
Institutional Repository of the University of Basel 

University Library 

Schoenbeinstrasse 18-20 

CH-4056 Basel, Switzerland 

http://edoc.unibas.ch/ 

Year: 2014 

Variational image registration using inhomogeneous regularization

Jud, Christoph and Lüthi, Marcel and Albrecht, Thomas and Schönborn, Sandro and Vetter, Thomas 

Posted at edoc, University of Basel 

Official URL: http://edoc.unibas.ch/dok/A6328765 

Originally published as: 

Jud, Christoph and Lüthi, Marcel and Albrecht, Thomas and Schönborn, Sandro and Vetter, Thomas.. 

(2014) Variational image registration using inhomogeneous regularization. Journal of mathematical 

imaging and vision, Vol. 50, H. 3. S. 246-260. 



Journal of Mathematical Imaging and Vision manuscript No.
(will be inserted by the editor)

Variational Image Registration using Inhomogeneous Regularization

Christoph Jud · Marcel Lüthi · Thomas Albrecht · Sandro Schönborn ·
Thomas Vetter

Received: date / Accepted: date

Abstract We present a generalization of the convolution-
based variational image registration approach, in which dif-
ferent regularizers can be implemented by conveniently ex-
changing the convolution kernel, even if it is nonseparable
or nonstationary. Nonseparable kernels pose a challenge be-
cause they cannot be efficiently implemented by separate
1D convolutions. We propose to use a low-rank tensor de-
composition to efficiently approximate nonseparable convo-
lution. Nonstationary kernels pose an even greater challenge
because the convolution kernel depends on, and needs to
be evaluated for, every point in the image. We propose to
pre-compute the local kernels and efficiently store them in
memory using the Tucker tensor decomposition model. In
our experiments we use the nonseparable exponential kernel
and a nonstationary landmark kernel. The exponential kernel
replicates desirable properties of elastic image registration,
while the landmark kernel incorporates local prior knowl-
edge about corresponding points in the images. We examine
the trade-off between the computational resources needed
and the approximation accuracy of the tensor decomposition
methods. Furthermore, we obtain very smooth displacement
fields even in the presence of large landmark displacements.
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1 Introduction

Image registration is a common problem that arises in many
applications of medical image analysis. The problem is to
find a non-rigid transformation which aligns two images. In
this paper we focus on the variational principle to formu-
late this problem, which has found broad acceptance in the
literature [4,5,33]. The sought transformation corresponds
to the minimum of a functional, which finds a compromise
between the image similarity of the transformed target and
the reference image IT , IR : Ω → IR, defined on some
domain Ω, and the smoothness of the image transformation
ϕ : Ω → Ω. Formally, the problem can be written as

J [ϕ] := D[IR, IT ,ϕ] + S[ϕ], (1)

where D is an image distance measure and S a regularizer.
Using calculus of variation, the optimum of (1) can be found
by solving a system of partial differential equations.

An elegant framework to minimize Equation (1) was pro-
posed by Beutien et al. [4], where a minimum is reached us-
ing a convolution-based approach. Different regularization
properties can be achieved by choosing different convolu-
tion kernels. However, their approach only addresses sta-
tionary kernels and only works efficiently if the kernel is
separable.

In this paper, we present a generalization of this frame-
work, where the regularization kernel are even nonseparable
or nonstationary. By employing low-rank tensor decomposi-
tion [18], we approximate nonseparable convolution kernels
by separable 1D kernels in order to perform the convolu-
tion separately in each space dimension by successive 1D
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Fig. 1 The first two figures from the left show the reference and target femur surfaces. The landmark points are depicted in color, red and green
respectively. The patellar surface is marked in dark gray. In the right two figures the reference is transformed to the target with two different
methods. First, using standard diffeomorphic Demons [39], which does not incorporate the landmarks. The patellar surface is clearly misaligned.
In the last figure, the registration was performed with our hybrid approach, which considers the landmarks. This results in an accurate patellar
surface alignment.

convolutions. Compared to nonseparable convolution, this
dramatically reduces the computational complexity and, ad-
ditionally, it accurately retains the regularization properties.
For instance, in 3D the separable Gaussian kernel requires
three 1D convolutions, while a rank-4 nonseparable kernel
needs 4× 3 = 12 separable 1D convolutions.

Furthermore, we extend the framework to nonstationary
regularizers, i.e. regularizers which depend on the spatial lo-
cation. The corresponding spatially varying local filter ker-
nels require an efficient handling, which we approach by a
powerful caching scheme. In addition, we use an extension
of the framework in order to ensure that the resulting trans-
formations are diffeomorphic. As in [28,37,38], in each it-
eration, we compute an efficient approximation of the expo-
nential mapping that keeps the transformations diffeomor-
phic.

While this generalization is useful in a wide variety of
registration tasks, our original motivation was to integrate
landmarks into the regularization. In Figure 1, we illustrate
the practical importance of hybrid landmark and image reg-
istration. In this example, the landmarks help to greatly im-
prove the registration accuracy of the patellar surface of a
human femur. Using our nonstationary filtering approach,
we can efficiently compute a solution to the hybrid regis-
tration problem as formulated by Lüthi et al. [21], which is
conceptually appealing, but has so far been computationally
infeasible. The idea is to integrate landmarks directly into
the regularization, which in our terms means to minimize a

slightly different functional

Ĵ [ϕ] := D[IR, IT ,ϕ] + Ŝ[ϕ, X], (2)

whereX is a list of landmark displacements. Since the regu-
larizer Ŝ considers the given displacements at the landmark
positions, the resulting kernel is nonstationary. Therefore,
simple convolution approaches are not applicable, since the
filter kernel varies for each image location. However, in our
framework, we are able to efficiently handle the regularizer’s
local dependency. Hence, performing hybrid image registra-
tion in terms of Equation (2) becomes computationally fea-
sible even for 3D images.

Non-rigid image registration has been extensively stud-
ied in literature and several attempts have been made to reach
a general framework for different regularizers [5,33]. For an
overview of image registration methods, we refer to the sur-
vey paper of Sotiras et al. [30], and more specifically to the
book of Modersitzki [23] for a deeper discussion about vari-
ational methods for image registration. For the diffeomor-
phic regularization we refer to [1–3,28,37,38]. Nonstation-
ary filtering methods have been used e.g. in [6,31], where
the regularization is locally adjusted depending on local im-
age features as e.g. curvature or local transformation proper-
ties like stiffness. Different hybrid methods, which combine
landmarks and image features have been proposed in litera-
ture. For example in [14,16,26], the landmarks are treated as
additional constraints. The methods require a perfect inter-
polation of the landmarks resulting in numerical problems
during optimization. Other methods do not enforce the land-
mark constraints strictly, but add the landmark differences
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as another cost term to the functional in Equation (1) [2,17,
20,25,29]. In our work, we were inspired by the Bayesian
approach of Lüthi et al. [21], where these two kinds of meth-
ods are combined by integrating the landmarks into the reg-
ularization. This makes the uncertainty on the landmarks in-
dependent from the data term and reduces the search space
to transformations, agreeing with the landmark displacements.
Contrary to the approach of Lüthi et al. [21] however, our
nonstationary filtering technique is able to efficiently handle
large 3D images.

Our paper is structured as follows: in the background
section we briefly introduce the variational image registra-
tion framework and present ideas about the hybrid image
registration framework of Lüthi et al. [21] adapted to our
method. In the subsequent method section we present our
separate and nonstationary filter approach. In our experi-
ments, we show registration results using different positive
definite kernel functions such as Gaussian and exponential
kernels. By using low-rank approximations of nonseparable
kernels, we show an accuracy gain as well as an improved
convergence property during the registration process. Ap-
plying a nonstationary kernel, we show the memory savings
we reach with our caching scheme using tensor decompo-
sition. Furthermore, we discuss in more detail the introduc-
tory patellar surface example, where the incorporation of the
landmarks leads to better registration performance. Finally,
we discuss the advantages and challenges related to the land-
mark based transformation.

2 Background

2.1 Variational Image Registration Framework

Considering dense image features, for instance gray scale
values of a CT image, formulating the registration problem
as a variational optimization problem turned out to be very
useful in literature [4,5,28,33,37,38]. A mapping that reg-
isters the two images IR and IT is sought as the minimum of
the joint functional (1). Using methods from the calculus of
variations, the functional is differentiated with respect to the
mapping ϕ. If we denote the space of all admissible map-
pings as Φ, the functional derivatives of the two terms are
dD =: f : Φ→ IRd and dS =: A : Φ→ Φ. A is typically a
differential operator and a minimum of the functional has to
satisfy the system of partial differential equations

A[ϕ] = f(ϕ). (3)

Many different strategies to solve this PDE and the associ-
ated minimization problem have been put forward, including
finite difference methods, finite element methods B-spline
based methods etc.

The fastest method to solve (3), on which our work is
based, is a convolution approach [28,33]. This approach is

possible if the fundamental solution or “Green’s function”
for the operator A is known. The Green’s function is then a
positive definite kernel function k : Ω × Ω → IR, and the
PDE can be minimized by the iteration scheme

ϕi+1 = k ∗ (ϕi ◦ f(ϕi)), (4)

where ∗ denotes the convolution operation.
The classical example is the Demons algorithm where

A = −∆ and k is the Gaussian kernel. In principle it is also
possible to choose the kernel directly, without actually spec-
ifying the corresponding operator. Long et al. [19] proposed
to use the exponential kernel k(x, y) = 1

Cd
·e−

‖x−y‖
α , where

Cd is a normalization constant for the number of dimen-
sions d. C1 = 2α,C2 = 2πα2, C3 = 8πα3. They showed
that compared to the Gaussian kernel, this kernel better ap-
proximates the linear elasticity regularization, which leads
to better transformation properties (see also Steinke et al.
[32]). Since the kernel is not separable, standard computa-
tional requirements are exceeded if it is directly applied in
this framework. In our experiments later in this paper, we
also show registration results using this regularizer.

2.2 Neighborhood Preservation

Common simple regularizers, as the ones discussed in the
previous section, penalize unsmooth transformations. They
cannot avoid foldings, nor do they lead to invertible transfor-
mations. But in medical applications invertible transforma-
tions are preferred. Various authors [1,8,28,35,37,38] have
therefore proposed an additional restriction of the mappings
ϕi by modeling ϕ using geodesic flows of diffeomorphisms
[3]. Following the diffeomorphic Demons [37] approach, the
restriction of an optimal displacement field to be diffeomor-
phic ϕ ∈ Diff (Ω) can be achieved by mapping the cur-
rent transformation ϕi back onto the Lie group of diffeo-
morphisms [1,28,37,38]. This ensures the transformation to
be invertible and neighborhood preserving. A possible way
to do that, which only marginally changes the optimization
scheme in Equation (4), is by calculating the group expo-
nential map exp of the Lie group of diffeomorphisms of ϕi

after evaluating the field update

ϕi+1 = k ∗ (ϕi ◦ exp(f(ϕi))). (5)

The exponential mapping can be efficiently approximated
by a scaling and squaring algorithm [1,37].

2.3 Hybrid Image Registration

In hybrid image registration, both dense image features and
landmarks are available. In addition to the images IR and
IT , we are given lists XR = {xRi }ni=1 and XT = {xTi }ni=1
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of n corresponding landmark points for each image. The dis-
placements induced by these landmarks are given by

X = {(xR1 , xT1 − xR1 ), . . . , (xRn , xTn − xRn )}
=: {(x1, y1), . . . , (xn, yn)}.

Further, let u : Ω → IRd be an unknown displacement field,
such that the warp ϕ(x) = x + u(x), x ∈ Ω and the target
image is warped by IT (x+u(x)). In [21], Lüthi et al. mod-
eled the prior knowledge about u using a Gaussian process
GP(µ, k), which is defined by a mean function µ : Ω → IRd

and a covariance function k : Ω × Ω → IR. In our terms,
this means to minimize

JGP [ϕ] := DGP [IR, IT , µ, u] + SGP [k, u],

where the target image is warped by IT (x + µ(x) + u(x)).
Assuming a zero mean, this functional is equivalent to the
functional (1) introduced at the beginning of this paper. How-
ever, the strength of this interpretation is that we can now
formulate the hybrid registration problem by conditioning
the Gaussian process on the n given landmark displacements.
The resulting posterior process GPX(µX , kX) is given in
closed form by

µX(x) = µ(x) +KX(x)T (K + σ2Id)−1Y (6)

kX(x, y) = k(x, y)−KX(x)T (K + σ2Id)−1KX(y)T ,

where KX(x) = (k(x, xi))
n
i=1 ∈ IRn,K ∈ IRn×n is the

kernel matrix with entries Ki,j = k(xi, xj), Y = (y1 −
µ(x1), . . . , yn−µ(xn))T ∈ IRn are the mean free landmark
displacements and σ2 models the uncertainty about match-
ing accuracy of the landmarks (see also e.g. Rasmussen in
[27], Chapter 2.2). Hence, our functional which we mini-
mize becomes

JGPX [ϕ] := DGPX [IR, IT , µX , u] + SGPX [kX , u], (7)

using µX as landmark based mean transformation and the
kernel function kX for regularization.

Since kX depends on the landmark displacements, it is
not stationary and cannot directly be handled by the opti-
mization scheme (4) introduced above. In the following, we
present the necessary adjustments to still benefit from the
advantages of the framework.

3 Methods

In this paper, we generalize the variational image registra-
tion framework to kernel functions, which possibly are non-
separable and nonstationary. While the optimization scheme
in (4) is conceptually not restricted to separable convolu-
tion kernels, nonseparable filtering exceeds standard com-
putational requirements. In Section 3.1, we present a sepa-
rable 1D filter approximation for nonseparable filters, based

on low-rank tensor approximation, which enables us to per-
form the convolution efficiently.

For the generalization to nonstationary kernels, which
vary depending the spatial location, the Equation (4) has
to be rewritten. We explicitly write the convolution integral
but with a kernel which is not stationary (cf. the work of
McOwen in [22], Chapter 2.3 and Evans [11], Chapter 2.3).
This becomes the following integral equation

ϕi+1 =

∫
Ω

kX(·, s)(ϕi ◦ f(ϕi))ds. (8)

Similar, with ϕ restricted to be diffeomorphic, Equation (5)
becomes

ϕi+1 =

∫
Ω

kX(·, s)(ϕi ◦ exp(f(ϕi)))ds. (9)

In Section 3.2, we further introduce a nonstationary filter
approach, which makes the approximation of the integral (8)
and (9) computationally feasible.

3.1 Separable Filter Decomposition

Applying the proposed optimization scheme to image regis-
tration requires the discretization of the formulation in Equa-
tion (9). To make it more clear, we start by writing the spa-
tially discretized version of Equation (5), where the kernel k
becomes a 3D tensor H0:

ϕi+1(x) = H0 ∗ (ϕi ◦ exp(f(ϕi)))x. (10)

H0 is the discrete unit impulse response of k with elements
H0ijq = k(0, (i, j, q)T ) and i, j, q cover the neighborhood
around 0, while the subscript x of the second term indicates
the equally large discrete neighborhood around the point x.

If the kernel is separable the iteration scheme of Equa-
tion (10) can be accelerated greatly by performing the con-
volution separately in each space dimension by successive
1D convolutions. The Gaussian kernel has this nice prop-
erty of separability. Therefore without any further effort, the
convolution with this kernel can be performed separately.
To still benefit from this performance gain for nonsepara-
ble kernels, like the exponential kernel [19], their separabil-
ity has to be approximated. In 2D, this can be achieved by
standard singular value decomposition. However in 3D, this
leads to mathematical challenges that go beyond standard
linear algebra, since a filter kernel in 3D is a third order ten-
sor. In contrast to 2D matrices, it is an NP-hard problem to
determine the rank of a specific given higher order tensor
(see Kolda and Bader in [18]). Hence, the rank R becomes
a parameter which has to be estimated. Nevertheless, we are
able to compute the approximation using a CANDECOM-
P/PARAFAC (CP) decomposition model [18]. This gives us
separable 1D approximations of the discrete unit impulse
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Fig. 2 CP tensor decomposition model of the third-order tensor H .

response H0. In Figure 2 the decomposition model is visu-

ally illustrated. Such a decomposition can be formulated as

a minimization problem

min
H̃0

‖H0 − H̃0‖ with H̃0 =
R∑

r=1

ar ⊗ br ⊗ cr, (11)

where the operation ⊗ denotes the three-way outer prod-

uct H̃0ijk =
∑R

r airbjrckr. Standard algorithms to optimize

(11) are based on the alternating least squares (ALS) method

[15], which is explained in more detail in the following sec-

tion. The parameter R is estimated by testing the approxi-

mation performance for different ranks (see Section 4.1).

Once the decomposition is performed, the distributivity

(12) and the associativity (13) of the convolution operation

can be exploited to perform the convolution separately in

each dimension with ar, br and cr

H0 ∗ f ≈ H̃0 ∗ f =
[

R∑
r

ar ⊗ br ⊗ cr

]
∗ f

=

R∑
r

[ar ⊗ br ⊗ cr ∗ f ] (12)

=
R∑
r

ar ∗ (br ∗ (cr ∗ f)) . (13)

For cubic filter kernels, having a filter width m, the compu-

tational cost for each output pixel reduces significantly from

m3 to 3Rm.

3.1.1 Alternating Least Squares Method

The low-rank approximation of H0 is calculated by mini-

mizing the optimization problem (11). The minimizers ar, br
and cr are obtained using the alternating least squares (ALS)

method [15]. To this purpose, we introduce a notation to rep-

resent a tensor in a matrix form.

Let H ∈ IRP×Q×R be a third-order tensor. By fixing

one index the tensor is sliced into two-dimensional sections

which have horizontal (mode-1), lateral (mode-2) and frontal

(mode-3) orientation for the indices {1, 2, 3} respectively.

The mode-n unfolding denoted as H(n) concatenates the

mode-n slices horizontally to a matrix.

Following Kolda [18], the CANDECOMP/PARAFAC model

can be expressed as

H = [[A,B,C]] ≡
R∑

r=1

ar ⊗ br ⊗ cr,

while H(1) = A(C 
 B)T , with A = (a1, a2, . . . , aR) and

likewise B and C. 
 is the Khatri-Rao product (see A.1).

The matrices A,B and C, which minimize (11) can be

calculated by alternately fixing all but one matrix e.g. A.

This is followed by minimizing

min
A

‖H(1) −A(C 
B)T ‖F ,

which has the optimum at

A = H(1)[(C 
B)T ]†.

Using the special property that

(A
B)† = (ATA � BTB)†(A
B)T ,

where � is the Hadamard product (see A.2) and A† the Moore-

Penrose pseudo-inverse, the equations can be iteratively solved

for A,B and C

A = H(1)(C 
B)(BTB � CTC)†

B = H(1)(C 
A)(ATA � CTC)†

C = H(1)(B 
A)(ATA � BTB)†.

until the values of A,B and C converge. The convergence

speed depends on the initialization of the fixed matrices. A

common choice for the initialization is to use the Higher-

order SVD [10] discussed in Section 3.2.2.

Since H0 is now decomposed, the convolution in (10)

can be performed separately.

3.2 Efficient Nonstationary Filtering

While stationary kernels k(x − y) only depend on the dif-

ference of x and y, nonstationary kernels k(x, y) are depen-

dent on both arguments. Therefore, for such kernels, separa-

ble filtering is not possible since the associativity no longer

holds. If we spatially discretize the integral Equation in (9)

ϕi+1(x) = Hx ∗ (ϕi ◦ exp(f(ϕi)))x, (14)



6 Christoph Jud et al.

where Hx is the discrete impulse response of k at location
x, i.e. Hxijq = k(x, (i, j, q)T ), we see that H now depends
on x, which makes the problem nonstationary. In general,
the calculation of all the local impulse responses makes the
problem computationally unscalable. However, in the par-
ticular case where we minimize the hybrid functional (7) we
can exploit the following properties of the landmark kernel
kX to reach an algorithm which is computationally feasible.

3.2.1 Landmark kernel properties

The landmark kernel kX consists out of the kernel k sub-
tracted by a landmark dependent term. The difference be-
tween k and the full landmark kernel kX becomes negligible
if

∀xi ∈ X k(x, xi) < ξ (15)

i.e. if x is not in the neighborhood of any landmark. This
property is exploited to approximate the integral of Equa-
tion (9) by only considering k, the first part of the landmark
kernel kX , if the value of its second part goes to zero. We
perform the approximation in two steps:

1. At first, the whole image is filtered separately using the
stationary part k.

2. Subsequently, the nonseparable and nonstationary filter-
ing with the full kernel kX is performed, but only for
pixels where (15) is not fulfilled.

The second part is the most expensive step, because for each
point in the vicinity of the landmarks its discrete local im-
pulse response Hx has to be calculated. This means a cubi-
cally increasing amount of kernel evaluations, which covers
the neighborhood of all points having landmark support, and
this in each iteration of Equation (9). To reduce the compu-
tational demands we propose the following caching scheme.

3.2.2 Local filter caching

Since the landmark kernel is nonstationary, but still time-
invariant, it is reasonable to keep the computed filter ker-
nels in memory to save computational time for the follow-
ing iterations. Jumping out of the frying pan into the fire,
the amount of memory to cache all the filter kernels grows
rapidly depending on the filter width and the number of land-
marks. Therefore, we compress these local filter kernels by
again taking advantage of tensor decomposition, before we
cache them in the memory.

As we saw in Section 3.1.1, the CP decomposition is
obtained by the ALS method, which is quite costly due to
its iterative nature. Because H0 has to be decomposed only
once, it is still well suited to approximate the separability of
the stationary filter. However, it is too slow to decompose all
the local impulse responses Hx.

Compared to the CP decomposition the Tucker decom-
position [34] (see Figure 3) is significantly faster. It is an
alternative model to decompose a tensor. Similar to the CP
model the tensor is decomposed into triplets of vectors, but
they are weighted by a full so called “core” tensor.

H̃x = [[G;A,B,C]] ≡
P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ⊗ bq ⊗ cr, (16)

where gpqr are the elements of the core tensorG and P,Q,R
are the ranks for each space dimension. In this model the
unfolded tensor H is represented as

H(1) = AG(1)(C •B)T ,

where • is the Kronecker product (see A.3). Using the Higher-
order SVD algorithm of De Lathauwer and De Moor [10]

min ‖H(1) −AG(1)(C •B)T ‖

can be very efficiently minimized by setting A,B and C to
the leading left singular vectors of the corresponding mode-
n unfolding H(n)

A = U
(1)
P , B = U

(2)
Q , C = U

(3)
R ,

where U (n)
l is the matrix consisting out of the leading l sin-

gular vectors of H(n) and G(1) = AH(1)(C •B)T .
Compared to the CP model the Tucker decomposition is

a less restricted model where the core G can be dense while
in the CP model the core is a super diagonal tensor1 with
ones on the diagonal. Although it cannot be used for separa-
ble filter approximation due to the weighting with the dense
G, the memory savings are similar to the CP model. Setting
P = Q = R and having a filter length m, the memory con-
sumption reduces from m3 to R3 + 3Rm per voxel in the
support of the landmarks. In this paper we chose P,Q and
R by testing the resulting approximation performance.

3.3 Multi-resolution vs. Multi-scale

We presented a method to minimize the registration func-
tional (7). It is mainly based on the local iterative minimiza-
tion scheme (4). As such, it relies on a reasonable initializa-
tion and is prone to get “stuck” in local minima. In order
to deal with that, we adopt a multiresolution strategy [40].
The support in voxels of the kernel function k implicitly
increases towards the lower resolution levels. Therefore, in
combination with the posterior mean function µX , we use a

1 A super diagonal tensor is the generalization of a diagonal matrix
to higher order tensors, where the entries outside the main diagonal are
zero.
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Fig. 3 Tucker tensor decomposition model.

multiscale kernel k̃ (cf. Opfer in [24]), which combines ker-

nels with different support, to compute the landmark based

mean transformation μX (6):

k̃(x, y) =

L∑
l=0

λlk
l(x, y),

where λl are positive weights and kl correspond to k with

adjusted kernel parameters per scale level l and L is the

number of scale levels. The parameter e.g. for the Gaussian

kernel becomes σl
g = σg · 2L−l. We have set the weights λl

to 10−l.

3.4 The Algorithm

By joining all the previously described building blocks, we

have obtained a non-rigid image registration framework, in

which different regularizers can be implemented by conve-

niently exchanging the regularization kernel, even if it is

nonseparable or nonstationary. Specifically, the landmark ker-

nel is supported by our framework. The diffeomorphic reg-

ularization is also approximated, as shown in Equation (14).

Moreover, we showed a multiscale approach that brings the

landmark mean together with the image-based optimization

on different resolution levels. The full algorithm which max-

imizes Equation (7) by joining all the presented concepts is

provided in Listing 1.

In the following, the performance of our filter approxi-

mation techniques is evaluated in detail, while we also pro-

vide a qualitative hybrid registration example.

4 Results

We presented a method which enables an efficient approx-

imation of the optimization scheme in Equation (9). In this

section, we perform registration experiments for validating

our method. First, we provide a detailed study about the

separable filter approximation and discuss its approxima-

tion performance in terms of accuracy and computational as-

pects. Second, we analyze the local filter compression with

respect to memory consumption, computational demands as

well as approximation accuracy. We compare our method

with Elastix [17], where the landmarks are incorporated as

an additional cost term to the functional (1). This is followed

by a qualitative result of the introductory patellar surface ex-

ample. Likewise, we compare these results with Elastix. In

an additional section we discuss the landmark based mean

transformation μX in more detail.

As quality measurement, we use the target registration

error (TRE), the dice coefficient (DICE) and we count sin-

gularities of the displacement fields, which is the number of

voxels where the determinant of the Jacobian is smaller than

zero. To compare two displacement fields A and B for each

vector pair, we consider the magnitude differences and the

vectors directional discrepancy. Following that, we define

the accuracy loss:

τ(A,B) =

∫
Ω

(‖A(x)‖ − ‖B(x)‖)2 (17)

+

∥∥∥∥ A(x)

‖A(x)‖ × B(x)

‖B(x)‖
∥∥∥∥
2

dx,

where τ(A,A) = 0 and greater than zero for dissimilar

displacement fields.

Since we only compare different regularizers and their

approximations, we use for all experiments, the sum of squared

differences similarity measure

D[IR, IT ,ϕ] :=

∫
Ω

(IT ◦ϕ(x)− IR(x))
2

dx.

Following Thirion [33], we perform second order gradient

descent on D and obtain the forces

f(ϕ(x)) = − (IT ◦ϕ(x)− IR(x))∇IT ◦ϕ(x)
κ2 (IT ◦ϕ(x)− IR(x))

2
+ ‖∇IT ◦ϕ(x)‖2 ,

with κ2 the reciprocal of the mean squared image spacing.
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Listing 1 Variational Image Registration Algorithm

1 Input: IR, IT , X, k, σ, n, L
2 Output: ϕn

3 Build image pyramid -> I0R, ..., ILR, I0T , ..., ILT
4 Initialize ϕ0 = Id
5

6 foreach: resolution level l

7 perform mean transformation of IlR, IlT using μX

8 compute and decompose H0 → A0, B0, C0 (Equation 11)
9 for i = 0...n:

10 compute force field: f l(ϕi)

11 perform separable filtering: ϕi+1 = H0 ∗ (ϕi ◦ exp(f l(ϕi))) (Equation 10)
12 for x near a landmark in X:
13 if i==0:
14 decompose and cache Hx → gx, Ax, Bx, Cx (Equation 16)
15 else:
16 reconstruct H̃x using gx, Ax, Bx, Cx

17 perform nonstationary filtering for neighborhood of x (Equation 14)
18 set ϕ0 = upsample(ϕn) for the next resolution level
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Fig. 4 This figure shows the image error averaged over all 9 experiments for approximation rank one to four as well as for the exact method.
For each experiment the mean error is plotted as well as ± one standard deviation in a solid style and the max/min as a dashed curve. In the last
subfigure the averages for all variants are again shown in one plot.

Generally, we set the prior mean function μ always to a

rigid pre-alignment of the images.

We implemented our algorithm by extending the finite

difference solver framework of the Insight Toolkit [39] and

performed the experiments on an Intel Xeon CPU @ 3 GHz

on 12 cores.

Elastix Configuration For the registration with Elastix [17]

we used the B-spline transformation model combined with

the mean squares metric and an LBFGS optimizer. For the

landmark examples we combined the mean squares metric

with the “Corresponding Points Euclidean Distance Metric”

which is equivalent to the target registration error.

4.1 POPI Breathing Thorax Model

In this first experiment, we show quantitative results by dif-

ferent approximation ranks of the nonseparable exponential

kernel (α = 1) without considering landmarks. The filter

H0 has been discretized in a 233 voxel neighborhood. We
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Approximation rank R = 1 R = 2 R = 3 R = 4 None
iterations to converge 20 44 68 68 63
final average image error 3588 2524 1808 1799 1737
accuracy loss 1.0033 0.6407 0.2299 0.2250 0.0000
relative CPU time 0.08 0.17 0.25 0.33 1.00

Table 1 This table provides information about convergence properties with different approximation ranks. The iterations to convergence in the
first row were computed as the number of iterations until the average image error change deceed the value 3. The accuracy loss is calculated by
using τ(A,B) in Equation (17) between A the resulting and B the exact method transformation.

compare the results to the exact method, which is obtained
with the same kernel, but without separable filtering. We
used the POPI dataset provided by the Léon Bérard Can-
cer Center & CREATIS lab, Lyon, France [36], which con-
tains 10 CT images of a breathing lung. The images have
a resolution of 482 × 360 × 141 voxels and a spacing of
0.98 × 0.98 × 2mm3. For our experiment, the images have
been resampled to 235 × 175 × 141 voxels and scaled to
isotropic spacing at 2mm3. In the experiment, we have cho-
sen the image number 0 to be the reference image, while we
calculated the experiments on a single scale. We repeated
the experiment by increasing the rank R of the separable fil-
ter approximation from one to four. R = 1 corresponds to
the rank-one approximation used in Beuthien and Kamen [4]
which serves us as baseline. The exact method corresponds
to the algorithm of Long et al. [19] extended to 3D.

In Figure 4, we illustrate the image error averaged over
the 9 registrations changing during the optimization for each
experiment. In the first three experiments the convergence
rate decreases with increasing rank R, while the resulting
image error is getting smaller. One can also observe that for
R ≥ 3 the image error stays nearly the same and is close to
the exact method. Moreover, the variance of the image er-
ror is getting more narrow with higher R. It can be assumed
that for R > 4 no significantly improved approximation can
be achieved. For a better comparison, all mean curves are
again shown together in the last plot. Furthermore, in Ta-
ble 1, the results of the experiments are summarized in nu-
merical terms. Evaluating the accuracy loss (17) between the
approximations and the exact method, higher rank approxi-
mations reach greater accuracy. The CPU time is consider-
able high for the exact method. With a third of the effort, we
achieve a good approximation, accepting only a very small
loss of accuracy. For a more detailed comparison, we re-
peated the whole experiment again on different scale levels.
The results are listed in Table 2 and the upper part of Table 3.
Note that all quantities are averaged over the 9 experiments.

The results show that for nonseparable kernels, a one-
rank approximation is not accurate enough to approximate
the filter’s regularization property. With increasing rank, the
calculation time gets larger. The increase is linear inR. Since
the resulting image error as well as the convergence proper-
ties using R = 4 do not significantly differ from the exact

method, we think that 4 ranks are sufficient to approximate
the exponential kernel separably.

For a meaningful comparison to Elastix, we performed
three experiments. First, the smoothness parameter σB-spline

of the B-spline transform has been tuned to a small TRE
(σB-spline = 4). Second, σB-spline was tuned in order that no
singularities are present in the result, but simultaneously for
a TRE which is as small as possible (σB-spline = 16). Fi-
nally, the parameter was chosen for a resulting transforma-
tion, which are approximately as smooth as the ones ob-
tained by our method (σB-spline = 64). To quantify the smooth-
ness of a displacement field A we integrate over the local
displacement changes:

υ(A) =

∫
Ω

∫
Bx

‖A(s)−A(x)‖ ds dx,

where Bx is the neighborhood around x with radius 1. The
results in Table 3 show, that you can’t have your cake and eat
it too. In Elastix there is a trade-off between the TRE and the
smoothness of the transformation. σB-spline can be tuned for
a small TRE accepting a less smooth transformation or it
is chosen such, that the resulting transformation is smooth,
but with a higher TRE. However, our method reaches signif-
icantly smoother transformations compared to Elastix with
a similar TRE. Since we regularize for diffeomorphic trans-
formations it was expected, that compared to Elastix using a
small smoothness parameter, no singularities will be present
in the results. As soon as we increase σB-spline such that the
transformations are as smooth as in our method, the TRE
and DICE performance drops dramatically for Elastix.

To quantify the efficiency of our filter caching approach,
we performed the experiments once more, but included 21
landmarks provided in the POPI dataset. The landmark un-
certainty was set to σ = 0.02. For comparison, the exact
method, which combines the separable filtering and the land-
marks, does no compression. In Table 4, the average re-
sources needed for each experiment are listed. As expected,
for the Tucker decomposition, slightly more CPU time is
needed. However, it is negligible compared to the memory
savings reached with this compression. Furthermore, the ap-
proximation of the local filter kernels is nearly perfect result-
ing in a very small loss of accuracy. The most CPU intensive
part in each experiment is the 1st iteration, because initially,
all local filter responses have to be calculated. Without the
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R = 1 R = 2 R = 3 R = 4 exact method Voxels
CPU time for level 0 (h) 0.21 0.41 0.61 0.83 3.69 87290
CPU time for level 1 (h) 1.81 3.54 5.18 7.01 25.71 712530
CPU time for level 2 (h) 13.88 27.28 40.23 53.19 159.13 ≈ 1 week 5798625

Table 2 This table provides information about the computational time needed for the different experiments. To show the time complexity depend-
ing on the number of voxels in the image, we calculated the experiments on 3 different scale levels and performed 100 iterations per level. The
timing is given in average CPU hours needed to perform one registration.

method landmarks TRE singularities υ(A) DICE CPU time (h)
rigid alignment n/a 1.673 ± 1.062 0 n/a 0.959 n/a
exponential kernel (R = 1) excl. 1.419 ± 1.059 0 0.094 0.966 15.51
exponential kernel (R = 2) excl. 1.027 ± 0.801 0 0.117 0.974 30.24
exponential kernel (R = 3) excl. 0.588 ± 0.158 0 0.146 0.981 45.99
exponential kernel (R = 4) excl. 0.584 ± 0.149 0 0.148 0.981 59.49
exponential kernel (exact) excl. 0.579 ± 0.103 0 0.198 0.981 188.47
elastix (σB-spline = 4) excl. 0.540 ± 0.104 6143.8 0.861 0.987 2.24
elastix (σB-spline = 16) excl. 0.601 ± 0.150 0 0.398 0.981 2.25
elastix (σB-spline = 64) excl. 0.819 ± 0.308 0 0.154 0.974 2.23
exponential kernel (Tucker) incl. 0.484 ± 0.127 0.4 0.144 0.981 80.1
elastix (σB-spline = 4, w = 1) incl. 0.411 ± 0.086 6255.8 0.859 0.987 2.42
elastix (σB-spline = 4, w = 64) incl. 0.024 ± 0.001 2565.9 0.624 0.987 2.41
elastix (σB-spline = 16, w = 1) incl. 0.535 ± 0.089 869.8 0.544 0.984 2.95
elastix (σB-spline = 16, w = 64) incl. 0.159 ± 0.042 948.0 0.534 0.984 2.96
elastix (σB-spline = 64, w = 1) incl. 0.814 ± 0.303 0 0.156 0.974 2.35
elastix (σB-spline = 64, w = 64) incl. 0.796 ± 0.300 0 0.154 0.974 2.34

Table 3 In this table we show the performance evaluation of the POPI experiment with and without landmarks. In our method we used the
exponential kernel as regularizer. For comparison, in elastix we used the B-spline transformation model.

Ξ Scale level Overall CPU time (h) CPU time 1st iteration (h) Memory (GB) Masked voxels Accuracy loss

w
ith

ou
t 0 4.05 2.32 10.17 29249 0

1 9.85 2.63 18.58 54933 0
2 58.89 5.60 28.61 84424 0

Tu
ck

er 0 5.12 2.51 1.11 29249 6.46 · 10−5

1 12.48 3.22 1.44 54933 2.32 · 10−5

2 66.84 6.48 2.55 84424 9.69 · 10−6

Table 4 The table provides information about resources needed to perform the experiments. For the upper part of the table, no Tucker decomposi-
tion of the local filter kernels was performed. In the lower part, the local filters were decomposed using the Tucker decomposition to save memory
during caching. Hx was discretized on a 233 neighborhood. The approximation ranks were set to P = Q = R = 5. The masked voxels are the
ones, which are in the support of the landmarks. The support limit ξ was set to 10−6.

caching scheme therefore, the overall CPU time would ex-
plode to CPU weeks.

To compare our hybrid results with Elastix, we performed
the hybrid B-spline registration twice, using a small resp. a
large weight w for the landmark cost term (see Table 3).
A large weight results in a smaller TRE while the overall
smoothness decreases. Several singularities are present in
the Elastix results, while the singularities in our method are
negligible. The major advantage of our method becomes ap-
parent with the overall smoothness. Despite the landmark
consideration it is much higher than in the Elastix experi-
ment.

The TRE could be decreased, but regarding the small un-
certainty on the landmarks we would have expected a smaller
landmark error. This discrepancy originates from the dis-

cretization of the mean transformation µX , which in this
experiment leads to a TRE drift of 0.264± 0.121,

TREdrift = TRE(µXdiscretized)− TRE(µX exact).

Compared to the experiment in Section 4.2 where the res-
olution is about twice as high the discretization error re-
sults in a TRE drift of 0.056 ± 0.002, which is negligible.
Therefore, the mean transformation should be discretized on
a finer grid.

A note on the parallelization Since our method is based on
image filtering, it is well suited to perform the filtering for
each voxel in parallel. Hence, the standard parallelization
framework of ITK could directly be used to speed up the
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Level speedup (landmarks excl.) speedup (landmarks incl.)
0 13.8 11.3
1 17.7 12.4
2 17.9 14.9

Table 5 The speedups were calculated by Time (1 process)−Time (24 processes)
Time (24 processes) . Therefore, an optimal full parallelizable algorithm would have a speedup

of 23, using 24 processes.

Fig. 5 The figures show the warp field resampled on the reference’s surface, depicted as arrows. First row: registration was performed without
landmarks. Second row: registration was performed including the landmarks.

calculations. We performed the experiments with 24 pro-
cesses and reached an average speedup between 15 and 18
as listed in Table 5. Because the landmarks are not evenly
distributed over the image domain, the work load is also not
evenly distributed to the processes. Therefore, we reached
a lower speedup in the hybrid registration experiment. The
actual time needed to perform the experiments is the CPU
time listed in Table 1 and 2 divided by the speedups listed in
Table 5. For example, calculating the 9 registrations on level
2, the exact method took us 2.5 days instead of 8.5 weeks.

4.2 Patellar Surface Registration

We further performed a 3D experiment registering two fe-
mur shapes. The challenge with this kind of data is that the
border of the patellar surface is potentially hard to recognize
and its variation can be quite large, such that an accurate
registration of the patellar surfaces using fully automatic al-

gorithms is difficult. We obtained the patellar surfaces of the
target and reference bone from an expert. By incorporating
well-chosen landmarks, we can force our algorithm to regis-
ter even the patellar surface correctly. The shapes were rep-
resented as signed distance images of 353×327×491 voxels
(isotropic spacing 0.57mm3) and registered on 5 scale lev-
els. For k we used the Gaussian kernel with σg = 1 and a
landmark uncertainty of σ = 0.3 · 10−3. We approximated
the landmark kernel kX with P = Q = R = 5. For illustra-
tion, we performed the experiment once without landmarks
and once including the landmarks.

In Figure 5, the warp fields are shown resampled on the
bone surface depicted as arrows. Especially at the upper bor-
der of the patellar surface, one can see the strong impact
of the landmarks. In Figure 6, we plotted the warped ref-
erence shape including the dark gray marked part. Without
considering the landmarks, the border of the patellar surface
is clearly misaligned, while it is correctly registered when
the landmarks are incorporated.
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Fig. 6 The figures show the warped reference shape including the colored patellar surface. First row: registration was performed without land-
marks. Second row: registration was performed including the landmarks. Third row: ground truth target shape.

method TRE singularities υ(A) DICE
rigid aligned 12.268 ± 13.627 0 0 0.797
diffeomorphic demons 13.722 ± 31.546 0 0.250 0.989
elastix (σ = 1, w = 1) 0.005 ± 1.199 20703 0.314 0.973
our approach 1.225 ± 1.328 48 0.251 0.990

Table 6 Quantitative measures of the femur example.

We performed the same experiment with Elastix and sum-
marized the results in Table 6. The parameters of the hy-
brid B-spline registration were tuned concerning the TRE
and DICE performance measures. While Elastix brings the
TRE down to nearly zero a very large amount of singulari-
ties are present in the resulting transformation and the dice
coefficient is rather low. Our method reaches a small TRE

as well. Furthermore, the singularity count is very low, the
DICE quite high and the displacement field smooth.

4.3 Smooth Mean Displacement

Since we can force multiple reference landmarks to match
one single target landmark by setting σ equal to zero, µX is
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Fig. 7 Transformed grid (200px2 and isotropic spacing of 0.1mm2) with mean displacement using the Gaussian kernel (σg = 6). There are
3 landmarks defined as reference and target points (red=reference, green=target, the yellow ones are equal for both). The uncertainty on the
landmarks is increased for the experiments from left to right (σ = 0, 0.5 · 10−3, 0.75 · 10−3, 0.1 · 10−2, 0.25 · 10−2). The arrows illustrate to
which location a point is transformed by the displacement field.

Fig. 8 The figures show the warped reference shape by the mean transformation using the multiscale kernel k̃ with 5 scale levels. Overall the
shape looks the same as the reference except in the regions of the landmarks. There we have a smooth transformation to the target.

not guaranteed to be invertible. In Figure 7, an artificial ex-
ample is shown where a grid is transformed by the mean dis-
placement using different σ. Setting σ equal to zero, or too
small, results in unfavorable folds and barely make sense in
real world medical problems. Therefore, in our patellar sur-
face experiment, we have chosen the parameters such that
folds in µX hardly ever occur. The mean transformed ref-
erence shape is shown in Figure 8, where no holes can be
identified on the surface.

Nevertheless, an inverse transformation can be obtained
using the fixed-point approach of Chen et al. [7], where the
inverse is iteratively approximated. An entirely different ap-
proach could be to perform diffeomorphic point matching
[2,9,12,13] for obtaining a invertible mean displacement.
This will be addressed in future work.

5 Conclusion

In this paper, we implemented an efficient variational im-
age registration framework, where a large variety of positive
definite kernels can be used for regularization. Compared to
standard approaches, we are able to accurately approximate
separable filters for nonseparable regularizers in order to re-
lax the computational demands. With less than a third of the
computational effort, we approximate the true regularization

with a very small loss of accuracy, while the rank-1 approx-
imation is three times faster but results in a accuracy loss
which is one order of magnitude larger. Furthermore, us-
ing an efficient nonstationary filtering scheme, we allow for
location-dependent regularization. This enables us to per-
form hybrid landmark and image registration by utilizing
the landmark kernel which incorporates landmark displace-
ments as prior knowledge. For this purpose, accepting little
more computational time, we can reduce the memory usage
by at least one order of magnitude. Additionally, we added
the diffeomorphic constraint on the resulting transformation.
Its approximation does not significantly change the opti-
mization scheme. The comparison with the hybrid B-spline
registration shows, that our method results in smoother dis-
placement fields even if landmark displacements are incor-
porated. We also discussed challenges associated with the
invertibility of the landmark based transformation. An addi-
tional prior on this transformation, which ensures invertibil-
ity, similar to [2,12], would further improve the registration.
This will be addressed in future work.
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A Matrix Products

A.1 Khatri-Rao product

Given a matrixA ∈ IRm×q and a matrixB ∈ IRn×q , the Khatri-Rao
product of A and B is the matching column-wise Kronecker product

A�B = (a1 • b1, a2 • b2, · · · aq • bq) ∈ IRmn×q.

A.2 Hadamard product

Given a matrixA ∈ IRm×n and a matrixB ∈ IRm×n, the Hadamard
product of A and B is the point-wise matrix product

A ? B =


a11b11 a12b12 · · · a1nb1n
a21b21 a22b22 · · · a2nb2n

...
...

. . .
...

am1bm1 am2bm2 · · · amnbmn

 ∈ IRm×n.

A.3 Kronecker product

Given a matrix A ∈ IRm × IRn and a matrix B ∈ IRq × IRr , the
Kronecker product of A and B is given as

A •B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 ∈ IRmq×nr.
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