays

The two-dimensional CBT arrays consist of 7 parallel rows with 64 angle evaporated

tunnel junctions between metallic islands (Ω = 300µm3). We use the conductance dip

δg = 1− g(VSD = 0)/gT as a secondary thermometer in order to avoid heating at finite

bias [69, 84]. At higher temperatures where the CBTs are in thermal equilibrium with

the refrigerator, EC is determined through the relation δg = u/6 − u2/60 + u3/630,

where u = EC/(kBTCBT ) [70]. The differential conductance is measured using standard

lock-in technique with the AC excitation experimentally chosen to avoid heating effects.

At the lowest temperatures the zero bias conductance g(VSD) drops over a time span of

several minutes and eventually saturates at a value gmin, which we use to determine δg

and subsequently the electron temperature TCBT . Figure 5.1 (a) shows TCBT versus the

temperature of the NR TCu for a device with total resistance ∼ 500 kΩ. The extracted

electron temperature starts to deviate from the NR temperature below ∼ 15 mK and

saturates after demagnetization at TCBT = 6.6 ± 0.2 mK. The inset of Fig. 5.1 (a)

shows the corresponding thermometer calibration resulting in EC = 17.7 ± 0.1 mK.

TCBT versus TCu for a different CBT (R ∼ 150 kΩ, EC = 17.0 ± 0.1 mK, see inset of
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Figure 5.1: CBT data measured in the improved setup. The CBTs are measured in a
perpendicular field of 100 mT. Ideal thermalization TCBT = TCu is indicated in all plots
with a dashed black line. (a)-(c) TCBT,sec versus the NR temperature TCu for different
sensors: (a) 2D array with 7 × 64 junctions, 55 kΩ per junction (Rsensor = 500 kΩ),
(b) 2D array with 7 × 64 junctions, 16 kΩ per junction (Rsensor = 150 kΩ), (c) linear
device with 1×8 junctions, 20 kΩ per junction. (d) The temperature obtained through
the primary method TCBT,prim for the same linear junction array. For all TCBT curves
we fit a saturation curve of the form TCBT = (T pS + T pCu)1/p (solid, black). The insets
show calibrations for the corresponding devices, where δg is measured at higher TCu to
extract EC (fit, solid black line).
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Fig. 5.1 (b)) equivalent to the ones used in Ref.[69] are shown in Fig. 5.1 (b). TCBT

agrees very well with the refrigerator temperature down to the base temperature of the

DR. Upon demagnetization the CBT cools, but saturates at an electron temperature

TCBT = 5.2 ± 0.3 mK. We note that by fitting the data with a power law TCBT = (T pS +

T pCu)1/p, we extract for both CBT arrays exponents p smaller than p=5, which would

correspond to a dominant electron-phonon coupling mechanism. Thus in the two-

dimensional CBT arrays, electron-phonon does not seem to be the dominant cooling

mechanism anymore, consistent with previous observations [69, 84].

The lowest temperatures measured in the two-dimensional CBT arrays are already well

below EC , approaching the regime, where the validity of the secondary thermometry

approximation is not given anymore, as the precision of the thermometer suffers at

temperatures below T ∼ 0.4EC [110]. On the other side by using the third order ap-

proximation the error in temperature should still be smaller than 1%, very unlikely lim-

iting our temperature meaurement. Nevertheless we investigate linear junction arrays,

where the volume of the metallic islands can be made much larger, and consequently

EC lower.

5.2.2 Linear CBT Array

The linear CBT arrays consists of 4 islands in series (Ω ∼ 40,000µm3, compared to

∼ 300µm3 for the 2D array), corresponding to 8 junctions in series. The resistance of

each junction is ∼ 20 kΩ. After every second junction a bonding pad allows for indi-

vidual island measurements. We do not observe a difference between measurements of

4 islands in series or individual islands. Figure 5.1 (c) shows TCBT versus TCu, using

the array as a secondary thermometer for the whole array of 8 junctions. The calibra-

tion in the inset of Fig. 5.1 (c) demonstrates the lower charging energy of this sensor

(EC = 8.9 ± 0.1 mK). Due to the smaller conductance dip the calibration also gets

more difficult at the highest temperatures, explaining the deviations seen in the inset

of Fig. 5.1 (c). The electron temperature again follows quite nicely the refrigerator
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temperature down to the base T of the DR. After demagnetization the lowest temper-

ature measured is 6.8 ± 0.1 mK. A warm up curve after the demagnetization results

in many points below the DR base T . If we fit a power law to TCBT , we obtain an

exponent p ∼ 5, indicating that due to the larger island volume, the electron-phonon

coupling dominates in the linear array. Nevertheless the linear array does not cool

to lower temperatures than the two-dimensional array. We speculate that the silicon

substrate of the CBTs could play a role for this temperature saturation. The silicon is

undoped, therefore at the lowest T essentially insulating, making it very hard to cool.

Potentially this can inhibit also cooling of the metallic CBT islands.

Another interesting observation is, that in contrast to the two-dimensional array, the

linear array does not exhibit a long time constant for reaching the minimal conductance

gmin at VSD = 0. This indicates a shorter time constant to reach the equilibrium

temperature, perhaps due to the largely reduced number of tunnel junctions. In any

case this allows for primary electron thermometry [66], using the relation

TCBT,prim = e

5.134kBN
V1/2, (5.1)

where N is the number of junctions and V1/2 the full-width half maximum (FWHM) of

the bias voltage of the conductance dip. The extracted temperature for the linear CBT

array acting as a primary thermometer is shown in Fig. 5.1 (d). TCBT,prim agrees very

well with the temperatures extracted from secondary thermometry. After demagneti-

zation the lowest measured TCBT,prim = 6.5 ± 0.1 mK. The power law fit again points

toward a dominating electron-phonon coupling mechanism, as p = 5.0 ± 0.6. The

stronger electron-phonon coupling in the linear device is expected, as we increased the

volume of the islands significantly. For an island with junction resistance 20 k Ω

and a volume of Ω ∼ 40,000µm3, assuming an electron-phonon coupling constant

Σ = 2× 109 Wm−3K−5, the crossover, where Wiedemann-Franz results in higher ther-

mal conductance than electron-phonon coupling lies at ∼ 2 mK. The replacement of

the Macor chip socket and carrier, clearly reduced the lowest temperatures measured,
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potentially because of a smaller heat leak, either due to smaller heat release or less

radiation. A similar problem poses the non-conducting backplane of the CBT, which

is made out of Si. Thus it might be that we are not able to cool this substrate and thus

it will inhibit a lower TCBT due to electron-phonon coupling. It might be worth trying

a conducting backplane (i.e. doped Si), in order to cool the backplane more efficiently

and to see whether this helps lowering TS.

5.3 Normal Metal/Insulator/Superconductor Thermometer

5.3.1 Introduction

It has been realized early on that a tunnel junction between a normal metal and a

superconductor, a so called normal metal/insulator/superconductor (NIS) junction,

cannot only be used to measure the gap of the superconductor [111], but also to detect

small changes in the temperature of the normal metal [112, 113]. The current-voltage

(I-V) characteristics of the junction are governed by the density of states (DOS) of both

the superconductor and the normal metal. If the tunnel junction is made sufficiently

opaque, a one-electron tunneling picture will provide a sufficient description, allowing

to neglect many-electron tunneling effects, like cotunneling [114]. In this case, at low

temperatures and at a small energy bias, the transport rates should vanish due to the

gap ∆ in the Bardeen-Cooper-Schrieffer (BCS) DOS [115]. The energy level diagram

of the NIS junction in Fig. 5.2 (a) depicts the situation at higher bias, where tunneling

is allowed due to the empty states in the superconductor above the gap. Well below

the critical temperature (TC) of the superconductor (T ≤ 0.4TC), the BCS DOS is

essentially independent on temperature. Thus only the normal metal DOS carries a

temperature dependence, as the Fermi distribution is broadened by temperature. The

sharp edge of the BCS DOS serves as a spectrometer for the normal metal energy

distribution, very similar to deep Coulomb blockade thermometry, where a quantum

dot with a very sharp linewidth probes the Fermi distribution of the 2DEG.
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Figure 5.2: Normal metal/insulator/superconductor (NIS) junction. (a) Energy level
diagram of a NIS junction. The energy gap of the superconductor ∆ forbids electron
tunneling within the gap. A bias voltage V can induce a difference between the two
chemical potentials, eventually leading to tunneling between the temperature broad-
ened Fermi distribution (shaded, grey) and the BCS density of states above the gap
(red). (b) SEM image of a device similar to the one used. The inset shows a zoom in
of the junction region.

NIS thermometers are important tools for temperature measurements in mesoscopic

systems, as they can be made very small and thus easily integrated into mesoscopic

devices [116]. For example, NIS thermometry has been employed to measure single

mode heat conductance of photons [117] and to demonstrate the Josephson heat in-

terferometer [118]. Including the NIS into a resonant LC circuit enables temperature

measurements with MHz bandwidth, potentially allowing for real-time thermal relax-

ation studies [119]. The lowest temperatures measured with NIS thermometers are

around 50 mK [117, 120]. Promising for the use of NIS junctions at ultra-low temper-

atures is the very small self heating, due to very small currents flowing through the

junction. Limitations of a NIS thermometer are the sensitivity to external B-fields, as

this disrupts the superconductor. Further, due to sample to sample deviations from

ideal theoretical behavior of the superconductor, NIS thermometers can hardly be de-

scribed as primary thermometers [121]. For example local gap inhomogeneities, in the

junction will result in a smeared superconducting gap. Another low T thermometry

constraint might be the so called sub-gap leakage current. Although an ideal BCS DOS

would not allow for any states within the superconducting gap, experimentally a finite

current flows within the gapped region [116]. The states allowing for such a sub-gap
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current can originate from Andreev reflection processes [122–125] or a smeared DOS

within the gap [113], or similar effects like external radiation causing photon-assisted

tunneling [126]. Andreev reflection can be avoided with sufficiently opaque junctions,

the impact of a finite DOS within the superconductor will be discussed below in more

detail.

By knowing how the normal metal is cooled (i.e. electron-phonon coupling), NIS

thermometers can also be used as sensitive bolometers [113, 127, 128], because they can

detect the slightest temperature changes. Moreover the NIS junction can be employed

as spectrometer, where a single photon assisted tunneling effect can lead to current

through the junction within the gap [126], even full DOS mappings of mesoscopic

systems have been carried out [129]. Further, NIS junction have been demonstrated

to function as electronic microrefrigerators [130–132]. When the junction is biased

close to the gap voltage (see Fig. 5.2 (a)), only electrons occupying states above the

chemical potential of the metal can tunnel into the superconductor – hot electrons

are removed from the normal metal, and the electron temperature will be lowered. In

combination with another NIS junction, which supplies cold electrons, temperatures

can be reduced from 230 mK to 130 mK [133]. In the following we will restrict ourselves

to NIS thermometry only, trying to implement it in our nuclear demagnetization setup.

5.3.2 Sample

Figure 5.2 (b) shows a SEM image of a NIS junction similar to the one used in our

experiments. The junctions are fabricated on top of an undoped silicon wafer. At the

bottom, in order to minimize environment-assisted tunneling effects [126], we evaporate

a 80 nm thick Au ground plane. On top of that a 100 nm thick Al2O3 film is formed

by atomic layer deposition. The metallic junctions are then patterned and formed

with standard e-beam lithography and shadow evaporation technique. After depositing

50 nm of Al, the superconductor is oxidized in situ. 150 nm of Cu is then evaporated at

a different angle, resulting in a junction of 350 nm times 350 nm in size (see Fig. 5.2 (b)
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inset). The normal metal and superconductor electrodes are both roughly 1.1 mm2 in

area, together with the normal state tunneling junction resistance RT ∼ 14.2 kΩ, this

makes cooling effects of the NIS junction negligible. In terms of gap inhomogeneities,

it has been observed that thin films of Al behave as type II superconductors [134],

where a perpendicular field can penetrate the thin film at vortex sites. There the

superconducting gap is locally suppressed, leading to spatial gap inhomogeneities and

allowing for quasiparticle relaxation. The length scale of this vortices is on the order

of the coherence length ξ, which for bulk Al is ξ0 ∼ 1.6 µm. In similar Al thin films

than used in our experiments, a coherence length ξ ∼ 100 nm has been estimated from

the relation ξ = 0.855(ξ0l)0.5, where l is the normal state mean free path [135].

5.3.3 I-V Characteristics

All NIS thermometer measurements are DC measurements, with a long time constant

(average over 100 ms) and a low pass RC-filter (5 Hz), with which we achieve a current

noise of around 30 fA. To obtain the voltage over the junction, we have to subtract the

voltage which drops over the in-line resistance of the filters (8.4 kΩ). Figure 5.3 plots

typical current voltage (I-V) curves of the NIS junction at different temperatures. The

increasing size of the gapped region with lower temperatures can be easily recognized.

For a more quantitative description of the current I through the junction, one can

write

I = 1
eRT

∫
nS(E)[fN(E − eV )− fS(E)]dE, (5.2)

where V is the voltage across the junction, RT the normal state junction tunneling

resistance, the BCS DOS of the superconductor is nS(E) =
∣∣∣Re ( E√

E2−∆2

)∣∣∣ and fN and

fS are the Fermi functions of the normal metal and the superconductor respectively

(fN/S = [exp (E/kBTN/S) + 1]−1). For kBT � eV,∆, the integral reduces to
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I = 1
eRT

∫ ∞
∆

nS(E)fN(E − eV )dE. (5.3)

Solving the integral for low T and to the lowest order for eV ≤ ∆, one finds

I ≈
√

2π∆kBT
2eRT

e−(∆−eV )/kBT . (5.4)

Equation 5.4 predicts an exponentially suppressed current within the gap eV < ∆.

Experimentally often a sub-gap current, linear in bias voltage, is observed [120, 126,

136]. Phenomenologically, the sub-gap leakage is well described with a Dynes density of

states [137, 138], a BCS like DOS, including lifetime broadening in the superconductor.

Recently it has been shown that the physical origin of the finite DOS in the gap

is the result of environment-assisted tunneling [126] and is equivalent to the Dynes

DOS formalism. Both mechanisms lead to an altered superconductor DOS, nDS (E) =∣∣∣∣Re( E/∆+iγ√
(E/∆+iγ)2−1

)∣∣∣∣, where γ is the Dynes parameter, effectively introducing states

within the gapped region. Note that for γ → 0, the original BCS DOS is restored. It

can be shown that γ = RT

Rgap
, the ratio between the normal state tunneling resistance

and the resistance in the gap [126]. The inset in Fig. 5.3 shows a zoom-in for transport

within the gap. From a linear fit in this region we extract Rgap ∼ 420 MΩ. Together

with RT ∼ 14.2 kΩ this corresponds to γ ∼ 2.8 · 10−5, comparable to the lowest

leakages experimentally determined [126].

Solving Eq. 5.4, which is valid to the lowest order for eV ≤ ∆, for the voltage, leads to

V ≈ ∆
e
− kBT

e
ln
(

2eRT I√
2π∆kBT

)
. (5.5)

Therefore a simple expression for the voltage across the junction for a bias current I

exists, depending only on RT and ∆. Upon inversion of the bias, current will flow in the

opposite direction, but the bias dependence is symmetric around the Fermi energy EF .

Hence for a fixed current |I0|, the difference between the voltages V2(I0) and V1(−I0)
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is given by

∆V = V2 − V1 ≈
2∆
e
− 2kBT

e
ln
(

2eRT I0√
2π∆kBT

)
. (5.6)

Thus ∆V essentially increases linearly in temperature over a large range of tempera-

tures. Figure 5.3 demonstrates how we extract ∆V for I0 = 10 pA at 100 mK. Because

of experimental issues like voltage drifts, we decide to measure the whole I-V curves as

shown in Fig. 5.3 and then determine ∆V .

5.3.4 B-Field Dependence

First, we investigate the effect of an external magnetic field on the NIS junction.

Figure 5.4 plots ∆V for I0 = 10 pA against the B-field for different temperatures,

while the B-field is swept from positive to negative. There exists a field position for

which ∆V is maximal at Bmax ∼ 1 mT, which is independent of temperature. After

sweeping through Bmax, ∆V decreases monotonically, disrupted by reproducible jumps

at intervals of ∼ 1 mT. To check whether the non-zero Bmax is caused by an external
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field, we sweep the field in the opposite direction, shown in the inset of Fig. 5.4. Clearly

Bmax depends on the sweep direction, behaving hysteretically. Again jumps in ∆V show

up after passing through Bmax. The origin of both the B-field offset and the jumps in

∆V are presently not understood. For the jumps one could speculate that an addition

of a vortex into the superconductor could aid quasiparticle relaxation [139], resulting in

a reduced temperature of the superconductor, in turn giving rise to larger ∆V . On the

other hand for the area of the NIS junction (350 nm × 350 nm), one would expect an

addition of a flux quantum only every 17 mT, an order of magnitude larger period than

observed experimentally. Nevertheless a similar explanation has been used recently to

address the improved performance of a NIS refrigerator at finite B-field [135, 139].

There the flux vortex, enabling quasiparticle relaxation in the superconductor and

thus better cooling, has been determined to be inserted quite a distance away from the

actual tunnel junction. We note that in our case the superconducting region away from

the junction is very large ∼ 1 mm2, and thus vortex induced relaxation in proximity

to the junction might be possible on the observed field scales.

For thermometry, Bmax represents the best field position, as the temperature sensitivity

is largest there. Thus the presented ∆V data is always extracted at the B-field position,

where it is maximal. For dilution refrigerator operation Bmax is very stable, as soon

as we ramp up Bdemag, the maximum will shift due to a finite stray field at the sample

position (Bmax ∼ -60 mT at Bdemag = 9 T).

5.3.5 NIS Thermometry

Figure 5.5 displays ∆V for three different I0 versus the temperature of the Cu NRs

measured with a CMN and a LCMN at the lowest T . The CMN thermometer is cali-

brated using a standard fixed point device with 6 superconducting transitions between

1.2K and 96mK. The solid lines in Fig 5.5 are fits to the data points between 30 mK

and 100 mK using Eq. 5.6. The current I we fix to I0 and the normal state resistance

RT to 14.2 kΩ, the open fit parameter is ∆, which should be independent of I0. We
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find that ∆/e ∼ 224 µeV, consistent with previous reported superconducting gaps in

thin film NIS junctions [113]. A slight dependence of ∆ on I0 is observed. For higher

I0, ∆ is also increasing, this is why the three different fits do not converge to a single

point for Tcu = 0. The inset of Fig. 5.5, which is a zoom-in for the measurements ob-

tained at low T (the temperature region reached with demagnetization runs is shaded),

shows that upon demagnetization the normal metal cools, as ∆V increases a little bit.

Fig. 5.3 already pointed toward this direction, where the 2.5 mK I-V curve is measured

after demagnetization and shows a wider gapped region than the I-V curve at 9 mK.

On the other hand, below 20 mK, the measured ∆V starts to deviate from the ex-

pected values from the fits and eventually saturates. The saturation temperature after

demagnetization is roughly 10 mK.

It could well be that the temperature of the NIS indeed does not drop below 10 mK.

On the other hand, the sub-gap leakage might obscure the measurement at very low

currents, as γ essentially broadens the I-V characteristics at the gap edge [120]. To
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illustrate this effect, we plot a zoom-in on one flank of the I-V curves in Fig. 5.6. The

plot compares measured curves (solid lines) with calculated I(V ), using Eq. 5.4 (dotted

line) and solving the the integral (Eq. 5.3) numerically with a Dynes DOS (dashed line).

The numerical calculation uses a Dynes parameter γ ∼ 2.8 · 10−5, whereas we added

a linear background corresponding to Rgap ∼ 420 MΩ for I(V ) calculated through

Eq. 5.4. For both calculations we used RT = 14.2 kΩ and ∆ = 224 µeV. At 100 mK

the agreement between the two calculations and measurement is very good. At 30 mK

the effect of the Dynes DOS can be seen, as the two calculated I(V ) differ at low

currents. At 10 mK the difference is bigger, demonstrating that γ has an effect on ∆V

at the lowest currents. For I0 = 5 pA or below, we thus expect some kind of ∆V (T )

saturation due to γ [120]. Above I0 = 10 pA the two calculated I(V ) agree well with

each other, the leakage should therefore play no role there. This is not what we have

observed in Fig. 5.5, where ∆V (T ) saturates irrespective of the current I0.

Indeed from Fig. 5.6 it becomes apparent that the actual measurement deviates quite a

bit from calculations – the measured current increases at lower absolute voltages than

expected and never quite agrees with the calculations. The inset of Fig. 5.6 shows both

flanks of an I-V curve (blue). The linear behavior within the gap is emphasized through

a linear fit (black). At the edge of the gap there is a clearly visible additional increase

of current, before the current starts to increase exponentially. As seen in the main

plot of Fig. 5.6, this additional tail signifies a deviation from the I-V curve described

by BCS theory. Including a Dynes DOS cannot reproduce the tail completely either.

Therefore at the lowest temperatures and at currents below 20 pA the temperature

reading from the NIS thermometer can become unreliable, as I(V ) deviates from the

expression in Eq. 5.3. Further the measured data never reaches the calculated curves,

reflecting the saturation observed in Fig. 5.5. An explanation for the deviation at

lower currents could be additional absorption of external radiation, for example black-

body radiation. As the NIS junction is also a sensitive spectrometer, thermal radiation

could allow for current right at the edge of the gap, effectively reducing the gap. The
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maximum in the intensity distribution for black-body radiation at 10 mK is around

4 µV, a value not inconsistent with the apparent voltage shift at the lowest currents.

Further the voltage preamplifier can cause problems at these low currents, as it gives

out a small current, giving rise to an increased measured current. As discussed at

the end of this chapter, another explanation could be voltage noise across the device,

broadening the Fermi-Dirac distribution. On the other hand the magnitude of the

apparent voltage shift is larger than typical measured voltages noise (Vrms ∼ 1 µV).

At this point, we cannot verify whether the deviation of the I-V curve at the edge of

the gap is indeed stemming from blackbody radiation, but it seems that is certainly

making a temperature measurement for the lowest I0 difficult.

An alternative but in principle equivalent way of extracting temperature is to fit the

full I(V ) curve. As a calibration we use the superconducting gaps extracted from the

∆V (T ) fits in Fig. 5.5. At elevated temperatures (above 40 mK) the full I(V ) fits agree

quite well with the data, reproducing the MC temperatures. At lower temperatures,

again due to the deviations of the I-V curves from theoretical behavior at low T , the

fits do not agree nicely with the data (not shown). The lowest temperature extracted

using the full fit are similar to the ones extracted with the ∆V method (TNIS ∼ 9 mK).

Apart from the low current deviations, one of the problems with the full fit method is

the I0 dependence of ∆. Depending then on the exact ∆, the extracted temperature

can vary significantly.

Although in literature NIS junctions are not considered to be primary thermometers

[116], mainly due to the uncertainty of the material parameter ∆, which might vary

from device to device. We now show that the NIS junction can constitute an absolute

thermometer, not invoking ∆. Using Eq. 5.4 one can show that the derivative of the

natural logarithm of the current with respect to voltage is given by

∂ ln I
∂V

= e

kBTNIS
. (5.7)
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As described above, this relation only holds where the approximation eV < ∆ is

fulfilled. Further we neglect any higher order contributions for the approximation used

to derive I(V ) in Eq. 5.4, which can cause deviation from the linear behavior in ln I(V ),

when eV approaches ∆. From the slope of linear fits to ln I as a function of V , we can

now directly derive the temperature without any additional calibration. Thus the NIS

junction can serve as an absolute thermometer, depending on the temperature and the

fundamental constants e and kB only. The material parameter ∆ is eliminated with

this method. Figure 5.7 plots several I-V curves at different temperatures for currents

up to a few nA versus the applied voltage Vapp. We use Vapp instead of the measured V

because small fluctuations of the measured V can have a large effect on the I-V curve.

At very low T the current is increasing very strongly while the voltage is changing

only very weakly (strong slope). We find that temperature fits become more reliable

when plotting I(Vapp). The inset in Fig. 5.7 plots the extracted TNIS versus TCu from

linear fits (red) to the curves displayed in the main plot (negative voltage) and on the

other I-V flank (positive voltage, not shown in main plot). The dashed line indicates

ideal thermalization. TNIS at higher TCu agrees rather well with the MC temperature,

although all TNIS show a small offset (∼ 2 mK) compared to TCu. This is something we

expect from numerical calculations, where both the effect of γ and non-linear behavior

in ln I(V ) close to the gap edge increase the temperature (not shown). This potentially

absolute thermometer should be investigated in more detail in the future, especially

because also the effect of heating due to the larger operating currents is unclear. For

the moment we stick to our simple relation of Eq. 5.7. By doing so, at base T of the

DR, we determine TNIS to be ∼ 11 mK. Upon demagnetization the NIS junction cools,

at TCu ∼ 2.5 mK, TNIS ∼ 4.5 ± 1 mK. The error of the linear fit itself is very small,

the error displayed in the inset of Fig. 5.7, we obtain by fitting I(V ) several times for

different ranges within the linear regime.

In summary, we use a low leakage NIS junction (Rgap ∼ 420 MΩ, γ = 2.8 · 10−5) both

as primary and secondary thermometer by measuring I-V curves across the junction.
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We observe a dependence of the I-V curves on B-field. The position of the largest gap

reading in field is hysteretic, something which is presently not understood. Measuring

at the B-field with the largest gap, we demonstrate secondary NIS thermometry down

to 10 mK. At the very lowest T , we observe a deviation from the theoretical I-V

curve, which then limits the temperature reading and causes TNIS to saturate. We

speculate that the deviation of I(V ) for low currents, could be due to background

blackbody radiation. We further use the NIS junction as a primary thermometer. This

is possible because for the approximation in Eq. 5.4 at higher currents, ∂ ln I
∂V

is constant

and depends only on T . With this absolute method, we extract TNIS ∼ 4.5 ± 1 mK

after demagnetization. Further studies to investigate the effect of the Dynes DOS and

non-linear behavior close to the gap are needed to describe this thermometer in more

detail. Further effects of heating due to the high currents flowing are not taken into

account in our analysis. Similar to the CBT, the NIS junction is fabricated on top

of a Si wafer. In order to improve shielding further and help to cool the substrate to

lower T , it might be worth fabricating the next generation of NIS thermometers on a

conducting backplane (i.e. doped Si).

5.4 Reentrant State Quantum Hall Thermometer

After establishing with CBT and NIS thermometry, that we reach electron tempera-

tures well below 10 mK in metallic nanostructures, we test cooling below base T of

the DR in semiconducting samples. As a thermometer we use the temperature depen-

dence of reentrant quantum Hall states in high mobility GaAs quantum wells [140–142].

These states are highly temperature sensitive at the lowest temperatures [143, 144],

but unfortunately neither the underlying physics of these states nor the exact temper-

ature dependence is known, making it only a qualitative diagnostic tool, rather than a

quantitative thermometer.

The signature of reentrant integer quantum Hall states is that at some nominally

fractional Rxy(B) as a function of field, Rxy jumps back or jumps ahead, assuming
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the quantized value of a neighboring integer filling factor [141, 142]. Due to a density

gradient present in the sample, reentrant states show up in the longitudinal resistance

Rxx [145] as peaks, at least for one B-field polarity. This helps us to separate the

reentrant states from the conventional Rxx signal. For more information about the

density gradient and its consequences, we refer to chapter 6. The nature of the reentrant

states is presently still under investigation. They have so far only been observed at

the lowest temperatures in the highest quality samples. It is speculated that they are

a consequence of so called bubble phases [146]. Their abrupt temperature dependence

[143, 144] and sensitivity to in-plane magnetic fields [143] has been interpreted as a

melting of the bubble phases [144]. Nevertheless, at present a more detailed theoretical

description is lacking. For estimating the electron temperature quantum Hall features

have been previously used [80]. Peak height and position in field of Rxx values have

been recorded as a function of temperature and then, by assuming a linear dependence

on temperature, the lowest temperatures have been extrapolated. Here we follow a
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similar approach, but measure the reentrant features as a function of T , rather than

conventional Rxx data. Due to the theoretical void this allows only for a qualitative

measurement, but with this method we demonstrate cooling of electrons in a 2DEG

upon demagnetization.

The sample, which is described in more detail in chapter 6 (sample A therein), is mea-

sured with standard four-wire lock-in techniques, with an a.c. current-bias excitation

of 0.5 nA at 2.4 Hz. The bulk mobility of the device at base T is µ = 1.9 × 107 cm2 V-1

s-1, the electron density is on the order of 2.3 × 1011 cm-2. The 2DEG is electrically

contacted with In soldered contacts, resulting in very low resistive ohmic contacts.

Figure 5.8 shows Rxx versus B-field between filling factors ν = 3 and ν = 2 for different

T . The B-field is swept with 0.12 mT s-1 in order to avoid heating of the sample. Three

reentrant quantum Hall states manifest themselves as peaks in Rxx, which we name

high B, mid B and low B peaks according to their position in B-field. The height
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and position of the peaks is independent on B-field sweep direction. As the reentrant

quantum Hall states usually appear within a very small temperature range [144], we

only plot Rxx below 18 mK. Above∼ 30 mK the peaks in Rxx are barely visible anymore

(not shown). We observe more pronounced reentrant states at lower temperatures for

all three reentrant features, as Rxx increases for lower T . Due to the quality of the

sample the reentrant Rxy values do not yet reach the quantized value of one of the

neighboring integer filling factors, thus this obvious source of low T saturation can be

excluded.

In order to characterize the temperature dependence further, we plot in Fig. 5.9 the

peak values Rxx,max of the all peaks versus temperature. The temperature sensitivity is

largest for the mid B peak, but all peaks clearly increase in resistance at lower T . After

demagnetization, Rxx,max is higher than at base T, demonstrating further cooling. If

we use a linear fit between 17 mK and 8.8 mK as a calibration, the temperature after

demagnetization to Bdemag = 0.2 T is ∼ 5 ± 1.5 mK for the peaks at high and medium

B-field. The temperature extracted through the low field peak is ∼ 2.5 ± 1.2 mK.

5.5 Electrical Noise as a Limiting Factor for Reach-

ing µK Temperatures

The experiments presented above demonstrate that we can cool both metallic and

semiconducting nanostructures to ∼ 5 mK or below. In order to explain the satura-

tion at low T , we considered the equilibrium situation, where the heat that is removed

from an object will at some point be canceled by the heat leaking into the object.

Crucial for this balance is the thermal resistance Rth between the object and the cold

reservoir. For a given heat leak, the higher Rth, the higher the temperature differ-

ence between the reservoir and the object will be (Eq. 2.1). Our conclusion has been

one hand side that the heat leak to our device is too high, thus we introduced addi-

tional shielding and filtering, replaced potentially unfavorable material, and tried to

reduce measurement related heating i.e. minimize bias. Depending on the dominant
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coupling mechanism, the temperature dependence of the thermal resistance can dif-

fer significantly, making the approach of reducing heat leaks quite inefficient in certain

cases. For electron-phonon coupling the saturation temperature is depending only very

weakly on the residual heat leak Q̇0, TS ∝ ΩQ̇1/5
0 . Therefore another promising route

for circumventing this limitation, is to reduce Rth by increasing the volume Ω of the

object. Using another channel for heat conduction with a more beneficial temperature

dependence (i.e. Wiedemann-Franz) is the other option to achieve lower Rth. We tried

to reduce Rth with both approaches, but all the experiments resulted in similar satura-

tion temperatures. This could mean that some other effect could limit us at the lowest

temperatures. For example the Si backplane of the CBT and NIS chips releasing heat

over a long time scale or not cooling to low lattice temperatures due to their insulating

nature.

Another explanation for the saturated temperatures and their insensitivity to improve-

ments of Rth, could be noise. We thus consider the effect of electrical noise, which

does not exactly heat up our devices by heat dissipation, but broadens the Fermi-

Dirac distribution. It is important to note that all electron thermometers discussed

in this and other chapters (chapters 3 and 4) are essentially mapping the thermally

broadened Fermi-Distribution in a reservoir of electrons. Voltage noise can be regarded

as fluctuations of the chemical potential in the reservoir. For a measurement slower

than the fluctuations, the Fermi-Dirac distribution will appear broadened due to these

fluctuations. We now try to estimate the broadening of the Fermi distribution for two

different devices, metallic CBTs and quantum dot CBTs and show how this will change

the temperature reading of the thermometers. From our estimate we deduce that this

line broadening can play a role for temperatures below 10 mK, potentially being one

of the limiting factors for cooling below 1 mK.
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5.5.1 Metallic CBT

According to Eq. 5.1, for primary electron thermometry with a CBT, one has to measure

the full-width half maximum (FWHM) V1/2 of the differential conductance dip. For

simplicity we approximate this conductance dip with a Lorentzian lineshape. In order

to estimate the line broadening due to voltage noise, we assume a Gaussian voltage

noise distribution around zero, thus the variance is given by the typically measured

root mean square voltage (Vrms = σ). The FWHM of the noise distribution can be

calculated through

fG = 2σ
√

2ln(2). (5.8)

For the broadening of the CBT Lorentzian lineshape due to the Gaussian noise dis-

tribution we consider a convolution of the two lineshapes, resulting in a Voigt profile

[147]. The FWHM of the Voigt profile can be approximated by

fV ≈ 0.5346fL +
√

0.2166f 2
L + f 2

G, (5.9)

where fL is the FWHM of the Lorentzian distribution [147], which again according to

Eq. 5.1 is directly proportional to TCBT .

Due to the voltage noise, the FWHM of the Voigt profile will always be larger than

for the pure Lorentzian distribution (fV ≥ fL). Hence the extracted temperature Text

will be larger than the actual device temperature TCBT . By substituting, one can write

Text as a function of Vrms and TCBT

Text = 0.5346TCBT +
√

0.2166T 2
CBT + 4e2V 2

rms2 ln(2)
5.1345NkB

. (5.10)

Figure 5.10 shows Text from a single island device (N=2) as a function of TCu and

for different noise levels. For base temperatures of the dilution refrigerator ∼ 9 mK,

the effect is rather small: for typical voltage noise levels of 1 µV measured over the

device, the extracted temperature should be roughly 9.7 mK. This is not inconsistent
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CBT device as a function of the NR temperature TCu calculated through Eq. 5.10 for
different voltage noise levels. The dashed black line indicates the case for no voltage
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with our measurements, but could well be due to other effects. It should be noted that

the voltage noise is measured on top of the fridge, thus it is not clear that the sample

sees the exactly same Vrms. Due to the many filtering stages in our system which are

which can work in both directions, Vrms at the sample could be both higher and lower

than on top of the fridge. In a simple picture where the noise sources lie at room

temperature (we neglect low T Johnson noise of our two stage filters (∼ 80 nV) and

noise coming from the wafer), the noise at the sample should be lower than on top,

due to the significantly reduced bandwidth.

The number of junctions N plays an important role: from Eq. 5.10 it becomes clear

that for an array of tunnel junctions the line broadening can be reduced due to a larger

N . The saturation temperature in the limit where TCu → 0 is given by TS = 5.32mK
NµeVrms

.

For the linear array of tunnel junctions we do not observe a dependence of TS on the

number of tunnel junctions, probably because of lower actual noise levels at the device

and some other effect, preventing lower Te.
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5.5.2 Quantum Dot Coulomb Blockade Thermometry

Quantum dot thermometers, operated in the deep Coulomb blockaded regime, probe

the Fermi-Dirac distribution of the 2DEG with the sharp dot level. In order to account

for the effects of noise in this specific case, we convolve the derivative of the Fermi-

Dirac distribution (∝ cosh−2(µ−EF

2kBT
)) with the Gaussian noise distribution. As we are

not aware of any analytical function for this convolution, we first take the derivative of

the Fermi-Dirac function for a given temperature T . Then we numerically convolve this

derivative with a Gaussian distribution and then numerically integrate this convolution

to obtain the occupation probability distribution, which appears broadened.

Figure 5.11 displays the calculated curves resulting from the convolution for TCu =

10 mK (top panel) and TCu = 1 mK (bottom panel) for different Vrms, showing a clear
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broadening of the distributions with increased noise. The inset plots the extracted

temperatures Text, if the broadened distributions are again fitted with a Fermi-Dirac

function. It becomes clear that the line broadening can effectively increase the temper-

ature measured with the quantum dot thermometer. It is interesting that in the case of

the metallic CBT, 1 µV of noise at base temperature increases the extracted tempera-

ture by ∼ 7%, whereas for the quantum dot therometer the effect is more pronounced,

as Text = 12.3 mK at TCu = 10 mK, a 23% increase. The difference between the two

cases is that the Lorentizan FWHM for the metallic CBT is given by 5.1345NkBT ,

whereas in the case of a quantum dot thermometer the FWHM of the cosh−2-function

is given by 3.5kBT . For N = 2 the FWHM of the CBT is thus factor 3 larger, mak-

ing it less vulnerable to line broadening due to voltage noise. Increasing the number

of junctions N can further reduce the effect of voltage noise line broadening. A way

around this effect would be to suppress voltage noise by filtering more, although the

device can also have some intrinsic noise, which has the same line broadening effect

[100]. Another option is to measure the Fermi-Dirac distribution on a faster time scale

than the fluctuations occur, which is technically challenging. Last but not least, one

could try to cool another degree of freedom, less susceptible to electrical noise, through

the electron bath, similar to a Pt nuclear magnetic resonance (NMR) thermometer.

Finally, we note that these line broadening effects will occur in any thermometer map-

ping the Fermi-Dirac distribution, as long as the measuring time is long compared to

the time scale of the fluctuations. Therefore also NIS thermometers are susceptible to

this effect. We have not analyzed the effect of voltage noise on the NIS thermometer

in detail, but it should be similar to quantum dot thermometers, because the Fermi

distribution is broadened in the same way. The NIS junction might even serve as a

testing ground, in order to study the line broadening experimentally. Because of the

large device resistance, an artificial voltage noise broadening should be experimen-

tally realizable without significant Joule heating. Nevertheless such noise experiments

should be carefully designed to avoid any additional, unwanted heating.
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Abstract

We present quantum transport measurements in high-mobility GaAs 2D elec-

tron gases at low temperatures. We find a novel sequence of finite resistance

plateaus in longitudinal resistance Rxx in the integer quantum Hall regime, ac-

companied by a striking B-field asymmetry and weak or absent fractional quan-

tum Hall states. These signatures can be well understood with charge density

gradients across the sample, as confirmed by Rxy data. The activation energies of

the novel Rxx plateaus are surprisingly small, allowing experimental observation

only at the lowest temperatures and in ultra-clean samples. Density gradients

can be reduced with improved waver growth (rotation) and smaller distances

between ohmic contacts. Nevertheless, our results show that Rxx can easily be

misleading, characterizing gradients rather than quantum Hall gaps, thus fun-

damentally jeopardizing Rxx as the predominant probe of integer and fractional

quantum Hall physics.

This chapter is prepared for publication.
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6.1 Introduction

The quantum Hall effect (QHE) is observed in two-dimensional electron gases (2DEGs)

exposed to high magnetic fields, where the density of states is described by Landau

levels. The characteristic signature of the QHE is a quantized off-diagonal resistivity

ρxy in steps of h
νe2 , where the integer ν is the filling factor, indicating the occupation

of the Landau levels. Concurrently, the diagonal resistivity ρxx is zero because of

avoided backscattering. In high quality 2DEGs, electron-electron interactions can lead

to the formation of an additional energy gap within the Landau levels, resulting in

the fractional QHE (FQHE), where ν is a rational number. The composite fermion

picture has been extremely successful in describing the FQHE by combining flux quanta

and electrons to form composite quasiparticles [6]. The theory can account for the

existence of odd denominator FQHE states. However even denominator states have

been observed experimentally [63, 78, 148], most prominently the ν = 5/2 state in

the second Landau level. Moore and Read have proposed a many body wavefunction

describing the ground state of the ν = 5/2 state [19]. This “Pfaffian” state has received

considerable interest due to its exotic quantum statistics which are predicted to be

non-Abelian. Kitaev and Das Sarma et al. have envisioned a fault tolerant topological

quantum computer exploiting the non-Abelian nature of the ν = 5/2 quasiparticles

[149–151]. Other theoretical proposals put forward the realization of Majorana fermions

in the ν = 5/2 state [61]. On the experimental side, a major effort has been put

into confirming the Moore-Read description through various experiments, including

quasiparticle shot-noise [152], quasiparticle tunneling [80, 153], interferometry [154–

156] and spin polarization [157] measurements. These experiments are complicated by

the small energy gap of the ν = 5/2 state, ∆5/2 ∼ 600 mK [158], which is roughly 4

times smaller than theoretically calculated [159]. Considerable efforts have been put

into optimizing wafer growth in order to increase the energy gap and also to get some

insight into the mechanisms limiting ∆5/2 [144, 158, 160, 161]. From the observation

of the ν = 5/2 state only at the highest mobilities it has been realized, that disorder
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plays a crucial role in the stability of the 5/2 state. Although the correlation between

mobility and ∆5/2 has not been so clear in later experiments [144, 162]. Recent results

suggest that disorder is indeed a key ingredient [161, 163], but a distinction has to be

made between remote impurities, background impurities, alloy disorder in the 2DEG

and the interface roughness.

The typical way of extracting ∆5/2 is by determining the increasing ρxx (by measuring

the differential longitudinal resistance Rxx) as a function of temperature. Due to the

increased population of the excited state, causing scattering across the sample bulk,

the temperature dependence of ρxx allows for identification of the thermal activation

over the ground state. It has been previously shown that this method of extracting the

energy gap can be fundamentally flawed in the presence of a density gradient, because

in that case Rxx contains no information about the underlying ρxx [145, 164]. Pan et

al. also observed a quantization in Rxx similar to the one reported in this letter, but

only in the special case for reentrant states next to fractional states.

6.2 Experiment

In this letter we report on quantized Shubnikov-de-Haas (SdH) oscillation peaks in

longitudinal differential resistance Rxx. The strength of this quantization is dependent

on the measured contact pairs. Our data can be explained by invoking a charge carrier

density gradient. A simple binary charge carrier density gradient model, which is

based on the edge channel picture is discussed. The binary gradient model also can

account for the highly asymmetric behavior of Rxx with respect to the sign of the

magnetic field B. Additionally, we investigate the temperature dependence of the Rxx

quantization. An energy gap associated with the density gradient can be extracted

and possibly explain why such a clear observation of the Rxx quantization has to the

best of our knowledge not been reported before, as these gaps are on the order of few

tens of millikelvin the most. Therefore very low electron temperatures seem to be a

prerequisite for the observation. We further demonstrate that the density gradient has
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an impact on the energy gap determination of the fractional states ν = 5/2 state. Our

data shows that the role of disorder and temperature saturation in these systems is

not resolved yet and fundamentally questions the role of Rxx as a characterization for

fractional quantum Hall states.
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Figure 6.1: Longitudinal resistance quantization. (a) The inset shows a sample
contact scheme. Transversal resistance Rxy (blue,green) for contact pairs 1-3 and 1-
5 versus magnetic field B. The corresponding longitudinal resistance Rxx (red) for
contacts 3-5 versus magnetic field B, current flows through contacts 8-2. Black traces
are calculated Rxy (dashed) and Rxx (solid), based on a binary gradient model, see
text. (b) Rxy and Rxx for a different voltage probe configuration with the same current
contacts 8-2 and calculated Rxy (black, dashed) and Rxx (black, solid) . The inset
illustrates an edge channel picture for the measured device with a density gradient
(purple arrow), resulting in two filling factors ν1 and ν2.

6.2.1 Samples

The devices used in this work are AlGaAs/GaAs quantum wells grown by molecular

beam epitaxy (MBE). Two different samples from different wafers are measured. For
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sample A the 2DEG forms in a 30 nm wide potential well which lies 245 nm below the

surface. Sample B contains a 30 nm wide 2DEG, buried 195 nm below the surface. It is

important to note that the two wafers have not been rotated during MBE growth. The

bulk mobility of device A at base temperature is 1.9 × 107 cm2 V-1 s-1 and the electron

density is on the order of 2.3 × 1011 cm-2. The 2DEGs are electrically contacted

on all 4 corners and in the middle of the 4 edges with In soldered contacts. For a

sample contact scheme of this van-der-Pauw geometry see the inset in Fig. 6.1 (a), the

samples are roughly 4 mm times 6 mm in size. Measurements on sample A are carried

out in a dilution refrigerator with a base temperature of 9 mK using standard four-

wire lock-in techniques, with an a.c. current-bias excitation of 2 nA at 2.4 Hz. The

setup has been optimized for low temperature measurements, including several filtering

stages and Ag sinters in the mixing chamber, thermalizing every measurement lead [84].

The differential longitudinal resistance Rxx and the two corresponding differential Hall

resistances Rxy are measured simultaneously as a function of magnetic field. All quoted

temperatures are measured using a Cerium Magnesium Nitrate (CMN) thermometer

mounted on the mixing chamber. The CMN thermometer was calibrated using a

standard fixed point device with 6 superconducting transitions between 1.2 K and

96 mK.

6.2.2 Magnetic Field Dependence

In Fig. 6.1 (a) Rxx between contacts 3 and 5 (current flowing through contacts 8 and

2) is plotted against magnetic field B for sample A. At low field SdH oscillations are

visible, exhibiting a clear beating pattern (see also Fig. 6.2 (a) inset), indicating the

presence of two different densities. At higher fields the minima in Rxx reach zero, as

expected. The striking feature of our data is the quantized value of the maxima in

Rxx, visible as clear flat-top peaks. The corresponding Rxy traces for contacts 3 and

5 provide further evidence, that the densities for contacts 3 and 5 significantly differ.

Analyzing the slope of the two Rxy traces in the low field region gives the two different
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densities n1 = 2.36 × 1011 cm-2 and n2 = 2.48 × 1011 cm-2. With a definition for the

density gradient, 2∆n
n1+n2

, this results in a 5% density gradient. The dashed black curves

are calculated Hall resistances for n1 and n2, fitting the experimental data quite well.

The black solid line is the difference between the calculated Rxy for the two densities,

reproducing the quantization in Rxx. Thus the quantization in Rxx is the consequence

of a difference in density on the order of 5% within the sample. As the density gradient

might be anisotropic and nonhomogenous, different contact configurations might give

different Rxx traces, which is indeed observed. Fig. 6.1 (b) displays the Rxy and Rxx

traces of a different contact pair on the same sample. The difference in density is

lower, roughly 2% (n1 = 2.36 × 1011 cm-2, n2 = 2.41 × 1011 cm-2), and the maximum

Rxx values do not reach the quantization values. In the simplest case, a linear density

gradient might be easily eliminated choosing the right contact configuration along the

direction perpendicular to the gradient. We do not observe such a simple density

gradient distribution in our samples.

Plateaus in Rxx have been previously observed in samples with spatially varying elec-

tron densities, either due to inhomogeneities in the wafer [145, 164, 165] or due to

a constriction in which the density was different [166–168]. In an edge state picture

[169], valid at fields above a few hundred millitesla, the two different densities can

result in a sample with two different integer filling factor regions (i.e. integer filling

factor ν1 for the lower density region and integer ν2 for the higher density region). This

is schematically drawn in the inset of Fig. 6.1 (b). Combining this binary density edge

state picture with the Landauer-Büttiker formalism [170], one can again reproduce the

observed data. One can show that, if the innermost edge channel is returning to the

other sample side between the two upper Vxx contacts, Rxx is quantized,

Rxx = h

e2

( 1
ν1
− 1
ν2

)
. (6.1)

This is due to a voltage “jump”, due to the return of an edge channel between the two

Vxx contacts. The measured quantized Rxx values are described by the above formula
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within a few percent accuracy (see also inset of Fig. 6.3). Following the observation

of plateaus in Rxx for fractional states next to reentrant states by Pan et al. [164],

Ilan et al. could show with a classical model, that in presence of density gradients,

Rxx on one sample side is given by the difference of the local Hall resistivities [171].

According to the model, as current is almost entirely flowing along this sample side,

on the opposite sample side no voltage drops between the two contacts, thus Vxx is

very small. This is consistent with the edge state picture depicted in the inset of

Fig. 6.1 (b), where the return of one edge channel from the lower to the upper side of

the sample is not noticed on the lower side voltage contacts. Thus Rxx stays in the

zero resistance state. In the case of a linear, homogeneous density gradient the intrinsic

ρxx might be reconstructed by combining Rxx measurements on opposite sample edges

(or in opposite field polarity), see Eq. 20 in [171]. But due to the non-uniform density

gradient in our samples this method is not applicable. Furthermore the density gradient

is large, such that we are not able to measure Rxx in the opposite field direction, because

it is becoming so small (see below).
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6.2.3 Asymmetry in Magnetic Field
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Figure 6.2: Asymmetry in B-field. (a) Rxy and Rxx versus B for both field polarities.
The inset shows a zoom-in for Rxx around zero field. (b) Rxy and Rxx for a current
and voltage configuration, which probes the opposite sample side, plotted against B.

The analog of switching to the other sample side is the inversion of the B-field polarity,

as this changes the direction of current flow. Thus either changing the sample side, or

changing the B-field polarity should result in a vanishing Rxx. Figure 6.2 (a) shows

the same contact configuration as in Fig. 6.1 (a) but now for a wider field range and

field inversion. One can clearly see the asymmetry upon B-field sign change. The inset

in Fig. 6.2 (a) shows a zoom-in around zero field, making the asymmetry even more

clear. At low negative B-field both Rxy traces lie on top of each other, thus Rxx stays

at zero. At higher negative magnetic fields, overshoots and reentrant features can be

observed, leading to a peak in Rxx. As suggested by Pan et al., reentrant features could

be viewed as an inversion of filling factors, being consistent with our observations [164].
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A recent paper suggests co-existing evanescent incompressible strips as the origin for

resistance overshoots [172], which we cannot explain with our model. Interestingly, the

overshoots appear for the two different densities always on opposite sides of the QHE

plateaus. In Fig. 6.2 (b) we plot a different contact configuration with Vxx contacts

on the other sample side. The qualitative behavior of Rxy and Rxx is very similar,

except for the inverted polarity for the B-field. Further the quantization in Rxx is not

that clear, which indicates a lower density gradient. We propose the inversion of the

B-field polarity as a detection tool for possible density gradients, as in homogeneous

samples the two field sides should be perfectly symmetric. For not so dramatic density

gradients (≤ 1%), Eq. 20 in [171] could help to reconstruct information about the

intrinic ρxx [145]. We further note that at the time inexplicable B-field asymmetry has

been observed before [173], but has been interpreted as an anisotropic resistance state

[174].
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6.2.4 Temperature Dependence
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Figure 6.3: Temperature dependence. (a) Rxy and Rxx against magnetic field B
for different temperatures T . (b) From the temperature dependence of Rxx(B, T ) an
energy gap is extracted and plotted against B, see text. The inset shows a zoom-in
for the T dependent Rxx measurement. Dashed black lines indicate zero resistance line
and expected value of quantized Rxx based on the binary gradient model.

In order to characterize the density gradient further, we measure the temperature

dependence of the Rxx quantization. Figure 6.3 (a) plots both Rxy and Rxx against

B-field for temperatures between 10 mK and 120 mK. Already at 40 mK the Rxx

quantization is barely visible anymore. To quantify the temperature range where the

effect of the density gradient can be observed, we introduce an energy gap Egap. The

gap is extracted by plotting the Rxx values for different temperature traces (zoom-in

in Fig. 6.3 (b)) at a given B-field against inverse temperature in an Arrhenius plot.

We extract Egap with a linear fit to the natural logarithm of the resistance plotted
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against the inverse temperature using ln(Rxx) ∝ Egap

2T . For the Rxx quantization, the

quantized resistance value is reduced by higher temperatures, whereas at Rxx = 0 Ω

the resistance increases at higher temperatures, which results in opposite slopes for

the two cases. We therefore plot |Egap| in Fig. 6.3 (b). One can clearly see that as

the field is increased, the gap of the integer states also increases, which is expected.

But the magnitude of the gap is much lower than expected, as at a B-field of 1 T,

the cyclotron energy is on the order of 20 K. Generally, in high mobility samples the

QHE plateaus starts only to develop well below 4 K [16, 145]. In our case the density

gradient is reducing the gap even further, because of the effective smearing of the

integer plateaus. The noise on |Egap| values extracted around the Rxx = 0 positions

is due to the fact that it is impossible to characterize an energy gap which lies above

300 mK with a highest measured temperature of 120 mK. The energy gap of the Rxx

quantization is even smaller, showing gaps on the order of few tens of mK. Therefore

not only a high gradient, but also low electron temperatures are required to observe

the quantization in Rxx.

6.2.5 ν = 5/2 State Gap Characterization

Another important aspect of our findings is the influence of the gradient on the thor-

oughly investigated region between filling factors ν = 3 and ν = 2. In the case of

the high gradient contact configuration, the Rxx trace between 3.2 T and 4.8 T look

very unstructured (Fig. 6.2 (a)) and not comparable to other high mobility samples

used in typical ν = 5/2 studies [63]. On the other hand the lower gradient Rxx data

(Fig 6.2 (b)) exhibits the typical minima for different fractional states, i.e. the ν = 7/3

and ν = 8/3 states. It has been established that for very high quality samples the

fractional Rxx minima should drop to zero [63], indicating full condensation into the

FQHE ground state. Typically the Rxx minimum value of a given fractional state is

measured as a function of temperature. This is then used to extract the energy gap

for the state under investigation. It has been reported that due to disorder or lack of
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thermalization the minimal Rxx value saturates at higher temperatures than expected.

We now find that the magnitude of the density gradient might influence the saturation

temperature and thus distorts the extraction of the energy gap.
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Figure 6.4: Density gradient influence on energy gap of the ν = 5/2 state. (a) Rxx

between ν = 3 and ν = 2 at three different temperatures for the lowest density gradient
contact configuration on sample B. (b) Rxx between ν = 3 and ν = 2 at three different
temperatures for the highest density gradient contact configuration on sample B. (c)
Arrhenius plot to extract the energy gap of the ν = 5/2 state for the high gradient
(black) and the low gradient (red) configurations. Linear fits give the accordant energy
gaps. (d) Rxx between ν = 3 and ν = 2 at three different temperatures for the lowest
density gradient contact configuration on sample A.

Figure 6.4 presents data from sample B with an electron density of approximately

3 × 1011 cm-2, and a mobility of ∼ 1.9 × 107 cm2 V-1 s-1. Sample B also exhibits a

density gradient, but not as pronounced as sample A. Data for sample B is recorded

at a frequency of 27.3 Hz in a different dilution fridge with a base T of 5 mK. An

excitation of 1 nA was chosen in order to prevent heating of the electrons, especially

for the sensitive ν = 5/2 gap measurement. Figure 6.4 (a) displays Rxx data between

filling factors ν = 3 and ν = 2 for the lowest gradient contact pair (0.2%) for three
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temperatures. As a comparison the highest gradient contact pair (1.5%) in sample

B is plotted between ν = 3 and ν = 2 in Fig. 6.4 (b). One can immediately see

that the amplitudes of the Rxx peaks are lower for the low gradient pair. Further the

ν = 5/2 minima is lower for the lower gradient contacts. We then extract the energy

gap of the ν = 5/2 for the different density gradients. As a measure of ground state

population, we divide twice the depth of the minimum 2V of Rxx by the averaged peak

heights P1 and P2 flanking the minimum [92, 175]. In Fig. 6.4 (c) the Arrhenius plot

for the two different contact configurations in Fig. 6.4 (a) and (b) are plotted. The low

electron density gradient results in a nicely temperature dependent minimum, down

to roughly 17 mK, whereas the high gradient data already saturates at 28 mK. In a

very simple picture, the density differences in the sample lead to a smearing effect of

signatures of intrinsic FQHE features. If the temperature broadening is smaller than

the density smearing one only sees the effect of the density gradient, i.e. Rxx saturates

at a temperature given by the density smearing. At higher temperatures the broadening

due to temperature will be visible again, as observed in our data. Interestingly, the

energy scale of the saturation is on the same order as the gaps of the Rxx quantization

extracted by the temperature sweeps in Fig. 6.3 (b), and seems to be correlated to the

gradient magnitude.

Interestingly, the extracted ∆5/2 differ by a factor of 2 for the two contact configura-

tions. The high gradient Rxx measurement results in a gap of approximately 50 mK.

Note that we fit for the ∆5/2 extraction ln
(

2V
(P1+P2)

)
∝ ∆5/2

2T . On the same sample the

low electron density gradient configuration yields ∆5/2 ∼ 100 mK. For the low gradient

contact configuration the density gradient is actually comparing to gradients observed

in very high quality samples [164]. Therefore the saturation of the temperature depen-

dence of 2V
(P1+P2) (below 16 mK) and ∆5/2 seem to be limited by disorder, rather than

the density gradient. The low wafer quality makes it thus difficult to assign differences

in gap size and temperature saturation only to the density gradient. In order to com-

pare the two samples A and B Fig. 6.4 (d) plots the minimal gradient configuration
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(2%) for sample A, where still no gap extraction was possible.

As a consequence of the density gradient defining Rxx, we observe that the amplitude

of the Rxx peaks flanking the region between ν = 2 and ν = 3 correlates with the

size of the density gradient (and thus indirectly with the gap size). The larger the

gradient is, the higher the Rxx peaks are, the smaller is ∆5/2. Interestingly, a similar

effect has recently been observed in the presence of alloy disorder [163]. For increased

disorder, the high T value of Rxx at ν = 5/2 increases too. This has been attributed

to enhanced scattering of composite fermions at the alloy disorder in the quantum

well, which then limits the ν = 5/2 gap. Of course a density gradient does not cause

increased scattering, but it seems that a high Rxx can result because of an additional

energy scale (be it density gradient or disorder), which then limits the development of

the ν = 5/2 state at the lowest temperatures.

6.3 Discussion

In summary, we have demonstrated that a density gradient in a 2DEG can lead to a

longitudinal resistance Rxx, which is governed solely by the difference in local electron

density between the two contacts, in extreme cases leading to quantization of Rxx in the

integer regime. The quantized values are given by the difference of the reciprocal filling

factors. As Rxx is given by local properties, different contact configurations result in

different Rxx measurements. Based on previous experiments [145, 164, 165] and theory

[171], a binary density model is introduced, which can explain the main features of

our data. Upon inversion of the magnetic field or current direction, the Rxx traces

are highly asymmetric, consistent with the prediction of the model. The temperature

dependence of Rxx shows that even for the biggest density gradient the quantization is

only visible at the lowest electron temperatures, showing energy gaps on the order of

tens of millikelvin.

We emphasize that the Rxx quantization is only the manifestation of an extreme density

gradient, but its influence should not be underestimated, especially as it is not always
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easily detectable. We show that a significant density gradient can fundamentally flaw

the ∆5/2 extraction, because Rxx is not reflecting the intrinsic ρxx [164], which would

carry the information about the ground state population of the ν = 5/2 state. De-

pending on the contact configuration, ∆5/2 vary between 100 mK and 50 mK on the

same wafer, apparently correlated with the density gradient. The temperature below

which Rxx at ν = 5/2 saturates also seems to be related to the gradient. We specu-

late that the saturation comes about because of a smearing effect due to the density

differences. This highlights the importance of the density gradient and its detrimental

effect on characterizing wafer quality through Rxx. Although we cannot rule out some

other energy scale like disorder limiting both ∆5/2 and the saturation temperature,

it is peculiar how nicely the density gradient and ν = 5/2 are correlated. Of course

establishing a clear influence of the density gradient on the ν = 5/2 features calls for

further experiments.

Generally, it is not clear to us, how previous experiments could have been affected by

the effect of a gradient, although we believe that better wafers did not suffer from this

problem, or only slightly. Anyway the asymmetry in B-field could be a nice tool to

check for density gradient effects. We further suggest that in order to determine ∆5/2,

future experiments should focus not on Rxx (or only after thoroughly investigating it),

but rather on Rxy. For example the field range over which Rxy is quantized at 2h
5e2 as

a function of temperature could serve as an indication for the strength of the gap.

It is very likely that rotation during wafer growth, as the standard procedure is, will

suppress the density gradient. But probably rotation can also not avoid the density

gradient completely, due to different locations of the MBE targets within the vacuum

chamber. Another approach to overcome the limitation of different densities across

the wafer could be a reduction of contact to contact distances. The density difference

between the contacts then might be smaller and the effect less dramatic. Further this

could enable more detailed and controlled studies on how the ν = 5/2 characterization

is influenced by the density gradient.
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Abstract

We present electrical transport measurements in natural graphite and highly

ordered pyrolytic graphite (HOPG), comparing macroscopic samples with exfo-

liated, nanofabricated specimens of nanometer thickness. The latter exhibit a

very large c-axis resistivity ρc – much larger than expected from simple band

theory – and non-monotonic temperature dependence, similar to macroscopic

HOPG, but in stark contrast to macroscopic natural graphite. A recent model of

disorder-induced delocalization is consistent with our transport data. Further-

more, Micro-Raman spectroscopy reveals clearly reduced disorder in exfoliated

samples and HOPG, as expected within the model – therefore presenting further

evidence for a conceptual novelty in electronic transport in graphite.

This chapter is prepared for publication.
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7.1 Introduction

Graphite is a paradigmatic layered material and has been investigated intensively for

many decades. The in-plane resistivity ρab is rather well described by a simple Drude

model. However, the resistivity ρc along the c-axis, perpendicular to the graphite basal

planes, as well as its temperature dependence ρc(T ), are not described by the simple

band structure model [176, 177], and currently lack theoretical understanding despite

extended efforts. The resistive anisotropy RA = ρc/ρab is a convenient dimensionless

parameter characterizing transport properties.

Carbon atoms in the graphite basal planes are strongly bound by covalent bonds,

while much weaker Van der Waals forces bind the graphene sheets along the c-axis.

Non-trivial disorder such as stacking faults and crystalline grains result in a mosaic

angle and complicate electronic transport. For isotropic disorder, simple band theory

[176] predicts RA = mc/mab ∼ 140, the ratio of the corresponding band masses. This

agrees well with measurements in natural graphite (NG) [178, 179]. In highly oriented

pyrolytic graphite (HOPG), the anisotropy was found to be much larger, even exceed-

ing 10’000 in some experiments [180, 181]. Moreover, band theory [176] predicts a

monotonic metallic temperature dependence for both ρab and ρc, resulting in a temper-

ature independent anisotropy RA. This is seen in NG [182], but not in HOPG, where

ρc is non-monotonic with a maximum around 40K [180, 181, 183], similar to ρc in

other layered materials, such as NaCo2O4 [184] and Cuprates [185]. A large anisotropy

far exceeding 100 combined with the non-metallic temperature dependence – together

referred to as anomalous behavior – are currently not understood and present a fun-

damental problem in condensed matter physics [182, 186, 187].
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Figure 7.1: Nano-graphite samples. (a) Device schematic. Ti/Au contacts (yellow)
for 4-wire measurements are patterned on each plateau, isolated from the graphite
walls by a SiO2 layer (purple). AFM picture (b) and optical microscope image (c) of
an HOPG flake with two plateaus. (d) Cross section along the blue line in (b), giving
plateau heights.

7.1.1 Overview

In this Letter, we for the first time use exfoliation and nano-fabrication techniques to

investigate both ρab and ρc (see Fig. 7.1) in graphite flakes of various thickness in the

nanometer range. Remarkably, we find in all types of graphite anomalous behavior –

namely a large resistive anisotropy as well as a non-metallic temperature dependence.

Previous experiments measure ρab only [188]. This permits a comparison of RA in

samples with thicknesses in the nanometer range with macroscopic samples. The in-

plane resistivity of all samples is in good agreement with reported values [178–180],

and shows no size-dependence. Therefore the large RA in the anomalous samples are

to be attributed to a large ρc. The measured anisotropies appear consistent with a

recent model based on disorder induced delocalization by Maslov et al. [189, 190],

further corroborated by a disorder characterization of our samples using micro-Raman
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spectroscopy. Conduction path mixing due to a finite mosaic angle can account for the

non-monotonic temperature dependence [191], altogether presenting first experimental

evidence for a novel paradigm of electrical transport in graphite.

7.2 Experimental Techniques

7.2.1 Sample Fabrication

To produce nanostep samples, we use the design shown in Fig. 7.1(a). We exfoliate

graphite onto a Si wafer with a 300 nm thick thermal oxide and identify suitable flakes

with two plateaus differing in height by optical microscopy. The lower plateau height

d and the step height h are determined from AFM images [see Fig. 7.1(b,d)], giving

heights between 14 and 150 nm. To extend the range to larger step heights, we use

e-beam lithography and oxygen-plasma etching to carve steps up to h = 450 nm.

For contacting the plateaus, we first cover parts of the exterior edges of both plateaus

with SiO2 of at least 80 nm thickness [192] in order to prevent short-circuiting the c-

axis. Contacts (typically a few hundred nanometers in width) and bonding pads are

patterned in a final e-beam step, evaporating a Ti/Au layer thicker than 110 nm (SiO2

thickness plus 30 nm). A typical device is shown in Fig. 7.1(c). All resistances are

measured with standard 4-wire lock-in techniques. This layout allows measurements

of both ρab and ρc on the same device, as needed to obtain the anisotropy. However,

due to variations in the current distribution related to the individual device geome-

tries, corrections to the measured resistances must be applied. We do this by means

of a rough estimate based on the simplified geometry shown in Fig. 7.1(a). On the

other hand, we also performed more elaborate numerical calculations of the current

distribution to verify the observed effects, see supplementary information section.
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7.2.2 Measurements

The in-plane resistivity ρab = RabAab/lab is estimated from the 4-wire resistance Rab

with current and voltage probes on the same plateau and assuming a simple rectangular

shape of the graphite sample, with voltage probe distance lab and total graphite cross

section Aab [see Fig. 7.1(a)]. This is a good approximation for thin, elongated samples

and small anisotropy and evenly distributed contacts. For realistic devices as the one

shown in Fig. 7.1(b)+(c) and for large anisotropy, the extracted ρab presents an upper

bound. Since the current cannot penetrate easily along the highly resistive c-axis and

it’s in-plane distribution is not homogeneous between the current contacts, the effective

conduction channel is thinner and narrower than our estimate. The ρab extracted here

(see Fig. 7.2 and Table I in in the supplementary information section) agree rather

well with literature [178–180, 193]. Moreover, ρab appears independent of the graphite

thickness and is similar for NG (from two different sources, Indian NG and Madagascar

NG) and HOPG samples, as seen in Fig. 7.2, open symbols.

Next, we determine the c-axis resistivity ρc. Since lc, the contact to contact distance

across the step, is much larger than the step height h (see Fig. 7.1(a)), we need to

subtract the in-plane contributions to the measured resistance Rc to obtain the actual

c-axis resistance R̂c using

R̂c = Rc − ρab ·
(

lcl
wl · d

+ lcu
wu · (d+ h)

)
, (7.1)

with upper/lower contact to step distance lcl/cu and corresponding plateau widths wl/u.

ρc is then obtained from ρc = R̂cAu/h, where Au is the upper plateau area. Depending

on the sample geometry, the in-plane correction can be a large fraction of Rc, see

supplementary information for an overview. We note that as previously for ρab, we

again overestimate the thickness d for large anisotropy. However, here, this tends to

effectively cancel the overestimated ρab, making the extracted ρc quite robust.
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7.3 Results

7.3.1 Thickness Dependence

Figure 7.2 displays the resulting ρc as a function of height (filled symbols), giving very

large ρc and correspondingly large anisotropy RA for all nano-graphites, both NG and

HOPG. A power-law fit (linear fit on the log-log graph, slope −1±0.4) through all NG

nanostep ρc data points seems to indicate a trend of reduction of ρc with increasing

step height towards the macroscopic ρc value in NG samples. HOPG nanostep data is

excluded from the fit, since HOPG has no apparent size dependence when going from

macroscopic to nanostep samples (filled red diamonds). In order to make a stronger

statement, samples with step heights between 1µm and 100µm might give more insight

[194].

In order to test for the validity of the in-plane correction of Eq. 7.1, we numerically

calculate the current distribution for the various contact and sample geometries, taking

into account the anisotropy. From a simultaneous fit of the two measurements of Rab

and Rc to the calculated resistances we can extract ρab, ρc and RA, see the supplemen-

tary information. As anticipated the simulated ρab are lower than the approximated

ρab. For both methods the ρc values agree well with each other, corroborating our

approach.

To allow a comparison with previous experiments, we also investigate macroscopic

NG and HOPG samples, again measuring both ρab and ρc. Due to the geometry

used, corrections due to a spreading of the current flow are small and not necessary

for the macroscopic samples. On the other hand, the overestimation of the sample

thickness due to a large anisotropy is still present. The values obtained are also added

to Fig. 7.2, together with typical values from literature [178–180]. We find decent

agreement between our macroscopic data and previous measurements, reproducing

here again the large discrepancy in ρc between HOPG and NG in macroscopic samples.
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Figure 7.2: Influence of graphite thickness on ρc (solid markers) and ρab (empty
markers) at room temperature, comparing HOPG (red) with Madagascar NG (green)
and Indian NG (blue). For ρab, the abscissa value used is d+h, the overall flake thick-
ness, see Table I in the supplementary information section. Previous measurements of
macroscopic samples (black) were added for both HOPG [180] (stars) and NG [178, 179]
(circles) for comparison. Dashed horizontal lines indicate literature values ρabREF for
ρab and ρcREF for ρc. Further, the best power-law fit to all NG nanostep data yields
an exponent of −1.0± 0.4 and is shown by a dotted line to indicate a potential trend,
see text.

7.3.2 Temperature Dependence

Next, we turn to the temperature dependence ρc(T ) of the macroscopic samples [195].

For HOPG, we find a non-metallic ρc at high T (dρc/dT < 0), see Fig. 7.3 (a). Around

40K, ρc displays a rather shallow maximum, in good agreement with previous HOPG

measurements [180]. In contrast, macroscopic Indian NG behaves weakly metallic and

monotonic down to 4K [see Fig. 7.3 (b)], also in agreement with previous NG data [178].

Overall, our data from macroscopic samples fully agrees with the literature, giving us

confidence that a comparison of the exfoliated samples with literature is appropriate.

The temperature dependence of the exfoliated nano-graphite samples are shown in
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Figure 7.3: Temperature dependence of resistivities. ρc(T ) in macroscopic HOPG
(a) and macroscopic Indian (b) NG. (c) ρab(T ) in nanoscale samples for HOPG (red)
and NG India (blue) and Madagascar (green). Two samples are presented for each
graphite type (solid, sample 1; dashed, sample 2). For numerical values see Table I in
the supplementary information section. (d) ρc(T ) for the same samples.

Fig. 7.3 (c) and (d), normalized to the high-T value. In most samples, ρab(T ) is metallic

and monotonous, as expected, and in agreement with macroscopic data [178, 196]. In

two specimens, ρab exhibits a shallow maximum. This seems to occur occasionally

in nanoscale samples, as previously reported [188, 197]. Remarkably, ρc(T ) of all

nanostep samples is qualitatively the same, showing a non-metallic and non-monotonic

temperature dependence, qualitatively identical to macroscopic HOPG, and clearly

different from the macroscopic NG data. We emphasize that the non-metallic ρc(T )

combined with the large anisotropy RA constitutes anomalous behavior for all nanoscale

samples. In contrast, only macroscopic HOPG is anomalous, not macroscopic NG.
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7.4 Discussion

7.4.1 Disorder induced Delocalization

Motivated by an anisotropy far exceeding the band structure expectation, we consider

a recent theory by Maslov et al. [189]. A similar effect was also previously observed for

photons [190]. Within this theory, c-axis transport is strongly suppressed in samples

with weak bulk disorder due to 1D Anderson localization along the c-axis induced

by randomly spaced barriers (e.g. stacking faults). This gives a very large ρc and

anisotropy RA, in absence of strong bulk disorder. However, c-axis localization is

destroyed by bulk scattering out of the c-axis direction, leading to reduced ρc and

smaller RA. Interestingly, here, disorder can suppress Anderson localization, rather

than enhancing it, as is usually the case.

Therefore, HOPG and nanostep samples are expected to have weak bulk disorder.

In contrast macroscopic NG specimens either have significantly more bulk disorder

(suppressing c-axis localization), or fewer c-axis barriers, insufficient for localization

(barriers spacing exceeding coherence length).

To characterize disorder, we measure spatially resolved micro-Raman spectra, see

Fig. 7.4. The penetration depth of the probing laser (λ=532 nm) into graphite is

roughly 50 nm [198]. For the presented sample dimensions micro-Raman thus allows for

a bulk investigation of disorder, remarkably in exactly the samples studied by transport

measurements.

Graphitic bulk disorder such as dislocations and impurities appear as a D-peak in

Raman spectra of graphite, whereas planar stacking faults and mosaic angles cannot be

detected. We plot ξ = ID/IG, the ratio of the G-peak intensity IG and D-peak intensity

ID after background subtraction, obtaining an intensity independent characterization of

disorder. For graphite, 0 ≤ ξ . 1. Due to a finite integration time, ξ has measurement

noise of ∼ 1/50, i.e. ξ . 1/50 indicates an invisible D-peak and weak disorder. A large

ξ indicates a high degree of disorder (large ID).



7.4 Discussion 113

20

10

0

y 
 (

 µ
m

 )

20100

x  ( µm )

0.30.20.10.0
ξ = ID / IG  ( 1 )

1

10

100 counts  ( 1 )

0.30.20.10.0

ξ = ID/IG

exfoliated
nano NG

(b)(a)

Figure 7.4: Disorder characterization with micro-Raman spectroscopy. (a) Ratio
ξ = ID/IG of the D-peak and the G-peak intensities, scanned (resolution ∼ 0.5µm)
on a 50 nm thick, exfoliated Madagascar NG flake. White is off the graphite flake or
on metal contacts. The white dashed line indicates the location of the step between
upper and lower plateau. (b) Histogram of ξ for the corresponding scan area.

Exfoliated Madagascar NG flakes display very low disorder, see Fig. 7.4(a) for a typical

scan (Madagascar 3). The location of the step between the two plateaus is indicated

by the white dashed line, but remains invisible in ξ. A histogram of ξ is displayed in

Fig. 7.4(b) further demonstrating the weak disorder. Several other exfoliated NG and

HOPG samples are inspected, all exhibiting similar distributions in ξ, indicating very

low disorder, consistent with expectations from the model.

We note that on the surface of pristine, macroscopic Madagascar NG samples disorder

tends to be large (ξ ∼ 1/3). Exfoliating macroscopic NG only once already results

in strongly reduced surface disorder probed as by Raman spectroscopy. However we

emphasize that a ρc measurement of a one time exfoliated macroscopic NG sample does

not result in high ρc.

Clearly, exfoliating somehow exposes clean surfaces [199] and after repeating many

times possibly removes bulk disorder, though the mechanism is not clear. This could

potentially explain the size dependence mentioned in Fig. 7.2: thinner samples tend to
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require more exfoliation steps, therefore becoming cleaner, more localized, and obtain-

ing a larger ρc. Ultimately, for sufficiently small h, 1D localization should break down

and ρc decrease strongly – not visible in the present data, presumably because h is still

too large. Overall, the Raman data is consistent with the predictions of the model,

namely weak disorder in all exfoliated samples.

7.4.2 Non-monotonic Temperature Dependence

Finally, we turn to the anomalous temperature dependence of ρc. If the c-axis resis-

tivity ρc is very large, the c-axis conductance path could easily be mixed with the

ab-conductivity σab due to the finite mosaic angle θ, effectively short circuiting the in-

trinsic c-axis conductivity σc. Assuming small tilting θ � 1, the measured conductivity

σ̃c can be written as [191]

σ̃c(T ) = σc(T ) +
〈
θ2
〉
· σab(T ), (7.2)

where 〈θ2〉 is the variance of θ. In low bulk-disorder samples at low temperatures, the

intrinsic σc is very small (strongly localized) and σ̃c(T ) obtains a significant component

from σab, including the (weakly) metallic temperature dependence σab(T ), leading to

a slight increase of ρc(T ) upon increasing T . At higher T , localization is weakened

(due to phonon scattering, equivalent to increasing bulk disorder for increasing T ), σc

is enhanced and becomes increasingly more dominant, leading to a decreasing ρc above

some cross-over T . For both HOPG and NG graphite we measure a mosaic angle

between 0.2◦and 2◦(not shown), which is in agreement with the mixing mechanism,

as a mosaic angle of about 0.8◦corresponds to a cross-over T of 40K. For disordered

samples, on the other hand, the intrinsic σc is dominating σ̃c(T ) since localization is

already lifted by disorder, resulting in the usual metallic temperature dependence, as

seen in macroscopic NG [182].
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7.5 Conclusion

In conclusion, we observe anomalous behavior, namely high ρc and non-monotonic

ρc(T ), in both NG and HOPG exfoliated samples. This is in stark contrast to macro-

scopic samples, where the anomalous behavior is only seen in HOPG, consistent with

previous experiments. A recently proposed transport theory [189] can consistently ex-

plain this convergence on the nanoscale, the macroscopic data, and the temperature

dependence. Furthermore, it is consistent with our finding of low disorder in exfoli-

ated and HOPG samples, and high disorder in macroscopic NG. We note additionally

that neutron irradiation experiments [180, 186] inducing bulk disorder also give consis-

tent results, namely reduced ρc after irradiation of HOPG, further corroborating the

model. We therefore present first, clear evidence of disorder induced delocalization, a

conceptual novelty, as a new paradigm of electronic transport in graphite.

Though beyond the scope of the present work, it would be very interesting to sub-

ject the model to further scrutiny: studying intermediate steps filling the thickness

gap in Fig. 7.2, but also even smaller thicknesses, ultimately down to few- or bi-layer

graphene, potentially revealing the localization length. This might be facilitated by

bottom contacts with layers deposited on top, followed by top contacts. We note that

the minimum thickness in the present samples is 14 nm, corresponding to about 50

graphene layers. Further, a characterization of graphite disorder would be of great in-

terest, e.g. investigating stacking faults and angles, intercalation, grain and boundary

formation [200], aiming at identifying the localization mechanism, leading ultimately to

a microscopic understanding of electrical transport in graphite. The results presented

here were obtained in graphite, but it would be intriguing to learn if similar arguments

apply to some of the numerous other layered materials.
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7.6 Supplementary Information

In this supplementary section we present detailed information about the geometry of

all samples and the transport measurements on these samples. Further we describe the

method we applied for determining the current distribution in our samples. The results

from these numerical calculations are then compared to the approximative method used

in the main text.

7.6.1 Geometry of Nano Graphite Flakes

Table 1,2 and 3 summarize all sample geometries of the nano graphite devices shown

in Fig. 7.2 of the main text. For Madagascar Samples 4-9 no ρab measurement was

possible because no suitable contacts were available. Despite the missing separate ρab

measurement on those samples, we nevertheless correct for the in-plane contribution

to Rc. We use ρab = 0.8 µΩm as a fixed value and show values derived from this in

parenthesis. Sample numbers 1 and 2 of every type of graphite are also included in

Fig. 3 of the main text showing the temperature dependence. The solid (dashed) lines

in this figure correspond to sample numbers 1 (2), respectively.

Table 1: Nano-sample parameters for the determination of ρab, see main text for
definitions, and Fig. 1 therein for an illustration. Samples listed here are represented
in Figs. 2 and 3. Fig. 3 shows the temperature dependence for samples 1 and 2 of each
specimen.

Material Rab (Ω) Aab(µm2) lab(µm) ρab(µΩm)
HOPG 1 3.8 0.8 2.5 1.2
HOPG 2 5.6 0.45 3.3 0.8
India 1 18.9 0.25 7 0.7
India 2 67 0.8 10 5.3

Madagascar 1 7.6 1.5 8 1.5
Madagascar 2 11.8 0.3 6 0.6
Madagascar 3 9.1 0.8 8 0.9
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Table 2: Nano-sample parameters for the correction of Rc, see main text for definitions,
and Fig. 1 therein for an illustration. Samples listed here are represented in Figs. 2
and 3. Fig. 3 shows temperature dependence for samples 1 and 2 of each specimen.
For samples where no ρab measurement was possible, values derived from a typical
ρab=0.8µΩm are shown in parenthesis.

Material Rc(Ω) lcl(µm) wl(µm) lcu(µm) wu(µm) d(nm) h(nm) R̂c(Ω)
HOPG 1 12 4 25 2.5 25 30 14 2.3
HOPG 2 12 6 20 2 20 30 24 2.9
India 1 19 1 20 3 20 15 17 11
India 2 37 2.4 20 2 15 20 150 1.3
Mada 1 27 1.2 10 2.3 10 16 80 13
Mada 2 26 4.2 8 3.3 5 14 37 5.6
Mada 3 31 2.5 15 2 22 44 31 21
Mada 4 68 6.5 26 2 20 10 26 (28)
Mada 5 26 7 18 1 18 21 50 (11)
Mada 6 100 2.6 16 2 12 20 330 (88)
Mada 7 16 5.5 9 5.5 9 150 300 (8.5)
Mada 8 9 4 15 6.2 8.5 100 450 (3.2)
Mada 9 104 1 12 4.5 11 65 335 (101)

7.6.2 Numerical Simulation of Current Distribution

The approximative method which is used to extract ρab, ρc and ultimately RA, includes

several simplifications. In order to improve the extraction of these parameters, we

numerically simulate the current flow for our sample geometries. The simulation allows

us to determine ρab taking into account the effectively reduced current carrying cross-

section due to the point like contact geometries. Further, we can include the resistivity

anisotropy in the simulation, enabling an estimate for the concentration of the current

flow in the layers closest to the contacts, which again improves the determination of

ρab, ρc and RA.

Combining Ohm’s law and the continuity equation gives:

0 = ρ̇ = σ∆Φ (7.3)
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Table 3: Nano-sample parameters, see main text for definitions, and Fig. 7.1 therein
for an illustration. Samples listed here are represented in Figs. 7.2 and 7.3. Fig. 7.3
shows temperature dependence for samples 1 and 2 of each specimen. Values derived
from an average ρab = 0.8 µΩm are shown in parenthesis.

Material R̂c(Ω) h(nm) Au(µm2) ρc(mΩm) RA

HOPG 1 2.3 14 361 58 48k
HOPG 2 2.9 24 57 6.9 8.8k
India 1 11 17 100 63 89k
India 2 1.3 150 88 0.78 140
Mada 1 13 80 248 41 28k
Mada 2 5.6 37 95 15 24k
Mada 3 21 31 458 311 360k
Mada 4 (28) 26 200 (213) (266k)
Mada 5 (11) 50 127 (28) (35k)
Mada 6 (88) 330 92 (25) (31k)
Mada 7 (8.5) 300 96 (2.7) (3.4k)
Mada 8 (3.2) 450 140 (1) (1.35k)
Mada 9 (101) 335 96 (28) (35k)

where we have assumed that sigma is a spatially constant tensor of the form:

σ =


σab 0 0

0 σab 0

0 0 σc

 (7.4)

In order to solve equation (7.3) we map our samples to a rectangular, evenly spaced,

grid. The typical grid spacing (da,db,dc) in the a- and b-direction is on the order of

microns. For the c-direction a grid spacing of 0.5 nm is used. By rewriting the three

dimensional grid as a vector, we reduce the calculation to the solution of a system of

linear equations, which can be written in matrix form and subsequently solved using

standard procedures i.e. Gaussian eliminiation.

The boundary conditions are chosen such that no current flows perpendicular to the

sample boundary except at the contacts. This means E⊥ = −∇Φ⊥=0 at the sample

boundary where there are no contact pads. On the contact pads E⊥ = −∇Φ⊥=const

and the bias current is evenly distributed over the contact-sample interface.
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The fitting of the measured values is performed as follows: First, from the device and

contact geometry of the Rab measurement, the corresponding ρsimab is calculated as a

function of the anisotropy ratio RA. In a second step, taking into account the used

contact geometry, the measured c-axis resistance Rc is simulated as a function of RA.

To calculate Rc, we assume the sample to consists of two cuboids sitting on top of each

other and split the calculation into two steps. The current is injected from a metal

contact into the first cuboid and drained on the entire interface area of the two cuboids.

For the second cuboid, the current is injected at the interface area and drained on a

metal contact. We find that reducing the area where current flows from one cuboid

into the other does not change our results by more than a few percent, validating the

assumption of a homogenous current flow at the interface between the cuboids.

By matching the simulated Rc(RA) to the measured value Rc, we find Rsim
A . Together

with the first calculation step this determines ρsimab . Knowing ρsimab and Rsim
A , we calcu-

late ρsimc .

Table 4 compares the results obtained through the approximative method with the ones

extracted from the numerical calculation. For the samples where a Rab measurement

was not possible, we fixed ρsimab = 50 nΩm, in order to calculate ρsimc . These values are

again given in parenthesis. For two samples the numerical calculation did not converge,

these values are omitted in Table 4. The reason for the divergence in this two cases

could be that ρab is actually lower than the fixed ρsimab . By lowering the fixed ρsimab the

simulation converges, but we omit these points, because RA then highly depends on

the fixed parameter.

As already stated in the main text the approximated ρab presents an upper bound.

This is confirmed by our simulation which give ρsimab < ρab, ranging from ratios between

ρab and ρsimab of 6 (India 1) to 100 (India 2). We think the main reason for this deviation

from the appoximative method is the neglected anisotropy for the extraction of ρab,

which effectively reduces the current carrying cross-section A. This is confirmed by

the observation that the reduction in ρsimab is largest, where Rab is measured on the
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Table 4: Comparing approximated ρab, ρc and RA with numerically simulated values.

Material ρab(nΩm) ρc(mΩm) RA ρsimab (nΩm) ρsimc (mΩm) Rsim
A

HOPG 1 1,200 58 48k 57 150 2,600k
HOPG 2 780 6.9 8.8k 48 37 780k
India 1 710 63 89k 120 84 680k
India 2 5,300 0.78 140 53 32 610k

Madagascar 1 1,500 41 28k 25 74 2,900k
Madagascar 2 600 15 24k 62 32 500k
Madagascar 3 860 310 360k 27 171 6,300k
Madagascar 4 (800) 210 (266k) (50)
Madagascar 5 (800) 28 (35k) (50) (85) (1,700k)
Madagascar 6 (800) 25 (31k) (50)
Madagascar 7 (800) 2.7 (3.4k) (50) (4) (80k)
Madagascar 8 (800) 1 (1.35k) (50) (0.8) (16k)
Madagascar 9 (800) 28 (35k) (50) (39) (780k)

thickest samples (India 2, Madagascar 1), and smallest for the thinnest sample (India

1). Further, our rather point-like contact geometries have to be corrected for a spread

in current, effectively changing the sample geometry in the ab-plane. That this is

indeed a relavant effect can be seen in the potential distribution in the ab-plane of the

sample as calculated by numerical simulation (not shown).

Because of the agreement between ρab and literature values, ρsimab is also much smaller

then previously measured in macroscopic samples [178–180]. Although in previous

experiments it may has been possible to use more suitable contact geometries to extract

ρab, we cannot exclude a similar effect for the deviation of ρsimab from literature values.

Another reason for the low ρsimab in exfoliated, nanoscale samples could be the reduction

of bulk disorder during exfoliation, actually suggested by our data and the disorder

induced delocalization model. Further an ab-measurement in a macroscopic specimen

will extend over several grain boundaries, whereas the multiply cleaved nanosamples

are single or few grain graphite.
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Figure 7.5: Comparison of extraction method for ρc and ρab at room temperature,
comparing HOPG (red) with Madagascar NG (green) and Indian NG (blue). Filled,
dark markers show ρsimc , empty, dark markers display ρsimab both extracted using the
anisotropic resistivity solver. Filled,light markers are ρc and empty, light makers indi-
cated ρab, evaluated using the estimate given and were already included in Fig 2 in the
main text. For ρab and ρsimab , the abscissa value is d+ h, the overall flake thickness, see
Table 2. Previous measurements of macroscopic samples (black) were added for both
HOPG [180] (stars) and NG [178, 179] (circles) for comparison. Dashed horizontal lines
indicate literature values ρabREF for ρab and ρcREF for ρc. Further, the best power-law
fits to all NG nanostep data (dotted line for ρc approximated in the main text, slope
of −1.0± 0.4; dashed line for ρsimc obtained with the simulation, slope of −1.2± 0.4;)
are added to indicate a potential trend

Despite some big deviations for ρab, the simulations show that ρsimc values are on the

same order of magnitude as ρc, obtained using the approximative method. There

seems to be a tendency of slightly higher ρsimc (facter of 2-3), but this qualitative

agreement clearly strengthens the approximative method to determine ρc. As an overall

consequence, the numerically calculated Rsim
A is even higher than shown in the main

text, reaching values up to 6,000,000 (Madagascar 3). Noteably for India 2, for which

we previously extracted a rather low ρc ∼ 0.8 mΩm, now ρsimc ∼ 53 mΩm, in good

agreement with all the other samples. Fig. 7.5 compares the two calculation methods

graphically, including all samples measured. The results of the approximation already
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included in the main text, are plotted in weaker colours. The trend of the thickness

dependence for numerically calculated (dashed line) and approximated ρc (dotted line)

persists. The slopes of linear fits in the log-log plot lie within the corresponding error

bars. The two data points for which the simulation did not converge were omitted in

Figure 7.5.
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8 Conclusion & Outlook

Motivated by the benefit from low temperatures in condensed matter systems, es-

pecially in semiconducting devices, be it for quantum computation or novel states of

matter, this work has successfully implemented an adiabatic nuclear refrigerator (AND)

scheme for cooling nanostructured condensed matter samples. The AND setup is char-

acterized in terms of heat leaks and entropic cooling down to∼ 200 µK is demonstrated.

Given the determined heat leak of Q̇0 ≤ 1 nW/mol, the time the nuclear refrigerator

can stay below 1 mK is 50 hours (1 week below 2 mK), sufficient for transport ex-

periments in nanostructures. Metallic Coulomb blockade thermometers (CBTs) were

in a first experiment cooled to ∼ 10 mK, exhibiting a deviation from a predominant

electron-phonon coupling mechanism for cooling at the lowest temperatures. Te in

a two-dimensional electron gas (2DEG) is measured with an electrostatically defined

GaAs quantum dot, operated in deep Coulomb blockade, using both direct transport

through the dot, as well as charge sensing. The thermometer is demonstrated to work

between 20 mK and 120 mK. At base temperature, we find that the 2DEG temper-

ature saturates at 10 mK, and is very sensitive to changes in the wafer i.e. charge

switches. We speculate that the intrinsic wafer noise might pose a limit for the lowest

temperatures measured.

After replacing the Macor chip socket and chip carrier with an Ag epoxy version,

where every wire is additionally filtered, we are able to reduce the lowest Te in metallic

nanostructures to ∼ 6 mK. For these experiments we implement yet another primary

electron thermometer based on a normal metal/insulator/superconductor (NIS) tunnel

junction. The NIS thermometer shows a peculiar dependence on B-field, and a devia-

tion from the theoretical I-V behavior at the lowest currents at the lowest temperature.

Both effects are not understood at present, but we speculate that the B-field depen-

dence could be caused by flux trapping like behaviour in the superconductor. In terms

of Te in semiconductors, we employ a GaAs high mobility 2DEG, using very tempera-



124 8 Conclusion & Outlook

ture sensitive reentrant quantum Hall states, to demonstrate cooling of electrons below

base T upon demagnetization. Extrapolation of the temperature dependence of the

reentrant features gives Te ∼ 5 mK. On top of the limitations of thermal conductance

and residual heat leaks in our system, we discuss the effect of voltage noise on our

electron thermometers.

It certainly would be interesting to remeasure GaAs quantum dot devices in the im-

proved setup with the Ag epoxy Faraday cup. The 2DEG potentially could cool below

10 mK and there might be the possibility to investigate effects of different kinds of

noise, similar to a recent measurement in optically active quantum dots [100]. Further,

there exists a recent proposal for backaction effects [201], fundamentally interesting

and also relevant for spin and charge qubits [98]. In addition the investigation of cor-

related many body states like the Kondo effect and higher order manifestations could

be enabled by our low electron temperatures [82, 202].

With low temperatures at hand, we attempt to investigate the elusive ν = 5/2 and

other fractional quantum Hall states with low energy gaps. Due to an electron density

gradient in the sample, we find quantized longitudinal resistance Rxx in the integer

quantum Hall effect (QHE). We can show that the density gradient has a detrimental

effect on the ν = 5/2 gap extraction. After having improved the wafer quality, our

low electron temperatures will be very beneficial for probing the ν = 5/2 statistics in

tunneling [80, 153], interferometer [154–156] and antidot [203–205] type of experiments.

Along similar lines, low electron temperatures could facilitate experimental tests of a

recently put forward stripe model [206] of the quantum Hall effect, like a nuclear phase

transition in the one-dimensional stripes [207]. Similarly, experimental evidence for

an electron-mediated nuclear ferromagnetic phase transition in two dimensions is still

lacking [36, 37]. Another open question in condensed matter physics is, if the electron

phase coherence time saturates at the lowest temperatures [88] or not [208]. Our setup

could extend the investigated range considerably, shedding some light onto the matter.

In summary, this PhD work is a first step toward future low temperature electron
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transport experiments, enabling the investigation of exotic and exciting condensed

matter physics.
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