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Abstract
Purpose Statistical Shape and Appearance Models play an
important role in reducing the segmentation processing time
of a vertebra and in improving results for 3D model devel-
opment. Here we describe the different steps in generating a
Statistical Shape Model of the second cervical vertebra (C2)
and provide the shape model for general use by the scientific
community. The main difficulties in its construction are the
morphological complexity of the C2 and its variability in the
population.
Methods The input dataset is composed of manually seg-
mented anonymized patient computerized tomography (CT)
scans. The alignment of the different datasets is done with
the Procrustes Alignment on surface models and then the
registration is cast as a model-fitting problem using a Gaus-
sian process. A Principal Component Analysis (PCA) based
model is generated which includes the variability of the C2.
Results The Statistical Shape Model (SSM) was generated
using 92 CT scans. The resulting SSM was evaluated for
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specificity, compactness and generalization ability. The SSM
of the C2 is freely available to the scientific community in
Slicer (an open source software for image analysis and sci-
entific visualization) with a module created to visualize the
SSM using Statismo, a framework for statistical shape mod-
eling.
Conclusion The SSM of the vertebra allows the shape vari-
ability of the C2 to be represented. Moreover, the SSM will
enable semi-automatic segmentation and 3D model gener-
ation of the vertebra, which would greatly benefit surgery
planning.

Keywords Statistical Shape Model · second cervical
vertebra · non-rigid image registration · segmentation ·
Principal Component Analysis.

1 Introduction

The increased use of image guided spinal surgery has largely
improved precision for implant placement [1–8]. While wi-
dely used in the lumbar spine, precision requirements are
far more critical in the cervical spine and need optimizing
for it’s increased use [1]. For example, the target bone vol-
ume is much smaller [9], vertebral arteries have a complex
and convoluted anatomic relationship to the vertebral bone
complex, and the cervical spinal cord and nerve roots are in
close proximity [10–13]. Screw implantation in the cervical
spine is considered to be high risk [14]: screws are placed
in the isthmus, which measures about 6mm while the screw
diameter is 4mm so ideally the implant placement precision
error should not exceed ±1mm. Indeed, overall screw mis-
placement rates have been well documented [15–17]. The
C2, also named axis, presents very specific challenges to
the surgeon. Not only is it morphologically the most com-
plex of the entire vertebral column, but multiplanar CT 2D
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pre-operative evaluation of this trigonometrically complex
3D structure has not substantially improved screw misplace-
ment rates.

As described in [18], 3D models of an organ or bone,
can be useful for the surgeon, particularly when bone qual-
ity may be poor (for example in osteoporosis), and is not
well visualized on standard imaging. This technique may
also have a particular application when a part of the C2
vertebra is affected by a bone destructive pathology (e.g.
tumor) and that portion of the vertebra is not fully visual-
ized yet needs to be instrumented. 3D models are generated
from segmented CT scans of patients. Image segmentation
is the process of partitioning images into different regions
that represent anatomic structures. In the above study [18],
segmentation of the vertebra is done manually with the 3D
Slicer software [19, 20]. The process takes about 2 hours per
vertebra and this time delay makes it unsuitable for some
procedures; especially emergency surgeries. There is a need
to automate segmentation processing and this is the main
challenge for computer-assisted medical applications. Ma-
jor difficulties in image segmentation are the complexity and
anatomic variability as well as the image quality available.
A complete overview of the different segmentation methods
can be found in [21]. In [22], for example, a level set method
is used for segmentation but does not incorporate shape prior
information. Shape prior segmentation has been the most
utilized and is therefore established in medical imaging. The
method uses previously obtained data that documents mor-
phologic variations of the "standard" shape. This provides
anatomic "correction" which can compensate for any image
artifacts. A graph cut method considering shape prior infor-
mation is employed in [23] but does not take into account
the shape variation, only the mean of the population shape.
Statistical models include shape variations and can therefore
be employed to enhance segmentation of human anatomical
structures (bones or organs). Probably the best known statis-
tical model algorithm for segmentation is the Active Shape
Model [24].

A Statistical Model (SM) is a model of an anatomic
structure that captures the anatomical variability in a sample
population obtained from a databank of medical imaging.
A SM can be placed into two different categories: The first
is the Statistical Shape Model (SSM), which describes the
average shape and main variation modes of the bones. The
second is the Statistical Appearance Model (SAM), which
characterizes the average bone density and variation. In [25],
a review discusses the SSM and SAM concepts and their
main applications. The authors demonstrate the potential of
the SM for diagnosis, evaluation and treatment of skeletal
diseases in particular osteoporosis, as well as implant design
and surgery planning. Currently, SMs have been created for
various anatomical structures and used to segment them. A
complete overview of the different SSMs used in medical

image segmentation is presented in [26].
One of the main problems in building a SSM is to find

correspondence between the reference and target objects in
an automatic or semi-automatic way. The objects can be rep-
resented by images, surface meshes and point sets obtained
from x-ray (2D) or CT scans and MRI (3D); the represen-
tation is where the SSM building methods differ. Based on
2D images, [27] describes a process to reconstruct 3D lum-
bar vertebra and in [28], correspondences are found by con-
verting the surfaces into a spherical harmonic descriptions
(SPHARM - PDM). However, this method requires closed
surfaces. A spectral-based mesh point matching method is
used in [29] to register the vertebra followed by Statisti-
cal Shape Modeling and a machine learning-based boundary
detector for the segmentation while [30] proposes a model-
based segmentation approach using a region-based appear-
ance model with the following different steps: the spine curve
extraction, vertebra detection, identification and segmenta-
tion. [31] presents a non-rigid deformation based method for
constructing a SSM of cervical vertebras 6 and 7 (C6 and
C7). Group-wise registration as in [32] avoids biasing the
SSM to the arbitrarily chosen reference shape. Moreover,
a comparison of different registration methods for building
SSMs was done for a vertebra and hippocampus (less vari-
ability than the vertebra) and showed that in case of bones
with high variation in populations, the SSMs are less accu-
rate.

In this study, we examine the feasibility of creating a
SSM of the second cervical vertebra. Most of the above
methods are for lumbar [27, 32] and thoracic vertebra [22,
23] or the entire spine [29, 30] and only a few studies [31]
have considered cervical vertebra, especially the C2 that is
morphologically the most complex. Indeed, this vertebra has
a unique and unusual shape to allow efficient head rotation.
Certainly, the main difficulties for building the C2 vertebra
SSM and segmenting are its large variability (see Fig. 1),
with about 20% inter-population variation [33] and the diffi-
culty in distinguishing the separation between vertebrae C1-
C2 and C2-C3, even directly viewing the CT scan. But also,
the limited surgical exposure and small size of the C2 ver-
tebra leave few visible identifiable anatomical landmarks,
making surface matching a surgical challenge and potential
source of error.

In this article, the process of building a Statistical Shape
Model of the second cervical vertebra is described in the
Methods section. The principal characteristic of our model
is the use of a Gaussian Process method to perform the reg-
istration step. Landmarks are defined to constrain the Gaus-
sian model [34] and so incorporate additional prior informa-
tion to improve the registration performance and deal with
the several shapes of the C2. A multi-scale Gaussian kernel
[35] replaces the Gaussian kernel used in [36] which en-
forces smoothness and allows flexible representation of the
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Fig. 1 Example of three C2 vertebra

vertebra for solving the variability problem of the C2. Evalu-

ation of our SSM by measuring of generalization, specificity

and compactness [37] and also generating a surface mesh

vertebra from a new CT scan is presented in the Results sec-

tion, together with a newly created module and its workflow

that allows any SSM to be visualized in the 3D Slicer Soft-

ware. Having access to a C2 Statistical Shape Model will

allow us to semi-automate and speed up the C2 segmenta-

tion process and perform rapid surgical planning and/or the

surgical planning updates in the operating room, a key issue

for surgeon acceptance.

2 Methods

The different steps involved in generating a SSM of the C2

are developed in this section and illustrated in Fig. 2.

First, segmentation is performed manually on the input

Input Data (CT scans)

Segmentation

Label maps Reference Generation

Registration Framework Reference Surface Mesh

Surface Mesh

Model Building

C2 SSM

Fig. 2 Flow diagram of the SSM construction

CT scans from the database. Secondly, for vertebra registra-
tion, alignment of the data is done thus establishing correla-

tion between the Reference Surface Mesh vertebra and the

target vertebrae represented by Label Map. The C2 SSM is

built describing the main shape variations of the shapes in

the input database anatomy. Mathematically, it refers to an

estimate of the probability distribution from the dataset.

Input Data
Our input data is composed of a series of 92 anonymized cer-

vical spine CT scans with no C2 pathology (the indication

for the CT scans was a history of neck pain in the context

of trauma), which meets the requirement of data to repre-

sent the shape variations of the object we wish to model.

This database has been made available on the Virtual Skele-

ton Database (VSD) website [38], an open access repository

for Biomedical Research and Collaboration. The dataset is

composed of 42 women and 50 men with an average age

of 28.5±5.8 years. CT imaging resolution ranged from 0.3
mm x 0.3 mm x 0.6 mm to 0.3 mm x 0.3 mm x 1 mm spac-

ing. The vertebrae size range from 46.75 mm x 43.07 mm x

33 mm to 68.28 mm x 60.32 mm x 56.4 mm.

Segmentation
As a Statistical Shape Model is based on the shape of the

organ, only the boundary of the object is useful. Segmenta-

tion consists of separating the object from the background to

obtain a representation of the surface. It is performed in two

steps using the 3D Slicer software [19, 20]. First, a threshold

method is applied to identify the edge of the bone (Fig. 3a).

Secondly, a slice-by-slice manual segmentation is necessary

to fill the holes and remove the remaining soft tissue (Fig.

3b). The resulting segmentation is called label map and is

used in the next SSM building steps.

From the label maps, it is possible to generate a surface

mesh vertebra, which is considered as the ground truth and

is used to compare and validate the registration method. To

obtain the "ideal" vertebra removing small artifacts, the seg-

mentation is smoothed out using the label map smoothing

Slicer module with σ = 0.5 (standard deviation of the Gaus-

sian kernel), resulting in a C2 surface mesh representation

(Fig. 3c).

(a) Threshold segmenta-
tion

(b) Slice-by-slice segmen-
tation

(c) Surface Mesh

Fig. 3 The different steps required to generate the C2 surface

mesh
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Reference Generation
A surface mesh vertebra used as "reference" for alignment
and registration is needed to generate the SSM. To avoid bi-
asing the SSM to a particular vertebra in the training set,
a template surface mesh vertebra is generated in an itera-
tive process. A surface mesh vertebra is selected from the
dataset and registered to all other label map vertebrae with
our method described below (registration framework). The
mean is computed and registered to all the training set and a
new mean vertebra is produced which is compared to the
mean of the previous one. This method is repeated until
there is no significant change in the generated vertebra mean.
The reference surface mesh vertebra is represented in Fig. 4.

Fig. 4 Reference Vertebra generated from the dataset

Registration framework
Registration needs to establish correlation between two ob-
jects: in our case between the reference surface mesh and
the target image. This is generally the most difficult step in
SSM building. The goal is to find a spatial transform T , de-
fined as T (x) : Ωre f → Ωtarget , where Ωre f is the reference
object domain and Ωtarget the one of the target object, which
maps one object domain to the other.

Alignment of the vertebrae is performed to initialize the
transformation and then a non-rigid registration using a Gaus-
sian Process is applied. So, the transformation T , can be seen
as a two step process. A global one; Tglobal (alignment) and
a local one; Tlocal (non-rigid registration). The advantage of
first aligning the dataset is to improve registration results.

i) Alignment
A "Procrustes Alignment" (also called landmark registra-
tion) is performed to align the dataset to the reference sur-
face mesh. This method consists of defining some landmark
points on each image and testing a transformation Φ(x),
which moves the images to match the reference mesh verte-
bra. The most readily identifiable landmarks are first placed
on the Reference vertebra and input data. Fig. 5 shows an
example of a surface mesh vertebra (for a better overview)

marked with 7 landmarks as placed in our study.
The transformation is defined as

Fig. 5 Surface mesh vertebra with 7 landmarks used for
alignment

Φ(x) = Ax+ t (1)

where A, is the rotation matrix; t, is a translation vector. The
goal is to find a transformation, which minimizes the dis-
tance between the transformed landmarks of the target ob-
ject {Φ(x1), . . . ,Φ(xm)} and the landmarks of the reference
shape {y1, . . . ,ym}. This is represented mathematically by
the following equation:

(A, t) = argmin
A,t

m

∑
i=1
‖Φ(xi)− yi‖2

= argmin
A,t

m

∑
i=1
‖A(xi)+ t− yi‖2

(2)

The details to solve the equation and its the minimum solu-
tion are detailed in [39].

ii) Registration
With the aligned dataset, a point set to image registration is
performed to find the spatial transform u, that maps points
from one surface ΓR (the reference surface mesh) to homolo-
gous points on the vertebra of the second image IT (the target
image) from a space of deformation, F . Mathematically, it
is defined as the optimization problem:

u = argmin
u∈F

D [ΓR, IT ,u]+ηR[u] (3)

where D represents a similarity measure and R a regular-
izer.

The method for doing this and used in this article is
based on [36] where the non-rigid registration is formulated
as a model-fitting problem using a Gaussian Process prior
that models smooth deformations of the reference vertebra.
The model is fitted to the target shape, to obtain a represen-
tation of the target shape, which is in correspondence with
the reference vertebra.
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A Gaussian Process is a probability distribution over func-

tion y(x) such as the vector y of y(x), evaluated at an arbi-

trary finite set of points x1, . . . ,xn, is Gaussian distributed

[40]. A Gaussian Process y ∼ GP(μ,∑) is then defined by

its mean μ = E[y(x)] the reference shape in our case, and its

covariance (also called kernel) at any two values ∑(xn,xm)=
E[y(xn)y(xm)]. A low-rank approximation using the Nys-

tröm method is performed on the covariance to make the

method computationally feasible and approximate a para-

metric model so that each deformation can be written as

u(x) = M[α1, . . . ,αn] = μ(x)+
n

∑
i=1

αiλiφi(x) (4)

with αi as the deformation parameters, λi as the eigenvalues

and φi the eigenvectors of the approximation. The covari-

ance function or kernel, defines the process behavior and

can be arbitrarily chosen. A multi-scale Gaussian kernel kmg
is used here and is defined as kmg(x,x′) = ∑αi exp(||x −
x′/σ2

i ||2) where α is a scale factor. This kernel is utilized

to enforce smoothness and also a flexible representation of

the vertebra.

Another important addition is the introduction of land-

marks placed by a knowledgeable expert in anatomy (radiol-

ogist, surgeon). Indeed, [34] described a method to use land-

marks as additional information by integrating them into the

deformation prior.

The deformation of the Gaussian Shape Model is con-

strained by the landmark points, which remain fixed. Fig. 6

shows the first main variation of the Gaussian Shape Model

constrained with the landmarks of the input vertebra.

This constrained shape model is fitted to the distance

Fig. 6 A Constrained Shape Model of the vertebra with 7

landmark points fixed

map (Danielson distance Map in [41]) of the input verte-

bra label map instead of the label map itself to reduce com-

putational overhead. The advantage of introducing geomet-

ric constraints in a shape model is to allow space reduction

search in fitting which leads to a more robust registration.

Using that the deformation u can be expressed as Equation 4

and introducing the regularization term R[u] = ∑n
i=1 α2

i /λ 2
i

we can formulate the general registration problem (Equa-

tion 3) as

u∗ = argmin
α1,...,αn

∑
x j∈ΓR

D(x j+M[α1, . . . ,αn](x j))
2+η

n

∑
i=1

α2
i /λ 2

i .

(5)

Here, D denotes the distance map that was computed from

the input labelmap. Equation 5 is a parametric optimization

problem and can be optimizated using a standard optimiza-

tion approach. We use an LBFGS optimizer, as implemented

in ITK [42] and a Mean Square Metric. A summary of the

registration steps is presented in Fig. 7.

Input Vertebra 
to register 

Reference 
Vertebra 

Label Maps Landmarks Landmarks Surface Mesh 

Distance Map Gaussian Shape Model 

Registered Surface Mesh 
of the input vertebra 

Constrained Model 

Model-Fitting 

Fig. 7 Flow diagram of the registration method

Model Building
The construction of the Statistical Shape Model is based on

a Principal Component Analysis (PCA), which allows the

main shape variations to be found. Each surface is repre-

sented as a vector and is in correspondence thanks to the

registration method. The mean vector ṽ and covariance ma-

trix S are calculated by:

ṽ =
1

n

n

∑
i=1

vi (6)

S =
1

n−1

n

∑
i=1

(vi − ṽ)(vi − ṽ)T (7)

in which n indicates the number of datasets.

The covariance matrix S can be decomposed as S =UD2UT

using a Singular Value Decomposition. The columns ui of

the matrix U are the eigenvectors of the covariance matrix

S, commonly named the principal components of the model,
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and define the main modes of variation of the dataset. The
diagonal matrix D is composed of the corresponding eigen-
values λi of the eigenvectors, which describe the variance
of the model represented by the following principal compo-
nent. The matrix of the eigenvalues D is sorted so that the
first value represents the maximal variance associated with
the eigenvector u1. In this way, the SSM v can be character-
ized:

v = v(α1, . . . ,αm) = ṽ+
m

∑
i=1

αiλiui (8)

A new and unique shape is then defined by a vector α =
(α1, . . . ,αm), m is the number of principal components that
model the possible model. The assumption that the vector
α is distributed according to a normal distribution N (0, Im)
leads to the fact that the input objects follow a probability
distribution N (ṽ,S).

Evaluations
Compactness (ability to use a minimal set of parameters),
generalization (ability to describe instances outside of the
training set) and specificity (ability to represent only valid
instances of the object) were used to evaluate the resulting
SSM as well generating a surface mesh from a CT scan us-
ing the SSM. The open source toolkit Statismo [43] is used
to perform registration and model building.

i) Compactness
The cumulative variance captured following the number of
principal components is calculated. It allows model com-
pactness to be studied that means that the variability of the
model must be described using as few modes (or compo-
nents) as possible. It is calculated as the cumulative variance

C(M) =
M

∑
i=1

λi (9)

where λi is the ith eigenvalue. C(M) is measured as a func-
tion of the number of principal components M. The standard
error of C(M) is determined from the number of datasets n:

σC(M) =
M

∑
i=1

√
2/nλi (10)

ii) Leave-one-out experiment
To evaluate the generalized ability of the SSM to represent a
new instance of an object (i.e. a new C2 shape) not present in
the training data, a leave-one-out experiment is performed.

A model is created using the reference surface mesh gen-
erated in the method section and all of the training samples
except one (the test sample). Then the left-out sample is re-
constructed using the generated model. To evaluate the error
between the test sample and the resulting shape, the Root
Mean Square (rms) distance is calculated between the two

shapes. The experiment is repeated leaving out one training
sample each time and an average the distance error calcu-
lated. Mathematically, the generalization ability G(M) and
its standard error σG(M) are defined as

G(M) =
1
n

n

∑
i=1

Di(M) (11)

σG(M) =
σ√

(n−1)
(12)

where Di(M) is the rms Distance between the two shapes,
n the number of samples and σ the standard deviation of
G(M).

iii) Specificity
A specific model should only generate instances of the ob-
ject class that are similar to those in the training set. For this,
a population of instances is generated using the SSM and are
compared to the data of the training set. The specificity S(M)
and its standard error σS(M) are then measured using

S(M) =
1
N

N

∑
j=1

D j(M) (13)

σS(M) =
σ√

(N−1)
(14)

with N the number of samples (N = 100 in our study), D j(M)
the distance between the shape generated by the SSM (in the
range of parameters [−3λ ,+3λ ]) and the nearest shape of
the training set, and σ the standard error of S(M).

iiii) Using our SSM for the generation of a surface mesh
from a CT scan: semi-automatic segmentation
The main application of the SSM that we built above is gen-
erating the surface mesh vertebra from the input CT scan
allowing, for example, screw placement surgery planning.
For this, the method described in the registration part is used
with a few adjustments. Automatic threshold segmentation
is performed on the input CT scan to obtain a label map.
The SSM, is then constrained by the landmarks, instead of
the Gaussian Shape Model. The main steps are presented in
Fig. 8.

Slicer Module (SSM Viewer)
A new Slicer module, SSM Viewer was specifically devel-
oped to display the created Statistical Shape Model. This
module can be downloaded into the latest version of Slicer
and installed as an extension.

Thanks to the SSM Viewer module, the main variations
in any type of bone can be visualized, in our case, the C2.
Fig. 9 presents the layout of the module. By varying the slid-
ers of the principal components and the standard deviation,
all shape populations are displayed as a surface mesh, and
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Fig. 9 The Slicer module SSM Viewer to visualize the main shape variations of the model

7 Landmarks 
 placement 

C2 SSM 

New CT scan 

Threshold Segmentation 

Surface shape 
model 

Constrained Model Model-Fitting 

Unique User 
 Interaction Step 

7 Landmarks 

Fig. 8 Flow diagram for generation of a surface shape model

from an input CT scan: semi-automatic segmentation

further by converting the surface as a volume in the axial,

coronal and sagittal views. The eigen spectrum also appears

that enables the number of datasets to be confirmed; very

useful for SSM building.

3 Results and Discussion

Compactness

i) Shape modes
Fig. 10 shows the mean and the first two modes of the Prin-

cipal Component Analysis. In the first row, the mode cor-

responding to the largest eigenvalue is varied between −3σ
and +3σ , in the second row the same is done for the second

mode. The result shows the large variability found in the C2

and that the size of the bone is mainly captured in the first

modes.

Fig. 10 The first two modes of variation in the linear Sta-

tistical Shape Model of the vertebra showing the mean plus

and minus three standard deviation

ii) Eigen Spectrum
The cumulative variance captured following the number of

principal components is shown in Fig. 11.

The first 20 modes captured 88.5% of the cumulative
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variation among the ensemble of the C2. Specifically, mode
1 captured 27.1%, mode 2, 14.2%, mode 3, 10.4%, and mode
4, 5.7% of the variation.

0 20 40 60 80 100

1

2

3

4

·105

M

C
(M

)

Compactness C(M)

Fig. 11 Captured variance according to the number of prin-
cipal components

Leave-one-out experiment
The result of the generalization ability G(M) is presented in
Fig. 12.

For the first mode of variation, the reconstruction error
is 0.93 mm with a confidence interval of 0.02 while above
mode 60, the error converges on 0.33 mm. The results ob-
tained with our method are better than those presented in
[31]. Indeed, for mode 14, the error is 0.63 mm with a con-
fidence interval of 1.3 mm while with our algorithm it is
0.59 mm with 0.01 mm of standard error. Moreover, in [32],
for L2 vertebra, four methods are compared and generaliza-
tion with rms distance converges with values above 0.7mm
which is larger than the values obtained here.

Specificity
The result for the specificity is shown in Fig. 13. Our model
shows better specificity than the models presented in [32].
Indeed, for mode 10, our specificity is about 0.8 instead of
more than 1.2 for others.

Generation of a surface mesh from a CT scan
C2 Surface mesh generation was tested on 31 CT scans from
anonymous patients. Using the 3D Slicer software [20] (man-
ual segmentation)), generation of a representative surface
mesh takes about 1 hour. In contrast, using our SSM method,

0 20 40 60 80

0.4

0.6

0.8

1

M

G
(M

)

Generalization Ability G(M)

Fig. 12 Leave-one-out experiment following the number of
principal components

0 5 10 15 20
0.6

0.65

0.7

0.75

0.8

0.85

M

S(
M
)

Specificity S(M)

Fig. 13 Specificity following the number of principal com-
ponent

an average of two minutes is required from landmark place-
ment on the CT scans to surface mesh generation. The Eu-
clidean distance from the manually generated surface shape
and that obtained using our segmentation algorithm gives
a mean distance error of 0.90± 0.12mm. The shape differ-
ences between the manual and SSM-generated surface mesh
are mainly located in the inferior articular facet of the verte-
bra (see Fig. 14), a zone where the distinction between two
vertebras is difficult to identify even directly viewing the CT
scan.

We compared our method to the methods used in [30]
and [29] which also use Statistical Models for vertebra seg-
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Fig. 14 Euclidean Distance between the manual and gener-

ated surface mesh vertebra

mentation. Table 1 presents the results for the mean and the

standard deviation of the distance error between the ground

truth mesh (manual segmentation) and the generated mesh,

and also the computation time of the C2 vertebra algorithm.

Table 1 Comparison with different methods

[29] [30] Our method

Mean (mm) 1.4 0.81 0.9

Standard Deviation (mm) 0.4 0.97 0.12

Segmentation Time 2min 3min 30s

Our method has a slightly higher mean error than [30]

but is better than [29]. Moreover compared to both, the stan-

dard deviation is lower with our method. Our SSM based

segmentation is clearly faster than the other two methods

(30s versus 2 and 3 min), not considering landmark place-

ment by the user. If we take into account landmark place-

ment; segmentation takes 2 min, comparable to the other

techniques, which are entirely automatic (no landmarks).

While we loose a bit of speed and the automatic of the algo-

rithm we gain in precision of the segmentation of the C2.

4 Conclusion

A Statistical Shape Model of the second cervical vertebra

was generated from CT scans of patients with normal C2

vertebrae and clearly illustrates its anatomical variability.

One of the major challenges was to find point-to-point cor-

respondence between the reference surface mesh vertebra

and the input data vertebrae represented as Label Maps. This

was resolved using a "Procrustes Alignment" on the manu-

ally defined landmarks to align the Label Maps and registra-

tion is treated as a model-fitting problem. In generating the

SSM a Gaussian Process method is used for registration and

the incorporation of additional prior information by defin-

ing landmarks to constrain the Gaussian Shape Model. The

novelty of this method is a multi-scale Gaussian kernel for

the Gaussian Process that replaces the usual simple Gaus-

sian kernel and is utilized to enforce smoothness as well as a

flexible representation of the vertebra; necessary for its high

variability.

Compared to state-of-the art methods for SSM building

this registration method presents an improvement in results

for a complex and variable bone like C2. The compactness

analysis with the eigen spectrum shows that this registration

method allows compact SSM to be obtained. Similarly, gen-

eralization demonstrates that the SSM can represent a new

unknown vertebra shape and outperform the results obtained

with other SSMs. The specificity analysis presented better

results, which is important to represent only valid instances

of the vertebra.

The SSM robustness in segmentation could be improved

by focusing the landmarks to the region of interest depend-

ing on the problem: the isthmus for screw placement for

example. Fitting can also be enforced in particular zones

such as the inferior articular facet, to get closer to the man-

ually segmented vertebra. However these first results show

clear improvements compared to previous methods due to

incorporation of prior information though user interaction is

needed.

In conclusion, SSMs are invaluable tools for rapid and

precise surface merge algorithms for 3D model generation,

diagnosis (scoliosis, trauma modeling of broken vertebrae

elements) and robotic surgeries.

Notably, using the C2 SSM described here, the surgeon

will obtain the 3D model of the vertebra almost instanta-

neously after the patient CT scan, enabling rapid planning or

adaptation of planning for spine surgery. This process will

facilitate image guidance surgical techniques for complex

C2 instrumentation for segmental vertebral instability due to

trauma, destructive tumors or inflammatory processes. Ad-

ditionally our SSM may be extended for use in a wide range

of bone or organ surgeries.
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