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Introduction

In many countries health costs continue to grow faster than national income
and sustaining the access to health care and financing at its current level is
becoming more challenging to meet growing populations and increasing life
expectancy. The rise in chronic diseases and complex medical conditions as-
sociated with a rapidly aging population will increase the need for medical
specialists, medication and monitoring, and as such, the healthcare industry
has become a fast-growing sector. Medical diagnostic tools and the trend to-
wards personalized medicine demand for cheap sensing devices, which offer
real-time and parallel detection of various species. For screening and de-
velopment of new drugs, as well as environmental monitoring and quality
control, rapid and portable systems are in demand. There is a strong de-
mand for multiplexed transducers that transform a multiplicity of chemical
reactions into electrical signals, which is essential for the cheap detection or
monitoring of various analytes.

Advances in biotechnology, microfluidics and micro- and nanotechnology
have led to tremendous progress in the advancement of micro analytical sys-
tems; however the development of reliable and flexible sensing systems at
reasonable cost remains a challenging task. State-of-the-art methods that
require labelling are expensive and time-consuming and may possibly inter-
fere with the targeted chemical reactions. Label-free techniques are there-
fore preferable. Optical systems such as surface plasmon resonance (SPR)
have proven their potential to detect specific analytes at extremely low con-
centrations. However, these systems are difficult to integrate at large-scale
and are not ideal for multiplexed sensing, which is important when consid-
ering nature’s variety of genes and proteins.

Field-effect transistors (FETs) made from semiconducting nanowires (NWs)
have great potential as electronic biochemical sensors if they can be inte-
grated as an array in a CMOS-compatible architecture together with mi-
crofluidic channels and interfacing electronics. Such nanoscale electronic
transducers based on ion-sensitive field-effect transistors could be mass fab-
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ricated at reasonable costs. This, in combination with their small size, makes
them ideal for personalized medicine and for future implanted sensing de-
vices. During the past decade the principle of the ion-sensitive field-effect
transistor (ISFET), proposed in the 1970s by Bergveld et al.1' experienced a
revival at the nanoscale. A huge variety of possible sensor applications such
as pH sensing?#, chemical®1% and label-free biosensing?11712 has been
demonstrated by using silicon nanowire field-effect transistors (SINWFETs).
Further, kinetic studies on receptor binding'1% and even intracellular record-
ing of action potentials'Z have been realized by downscaling the devices.

The sensing principle is based on adsorption of charged species on the
sensor surface, leading to a change in surface potential and subsequently
a change in current in the FET channel. Thereby, the high-impedance in-
put signal is transformed into a low-impedance output signal, which is an
advantage against classic ion-selective electrodes. The potential for down-
scaling and integration for the simultaneous detection of multiple parame-
ters make SINWFETs a promising platform to meet the demand for cheap,
multifunctional and scalable sensors. This has been demonstrated by the re-
cent commercial success of the Ion Torrent technology'!® for semiconductor
genome sequencing, which allows for the simultaneous detection of inde-
pendent sequencing reactions by measuring local pH changes in millions
of reaction wells. Apart from silicon as basic material, the ISFET concept
has also been applied to carbon nanotubes:?*23/and graphene devices 2422
for pH, ion and protein sensing. Despite their drawback in terms of repro-
ducibility, carbon based ISFETs have interesting properties since no gate ox-
ide is needed for the operation in electrolyte solutions.

Even though many promising results on chemical and biochemical sens-
ing have been achieved so far, a detailed understanding of the electrolyte
surface interaction is still missing. Inconsistent outcomes regarding the ef-
fect of electrolyte concentrations and electrical noise, suggest that further
quantitative studies are needed. The aspect of the size compatibility be-
tween the sensor unit and the analyte species is often emphasized to favor
nanoscale FETs. Another aspect, often mentioned, is the surface to volume
ratio. Hence smaller sensing units should enhance the sensitivity of the
sensor=!, allowing the detection at ultra-low concentrations"213 or a small
number of molecules®L. Furthermore, the capacitances decrease for smaller
sensing units, which could lead to faster response times. However, other as-
pects such as the intrinsic electronic noise, the analyte diffusion time and
surface reaction kinetics have to be considered for the development of an
applicable sensor.



This thesis was part of a research project aimed at developing a modular,
scalable and integrateable sensor platform for the electronic detection of an-
alytes in solution. Different research groups and scientists have contributed
to the results presented here. For the comprehensive scientific findings
within the project the reader is referred to the cited literature.

The aim of this work was to establish a versatile sensing platform based on
silicon nanowirﬂ arrays. The main focus lies on the sensor-solution inter-
face and thus the thesis quantitatively compares the experimental data with
analytical models. Chapter 1 gives an introduction to the ISFET theory and
discusses the limits of this sensing principle. In Chapter 2, we will present
the sample production and the measurement methods. The electrical char-
acterization of the FETs and the performance of the gate dielectric in differ-
ent electrolyte solutions is given in chapter 3. The realization of a sodium
ion selective system is presented in chapter 4. In Chapter 5, an ISFET-based
biosensor (BioFET) for the detection of a pharmacologically relevant protein
is demonstrated. Additional experiments for potassium ion sensing are pre-
sented in Chapter 6.

I During the project different sensor designs have been established. Although the FET sizes even-
tually exceed the nanoscale, the original terminology of silicon nanowire is kept throughout
this thesis.
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Theoretical Background

The basic concept of the nanowire sensor, the Ion-Sensitive Field-Effect Tran-
sistor (ISFET) was already introduced in the 1970s. In the last forty years
an advanced insight into the field was gained by a large research commu-
nity. However the practical applications stayed behind. Although ISFETS
are used from pH metering up to human genome sequencinglm, so far the
basic mechanism of commercial applications does not exceed proton sens-
ing. This chapter gives an introduction to the fundamentals of ISFETs and
their theoretical limitations.

1.1 ISFET Theory

The ion-sensitive FET is based on a metal oxide semiconductor FET. Thereby
the gate metal is replaced by the solution carrying the analyte species. The
electrical potential of the solution affects the output of the ISFET and hence
needs to be well controlled. This section explains the basics of an ISFET in-
cluding the field-effect transistor as transducer element and the interactions
at the solid-liquid interface.

1.1.1 The Field-Effect Transistor

A Field-Effect Transistor (FET) is a three terminal semiconductor device. The
resistance between the source and the drain contacts is controlled by the
voltage applied to the gate contact (transfer resistor). The theoretical prin-
ciple of such a device was patented in 1925 by Julius E. Lilienfeld. The first
working transistor device was presented in 1947 by William B. Schockley,
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Walter H. Brattain and John Bardeen at Bell Labs, for which they got the No-
bel price in 19563, Ever since the transistor has become the most important
element in electronics. An enormous development, predicted by Gordon E.
Moore, doubled the transistor density on integrated circuits every two years
over the last decades. Current microprocessors have a density close to 9 mil-
lion transistors per mm?234,

The most commonly used type of transistor is the metal oxide semicon-
ductor field-effect transistor (MOSFET). Here we will present the very basics
of silicon on insulator (SOI) MOSFETs, where the semiconducting channel
is separated from the bulk substrate. For a more detailed description the
reader is refereed to standard literature, e.g.3>3Z. The primary material
used in semiconductor industry is silicon. Intrinsic silicon has a band gap
of 1.12eV, with the Fermi level in the middle of the bands. At tempera-
tures above absolute zero electrons are excited across the band gap into the
conduction band and form a hole in the valence band, thus the number of
electrons n and holes p is equal. This results in a charge carrier density of
1.5-10'%cm™3 at room temperature®9. To increase the number of charge
carriers in silicon doping atoms are implanted. The substitution of silicon
atoms with boron ions creates free holes, where phosphorus ions add addi-
tional free electrons. According to the type of doping the Fermi level shifts
towards the valence or conduction band.

The operating mechanism of a low-doped p-type SOI MOSFET is shown
in Fig. The semiconducting channel is separated from the metal gate
by an insulating oxide layer. The difference in the work functions of the
semiconductor (®,) and the metal (®,,) leads to a band bending in the semi-
conductor. By applying a compensating bias (flatband voltage, V¢) the band
bending can be removed (flat band condition in Fig. [L.Ta).

Depletion If a positive voltage is applied to the metal with respect to the
semiconductor, the bands bend downwards as shown in Fig. [[.I]b. The
Fermi level in the metal gate is lowered by a certain gate voltage V, with
respect to the semiconductor, causing the valence band to move away from
the semiconductor Fermi level. As a result the hole density near the interface
falls below the bulk value in the p-type semiconductor and the conductance
decreases.

Hole accumulation If a negative gate voltage is applied, the nega-
tive charge on the metal accumulates an equal positive charge at the
semiconductor-oxide interface. The bands bend upwards as shown in Fig.
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[TT]c. The valence band comes closer to the Fermi level, causing an accumu-
lation of holes at the interface and an increased p-type conductivity.

Fig. [[.1]d and e show the schematic cross section of a low-doped p-type
SOI MOSFET with highly p-doped source and drain contacts. The inversion
regime is not addressed here, since electron dominated current is suppressed
by the p-type contacts (p-n diode). The high doping is needed for low contact
resistance.

In addition to the metal gate which is isolated from the semiconductor, we
have highly doped ohmic source and drain contacts. If a bias is applied be-
tween the source and drain, a current will flow in the channel. This current
is determined by the concentration of charge carriers in the channel which
is controlled by the gate voltage. The conductance G is given by the chan-
nel dimensions (width W, thickness t and length L) and the conductivity o,
which depends on the number of charge carriers p and their mobility .

G:a#, o =pepu (1.1)
With e being the elementary charge. The charge per volume p -e = (C5../t) -
AVy is given by the oxide capacitance per area CE., the channel thickness
t and the gate voltage V,. Additionally the difference in workfunction @y
between the metal gate and semiconductor as well as fixed charges in the
oxide Q, have to be taken into account. The compensating flatband voltage
is calculated as follows.

Vi =Dy — %, with @5 = O, — Dg (1.2)
Cox
If the transistor is in accumulation, the source-drain current I;; through the
channel is described by

w
Lsa :VCExT(Vg_Vfb)Vsd (1.3)

with Vg4 being the source-drain voltage. This is referred to the linear regime
and only holds for Vg << Vg — Vf},. At higher V; the channel can pinch off
at the source or drain contacts and the current saturates.

However, the process of charge accumulation is not sudden. Below the
so-called threshold voltage Vy, (in accumulation Vi, = Vyy,) a small source-
drain current can flow due to thermal activation of charge carriers. The num-
ber of charge carriers N, is given by the Boltzmann statistics

—z'Vg

Ny =Nj-e®T (1.4)
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gate p-semiconductor gate p-semiconductor
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metal

Si handle wafer Si handle wafer

Figure 1.1: MOSFET model: (a) Bandstructure of a low-doped p-type MOSFET in
flatband condition. Ef is the Fermi energy of the semiconductor, where Ey and Ec
denote the valence and conductance band. q®; is the workfunction of the semicon-
ductor. Efy, is the metal gate Fermi energy, Vrp the flatband voltage and q®,, is
the metal workfunction (b) At positive gate voltage Vg the bands bend downwards
and the MOSFET is in depletion. (c) If a negative gate voltage is applied, the bands
bend upwards and holes accumulate close to the gate oxide. The MOSFET is in ac-
cumulation. (d) Sketch of a SOl MOSFET cross section in depletion mode. The buried
oxide separates the handle wafer from the p-type channel. Highly doped (p*) contact
regions represent the source and drain contacts. The gate oxide separates the semi-
conducting channel from the metal gate electrode. (e) At negative Vg the transistor
is in accumulation and a current flows.
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where Nj is the intrinsic carrier concentration, k; the Boltzmann constant
and T the temperature. Thus the subthreshold current is exponentially de-
pendent on the gate voltage. The exponential function appears as a straight
line on a semi-log scale (Fig. [[.2). The reciprocal slope of this line defines
the subthreshold swing S

av, k, T
g b
S=+——"—=-In(10)—-n 1.5
Aogiola) "7 .
The subthreshold slope factor n of a uniformly doped device can be calcu-
lated using expressions for the gate oxide and depletion capacitances Cy
and Cj, respectively.

n=14 S0 (1.6)
COX
Since # is always larger than 1, the minimum swing is limited by tempera-
ture and is —-59mV/dec at room temperature (24,5°C) 38| A small subthresh-
old swing is highly desired since it improves the ratio between the on- and
off-currents.

Equations and show that a high C,, is advantageous for a high
current variation for a given change in gate voltage.

The theory presented here only holds for normally-off MOSFET devices
operated in accumulation or inversion-mode. The physics changes for heav-
ily doped junctionless transistors, where the doping concentration in the
channel is identical to that in the source and drain contacts. Such normally-
on MOSFETs are interesting for short channel devices due to the lack of junc-
tions and doping concentration gradients=243%,

1.1.2 Electrolyte Dielectric Interface

Replacing the metal gate with a conductive liquid changes the difference in
workfunction ®,,; and thereby affects the threshold voltage. Because the
liquid potential is controlled via a gate electrode, additional potential drops
between gate electrode and gate dielectric need to be included.

If a reference electrode (which will be described later) is used to control
the potential in the liquid, the difference in liquid gate voltage AV}, is a
direct measure of the change in surface potential AW,. However, for a metal
electrode the electrochemical potential of the electrolyte solution has to be
considered.
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Figure 1.2: Transfer curve for a p-type transistor in accumulation. Source-drain
current Iz on a linear and log scale as a function of gate voltage Vg. The dashed line
in the subthreshold regime denotes the subthreshold slope. It’s reciprocal value is
the subthreshold swing S. The dashed line in the linear regime denotes the transcon-
ductance g;,,. In saturation the resistance of the contacts start to dominate and the

current saturates.

potential ¥

gate electrode

_Clulslielbyar |

double layer
silicon

I

silicon

Distance from gate™

Figu re 1.3: Potential distribution in an ISFET. The potential applied to the gate elec-
trode ‘I’g drops over the double layers at the gate electrode and the sensor surface.
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Electrochemical Potential Similar to the Fermi energy Er in semiconduc-
tors, the chemical potential y; is a form of potential energy for a certain
species i. It can be defined as the slope of the free energy of a system with
respect to a change in the number of moles species i.

. 9G
Fl_ani

Temperature, pressure and the amount of other species than i are kept con-
stant. Here G is the Gibbs free energy, given by U +pV — TS (where U is the
internal energy, p is the pressure V is the volume, and S is the entropy).

The energy of an ion in a given medium depends not only on chemical
forces but also on the electrostatic field. The electrostatic potential energy
per mole is given by z; FW, where z; is the charge of ion i, F the Faraday con-
stant and W is the electrostatic potential of the phase. The electrochemical
potential can be written as the sum of chemical and electrostatic potential:

(1.7)

#i=pi +z;F¥ (1.8)

An interface between two conductors is in equilibrium if the electrochem-
ical potentials in the two phases are the same. Depending on the nature
of the two phases (difference in chemical potentials) an electrical potential
establishes at equilibrium.

_Api

AV =
z;F

(1.9)

This potential difference is called the Galvani potential®Y. Figure shows
how the presence of an electrolyte changes the potential distribution. For
Vi, of an ISFET, the contributions from gate electrode to electrolyte (A'Y,
and electrolyte to gate oxide (AW,) need to be considered}42. Equation|1.2
for the flatband voltage needs to be modified accordingly43:

QOX
COX

Vip = D = AWy — AW, — ! — - (1.10)
where @, is given by the gate electrode workfunction and x%°! is the surface
dipole potential of the solvent, which has a constant value. If a true reference
electrode is used, ®,; and AY,; are constant and AW is the only variable in
eq[T.10} As we will see in the following AW, depends on the surface reactions
and is the measurand for analyte binding.
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Reference electrode

Reference electrodes are essential components of potentiometric systems.
From eq[I.10]and Fig[T.3]we see that the potential drop from reference elec-
trode to electrolyte (AW,;) must remain defined and stable. The potential
of the standard hydrogen electrode (SHE) was defined as origin of the elec-
trochemical potential and is (conventionally) regarded as zero**. However,
the SHEs are not used as a reference electrode in practice due to their com-
plicated handling (hydrogen gas flow). Reference electrodes of second kind
such as Ag/AgCl or Hg/Hg,Cl, (calomel) electrodes are more convenient to
use. Their potential is well defined in relation to the SHE and stable for a
large range of electrolytes. The main components of a reference electrode are
the metal electrode, reference solution and a junction that provides electrical
connection between the electrolyte and reference solution. For the Ag/AgCl
reference electrode a AgCl coated silver wire is immersed in a saturated KCI
reference solution. The reactions in the reference cell are given by

Agt+e” = Ag(s)

1.11
AgCl(s) = Agt +CI~ (L.11)

where (s) denotes solid. The overall reaction can be written as:
AgCl(s)+e” = Ag(s)+CI™ (1.12)

This reaction works at very high efficiency due to fast electrode kinetics,
meaning a sufficiently high current can be passed through the electrode. The
potential drop AW,; between the metal and reference solution is given by the
Boltzmann distribution.

eAVY,
acl(s) = 4aci- eXP(— kad) (1.13)
2.3k, T
with acy(s) = constant: AW, = b logio(aci-) (1.14)

Thus the electrode potential only depends on the activity of Cl~ ions in the
reference solution. Usually a saturated KCl solution is used to keep the con-
centration of Cl~ and hence the potential drop constant. The need for the
reference solution is the substantial drawback of reference electrodes. It
makes them fragile and hard to miniaturize. Although many attempts have
been made to scale down or develop solid state reference electrodes 44'46, its
implementation remains one of the large drawbacks of micro- and nanoscale
ISFET sensors.
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Electric Double Layer at Interfaces When a surface is in contact with an
electrolyte, an electric double layer (EDL) with a characteristic potential dis-
tribution is formed at the interphase. Charges at the surface attract counter
ions in the solution. Due to their finite size, a single layer of ions cannot
sufficiently screen the surface charges. Hence a diffuse layer of counter-ions
near the surface screens the exceeding charges, which leads to a certain po-
tential profile. The Gouy-Chapman-Stern model is most commonly used to
describe the potential and charge distribution in EDLs#3. It describes the
EDL as a series of layers as shown in Fig. Due to the size of the ions
and the solvent molecules of the solvation shell, an electrically neutral layer
called Stern or Helmholtz layer is located closest to the surface. The outer
Helmholtz plane (OHP) is defined at the center of the counter ions, where
the diffuse layer (Gouy-Chapman layer) starts. The charge in the diffuse
layer is:

. [eYomp
adif:_m.smh( S )= ~Cat=-o0 (119

where € denotes the relative permittivity and eq is the permittivity of vac-
uum. Due to charge neutrality, it is equal to the surface charge oy. Here
Wogp is the charge at the outer Helmholtz plane, ¢ is the ion concentration
in the electrolyte, \ is the surface potential drop (= AY¥;) and Cy; is the dou-
ble layer capacitance. Cy; = CstCyif/(Cst + Cygjf) consists out of a series of
capacitances, the constant Stern layer capacitance (Cs; = 0.2F/m?) and the
diffuse capacitance Cgj¢. Cg;f is mainly determined by the ionic strength of
the electrolyte, since the characteristic length of the diffuse layer, is given by
the Debye length4Z:

eeogky T . 1 2
e with I =+ Y ¢z 1.16
D=\ aNyezr, W e T 2 L (1.16)

where N4 is the Avogadro constant, I, the ionic strength, c; the ion concen-
tration in mole per liter and z; the charge number of the ion. Fig. [[.4]c shows
the calculated Debye length and Cj; at different electrolyte concentrations.

1.1.3 pH Sensing

pH sensing is the most important application for ISFETs. The gate oxide
surfaces are intrinsically sensitive to protons. They display surface hydroxyl
groups at a very high density. In contact with aqueous solutions the hydroxyl
groups undergo protonation and deprotonation and thereby building up a
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Figure 1.4: (a) Scheme of the electric double layer at the gate oxide surface ac-
cording to the Gouy-Chapman-Stern model. Here the surface is slightly negative
charged. cations (K*) surrounded by a solvation shell of water molecules are at-
tracted to the surface (Stern layer). At the outer Helmholtz plane (OHP) the diffuse
layer starts and extends to the Debye length. The black line indicates the potential
distribution at the interface. (b) Charge distribution at the oxide/electrolyte inter-
face (adapted from ref. 43‘). (c) Calculated Debye length (black lines) and double layer
capacitance per area (C,;/A, grey lines) vs. electrolyte concentration. Cy;/A is cal-
culated as a series of Stern capacitance (Cg = O.2F/m2) and diffuse capacitance
. ) 148149
(Cdlf)'

surface charge o;. The site-binding model derived by Bousse, de Rooij and
Bergveld4® provides a relationship between the surface potential Wy and the
pH value of the bulk solution.

surface [H'];"  Bulk [H'],

-0 Figure 1.5: Scheme of
—on; surface protonation and
§. ,OH/ deprotonation. The sur-
2 Efo face pH is buffered by the
g " —ony surface hydroxyl groups.
—on Hence, a change in bulk

pH changes the surface
charge which leads to a
potential gradient at the
interphase.

The surface reactions at the amphoteric OH surface groups of a metal (Me)
can be expressed by the equilibrium constants for deprotonation K, and pro-
tonation Kj:
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VYMeO- " A+
MeOH = MeO™ + H K, = —<2 Hs (1.17)
YMeOH
. . YMeOH " Afg¢
MeOH; = MeOH + Hf K, = ———— 1< (1.18)
YMeOH;

with v being the number of sites of a particular species and ay+ the activity
of the surface protons. The surface can either be neutral (MeOH), positively
charged (MeOHY), or negatively charged (MeO~).
The total number of these surface sites is
Ns = YMeOH +VMeO- + VMeOH; (1.19)

The total surface charge is generated by the protonated and deprotonated
sites

o = e(VMeOH; - VMeo—) (1.20)

At the point of zero charge (PZC) oy = 0. This situation occurs if pH =

(pK, + pKyp)/2. Equation can be rewritten using eq. and

afy — KKy

(1.21)

00 = eNj 5
[LZHS +apg Ky + KKy

As we have seen in fig[T.4]the surface charge oy is screened by the ions in the
double layer. The surface potential ¥ is given by the double layer capaci-
tance Cyj

09 =Ca1\¥ (1.22)

The relationship of surface proton activity (ag+) with bulk proton activity
(ag,) can be described by the Boltzmann distribution:

Y e\
agr :aH;exp(—kb—;,) or pHg=pHy+ 2.3k2T (1.23)

with pH = -logo(ag+) and pH, being surface pH and pHj, being bulk pH.
Maximum pH response is given if the surface is able to keep pH; constant.
This is the so called Nernst limit of AWy/ApH}, = 59mV/pH at room temper-
ature. However, this is only possible if an unlimited number of hydroxyl
groups can be protonated or deprotonated. In a real system AWy/ApH,
strongly depends on N, K,; and K as we will see in the following
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Discussion of the site-binding model Equatlons 17|to|1.23[can be used
to provide the relation between ¥, o9 and ap; 48]

Y
agy = VK Ky exp(ek—o) X (1.24)
2 2
Cal [Ky 11 K K,
EEIR \/1+ 719 o} ?) (1—(7— KT,)
e Cai
_WTS

where the surface buffer capacitance C; is related to the number of sites
Nj via

C, = e2Ns

2.3k T
In Fig. the surface potential ¥ is plotted against the pH of the
bulk solution according to eq. Here the point of zero charge PZC=
(pK,; + pKy)/2 is set to pH = 7. The double layer capacitance Cy; at a
constant ionic strength of 100mM is taken as a series connection of the
Stern layer capacitance Cy; and the diffusive layer capacitance Cg;f. Thus

Car = Caif Cst/(Cgif + Cst) ~ 0.16 F/m?, if Cgp = 0.2F/m? #4889 and Cyjf =
0.7F/m? is taken by assuming a simple parallel plate capacitor. The pH
has only a small effect on Cy; and is neglected in the following*L. The
number of reactive sites per unit area N has a significant influence on the

(1.25)

pH response (AA Apy)- In Fig. a pK, and pKj are set equally. For a large

number of surface sites (N5 > 1014%cm™2), which is the case for many ox-
ides, the surface potential decreases linearly with increasing bulk pH. These
pH responses (58.8mV/pH for 101 cm~2 and 56.9mV/pH for 104 cm~2)
are very close to the Nernst limit. Reducing N; results in a S-shaped curve
(1013 ¢m~2) with the steepest slope around the PZC. At even lower surface
group density (N5 = 1012cm™2) the curve is almost flat and pH response
vanishes. Hence, a reduction of N; by at least three orders of magnitude is
needed to suppress the pH response of a highly proton sensitive surface such
as Al,O3 and HfO,.

To emphasizes the dependence of W) on N; vertical cuts along a constant
pH value (dashed line) are plotted in the inset. No potential shift due to
a change in pH is seen for Ny < 1012cm?. At higher N, the pH response
increases and saturates at the Nernst limit.
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Figure 1.6: Theoretical curves of the surface potential ¥ as a function of pH ac-
cording to the site-binding model. pK,; and pKj are chosen such that the PCZ is at pH
7. In (a) both pK, and pKj are set to 7 and the density of surface hydroxyl groups N;
is changed. The inset shows ¥ vs. N at different pH values. In (b) ApK is set to 4. (c)
shows the influence of ApK at constant and intermediate N.
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Figurdl.6p shows the pH response for a larger ApK = 4. Assuming that
protonation is more likely to happen as deprotonation, we set pK, larger
than pKj (K; < Kp). The full Nernstian slope cannot be reached any more
and becomes non-linear already at Ny = 10'4cm™2. At the same time the
shape of the curve has changed. Around the PCZ the curve is flat and has
the steepest slope around the pK values. The transition from sigmoid (Fig.
[[.6]a) to double-sigmoid (Fig. [I.6]b) is pointed out in Fig. c. To get a
clearly non-linear behaviour Nj is kept constant at 1013 cm=2 while ApK is
changed. With increasing ApK the shape changes from sigmoid to double-
sigmoid. At the same time saturation occurs at more extreme pH values.

From equationwe see that the transition from a linear to a sigmoid
shaped pH response is given by the capacitance ratio of C;;/Cs. At high
ionic strength (> 100mM) Cy; is assumed to be constant. Therefore the ratio
strongly depends on the density of active surface groups N;. Bare oxides
like Al,O3 or HfO; have a high density of surface hydroxyl groups, hence
Cs >> Cgj. The high number of OH groups buffer changes in the bulk pH by
taking up or releasing protons, resulting in a high pH response.

1.2 Sensitivity and Limitations

Terms like sensitivity, selectivity, response, resolution, measurement range
and limit of detection (LOD) are used to characterize a sensor. However the
definition of those terms is not always clear. In this section we describe these
figures of merit according to their further use in this work.

The input of the sensor is e.g. a change in analyte concentration. The con-
sequent change in surface potential AW is described by the response, given
by AWy/Alog[c] (where c is the analyte concentration). The resolution of
AW min is limited by the gate referred voltage noise Sy g, described in
The signal to noise ratio (SNR) is the change in surface potential, given by
a certain input, divided by the random fluctuations of the surface poten-
tial SNR = AWy/AW) min. The sensitivity is the detectable relative change in
concentration Ac/c and is directly related to the SNR. The limit of detection
(LOD) is the minimum detectable change in concentration Ac at a certain
concentration.

1.2.1 Noise in ISFETs

The quality of a signal is given by the signal to noise ratio. Noise is referred
to as random and uncorrelated fluctuations of the signal over time. It is ob-
served in all conductive materials and is especially important in electronic
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sensors, as it determines the resolution of the signal. The noise spectral den-
sity S is the noise power per unit of bandwidth; that is, the power spectral
density of the noise. It’s dimension is power/frequency. In general the origin
of the noise can be external e.g. from power lines or internal. Since external
noise can be removed we will focus on the internal noise present in ISFET
sensors. Different types of independent noise sources are known2,

Thermal Noise also called Johnson-Nyquist noise is caused by thermody-
namic fluctuations of charge carriers. Resistive materials generate thermal
noise independent of the applied bias. The power spectral density of the
voltage fluctuations due to thermal noise is given by the resistance R and the
temperature:

SyN = 4kp TR (1.26)

Thermal noise is frequency independent (also called white noise) and given
in units of V2/Hz.

Shot Noise Shot noise in electronic circuits consists of random fluctuations
of the electric (DC) current which originate due to fact that current actually
consists of a flow of discrete charges. It is temperature and frequency inde-
pendent. It’s power spectral density is given by S; = 2el and is given in units
of A%/Hz. However for most electronic systems operated at room tempera-
ture the contribution of shot noise to the total noise is insignificant and is
therefore neglected in this work.

1/f Noise also called pink noise is present in all semiconductors, metals
and superconductors under bias. It is a resistance fluctuation, which is trans-
formed to voltage or current fluctuations via Ohm’s law. The noise power
spectrum is proportional to 1/f. It is the dominant noise source in transis-
tors operated at low frequencies.

The origin on 1/f noise in MOSFETs and thus in ISFETs is still under
discussion. The current is sensitive to charge traps present at the gate in-
terface in the form of contaminants, dangling bonds or vacancies. Number
fluctuation of these traps is generally believed to be the dominant 1/f noise
mechanism. In reference®? we investigated the dominant 1/f noise source
in our silicon nanowire sensors. Comparing different transistor dimensions
and gate oxide capacitances supports the trap state noise model in which the
source of 1/f noise is due to trap states residing in the gate oxide (most likely
in the interface between the semiconductor and the oxide). Hence we will
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focus on this model in the following. In the trap State Noise Model the trap-
ping and detrapping of charge carriers into trap states at the semiconductor-
oxide interface cause 1/f noise. Hence the interface quality determines the
noise. The charge fluctuations in the gate oxide are given by a power spectral
density Sg

SO, = eZNOtWL% (1.27)

where N,; is the trap state density per area, W and L denote width and
length and f the frequency. The gate referred voltage noise is then given by:

2
Sye = SQZM = & ot N"th 1 (1.28)
Csx  WLCpy

where C,/WL = C§, is the gate oxide capacitance per area. Sy is given
in units of V2/Hz and represents the theoretical noise which would have to
be applied to the gate voltage to obtain the same drain current noise in the
transistor2%. Sy directly defines the resolution of the surface potential and
thus limits the sensitivity. To reduce Sy g the quality of the semiconductor-
oxide interface needs to be improved to achieve a lower N,; and C5}, needs
to be increased.

Signal to Noise Ratio

If a certain amount of charge Q at the sensor surface is taken as a signal,
the noise from fluctuating charges in the semiconductor-oxide interface 6Q

will be given by /S, . The total charge Q is proportional to the sensor area
(WL). From eq follows that 6Q o« VWL. Hence the signal to noise ratio
is better for a larger sensor surface according to:

SNR: — Q o — oc VW (1.29)

1.2.2 Dynamic Range Sensing

According to Eq. the surface potential changes linearly upon an ex-
ponential change in analyte concentration. However, this is only valid in
a certain concentration range which is given by the density of reactive sur-
face groups and their reaction constants (as shown in Fig. [1.6). Outside
this range the response weakens and eventually saturates. To exemplify the
dependency on concentration we generated a model sensor response. Fig.
[1.7]a shows a model of an ISFET which is sensitive to a negatively charged
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analyte at a given concentration c. Increasing the analyte concentration in
the bulk solution changes the surface potential. Taking the derivative re-
veals the response AWy/Alog|c] as a function of the concentration (Fig. b).
The strongest response is in the concentration range between 1 mM and 1 M.
Since the intrinsic noise of the system is independent of the analyte con-
centration? the resolution AWy min is always the same. However, the mini-
mum detectable Ac strongly depends on the analyte concentration. Fig. [T.7]c
shows the LOD for our model system, using the gate referred noise of /Sy g
of 1-1073V/Hz/2 from®3 as AWy min, calculated according to:

LOD: Ac= —tbmin (1.30)
response(c)
The lower the concentration, the better the LOD. Here a minimum in Ac
of 0.6 uM is achieved around 1 mM analyte concentration. At even lower
concentrations the LOD increases again due to the decrease in response.
ISFETs are only able to measure relative changes in analyte concentrations.
However using calibration or differential sensing the sensor can be tuned to
measure absolute concentrations. Estimating the LOD for protons for a pH
sensitive ISFET exemplarily reveals the dynamic nature of the sensor. As an
example for an oxide surface showing a response of 50mV/pH in the range
of pH 3-10, the LOD changes from 0.2 uM at pH 3 to 20fM at pH 10.

1.2.3 Detection of Large Molecules

The potential of ISFETs to sense adsorbed molecules has increased the mo-
tivation for building a BioFET for protein sensing. Proteins are composed
of a linear sequence of amino acids. Their size is usually given by their
weight and ranges from a few kDa to a few hundred kDa. Hence, their
radius quickly exceeds a few nm. The pH level of the electrolyte solution
determines the total net charge of the protein. Each protein has a charac-
teristic pH at which the protein has no net charge, the isoelectric point (pI).
Below this value the protein is positively charged. At higher pH the protein
carries a negative charge. By specifically adsorbing the protein to the sen-
sor surface, the change in Aoy can be detected by the ISFET. However, in
electrolytes charges are screened due to the presence of solvent molecules
and counter ions (see section . At the sensor surface the characteristic
distance at which the external electrical potential decays by 1/e is given by
the Debye length (Eq. . Linker molecules such as antibodies or glyco-
conjugates are used to adsorb proteins specifically. The length of the linker
molecules on the surface plus the protein size can easily exceed 5nm.
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Figure 1.7: Model for dynamic range sensitivity. (a) Surface potential ¥ plotted
against the log of concentration of the analyte. (b) The derivative of the surface
potential shows the response to the analyte. (c) LOD: Ac as a function of ¢. Small
changes are only detectable at a low analyte background concentration.
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Fig. [[4]b in the previous section shows the Debye length as a func-
tion of electrolyte concentration. Charges which are located further away
from the surface are screened by counter ions and hence do not influence the
surface potential. Hence, direct protein sensing is highly limited at physi-
ological conditions (= 150mM electrolyte concentration) where the Debye
length is already < 1 nm.

To minimize the screening effect, the ionic strength of the solution can
be reduced. In a work by Vacic et al.>2 Debye screening manipulation is
used for quantitative spatial analysis of adsorbed charge on a nanosensor
surface. DNA and Streptavidin detection in diluted buffers has been shown
by X. Duan et al.19. G. Zheng et al. showed detection of cancer markers with
Silicon nanowires (SiNWs) even in undiluted serum2,

If the size of an analyte such as a protein is comparable to the Debye
lentgh, the surface analyte activity becomes equal to the bulk analyte ac-
tivity. Hence, the relationship is no longer described by the Boltzmann dis-
tribution as it is given for protons in Eq. The surface potential is then
given by the total charge of the adsorbed analyte inside the double layer,
the capacitance and the reaction kinetics. This will be further described in
section

Due to Debye screening direct potentiometric sensing of protein charges
is difficult and only works as long as charged parts of the protein fit into the
double layer at the electrolyte-insulator interface. However, since the two
double layers (from surface and protein) overlap, the ISFET response upon
protein binding is difficult to describe. As we have seen from Eq. [I.23|the pH
near a charged interface (pH;) depends on the potential drop over the dou-
ble layer and can be different from the bulk pH. Due to this change, the pro-
tein net charge can be changed accordingly. Hence the final signal is linked
to the effects of ionic strength, bulk pH, protein pI and effective distance
of the protein layer from the surface, etc. In references®/2¢ Bergveld and
Schasfoort et al. analysed the limitations of direct protein detection by cal-
culating the measurable potential as a function of electrolyte concentration
based on the Donnan equilibrium. It describes the ion distribution across a
semi-permeable membrane given by the adsorbed protein layer.

1.2.4 Effect of Competing Surface Reactions on ISFET Response

Full selectivity is given if a sensor only responds to one specific type of
analyte. However, full selectivity is most likely not possible, since com-
peting and nonspecific reactions cannot be suppressed completely. Dielec-
tric surfaces are proton sensitive by the majority. By surface functional-
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ization the proton sensitivity does not vanish completely. Further, linker
molecules such as ion traps or antibodies show some cross-reactivity with
species which are similar to their targeted analyte. As long as an ISFET is
not fully selective for a certain analyte, the response to background species
limits the performance of the sensor=~.

In a simple model we demonstrate how the response of a functionalized
ISFET which is specific to a certain analyte is influenced by its proton sen-
sitivity. In analogy to the site-binding model explained in section [1.1.3
the model assumes the protonation and deprotonation of surface hydroxyl
groups and an additional reaction between the immobilized linker molecule
L() and the negatively charged analyte A™.

MeOH = MeO™ +H; K,
MeOH; = MeOH + H{ K} (1.31)
MeL(A™) = MeL()+A~, K,

K,, Ky, K. are the dissociation constants which are fixed and given by the
surface linker properties. The number of proton sensitive surface hydroxyl
groups N; and linker groups Ny is defined as follows:

Ns = YMeOH +VMeO- + YMeOHS 132)

NL = VMeL() + VMeL(A")

with v being the number of the particular species. Hence, the surface charge
of the sensor is given by

op = f?(VMeOHZ+ = VMeO~ — VMeL(A—)) =Ca1'¥. (1.33)

The relations of bulk and surface activities of protons and analyte are given
by the Boltzmann distribution: gy = agy exp(—eWy/k; T) for protons and
aa; =aa; exp(eWy/ky T) for the analyte species. In this approach the reac-
tions including protons are independent of the reactions including the an-
alyte. The coupling is only given by the surface potential ¥,. In analogy
to Eq. the system can be solved for Wy(ag+,a4-). For a surface which
shows a Nernstian response to pH, ¥ is not affected by analyte binding.
Charges from the analytes are fully compensated by exchange of protons.
However, if the proton sensitivity is strongly reduced changes in ¥y upon
analyte binding start to be visible at certain concentration ranges.

To illustrate this interference effect, we assume the following model sys-
tem. A gold surface (which is slightly oxidized, according to8) with Ny =
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1.5-10”m=2 and K, = K = 1077 is functionalized with a specific linker
molecule. The corresponding analyte is a small negative charged species
with dissociation constant Kp = 102 M. We assume the maximum occu-
pancy to be one charge per 10nm~2, resulting in a Ny = 1-10'7 m~2, which
is reasonable considering the dimensions of proteins. Fig[T.8|shows the cal-
culated surface potential plotted against analyte and proton concentration.
It shows that the concentration range in which the sensor is sensitive to the
analyte is limited by the electrolyte pH. As pH increases the surface becomes
more sensitive to protons and the range of large response is shifted to higher
analyte concentration. Close to the PZC (here at pH 7) the change in surface
potential due to the analytes becomes smaller. The largest response at low-
est concentration range (best LOD) is seen if the buffer pH is far below the
PZC. In real systems, the pH range is limited because certain analytes, such
as proteins denature if the pH is far off compared to their natural environ-
ment of operation. Fig. [[.8]b shows that also the pH response changes for
different analyte concentrations. Its concentration influence is strongest at
extreme pH values and weak around the PZC.
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Figure 1.8: Model to demonstrate the influence of protons on analyte sensing.
The full site-binding model from2128/ (K, = K}, = 1077, Ny = 1.5-10!7) is extended
with the analyte dissociation constant Kp = 10°M and a ligand density of Np =1 -

1017 m=2. (a) Theoretical curves of the surface potential ¥ vs. analyte concentration
at different buffer pH. (b) Wy vs. pH for different analyte concentrations.

This model illustrates that direct detection of adsorbed analytes is highly
limited by interfering proton sensitivity. Surfaces with low pH sensitivity
and PZC far away from the analyte buffer pH are then preferable to optimize
analyte detection.
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1.2.5 Nanoscale ISFETs

By reducing the sensor size people achieved to reduce the sample volumes
down to the microliter range. Recently, specific detection of proteins at
very low concentration (down to femtomolar) has been reported 213116159/
Many researchers focus on the point that miniaturizing a sensor increases its
charge sensitivity and its surface-to-volume ratio which could lead to lower
detection limits. The shift in surface potential for a given change in sur-
face charge is larger for small areas, according to AWy = Aoy/C;; where the
capacitance scales with the sensor area. However, although the charge sensi-
tivity is increased for smaller structures, the SNR decreases according to Eq.
[T.29]since both, charge and C4; depend on the area.

Analyte binding is a uniform process which is determined by reaction
kinetics. Where surface properties (e.g. density of reactive surface sites)
and electrolyte composition play a role, the underlying transducing FET has
no influence on analyte adsorption. Hence, the resulting sensor response
(AWy/Alog[c]) should not depend on the ISFET size. Regarding the LOD,
only the SNR needs to be maximized.

A further important consequence of a reduced sensor surface is the pre-
dominance of reaction kinetics at very low concentrations. In a study by
Sheehan et al.*? the accumulation times for single stranded DNA molecules
on micro- and nanoscale objects are calculated. Even if a very low number
of analyte molecules (x~ 10) is needed for a reliable detection, the time for
their accumulation on nanoscale surfaces quickly exceeds reasonable mea-
surement periods (i.e. days) at femtomolar concentration. Even if long mea-
surement times are acceptable, the stability can become an issue. Effects like
drift, nonspecific adsorption or desorption of previously adsorbed molecules
will limit a reliable detection.

Nevertheless, this limitation inherent to small sensors could be overcome
by large scale integration of many sensors into a closely packed array. At the
same time this could allow spatially resolved analyte detection. A way to
overcome the limits of diffusion time scale is to actively direct molecules to
a sensor surface. At which the lab-on-a-chip©Y 6l is a promising approach
for the necessary speed-up.
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Experimental Methods

2.1 Device Fabrication

Different fabrication techniques for SINW sensors have been published in
literature. Generally they can be divided into two basic approaches: The
bottom-up approach'“**, where nanowires are grown in a chemical vapour
deposition process and the top-down approach, where the structures are
lithographically defined and etched out of bulk material 1362163 The Jat-
ter allows precise control over the dimensions and layout and enables the
possibility for high density integration and up-scaling.

During my PhD two different processes were used for the fabrication of
SiNW sensors. Both approaches are based on a top-down process on silicon
on insulator wafers. First a UV-lithography based process flow was devel-
oped at the Nanoelectronics Lab at the University of Basel. This process is de-
scribed in detail in the PhD thesis by O. Knopfmacher. Later this process
was adapted and modified into an electron beam lithography based sample
fabrication at the Paul Scherrer Institut (PSI, Villigen) by K. Bedner®. This
section presents a summary of the process flow of the device fabrication.
Further details are given in appendix[A]

2.1.1 Sensor Design

The sensor layout, as shown in Fig. contains 48 nanowires and their
corresponding contacts. They are divided in four spatially separated arrays
with a common drain contact referred as "bus line". Each array is separated
in four pixels of three nanowires. This design allows multiple surface func-
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tionalizations for differential measurements and time-resolved correlation
experiments.

To study the influence of the nanowire dimensions on the signal and noise
performance we used different nanowire widths on the same chip. Eight
different widths are implemented, ranging from 100nm up to 1 ym.

In the next chapter we will see that the wider the wires (larger surface
area), the better the performance regarding the signal to noise ratio. There-
fore, the latest design contained only wide SiNWs of 1 ym and nanoribbons
of 25um width. Nevertheless, for simplicity we keep the term nanowire
throughout this thesis. Also at least one dimension remains in the nanoscale.

)
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contacts for wirebonding

Figure 2.1: (a) Sensor device layout. 48 individually addressable nanowires, ar-
ranged in four spatially separated arrays. Each array has a common bus line. The
nanowires are 6 ym in length. The width varies from 100nm up to 1 um. Grey is the
lithography design for the silicon, bright green for the ion implantation and dark green
for contact metallization. (b) Close up of the top left array with 100nm and 200nm
wide wires. The bright blue is the design for the SU-8 opening which defines the liquid
channel. (c) Close up of an individual pixel with three SiNWs. (d) Layout for different
PDMS microchannel molds. The round structures denote the in- and outlets. A max-
imum of four individual channels was used for differential functionalization of the
SiNWSs.

2.1.2 Fabrication Process

Silicon On Insulator (SOI) wafers (Soitec, France) with a SiO; buried ox-
ide (BOX) layer of 145nm in thickness were used. The 85nm thick p-Si(100)
device layer with a resistivity of 8.5-11.5Qcm was oxidized thermally until
a 15nm thick SiO; layer was &own. The nanowire pattern from Fig.
was defined in AZ nLOF 2000 resist by electron beam lithography (EBL).
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The nanowires were then carved out by reactive ion etching of SiO; in a
CHF3 plasma and anisotropic wet etching of the Si device layer with tetram-
ethylammonium hydroxide (TMAH and isopropyl alcohol 9:1 volume ra-
tio at 45°C). This process etches the Si(111) crystallographic planes about
100 times slower than other planes, resulting in a trapezoidal shape of the
nanowire cross-section with 54.7° tilted Si(111) side faces (see Fig. d).
The resulting NW were 6 yum long, 80nm high, and 100nm - 1 ym wide.

The source and drain contact areas were defined in poly(methyl methacry-
lat) PMMA resist by EBL and heavily doped by BF} ions (energy = 33keV,

dose 2.3-101%cm™2). The dopants were activated by thermal annealing in a
forming gas (6 min at 950°C).

Gate Dielectric The top oxide layer was removed in buffered HE. RCA
standard cleaning procedure’®® was used for cleaning the samples from or-
ganic and metallic contaminants prior to the gate oxide deposition. After
the cleaning a native oxide layer (=~ 1 nm SiO; is formed. On top of this layer
20nm of either Al;O3 or HfO;, materials with high dielectric constants,
were deposited by Atomic Layer Deposition (ALD) at 225°C (Savannah S100,
Cambridge NanoTech'®?). The high quality of the ALD oxide ensures a high
gate oxide capacitance C,,, low hysteresis and low leakage currents in the
liquid. In addition, it exhibits a high density of surface hydroxyl groups en-
suring a good response to pH='”, ALD layers are conformal coatings of very
high quality due to the sequential layer-by-layer deposition. The thickness
is well controlled by the number of deposition cycles.

For certain experiments gold-coated SINWs were used. For this purpose
a 5nm thick film of chromium (adhesion layer) and a 20nm thick gold film
was deposited onto the ALD oxide by e-beam evaporation. The film over-
lapped the SiNWs by 200nm on each side.

Ohmic Contacts The ohmic contacts were metallized by Al-Si (1%) and
annealed at 450°C after local etching of the ALD oxide. A 2yum thick pro-
tection layer (SU-8 2002 MicroChem) with 6 ym wide openings (aligned to
the NWs), which is defined by UV lithography, was used as liquid protec-
tion. To operate the samples in liquid, they were wire bonded into a chip
carrier. The bonds were sealed with epoxy (Epotek 353NDZL).

Fig. [2.2shows an overview of the fabrication steps. Further details of the
protocol are given in Appendix@or in the PhD thesis by K. Bedner©2.
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Figure 2.2: Overview of the fabrication process. Schematic structure of three
SiNWs. (a) The pattern is defined by e-beam lithography. RIE and TMAH etching are
used to carve out the structures. (b) The source and drain contact areas are im-
planted with BF; ions. (c) Buffered HF and RCA cleaning are used to get rid of the top
oxide as well as organic and metallic contaminations. (d) Atomic layer deposition of
Al O3 or HfO;. (e) Etching of the ALD layer to open the contact regions. (f) Contact
metallization with AlSi(1%). (g) Evaporation of a gold film for the gold-coated SiNWs.
(h) Contact sealing and definition of the liquid channel in SU-8 photoresist.
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Figure 2.3: (a) Optical image of a wafer part after lithography. (b) Chip after bond-
ing into a chip carrier. (c) SEM micrograph of a pixel with three nanowires. The dark
area are the highly doped contact regions. (d) SEM micrograph of a single nanowire.
(e) Optical micrograph of a sample covered with PDMS having two individual mi-
crochannels.

2.2 Liquid Measurements

For the measurements of the SiNWs in contact with electrolyte solutions dif-
ferent flow cells and measurement instruments have been used during the
project. Here we focus on the most advanced stage which we used for most of
the experiments. A leakage free system with small volume is beneficial due
to a fast exchange of analyte solution and shorter molecular diffusion length.
At the same time the electric potential of the solution needs to be well con-
trolled. A simultaneous and fast electrical readout of multiple SINWs is
needed for differential or time resolved correlation experiments. Short mea-
surement and liquid exchange times are advantageous to minimize the in-
fluence of drift.

2.2.1 Liquid Cell

The flow cell (Fig. was carved out of a piece polyether ether ketone
(PEEK). The opening which is pressed onto the sample is sealed with an
o-ring. A platinum wire and a Ag/AgCl reference electrode (MI-401F,
Microelectrodes, Inc.) are included in the cell to apply and control the liquid
potential. To seal the electrodes and the polytetrafluoroethylene (PTFE,
Teflon) inlet and outlet tubes, the cell was grouted in polydimethylsiloxane
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(PDMS). The total cell volume was =~ 15 pl.

To achieve even smaller volumes, PDMS microchannels were used as flow
cell. The microchannels were produced by pouring PDMS (SYLGARD 184
Silicone Elastomer) onto SU-8 (SU-8 100 MicroChem) patterned Si wafers (lay-
out Fig. [2.1]d), degassing, and heating at 60°C for 2h for cross-linking. Af-
terwards, the PDMS was peeled off the substrate and pierced to insert the
PTFE tubes. A 16-702 Flow-thru Ag/AgCl Reference Microelectrode (Micro-
electrodes, Inc.) included in the tubing was used to control the liquid poten-
tial. The SU-8 molds were defined in 100 yum thick SU-8 layers by e-beam
lithography.

Although the PDMS had good adhesion on the sample surface (SU-8 liquid
protection layer), a strong binding was not desired. On the contrary, being
able to remove the microchannel from the sample allowed surface cleaning
with UV-ozone or Oj-plasma. The microchannels were merely pressed onto
the samples. To achieve better mechanical support and sealing of the in-
and outlets, the microchannels were grouted into a second layer of PDMS as

shown in Fig. 2.4]b.

2.2.2 Measurement Setup

A peristaltic pump (MCP, Ismatec) and a valve selector system (CHEMINERT
VICI, Valco Instruments Co. Inc.) were used to exchange the solutions. The
liquid potential was applied to the platinum electrode and controlled by
the reference electrode (Vy,f), or directly applied to the reference electrode.
A Keithley 2636A source meter with two channels was used to apply the
source drain bias V; and to measure source drain current I;;. A switching
box (Keithley 3706) was used to address all the 48 NWs on the chip. The
back gate-voltage Vo was applied at the handle wafer. All devices were
automatically controlled by a self-made LabView program. Fig. [2.4]and
present the measurement setup for the two different liquid cells.

Measurement Procedure

Basically two different measurement procedures were used. A steady state
measurement to determine the shift in surface potential due to a change in
analyte solution and a time-resolved measurement to study binding kinetics.

Samples without surface functionalization were UV-ozone cleaned for 10-
20 min. Functionalized samples were treated as described in section
Prior to a measurement series, the samples were left in contact with the so-
lution for = 1h to stabilize the sensor/solution interface.
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Figure 2.4: (a) Cross section of the fabricated device and a sketch of the mea-
surement setup (not to scale). The liquid is delivered to the custom-made PDMS
microchannels by a pump (indicated by arrows). A flow-through Ag/AgCl reference
electrode is integrated in the Teflon (PTFE) tubing close to the microchannel. The
working point of the nanowire transistor is adjusted by the liquid gate voltage V,ef
applied to the reference electrode. A constant source-drain voltage V53 = 0.1V drives
the source-drain current through the nanowire channel Isd.ml(b) Sensor with grouted
PDMS microchannel and a Ag/AgCl reference electrode connected to the PDMS tub-
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Figure 2.5: (a) Arrangement of the liquid measurement setup. A peristaltic pump is
used to pull the liquid through the liquid cell, mounted on the SiNW sensor. A switch-
ing valve is used to select the different analyte solutions. The length of the tubing
and the volume needed for the reference electrode are the limiting factors to further
reduce the total sample volume. (b) Optical images of the liquid cell.



2 Experimental Methods

To obtain the shift in surface potential, the liquid potential was changed
while the conductance of each SINW was measured sequentially by ad-
dressing it via the switching unit and applying the source-drain voltage
Vsq = 100mV. Thereby, we obtained the SINW transfer curve to read out
the threshold voltage. After having changed the solutions, the samples were
stabilized for a few minutes to reach equilibrium before each measurement.
Depending on the number of wires and the voltage step size, a bidirectional
sweep of Vyer took several minutes. Typically eight solutions of different
analyte concentrations were measured up and down. Such a measurement
took 60-90 min including pump and stabilization time.

For time-resolved measurements the liquid potential was kept constant
while I;; was measured as a function of time. Ideally, a constant liquid
flow rate of ~ 20 — 40 ul/min was used. However, when using the PDMS
microchannels discontinuous flow (to exchange solutions) was better, since
the liquid gating was less stable due to moving air bubbles in the system.

The global back-gate was used to reach the optimal operation regime.
However, during most of the measurements the back-gate voltage was fixed
to 0V. More detailed studies of back-gate dependence were published earlier.
We showed how the dual-gating can be used to amplify the pH response by
taking the capacitance ratio between liquid- and back-gate into account?.
Tarasov et al. showed how to minimize the 1/f noise for SINWs without im-
planted contacts by using the back-gate2.

Threshold Voltage Readout

To extract the threshold voltage from the transfer curves (G(V,.f)) a MAT-
LAB (MathWorks) script was used. For reasons of simplification the thresh-
old voltage was arbitrarily defined at a given conductance value in the sub-
threshold regime (usually at 20nS). Vi, is extracted from V¢ by interpolat-
ing of the two closest data points at a given conductance. Plotting Vjj, as a
function of analyte concentration shows the change in surface potential.

2.3 Surface Functionalization

In order to achieve the selective sensing of distinct species other than pro-
tons, the sensor surface needs to be modified in such a way that only the tar-
geted analyte gets adsorbed. Different methods were developed during this
thesis (in collaboration with the Nanotechnology group at Fachhochschule
Nordwestschweiz, Department of Pharmaceutical Sciences and the Depart-
ment of Chemistry at University of Basel). The covalent chemical anchoring
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of linker molecules has proven to be a viable method. Self-assembled mono-
layers (SAMs) exhibit the linker binding sites close to the FET surface at a
high density. The field of SAMs has extensively been studied”?. In ISFET
systems, a widely used method is the self-assembly of silane monolayers
to modify various types of oxide surfaces.2©l0, The silanes can either be
specific on their own or can be used as linkers for further functionalization
steps. Silanization can be applied for various types of oxide surfaces. Prior
to the silanization the samples were cleaned with ethanol and activated (hy-
droxylated) by a UV-ozone or Oj-plasma treatment. The sample surfaces
were then modified either by vapour phase or liquid phase self assembly of
the silanes. Liquid phase functionalization was done by using the PDMS
microchannels to individually functionalize different SINW arrays. Accord-
ing to the analyte we used different types of dimethylmethoxysilanes, which
have only one binding site and hence do not polymerize on the surface dur-
ing the SAM formation. The layer density strongly depends on the reaction
time. Following the reaction, the samples were cleaned with ethanol and
cured at 80°C for 1 —2h. Contact angle and ellipsometry measurements on
control samples (i.e. roughly 1cm? large Si wafer pieces) were used as meth-
ods to control the reactions.

Gold-Coated Silicon Nanowires

With the idea of having a reduced pH response and the possibility of using
different surface chemistry we covered the SiNWs with a thin gold layer. A
5nm chromium adhesion layer and a 20nm gold film was evaporated onto
the Al;O3 or HfO, dielectric layer. More details are provided in chapter
and in reference®®. Having gold as surface material we were able to use
thiol molecules for the formation of SAMs. The molecules were dissolved in
ethanol or methanol at a concentration of ~ 2mM. The SAMs were obtained
by pumping the solution through the (active) microchannels with long sta-
bilization intervals for 16 h. After the functionalization, the channels were
rinsed with ethanol and deionized water.






3

Characterization of Silicon Nanowire
Sensors

In the previous chapter, we described the fabrication and measurement tech-
niques. In the following, the sensor performance is investigated. The char-
acterization of SINWFET operated in liquid is done by analyzing the transfer
curve, 1/f noise and the influence of the FET channel width. Furthermore,
this chapter discusses the dielectric’s performance regarding pH response
and background ion concentration and also stability issues. It is important
to understand the individual effects to gain the right information out of of-
ten superimposed signals.

3.1 Electrical Characterization

The transfer characteristic of SINWFET sensors was characterized in pH
buffer solutions. Fig. shows the transfer curve of a 1 ym wide SINW
were conductance G is plotted on a linear and logarithmic scale vs. the gate-
drain voltage measured at the reference electrode V;.f. The source-drain
and back-gate voltage were kept constant at Vg5 = 0.1V and Vje = 0V, re-
spectively. Due to the low p-type doping the transistor is in depletion at low
and positive liquid gating. The off-state conductance is limited by leakage
currents from the solution to the SINW and the source and drain contacts,
which is in the order of a few hundred pico ampere. This is at least three
orders of magnitude smaller than the on-state channel current. Gating via
the electrolyte solution increases leakage currents compared to the use of
a metal gate. The origin of the leakage current is assumed to be diffusion
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of protons through the gate oxide. Various theories assume electrochemi-
cal reactions including hydrogen at the direct vicinity of the oxide surface,
both, within the oxide layer and at the oxide silicon interface”472. By us-
ing atomic layer deposition technique to deposit the Al,O3 and HfO, gate
oxides and a SU-8 photoresist protection layer to cover the contacts, leakage
currents were suppressed to be lower as a few hundred pico ampere. Con-
ductance in inversion (at more positive gate voltage) is suppressed by the
p-n junctions at the highly p-doped contacts.

At low negative gate voltage, holes accumulate and the subthreshold con-
ductance starts. As described in section[I.1]the subthreshold swing is given
by the total liquid gate capacitance, including C,y, Cy4; and trap states. Typ-
ically, values between 120 and 180mV/dec were obtained. At more negative
voltage the linear regime starts. Here, the conductance is directly propor-
tional to V.. At even higher negative voltage the serial resistance of the
contacts starts to dominate and the SINW conductance starts to saturate.
On-off-current ratios Ipn/I,f f between 103 and 10° were obtained, depend-
ing on the SINW dimension. The transconductance, which is the slope of
the transfer curve gy, = dl54/dVy.f, is usually read out in the linear regime,
where it is constant. Unlike the common definition of the threshold voltage,
which is at the transition from exponential to linear gate dependence, we
define Vyj, at a given conductance value in the subthreshold regime to sim-
plify the readout. Usually G = 20nS was chosen because it is deep inside the
subthreshold regime and still above the level from the leakage current. From
Eq. [I.10]follows that V;; depends on the properties of the gate dielectric and
the surface potential, given by the composition of the solution.

Both g, and V}, are dependent on the back-gate voltage, since it also in-
fluences the surface potential at the liquid gate32. At negative Vj, an in-
crease in Vy, is observed. However, at high negative back-gate voltage the
subthreshold swing degrades, caused by a current that flows at the back in-
terface. Due to this reason V¢ was usually set to 0V. Studies on the influence

of the back-gate on transfer curve®®, pH response and 1/f noise in SiNWs
with undoped contacts’? have been done prior to this work.

The hysteresis in the transfer curve upon sweeping of the liquid gate is
small. Usually, variations < 5mV were measured. The hysteresis corre-
sponds to the amount of charge trap states in the gate oxide and on the sensor
surface. We see a clear dependence of the SINW width on transconductance
and threshold voltage (as seen in Fig. [3.3]a). Where the change in transcon-
ductance can be explained by the effective wire width (top and sidewalls),
the cause for the shift in Vj, is expected to be due to different electrostatic
coupling between liquid and back gate. A detailed study on SINW width
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dependence and the influence of dielectric material and thickness is given
in the PhD thesis by K. Bedner® and references3'70.
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Figure 3.1: Transfer curve of a 1 um wide SINW with 8 nm HfO, as gate oxide mea-
sured in pH 3 buffer solution at Vgg = 0.1V and Vj¢ = 0V. Conductance G on linear
(black) and logarithmic (red) scale vs. reference electrode voltage V,ef. The blue
lines indicate transconductance g, and subthreshold swing S. The background in-

dicates the different regimes: Contact dominated, linear, subthreshold and leakage
(from Left to right).

3.2 1/f Noise Investigations

As we have seen in section [I.2} the evaluation of noise is important, since it
ultimately defines the resolution and hence the detection limit of the sensor.
We measured the low-frequency 1/f noise of our SiNWs of different widths
and gate oxide capacitance. For further details the reader is referred to the
PhD thesis of K. Bedner and reference®>.

3.2.1 Noise Measurement Setup

A special set-up was used for the noise measurements. The schematics is
shown in Fig. A 9-Volt battery and a voltage divider were used to apply
the DC source-drain voltage. The gate voltage was applied to the platinum
electrode and measured at the reference electrode. The conductance of the
SiNW was measured by a National Instrument DAQ board using a current-
voltage converter (variable gain from —10° to —10° V/A). Via fast Fourier
transformation a noise spectrum was obtained from the time dependent volt-
age signal. Measurements were performed in pH 7 buffer solution, deionized
water and argon. In the latter case, the device was gated by the back-gate.
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Figure 3.2: Noise measurement setup. (a) Cross section of a SiNW. Due to the
anisotropic silicon etch, the side walls have an angle of 54.7°. The width of the SiINWs
is referred to the top width (me). However, the effective gated width is Weff = Wiop+

2Wside- (b) Schematics of the noise measurement setup. A DC source-drain voltage
of 90 mV was applied to an individual SiNW. The source-drain current Ig; is measured
by a DAQ board using a current-voltage converter. V, is applied at the platinum
electrode, Vjg to the handle wafer and V¢ is measured at the reference electrode.

(Figure from reference@)

3.2.2 1/f Noise in Silicon Nanowire Sensors

Figure [3.3h shows the transfer characteristics of SiNWs of different widths.
At the given conductance values a noise spectrum was recorded. Fig. [3.3]b
depicts the frequency dependence of the noise power per unit of bandwidth
of a 100nm wide SINW with 20nm Al,O3 as gate oxide, measured in pH 7
buffer solution. The input referred voltage noise Sy (f) is calculated with the
SiNW resistance R and the gain of the I-V converter G.

2
SV(f) = (g) SV, measured(f) (3.1)

The corresponding thermal background noise, measured at zero bias, has
been subtracted from the data. The thermal noise agrees with the theoretical
value given by S;n = 4k, TR (Eq. . In the analyzed conductance and
frequency regime, Sy (f) follows 1/f, as indicated by the dashed line.

In reference3, we find that noise is mainly generated by the gate oxide and
not in the SINW itself. The main noise source is the trapping and release
of charge carriers at trap states near the semiconductor-oxide interface. The
trap state noise model is described in section [1.2.1] with Eq. The ex-
tracted trap state density per area was N,y = 2.5 108 cm™2, which is in the
expected range and low compared to similar structures7879. To calcu-
late the gate referred noise Sy g at 10Hz we use the relation

Sy (10Hz)

_— 3.2
(R~gm)2 G.2)

Sve =
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Figure 3.3: (a) Conductance G vs. gate voltage Vgate for SiNWs of different widths
measured in pH 7 buffer solution (open symbols, liquid gated) or argon (full symbols,
substrate gated). (b) Power spectral density of the voltage fluctuations Sy vs. fre-
quency f for a 100nm wide SINW with 20nm Al,O3 as gate oxide. The dashed black
line indicates 1/f characteristics. Black open symbols show the thermal noise for the
SiNW gated to 321kQ), which is not frequency dependent. The corresponding black
line indicates the theoretical value of the thermal noise. (Figure from reference 53)

where the slope g, = dl54/dVy.s is taken from the transfer curve. Fig.
shows the gate-referred voltage noise of SiNWs of different widths (wit
20nm Al,O3 as gate oxide). On the one hand, Fig. a compares Sy g for
a 400nm wide SINW measured in pH 7 buffer solution and DI water. Syg
remains constant over a wide range of resistance values (SINW regime; lin-
ear and subthreshold) and slightly increases for low resistance values when
the total resistance starts to be dominated by the contact resistance (contact
regime). Both, pH buffer solution and DI water show a similar noise level,
suggesting that the ions in the buffer solution do not significantly influence
the noise behaviour. When measuring in argon/air atmosphere, the SINW is
gated by the back-gate. A higher noise level is measured, due to the much
smaller gate capacitance. On the other hand, Fig. [3.4b compares Sy for
wires of different width, by normalizing Sy and R to an effective width of
1 ym. The data for all different widths falls on top of each other with a con-
stant value in the SINW regime and an increase in the contact regime. This
follows the trap state model (Eq. |1.28) according to Sy o« 1/W,f ¢, where
the noise increases with decreasing wire width. The sensor resolution limit
AW min directly corresponds to v/Syg. The lowest value of 1- 1075V/Hz/2
measured at 10Hz with 1Hz bandwidth was measured for the SINW with
Wiop = 1 pm. This corresponds to a resolution limit of 0.017% of an ideal pH
shift of 60mV/pH.
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Figure 3.4: (a) Gate referred voltage noise Sy g at 10Hz of a 400nm wide SiINW
vs. resistance R times effective SiINW width Weff: measured in pH 7 buffer solution,
deionized water and argon/air mixture. (b) Sy normalized by Weff relative to the
SiNW with Wiop = 1pm vs. R, measured in pH 7 buffer solution. (Figure from refer-

ence23)

1/f Noise in Gold-Coated Silicon Nanowires

Samples from a different production run, also having 20nm Al,O3 as gate
oxide, were used to analyze the influence of a floating gold film on top of the
SiNW on 1/f noise. Fig. [3.5a shows the transfer curve and the correspond-
ing transconductance for a 1 ym wide SINW with Al,O3 surface. In Fig.
b the unnormalized values of Sy g at 10Hz vs. resistance for 1 ym wide
SiNWs and 25 ym wide SiNWs with gold and Al, O3 surface exemplify that
the wide SINWs have a lower noise level according to Sy oc 1/We ¢. A noise
level of vSyg = 3-1070V/Hz!/2 for 1 ym wide SiNWs and 6-10~7 V/Hz!/2
for 25 ym wide SINWs was measured at 10Hz with 1Hz bandwidth. How-
ever, we observed no clear difference between the two distinct surfaces. The
assumption that the gold film could reduce the gate referred noise by screen-
ing surface charges does not hold. This is a further evidence that 1/f noise
is mainly generated by trap states in the gate oxide and not by ions in the
solution. As compared to Fig. [3.4]b, Sy in Fig. [3.5]b is one order of magni-
tude larger. This could be explained by the different production runs, since
batch-to-batch variations in the trap state density are not unexpected.

3.2.3 RMS Noise in Time-Resolved Measurements

With the 1/f noise analysis the theoretical resolution AWy i can be ob-
tained at a given frequency and bandwidth. As we have seen, 1/f noise is
an intrinsic property of the SINWs and, hence, this is the best method for
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Figure 3.5: (a) Conductance G (black, left axis) and transconductance g, =
alsd/avref (red, right axis) vs. gate voltage Vy,¢. The transconductance reaches
its maximum in the linear regime and drops as soon as the contact dominated regime
starts. (b) Unnormalized Sy g at 10Hz vs. resistance for 1 ym nanowires and 25 ym
SiNWs with gold and Al; O3 surfaces measured in pH 7 buffer solution.

benchmarking. However, for time-resolved measurements the root mean
square (RMS) noise and peak-to-peak variations are easier to extract. In or-
der to obtain the RMS noise, the noise spectral density curve can be inte-
grated over the bandwidth of interest.

Noiserms =

In Fig. the change in surface potential (AW = I;3/g,) is plotted against
time for two gold-coated SiNWs of 1 ym and 25pum width. The surface of
the SiNWs is functionalized with a monolayer which is selective to a cer-
tain protein. The electrolyte solution is 10mM HEPES buffer at pH 8. This
system will be explained in chapter |5} For a typical sensing measurement
the sampling rate is in the order of 1 — 10Hz, and the measurement takes
about 10— 60min. If fio and fhigh are set to 0.001 Hz and 10Hz and taking
the v/Sy values from the 1/f measurements, the calculated RMS noise is
around 300V and 60 uV for the 1 ym and 25 ym wide SiNWs, which is close
to the measured values in Fig. However, the conditions for the two dif-
ferent types of noise measurements are not entirely comparable. The slightly
increased noise could be explained by considering the fact that a different
sample was used, or by external contributions, such as the different mea-
surement setup. Particularly the switching of I;; between the measurement
points (which was needed to individually address several SiNWs) induces
noise. Nevertheless, comparing the RMS noise among the two wires of dif-
ferent areas displays the width dependency on the resolution AW, o« v/area
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accurately. The peak-to-peak values can be defined in various ways. If we
want to include 99.9% of the peaks we have to take 6.6 times the standard
deviation. This results in peak-to-peak values of 2.1 mV and 0.4mV for the
1 ym and 25 ym wide wires respectively.
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Figure 3.6: Surface potential fluctuations (AW = I;4/g;,) in a time-resolved mea-
surement for two different gold-coated SiNWs of 1 um and 25 um width measured in
the switching setup. The RMS noise which is equivalent to the standard deviation of

the measurement points (o = Vvariance) scales with v/area.

3.2.4 Conclusion of the Noise Studies

We have studied the low-frequency 1/f noise in silicon nanowire and
nanoribbon FET sensors. The relevant figure of merit for sensing is the gate
referred voltage noise. It removes the dependence on g, and allows to focus
on the minimum detectable voltage change. We found that Sy g is constant
over a large operation range (linear and subthreshold regime), as long as
the intrinsic FET resistance dominates and the contact resistance can be ne-
glected. Further, Sy inversely scales with the channel area. Hence, the
signal-to-noise ratio is better for larger sensors, as long as the response to
the analyte is independent of the sensor size.

A constant value of Sy within a wide range of parameters suggest that
the noise is dominantly generated by the gate. We have shown that the noise
does not depend on the ion concentration in the electrolyte solution. There-
fore, the source of the noise is not at the sensor-electrolyte interface, but most
likely at the interface between the gate oxide and the transistor channel.

A resolution limit AWy min of VSyg =1- 1075 V/Hz!/2 was measured
at 10Hz with 1Hz bandwidth for a 1 ym wide SiNW. For the latest batch
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3.107>V/Hz!/2 for 1 ym wide SiNWs and 6 - 1070 V/Hz!/2 for 25 ym wide
nanoribbons measured at 10Hz with 1Hz bandwidth was achieved. The
signal-to-noise ratio is shown to increase with +/area.

These values are more than one order of magnitude better as compared
to the similar structures in referenceZ®8Y, where SiO, was used as gate
dielectric. Noise has also been studied in transistors made of other mate-
rials such as carbon nanotubes (CNT) and graphene®1784. A comparison
of the noise level between those systems and our SiNW sensor is possi-
ble after a rescaling to the reference SINW of W;,, = 1p. A noise level of

VSyg=71- 1076V/HzY2 and 5.5- 1073 V/Hz!/? reveals for the CNT and
the graphene transistor, respectively.

3.3 pH Sensing

The surface potential at the sensor interface strongly depends on the pH of
the electrolyte solution, as described by the site-binding model in section
Fig. [3.7]a and ¢ show how the change in surface potential affects the
transfer curve and, hence, the threshold voltage. The curves shift to more
positive gate values with increasing pH. Since a reference electrode was used,
the change in threshold voltage AV}, directly reveals the change in surface
potential —A¥y. The opposite sign is due to holes as majority charge carri-
ers. Plotting Vyj, as a function of pH reveals the pH response (Fig. [3.7]b). The
average value is extracted from the linear fits to these data points. For UV-
ozone cleaned Al,O3 and HfO; surfaces, a linear response of ~ 56 mV/pH
is observed in the pH range from 3 to 10. This value is close to the Nernst
limit of 58.2mV/pH at 20°C. This result is associated to the high quality of
the ALD oxide layers that provide a large number of proton sensitive sur-
face hydroxyl groups. The relative shifts AV}, are independent of the ionic
strength (Fig. b). This will be further explained in the next section.

Alternatively, the source-drain current Iy can be measured as a function
of time, as indicated in Fig. [3.7]d. If the working point is chosen such that
the NWs are operated in the linear regime, the transconductance g, can
be used to calculate the change in threshold voltage AVyy, = Is3/gm- gm is
extracted from the linear regime in Fig. [3.7]c. The step height is close to
the Nernst limit, as indicated by the horizontal grid lines. The response time
upon changing the pH buffer solution is mainly limited by the fluidic system
due to solution mixing and diffusion. Sensor response times below 200ms
have been achieved at high liquid exchange rates.

We see no impact of SiNW width on pH sensing. Fig. [3.7]e demonstrates
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that for both surfaces, Al,O03 and HfO5, all SiNWs of widths ranging from
100nm up to 25 ym show the same response to pH. Although the absolute
threshold voltage depends on the SINW geometry, dopant concentration and
gate dielectric, AV}, is only given by the change in surface potential. From
Eq. we see that the response is given by the density of reactive surface
groups and the dissociation constants of the surface reactions. A detailed
study on impact of SINW width on pH response is presented in referenceZJ.

3.3.1 Surface Passivation

We have seen that Al,O3 and HfO, are good candidates for pH sensing.
However, to be sensitive to other species than protons, the high density of
surface hydroxyl groups becomes disadvantageous. As described in section
competing surface reactions prevent selective sensing at high sensitiv-
ity. Besides the potential to reduce interference from protons, passivation
of surface hydroxyl groups can also be used to realize a nanoscale reference
electrode. The on-chip integration of a reference electrode that only reacts
to the changes of the electrostatic potential but not to the chemical one, is
a major challenge in the field of ISFETs. In reference®! we demonstrate a
reference FET, whose proton sensitivity is suppressed by as much as 2 or-
ders of magnitude. This was achieved by passivating Al,O3-coated SINWs
with a self-assembled monolayer of silanes with a long alkyl chain (octade-
cyldimethylmethoxysilane in vapour phase, Fig. [3.8a). To achieve full pas-
sivation, several days of self-assembling at 80°C is needed. We can estimate
the density of surface hydroxyl groups by comparing the achieved pH re-
sponses after passivation with the site-binding model described in
Fig. [3:8]b shows AV}, = Vy(PZC) — Vyy, as a function of pH for differ-
ent passivation times. Without the silane (0d) a linear, nearly nernstian
response can be observed. With increasing reaction time the pH response
becomes weaker and nonlinear. The saturation at low and high pH becomes
narrower until the pH response is rather flat with some scattering. After a
UV-ozone or a mild Oj-plasma cleaning the pH response can be almost fully
restored (55mV/pH, empty squares). We fit the data using the site-binding
model (Eq. to obtain the number of active surface sites Ny. Because
a single sigmoid shape is observed and a response close to the Nernst limit
is found for the bare Al,O3 surface, a small ApK ~ 0.4 is taken for the fits.
Since the pH buffer solutions are of rather high electrolyte concentration (in
total ~ 60 — 100mM) the double-layer capacitance is set to Cy; = 0.16 F/m?.
Fig. [3.9]a shows the average pH response s,p = (AVi,(pH3) -
AVy,(pH 11))/8 and N as a function of passivation time. Both numbers
monotonically decrease with increasing passivation time. Contact angle
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Figure 3.7: Transfer curve for an Al;O3-coated nanowire measured in different
pH buffer solutions. (a) I3 vs. Vief on a linear scale. (c) G vs. Vief on a semilog
plot. The curves shift linearly to more positive Vref values with increasing pH. The
transconductance can be extracted from the linear region. Vy, at a given conduc-
tance value is extracted in the subthreshold region. (b) Threshold voltage shift AVy,
for three different ionic strengths of the electrolyte. AV, is a linear function of pH
with the slope of ~ 56 mV/pH (indicated by the dashed lines). No significant depen-
dence of the slope on the ionic strength is found. (d) Time resolved pH meaurement
(Isqg vs. time). The measured I;; was divided by g,, to obtain the shift in threshold
voltage AVy,. The step height is close to the Nernst limit (58.2mV/pH at 20°C, indi-
cated by horizontal grid lines). (e) The pH response of Al O3 and HfO,-coated SiNWs
with me ranging from 100nm to 1 ym is close to the Nernst limit. An effect of the
width is not observed. Inset: Liquid potential V,ef extracted at 20nS vs. pH. For all

widths a linear dependence is found over the whole pH range. Figures taken from
reference.
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Figure 3.8: (a) Schematics of the chemical modification of a UV-ozone activated
Al O3 surface. Vapour phase deposition of octadecyldimethylmethoxysilane replaces
hydroxyl groups by alkane chains. The reaction time varied between 6h and 7 days.
(b) Change in threshold voltage AV}, = Vi, (PZC)—Vyy, of AlyO3-coated SiNWs vs. pH of
the buffer solution for several reaction times (from top to bottom: 0 to 7 days). Empty
squares after 7 days passivation and subsequent cleaning. Nonlinear curves are fits
of the site-binding model with following parameters: ApK ~ 0.4, Cz; = 0. 16F/m~2 and

varying N;. Curves are shifted for clarity. Figure adapted from reference 50|

(CA) measurements on test wafers were used to get a control about the sur-
face reaction (Fig. [3.9b). A rapid increase in CA from ~ 0° (UV-ozone acti-
vated) to 70—80° is observed within the first hours. After it saturates around
102 -105°. Macroscopically the hydrophobic nature is achieved in less than
two days. Nevertheless, a longer reaction time is needed for a proton tight
surface.

A different approach to reduce the number of hydroxyl groups is to take
a surface with intrinsically low Ng. As we will describe in the following
chapters[4and 5} we used a gold surface for the selective detection of other
species than protons.

3.4 Electrolyte Concentration

Understanding the influence of the electrolyte background on the sensor re-
sponse is important for biochemical sensing. There are several studies on
adsorption of inorganic salt ions on colloidal oxide surfaces®2'8%, glass elec-
trodes®/78% and ISFETs?Y?L, Different models have been developed over the
past decades, such as surface complexation of ions with oppositely charged
oxide sites and the semi-empirical Nikolky-Eisenmann equation. However,
for nanoscale ISFETs, inconsistent results have been published so far. Zafar
and co-workers did not observe any response from HfO;-coated SiNWs to
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Figure 3.9: (a) Average pH response spH and density of surface hydroxyl groups
Nj; vs. passivation times. N is obtained from the fits in Fig. b. (b) Contact angle
(CA) of a water droplet on a test wafer surface (SiO;, squares; Al O3, circles) vs.

passivation time. Figure adapted from reference 50|

ionic strength up to 1 M?2, Nikolaides et al.?3 and Park et al.° reported a
weak nonlinear response of SiO;-coated FETs to KCl or NaCl and Clément et
al.”Z claimed full linear response of ~ 60mV/dec to NaCl with SiO,-coated
SiNWs.

We have studied the response of Al,O3 and HfOj-coated SiNWs to
changes in KCI concentration up to 1 M, and observed a nonlinear behaviour,
which does not depend on the pH of the solution. In reference!' we com-
pare the results with three different models and propose a new adsorption
model, which agrees better with our measurements and will be presented in
the following. For further details the reader is referred to the PhD thesis of

A. Tarasovi24l,

In Fig.[3.7]b in the previous section we see that the pH response of Al;O3-
coated SiNWs is independent of the ionic strength of the pH buffer solutions.
Similar results were obtained for HfO,-coated samples. Fig. [3.10|shows that
Vin goes to more positive voltage at higher KCI concentration. This shift
is nonlinear. Up to 10mM almost no shift occurs. At higher concentration
the response becomes close to nernstian. We conclude that the positive shift
occurs due to adsorption of anions. In the case of Fig. [3.10]the chloride ion.
Yet, we found similar results for sodium nitrate and sodium sulphateL.

In addition to the protonation and deprotonation reaction of the site-
binding model (see section we propose a complexation of the anion
with the protonated hydroxyl groups at the oxide-electrolyte interface with
the reaction constant K/,
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YMeOHCI~ " 4H}

MeOH; +Cly = MeOHCI™ +H}, K/ = (3.4)

YMeOHS " 4Cly

with v being the density of sites and a the activity of a particular species.
Index (s, b) denote surface or bulk concentration. We deduce a value of K/ ~
3.3-107° by fitting the extended site-binding model to our data. We set the
parameters as follows: K; = K, = 1077, Ny, =10 m=2 and C,; = 0.16 F/m2.
These values agree with the high pH response and N; corresponds to the
upper limit for oxide surfaces. Fig. [3.10]b shows that our model agrees well
with the data obtained for increasing electrolyte concentration at different
pH values. The model can be solved analytically, if a constant double layer
capacitance is assumed. This holds as long as the surface buffer capacitance
Cs is much larger as Cy; (in other words, for a large N - see Eq. . For
surfaces showing a low pH response, the effect of Cy; starts to play a role.
Furthermore, in the measured concentration range Cy; is always larger than
the gate oxide capacitance. Therefore, the total gate capacitance is always
dominated by C,y and the ion concentration has no influence on the FET
transfer curve (see appendix B).

Eq. implies that a chloride ion from the solution forms a complex
with the surface hydroxyl group and replaces a proton at the surface, which
goes to the bulk solution. The reaction constant K, is therefore not a true
chemical equilibrium constant for a local system. However, if the equation
is expressed only in local surface concentrations it does not explain the mea-
sured data. Eq. [3.4)has to be considered as a substitute equation, solving
the discrepancy between our measurements and the previously mentioned
models by an unspecific realization. Very similar results were obtained with
other types of salts (NaCl, NaNO3, Na,SO4, NaF).

3.5 Stability Measurements

Short term fluctuations and long term threshold voltage instability (drift)
is a known problem for pH sensors and especially ISFET based sensor sys-
tems. Several mechanisms for drift in threshold voltage have been proposed
in the literature©?. Slow hydration of SiO, surfaces as described in ref-
erence could similarly occur for other types of oxides. Ion exchange of
OH™ ions and incorporation in the solid®?, injection of electrons from elec-
trolyte into the gate oxide®” and migrations of ions such as H* and OH™
into the surface®® have also been proposed. Although the ALD technique
provides a very good oxide layer quality, the stability is affected by the elec-
trolyte conditions. E.g. It is known that Al,O3 is slowly etched at high
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Figure 3.10: (a) Threshold shift AV, vs. KCl concentration. Three different data
sets were obtained from measurements with two different HfO,-coated SiNWs. The
pH value of all solutions was = 6. A nonlinear response is observed. Below 10mM
KCl almost no shift occurs. Above this value, the response increases and gets close
to the Nernst limit. The positive shift is induced by the adsorption of anions (here
Cl7). The dashed line is a guide to the eye. (b) The same response as in (a) plotted
as surface potential Wy = V;;,(PZC) — Vi, vs. activity of the chloride ions in the bulk
solution acj-, measured at different pH values. The lines are theoretical fits based on

our ion complexation model. Figure adapted from reference 21

pH (>10)22. Functionalized surfaces are even more sensitive to the envi-
ronment. Silanized surfaces degrade in highly basic conditions and self-
assembled monolayers of different functionalities (CH3-, OH-, and EGy4-)
oxidize in air and water.100, Further, accumulation of contaminants on the
sensor surface can change the surface potential. This not only affects the
threshold voltage, but also the sensitivity of the sensor.

To reduce the influence of drift, shorter measurement periods are bene-
ficial. However, the kinetics of the analyte adsorption reaction, as well as
analyte diffusion limit the signal time constants. Especially at low concen-
tration and for weakly buffered solutions this effect becomes predominant
as described in section [[.2.5] For our sensor system a very small solution
volume of less than 50 yl is needed, which can be exchanged rapidly (< 20s).
For pH and salt concentration measurements, where rather high concentra-
tions of small analytes are used, the stabilization time to reach equilibrium
is only a few seconds. Fig. [3.11]a shows Vy, for a Al;03 and gold-coated
SiNW at different pH buffer solutions measured back and forth, starting at
pH 3. The time needed for this series of measurement is about 1h. This is
limited by the switching time which is needed to measure the transfer curve
of multiple SiNWs. The total drift and fluctuations in V}j, is very low. Fig.
[3-11]b shows a time-resolved measurement, where I;; was recorded while
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the pH buffer solutions were changed. Due to the fast liquid exchange the
response times are very low. The inset shows that 90% of the signal change
is reached in 2.5s.
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Figure 3.11: (a) Vy, vs. pH for a Al 03 and a gold-coated SINW measured from pH
3 to 10 and back. Very low drift is observed, as the corresponding points overlap very
well. (b) Time-resolved pH measurement of a 300 nm wide AlyO3-coated SiNW. Iy, is
recorded while different pH buffer solutions are pumped through the microchannel
system. The inset shows that the stabilization time upon a pH change is only a few
seconds.

3.5.1 Long Term Stability

Long term stability is of crucial importance if a sensor is deployed for con-
tinuous monitoring of chemical species for long periods of time. In Fig.
the threshold voltage was monitored for 72h, keeping the electrolyte at con-
stant pH 7. Every 30min the solution was replenished by a short pump in-
terval. After a stabilization time of a few minutes the transconductance was
recorded. The extracted Vyy, is plotted against time. Within the first hours a
substantial drift occurs. Afterwards, the drift is reduced to 0.02mV /h for the
gold-coated SiNWs (linear fit 20 —72h). The drift among SiNWs of the same
surface is very similar, as indicated in Fig. [3.12]b. The differential threshold
voltage AVyy, = Vi sinw1 — Vi, sinw2 scatters within a few mV. The average
drift deviation of the differential threshold voltage is only 0.01 mV/h for the
AlyO3-coated SINWs. Hence, measuring in a differential mode can compen-
sate long term drifts.
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Figure 3.12: Long term stability measurement over 72 h in pH 7 buffer solution. (a)
Vi was monitored for AlpO3 and gold-coated SiNWs (indicated by the dashed blue
lines). Within the first hours a substantial drift can be observed. After 20h the drift is
reduced to less than 0.5mV/h for Al;03 and even 0.02mV/h for gold-coated SiNWs.
Among the same surfaces the drift of the different NWs is very similar. (b) Differential
threshold voltage AV}, for two AlpO3 (black) and gold (red) coated NWs shifted to
0mV. A very low drift deviation among the wires is found. The standard deviation oy,
is in the range of a few mV.

3.6 Summary

In this chapter we have characterized the electrical and sensing properties of
our SiNW sensors. We find good transistor characteristics in terms of leakage
current, transconductance and on-off-current ratio. We have analysed the
low frequency 1/f noise in SiNWs of different width to determine the signal-
to-noise ratio over a large resistance range. The deduced sensor resolution
limit AWy i is constant over an extended operation range from the linear
to the subthreshold regime. The analysis clearly shows that the resolution
limit improves with increasing SINW width. Hence, a better signal-to-noise
ratio is achieved for larger sensors as long as the response to the analyte is
independent of the sensor dimension.

We have measured the response to pH and electrolyte concentration for
SiNWs of different width and surface material. SINW-ISFETs with Al,O3 or
HfO; exhibit a very high linear response to pH, which is close to the Nernst
limit. We observe a nonlinear response to ionic strength, due to anion ad-
sorption, which is independent of the pH. No effect of the wire width or the
operating regime is observed on the pH or ionic strength response. Such
background effects of the electrolyte ions have to be understood and clearly
separated from the signals caused by the actual analyte. Even slight changes
of the ionic strength in the physiological range can significantly influence
the sensor signal. Therefore, the pH changes and ionic strength variations
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should always be monitored in parallel to any other specific detection exper-
iment.

Surface passivation of highly pH sensitive surfaces has been achieved by
silanization of the surface hydroxyl groups. A gradual decrease of the pH
response was observed with increasing surface coverage. A practically pH
insensitive surface was achieved after reducing the density of active surface
groups by approximately three orders of magnitude. Such passivated SINWs
could be used as nanoscale pH reference electrodes in a differential setup.

We have found a good long term stability of the SiNWs. The average drift
rate of Vi, is less than 0.5mV/h and very similar among NWs with the same
surface material. This is an important quality for differential and multi-
plexed measurements. However, drift and short term fluctuations are the
main limiting factor for the signal accuracy. To reach the chemical equilib-
rium of the surface reactions, often measurement times of several minutes
are required. Such long measurement times limit the theoretical resolution,
measured by the 1/f noise at 10Hz by orders of magnitude. In our system
only very small analyte volumes (< 50 ul) are needed for a reliable sensor
operation. This reduces the amount of sample solution and speeds up the
measurement procedure, which helps to reduce the influence of drift.
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Selective Sodium Sensing with
Gold-Coated SiNWFETs in a
Differential Setup

As we have seen in the last chapter, ISFETs based on silicon nanowires with
high dielectric constant gate oxide layers (e.g. Al,O3 or HfO;) display hy-
droxyl groups which are known to be sensitive to pH variations but also to
other ions present in the electrolyte at high concentration. This intrinsically
non-selective sensitivity of the oxide surface greatly complicates the selec-
tive sensing of ionic species other than protons. In this chapter, we describe
the modification of individual nanowires with thin gold films as a novel ap-
proach to surface functionalization for the detection of specific analytes. We
demonstrate sodium ion (Na*) sensing by a self-assembled monolayer (SAM)
of thiol-modified crown ethers in a differential measurement setup. A selec-
tive Na* response of ~ —44mV per decade in a NaCl solution is achieved and
tested in presence of protons (H*), potassium (K*), and chloride (C17) ions,
by measuring the difference between a nanowire with a gold surface func-
tionalized by the SAM (active) and a nanowire with a bare gold surface (con-
trol). We find that the functional SAM does not affect the unspecific response
of gold to pH and background ionic species. This represents a clear advan-
tage of gold compared to oxide surfaces and makes it an ideal candidate for
differential measurements. These results have been published elsewhere8.,
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4.1 Introduction

In the following we cover SINWFETs with a thin gold layer. Using a metal
instead of an oxide surface enables new possibilities of surface chemistry
to achieve selective sensing. Furthermore, the pH response is significantly
reduced when using gold as surface material instead of Al,O3 or HfO,.
Due to competing surface reactions (as described in section itis a
requirement to lower the pH response as far as possible to increase the
selective detection of other species than protons. We functionalize one
half of a sample with SAMs of sodium selective crown ethers whereas the
other half remains untreated. Thereby, we obtain two groups of SINWs
with different surfaces: Gold-coated NWs functionalized by the SAM (active
NWs) and non-functionalized SiINWs with just a bare gold surface (control
NWs). We demonstrate specific sodium ion sensing in a differential mea-
surement. Measuring an active NW against a control NW leads to a response
of ~ —44mV/dec NaCl in the biologically relevant concentration range of
1-1000mM. We find that the clean gold surface shows a response to protons
and changes in the background ion concentration. We explain this behaviour
by the formation of gold oxide at the gold film surfacel%1H103 and its reac-
tion with protons and chloride ions (C17)2%3L Interestingly we find that
the thiol-gold bonds of the SAM do not affect the number of oxidized gold
atoms, thereby leaving the response of functionalized gold to pH and Cl~
unchanged. This is contrary to the behaviour of oxide coated devices where
the functionalization does affect the pH response of the device®Y. Thanks to
this special property of the gold surface it is possible to compare active and
control NWs directly, as realized by the proposed differential measurement.

4.2 Results and Discussion

The samples were fabricated using the process described in chapter|2] For
the gold-coated NWs a 5nm chromium adhesion layer and a 20nm gold film
was evaporated onto the Al,O3 dielectric layer. The SEM micrograph in Fig.
[£T]a shows the lateral dimensions of the gold film, highlighted by the dashed
line, with respect to a NW. The gold area was lithographically defined and
overlaps the NWs in length and width. Fig. [£1]b shows the schematics of the
cross section of a device and Fig. [4.1]c shows a sketch of the measurement
setup.

Fig. d shows the conductance G vs. the liquid potential Vy.r of a
nanowire with a 20nm thick gold film on top. With increasing pH the trans-
fer curve shifts to the right. To quantify the shift we define the threshold
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voltage Vyj, at a fixed conductance value of 20nS (indicated by the arrow).
The inset shows the pH response of nanowires with different surface mate-
rials. Compared to Al;O3 surfaces, gold also shows a linear response but
with a significantly smaller slope of ~ 38 mV/pH. Furthermore, gold-coated
NWs show a response to the ionic strength when measuring in NaCl and
KCl solutions, similar to Al;03 and HfO;. As described in section [3.4) and
reference 51, we attribute this effect to the adsorption of chloride ions at the
nanowire surface. No significant change of the response to protons and Cl1~
has been observed over time. Even though gold is not expected to be cor-
roded, the moderate response to protons indicates the formation of a gold-
oxide layer1H103. With the site-binding model for protonation, deproto-
nation and Cl~ adsorption described in section and referencesL we
estimate the number of hydroxylated gold surface atoms to be only ~ 1%.
A detailed characterization of the gold surface and the estimation of the hy-
droxyl group density is given in section [4.3}

4.2.1 Sodium Sensing

Preparing self-assembled monolayers (SAM) of organic molecules at surfaces
is an effective functionalization process for chemical sensing. Functional
groups designed for trapping specific analytes can be immobilized close to
the surface in this way. Crown ethers, consisting of a ring containing several
ether groups, strongly bind cations due to the negatively polarized oxygen
atoms. The selectivity to the type of ion can be controlled by varying the
number of ether groups and the cavity diameter%%. Here we used a Na*
selective 15-crown-5 functionalized with a dithiolane anchoring moeity (Fig.
[£2]d). The samples were cleaned in oxygen plasma and closed with a PDMS
microchannel. The samples were divided in two (active and control) parts
by individual channels in the PDMS. The wires in the active channel were
then functionalized with the 15-crown-5. This results in a differential setup
having both, SiNWs with functionalized gold surface (active NWs) and bare
gold-coated SiNWs (control NWs), on the same chip.

Fig. [£.2]a shows the response of an active and a control NW to NaCl. For
the control NW, we find a positive shift in V}j, with increasing salt concen-
tration due to adsorption of C1™ on the gold surface. The immobilization of
the 15-crown-5 changes this response: Instead of the positive shift, a slightly
negative shift is observed for the active NW, indicating adsorption of positive
charges on the surface. The differential signal (AVyy, = Vi active = Vin, control)
shown in Fig. [4.2]e shows a response to NaCl of ~ —44mV/dec. Control mea-
surements with KCl in Fig. [£.2]b show no difference between bare and func-
tionalized gold, suggesting a high selectivity of the 15-crown-5 towards Na*
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Figure 4.1: Device structure and measurement setup. (a) SEM micrograph of a
150 nm wide silicon nanowire coated with a 20nm thick Al,O3 dielectric (by atomic
layer deposition, ALD). NWs are lithographically defined in silicon on insulator wafers.
5nm chromium as adhesion layer and 20nm gold are deposited on top of the
nanowire by electron beam evaporation. Contact regions are highly p-doped. (b)
Schematics of a nanowire cross-section with the gold film covering the NWs. (c)
Schematics of the measurement setup. A source meter is used to apply a source-
drain voltage Vy; and to measure the source-drain current Ig;. Using a switching
box, up to 48 NWs can be measured on one sample. The back-gate voltage ng is
applied to the wafer substrate. The liquid-gate voltage Vlg is applied by a platinum
wire immersed into the electrolyte. The liquid potential V,ef is measured by a calomel
reference electrode. (d) Conductance curves G vs. Vief of a 250 nm wide gold-coated
Si-NW in different pH buffer solutions. The transfer curves shift to the right with in-
creasing pH. The threshold voltage Vy, is defined in the subthreshold regime at a
constant conductance value of 20uS (arrow). Inset: Vi, at different pH for Al,O3

(59.5mV/pH) and Au (38 mV/pH). Figures adapted from referencel.
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and none for K*. In the case of pH response (Fig. c) the two different sur-
faces behave the same way. The differential signal (AV}y,) in Fig. e empha-
sizes that only a change in Na* concentration induces a different response of
the two surfaces. Thus a good Na® sensor with high response and specificity
was realized. Further it indicates that protonation and deprotonation of sur-
face hydroxyl groups, as well as their interaction with CI™ is unaffected by
the self-assembly of the crown ethers. In Fig. [£.2]d we propose a functional-
ization scheme where the sulfur-gold binding only happens at non-oxidized
gold atoms (= 99% of the surface), leaving the number of hydroxyl groups
unchanged!V2. Tt is our picture that the crown ether functionalization adds
a third type of surface reaction to the system, without affecting the number
of hydroxyl groups and their interaction with the electrolyte. Thus, the re-
sponse of 15-crown-5 is a superposition of the positive shift coming from
Cl™ adsorption at -OHj sites and Na™ reacting with the crown ether. Sub-
tracting the signal of a control gold-coated NW from an active NW (AVyy,)
reveals the response of the crown ether.

4.3 Methods

Surface Functionalization For immobilization of thiol terminated 15-
crown-5 half of the SiNWs on a sensor chip were covered with 5nm
chromium as adhesion layer and 20nm gold by e-beam evaporation. The
samples were cleaned in O; plasma (Oxford Plasmalab 80 plus, 30W, 45s)
and covered with a PDMS microchannel. The 15-crown-5 molecule, synthe-
sized by Iain A. Wright from the Edwin C. Costable group at the depart-
ment of chemistry, University of Basel was dissolved in ethanol (= 2mM).
The SAMs were obtained by pumping the solution through the (active) mi-
crochannels with long stabilization intervals for 16h. After the functional-
ization the channels were rinsed with ethanol and deionized water.

Characterization of the Gold Surface Fig. shows the response of a
gold-coated SINW to changes in pH and NaCl. The vertical axis shows the
shift in threshold voltage (AV}y,). This corresponds to the difference in sur-
face potential (—AW) since a p-type semiconductor was used. To quantify
the number of hydroxyl groups of the gold oxide we use the full site-binding
model described in section and the model for anion adsorption by pos-
itively charged hydroxyl groups described in section 3.4}

The following expressions describe the reactions at the gold surface. Due
to the amphoteric character of the OH surface groups of the metal oxide
surface, two reaction constants for deprotonation (K,) and protonation (Kp)
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Figure 4.2: Surface functionalization with 15-crown-5 for Na* sensing. (a-c) Vi,
for a 1 um wide functionalized (active) and 400nm wide bare gold (control) NWs
against c[NaCl] (a), c[KCl] (b) and pH (c). The response to NaCl changes with crown
ether functionalization, whereas no difference between active and control NWs is
seen when measuring in KCl and pH buffer solutions. (d) Immobilization reaction
scheme of the sodium selective crown ether on gold. We propose that the thiol only
reacts with (reduced) gold atoms, leaving the number of hydroxyl groups unchanged.
(e) Differential threshold voltage (AV},) of gold-coated NWs (active 15-crown-5 - con-
trol gold) vs. the electrolyte concentration and pH. The crown ether shows high selec-
tivity towards Na*. Figures adapted from reference.
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are needed. A third reaction constant (K/) describes the Cl~ adsorption.

VMeO~ " 4H{

MeOH = MeO™ +HY, K, = (4.1)
VMeOH
v A+
MeOH} = MeOH + HF, Kj = —cOf TH (4.2)
VMeOH5
N _ N + ., VMeOHCI~ apy
MeOHJ +Cl; & MeOHCI™ +H}f, K= —————L (4.3

YMeOH; " 4Cl;
Indices s and b denote surface and bulk. apy+ is the activity of the surface

protons and v is the number of sites per m? for one particular species. The
total number of sites per m? is

Ns = UMeOH +VMeO- +VMeOH] + VMeOHCI- (4.4)

The resulting surface charge density og is screened by the double layer ca-
pacitance per m? Cy leading to the surface potential drop W

00
=T 0T e(VMeOH; ~ YMeO~ ~VMeOHCI-) (4.5)

The parameters were set as follows: K, = Kj = 1077, C4; = 0.16 F/m? accord-
ing toY21, Protonation and deprotonation are equally probable (K, = Kp).
Otherwise a double s-shaped response would be expected, as exemplified
in2Y C4; can be taken as a fixed value since it is dominated by the Stern layer
capacitance which is independent of the ionic strength. Fitting the response
of gold to pH and ionic strength with our combined site-binding model for
Cl™ adsorption (red lines in Fig. results in an estimated surface hydroxyl
group density Ny = 1.5- 107 m~Z and a reaction constant Kl=~2- 1075, Here
N; is = 60 times smaller for Au than for Al;03. Although only few gold sur-
face atoms (=~ 1%) are oxidized, the s-shaped response to pH with a linear
behaviour between pH 4 and pH 8 of ~ 40mV/pH is well described by this
site-binding model. K/ is roughly seven times larger than the value found
for Al,O3 and HfO,2L. This affects the response to C17, where the threshold
of the linear region is shifted to lower electrolyte concentration.

4.4 Conclusion

In conclusion we demonstrate a selective cation sensing by the self-assembly
of Na*-selective crown ethers on gold-coated NWs. In a differential mea-
surement with active and control NWs on the same chip, a response of
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Figure 4.3: Response to pH and ionic strength of a gold-coated SiINW (solid
squares) fitted with a combined site-binding model for protonation, deprotonation and
Cl™ adsorption (red lines). (a) Change in threshold voltage AV;;, vs. pH of a 250 nm
wide wire. From the pH response the number of active hydroxyl groups N is esti-
mated to be 1.5-1017 m~2 which is a factor 60 less than for a Al O3 surface. (b) AVyy,
vs. c[NaCl] for a 300 nm wide wire. Although the number of hydroxyl groups on gold
is significantly lower than on Al O3, a pronounced response to Cl™ is still observed
for gold. Taking the obtained Nj to fit our chloride adsorption model to the response
of gold to NaCl yields a reaction constant for Cl™ adsorption K, = 2 - 1075. Figure
adapted from reference@.
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~ —44mV/dec in the concentration range of 1 mM up to 1 M was achieved.
The response to NaCl is more than an order of magnitude larger than for
KCl, indicating good selectivity. We showed that gold surfaces are slightly
sensitive to changes in proton and Cl~ concentration. Both effects indicate
the small density of hydroxyl groups at the gold surface. We infer from
our measurements that the thiol-gold binding during the SAM formation
happens only at non-oxidized gold atoms, leaving the number of hydroxyl
groups unchanged. As a consequence, the thiol functionalization of gold
does not affect the pH sensitivity and the response to C1™.

Our results underline the importance of monitoring the changes in pH
and ionic strength simultaneously for specific ion-detection experiments. It
enables the distinction of the signal caused by the target analyte and the con-
tributions of the background electrolyte. In this work, this is realized by the
differential measurement setup using the non-functionalized control gold
surface as a proton and chloride sensitive reference electrode. However, the
influence of the background electrolyte only cancels out in the differential
signal, if the functionalization does not change the response to any analyte
except the targeted one. In this respect, the gold surface appears to be an
ideal candidate.
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Real-Time Detection of Protein
Interactions with Gold-Coated SiNW
Biosensors

Detection and quantification of biological and chemical species are central
to many areas of healthcare and research in life sciences, ranging from di-
agnosing diseases to discovery and screening of new drug molecules. Moni-
toring the binding affinities and kinetics of protein interactions is crucial in
drug research. Such information is the key to identify their roles in cellu-
lar function. A real-time transduction of molecular interactions by a sens-
ing device reveals the information on binding affinities %% and offers a use-
ful tool for disease diagnosis, genetic screening and drug discovery.
The search for new therapeutic candidates often requires screening of var-
ious candidates. At present, the state of the art is surface plasmon reso-
nance (SPR), such as Biacore (GE Healthcare). However, this technique
is limited by low throughput analysis and is cost-intensive since it is based
on optical components. It has been shown that SINW FETs can be used as
biosensors to measure protein-ligand interactions. The direct transduction
of the analyte-surface interaction into an electrical signal allows real-time
and high-throughput detection of biomolecules. Attaching the interaction
partner, the so-called ligand directly on the sensor surface allows highly spe-
cific dection without the requirement for any labels1 081109 1y, the past, it has
been demonstrated that SINW FET biosensors can detect biomolecular inter-
actions down to picomolar concentrations 213109 However, most of this re-
search has been focused on reducing the limit of detection. So far, studies on
quantifying the signals - specifically the binding affinities and kinetic data
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- have primarily been done on DNA interaction1? and biotin-streptavidin

interactions?. However, the biotin-streptavidin binding is well-known and
is one of the strongest non-covalent interactions known in nature (its disso-
ciation constant Kp is on the order of ~ 10714 M), Hence, its significance
for interaction studies and benchmark for minimum LOD is questionable.

In this chapter we demonstrate the real-time detection of a physiologically
relevant protein with gold-coated SiNWs. Clear concentration dependent
signals were obtained upon protein injection. The simultaneous measure-
ment of several SINWs in active and control arrays increased the amount of
data and allowed the comparison of different sensor dimensions. Our results
are an important step towards kinetic studies of protein-ligand binding.

5.1 FimH Lectin-Sugar Interaction

For our biosensing experiments we have chosen the physiologically relevant
FimH lectin as analyte. Lectins are highly specific sugar binding proteins
which play a key role in bacterial infectious diseases such as respiratory
tract infections and urinary tract infections. FimH is terminally expressed
on type 1 pili of uropathogenic Escherichia coli, which is the main cause of
urinary tract infections. It enables bacterial adhesion to epithelial cells, the
initial step of infection'12, The molecular pharmacy group of Prof. Beat
Ernst at the Pharmacenter (University of Basel) designed and evaluated high
affinity mannosides for the carbohydrate-binding protein. Derivatives that
antagonize FimH are promising therapeutic agents for the treatment of uri-
nary tract infections. A crucial factor for the efficacy of a therapeutic agent
is the half-life of the drug-receptor complex. Therefore, kinetics of the
binding process and equilibrium dissociation constants are of special inter-
est. Nanowire-based sensors are potential candidates to compete with SPR,
which is widely applied to study these parameters. The possibility for high
integration and up-scaling would speed up the screening of antagonists for
the development of anti-infective drugs.

5.2 Binding Kinetics

The signal upon binding of analyte molecules in solution to an immobilized
ligand on the sensor surface depends on mass transport of the analyte to
the reaction site and on the affinity of the analyte-ligand system. From the
time-dependent signal, the association (k,), dissociation (k;), and equilib-
rium dissociation (Kp) constants can be derived. This information is valu-
able for biomolecular interaction studies in many applications.
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Figure 5.1: Sketch of FimH adsorption on gold-coated silicon nanowires with immo-
bilized mannose linker (GN-DS-154). The control wires are functionalized with lipoic
acid.

The most commonly used model is the Langmuir, which describes a 1:1 in-
teraction where one analyte molecule interacts with one ligand molecule. It
assumes that the binding is equivalent and independent for all binding sites.
Further, the reaction is not limited by mass transport (k, is small compared
to the diffusion of the analyte from the bulk phase to the sensor surface).
The basic equation for a conjugation between an analyte-receptor pair can
be written as follows:

kq
A+B=AB (5.1)

kg
with A being the analyte and B the ligand. AB denotes the bound analyte-
ligand pairs. The equilibrium dissociation constant Kp [M] is defined as:

_ [AlB] _ ka

P AB] kg

The brackets denote the corresponding concentrations in mol/l. Kp indi-

cates the strength of the binding energy between analyte and linker. A

higher Kp means a weaker interaction. The association (k, [M~'s~1]) and

dissociation (k; [s~!]) constants are related to each other by the differential
equation:

(5.2)

d[AB];

dt
where [AB]; is the number of bound analyte molecules per unit area and [B]g
is the areal density of linker molecules. For a sensor, the response signal

=ka-[A]-([Blo - [AB];) —kq - [AB]; (5.3)
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R(t) is assumed to be proportional to the concentration of bound analytes
(R(t) < [AB];) and the maximum response Ry, o [B]yp where all the ligand
sites on the surface are occupied. During the association phase the analyte
in the solution is present at a constant concentration. The sensor signal as a
function of time can be written as follows:

_ [A] ) ka ’Rmax

RO = AT ks + kg

(1 — e~ ([Alkatka)ty (5.4)
Assuming that during the dissociation phase no analyte is present in the
solution ([A] = 0), hence, Eq.[5.3|can be solved by the exponential decay

R(t)=Rg-e kat (5.5)

with Rj being the signal level at the end of association.

Fig. [5.2]a shows the association and dissociation following Langmuir 1:1
kinetics for a system with Kp = 10nM and an analyte concentration of
100nM. Although the affinity is the same, the kinetics strongly depends on
the rate constants k, and k;. Fig.[5.2]b shows how the analyte concentration
(relative to Kp) affects the response.
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Figure 5.2: Theoretical plots of the Lagmuir 1:1 adsorption model. (a) Response in
percentage of R,y (all ligand sites occupied) vs. time for a analyte-ligand interaction
with Kp = 10nM. Different kinetics can result in the same affinity. (b) Response for

ks = 106M s, kg = 1072571 at different analyte concentration. The occupancy at
equilibrium depends on the bulk analyte concentration relative to Kp.

In equilibrium d[AB]/dt = 0, the ratio of occupied ligands is given by:

[AB]eq 4]
(Blo  Kp+[A]

(5.6)
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Hence, the Kp determines the occupancy of the ligand sites at a certain an-
alyte bulk concentration. As exemplified in Fig. the sensitive concen-
tration range and the limit of detection depend on Kp of the analyte-ligand
interaction.
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Figure 5.3: Theoretical plot of the surface coverage vs. analyte concentrations for
different equilibrium dissociation constant (Kp) values.

5.2.1 Two-Compartment Model for Transport Limited Kinetics

In the case of strong binding affinity, the transport of the analyte to the re-
action site starts to be a limiting factor. A typical model to describe this
so-called transport limited regime is the two-compartment model 1014, 1f
the association of proteins to the surface is faster than the diffusion of pro-
teins to the proximity of the surface sites, a depletion zone will be formed,
where the local concentration of the analyte is lower than in the bulk. In
reverse, in the dissociation phase a retention zone is present close to the sur-
face sites that allow dissociated analytes to rebind to empty surface sites.
This additional two-compartment reaction can be described as follows:

3y k
A= A,+B=AB (5.7)

ka
where A; denotes the analyte surface concentration and kj; the effective

transport rate constant in [M/s]. The reaction rates for A; and AB are de-
fined as follows:

d[Als

2 = kur([A] - [AL) - kel AL([Blo - [AB) + k4[AB]  (5.8)
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d[AB] _
dr

Appendix [C| shows a model system where the influence of kp; and [B]g is
illustrated.

ka[Als([Blo - [AB]) - ka[AB] (5.9)

5.3 Methods and Materials

5.3.1 Linker Immobilization

The sensor surface was cleaned in UV-ozone for 20min and enclosed by the
PDMS microchannel, separating the chip in active and control channels. The
channels are then rinsed with ethanol for ~ 30 min.

The active linker, synthesized by Giulio Navarra from Prof. Beat Ernst’s
group (molecular pharmacy, University of Basel), was dissolved in ethanol
(2mM). The control channel was treated with lipoic acid dissolved in ethanol
(2mM) (see Fig. . The microchannels were flushed with 200 ul of the re-
spective solution, then 200 ul were slowly injected over = 15h using a syringe
pump. After the functionalization, the channels were washed with ethanol
before the PDMS microchannel was removed for the measurement.

5.3.2 Protein and Buffer solution

The protein solutions were provided by the molecular pharmacy group.
FimH-CRD-Th-6His!1> has a molecular weight of 18.6kDa. Concentra-
tions from 1pug/ml up to 50 ug/ml (54nM - 2.7 uM) were used. 10mM
HEPES at pH 8 was used as buffer solution. HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid) is a zwitterionic organic chemical buffering
agent which is widely used. A long Debye length is preferred for the detec-
tion of large molecules. An intermediate ionic strength was chosen to have
a well buffered solution and a Debye length of > 3nM. The theoretical iso-
electric point of the FimH protein is at pH 6.7, so the protein is negatively
charged in pH 8 buffer solution.

5.3.3 Sensing Mechanism and Device Calibration

In order to obtain the kinetics of the analyte-ligand binding, time depen-
dent measurements were performed. The SINWs were operated in the linear
regime (by applying a constant negative voltage to the reference electrode)
while I;; was recorded. At constant flow (= 26 ul/min), the buffer solution
was pulled through the liquid cell. FimH at different concentrations was
injected by changing the switching valve.



Results and Discussion

Changes in surface potential shift the threshold voltage (AV;y) which
changes I;5. The relation is given by the transconductance g, according
to

% _ %[B]ox _ 4] (5.10)

— AWy = AVy, = o+ [A]

Here g4 is the electric charge given by an adsorbed analyte and Cj is the
capacitive coupling (in [F/m?]) between the charge of the analyte molecule
within the double layer and the bulk solution. It is influenced by the double
layer capacitance and hence dependent on the ionic strength of the buffer.
gm was determined through I;4-V, ¢ measurements of each SINW 16l Using
this conversion the signal is no longer a function of the FET performance
and only depends on AW, induced by the analyte.

5.3.4 Surface Regeneration

Regeneration is the process of removing bound analyte from the sensor sur-
face after a measurement to prepare the next analysis cycle. Ideally regener-
ation removes analyte from the ligand without changing the ligand density
or activity. Efficient regeneration is important for the lifetime of the sensor.
Incomplete regeneration or loss of the surface binding activity lowers the
density of free linker sites and, hence, the maximum signal range.

Regeneration was accomplished by denaturing the structure of the ana-
lyte. Usually strong bases or acids as well as detergents are used to denature
proteins. However, since pH also affects the surface potential of the gold-
coated nanowires, we chose concentrated urea (6 M) as regeneration solution,
since pH was similar to the running buffer.

5.4 Results and Discussion

Fig. [5.4]a presents the real-time sensor response of five different SINWs of
the same array to 20 yg/ml FimH. The measured Al has been normalized
by Al;;/gm to obtain the change in surface potential. The response among
the different wires is very similar, although the individual drifts do not cor-
respond. The total response based on association is ~ 20mV. No equilibrium
state was visible after 10min of FimH injection. After switching back to
running buffer, a clear decrease in signal was observed. However, the signal
seems to saturate above the original baseline, which indicates that no com-
plete dissociation of FimH proteins occurs. Surface regeneration with 6 M
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urea strongly affects the surface potential due to the high concentration and
slight variation in pH.

Fig. [5.4]b shows the response of a SINW for three different FimH concen-
trations. 10 ug/ml, 20 pg/ml and 50 ug/ml were used, which corresponds to
~ 0.55uM, 1.1 uM and 2.75uM. A straight line, taken from the 400s prior
to the binding event, was subtracted from the data to take out the drift and
set the baseline to zero. Time= 0 is defined as the onset of FimH adsorption,
which occured 405 after switching the valve. The response to FimH is clearly
concentration dependent. During adsorption a pronounced kink is visible.
A possible explanation for the change in kinetic is mass transport limitation,
which occurs if the association rate is faster as the diffusion of the proteins to
the ligand sites. Such phenomena occur if the ligand density on the surface
is extremely high or the solution flow rate is too low. The change to running
buffer is indicated by the dashed lines. The dissociation is similar for all the
concentrations.

A different measurement is shown in Fig. [5.4]c and d. The two figures
compare the response for a 1 ym and a 25 ym wide SINW. Here the kink in
the adsorption is less pronounced. Also the dissociation was not the same
for the different concentrations, which can be associated with a change in
baseline drift. The dashed lines in Fig. [5.4]c show the response of a control
SiNW functionalized with lipoic acid. No protein interaction was observed,
indicating an absence of nonspecific binding to the control wires. For SINWs
of different widths the response was of the same strength. However, the
signal-to-noise ratio is better for the lager sensor surface, as predicted by the
noise analysis measurements in section Fig. (in the previous section
shows the RMS noise for the baseline in Fig. [5.4]c and d. Taking these
values a SNR of more than 600 was achieved for the 25um wide SiNWs.
Surface contaminations or moving air bubbles in the liquid cell can disturb
the gating and induce additional noise. This was observed for the 10 yg/ml
signal in Fig. [5.4]d, where kind of two level fluctuations occur and vanish
over time.

5.4.1 FimH Adsorption Kinetics

The clear signals from FimH adsorption allow the investigation of the bind-
ing kinetics. To compare and validate our signals, similar measurements
were performed in a commercial Biacore system. The Biacore chip function-
alization had to be done slightly differently. A sensor chip with bare gold
surface was used. A monolayer of 16-Mercaptohexadecanoic acid (MHDA,
2mM in Ethanol over night) was used as surface linker. In a second step the
ligand was immobilized by amine coupling in borate buffer at pH 8.5. We
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Figure 5.4: Measurements of FimH-ligand binding on gold-coated SiNWs. (a) Real-
time sensor response (AW = I;3/g,) for five different SiINWs of the same array upon
injection of 20 ug/ml FimH, running buffer and surface regeneration (indicated by
background color). (b) Response of a 25 um wide SiNW for different FimH concentra-
tions. A straight line, defined from the 400s prior to the binding event, was subtracted
to take out the drift and set the baseline to zero. The time at which the protein injec-
tion is stopped is indicated by the grey dashed line. In a different measurement (c,d)
the response of neighbouring SiNW of different width for three FimH concentrations
is compared. The response is similar, but the signal-to-noise ratio is clearly increased
for the larger sensor area. The dashed lines in (c) show the response of the control
gold-coated SiNW. No protein interaction is observed for the lipoic acid functionalized

SiNWs.
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expect that the ligand density on the Biacore chip is lower as compared to
the SINW surface due to the two step surface functionalization. Further, the
space between the linkers is different. Whereas we expect the Biacore chip
to be covered with a densely packed monolayer of MHDA, the linkers on
the SiNWs are surrounded by gold. Fig. [5.5|compares the kinetics from the
two different measurement systems. Since the same ligand was used, similar
kinetics was expected. However, some clear differences were observed.

Fig. [5.5]a shows the real time SINW sensor response for 50 ug/ml FimH.
The data was fitted using the two-compartment model (Eq. and [5.9).
Including the mass transport limitation the association can be fitted reason-
ably well. Hence, the kink in the association could be attributed to a limited
mass transport. With k, = 104 M-1s1, kg =4 1072571, ky =5- 1073571 and
[Blop = 6-10"¥ m~2 we find a binding equilibrium constant of Kp = 4 M.
However, the model cannot explain the dissociation adequately. The initial
fast dissociation indicates more complex binding kinetics or an additional
signal from nonspecific binding. Fig. [5.5]b shows the Biacore data and the
corresponding fits. The reference data from the control channels has been
automatically subtracted. The association time scale is comparable to the
SiNW measurement. At 600s the protein injection was stopped and the sig-
nal did not saturate at the given concentrations. No kink is visible, which
can be explained by the lower ligand density and the more sophisticated liq-
uid delivery system as compared to our system. However, after 600s the
signal is almost flat, indicating an extremely low dissociation rate. Since no
equilibrium was reached, Kp can not be determined exactly. Nevertheless,
the fits to the Biacore measurement indicate an equilibrium constant in the
low nanomolar range.

The discrepancy between the two different measurement methods could
have various explanations. First, the sensing mechanism is not the same.
While the SINWSs sense charges localized within a few nm from the surface,
Biacore is based on surface plasmon resonance which measures the change
in resonance frequency upon mass adsorption to the surface. The dept of
the evanescent wave is roughly two orders of magnitude larger as the debye
length, which results in a different sensitivity on analyte distance to the sur-
face. Conformation changes of the adsorbed proteins and ligands due to mu-
tual interactions could lead to different signals. Second, the different surface
functionalization could have an effect on non-specific protein adsorption. In
the case of the SINW sensor no background signal was subtracted, since the
control SiINWs showed no response. However, the control surface (SAM of
lipoic acid) is negatively charged at pH 8 and repulses the negatively charged
proteins. In case of the active SiNWs the gold surface surrounding the lig-
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ands is expected to be neutral (PZC ~pH 8), so nonspecific adsorption of
proteins on the gold surface is likely to occur along with the protein linker
interaction. This would lead to a superposition of two signals with different
kinetics, which makes it impossible to extract the true rate and equilibrium
constants. Research is ongoing to isolate and reduce non-specific binding by
comparing different surface functionalizations with no or very low affinity
to FimH.
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Figure 5.5: FimH binding kinetics. (a) The 50 ug/ml signal from Fig. Hb fitted
with the two-compartment model (dashed red line) with the following parameters:
ky=10*M1s™, k;=4-10"2s71, kpy; =5-1073s7! and [B]g = 6- 1018 m~2. (b)Biacore
control measurement. A Biacore sensor chip Au (gold surface) was functionalized
with the same ligand as it was used as in the nanowire experiment. However, the im-
mobilization was done in a two step reaction (amine coupling to MHDA). The real-time
response is given in response units (RU). At 600s the protein injection was stopped.
The fitted curves are shown in black.

5.4.2 Competing Surface Reactions

In section we have seen that competing surface reactions of other
species than the analyte can limit the sensitivity of the sensor. The compet-
ing adsorption reactions of the individual species are coupled via the surface
potential. In our case of gold-coated BioFETs the response to pH affects the
response to FimH proteins. Only due to a very low pH response we were
able to detect clear signals from FimH adsorption.

Fig. [5.6]a shows the pH response for gold-coated SiNWs functionalized
with the ligand with high affinity to FimH. Due to harsh surface treatments
(cleaning and functionalization) in between different measurements, the
gold film on the SiINW surface was altered. Thereby the pH response var-
ied for the different measurements. Since the FimH measurements were per-
formed at pH 8 we are interested in this pH range. The pH response (linear
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fit from pH 5 to pH 10) varies from ~ 19-29mV/pH. With the extended site
binding model where the FimH ligands are included (FimH concentration is
set to ~ 0M) the pH response of the functionalized gold surface can be fitted
to extract the density of hydroxyl groups (Ng). We find that N changed by
roughly a factor of two.

Fig. [5.6]b compares the FimH response of the respective measurements.
For the increased N; the FimH response was clearly reduced. The data sup-
ports the model of competing surface reactions, which is shown in Fig. [5.6Jc.
It shows an example value for the response to FimH at a ligand density of
3-10'%m=2 and Kp = 333nM for two different N, at pH 8. The curves
denote the change in surface potential at equilibrium. With increasing N
the response decreases. Simultaneously the sensitive concentration range
becomes narrower. Fig. b and c agree qualitatively. However, since no
equilibrium was reached in the FimH measurements, the signal ratios cannot
be compared accordingly. The bottom line is that the FimH signal increases
for a low pH response. This holds for any ISFET system, where decreasing
the number of surface sites of a competing reaction enhances the response
to the targeted analyte.

5.5 Conclusion

We have successfully demonstrated the use of gold-coated SiNWs as biosen-
sors by the detection of FimH, a physiologically relevant protein which plays
a role in bacterial urinary tract infections. Real-time detection without la-
belling was achieved at a very high signal-to-noise ratio. The SNR is shown
to increase with +/area (see section which is an important aspect for the
design of a biosensor with high device density. The use of gold as surface
material has two tremendous advantages as compared to oxides. First, the
pH response is strongly reduced which enables the detection of other species
than protons. Second, surface functionalization of gold has been extensively
investigated which simplifies the development of protocols for ligand immo-
bilization on the sensor. Being able to observe association and dissociation
enables the use of BioFETs as affinity sensors. However, the accurate deter-
mination of the protein binding affinity and kinetics was not possible when
comparing the data with Biacore measurements. For this purpose further
control measurements are needed to rule out superimposed signals (e.g. by
nonspecific adsorption on gold).

There is significant room for improvement. On the one hand modifying
the surface functionalization to minimize the mass transport limit and non-
specific adsorption. On the other hand, a more sophisticated liquid handling
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Figure 5.6: Competing surface reactions. (a) pH response (AV;, vs. pH) for gold-
coated SiNWs functionalized with FimH ligands. The two different datasets show the
same sample measured after different FimH measurement series. The lines corre-
spond to the site binding model at different hydroxyl group density N; ( pK, = 9,
pKy = 7). Depending on N the linear response around pH 8 varies from ~ 19 mV/pH to
29mV/pH. (b) Real-time sensor response for 10 ug/ml FimH. The curves correspond
to the same functionalized SiNWs as shown in (a). The response to FimH is clearly
increased by roughly a factor of two when Nj is low. However, the wire showed in-
creased noise during this measurement. These voltage fluctuations were most prob-
ably induced by air bubbles. (c) Theoretical FimH response at equilibrium for vari-
ous FimH concentrations based on the site binding model at two different hydroxyl
group densities (Ng). On the basis of the pH and FimH measurement the following
paramerters were chosen: Njjgand = 3- 1016 m2, Ng=1- 1017 m=2 and 4.6-101°m~2,
C41=0.1Fm~2,Kp = 333nM and pH= 8.
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system would improve the reproducibility. Especially by replacing the flow
cell with a microchannel system the flow speed and hence the mass trans-
port increases drastically, while the total volume of the analyte solution can
be reduced.

Based on these results we think that SINW FETs have a great potential to
be used in disease diagnosis and drug discovery. The large scale integration
of SiNW arrays at low cost makes a good case for using biosensors based on
silicon nanowires.



Additional Investigations

6.1 Selective Potassium Sensing with Oxide-coated
SiNWFETs

In the last two chapters we demonstrated specific sensing of alkaline ions
and proteins with gold-coated SiNWs. In addition, we also achieved potas-
sium ion sensing on Al,O3 and HfO; surfaces using two different ap-
proaches: In the first place, a non-covalent surface modification where the
SiNWs are covered by a water permeable membrane with embedded ion
traps. Second, silanization of the oxide surface and the subsequent attach-
ment of a crown ether.

Al,0O3 and HfO, surfaces usually show a high response to pH, which com-
petes with the signal from the targeted species (see section|1.2.4). Though, at
reduced pH response (< 40mV/pH) detection of other species than protons
is possible, as shown in the following section. Using silanes as surface mod-
ification, the number of surface hydroxyl groups gets reduced. However,
this is not the case when using membranes. The following example shows a
sensor with a reduced pH response (see Fig. [6.2]c, ~ 40mV/pH), which was
probably due to etching of the Al,O3 surface at basic conditions.

6.1.1 Potassium lon-Selective Membranes

To get a non-covalent surface modification, we functionalized Al,O3-coated
SiNWs with Valinomycin ionophores embedded in a polyvinyl chloride
(PVC) membrane to achieve a specific potassium ion (K+) sensing. We
demonstrate a response of ~ 38mV/decade for increasing KCl concentra-
tion. Having both functionalized and uncovered SiNWs (control) on the
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same sample allows us to monitor the contribution of the background elec-
trolyte. Thereby, we can extract the signal caused by the targeted potassium
ion. Control measurements with MgCl, and pH demonstrate the selectivity
of the ionophore. These results have been published in referencel 16l

Surface Functionalization

For the PVC membranes a mixture of Valinomycin (1.3%), polyvinyl chloride
(PVC, 30.4%) and Bis(1-butylpentyl) adipate (BBPA, 68.3%) was dissolved in
cyclohexanone (50%) and tetrahydrofuran (THF, 50m%). All chemicals were
purchased at Fluka. This mixture was deposited on individual NW arrays
of UV/ozone treated samples (20min) by microdrop functionalization with
a hamilton syringe (=~ 0.2ul). The membranes were then cured for 24h at
50°C. As highlighted in Fig. [6.]a, only two of the four arrays of NWs were
covered by the membrane. The two uncovered arrays were used as a control.

¢ [KCl] —— 1mM
——20mM

——100mM PVC membrane +
Valinomycin

K oL
T DXNN
J
M

PVC membrane
with valinomycin

Figure 6.1: (a) Optical image of a sample with four arrays consisting of 12 NWs af-
ter functionalization. Two arrays were covered by PVC membranes with Valinomycin.
The two other uncovered arrays contain NWs with bare Al O3 surface used for control
measurements. Inset: Zoom of a control array revealing three NWs and the aligned
liquid channel on top of the wires. (b) Conductance G vs. V,ef for a NW covered by
the PVC with Valinomycin. The curves shift to the left for increasing salt concentra-
tion. Inset: Schematics of Valinomycin embedded in a PVC membrane on a NW. Figure
adapted from reference 116

Results and Discussion

By micro-drop functionalization of single SINW arrays with the ionophore
embedded in the PVC membrane, the SiNWs become sensitive to potas-
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sium ions (K*). Fig. b shows the subthreshold conductance G of a
Valinomycin-coated NW against the liquid potential Vs in KCI electrolyte
solutions with different concentrations. The transfer curve shifts to the left
with increasing KCl concentration. Since the NW ISFETs are p-doped and
operated in accumulation, the shift of the transfer curve to the left indicates
adsorption of positive charges at the surface. To compare the functionalized
SiNWs with the control SINWs we use the threshold voltage V;j, as a figure
of merit. The threshold voltage is defined at a constant value of G =10nS as
indicated by the black arrow in Fig. [6.1]b.

Fig. [6.2]a shows the shift in threshold voltage V;j, with increasing KCI
concentration for a Valinomycin-functionalized SiNW and a control SINW.
Solid squares correspond to Valinomycin coated SiNWs, which show a neg-
ative shift with increasing KCl concentration due to K* adsorption. Empty
squares show the response of a SINW with bare Al,O3 surface of the control
array. We attribute the positive shift at concentrations above 10mM to un-
specific chloride adsorption at the oxide surface (see section [3.4). To inves-
tigate the specificity of the ion-binding membrane in more detail, a control
measurement with MgCl; solutions was done, shown in Fig. [6.2]b. Both Vali-
nomycin coated wires (filled triangles) and control wires (empty triangles)
show a positive shift in V;, with increasing MgCl, concentration, indicat-
ing adsorption of CI~ according to the model described in section This
shows that the PVC membrane is permeable to C1™ ions. Hence, the mem-
brane does not passivate the oxide surface against the adsorption of chloride
ions. A similar behavior is observed when repeating the measurement with
different pH solutions (Fig. [6.2]c). Both surfaces respond in the same way,
hence the ionophore PVC membrane is also permeable for protons. To obtain
the response of the membrane we have to subtract the contribution of this
two species from the measured signal. As a figure of merit, we therefore use
the differential shift in threshold voltage AVy, = Vijvalinomycin — Vi;control
as shown in Fig. d. A response of —38mV/decade to a change in K*
concentration is achieved. The differential threshold data for MgCl, in Fig,
emphasizes the insensitivity of Valinomycin to Mg2*. Also, the second
control measurement with varying pH confirms the high selectivity of the
ionophore.

6.1.2 Covalent Surface Functionalization with Crown-Ethers

In a series of experiments, SINWs with Al,03 or HfO, surface were mod-
ified with a 18-crown-6 ether which is meant to be selective towards K*
ions. To achieve covalent bonding, the oxide surface was activated by UV-
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Figure 6.2: (a) V;, for a Valinomycin-functionalized NW and a control NW with bare
oxide surface vs. increasing KCl concentration. While the control shows the charac-
teristic shift towards positive Vyj, indicating anion adsorption, we observe an opposite
behavior for the ionophore-covered NWs. (b,c) Control measurements for increas-
ing MgCl, concentration and for solutions with increasing pH demonstrate the good
selectivity of the ionophore towards K* ions. (d) Subtracting the signal of the control
NW from the signal of the Valinomycin coated NW (Vip.valinomycin = Viicontrol) reveals
the high response to KCl and no response to MgCl; and protons. Figure adapted from
referencell16
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ozone and silanized with (3-Glycidoxypropyl)triethoxysilane (GOPS) by lig-
uid phase deposition (Fig. [6.3]a). This results in a monolayer displaying
epoxy moieties which allow the attachment of the amine terminated 18-
crown-6 ether. Using a PDMS microchannel the samples were divided in
active and control SiNWs, at which all SiNWs were silanized with GOPS
and the 18-crown-6 ether was only on the active SiNWs. The samples
were tested against KCl and NaCl solutions showing a good sensitivity to-
wards K* ions (and only a weak response to Na* ions). Fig. b shows
AVin = Vi, active oxide — Vih, control oxide Of a sample with HfO; as dielectric
material. The differential signal shows a linear response of ~ —33mV/dec
towards K* ions and almost no response to Na*t. It is known that the se-
lectivity of crown ethers is limited. A weak affinity to several other types
of alkaline ions is therefore not unexpected 2118, Dye to the silanization
the number of free surface hydroxyl groups and hence the pH response is
reduced. Both active and control SINWs show ~ 38 mV/pH.
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0 o 0 oy P
OH OH OH d )QO o) \‘\ KCl
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Figure 6.3: Surface functionalization for specific potassium ion sensing. (a) Im-
mobilization reaction scheme. Silanization of a Al,O3 or HfO, surface with (3-
Glycidoxypropyl)triethoxysilane (GOPS) as a first step. In a second reaction, the
potassium selective crown ether 2-aminomethyl-18-crown-6 is immobilized by an
epoxy-amine reaction in aqueous basic conditions. (b) Differential threshold volt-
age AVyy, of HfOp-coated SiNWs vs. electrolyte concentration. For KCl (circles) a
response of ~ —33mV/dec is observed, whereas for NaCl (squares) the response is
~-5mV/dec.

6.1.3 Conclusion of Potassium Sensing

In conclusion, silicon nanowire field-effect transistors were modified for al-
kaline ions recognition. We show selective potassium ion sensing with high
response of 30—40mV/decade in the concentration range of 1mM up to 1 M.
The response for the target analyte is almost an order of magnitude larger
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than for the control species. We find that the PVC membrane is permeable
for chloride ions and protons. This means that the hydroxyl groups of the
oxide surface can still interact with H" and Cl~ when measuring in KCl so-
lution and influence the response of the sensor. Thanks to control SiNWs,
we are able to subtract this background contribution to reveal the signal
caused by the specific adsorption of potassium ions. The covalent attaching
of crown ethers reduces the number of active surface hydroxyl groups. This
has to be considered when using a differential measurement setup. How-
ever, by the self-assembly of GOPS on active and control SiNWs, the number
of hydroxyl groups is reduced similarly.

This results show the potential of nanostructured ISFETs covered with
membranes or covalently bound crown ethers for specific ion detection. Fur-
thermore we demonstrate the importance of differential characterization.

6.2 Liquid Phase Surface Passivation

To passivate individual SINW arrays on our sensor we tested liquid phase
passivation of HfO-coated SiNWs. As described in section [3:3.1] we mod-
ified the surface by a SAM of octadecyldimethylmethoxysilane. Instead of
vapor phase, we did liquid phase deposition of the silane molecule by drop-
based functionalization. Therefore, the samples were cleaned in UV-ozone
(20min) and afterwards covered by a silane drop of ~ 250 ul. To avoid evap-
oration of the silane, the sample was stored in a desiccator under N, atmo-
sphere with a reservoir of exessive silane inside. The dessicator was stored
at room temperature for several days.

We found a fully passivated surface after 114h reaction time. Fig. [6.4]a
shows the pH response for a clean and passivated SiNW. Testing the chip
against different electrolyte concentrations showed that also the nonlinear
response to different salt concentrations becomes flat upon passivation (Fig.
[6-4]b shows the response to KCI). This supports our model of anion adorp-
tion described in section [3.4] The reduction of surface hydroxyl groups due
to silanization reduces the binding sites for protons and anions.

Using the liquid method in combination with PDMS microchannels to
passivate SiINWs individually, could result in on-chip reference electrodes
for differential pH sensing.
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Figure 6.4: Surface passivation by liquid-phase silanization. A HfO,-coated SiN-
WFET chip before (squares) and after 114 h passivation (circles) (a) Change in thresh-
old voltage vs. pH. The pH response is clearly reduced after passivation. (b) AVyy, vs.
KCl concentration. The reduction of hydroxyl groups also suppresses the response to
salt concentration.
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Conclusions and Outlook

In this work we have established a versatile sensor platform based on SINWs.
The sensor functionality was changed by surface modification for the de-
tection of various analytes such as pH, alkaline ions and even FimH pro-
teins. We achieved an ideal pH sensor with a response close to the Nernst
limit. Full surface passivation for protons was accomplished for the imple-
mentation of a nanoscale reference electrode. Using the differential signal
from differently functionalized SiNWs we could detect sodium and potas-
sium ions selectively. Ultimately we present the detection of protein-ligand
interactions of the physiologically relevant protein FimH. An extended site-
binding model was derived to calculate the theoretical limits and assess the
properties of the surface groups by evaluating the experimental results.

In conclusion we find that transducers based on ion-sensitive silicon
nanowire field-effect transistors are in a promising stage for the realization
of highly integrated biochemical sensors. The basic element is a reliable
FET, showing a good transconductance (low subthreshold swing, extended
linear regime, high on-off current ratio) which is achieved by maximizing the
gate capacitance, while keeping the leakage current across the gate oxide at
the minimum. The semiconductor-oxide interface quality is crucial, since
charge trap states are the main source of electronic noise in ISFET devices.
Studying SiNWs of different dimensions showed that larger sensor areas are
beneficial in terms of signal-to-noise ratio, which is the basis for a good sen-
sor performance. While the electronic noise decreases for larger structures,
we find no effect on analyte response for the range of structure sizes used in
this work. In contrast, the response is given by the surface properties such as
the density and equilibrium constants of the active and competing surface
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groups. We find that gold is a good surface material due to its low density of
competing hydroxyl groups and the easy functionalization with thiol-based
chemicals. However, for proton sensing Al,O3 and HfO, are to favour, given
that both materials show a high pH response close to the Nernst limit. For
all surfaces the response to the electrolyte background has to be considered.
We find a strong nonspecific adsorption of anions on all surfaces contain-
ing hydroxyl groups which has to be considered for any biochemical sensing
experiments.

The largest drawback of present ISFET sensors remains the reference elec-
trode which is needed for a well defined liquid potential. Due to the size of
commercial reference electrodes, the miniaturization of the liquid delivery
system is limited. As we have seen, the fluidics play a major role regarding
the stability and kinetics of a signal. Larger volumes limit the time scales and
therefore the stability of the measurement since long time drift and induced
air bubbles add additional noise to a signal baseline. However, measuring
differential signals by using reference SiNWs could overcome the need for a
true reference electrode. Another important aspect of BioFETs is the charge
screening at high ionic strength. Most experiments are carried out at low
or intermediate buffer concentration. For the reliable and accurate detec-
tion of large biomolecules under physiological conditions, new strategies for
increasing the signals are needed.

Concerning the perspective for chemical sensing, we have achieved further
results with calcium and fluoride ion selective linker molecules. Based on
these results the influence of competing surface reactions will be studied in
more details. The fact that ion selective molecules do not show full selec-
tivity can be used for cross-reactive sensor arrays 12420, A large number of
sensors with different selectivity to a large variety of chemical species could
allow the detection of a broad range of molecules by using pattern recogni-
tion methods. To achieve the ultimate goal of a multifunctional sensor, dif-
ferent surface functionalization methods have to be considered. A feasible
tool for local surface modification is micro drop printing. A different ap-
proach instead of direct detection of charged analytes is to detect secondary
signals from binding reactions, such as protons. This has been successfully
demonstrated for DNA sequencing 1812l and glucose sensing!22123. Fur-
ther, covering ISFETs with membranes with embedded channel proteins can
be used to control the flow of specific ions124,

A further step towards integration of many sensors has been done by our
project collaborators. Paolo Livi from the Bio Engineering Laboratory at D-
BSSE (ETH) has developed a CMOS chip for the current readout of our 48



SiNW sensor chip122l120, Having fast and parallel readout including dig-
italization on chip we can avoid the use of external electronics. This is an
important step towards multiplexed sensing with highly integrated struc-
tures which can be produced at reasonable costs'2Z. For the integration of
a large number of transistors the question arises whether a local transistor
underneath the sensing surface is needed. In a study by Guan et al.12%, off-
chip extended gate field-effect transistors were used for pH sensing. This
approach could be adopted for the gold-coated SiNWs to simplify the sensor
design for a high sensor density device. However, it has to be considered
that the capacitance of the sensing area has to be much larger as compared
to the leads and FET capacitances.

Using the unique electronic properties of graphene as field-effect sensors
can have several advantages compared to silicon. Graphene is intrinsically
insensitive to pH%” and can be used as reference electrode. By noncova-
lent functionalization of graphene specific analytes can be detected while
the electrical properties of graphene are preserved?”. Since no gate oxide
is needed, variations in surface potential and double-layer capacitance can
be measured simultaneously 122130, This additional quantity gives further
information on electrolyte concentration and binding-adsorption kinetics.
Further, the electronic properties of graphene allow high-frequency mea-
surements in the gigahertz regime'?. Reaching time resolutions in the range
of nanoseconds can provide insights in double-layer formation and binding
kinetics 131,

Considering recent scientific progress in the field of ISFETs and moreover
the achievements within this project, FET based sensors show great promise
for their use in healthcare and environmental industry.
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A

Fabrication Protocols

The fabrication protocol is taken from the PhD thesis of Kristine Bedner/6?

Device Fabrication

SOl wafer characteristics

Wafer: 8" silicon-on-insulator (SOT)

Supplier: SOITEC France

Device layer:

Orientation: (100)

Dopant: p-type, boron

Resistivity: 8.5-11.5Qcm

Thickness: 88nm

Buried oxide (SiO)

Thickness: 145nm

Silicon handle wafer:

Type: CZ, p-type

Resistivity: 8-22Qcm

Thickness: 725 pm
Thinning

* 1. Sample cleaning

— Piranha solution: HyO7:HSOy4 - 2: 1, for 10min at 95°C

101



102

Appendix A Fabrication Protocols

- HF dip

2. Thermal oxidation of silicon device layer

Alignment marker fabrication

* 1. Spin coating:
PMMA 672.11, 1500rpm, thickness = 3 ym
Bake on hotplate for 5min at 175°C
Gradual cooling of the sample to avoid cracks in PMMA
2. Electron beam lithography: Vistec EBPG 5000*
Resolution = 0.03 ym, beam step size = 0.03 ym
Beam current = 150nA, dose = 1000 uC/cm?
Marker size: 10 ym x 10 ym

3. Development: Hamatech
IPA:MIBK - 3:1, 2min, rinse in IPA 30s

4. Reactive ion etching (RIE): Oxford RIE 100

Top SiO5: CHF3 12sccm, Ar 38scem, 30mTorr, 100W, 300K,
Vpc =485V for 2min

Device Si layer: CHF3 12sccm, SFg 4sccm, Oj 3scem,
50mTorr, 100W, 300K, Vpc =365V for 5min

Buried SiO,: CHF3 12sccm, Ar 38sccm, 30mTorr, 100W,
300K, Vpc =485V for 8min

Si handle wafer: CHF3 30sccm, SFg 30sccm, O; 2scem,
50mTorr, 100W, 300K, Vp¢ =365V for 21 min

Resulting alignment marker depth: ~ 1 ym

5. Sample cleaning: Remove PMMA in acetone and then in Piranha
solution HyO:H;SO4 - 2: 1 for 10min at 95°C Piranha

Electron beam lithography: Device pattern

e 1. Spin coating:
Ti primer, 4000rpm, bake for 1 min at 110°C
nLOF:EBR : 4, 4000rpm, bake for 1 min at 110°C

2. Exposure:

SiNWs: Resolution = 0.005 ym, beam step size = 0.005 um,
beam current 2nA, dose 180 yC/cm?
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— Large structures: Resolution = 0.005pum, beam step size =
0.03 ym, beam current 50nA, dose 165 uC/cm?

3. Post exposure bake: 1 min at 110°C
4. Development: AZ MIF 826 for 25s, rinse in DI-water

Device etching

1. RIE etching of SiO, top oxide: Oxford RIE 100; CHF3 12sccm,
Ar 38sccm, 30mTorr, 100W, 300K, Vpc =485V for 27s

2. Buffered HF dip to remove remaining oxide

3. Chemical wet etching of Si device layer: Tetramethylammonium
hydroxide (TMAH) and IPA (10vol%) for 2min at 45°C

4. Sample cleaning: Piranha solution HyO,:HSO4 2 : 1 for 10min
at 95°C

Contact fabrication |

1. Spin coating PMMA 672.08, 3000rpm, bake for 30min at 175°C,
gradual cooling of the sample

2. Electron beam lithography: Vistec EBPG 5000

— SiNWs: Resolution = 0.005ym, beam step size = 0.005 ym,
beam current 2nA, dose 850 yC/cm?

— Large structures: Resolution = 0.005um, beam step size =
0.03 ym, beam current 190nA, dose 850 uC/cm?

3. Development: Hamatech; IPA:MIBK 3 : 1 2min, rinse in IPA 30s

4. Jon implantation at Ion Beam Services (IBS), Peynier, France; BF;,
energy = 43keV, dose = 2.3-101% cm~2

5. Removal of PMMA implantation mask in acetone

6. Sample cleaning: RIE O;, 40sccm, 200mTorr, 30W, afterwards
Piranha solution

7. Thermal activation of dopants: PPC Process Product Corporation
annealing oven; annealing for 6min at 950°C in forming gas and
N3
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Appendix A Fabrication Protocols

RCA cleaning and ALD deposition

A

Piranha solution HyO,:H»SO4 2: 1 for 10min at 95°C

Buffered HF for 35s to remove thermal top oxide layer

RCA 1 cleaning: HyO:H>O2:NH4OH 20:4: 1 for 10min at 65°C
Buffered HF dip

RCA 2 cleaning: HyO:H7O,:HC1 20:1: 1 for 10min at 65°C

Atomic layer deposition (ALD) at 225°C for Al,O3 and at 200°C
for HfO,

Contact fabrication Il

Gk e =

Dehydration bake for 10min at 200°C
Spin coating: HMDS, 4000rpm, bake for 1 min at 110°C
Optical lithography: Karl SAijss MJB 3, 65
Development: AZ MIF 826 for 80s
Opening of the contact window in the gate oxide:

- Al,O3 200 deposition cycles: Buffered HF 35s

— HfO; 200 deposition cycles: Buffered HF ~ 5min

Metallization by electron beam evaporation (BAK 600), AlSi (1 %)
300nm

7. Lift-off in n-methyl-2-pyrrolidon (NMP) at room temperature

8. Annealing of contact metal and ALD oxide: Annealing for 10min

at 450°C in forming gas

SU-8 protection layer and liquid opening

N o e

Dehydration bake for 10min at 200°C

Spin coating: SU-8 2002, 4000rpm, bake 1 min at 95°C
Optical lithography, 185

Post exposure bake: 1 min at 110°C

Development: EC 11 90s, rinse in IPA

Hard bake of SU-8 on hotplate: Bake sample for 25min at 180°C,
gradual cooling of the sample
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Dicing
* 1. Spin coating of microposit S1813, 1000rpm, bake 2min at 110°C
2. Sawing: Disco DAT 341 or Esec 8003, sample size 9mm x 9mm

3. Removal of resist with acetone

Packaging

* 1. Scratch back side of the sample with diamond scriber, glue the
sample in 64 pin chip carrier (IPK64F1-2219A, NTK Technolo-
gies Inc.) by silver epoxy

2. Aluminum wire wedge bonding: MEI Marpet Enterprises Inc
3. PDMS microchannel

- Mix polydimethylsiloxane (PDMS, SYLGARD 184 Silicone
Elastomer) with curing agent (10: 1)

Pour PDMS onto SU-8 patterned Si wafers, keep at room tem-
perature for ~ 1h until all the bubbles have cleared

- Heating at 60°C for 2h.

- Pierce inlets with Harris Uni-Core 0.75mm for tubing

— Cut PDMS with razorblade and align to sample
4. Epoxy sealing: Epotek 353ND, degass, bake for 5min at 120°C
5. Tubing: Polytetrafluoroethylene (PTFE) 0.3 mm ID x 0.76 mm OD

Au-film for gold-coated SiNWs

1. Spin coating:

* O plasma: RIE O;, 40sccm, 200mTorr, 30W, 300K, Vpc =87V,
8s

* Spin coating of PMMA 669.04, 6000rpm, thickness ~ 220nm
* Bake on hotplate for 3min at 175°C

2. Electron beam lithography: Vistec EBPG 5000%, resolution = 0.01 ym,
beam step size = 0.01 ym, beam current 2nA, dose 850 uC/cm?

3. Development: Hamatech, IPA:MIBK 3 : 1, 2min, rinse in IPA 655
O, plasma: Oy 40sccm, 200mTorr, 30W, 300K, Vpc =87V, 8s
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4. Metal evaporation: Electron beam evaporation with UNIVEX, Cr 5nm,
Au 20nm

5. Lift-off in acetone for several hours

SU-8 structures for PDMS microchannels

1. Clean oxidized Si wafer in DI water, acetone, IPA
2. Dehydration bake for 10min at 200°C

3. Spin coating: SU-8 50 (1250rpm for 100 ym and 2000rpm for 50 yum
thick layers), bake 10min at 65°C

4. Electron beam lithography: Vistec EBPG 50007, resolution = 0.05 ym,
beam step size = 0.05 ym, beam current = 1nA, dose = 5 uC/cm?

5. Post exposure bake: 90s at 110°C
6. Development: EC 11 12min, rinse in IPA

7. Hard bake of SU-8 on hotplate: Bake sample for 20min at 180°C, grad-
ual cooling of the sample

Electrolyte solutions

Standard pH buffer solutions were used for the pH measurement (Titrisol,
Merck). KC1 (ACS 99.0 —100.5%, Alfa Aesar), NaCl (> 99.5%, Fluka), CaCl,,
MgCl,, NaF and CaCOj (Sigma-Aldrich, ACS > 99%) were dissolved in
deionized water (resistivity = 17MQ-cm) with ~ 4mM HEPES buffer and
~ 1.5mM KOH, resulting in a pH value around 7. For the solutions at dif-
ferent pH no buffer was used and pH was adjusted by adding KOH, NH3 or
acetic acid (CpyH405) and controlled by a pH meter.



Supporting Measurements

Ohmic Contact Characterization

Ohmic contacts were characterized in air. We measured the source-drain
current Iy vs. source-drain voltage V4 at different back-gate voltages. The
current through the SiNW including contacts is proportional to the voltage
applied, according to Ohm’s law. Fig. shows the I — V curves for two
SiNWs of 100nm and 500nm width.

@  Fw =100 ‘ ‘ ) 20F W =500 ‘ ‘
W,,=100nm AL,O, 20nm s 20f w, =500nm AL,0, 20nm
40TV g7 8V 1 v =105V

th, backgate

th,backgate

010 005 000 005  0.10 2 0 1 2

Vs (V)

Figure B.1: Source-drain current Iy; vs. V4 at different back-gate voltages mea-

sured in air (liquid gate floating). (a) 100nm wide SiNW, (b) 500 nm wide SiNW. ;4

is proportional to Vi, which is characteristic for Ohmic contacts. At voltages up to
100mV Iy is virtually linear. Figure adapted from/®3,
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Conductance at Different Electrolyte Concentrations

We measured conductance at different salt concentrations to study the
change in V, (see section [3.4). Fig. [B.2] shows the conductance as a func-
tion of V;¢r at different KCI concentrations. While Vyy, shifts to more pos-
itive voltage for higher concentrations, the shape of the transfer curve and
especially the subthreshold swing does not change with increasing KCI con-
centration. Hence, the total liquid gate capacitance is insignificantly affected
by the change in double layer capacitance, given by the electrolyte concen-
tration. This indicates that the total gate capacitance is dominated by the
oxide capacitance.
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Figure B.2: Conductance G vs. Vief for a HfO; coated SINW measured at different
KCl concentrations. Vi, shifts to more positive values with increasing ionic strength.
No significant dependence of the transfer curve on the ionic strength is found.
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The Two-Compartment Model

A typical model to describe the binding kinetics of a surface immobilized
ligand to capture an analyte in solution is the two-compartment reaction
model 18, Initially the analyte and the ligands are separated. The transport
rate k)s describes the exchange of analytes from bulk solution to the prox-
imity of the ligands. The interaction of analytes close to the surface and
the ligands is described by the association rate k, and dissociation rate k; as
given in Eq. [5.8]and [5.9] To illustrate the influence of the transport rate, Fig.
shows a model system with k, = 104M1s71, kg = 1074571 (Kp = 10nM)
for different ligand densities and different k.
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Figu re C.1: Schematic representation a two-compartment model. A model system

with k; = 104, kg = 104 illustrates the influence of the rate constant kg (vertical) and
the ligand density [B];;4x (horizontal) on the kinetics during association. The curves
show the number of bound analytes ([AB]) in mol/m? vs. time.
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List of Symbols & Abbreviations

Ligand surface density
Relative permittivity

Debye length

Mobility

Chemical potential of species i
Surface group density
Electrostatic potential

Surface potential

Surface charge

Analyte

Proton activity in the bulk solution

Proton activity at the surface
Analyte-ligand pair

Ligand

Double layer capacitance

Oxide capacitance

Surface buffer capacitance
Elementary charge

Fermi energy

Faraday constant

Conductance

Transconductance

Source-drain current

Association, dissociation rate constant
Boltzmann constant 1.38-10723]/K
Dissociation equilibrium constant
Channel length, Linker molecule
Avogadro constant 6.022 - 1023 mol~!
Number of charge carriers

Intrinsic carrier concentration
Number of trap states
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Vsd

Vin

w

zZ

ALD
BioFET
CMOS
EBL
EDL
eV

FET
ISFET
LOD
MeOH
MOSEFET
NwW
OHP
PDMS
pl
PMMA
PZC
RMS
SAM
SiINW
SINWFET
SNR
SOI

Number of surface sites

Response, maximum response
Subthreshold swing

Current noise power spectral density
Johnson-Nyquist (thermal) noise power spectral
density

Oxide charge noise power spectral density
Gate referred voltage noise

Temperature [K]

Channel Tickness

flatband voltage

Gate voltage

Liquid gate voltage

Source-drain voltage

Threshold voltage

Channel width

Charge number of ion i

Atomic layer deposition

Biologically modified field-effect transistor
Complementary metal-oxide semiconductor
Electron beam lithography

Electric double layer

Electron volt

Field-effect transistor

Ion-sensitive field-effect transistor

Limit of detection

Metal oxide

Metal oxide semiconductor field-effect transistor
Nanowire

Outer Helmholtz plane
Polydimethylsiloxane

Isoelectric point

Poly(methyl methacrylat)

Point of zero charge

Root mean square

Self-assembled monolayer

Silicon nanowire

Silicon nanowire field-effect transistor
Signal to noise ratio

Silion on insulator



119

TMAH Tetramethylammonium hydroxide
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