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Abstract

Background: Schistosoma haematobium and Schistosoma mansoni are blood flukes that cause urogenital and intestinal
schistosomiasis, respectively. In Côte d9Ivoire, both species are endemic and control efforts are being scaled up. Accurate
knowledge of the geographical distribution, including delineation of high-risk areas, is a central feature for spatial targeting
of interventions. Thus far, model-based predictive risk mapping of schistosomiasis has relied on historical data of separate
parasite species.

Methodology: We analyzed data pertaining to Schistosoma infection among school-aged children obtained from a national,
cross-sectional survey conducted between November 2011 and February 2012. More than 5,000 children in 92 schools
across Côte d9Ivoire participated. Bayesian geostatistical multinomial models were developed to assess infection risk,
including S. haematobium–S. mansoni co-infection. The predicted risk of schistosomiasis was utilized to estimate the
number of children that need preventive chemotherapy with praziquantel according to World Health Organization
guidelines.

Principal Findings: We estimated that 8.9% of school-aged children in Côte d9Ivoire are affected by schistosomiasis; 5.3%
with S. haematobium and 3.8% with S. mansoni. Approximately 2 million annualized praziquantel treatments would be
required for preventive chemotherapy at health districts level. The distinct spatial patterns of S. haematobium and S.
mansoni imply that co-infection is of little importance across the country.

Conclusions/Significance: We provide a comprehensive analysis of the spatial distribution of schistosomiasis risk among
school-aged children in Côte d9Ivoire and a strong empirical basis for a rational targeting of control interventions.

Citation: Chammartin F, Houngbedji CA, Hürlimann E, Yapi RB, Silué KD, et al. (2014) Bayesian Risk Mapping and Model-Based Estimation of Schistosoma
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Introduction

The fight against schistosomiasis has been stepped up with

global awareness of the burden inflicted upon people who mainly

live in rural settings of tropical and sub-tropical countries. Control

measures aim to prevent and reduce morbidity due to chronic

infection. Whenever resources allow, integrated approaches are

advocated that combine preventive chemotherapy targeting

school-aged children and other at-risk groups with information,

education, and communication (IEC), improvement of sanitation,

access to clean water, and focal control of intermediate host snails

[1–3]. In some countries, long-term concerted efforts successfully

controlled morbidity or even achieved interruption of transmission

and local elimination [4,5]. However, the World Health Organi-

zation (WHO) minimum goal to regularly administer the

antischistosomal drug praziquantel to at least 75% of school-aged

children at risk of morbidity is far from being reached (i.e., in

2012, coverage in Africa was only 13.6%) [6]. Schistosomiasis
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therefore still remains a major public health concern with a

conservative 2010 burden estimated at 3.3 million disability-

adjusted life years (DALYs) [7].

In Côte d9Ivoire, urogenital and intestinal schistosomiasis are

both endemic, caused by chronic infection with Schistosoma
haematobium and Schistosoma mansoni, respectively. Efforts to

establish a national schistosomiasis control program date back to

the mid-1990s. However, due to the lack of political will and

financial resources, and a decade-long socio-political crisis, the

program never really took off [8,9]. In 2010, the ‘‘Integrated

control of schistosomiasis in sub-Saharan Africa’’ (ICOSA) project

had identified Côte d9Ivoire as a country where preventive

chemotherapy is urgently required and should follow WHO

guidelines (http://www3.imperial.ac.uk/schisto/wherewework/

dfid).

Empirical estimates of the infection risk at the administrative

unit where interventions are to be implemented (e.g., health

district) are necessary for efficient, cost-effective and sustainable

targeting of control measures [10–12]. Hierarchical Bayesian

geostatistical models provide a robust methodology to establish the

statistical relationship between environmental/socioeconomic

predictors and the observed risk, while taking into account the

spatial dependence inherent to the data. In more detail, it is

assumed that the infection risk is driven by a latent spatial

Gaussian process, where effects not fully explained by the

covariates are captured by a spatial structure in the hierarchy.

These models are used in a second step to predict the risk,

including uncertainty, at high spatial resolution using Bayesian

kriging methods for spatial process interpolation [13].

Model-based estimates reporting about schistosomiasis risk in

Côte d9Ivoire come from single species analyses at district [14,15],

national [16], or regional level [17]. Country-wide analyses of

schistosomiasis risk are based on historical data that are often

heterogeneous [16,17] and might oversample high endemicity

areas as research naturally drives data collection in places where

infections are known to be of particular public health concern.

Thus, there is a paucity of recent surveys that employed a

sampling design that can be utilized for subsequent Bayesian

geostatistical analyses of infection risk. Furthermore, the schisto-

somiasis risk is generally calculated from single species, either using

probabilistic laws that assume independence between species

[17,18], or by applying a correction factor allowing for association

between species [19,20]. However, if the data enable the disease

outcome to be categorized into different status of infection (i.e., no,

mono-, and co-infection), a geostatistical multinomial model can

jointly model the different species [21,22].

In the current study, we assessed co-infection risk with both S.
haematobium and S. mansoni and estimated the risk of schistoso-

miasis in Côte d9Ivoire by analyzing recent prevalence data

obtained from a national cross-sectional survey conducted in 92

schools across the country [23]. We employed a Bayesian

geostatistical multinomial model to produce infection risk maps

of both Schistosoma species, as well as of the overall risk taking into

account co-infection. We provide new model-based estimates of

the number of infected school-aged children driven by recent data,

identify target areas for control measures, and estimate the

number of annualized treatments required for deworming the

school-aged population.

Methods

Ethics Statement
The study received clearance from the ethics committees of

Basel, Switzerland (EKBB, reference no. 30/11) and Côte d9Ivoire

(CNER, reference no. 09-2011/MSHP/CNER-P), as well as

authorization from Ivorian Ministry of Education to conduct the

study. Prior to the survey, district health and education authorities,

school directors, and teachers were informed about the purpose

and procedures of the study. All participants approved verbally

their participation to the study and their parents/guardians

provided written informed consent. Children infected with

Schistosoma were treated with a single oral dose of 40 mg/kg

praziquantel [1]. In schools where the observed prevalence of

schistosomiasis was above 25%, all children were treated with

praziquantel regardless of their infection status. Additionally, all

children were dewormed with a single dose of 400 mg albendazole

[1].

Study Design and Survey Settings
Details of the study design and survey settings have been

described elsewhere [23]. In brief, we designed a national cross-

sectional survey, combining parasitological examination, clinical

observation, and interviewing school children with a question-

naire. The survey was carried out between November 2011 and

February 2012 (dry season), just after the country regained

political stability after more than 10 years of political unrest [8].

Study site selection followed a lattice plus close pairs design [24].

In short, we considered 124 grid cells of 50650 km overlaid on a

map that divides Côte d9Ivoire into two ecological zones: a

southern forest area and a northern savannah zone. Ecological

zone delimitation resulted from an unsupervised classification via
the ‘‘iterative self-organizing data analysis technique’’ (ISODATA)

(for more details, see Schur et al. (2011) [17]). We sampled 54 and

34 grid cells in the southern and northern zone, respectively,

proportionally to the population density of the latest available

census in 1998. We then randomly selected one locality with a

public primary school in each selected grid cell. Six additional

school localities were chosen within a 5-20 km radius from the

already sampled localities. Teachers of the selected schools were

asked to systematically select 60 children attending grades 3–4. If

this number was not achieved with classes from grades 3–4, the

teachers were asked to select additional children from grade 5.

Author Summary

Two types of blood-dwelling parasitic worms that cause
schistosomiasis (i.e., Schistosoma haematobium and Schis-
tosoma mansoni) are endemic in Côte d9Ivoire, West Africa.
Reliable information on their geographical distribution is
needed to plan and guide the national control program.
Recently, control efforts have been intensified. There is a
need to update risk maps that, historically, have been
based on data specific to each type of parasite. In late 2011
and early 2012, we conducted a cross-sectional survey in
92 schools all over Côte d9Ivoire. We used Bayesian
geostatistical multinomial models to estimate the risk for
each infection, as well as co-infection. We estimated that
slightly less than 10% of school-aged children are affected
by schistosomiasis (5.3% with S. haematobium and 3.8%
with S. mansoni). To control schistosomiasis with the
deworming drug praziquantel, approximately 2 million
treatments would be necessary each year. The distinct
spatial patterns of S. haematobium and S. mansoni imply
that co-infection with these two types of parasitic worms is
rare across the country. Our results provide a detailed
analysis of the spatial distribution of schistosomiasis risk
among school-aged children in Côte d9Ivoire, which will
inform the national control program for targeted inter-
ventions.

S. haematobium–S. mansoni Co-distribution, Côte d’Ivoire
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This sample size exceeds the WHO-recommended minimum

sample size of 50 for collection of baseline information on

helminth prevalence and intensity in the school-aged population

within large-scale surveys [25].

Disease Data
Study participants were asked to provide a stool and an urine

sample. Duplicate Kato-Katz thick smears were prepared shortly

after stool collection and examined within 45 min in situ by two

experienced technicians, quantifying S. mansoni eggs under a

microscope, while microhematuria was assessed using urine using

reagent strips (Hemastix, Bayer, UK) as a proxy for active S.
haematobium infection. Re-examination of 10% of the slides was

performed by senior technicians for quality control.

Environmental, Socioeconomic, and Population Data
Table 1 summarizes sources and properties of environmental

and socioeconomic data investigated to estimate the risk of

schistosomiasis in Côte d9Ivoire. In particular, we used satellite-

derived estimates such as day and night land surface temperature

(LST day and LST night), normalized difference vegetation index

(NDVI), and rainfall estimates. Climatic variation was accounted

via the coefficient of variation for rainfall (rainfall cv) and the

difference between day and night temperature (LST diff). Soil

acidity (pH) and soil moisture expressed supplementary soil

characteristics, while additional environmental measures included

distance to fresh water bodies and altitude. Ecological zone was

accounted as a binary covariate. Socioeconomic proxies were

considered with the human influence index (HII) and the

percentage of household with improved sanitation [26]. The

latter was predicted via Bayesian kriging from household survey

data collected by the MEASURE Demographic and Health

Survey (DHS), the Multiple Indicator Cluster Surveys (MICS),

and the World Health Surveys (WHS) programs. Sanitation

facilities were classified as improved following criteria of the Joint

Monitoring Program for Water Supply and Sanitation of WHO

and UNICEF [27]. Predictions were adjusted for urban/rural

classification and for a binary temporal covariate (trend) with a

cut-off at the year 2000. Model-based predictions (of improved

sanitation) with and without the temporal trend revealed that the

trend term was not important and therefore it was not considered

in the predictive model of sanitation. School locations were then

overlaid to the resulting kriged surfaces to obtain percentage of

household with improved sanitation at survey location. The

number of school-aged children (age range 5–15 years) was

calculated from the Afripop population density database for the

year 2010 and used to estimate the population-adjusted risk and

calculate annualized praziquantel treatment needs. In the absence

of recent census data (the last census had been done in 1998), we

considered the Afripop data as the most accurate estimation of the

current population.

Multinomial Geostatistical Model
The risks of mono-infection with S. mansoni, mono-infection

with S. haematobium, co-infection with the two Schistosoma
species, and no infection were jointly modeled with a Bayesian

multinomial regression model. Spatial correlation was accounted

into the model through stationary geostatistical random effects that

were assumed to follow a multivariate normal distribution with

variance-covariance defined as an exponential function of the

distances between any pair of locations. The overall risk of

schistosomiasis is then derived by adding up the co-infection risk to

the two species-specific mono-infection risks. Similarly, species-

specific overall risks are calculated by the sum of the related species

mono-infection and the co-infection. Detailed model formulation

is given in the Supplementary Information appendix (S1 Text).

Bayesian inference of model parameters was performed using

Markov chain Monte Carlo (MCMC) simulations in WinBUGS

version 14 (Imperial College and Medical Research Council;

London, United Kingdom). Models were run with one Gibbs

sampler chain for 100,000 iterations and the final 1,000 estimates

were used for posterior summaries, validation purposes, and

prediction at non-sampled locations. Prediction was carried out at

161 km spatial resolution using Bayesian kriging over a grid of

more than 350,000 pixels in Fortran 95 (Compaq Visual Fortran

Professional version 6.6.0, Compaq Computer Corporation;

Houston, United States of America).

Geostatistical Variable Selection
We performed a geostatistical Gibbs variable selection to

identify the most relevant predictors to include in the multinomial

geostatistical model [28]. Our variable selection procedure was

run with one Gibbs sampler chain for 100,000 iterations. Posterior

inclusion probabilities were calculated on the last 10,000 estimates

of each indicator defining the presence or absence of the covariate

in the model. Predictors with posterior inclusion probability

superior to 50% defined the median probability model [29].

Further details on geostatistical variable selection model formula-

tion are provided as Supplementary Information (S2 Text).

Estimated Annualized Treatment Needs
The number of infected school-aged children was calculated for

every km2 by multiplying the predicted prevalence with the

number of children aged 5–15 years. As the Ivorian health system

is organized in a pyramidal basis with health districts at

operational level, the total number of infected children was

summed up over health districts and divided by the total

population of children to estimate school-aged children adjusted

risk. WHO advocates to administer preventive chemotherapy to

school-aged children once a year in high endemicity areas

(prevalence .50%), once every 2 years in moderate endemicity

areas (10–50%) and twice during primary schooling age in low

endemicity areas [25]. To calculate treatment needs on a yearly

basis, we assumed an average of 6 years of primary schooling and

targeted different proportions of the school-aged children popu-

lation according to the endemicity level (i.e., the entire, half or a

third of the population in high, moderate and low endemicity

settings, respectively) [12].

Model Validation
The multinomial geostatistical model was fitted on a random

training sample of 72 locations (around 80% of the full dataset).

Predictive ability was assessed on the remaining test locations

(L~20) with the mean absolute error (MAE) by averaging the

absolute differences between predicted p̂p and observed prevalences

p, such as MAE~ 1
L

PL

i~1

Dp̂pi{pi D. Predictive uncertainty was

measured by summing the standard deviation (SD) of the

predictive distributions.

To validate our multinomial geostatistical approach, we

developed additional models under different assumptions. We

fitted separate binomial models for each parasite species that

assume independence between the infections, as well as a non-

stationary multinomial model, which considers that spatial

correlation is not only a function of the distances between pairs

of locations, but also relies on the locations per se. Thus, we

modeled the spatial correlation as a weighted average of ecological

S. haematobium–S. mansoni Co-distribution, Côte d’Ivoire
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zone-specific stationary spatial processes [15,30]. Comparison of

the predictive ability of those models with our multinomial model

was performed in terms of MAE on the overall schistosomiasis risk.

Our prediction were classified according to WHO thresholds for

intervention and we compared the observed prevalence of the

surveyed schools with the predicted risk at school location, as well

as with the school-aged children adjusted risk at health districts

level. Number and percentage of schools overestimated and

underestimated were calculated to assess the performance of our

model-based estimates.

Results

Disease Data
Overall, 5,104 children were examined in 92 schools across

Côte d9Ivoire. Out of the 94 schools selected, one school refused to

participate and another was excluded since teachers reported

deworming interventions during the preceding month. Raw

parasitological data are provided as Supplementary Information

in S1 Table. The mean observed prevalence was 5.7% (standard

deviation (SD) = 11.2%) for S. haematobium and 3.6% (SD

= 7.6%) for S. mansoni infection. Concomitant infections with

both Schistosoma species were detected in only 16 children (0.3%,

SD = 0.9%), indicating that S. haematobium-S. mansoni co-

infection is rare in Côte d9Ivoire. The spatial distribution of the

overall observed prevalence of infection with any Schistosoma
species is depicted in Fig. 1, along with the observed distribution of

S. mansoni and S. haematobium single infections, as well as co-

infection with both species.

Geostatistical Variable Selection
Relationships of the 13 potential environmental and socioeco-

nomic predictors with schistosomiasis risk were investigated on the

basis of their linear and categorical forms on bivariate non-spatial

logistic analyses. Goodness of fit measures showed no benefit to

categorize the predictors. Hence, linear predictors were standard-

ized for subsequent analyses. Out of the 13 predictors investigated,

LST day was not further considered as the variable was highly

correlated to day-night LST difference (correlation coefficient

= 0.94). The median probability model, as well as its posterior

Table 1. Data sources and properties of the variables used to estimate the schistosomiasis risk in Côte d9Ivoire in late 2011/early
2012.

Data type Source
Temporal
resolution

Temporal
coverage

Spatial
resolution

Day land surface temperature (LST) MODIS/Terra1 8-days 2011 1 km

Night land surface temperature (LST) MODIS/Terra1 8-days 2011 1 km

Normalized difference vegetation index MODIS/Terra1 16-days 2011 1 km

Rainfall ADDS2 10-days 2011 8 km

Altitude DEM3 - - 1 km

Freshwater bodies HealthMapper4 - - -

Soil moisture WISE35 - - 10 km

Soil acidity (pH) WISE35 - - 10 km

Human influence index (HII) LTW6 - 2005 1 km

Rainfall coefficient of variation (cv) Derived from rainfall 10-days 2011 1 km

(standard deviation/mean)

LST difference Derived from LST 8-days 2011 1 km

(day LST - night LST)

Ecological zone ISODATA7 - 2000–2008 1 km

Improved sanitation Bayesian kriging of DHS8, MICS9, - 1994–2011 1 km

and WHS10 sanitation data

with urban/rural11 as covariate

School-aged population (5–15 years old) Afripop12 - 2010 1 km

1Moderate Resolution Imaging Spectroradiometer (MODIS). Available at: https://lpdaac.usgs.gov/(accessed: 1 October 2012).
2Africa Data Dissemination Service (ADDS). Available at: http://earlywarning.usgs.gov/adds/(accessed: 1 October 2012).
3Digital Elevation Model (DEM). Available at: http://eros.usgs.gov/(accessed: 1 October 2012).
4HealthMapper database. Available at: http://gis.emro.who.int/PublicHealthMappingGIS/HealthMapper.aspx
(accessed: 1 October 2012).
5ISRIC-WISE database (WISE3). Available at: http://www.isric.org/(accessed: 1 October 2012).
6Last of the Wild Project version 2, 2005 (LWP-2): Global Human Influence Index (HII) dataset (geographic)
Wildlife Conservation Society International Earth (WCS) and Center for International Earth Science Information Network (CIESIN). Available at: http://sedac.ciesin.
columbia.edu/data/set/wildareas-v2-human-influence-index-geographic (accessed: 1 October 2012).
7Calculated with the Iterative Self-Organizing Data Analysis Technique (see [17]).
8Demographic and Health Surveys. Available at: http://www.measuredhs.com (accessed: 1 October 2012).
9Multiple Indicator Cluster Surveys. Available at: http://www.childinfo.org/mics.html (accessed: 1 October 2012).
10World Health Surveys. Available at: http://www.who.int/healthinfo/survey/en/index.html (accessed: 1 October 2012).
11Gridded Population of the World version 3. Available at: http://sedac.ciesin.org/gpw/(accessed: 1 October 2012).
12AfriPop version 2.0. Available upon request at: http://www.afripop.org (accessed: 1 October 2012).
doi:10.1371/journal.pntd.0003407.t001
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Fig. 1. Observed schistosomiasis prevalence in Côte d9Ivoire in late 2011/early 2012. A: Overall schistosomiasis, irrespective of the species;
B: overall S. mansoni; C: overall S. haematobium; and D: co-infection with both species.
doi:10.1371/journal.pntd.0003407.g001

Table 2. Geostatistical variable selection results.

Predictors Median probability model Predictor posterior inclusion probability

North ecozone X 93.6%

Altitude 0 28.9%

Human influence index (HII) 0 15.1%

Soil moisture 0 34.1%

Soil acidity (pH) 0 22.7%

Normalized difference vegetation index 0 15.5%

Night land surface temperature (LST) 0 18.4%

Rainfall 0 39.3%

Rainfall coefficient of variation (cv) X 60.8%

Day-night difference land surface temperature 0 26.3%

Sanitation index 0 17.4%

Distance to fresh water bodies 0 15.2%

Day land surface temperature NC NC

Model posterior probability 3.2% -

X (selected), 0 (not selected), NC (not considered).
Median probability model is presented together with posterior inclusions probability of the predictors and model posterior probability.
doi:10.1371/journal.pntd.0003407.t002

S. haematobium–S. mansoni Co-distribution, Côte d’Ivoire
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probability and posterior inclusions probabilities of the predictors,

are presented in Table 2. Ecological zone had a high posterior

inclusion probability of 93.6%, highlighting the important

difference between the two ecological zones regarding the

schistosomiasis risk. The median probability model included

ecological zone and rainfall coefficient of variation. Furthermore,

it was selected among all possible models with the highest posterior

probability. The low posterior probabilities of the models explored

by our variable selection (below 3.2%), together with the high

inclusion probabilities (above 15%) of all potential predictors,

suggest good mixing properties of the MCMC simulations and no

clear benefit to choose between the explored predictors.

Multinomial Geostatistical Model
A multinomial logistic model, including ecological zone and

rainfall coefficient of variation, was fitted to the data. Estimates of

the parameters are presented in Table 3, together with predictive

ability of the model. Northern savannah ecological zone had a

negative effect on the log of the risk of all the multinomial

categories versus no infection (i.e., S. mansoni mono-infection, S.
haematobium mono-infection, and co-infection with both Schisto-
soma species). Higher rainfall variation had a negative effect on S.
haematobium, and consequently on co-infection, while its effect

was not important regarding S. mansoni infection risk. Residual

spatial correlation was higher for S. mansoni mono-infection

(153.2 km) than for co-infection risk (107.6 km), and S. haema-
tobium mono-infection (66.4 km).

For comparison, we built two additional models; one without

predictors and another one with all predictors (parameter

estimates and predictive ability results are given as Supplementary

Information; S2 and S3 Tables). The residual spatial correlation

was the lowest for each multinomial category in the model with all

covariates. This suggests that predictors which have not been

selected by the variable selection were able to explain part of the

spatial pattern. In addition, our model shows the best predictive

ability. While the model including all covariates shows a better

MAE regarding S. mansoni mono-infection and co-infection with

both species, the MAE of the overall schistosomiasis risk is lower.

Moreover, our model shows less uncertainty in the predictions as

reflected by lower sum of the SD of the posterior predictive

distributions at test locations.

Model validation on 20% of observed location also revealed that

the multinomial geostatistical model presented in Table 3

predicted better the overall schistosomiasis risk in comparison to

a non-stationary multinomial model (MAE: 10.0% versus 11.3%),

as well as to separated species-specific binomial geostatistical

models assuming either independence of the infections (MAE:

10.0% versus 11.0%) or dependence accounted through a

correction factor [19] estimated from the data (MAE: 10.0%

versus 11.0%; correction factor = 0.99).

Smooth map of the overall schistosomiasis risk (S. mansoni
mono-infection, S. haematobium mono-infection and S. mansoni-
S. haematobium co-infection) is depicted in Fig. 2A. Maps of the

risk of infection of S. mansoni and S. haematobium (mono- and co-

infection) are presented in Fig. 2B and 2C, respectively, while the

map of co-infection risk alone is shown in Fig. 2D. We observed

that the two species display distinct spatial patterns, which

generally do not overlap, and hence, co-infection is low across

the country.

Risk and Estimated Annualized Treatment Need
In Côte d9Ivoire, we estimated that around 457,062 school-aged

children are infected with Schistosoma, which correspond to 8.9%

of the school-aged population (95% Bayesian credible interval

(BCI): 7.5–10.6%; child population aged 5–15 years: 5,135,531).

Single species infection risk was estimated at 5.3% (95% BCI: 4.3–

6.8%) for S. haematobium and 3.8% (95% BCI: 2.9–5.3%) for S.
mansoni. The children-adjusted risk aggregated at health district

level is detailed in the Supporting Information appendix (see S4

Table). The health district of Agboville presents the highest risk

estimated to 29.7%. Health districts were classified as low

(predicted children-adjusted risk ,10%) or moderate (predicted

children adjusted risk 10–50%) endemic and the resulting map is

presented in Fig. 3. Based on this classification, we calculated that

a total of 1,999,629 annualized praziquantel treatments are

required for implementation of preventive chemotherapy against

schistosomiasis at health districts level in Côte d9Ivoire. High-risk

areas extend in the south-western part of the country, as well as in

the northern areas of Abidjan. Misclassification of the surveyed

schools by the predicted risk at school (pixel) and health districts

levels is provided in Table 4. Our estimates of the schistosomiasis

risk misclassify 4.3% of the surveyed schools, while our predictions

aggregated at health district level incorrectly classify 22.1% of the

visited schools.

Table 3. Parameter estimates and predictive ability of Bayesian geostatistical multinomial logistic model.

S. mansoni S. haematobium S. haematobium-S. mansoni

mono-infection mono-infection co-infection

MOR (95% BCI) North ecozone 0.32 (0.13; 0.99)* 0.39 (0.17; 0.78)* 0.05 (0.01; 0.40)*

Rainfall coefficient of variation 0.74 (0.31; 1.47) 0.70 (0.44; 0.99)* 0.37 (0.09; 0.91)*

Median (95% BCI) Range (km) 153.2 (11.7; 473.9) 66.4 (8.4; 264.2) 107.6 (6.1; 655.1)

Variance s
2 5.0 (2.8; 10.4) 1.9 (1.2; 3.7) 1.1 (0.3; 4.2)

Predictive ability (%) MAE 5.81 6.06 0.57

Sum of SD 1.58 1.32 0.07

*Significant based on 95% BCI.
Overall schistosomiasis risk: MAE = 10.0%; sum of SD = 2.0%.
Multinomial odds ratios (MOR) and median of the spatial parameters estimates are displayed with their 95% Bayesian credible intervals (BCI). Predictive ability is
assessed with a model fitted on a subsample of the data (80%) and is reported by mean absolute error (MAE) and sum of the standard deviation (SD) of the predictive
distributions.
doi:10.1371/journal.pntd.0003407.t003
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Discussion

We present a comprehensive analysis of the spatial distribution

of schistosomiasis risk among school-aged children in Côte

d9Ivoire. Our predictive map of the overall risk of schistosomiasis

confirms that the disease is endemic throughout Côte d9Ivoire and

provides a strong empirical basis for rational targeting of

preventive chemotherapy and other control measures.

To our knowledge, this is the first estimation of the overall

schistosomiasis risk that has been based on a joint analysis of the

two Schistosoma species that occur in Côte d9Ivoire, taking into

account co-infection risk. Our analysis presents further insights

compared to previous modeling efforts that have been done in

Côte d9Ivoire [14–17]. In particular, our predictions are based on

recent survey data, where survey locations have been sampled in

order to provide an optimal spatial distribution for geostatistical

modeling. Although ‘‘lot quality assurance’’ sampling [31] has

resulted in better predictive performance compared to a

geostatistical sampling similar to the one developed in this

manuscript, the 92 schools sampled provide a good coverage of

the entire surface area of Côte d9Ivoire (322,000 km2) and a sound

basis to quantify the spatial structure of the risk at national level

with limited financial resources.

In this study we put forth maps of co-infection rather than co-

endemicity risk. The former gives the probability of simultaneous

infections at the individual patient level. The latter gives the

probability that both infections are present at a given locality. Co-

infection implies co-endemicity but not necessarily the other way

round. Thus, spatial patterns of co-endemicity and co-infection are

not necessarily the same. In fact the definition of co-endemicity in

the literature of spatial epidemiology is confusing. In some

instances co-endemicity refers to co-infection in others it is

calculated as the prevalence of either infection.

We estimated that 8.9% of school-aged children are affected by

schistosomiasis in Côte d9Ivoire. This estimate is considerably

lower than previously published predictions. For example, Schur

et al. (2011) [17] estimated that 41.8% (95% BCI = 24.4–60.8%)

of the population below 20 years of age is infected with

schistosomes in Côte d9Ivoire based on an analysis of historical

data in West Africa. With regard to S. mansoni, our estimate of

3.8% is also several-fold lower than the previously published

prevalence of 11.0% (95% BCI: 8.7–13.8%) that has been

calculated based on an analysis of historical data at national level

[16]. Historical data mainly stem from surveys conducted for other

purposes than risk mapping and highly endemic areas were likely

oversampled. The current analysis therefore highlights the

importance of a rigorous sampling design and mapping activities

Fig. 2. Predicted schistosomiasis risk in Côte d9Ivoire in late 2011/early 2012. A: overall schistosomiasis, irrespective of the species; B:
overall S. mansoni; C: overall S. haematobium; and D: co-infection with both species.
doi:10.1371/journal.pntd.0003407.g002

S. haematobium–S. mansoni Co-distribution, Côte d’Ivoire
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before launching a national control program. High quality data

obtained from surveys well distributed in space are paramount for

accurate identification of diseases distribution and efficient use of

limited resources for control [22,31]. Côte d9Ivoire had not yet

begun implementation of preventive chemotherapy at the time of

our survey, and hence, it is unlikely to attribute our considerably

lower infection prevalence due to control interventions. Artemi-

sinin-based combination therapy (ACT) is freely distributed as a

key strategy against malaria in Côte d9Ivoire. The partial activity

of ACT against schistosomiasis [32] might play a role, which is

currently difficult to quantify and would deserve further research.

Our study has several limitations and they are offered for

discussion. First, schistosomiasis is known to be focally distributed,

governed by the presence of humans, specific intermediate host

snails, and human-water contact patterns [33,34] and the cross-

sectional study design of the present study might not capture well

this pattern. Aggregating schistosomiasis risk estimates at health

district level revealed important misclassification of the schools

(22.1%) within the risk thresholds defined by WHO for

interventions. Thus, operational and financial advantages that

would provide the targeting of interventions at the level of an

existing structure, such as the health districts, is challenging due to

the focal nature of schistosomiasis. Given the need to better

understand the small-scale heterogeneity through additional

surveys [35], the western part of Côte d9Ivoire that is a well-

known focus of S. mansoni [14,36,37], has been selected in 2010

Fig. 3. Estimated number of school-aged children at risk of schistosomiasis. Maps derived using WHO guidelines and stratified for health
districts for control intervention planning.
doi:10.1371/journal.pntd.0003407.g003
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for a 5-year randomized intervention study using different

treatment schedules against S. mansoni, funded through the

Schistosomiasis Consortium for Operational Research and Eval-

uation (SCORE). It will be interesting to analyze the baseline data

from the eligibility study that surveyed 263 villages/schools with

about 50 children examined for S. mansoni in each village/school

using duplicate Kato-Katz thick smears. This analysis might fill an

important gap of understanding small-scale heterogeneity of S.
mansoni in this specific region. Second, parasitological analyses

were conducted on the targeted population, i.e., school-aged

children, using WHO-recommended diagnostic techniques for

intervention decisions [25]. Our estimates further refine our prior

knowledge of the schistosomiasis situation in Côte d9Ivoire. It

should be noted, however that the WHO-recommended diagnos-

tic techniques have limitations. For example, it is widely

acknowledged that the Kato-Katz technique and the urine-reagent

strip tests lack sensitivity, especially in low endemicity settings [38],

while urine-reagent strip tests have additionally low specificity

[39,40]. As a consequence, it is likely that our data underestimate

the infection prevalence due to these diagnostic dilemmas [41].

An important objective of our study was to assess the co-

infection occurrence among Ivorian school-aged children, given

that both S. haematobium and S. mansoni co-exist in the country.

Only 16 of the 5,104 children examined were co-infected,

suggesting that co-infection is negligible. This result implies that

potential synergistic or antagonistic effects of mixed schistosome

species infections on morbidity [42] are of little public health

concern in Côte d9Ivoire. The scarcity of co-infection is mainly

due to the specific spatial patterns of the two parasitic infections

with minimal overlapping of the two species infection risk, as

highlighted by the predicted maps, stratified by species. Parameter

estimates of models including all investigated covariates show that

S. haematobium and S. mansoni infections proliferate under

specific climatic conditions. We attribute these different environ-

mental effects to distinct ecological habitats of Bulinus and

Biomphalaria, the intermediate host snails of S. haematobium and

S. mansoni, respectively [43].

Towards the end of 2012, the national schistosomiasis control

program, with support of the Schistosomiasis Control Initiative

(SCI) has started its activities, emphasizing the treatment of school-

aged children in high-risk areas, including additional mapping

activities launched in December 2013. The current results, along

with additional mapping facilitated by an operational research

project in the western part of Côte d9Ivoire (sustaining S. mansoni
control, financially supported by the Schistosomiasis Consortium

for Operational Research and Evaluation) and fine-grained

national mapping funded through the SCI, have greatly influenced

the roll out of the national schistosomiasis control program. Thus,

we believe that with the breadth of recent activities in collecting

up-to-date schistosomiasis data and the developed infection risk

models for Côte d’Ivoire, great support can be provided to the

Ivorian schistosomiasis control program in their fight against

schistosomiasis. Additional concerted efforts will be required to

analyze all the data in a timely manner and discuss the findings

with the national schistosomiasis control program manager to

guide and spatially target control interventions.
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Table 4. Misclassification of the surveyed schools by the predicted risk at school and health districts level.

School estimated schistosomiasis risk ,10% 10–50% $50%

Schools underestimated 4 (4.3%) - -

Schools overestimated - - -

Schools misclassified 4 (4.3%) - -

Health district estimated schistosomiasis risk ,10% 10–50% $50%

Schools underestimated - 6 (6.5%) 1 (1.1%)

Schools overestimated - 9 (14.5%) -

Schools misclassified - 15 (21.0%) 1 (1.1%)

Number and percentage of schools overestimated and underestimated are given according to endemic thresholds defined by WHO for control interventions.
doi:10.1371/journal.pntd.0003407.t004
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