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Abstract 

The global soil system forms the largest pool of terrestrial organic carbon. The inventory of 

soil organic carbon (SOC) is required for greenhouse gas inventories and carbon mitigation 

projects. Especially in (semi-) arid ecosystems the size and the dynamics of the SOC pool still 

lack sufficient investigation. Based on the increasing interest in reliable estimates of SOC 

stocks in drylands, this thesis aims for the quantification of SOC stocks and patterns in the 

Northern Highlands of the Negev Desert (Israel) on a regional scale considering SOC spatial 

heterogeneity at a local scale. 

The Negev Highlands were chosen as an ideal study site because they represent a 

characteristic arid environment and several studies regarding lithology, hydrology and 

vegetation have been carried out there.  

Because of the high spatial heterogeneity of environmental conditions at local scale in this 

area, slope sections with different ecohydrologic characteristics (e.g. soil, vegetation) were 

sampled and SOC stocks were calculated. To identify controlling factors of SOC stocks on 

rocky desert slopes, soil properties, vegetation coverage, SOC concentrations and stocks 

were compared between distinctive ecohydrological environments (EHEs). The EHEs are 

characterized by similar surface conditions (such as geology, rock/soil ratio and soil 

distribution), water supply and vegetation density. Rock-soil interaction and the relevance of 

soil volume for storing plant available water and hence the water supply for vegetation 

coverage determining SOC concentrations and stocks were further examined. Rainfall 

simulation experiments were therefore conducted to determine the amount of rainfall 

required to fill the available soil water storage capacity. The design and the selection of the 

plots aimed specifically at observing infiltration into small soil patches on a micro-scale 

relevant for prevalent vegetation coverage. Based on this experimental procedure the 

relationship between environmental properties and SOC concentrations and stocks 

regarding the distinctive EHEs could be identified at local scale. For the determination of 

local scale SOC spatial heterogeneity at regional scale an approach towards automated 

mapping of EHEs was developed. Therefore spatial vegetation pattern indices were 

calculated based on the analysis of hyperspectral and orthoimage datasets. The indices were 

then used as variables in a decision tree model for automated mapping of EHEs. For the 

quantification of SOC stocks at regional scale considering local scale spatial heterogeneity of 

SOC concentrations and driving processes, a GIS-based image analysis approach was 

developed using vegetation coverage and EHEs as proxy indicators for SOC concentrations 

and patterns. The calculated SOC stocks indicate that rocky desert slopes contain a 

significant amount of SOC of soil-covered areas of 1.54 kg C m-2, with an average SOC stock 

over the entire study site of 0.58 kg C m-2. The calculated SOC-stock for the total area (1km2) 

is 1.19t C ha-1. Based on the results of this thesis, the understanding of ecohydrological 

conditions and processes and remote sensing techniques were combined in one 

methodological approach. This implemented procedure provides the precise estimation of 

SOC-stocks in arid environments by combining field data and digital image processing 

approaches. 
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Zusammenfassung 

Böden stellen weltweit den grössten Speicher von terrestrischem organischem Kohlenstoff 

dar. Durch die Quantifizierung von organischem Kohlenstoff in Böden besteht die 

Möglichkeit, sowohl Treibhausgasinventare zu erstellen als auch Massnahmen zur 

Verringerung von Kohlenstoffemissionen einzuleiten. Insbesondere in (semi-)ariden 

Gebieten ist sowohl die Grösse als auch die Dynamik des organischen Kohlenstoffspeichers 

noch weitgehend eine unbekannte Grösse. Kohlenstoffinventare werden generell für 

unterschiedliche Skalen berechnet (lokal, regional, global). Insbesondere auf regionaler und 

globaler Skala ist die Quantifizierung von organischem Kohlenstoff mit grossen 

Ungenauigkeiten verbunden, da die räumliche Heterogenität von Kohlenstoffkonzentration 

und -verteilung auf lokaler Ebene aufgrund des methodischen Vorgehens nicht 

berücksichtigt werden kann. Ausgehend von dem steigenden internationalen 

wissenschaftlichen Interesse an einer zuverlässigen und präzisen Inventarisierung von 

Kohlenstoff in Trockengebieten ist das Ziel dieser Arbeit die Quantifizierung von 

Kohlenstoffvorrat und -verteilung in den Northern Highlands der Negev Wüste, Israel. Die 

Berechnung wurde hierbei auf regionaler Skala durchgeführt, wobei die räumliche 

Heterogenität der Kohlenstoffkonzentrationen auf lokaler Ebene mit einbezogen wurde. Die 

Negev Highlands wurden als Untersuchungsgebiet ausgewählt, da diese ein 

charakteristisches Trockengebiet darstellen und dort bereits zahlreiche Studien zu Lithologie, 

Hydrologie und Vegetation durchgeführt wurden, die als Grundlage für die vorliegende 

Untersuchung genutzt werden konnten. 

Das Untersuchungsgebiet ist auf lokaler Skala geprägt durch eine hohe räumliche 

Heterogenität der ökologischen Gegebenheiten. Aufgrund dessen wurden Hangbereiche mit 

unterschiedlichen ökohydrologischen Eigenschaften (z.B. Boden, Vegetation) beprobt und 

sowohl Kohlenstoffkonzentrationen als auch -vorräte berechnet. Um die Faktoren zu 

identifizieren, welche die Kohlenstoffvorräte beeinflussen, wurden Bodeneigenschaften, 

Vegetationsbedeckung und Kohlenstoffkonzentrationen zwischen unterschiedlichen 

Ökohydrologischen Einheiten verglichen, wobei jede Ökohydrologische Einheit durch 

charakteristische Oberflächeneigenschaften (z.B. Geologie, Boden/Stein Verhältnis, 

Verteilung von Boden), Wasserversorgung und Vegetationsdichte charakterisiert ist. In 

einem nächsten Schritt wurde das Zusammenwirken von Boden- und Steinflächen und die 

Bedeutung von Bodenvolumen für die Speicherung von pflanzenverfügbarem Wasser 

untersucht. Wasserversorgung spielt in Trockengebieten eine wichtige Rolle, da diese 

Vegetationsdichte und -verteilung bestimmt und sich somit direkt auf 

Kohlenstoffkonzentrationen und -vorräte auswirkt. Mit Hilfe von Beregnungsexperimenten 

wurde die Niederschlagsmenge ermittelt, die notwendig ist, um die Wasserspeicherkapazität 

des Bodens zu füllen. Die Auswahl und Form der Versuchsflächen zielte speziell darauf ab, 

die Infiltrationsmenge in kleine Bodenflächen auf Mikro-Skala zu berechnen. Aufgrund 

dieses methodischen Vorgehens war es möglich, den Zusammenhang zwischen den 

ökologischen Gegebenheiten und Kohlenstoffkonzentrationen und -vorräten in den 

unterschiedlichen Ökohydrologischen Einheiten auf lokaler Skala zu identifizieren. Um die 

räumliche Heterogenität von organischem Kohlenstoff auf lokaler Ebene auch auf grösseren 
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Skalen quantifizieren zu können, wurde ein Ansatz zur automatischen Kartierung der 

Ökohydrologischen Einheiten auf regionaler Skala entwickelt. Hierzu wurden 

Vegetationsindizes berechnet, die aus der Analyse von Hyperspektral- und Orthobildern 

abgeleitet wurden. Die Indizes wurden anschliessend als Variablen in einem 

Entscheidungsbaummodell verwendet. Um ein Kohlenstoffinventar auf regionaler Skala für 

das Untersuchungsgebiet zu erstellen, wurde eine Geographisches Informationssystem (GIS) 

gestützte Bildanalysemethode entwickelt. Durch die Verwendung von 

Vegetationsbedeckung und Ökohydrologische Einheiten als Proxy-Indikatoren für 

Kohlenstoffkonzentrationen und -verteilung konnte die räumliche Heterogenität von 

Kohlenstoffkonzentrationen und -vorräten auf lokaler Ebene berücksichtigt werden. Die 

daraus berechneten Kohlenstoffvorräte zeigen, dass Wüstenböden eine signifikante Menge 

Kohlenstoff von 1.54 kg C m-2 enthalten, mit einem durchschnittlichen Wert von 0.58 kg C m-

2. Das berechnete Kohlenstoffinventar für das gesamte Untersuchungsgebiet beträgt 1.19t C 

ha-1. Die entwickelte und angewendete Methode gewährleistet eine präzise Quantifizierung 

von Kohlenstoffinventaren in Trockengebieten, indem die Analyse von ökohydrologischen 

Gegebenheiten und Prozessen durch Feldmessungen, die Auswertung von 

Fernerkundungsdaten und Bildverarbeitungsverfahren in einem Ansatz kombiniert wurden. 
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1. Introduction 

The global soil system is the largest terrestrial reservoir of organic carbon and therefore 

plays a key role in the global carbon cycle (Amundson 2001, Kirschbaum 2000, Kutsch et al. 

2009). Due to the fact that atmosphere, biosphere and pedosphere are closely connected by 

the exchange of C, small changes in the soil organic carbon (SOC) pool can have significant 

implications for atmospheric CO2-concentrations (Smith 2004). In the context of global 

warming there is increased international scientific interest in SOC stocks and fluxes in 

terrestrial ecosystems. Here the focus is to use soils as a carbon sink as demanded by the 

Kyoto Protocol (Houghton 2007, Mishra et al. 2009, Wigley & Schimel 2005). The size and 

dynamics of the global SOC pool lack sufficient investigation (Aufdenkampe et al. 2011, 

Doetterl et al. 2012b, Quinton et al. 2010, Seip 2001). Spatial variation of SOC is significantly 

influenced by environmental factors such as climate (Djukic et al. 2010, Jobbágy & Jackson 

2000), topography (Egli et al. 2009, Garcia-Pausas et al. 2007), soil and bedrock materials 

(Doetterl et al. 2012a, Leifeld et al. 2005, Tan et al. 2004), vegetation (Luyssaert et al. 2008, 

Zhou et al. 2006), and disturbances due to surface processes (Berhe et al. 2008, Yoo et al. 

2006) and human activity (Bell & Worral 2009, Morgan et al. 2010). Especially in dynamic 

geomorphic systems, which are sensitive to climate change, precise measurements and 

estimates of the spatial distribution of SOC stocks are necessary to quantify the SOC sink and 

source capacity of soils in changing environments (Aufdenkampe et al. 2011, Smith et al. 

2003, Trumbore 2009).  

1.1 Benefits and limitations of SOC inventories   

During the last 15 years studies of SOC have contributed to carbon accounting and 

understanding its role and feedback in the global carbon cycle and within the climate system 

(Berhe et al. 2008, Kirschbaum 2000, Perruchoud et al. 2000, Post & Kwon 2000, 

Rosenbloom et al. 2006, Van Wesemael et al. 2010). Studies predominantly focus on (i) the 

relation of SOC stocks to environmental conditions (temperature, topography, soil, 

vegetation, human activity), (ii) the amount and residence time of SOC content under 

various environmental conditions, (iii) changes of SOC stocks under changing climate 

conditions and (iv) management and policy purposes (Bell & Worral 2009, Berhe et al. 2008, 

Bolstad & Vose 2001, Don et al. 2011, Egli et al. 2009, Heckmann et al. 2009, Hoffmann et al. 

2009, Luyssaert et al. 2008, Spielvogel et al. 2009). Generally SOC stocks are calculated for 

different scales (Doetterl et al. 2012a, b). Thereby studies focus on (i) local scale 

homogeneous study sites where data are derived from plots or transects (up to 200m). For 

the calculation of SOC stocks therefore, one relevant environmental variable changes with 

time or space whilst the other environmental variables remain constant; (ii) regional scale 

which ranges up to a few km2. The study sites are generally selected in such a way that the 

spatial variability of SOC is characterized by more or less homogeneous surface properties or 

rather climate patterns; (iii) global scale where the spatial variability of the relevant surface 

properties is simplified by model assumptions (Friedlingstein et al. 2006, Grüneberg et al. 

2010, Hancock et al. 2010, Leifeld et al. 2005, Sheikh et al. 2009, Xu et al. 2010, Zeng et al. 

2004). Simplifying assumptions are generally applied to SOC studies due to the spatial 
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variability of control mechanisms of environmental conditions on SOC stocks. Especially at 

regional and global scale, studies are based on simplified relations (Cox et al. 2000, Jones et 

al. 2005), where uncertainty associated with small scale variability is not considered. The 

above-mentioned circumstances (i), (ii) and (iii) introduce large uncertainties of regional and 

global SOC estimates. Studies focusing on the influence of erosion processes on the carbon 

cycle suggest a net uptake of carbon, but the results of these studies show a high variability 

and range between 0.1 and 1.0 Pg C y-1 (Doetterl et al. 2012b). In contrast, local scale studies 

are conducted at plots or transects characterized by homogeneous environmental 

conditions. However, the interaction of the controlling variable at local scale is in general not 

representative of larger areas with heterogeneous environmental conditions (Doetterl et al. 

2012a, b). 

1.2 SOC assessment at regional scale 

In the last 15 years SOC studies have largely focused on inventories at plot scale or along 

transects (Cerdan et al. 2010, Coleman & Jenkinson 1999, Doetterl 2012b). To inventorise at 

regional or global scale as required by the Kyoto Protocol, interpolation between point 

measurements is used to predict values for locations that lack sampled points. This 

technique is based on spatial autocorrelation, which measures the degree of dependence 

between near and distant points (Li & Heap 2011), but due to the large spatial variability of 

environmental factors, soil properties and limited sampling densities, SOC stocks are not 

well represented and require more detailed investigation (Doetterl et al. 2012a). In turn, 

hyperspectral remote sensing is a practical method of data collection at larger spatial scales. 

Different modelling techniques are used to predict SOC from continuous reflectance spectra 

(wavelength range 0.4-2.5µm) or derivatives (Baumgartner et al. 1985, Ben-Dor & Banin 

1994, 1995, Brown et al. 2006, Hummel et al. 2001, Reeves et al. 2002, Udelhoven et al. 

2003, Viscarra Rossel et al. 2006), but a major drawback of this approach is that it is 

restricted to soil devoid of any vegetation (Schwanghart & Jarmer 2011). Furthermore the 

analysis of SOC concentrations by remote sensing is limited to the topsoil (the uppermost 

layer of soil, ~2cm depth). The variations of SOC concentrations with depth are not 

discernible (Stallard 1998). Alternatively for the quantification of SOC stocks, surface cover is 

determined by remote sensing which in turn is linked afterwards to SOC concentrations. In 

general, point data of SOC concentrations reflect the interactions of environmental 

properties and processes at a small spatial scale but the up-scaling from point and plot data 

to larger areas is problematic (Hill & Schuett 2000). In contrast, remotely sensed aerial data 

cover a large spatial extend, but spatial resolution is a limiting factor for the quantification of 

surface heterogeneity (Doetterl et al. 2012b) such as topography, surface properties or 

vegetation patterns. Despite the fact that down-scaling methods provide ways to obtain 

information on subgrid-scale, parameterization schemes of small-scale heterogeneity are 

required (Zhang et al. 1998). High-resolution imagery (10m and higher) has recently become 

more freely available. This enables the detection of a variety of environmental parameters 

and ecologic information over small spatial extent but with higher spatial resolution (Mulder 

et al. 2011). But the point-to-area data problem is still a major challenge for SOC studies. 
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This evidence emphasizes the need to quantify spatial heterogeneity and its scale 

dependency at a local scale to understand, characterize and estimate size and dynamics of 

SOC stocks at a regional scale. Yair and colleagues (Boeken & Shachak 1994, Olsvig-

Whittaker et al. 1983, Schreiber et al. 1995, Yair & Raz-Yassif 2004, Yair & Shachak 1982) 

studied lithology, hydrology and vegetation in a local scale experimental watershed in the 

Negev Desert, Israel. The results of the studies showed that particularly the distinctive 

ecohydrological conditions in arid environments lead to a large spatial variability of soil and 

surface properties and vegetation coverage. In turn, the spatial patterns of environmental 

factors determine SOC concentrations and stocks at local scale. Yair and colleagues (Boeken 

& Shachak 1994, Olsvig-Whittaker et al. 1983, Schreiber et al. 1995, Yair & Raz-Yassif 2004, 

Yair & Shachak 1982) therefore defined distinctive ecohydrological environments (EHEs) 

characterized by similar surface conditions (such as geology, rock/soil ratio, soil distribution), 

water supply and vegetation density. The differences of vegetation density between EHEs 

imply an effect of ecohydrology on SOC stocks. The interactions between ecohydrology, 

vegetation density and SOC within the different distinctive EHEs were not part of their 

studies, but offer the opportunity to assess SOC stocks using remote sensed data of 

vegetation. Combining the identification of distinctive EHEs using field measurements and 

the detection of these distinctive EHEs at unmeasured locations by characteristic 

environmental properties using remote sensing techniques offers a methodological 

procedure solving the spatial point-to-area data problem.  

1.3 Research questions 

Arid environments are regarded as “hotspots” of climate change with large, rapid and 

variable responses to even the smallest changes in conditions (Farage et al. 2003, Lal 2003, 

Yair 1990). Global dryland soils contain 15.5% of the world’s total SOC to 1m depth and thus 

represent a major C pool (Lal 2003, Lal 2001, Schimel et al. 2000). The carbon exchange 

between soil and atmosphere of these ecosystems may therefore have a strong impact on 

the global carbon cycle (Lal 2009). However, the importance of arid environments in the 

global carbon cycle has received limited attention (Asner et al. 2003, Schimel 2010). For the 

estimation of changes in SOC stocks due to climate change, further research to provide 

methods for the assessment of regional SOC stocks and patterns in arid environments is 

needed. These methods have to consider the spatial heterogeneity of ecohydrological and 

environmental conditions (Chapter 2, Carbon stocks and their assessment in drylands, 2.4.5; 

Chapter 3, Research Paper, 2; Chapter 4, Research Paper, 3; Chapter 5, Research Paper, 2) at 

local scale, determining SOC concentrations and patterns.  

The study was conducted in the Negev Desert (Israel), which is representative of an arid 

ecosystem (Olsvig-Whittaker et al. 1983, Yair 1994, Yair & Danin 1980). This area was ideal 

because of the well-studied lithology, hydrology and vegetation by Yair and colleagues 

(Boeken & Shachak 1994, Olsvig-Whittaker et al. 1983, Schreiber et al. 1995, Yair & Raz-

Yassif 2004, Yair & Shachak 1982). Detailed SOC inventories focusing on the influence of 

spatial heterogeneity of environmental factors are still missing and were therefore part of 

this PhD research project, preceding the GIS and remote sensing. 
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Thus the following research questions stimulated the present PhD-thesis:  

1. How much are surface properties, water availability and vegetation coverage 

related to SOC concentrations and stocks? 

2. At which level of detail and accuracy can SOC inventories be made using field 

measurements, remote sensing and digital image processing?  

3. How does the image analysis approach contribute to reducing the uncertainty of 

SOC inventories in heterogeneous arid environments? 

Guided by these questions, this thesis aims at the development of a GIS-based image 

analysis approach for the quantification of SOC stocks and patterns on a regional scale 

considering SOC spatial heterogeneity at a local scale in arid environments. 

The main objectives of this thesis are (i) to determine the relationship between soil, 

vegetation and SOC stocks (Chapter 3, Research Paper; Chapter 4, Research Paper), (ii) to 

identify relevant vegetation indices for the determination of EHEs by remote sensing 

(Chapter 5, Research Paper) and (iii) to quantify SOC stocks based on (i) and (ii).  

The outcome is a methodological procedure combining field sampling and mapping based on 

remote sensing relating to land cover and Geographic Information System (GIS) analysis. This 

approach is intended to provide reliable estimates of SOC stocks at regional scale in arid 

environments. 

The PhD thesis is structured as follows: Chapter 2 provides an overview of the current state 

of knowledge regarding dynamics of dryland ecosystems, SOC variability and SOC 

assessment. Chapters 3-6 were written as stand-alone manuscripts for publication in peer-

reviewed journals. The major aim of chapter 3 was to quantify the relationship between 

surface characteristics and vegetation coverage and spatial patterns of SOC concentrations 

and SOC stocks. To identify controlling factors of SOC stocks on rocky desert slopes, soil 

properties, vegetation coverage and SOC concentrations and stocks were compared 

between different EHEs. In chapter 4, a method is developed for examining the interactions 

between rainfall and surface characteristics of rocky desert slopes. Based on this 

experimental procedure, the relationship between soil and vegetation for the different EHEs 

were characterized in detail, where each EHE reflects dominant processes and surface 

properties and specific hydro-geomorphological responses in reaction to rainfall. The spatial 

heterogeneity of SOC concentrations is determined by the relationship between vegetation 

density and soil volume. Chapter 5 presents an approach towards automated mapping of 

EHEs in arid areas on the basis of vegetation patterns. The dependence of different 

vegetation pattern indices on the spatial resolution of high and low resolution image data 

was investigated and indices identified that are sensitive to the resolution difference. This 

approach allows the identification of EHEs at different scales and is transferable to other arid 

areas. The major aim of chapter 6 was the estimation of SOC stocks and patterns at regional 

scale considering spatial heterogeneity of environmental properties at local scale. Therefore 

a GIS-based image analysis approach was developed using vegetation coverage and EHEs as 
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proxy indicators for SOC concentrations. Finally, chapter 7 synthesizes and concludes the 

findings of the four studies and provides a conceptual model of the effects of surface 

properties, water availability and vegetation coverage on SOC concentrations. The chapter 

concludes with an evaluation of the relevance of the implemented image analysis approach 

for the reliable estimation of SOC stocks and patterns in arid environments.  

2. Carbon stocks and their assessment in drylands 

2.1 Soil organic carbon and the global carbon cycle 

The global soil system is the largest terrestrial reservoir of organic carbon which stores about 

1500 GT in the top one meter of the Earth’s surface (Amundson 2001, Kutsch et al. 2009). 

Thereof 55% is represented by soil organic carbon (SOC), which is twice as large as the 

atmospheric carbon pool (Schlesinger et al. 2000, Stutter et al. 2009). Soils represent one of 

the most dynamic components of the global carbon cycle due to the fact that SOC has a 

short residence time and due to its reactive, labile character (Batjes 1996, Doetterl et al. 

2012a, b, Houghton 2007, Quinton et al. 2010, Wigley & Schimel 2005). This implies that SOC 

is sensitive to environmental changes.  At the moment small changes in SOC-content could 

potentially significantly increase, or mitigate current atmospheric CO2 increase. Within the 

UN Framework convention on climate change (IPCC 2007), nations are admonished and 

advised to budget and decrease CO2 emissions. This has increased public and scientific 

interest regarding the impact of soils on the global carbon cycle and on carbon pools which 

sequester and release CO2. In the context of climate change mitigation an increased 

understanding of spatial patterns and dynamics of SOC stocks and their contribution to 

regional, national and global cycles is required (IPCC 2007).  

Studies on SOC stock assessment (Homann et al. 1995, Kutsch et al. 2009, Mishra 2009, 

Mishra et al. 2009) demonstrate the need to calculate SOC stocks at regional levels based on 

local environmental data due to differences in soil-forming factors such as time, parent 

material, topography, climate, vegetation and organisms and site management/land use. 

Particularly in arid environments the spatial variability of soil forming factors affects the 

formation and degradation of organic carbon in soils (Lieb et al. 2011). Although arid 

environments and especially their soils are considered to be highly sensitive to climate 

change and changing environmental conditions (IPCC 2007), spatial patterns and dynamics 

of SOC regarding the contribution to global SOC storage and the response to global change 

has been insufficiently investigated (Kutsch et al. 2009, Mishra 2009, Mishra et al. 2009). The 

net effect of soils regarding SOC sequestration and release is still unclear (Budge et al. 2011, 

Kirschbaum 2000). There is a lack of detailed understanding due to the major challenges and 

uncertainties associated with the assessment of SOC stocks in drylands (Rotenberg & Yakir 

2010, Schimel 2010). Uncertainties are mainly linked to the high spatial variability of soil 

forming factors and soil properties (Laity 2008, Parsons & Abrahams 2009, Schimel 2010), 

analytical errors during the measurement of soil properties and uncertainties that arise from 

the spatial interpolation of local point data with different spatial interpolation techniques 

(Aufdenkampe et al. 2011, Lettens et al. 2005, Liebens & Van Molle 2003). As demanded by 
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the Kyoto protocol, these uncertainties need to be established and accurate regional 

predictions of SOC stocks are required.  

2.2 SOC stocks and controlling environmental properties in drylands 

Drylands are characterized by ephemeral, seasonal or permanent water deficits (Laity 2008). 

The rainfall regime is determined by a high variability of low precipitation amounts and a 

discrete number of infrequent rainfall events. The mean temperature in summer is high 

which can cause drought stress for vegetation. Drylands are complex ecosystems whose 

characteristics and dynamic properties depend on the relationship between climate, soil, 

vegetation and water redistribution (Fig.1) (Rodriguez-Iturbe & Porporato 2004). Climate 

and soil control vegetation dynamics (D’Odorico & Porporato 2006, Jones 1992, Kramer & 

Boyer 1995, Larcher 1995). In turn vegetation exerts a strong control on the entire water 

balance and is responsible for many feedbacks to the atmosphere (Kutzbach et al. 1996, 

Rodriguez-Iturbe & Porporato 2004, Zeng et al. 1999).  

 
 

About 50% of global drylands are dominated by rocky surfaces where patches of bedrock 

and shallow soils or pavements prevail, resulting in a high spatial heterogeneity of 

environmental conditions (Buis & Veldkamp 2008). Several studies have demonstrated that 

the spatial heterogeneity of surface characteristics has important implications for biological, 

chemical, hydrological and geomorphological processes (Boeken & Shachak 1994, Li et al. 

2010, Yair & Danin 1980, Yair & Raz-Yassif 2004, Zhou et al. 2011).  

2.2.1 Soil 

Soil formation in arid environments is limited by water availability and by soil and wind 

erosion processes (Ravi et al. 2010), resulting in poorly developed soils and a significant 

variability in soil depth (Laity 2008, Parsons & Abrahams 2009, Yair 1990). The spatial 

heterogeneity of soil formation is furthermore determined by environmental properties such 

as soil coverage, soil surface permeability, pore volume and rock surface structure (Laity 

2008, Parsons & Abrahams 2009). The majority of dryland soils contain small amounts of 

SOC (0.5-1%) (Lal 2002a, b) and can be considered as far from SOC saturation, suggesting a 

high potential of SOC uptake (Farage et al. 2003, Lal 2003). The SOC pool tends to decrease 

exponentially with temperature (Lal 2002a, b). Degradation and desertification of dryland 

soil also lead to reductions in the SOC pool (Dregne 2002). In general the SOC pool increases 

Fig. 1: Schematic representation of the 
climate – soil – vegetation system  
(SOC: Soil Organic Carbon)  
(modified after Rodriguez-Iturbe & Porporato 
2004). 
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with the addition of biomass to soils (Lal 2001). In contrast to soils from humid regions, 

dryland soils are less likely to lose SOC due to the fact that the limited water availability 

reduces SOC mineralization (Glenn et al 1993). According to the studies by Farage et al. 

(2003) and Lal (2001, 2009) the residence time of SOC in desert soils can be much longer 

than in humid regions. Farage et al. (2003) and Lal (2001, 2009) state that the ratio of the 

soil to the living biomass SOC pool might be greater in drylands than in tropical forests. 

However, there is little knowledge regarding the interrelations that take place between soil 

properties, vegetation and SOC stocks and patterns. This is enforced by insufficient data 

availability on dryland soils. Literature is still dominated by studies in humid environments 

and the dynamics of dryland soils regarding SOC sink and source capacity are still not well 

known (IPCC 2007, Quinton et al. 2010, Seip 2001). 

2.2.2 Climate and water redistribution 

Dryland ecosystems are characterized by distinctive high physical and low chemical 

weathering rates determined by significant daily temperature changes and water deficit 

(FAO 2004, Farage et al. 2003, Lal 2003, Yair 1990). The hot arid climate favours low 

decomposition rates (due to water deficit) and hence limits vegetation-driven carbon 

sequestration as well as CO2 efflux (Fang & Moncrieff 2001, Farage et al. 2003, Qi et al. 

2002). Budge et al. (2011) states that the ecosystem response due to rising temperatures 

remains uncertain, resulting in a significant uncertainty of SOC estimations. As a result of 

these uncertainties accurate predictions of SOC stocks and their response to changing 

climate are required as demanded by the Kyoto Protocol. Due to continuous runoff under 

humid conditions, SOC stocks are generally related to surface morphology, which controls 

erosion and deposition processes and thus SOC fluxes and sequestration (Egli et al. 2009, 

Griffiths et al. 2009, Rosenbloom et al. 2006, Tan et al. 2004, Yoo et al. 2006). Topographic 

parameters (e.g. slope, curvature, relief position) have been shown to correlate with SOC 

stocks under humid conditions (Berhe et al. 2008, Glatzel & Sommer 2005, Tsui et al. 2004, 

Yoo et al. 2006). In contrast, arid environments are characterized by a lack of connectivity in 

runoff due to the spatial heterogeneity of environmental properties and low and erratic 

precipitation (Laity 2008, Parsons & Abrahams 2009, Yair 1990). However runoff and runoff 

redistribution exert a strong control on soil formation and soil erosion and deposition and 

thus on water availability. Topography also plays an important role in water availability. In 

comparison to flat terrain and hilltops, the hillslopes show lower evaporation rates and 

hence higher water availability (Kidron & Zohar 2010). The spatial heterogeneity of 

environmental properties controls water availability and thus vegetation coverage. In turn, 

vegetation coverage potentially determines SOC concentration and patterns. As a 

consequence there is a need to understand the ecohydrology of arid environments and its 

relevance for dryland SOC stocks.  

2.2.3 Vegetation 

Vegetation needs to be considered as a major factor controlling SOC stocks in arid 

environments (Zhou et al. 2011). Studies by Jobbágy & Jackson (2000) and Li et al. (2010) 

show that there is a strong link between aboveground vegetation and SOC. The patchy 
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nature of vegetation distribution is caused by strong variations of soil moisture and 

therefore exerts a strong control on carbon stocks (Olsvig-Whittaker et al. 1983, Schlesinger 

et al. 1996). SOC is mostly concentrated beneath shrubs (Burke et al. 1999, Schlesinger 1990, 

Schlesinger 1995) where in general the organic matter content is higher and the physical soil 

properties are improved. Drylands are characterized by a low net primary production (NPP) 

and low decomposition rates, which is in contrast to high NPP and increased organic matter 

mineralization in humid environments (Lal 2009, Schlesinger 1991). In the context of global 

warming both CO2 assimilation by vegetation (net primary production) and CO2 release by 

ecosystem respiration will increase, although the relative sensitivity of decomposition and 

NPP determines the net effect in a warming atmosphere. The direction of the net effect is a 

controversial subject. Kirschbaum (2000) assumed a decrease of SOC due to the fact that 

decomposition rates are more affected than primary production. Recent results in Israel 

show (Rotenberg & Yakir 2010) that the uptake rate of carbon in dryland forests is 

approximately the same as in more humid regions of continental Europe. This implies that a 

significant amount of CO2 (1 Pg out of 3.2 Pg generating the annual increase in atmospheric 

CO2 concentration) might be sequestered by reforestation of arid environments (Rotenberg 

& Yakir 2010).  

To conclude, the spatial heterogeneity of surface properties is the main controlling factor of 

spatial soil moisture distribution. In turn, soil moisture availability determines the spatial 

heterogeneity of vegetation densities and distribution (Bergkamp et al. 1999, Lavee et al. 

1991, Lavee et al. 1998, Olsvig-Whittaket et al. 1983) and therefore the spatial heterogeneity 

of SOC concentrations and stocks in arid environments.  

2.3 Problems with SOC inventory 

In recent years the assessment of the spatial characteristics of SOC in the world has gained 

increasing interest (Burnham et al. 2010, Doetterl et al. 2012a, b, Haynes et al. 2003, Lal 

2009, Ping et al. 2008). Several studies show that environmental conditions (Liu et al. 2006, 

Su et al. 2006, Tan & Lal 2005, Wang et al. 2002) determine the spatial distribution of SOC 

patterns within an ecosystem (Lal et al. 2011, Yao et al. 2010, Yoo et al. 2006). For the 

understanding of the role of SOC in the global carbon cycle, detailed knowledge on fluxes, 

amounts and spatial patterns of SOC is required (Berhe et al. 2008, Doetterl et al. 2012a,b, 

Mishra et al. 2007). Quinton et al. (2010) and Zhao et al. (2005) therefore state that an 

accurate quantification of SOC storage and its spatial patterns is of fundamental importance 

to global climate change modelling. Compared to more humid environments there is only 

little knowledge about SOC storage in drylands (Lal 2009, Yao et al. 2010) albeit arid 

environments constitute a significant pool of SOC and are regarded as extremely vulnerable 

to climate change (Quinton et al. 2010, Seip 2001, Zhao et al. 2005). Particularly in rocky 

desert environments, soils and vegetation cover are highly discontinuous and soil depth 

varies significantly (Yair 1999, Yair & Kossovsky 2002). These heterogeneous surface 

characteristics greatly control surface runoff, the storage potential of fine sediments and the 

availability of soil moisture (Schreiber et al. 1995, Yair & Raz Yassif 2004) and hence SOC 

concentrations and spatial patterns of SOC (Jobbàgy & Jackson 2000, Li et al. 2010).  
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The relationship between soil properties, environmental variables and SOC concentrations 

are generally derived from local measurements at plot scale. Based on the plot data a 

precise quantification of SOC stocks considering the required spatial heterogeneity of 

environmental properties and processes at a local scale is provided (Cerdan et al. 2010, 

Doetterl et al. 2012b, Wang et al. 2010). Data are extrapolated for the estimation of SOC 

stocks at coarser scales. The assumption for the extrapolation of plot data to coarser scales 

is that the local scale conditions are representative for coarser scales (Liu et al. 2006, 

Meersmann et al. 2008, Mondini 2012). But the extrapolation of local data at a regional scale 

does not reflect the existing local scale heterogeneous environmental settings at unvisited 

locations. This leads to large uncertainties in the assessment of SOC stocks (Aufdenkampe et 

al. 2011, Doetterl et al. 2012a, b, Trumbore 2009). As an alternative for the quantification of 

SOC stocks at regional scale, datasets (e.g. geological maps, soil maps, digital elevation 

models) with a typical resolution of 10-50m are utilized (Lal 2005, Leifeld et al. 2005, Stutter 

et al. 2009). But these datasets do not provide sufficient information regarding the spatial 

heterogeneity of environmental properties and processes at local scale such as provided by 

plot or transect datasets (Aufdenkampe et al. 2011, Meersmann et al. 2008). The estimated 

SOC stocks therefore reflect significant uncertainties associated with data availability at the 

scale where processes determining SOC concentrations and patterns occur. This is especially 

true for arid environments where processes and process rates are not investigated in detail 

(Yair & Kossovsky 2002, Yair & Raz-Yassif 2004). As a consequence, predictions of the 

response of SOC to global warming are difficult due to the insufficient understanding of the 

relationship between ecohydrology, vegetation density and SOC related to distinctive 

environmental properties and their dependency on different scales (Rosenbloom et al. 2006, 

Wang et al. 2011, Yoo et al. 2006).  

For the accurate quantification of SOC stocks and its spatial patterns in drylands it is crucial 

to (i) identify and understand the relationship between ecohydrological conditions, 

vegetation density and SOC and (ii) to develop methods for the precise estimation of SOC 

stocks and patterns at regional scale considering SOC spatial heterogeneity at local scale.  

2.4 Remote sensing 

Relevant information on different spatial scales is essential to enhance the understanding of 

the relationship between ecohydrological processes, vegetation coverage and carbon 

sequestration (Asbjornsen et al. 2011, Doetterl et al. 2012a, b). The first studies on SOC dealt 

with the estimation of SOC stocks at global scale (Bohn 1982, Bolin 1970, Parton et al. 1987), 

but these studies emphasize that the great spatial variability of SOC concentrations 

regarding the different mapping units are the main source of uncertainty (Liebens & Van 

Molle 2003, Mondini 2012, Wang et al. 2009). In subsequent studies at regional and local 

scales different data sources, spatial analysis techniques and GIS applications were used 

(Frogbrook & Oliver 2001, Zhang & McGrath 2004). For the last three decades earth 

observation systems have been contributing to the assessment and monitoring of dryland 

ecosystems, environmental properties, vegetation coverage and SOC (Frank & Tweddale 

2006, Hein et al. 2011, Mulder et al. 2011, Xiao & Moody 2005). In soils, organic matter 
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content and composition of organic constituents have a strong influence on soil reflectance. 

Typically soil reflectance decreases with increasing SOC in the wavelength range of 0.4-2.5 

μm (Baumgardner et al. 1985, Jarmer et al. 2010). In general, different modelling techniques 

are used to predict SOC from continuous reflectance spectra (Ben-Dor & Banin 1994, 1995, 

Reeves et al. 2002, Brown et al. 2006). However the transfer of prediction models to 

airborne or satellite remote sensing data has only rarely been conducted (Hill & Schuett 

2000, Gomez et al. 2008, Jarmer et al. 2010) due to the limited number of satellite bands 

which necessitates the use of these few spectral bands or parameters derived from them to 

assess SOC (Jarmer et al. 2010). Several other studies show that the wavelength range that 

best explains SOC is in the visible spectral domain (Hummel et al. 2001, Brown et al. 2006, 

Viscarra Rossel et al. 2006). Konen et al. (2003) found significant relationships between SOC 

and Munsell colour (value / chroma). Wills et al. (2007) showed in his study that horizon 

matrix colour is a useful parameter to estimate SOC for agricultural and prairie land-use. 

Jarmer et al. (2010) developed an approach to map SOC in semi-arid and arid ecosystems 

using soil colour values and Landsat imagery. But there are still some restrictions regarding 

these approaches. The analysis is limited to  (1) soils devoid of any vegetation, due to the 

fact that vegetation conceals most fertile landscape patches (Schwanghart & Jarmer 2011), 

(2) the analysis of SOC in the uppermost ~2cm of topsoil and whereas variations of SOC 

concentrations with depth are not discernible (Stallard 1998) and (3) the spatial resolution of 

the sensor (Hill & Schuett 2000). Based on the significant spectral properties of vegetation, it 

can be easily excluded from image analysis (Adams et al. 1989, Roberts et al. 1993). In 

comparison to the bare interspace, vegetated areas in arid and semi-arid environments are 

characterized by increased input of carbon and nutrients, higher moisture availability due to 

higher infiltration rates and reduction of evapotranspiration by the plant canopy layer and 

protection from water and wind erosion. These “islands of fertility” are hotspots of biotic 

activity and biogeochemical cycling (Schlesinger et al. 1996, Schlesinger & Pilmanis 1998, 

Austin et al. 2004, Cánton et al. 2004) and remain hidden from airborne monitoring 

(Schwanghart & Jarmer 2011). Remote sensing techniques are also used to stratify the area 

of investigation by its environmental settings (Liu et al. 2006, Wang et al. 2009). In this 

regard, a bottom up approach is usually implemented to integrate the spatial variability of 

SOC concentrations. Generally for each class the mean SOC mass is calculated from point 

SOC measurements (Meersmans et al. 2008). To quantify spatial distribution patterns of 

SOC, geostatistics and spatial interpolation are used (Liu et al. 2006, Mondini 2012, Wang et 

al. 2009, Webster & Oliver 2001). Meersmann et al. (2008) developed a multiple regression 

model to predict a reliable SOC amount based on different land use to soil type combination 

classes. Furthermore, SOC models are a practical solution for the estimation of SOC stocks 

due to many different combinations of soil type, environment, land use and climate change 

scenarios (Kaplan et al. 2010, 2012, Mondini et al. 2012, Sitch et al. 2003). However, studies 

by Kern (1994), Lettens et al. (2004, 2005) and Ni (2001) indicate that the range of the SOC 

stock estimation is strongly determined by type and quality of ecosystem data. Both the 

extrapolation of point measurement data and the determination of classes by environmental 

settings lead to insufficient consideration of the interrelations between environmental 
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factors and surface processes determining spatial variability of SOC. Combining remote 

sensing techniques and the dependent relationships of environmental parameters at a local 

scale seems to provide a methodological approach which compiles the requirements of a 

precise SOC stock estimation at a regional scale. The extracted information based on remote 

sensing data analysis serves first to assess the extent and the condition of ecosystems and 

second to monitor changes of ecosystem conditions and services at different spatial, 

temporal and spectral resolutions (Foley et al. 2005, Turner et al. 2007). Such information 

allows for a thorough analysis of ecosystem functionality and is essential to estimate 

regional SOC stocks concerning local scale heterogeneity. A proxy variable is therefore 

needed which is detectable by remote sensing techniques and provides information about 

spatial SOC distribution patterns as well as environmental properties. Vegetation coverage 

and distribution seem to meet these requirements. The spatial distribution of vegetation 

patterns provides some key factors for the assessment of SOC stocks and patterns in 

drylands. First, the mosaic of vegetation coverage and bare areas is related to environmental 

settings regarding the different EHEs (Lesschen et al. 2008, 2009, Puigdefabregas 2005, Yair 

& Danin 1980, Yair & Raz-Yassif 2004), second, vegetation coverage seems to be an indicator 

for the spatial distribution of SOC patterns (Jobbágy & Jackson 2000, Li et al. 2010, Zhou et 

al. 2011), third, vegetation is detectable by remote sensing techniques due to the strong 

contrast to bare areas (Qin et al. 2006) and fourth, vegetation is sensitive to changing 

climate conditions (Laity 2008, Zhou et al 2011). 

Remote Sensing techniques were frequently used for the assessment and monitoring of 

vegetation coverage in arid ecosystems (Barati et al. 2011, Hein et al. 2011, Mulder et al. 

2011, Xiao & Moody 2005). Andrew & Ustin (2008) applied aggregated classification and 

regression tree models (CART) for the spectral analysis of vegetation (Lepidium) using 128-

band HyMap image data. Lesschen (2008) used QuickBird imagery for the determination of 

different vegetation indices on fractional vegetation coverage. Qi et al. (2002) developed a 

modelling approach for the estimation of Leaf Area Index in semiarid regions using 

measurements, which are available from many sensors (AVHRR, VEGETATION, MODIS). 

Calvao & Palmeirim (2004) showed in their study that the adaption of dryland vegetation to 

high temperatures and lower water availability (e.g. strong wax absorptions, reduced leaf 

absorption) lead to a limited detectability by hyperspectral remote sensing techniques and 

hence an underestimation of vegetation coverage. The determination of vegetation based 

on the differences in reflectance between ground and vegetation seems to be more 

appropriate for the determination of vegetation coverage (Sandholt et al. 2002). Since 

vegetation absorbs most incoming light at visible wavelength, pixels with low DN-values 

(Pixel Digital Number) are indicative for vegetation in the photograph (Qin et al. 2006). The 

determination of vegetation coverage based on these differences in reflectance seems to be 

applicable for the study area in the Negev Desert due to the strong contrast of dark 

vegetation to the relatively bright background of the carbonate-rich bare ground. 
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2.5 Study area and environmental settings 

The Sede Boqer (30°52’N, 34°48’E) experimental catchment is located in the Northern 

Highlands of the Negev Desert, Israel (Olsvig-Whittaker et al. 1983, Schreiber et al. 1995, Yair 

& Kossovsky 2002) and represents a rocky desert environment (Buis & Veldkamp 2008, Yair 

& Raz-Yassif 2004). 

2.5.1 Climate 

The climate in the Northern Negev is arid with a mean annual air temperature of 20°C (Dan 

et al. 1972). Mean monthly temperatures range from 9°C in January to 25°C in August. The 

average annual rainfall observed during a 30-year period (Yair, 1994) is 91 mm, with a range 

from 34 to 167 mm (Kuhn & Yair 2003, Kuhn et al. 2004). The analysis of 784 rainfall events 

at Sede Boqer (1976-2008) shows that rainfall events up to 10mm represent 91% of the 

recorded events. Rainfall is concentrated during the winter season between October and 

April. The potential annual evaporation is high and varies between 2000 and 2600 mm 

(Evenari et al. 1980, Yair & Kossovsky 2002). 

2.5.2 Lithology 

The Upper Cretaceous bedrock consists of limestone and dolomite. The local stratigraphy is 

composed of three lithological formations that are the Netser, Shivta and Drorim formations 

(Chapter 3, Research Paper, 2, Fig. 2). These three formations are bedded almost 

horizontally and differ greatly in structural properties, thus creating different surface 

environments (Yair 1994, Yair & Danin 1980). The Upper Netser formation is characterized 

by thinly bedded, densely jointed chalky limestone with flint concretions. The surface mainly 

consists of a rocky substratum (Yair & Danin 1980). The lower part of the Netser formation 

and the upper part of the Shivta formation could be considered as one structural unit, which 

is thinly bedded and densely fissured (Olsvig-Whittaker et al. 1983). The lower Shivta 

formation is a massive unit with a low density of deep cracks. Rock weathers into cobbles 

and boulders that cover most of the surface, which is almost devoid of any soil (Yair & 

Shachak 1982). The Drorim formation is densely jointed and covered by an extensive 

colluvial soil (Dan et al. 1972).  

2.5.3 Soil 

Soils are very shallow and form patches on the rocky surface (Yair & Danin 1980). Most of 

the mineral substrate is not derived from the local limestone bedrock, but largely composed 

of loessial sediments, which were deposited from the early Quaternary Period (Bruins 1986, 

Reifenberg 1947, Yaalon & Dan 1974). Based on the World Reference Base for Soil Resources 

(IUSS Working Group WRB 2006), soils are dominantly classified as desert brown Lithosols 

(Arkin & Braun 1965, Dan et al. 1972). The study site is predominantly characterized by two 

soil bedding types (Chapter 4, Research Paper, 3, Fig.4): soil is either concentrated in rock 

fissures (“flower pots”) of the surficial rock strata, or at the base of bedrock steps, soil is 

accumulated in non-contiguous micro-colluvial deposits (“soil patches”) (Yair & Shachak 

1982).  
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2.5.4 Vegetation 

Despite the meteorological aridity, plant communities represent a transition between the 

Irano-Turanian plant geographical region and the Saharo-Arabian region with some 

Mediterranean components (Yair & Danin 1980, Yair & Shachak 1982, Zohary 1962). 

Mediterranean species can be found in most mesic sites where soil patches absorb runoff, 

generated on rocky surfaces (Olsvig-Whittaker et al. 1983). A transition from semi-desert 

communities (10-30% perennials vegetation cover) on rocky upper slopes, to patches of true 

desert communities (less than 10% perennial cover) on the lower colluviums reflects a very 

narrow ecotone usually found at larger spatial scales. 

2.5.5 Ecohydrology 

The underlying bedrock consists mainly of limestone rock. The three lithological formations 

create, due to their structural properties, different environments in terms of their properties 

(Yair & Danin 1980). According to the studies by Olsvig-Whittaker et al. (1983), Schreiber et 

al. (1995) and Yair & Raz-Yassif (2004), the following EHEs can be distinguished within the 

study site (Chapter 4, Research Paper, 3, Table 1): (1) flat desert pavement (FDP), (2) gently 

sloped desert pavement (SDP), (3) non-fissured bedrock slope (BS), (4) stepped and fissured 

bedrock slope (FBS) and (5) slope and valley colluvium (SVC). These meso-scale physical 

environments are linked in regards to hydrology, lithology and water redistribution (Olsvig-

Whittaker et al. 1983, Schreiber et al. 1995, Yair & Danin 1980). Despite the low magnitude 

of rainfall events in the Negev Desert, these events generate runoff and represent an 

important source of available water for vegetation (Yair 1994, Yair 1999, Yair & Lavee 1985, 

Yair & Raz-Yassif 2004). Runoff is predominantly generated on non-vegetated patches with 

low infiltration capacity, leading to run-on infiltration on vegetated patches with higher 

infiltration capacity. The spatial patterns of infiltration-excess overland flow are controlled 

by soil and surface properties, soil moisture and precipitation intensity. These patterns are a 

major control on ecohydrological processes. The microclimatic conditions, litter fall and 

higher activity of burrowing animals in vegetation patches promote positive feedback 

between vegetation, surface properties and infiltration (Grayson et al. 1997, Ludwig et al. 

2005). Soil moisture variability in the study area is related to the stratigraphic sections and 

causes a spatial heterogeneity in plant communities (Evenari et al. 1971, Olsvig-Whittaker et 

al. 1983, Schreiber et al. 1995, Yair & Danin 1980). These meso-scale physical environments 

influence hydrology, runoff and infiltration, vegetation density and distribution in various 

ways and therefore potentially the spatial distribution of SOC concentration and SOC stocks 

(Chapter 4, Research Paper, Figure 3, 4, Table 1). 

In general the study site is characterized by a high spatial variability of environmental 

settings (Schreiber et al. 1995, Yair 1994, Yair & Raz Yassif 2004), which presents a major 

challenge for the estimation of SOC stocks in arid areas. Lithology, hydrology and vegetation 

were well studied for the experimental watershed in the Negev Desert by Yair and 

colleagues (Boeken & Shachak 1994, Olsvig-Whittaker et al. 1983, Schreiber et al. 1995, Yair 

& Raz-Yassif 2004, Yair & Shachak 1982), although the interrelations between ecohydrology, 

vegetation distribution and SOC were not studied in detail. But for the precise quantification 
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of SOC stocks at regional scale it is essential to understand the relationship between 

hydrology, soil, vegetation and SOC stocks at local scale. The Negev Highlands were chosen 

as an ideal study site because they represent a characteristic desert rocky environment 

(Olsvig-Whittaker et al. 1983, Yair 1994, Yair & Danin 1980). Due to the fact that 50% of 

global drylands are dominated by rocky surfaces where patches of bedrock and shallow soils 

or pavements prevail (Buis & Veldkamp 2008) these environments play a significant role in 

the global carbon cycle. Methods for a precise estimation of SOC stocks and spatial patterns 

are still missing. Hence there is a strong need to quantify the SOC source and sink capacity in 

these environments regarding the prognosticated changing climate conditions 

(Aufdenkampe et al. 2011, Smith et al. 2003, Trumbore 2009).  

Based on the previous findings regarding lithology, hydrology and vegetation and the 

significant role of rocky desert environments in the global carbon cycle, the study site was 

ideally suited to answer the remaining global questions regarding the precise quantification 

of SOC stocks and patterns in such an environment: (i) How are environmental properties, 

vegetation density and SOC concentrations related? (ii) How are ecohydrological settings 

vegetation density and SOC concentrations related to different EHEs? (iii) Is it possible to 

map automatically EHEs using vegetation indices?  (iv) How to use proxy indicators for SOC 

concentrations and patterns for the precise quantification of SOC inventories? 

2.6 Methods 

According to the aim of study to quantify SOC stocks and patterns at regional scale 

considering SOC spatial heterogeneity at local scale, methods have to be developed and 

adapted to the environmental settings of the study area.  

First, for the study area the relationships between environmental properties, vegetation 

coverage, SOC concentrations and SOC stocks were identified at local scale. Therefore 

several slope sections with different ecohydrological characteristics (e.g. aspect, vegetation 

coverage, soil depth) were sampled and SOC stocks were calculated. To identify controlling 

factors of SOC stocks, soil properties, vegetation coverage and SOC concentrations were 

statistically compared between the different EHEs (Chapter 3, Research Paper, 3; Chapter 4, 

Research Paper, 4).In addition, rock-soil interactions and the relevance of soil volume for 

storing plant available water were studied. Rainfall simulation experiments were therefore 

conducted to determine the amount of rainfall required to fill the available soil water 

storage capacity and hence the water supply for vegetation coverage determining SOC 

concentrations and stocks. The design of the rainfall simulator and the selection of the plots 

were aimed specifically at observing infiltration into small soil patches on a micro-scale 

relevant for the prevalent vegetation cover (Chapter 4, Research Paper, 4). The rainfall 

experiments were also conducted to determine the relationship between ecohydrological 

settings, vegetation density and SOC concentrations and stocks related to the different EHEs. 

The distinctive EHEs reflect the spatial variability of environmental and ecohydrological 

conditions within the study site. Vegetation density and patterns, soil properties and SOC 

concentrations and stocks are related to the distinctive EHEs. In each EHE, micro-scale water 

supply and soil volume determine vegetation density and spatial distribution and hence SOC 
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concentrations and stocks. Therefore we hypothesize that these relationships could be 

utilized to support mapping of EHEs using GIS-based aerial image analysis in arid 

environments. Due to the fact that vegetation coverage is easily detectable at different 

scales by remote sensing techniques and the relationship between vegetation densities and 

patterns and the distinctive EHEs, the aim of the third study was to develop an approach 

towards automated mapping of EHEs supported by vegetation detection. A ground based 

hyperspectral camera was used to record a north facing and a south facing transect with a 

spatial resolution of 0.05m. Vegetation coverage was subsequently determined by an 

unsupervised classification. An aerial image with a spatial resolution of 0.5m was utilized to 

map vegetation coverage at coarser spatial extent (regional scale). Vegetation coverage was 

determined by digital image processing. Spatial vegetation pattern indices (vegetation 

density, lacunarity, bare area fragmentation index, patch upslope side length/area ratio) 

were calculated for both datasets. The vegetation indices were subsequently investigated 

regarding their dependence on the spatial resolution of the two different remote sensing 

datasets. Indices with a high degree of explanatory power and scale independence were 

then used as variables in a decision tree model for automated mapping of EHEs (Chapter 5, 

Research Paper, 3). Finally, SOC stock and patterns were calculated at regional scale. To cope 

with the aim of study to consider local scale spatial heterogeneity of SOC concentrations and 

patterns for the calculation of SOC stocks at a regional scale, vegetation densities and the 

distinctive EHEs were implemented as proxy indicators for SOC concentrations and spatial 

distribution. The applied relationships and methods were derived from the investigations of 

the previous studies of this thesis using field sampling, remote sensing and digital image 

processing (Chapter 6, Research Paper, 3). The combination of remote sensing techniques 

and the understanding of ecohydrological conditions and processes in one method is 

suggested to precisely quantify SOC stocks and patterns at a regional scale considering SOC 

spatial heterogeneity at a local scale in arid environments. The potential of the implemented 

method for the quantification of SOC inventories as well as the contribution to reducing the 

uncertainties of SOC inventories in heterogeneous arid environments is discussed in the last 

chapter (Chapter 7) of this thesis. 
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3. Soil organic carbon in the rocky desert of northern Negev (Israel) 

This chapter has been published in the Journal of Soils and Sediments as: Hoffmann U., Yair 

A., Hikel H., Kuhn N.J. (2012): Soil organic carbon in the rocky desert of northern Negev 

(Israel). Journal of Soils and Sediments (12), 811-825. 
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4. Experimental investigation of soil ecohydrology on rocky desert slopes in the Negev 

Highlands, Israel 

This chapter has been published in Zeitschrift für Geomorphologie as: Hikel H., Yair A., 

Schwanghart W., Hoffmann U., Straehl S., Kuhn N.J. (2012): Experimental investigation of soil 

ecohydrology on rocky desert slopes in the Negev Highlands, Israel. Zeitschrift für 

Geomorphologie 57, Suppl.1, 039-058.  
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5. Combining remote sensing and spatial statistics for the analysis of shrub patterns in arid 

regions 

Hikel H., Jarmer T., Kuhn N.J., Shoshany M., Schwanghart W. (in prep.): Combining remote 

sensing and spatial statistics for the analysis of shrub patterns in arid regions.  
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Abstract 
Arid and semi-arid areas are often covered by sparse and patchy vegetation. The spatial patterns are 

related to water scarcity, topography and substrate that in turn reflect prevalent geomorphological 

and hydrological processes. We hypothesize that this relation can be applied to support mapping of 

ecohydrological environments in dryland areas. The aim of this study is to develop an approach 

towards automated mapping of ecohydrological environments in drylands. Mapping was carried out 

at the experimental catchment site nearby Sede Boqer, Israel, along two hillslope transects. Twenty 

rectangular plots were surveyed to determine the percent vegetation cover. A ground based 

hyperspectral camera was used to image transects with a spatial resolution of 0.05 m. Plant canopy 

was obtained using an unsupervised classification. In addition, an aerial photo with a spatial 

resolution of 0.5 m was utilized to map plants at a larger spatial extent. Both datasets were used to 

calculate spatial vegetation pattern indices such as vegetation density, lacunarity, bare area 

fragmentation index and patch upslope side length/area ratio. The indices were investigated 

regarding their dependence on the spatial resolution of the datasets. Indices with a high degree of 

explanatory power and scale independence were then used as variables in a decision tree model for 

automated mapping of ecohydrological environments. The results indicate that the spatial pattern 

indices can be used as an identification tool of ecohydrological environments. The result suggests 

that mapping of ecohydrological environments in arid and semi-arid areas can be supported by 

vegetation detection using remote sensing and digital image processing.  

Keywords 
Automated mapping, vegetation patterns, ecohydrology, remote sensing   
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1. Introduction 
Arid and semi-arid areas are often covered by sparse and patchy vegetation. The spatial patterns of 

vegetation are related to water scarcity and reflect the feedback mechanisms with geomorphological 

and hydrological processes (Boer & Puigdefabregas 2005). Understanding these patterns and 

feedback mechanisms is within the research scope of the rising field of ecohydrology (Cammeraat & 

Imeson 1999, Imeson & Prinsen 2004).  

The Negev Desert in Israel is characterised by a mosaic of vegetated patches within a matrix of bare 

ground. Essential ecosystem resources such as soil moisture, sediment, organic matter and nutrients 

cohere with vegetation patterns as well as plant productivity and diversity (Olsvig-Whittaker et al. 

1983). Topography, rainfall intensity, antecedent moisture content, bedrock outcrops, soil depth and 

soil surface properties affect runoff generation. Water, sediment and nutrients are redistributed 

from runoff generating source areas to sink areas where water preferentially infiltrates (Shashak et 

al. 1998). Systems of source and sink areas in dryland regions have been described for different arid 

and semi-arid regions, such as found in Israel (Yair & Danin 1980), Australia (Ludwig et al. 1999) and 

Spain (Puigdefabregas & Sanchez 1996). According to Yair and colleagues (Schreiber et al. 1995, 

Olsvig-Whittaker et al. 1983) the mosaic of vegetated and non-vegetated patches is related to 

different ecohydrological environments (EHEs). The topology or downward sequence of EHEs 

determines how water is distributed in the landscape and, thus, the identification of EHEs 

contributes to a better understanding of dryland hydrological systems and finally, how vegetation 

responds to rainfall events. This information can further be used for the up- and down-scaling and is 

required to link remotely sensed and ground based studies (Shoshany 2012, Shoshany et al. 1995).  

Vegetation studies in arid regions have largely focused on species abundances measured at plot scale 

or along transects (e.g. Pariente 2002, Boeken & Shashak 1994). Catchment wide information on 

plant cover at high spatial resolution is often unavailable due to the large efforts required for 

detailed mapping (Puigdefabregas 2005) and since extrapolations from plots and long transects to 

larger areas are problematic (Hill & Schuett 2000). Wu (2004) emphasized the need to quantify 

spatial heterogeneity and its scale dependency (i.e. how patterns change with spatial scale) to 

understand, characterize and monitor landscape patterns. This scale problem constitutes a major 

challenge for ecohydrological studies. Remote sensing is a practical method of catchment-wide data 

collection with spatial resolution being a limiting factor for describing vegetation patterns. 

Downscaling methods provide ways to obtain information on subgrid-scale but require 

parameterization schemes of fine-scale heterogeneity (Zhang et al. 1998). In addition, vegetation 

patches are often too small and most of the required information on different vegetation structures 

is lost (Puigdefabregas 2005).  

In this study we address the problem of scale dependency in vegetation pattern analysis using 

ground based imaging with very high spatial resolution (0.05 m) and investigate how these patterns 

are represented in a coarser resolved (0.5 m) orthophoto obtained from airborne imaging. Our aim is 

to find scale-independent pattern indices operating at both spatial scales that support mapping EHEs 

in areas where very high spatial resolution data is unavailable. We hypothesize that different surface 

conditions can lead to variable vegetation patterns at the hillslope scale and that spatially distributed 

data on vegetation patterns can support the automated mapping of EHEs. Our objectives are (i) to 

identify vegetation from ground based hyperspectral imagery, (ii) to characterize vegetation patterns 

using different vegetation pattern indices, (iii) to test and apply measures that are independent of 

the spatial resolution of our remotely sensed imagery and (iv) to automatically map EHEs.  
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2. Study area and environmental settings 
The study area is located near Sede Boqer (30°52’N, 34°48’E) in the Northern Highlands of the Negev 

Desert of Israel, at an altitude of 510 m a.s.l. (Fig.1). The experimental catchment is a second order 

drainage basin situated in an arid rocky environment (Schreiber et al. 1995, Olsvig-Whittaker et al. 

1983) and covers an area of 0.05 km2. 

 

Figure 1: Map of Israel and location of the study site (Sede Boqer) in the Negev Highlands, Israel. 

The climate in the Northern Negev is arid and characterized by large seasonal contrasts governed by 

seasonal shifts of the zonal circulation. The mean annual air temperature is 19.2°C.  Mean monthly 

temperatures range from 9°C in January to 25°C in August. The average annual rainfall is 90mm with 

the majority of 70 % recorded between December and February. The potential annual evaporation is 

high and varies between 2000 and 2600 mm (Yair & Kossovsky 2002).  

Bedrock consists of limestone and dolomite of Turonian age. The local stratigraphy is composed of 

three lithological units: the Drorim, Shivta and Netser formations (Fig.2). The three formations are 

bedded almost horizontally and differ in surface properties (Schreiber et al. 1995, Olsvig-Whittaker et 

al. 1983, Yair & Shashak 1982). 
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Figure 2: Lithological formations within the studied catchment (modified after Yair & Shachak 1982, 
Olsvig-Whittaker et al. 1983, Schreiber et al. 1995) and EHEs at the hillslope scale: flat desert 
pavement (FDP), gently sloped desert pavement (SDP), non-fissured bedrock slope (BS), stepped and 
fissured bedrock slope (FBS) and slope and valley colluvium (SVC). 

The Netser formation is characterized by thinly bedded chalky limestone and flint concretions. 

Surface substrate mainly consists of a rocky substratum and soils are very shallow and patchy (Yair & 

Danin 1980). The Shivta formation is a thinly bedded and densely fissured formation and forms a 

stepped topography, structured in almost horizontal layers. Soils developed as small soil patches in 

aeolian silts and fine sands deposited either directly by the wind or redeposited by slopewash. At the 

base of the bedrock steps soils developed in non-contiguous soil strips and rock fissures of the 

surficial rock strata. The Drorim formation represents the lowest unit, which is densely jointed and 

covered with an extensive colluvial mantle with downslope increasing thickness (Yair & Shachak 

1982).  

The lithological formations within the study site provide distinct structural properties creating 

different surface environments (Yair & Danin 1980). According to the studies by Olsvig-Whittaker et 

al. (1983) and Schreiber et al. (1995) following EHEs are distinguished along a hillslope (Fig.2): flat 

desert pavement (FDP), gently sloped desert pavement (SDP), non-fissured bedrock slope (BS), 

stepped and fissured bedrock slope (FBS) and slope and valley colluvium (SVC). These meso-scale 

physical environments in various ways act upon water redistribution (Schreiber et al. 1995, Olsvig-

Whittaker et al. 1983, Yair & Danin 1980). Runoff is predominantly generated on non-vegetated 

patches with low infiltration capacity, leading to run-on infiltration on vegetated patches with higher 

infiltration capacity. The spatial patterns of infiltration-excess overland flow are controlled by soil, 

surface properties, soil moisture and precipitation intensity.  

The catchment hosts plant communities that represent a transition between the Irano-Turanian 

plant geographical region and the Saharo-Arabian region (Zohary 1962, Yair & Danin 1980). A 

transition from semi-desert communities (10-30% perennials vegetation cover) on rocky upper 

slopes, to patches of true desert communities (less than 10% perennial cover) on the lower 

colluviums reflects a very narrow ecotone usually found at larger spatial scales. Dominant species of 

the perennials are shrubs and semi-shrubs Artemisia herba-alba, Gymnocarpos decander, Hammada 
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scoparia, Noaea mucronata, Reamuria negevensis and Zygophyllum dumosum. An assortment of 

annuals, geophytes and hemicryptophytes can be identified especially during the rainy winter season 

(Olsvig-Whittaker et al. 1983).  

3. Material and Methods 
In order to characterize the small-scale heterogeneity of surface properties of the study site, a north-

facing and a south-facing hillslope transect were selected. Both cover (i) the local stratigraphy from 

the thalweg to the divide of the basin and (ii) the small-scale heterogeneity within each EHE. The 

EHEs are related to the differences in the local stratigraphy and are easily identified in the field 

(Fig.3).  

 
Figure 3: Map of the studied catchment showing the location of the plots and the different EHEs 
within the two hillslope-transects. EHEs: (FDP) flat desert pavement, (SDP) gently sloped desert 
pavement, (BS) non-fissured bedrock slope, (FBS) stepped and fissured bedrock slope, (SVC) slope 
and valley colluvium. 

3.1 Available Data  

The available data basis for further analysis is an orthorectified aerial photograph. The image was 

acquired in May 1993 and has three bands in the visible range (RGB). We assume that the temporal 

gap between field visit and image acquisition only insignificantly affects our results. Tongway & 

Ludwig (1994) postulated that vegetation pattern and cover is related to long-term average climatic 

conditions, indicating equilibrium between water availability by rainfall and runoff reallocation and 

vegetation patterning and density. According to the findings of Littmann & Berkowitz (2008) 

precipitation in the Negev Desert is characterized by high interannual variability but lacks a longterm 

trend. Hence, we assume vegetation patterns derived from the aerial photograph to be 
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representative for the findings obtained during our field stay. A pixel size of 0.5 m is sufficiently high 

to visually distinguish the shrub canopies from their surrounding background.  

Since vegetation absorbs most incoming light at visible wavelengths, pixels with low DN-values (Pixel 

Digital Number) are indicative for desert shrub canopies in the photograph (Qin et al. 2006). Here we 

adopt this approach since the dark vegetation is in strong contrast to the relatively bright background 

of the carbonate rich bare ground. We identify vegetation patches using grayscale image 

morphology. Prior to the analysis a principal component analysis (PCA) was conducted to obtain a 

grayscale image that best represents the albedo contrasts between vegetation and bare ground. The 

band with the first principal component scores (PC1) was found to incorporate this information since 

it represents the brightness of the data set. In a second step, regional minima were extracted from 

the PC1 using the flood fill operator in ArcGIS. The flooded image was then subtracted from PC1. 

Thirdly, a threshold was applied to the difference image to obtain a binary image where ones refer to 

vegetation and zeros to bare ground. A threshold of 40 was identified by visual comparison of the 

binary image with the RGB imagery and impressions obtained in the field.   

3.2 Data acquisition and preparation 

3.2.1 Mapping 

Field observation was conducted in spring/summer 2008 and 2009. Primary purpose of the 

observation was to quantify the percent vegetation cover and composition along two hillslope-

transects. Ten 3m x 3m plots and ten 10m x 10m plots distributed within the different EHEs were 

selected for the inventory (Fig. 3). Vegetation density was determined as the ratio of canopy cover to 

plot size. Canopy cover was calculated by measuring diameter and perimeter of each plant. 

Vegetation mapping was conducted using the mapping chart of Braun Blanquet and Zohary (Zohary 

1962). The anatomy of shrubs is based on the definition by Ferguson (1964). The results of the field 

observation were used to validate the developed remote sensing approach.   

3.2.2 Hyperspectral imaging  

Hyperspectral imagery has been acquired by a VDS Vosskühler Cool-1300Q hyperspectral camera in 

the spectral range 300-1100nm. The camera produces spectral data cubes of 1280x1024 pixels in 91 

spectral bands with 12 bit radiometric resolution. A Nikon's NIKKOR 105mm telephoto lens with 

23°20' field of view (FOV) was mounted on the camera. The output spectra of the camera are in 

digital numbers (DN). 

In total, a number of 108 images were acquired from the entire valley, from which nine images were 

used in this study. The images were georeferenced by image-to-image georeferencing based on 

images pictured by a Totalstation (TOPOCON Imaging Station IS03). Hyperspectral data sets were 

reduced to 944x768 to cut off outer parts of the images which are blurred and have less light 

intensity. Additionally, the spectral range was limited to 470-820 nm (37 spectral bands) to exclude 

noisy parts of the recorded spectra from further analysis. Since hyperspectral data contains 

redundant information principle components analysis was performed and the first three principle 

components explaining more than 99 percent of inherent spectral variance were extracted. 

Images were classified into five or six (in case of sky included in the image) classes using the k-means 

algorithm implemented in ENVI of which one class was found to well represent vegetation cover. 

Further on, classified images were rectified to map coordinates. Since locating ground control points 

(GCP) on classified images was almost impossible, GCPs were identified on original hyperspectral 
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images and transferred to classified data using pixel coordinates. To validate the high-resolution 

vegetation canopy data obtained from ground-based imaging the location (XY-coordinates) of 99 

single shrubs was determined by using the TOPCON Totalstation. The validation shows an accuracy of 

88 percent. After geocoding and validating the classified images were combined to a mosaic of the 

investigated area.  

3.2.3 Laser scanning 

We used the automated Totalstation (TOPCON Imaging Station IS03) to acquire 3D point clouds as a 

basis for a digital elevation model (DEM) of the study site. The study site was scanned from various 

positions and the pointclouds transformed to a local coordinate system using tie point registration. 

Pointcloud density varies depending on distance but averages ~25 points m-2. The data were 

processed with the software IMAGE MASTER (TOPCON). In a second step, a gridded digital surface 

model with 0.5 m cellsize was obtained using bilinear interpolation and vegetation and erroneous 

elevation data were filtered out using a bottom-hat filter to obtain a DEM. Subsequent analysis were 

carried out using TopoToolbox (Schwanghart & Kuhn 2010) and ESRI ArcGIS 9.3 and 10.0.    

3.2.4 Derivation of plant canopy from ground based imagery 

The high-resolution vegetation canopy data obtained from ground-based imaging was further 

employed to identify trunk locations of individual plants. Trunk locations were obtained by a 

procedure that accounts for both the horizontal and vertical viewing angle and overlapping canopies 

of individual plants.  

As a first step, the georeferenced, classified image was transformed from the orthogonal coordinate 

system to the Θ-D space where Θ is the azimuth angle and D the distance between the imaging 

station and each pixel center (Fig.4a). A resolution of 2x10-4 radians for Θ and 0.02 m for D was 

chosen. Subsequently, the plant height was estimated for each profile (Fig.4b) by identifying the 

distant boundary of each plant object in the image. From here, the vertical angle between the pixel 

as derived from the DEM and the horizontal distance were used to calculate the plant height. Closely 

arranged plants with merged shadows where accounted for by assuming a maximum plant height of 

0.4 m. The maximum plant height was observed in our plot data. As soon as this height was reached 

the height was reset to zero and plant height accumulation was restarted. Subsequently, all local 

maxima in the plant height map were identified, which were then transformed back into the XY 

space. Based on our data acquired in the field, the mean width-height ratio of shrubs is 0.8. This 

value was then taken to calculate the planform extent of the canopy of each individual plant (Fig. 5). 
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Figure 4a,b: Schematic illustration of the procedure to obtain trunk locations regarding the 
horizontal and vertical viewing angle of individual plants.  

 
Figure 5: Planform extent of high-resolution vegetation canopy data (Fig.5, right) obtained from 
ground-based imaging (Fig.5, left). 
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3.3 Vegetation pattern analysis and explorative data analysis 

A number of measures and indices exist to characterize spatial patterns of vegetation (Imeson & 

Prinsen 2004). Following vegetation pattern indices were used: vegetation density, lacunarity, bare 

area fragmentation index and patch upslope side length/area ratio (PUSLAR). Two datasets were 

generated for the vegetation analysis. A hillslope transect dataset with a resolution of 0.05 m 

(hyperspectral image) and a catchment dataset with a resolution of 0.5m (orthoimage). Vegetation 

pattern indices were calculated for both datasets.  

Wu (2004) emphasized that using pattern indices must be based on the same spatial resolution and 

extent whereas no “optimal” or “general” scale for characterizing spatial heterogeneity is specified. 

We calculated the indices within 5m x 5m blocks (block statistics) for both images to obtain spatially 

distributed values of the vegetation measures. This block size was chosen since it provides a 

comparable basis to field findings and a sufficiently fine spatial resolution for mapping and 

interpretation of results. In summary, we calculated 263 blocks for each of the indices and both types 

of imagery, respectively.  

The indices were calculated from the differently resolved image datasets to investigate their 

sensitivity to changes in image spatial resolution. We argue that if index values are insensitive against 

different spatial resolutions, the index is scale independent at least at the resolution range spanned 

by our imagery. Scale independent vegetation pattern indices calculated from the orthoimage are 

preferably used for further analysis. To examine scale dependence, the distributions of the 

vegetation indices calculated from both image were plotted as boxplots and visually compared. In 

addition, blockwise comparison of the indices was accomplished using linear regression (R2) and by 

calculating the Root Mean Square Error (RMSE). A strong linear correlation and a low RMSE value 

indicate that the calculated vegetation pattern indices are independent from the resolution of the 

imagery used in this study.  

Vegetation density was calculated as the aerial fraction covered by plant canopy from our imagery 

and was mapped by field observation.  

Lacunarity describes the shape and the distribution of gap sizes in fractal geometric objects (Imeson 

& Prinsen 2004) obtained from a “moving window” algorithm (Mandelbrot 1983). Lacunarity for a 

box size r is defined as the mean-square deviation of the variation of mass distribution probability 

Q(M,r) divided by its square mean, where A(r) refers to the lacunarity at box size r and  M indicates 

the mass respectively pixels of interest.   

 ( )  
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The number of boxes with radius r and mass M is defined as n(M,r). Q(M,r) is the probability 

distribution obtained by dividing n(M,r) by the total number of boxes. The index and application is 

described in detail by Imeson & Prinsen (2004). Lacunarity was calculated with the Lacunarity 

Analysis Tool (Dong 2009). On the basis of the calculated lacunarity values vegetated patch 

clumpiness can be determined. High decay rates correspond to low lacunarity or a regular 

alternatively random distribution. Low decay rates correspond to high lacunarity and hence to more 

clumped patterns. An important advantage of the lacunarity index over other vegetation pattern 

indices is that the lacunarity curve depends on the pattern of aggregation. Hence the lacunarity index 

is independent from vegetation density. 
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The bare area fragmentation index was described by Jaeger (2000) to determine the degree of 

landscape division (D). The index is defined as the probability that two randomly chosen places in the 

map under investigation are not situated in the same undissected area (Jaeger 2000), where At is the 

total map area, Ai is the area of the n patches (i 1  …  n) and n is the number of patches in the map. 

Imeson & Prinsen (2004) adopted this index for a semi-arid area in southeast Spain.  

  1  ∑(
  
  
)
  

   

 

An advantage to other measures is that the index is insensitive to omission or addition of very small 

patches. The bare area fragmentation index is used in this study to determine how strongly 

vegetated patches dissect the bare area. Hence areas, which are highly fragmented, have few small 

bare patches.  

PUSLAR was calculated to determine the impact of the vegetation structure on runoff infiltration. 

Previous studies (Bergkamp et al. 1996, Imeson & Prinsen 2004) have shown that most of the runoff 

infiltrates at the upslope side of the vegetation patches. PUSLAR is calculated for the vegetation 

patches by dividing the number of cells of a patch that have minimum one upslope un-vegetated cell 

by the area of the patch using TopoToolbox (Schwanghart & Kuhn 2010), where n is the number of 

patches, Ai the area of n patches (i 1  …  n), Ni the number of upslope side cells and Lc the cell 

length. The advantage of the calculated index is that it is insensitive especially for highly variable 

patch sizes. 
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3.4 Decision Tree Modelling 

A decision tree (IBM SPSS Version 20) approach was used to train and validate an EHE classification 

model based on the vegetation pattern indices. The classification tree approach evaluates a set of “if-

then” logical conditions between the dependent and independent variables and splits the dataset 

according to the largest deviance produced (Rejwan et al. 1999). A decision tree model is a non-linear 

and non-parametric approach that automatically identifies interactions among variables and displays 

these interactions as a simple tree diagram. No implicit assumptions are made about the underlying 

relationships between the independent and the dependent variables (Rejwan et al. 1999). The 

Classification and Regression (CRT) growing method was chosen to generate the decision tree. The 

maximum tree depth which determines the maximum number of levels of growth beneath the root 

node was limited to five levels. The default value of 10 cases was defined for parent nodes as well as 

for child nodes. To avoid overfitting the model the decision tree was pruned by specifying the 

maximum difference in risk as zero. The branches of the tree are identified by leave-one-out cross 

validation (LOOCV) of the dataset. LOOCV uses a single observation from the original sample as 

validation data and the remaining observations as training data. This procedure is repeated such that 

each observation in the sample is used once for validation (Picard & Cook 1984). CRT splits the data 

into segments that are as homogeneous as possible with respect to the dependent variable. Terminal 

nodes in which all cases have the same value for the dependent variable are homogeneous “pure” 

nodes. A further output of the calculation is the predicting accuracy of the decision tree model. The 

results were visually revised and compared with the generated data based on field mapping. 
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4. Results and interpretation 

4.1 Vegetation density 

Table 1 shows the vegetation density values of the field observation dataset and of both remote 

sensing datasets. Vegetation density was calculated for each plot regarding the different EHEs (Figure 

3). For further analysis the field observation dataset was used as reference. Linear regression analysis 

and the RMSE calculation shows a R2=0.85 and a RMSE=0.5 comparing the orthoimage dataset with 

the field observation dataset and a R2=0.89 respectively a RMSE=0.8 comparing the hyperspectral 

image dataset with the field observation dataset. Hence, it can be identified that vegetation density 

values do not differ significantly between the different analysis methods. The vegetation density 

values generated by field observation, hyperspectral image analysis and orthoimage analysis 

significantly (p<0.05, p: error probability) differ among each EHE. Due to the challenges in 

georeferencing the ground based imagery with the orthoimage an accordance of 100% is not within 

reach. The highest inaccuracy is found where image distortions are highest, such as at the upper 

edge of both transects and in the middle of the north-facing transect.   

Table 1: Average vegetation density in percent for the different EHEs as calculated from the 
orthoimage and hyperspectral image analysis and obtained from field observation.  

Ecohydrological 
unit 

Orthoimage 
 

Hyperspectral 
Image  

Field 
Observation 

FDP 10 9 11 
SDP 17 15 15 
BS 9 11 10 

FBS 18 23 20 
SVC 56 34 30 

 

Based on these results we infer that some but not all EHEs can be discriminated using vegetation 

density alone since vegetation density lacks information on the spatial configuration of vegetation 

patches. In combination with the other indices, however, vegetation density is of use for the 

identification of different EHEs within the studied experimental watershed. 

4.2 Scale dependence of vegetation pattern indices 

The scale dependency of vegetation pattern indices is tested using the results of the vegetation 

classifications obtained from the hyperspectral, groundbased imagery and the airborne orthophoto. 

The hyperspectral image was used as reference. The results of the linear regression and the RMSE 

calculation are presented in Fig. 6. Albeit small vegetation patches (<0.5m) and single plants remain 

shrouded by the coarse resolution of the orthoimage, strong linear relations and a high coefficient of 

determination (R2) is identified for vegetation density, lacunarity and bare area fragmentation index. 

Thus we infer that these indices are not sensitive or dependent to the difference in spatial resolution 

of our imagery. We suppose that small vegetation patches (<0.5m) are limited or alternatively are 

contiguously located to larger vegetation patches or that some indices are insensitive to omission or 

addition of very small patches.  

In contrast to the previous indices, the correlation between PUSLAR calculated from both images is 

very low (R2=0.02). This suggests that PUSLAR is sensitive to the lack of subgrid vegetation detection 

by the orthoimage analysis. The large discrepancy in PUSLAR values between both analysis methods 

points to a significant influence of small vegetation patches regarding the PUSLAR. Owing to the scale 

dependency of PUSLAR we refrained from including this index in the subsequent modeling approach.  



Chapter 5: Combining remote sensing and spatial statistics for the analysis of shrub patterns in arid regions 

77 

 

 
Figure 6: Boxplots, linear regression and RMSE comparing both remote sensing datasets regarding 
the different vegetation pattern indices to assess the dependence of vegetation pattern indices on 
the spatial resolution of imagery applied in this study.  

 

4.3 Decision tree 

The previous results indicate that three of the four extracted vegetation pattern indices are 

independent on the resolution of the two datasets. Thus, we anticipate that these indices can be 

used as discriminatory variables at the scale of the orthoimage, which is available for a larger spatial 

extent while still being representative for the details observed in the high-resolution, hyperspectral 

imagery. 
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Table 2 shows the results of the multiple mean comparisons between different vegetation indices 

grouped by EHE. For each index the groups with the highest degree of explanatory power (p<0.05) 

were identified. As an example, the averages of the vegetation indices vegetation density and bare 

area fragmentation index calculated for SVC are significantly different from all other EHEs (Table 2). 

Thus, we expect SVC to be distinguished well from the other EHEs. In contrast, FDP cannot clearly be 

distinguished from SDP and BS where no significantly different averages between these two 

vegetation indices are recorded. A discrimination of these EHEs based on vegetation density and bare 

area fragmentation index only is expected to be more difficult.  

Table 2: Results of the multiple mean comparison between vegetation indices (vegetation density 
(veg), lacunarity (lac) and bare area fragmentation index (bar)) within EHEs. Significant differences 
(error probability p<0.05) are indicated bold.  

 FDP SDP BS FBS SVC 
 veg lac bar veg lac bar veg lac bar veg lac bar veg lac bar 

FDP - - - 1.000 1.000 1.000 0.393 1.000 1.000 0.550 0.026 1.000 0.000 1.000 0.000 

SDP 1.000 1.000 1.000 - - - 0.019 0.203 1.000 0.953 0.053 1.000 0.000 0.113 0.000 

BS 0.393 1.000 1.000 0.019 0.203 1.000 - - - 0.000 0.000 0.837 0.000 1.000 0.000 

FBS 0.550 0.026 1.000 0.953 0.053 1.000 0.000 0.000 0.837 - - - 0.000 0.000 0.000 

SVC 0.000 1.000 0.000 0.000 0.113 0.000 0.000 1.000 0.000 0.000 0.000 0.000 - - - 

 

Comparing the different vegetation pattern indices it can be identified that vegetation density 

determines a large part of the EHEs. BS and FDP can hardly be discriminated. Despite the different 

surface properties of BS and FDP, both units exhibit similar values of vegetation pattern indices. 

Extensive bedrock outcrops of massive limestone characterize BS. The surfaces are relatively smooth 

and strongly inclined. In small, local depressions shallow soil has been accumulated generating a 

small scale, patchy soil cover. Low soil volumes and the dominating rocky surfaces generate dry 

moisture conditions due to rapid runoff generation and reduced water storage capacity. Water 

availability and hence beneficial conditions for vegetation growth is related to the distinction in soil 

volume and distribution. Hence vegetation is concentrated in soil mounds and along small soil 

patches. The surface of FDP is covered by rocky substratum and shallow and patchy soils. Being 

exposed to strong winds most of the unconsolidated fine material has been blown out. The uniform 

surface of FDP is prone to crusting thus delimiting infiltration rates and promoting the generation of 

Hortonian overland flow. Similarly as in BS, aridity is promoted by the rapid, lateral export of surface 

waters. Hence, despite their structural difference, BS and FDP are expected to show a similar 

hydrological behaviour, promoting similar vegetation patterns. 

The average lacunarity of FBS differs from that of FDP, BS and SVC, which indicates different patch 

clumpiness in this EHE. Bedrock in FBS consists of a stepped topography, structured in almost 

horizontal layers. Bare bedrock prevails but a dense network of joints enables the development of 

relatively deep soils. In addition, shallow soil patches occur along the base of the bedrock steps. 

Runoff deeply infiltrates at the interface between rock and soil covered surfaces. Hence this 

environment provides an improved moisture reservoir for vegetation at certain locations generating 

a clumped vegetation distribution. Vegetation is concentrated along the stepped environment and 

the soil filled joints thus following patterns governed by the structural properties of the bedrock not 

prevalent elsewhere.  

FBS lacks a difference to SDP. SDP is situated in a transitional slope position between FDP and FBS. 

SDP consists largely of bare rock surface and soil surface covered by a rocky layer. In comparison to 
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FDP soil depth is higher and the covered area larger resulting in higher total infiltration capacities. 

Since more runoff is retained in the soil moister conditions are generated. Due to the less uniform 

surface conditions vegetation is distributed more clumped than FDP but less clumped than FBS.  

The bare area fragmentation index discriminates SCV from the other EHEs. SVC is characterized by a 

thick uniform colluvial regolith and benefits from the circumstance that most of the water originated 

at the upper part of the slope infiltrates at this lower unit. Water deeply infiltrates at the interface 

between the above rock covered surfaces and the colluvial regolith. This implies that SVC is an 

environment of moderate water supply. Vegetation cover is relatively dense and less clumped with  

resulting in a highly area fragmentation characterized by few small bare patches.  

FDP, SDP, BS and FBS are characterized by an array of extensive bare areas due to lower vegetation 

density values and a less uniform surface structure. In comparison to BS the EHEs SDP and FBS show 

more and smaller bare patches. SDP and FDP also differ regarding the bare area fragmentation index. 

FDP has less and larger bare patches than SDP but still more and smaller bare patches than BS. In 

general FDP and SDP are hard to establish due to nearly similar surface properties generating related 

values for the different vegetation pattern indices. Due to the higher vegetation density values and 

the higher fraction of rock fragments SDP shows more and smaller bare patches than FDP. The 

interpretation of the results strongly evidences that vegetation pattern indices are determined by 

hydrological and geomorphological processes related to variable surface properties, which take place 

at the small scale. In turn vegetation pattern indices provide an indication of the subsequent 

interactions and effects within each EHE.  
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Figure 7: Tree classification results of the EHEs according to the interactive effect of the vegetation 
pattern indices such as vegetation density (veg), lacunarity (lac) and bare area fragmentation index 
(bar). 

The classification tree that discriminates EHEs based on the vegetation pattern indices is shown in 

Fig. 7. The tree contains 17 nodes and thereof nine terminal nodes. The maximum tree depth is five. 

Among the included variables the vegetation pattern indices vegetation density and lacunarity are 

the most important variables in partitioning the dataset (Table 3). The dataset is first partitioned by 

lacunarity, which represents the maximum change in deviance where the root node is split in two 

branches. The left branch predicts the EHEs SVC, BS and FDP. Among the 184 samples 18 samples 

were correctly simulated as SVC (predicting accuracy of 75.0%), 22 as BS (predicting accuracy of 

91.7%) and 10 as FDP (predicting accuracy of 35.7%). Compared to BS and FDP, SVC is determined by 
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high vegetation density values and a low bare area fragmentation index. Vegetation density 

discriminates BS from SDP, where BS is characterized by lower vegetation density values. Both 

branches predicted the EHEs FBS and SDP at which both are hard to distinguish due to related 

surface properties. Compared to SDP and BS, FBS shows higher values for vegetation density and 

lacunarity resulting in a distinction of these EHEs. The predicting accuracy for FBS was 79.1%, for SDP 

58.4%. In total 81 samples of the dataset were misclassified resulting in a prediction accuracy of the 

classification tree of 69.2% (Table 4). These results indicate that the proposed method is appropriate 

for simulating the different EHEs within the studied catchment.  

Table 3: Discriminatory power (%) and normalized discriminatory power (%) of the three vegetation 
pattern indices in the decision tree model. Vegetation density has the highest discriminatory power. 

Independent variable Discriminatory Power 

(%) 

Normalized 

Discriminatory Power (%) 

Vegetation density 0.198 100.0 % 

Lacunarity 0.155 78.3% 

Bare area fragmentation index 0.129 64.9% 

 

Table 4: Results of the decision tree analysis showing the observed and predicted classification of the 
EHEs and the prediction accuracy of the decision tree model. 

 Predicted 

Observed SDP FDP SVC BS FBS Precise Percentage 

SDP 45 0 0 21 11 58.4% 
FDP 7 10 1 9 1 35.7% 
SVC 0 0 18 0 6 75.0% 
BS 0 0 0 22 2 91.7% 
FBS 16 2 0 5 87 79.1% 

Total Percentage 25.8% 4.6% 7.2% 21.7% 40.7% 69.2% 

 

To obtain a mapping of estimates of EHEs the decision tree model was calculated with the vegetation 

pattern indices calculated from the entire spatial extent of the catchment covered by the 

orthophoto. Visual interpretation of the resulting prediction map of EHEs (Fig. 8) allows identifying 

and checking the plausibility of the general patterns of EHEs. The mapped estimates show a relatively 

consistent classification where the general patterns agree well with impressions obtained in the field. 

The EHEs are associated with slope positions, which are in line with the horizontal bedding of the 

main structural units. Despite this general agreement, numerous, randomly located misclassified 

areas (salt-and-pepper error, Langford et al. (2006)) prevail in the results and spatially homogeneous 

EHE segments are largely missing. 

There are various possible origins of the salt-and-pepper misclassifications. First, EHE 

misclassifications can be related to errors originating in the initial vegetation classification and 

propagating to the final results. Second, misclassifications are attributed to the spatial heterogeneity 

within each EHE and the strong influence of vegetation density results. The spatial heterogeneity of 

surface properties in each EHE, especially the distribution of rock and soil covered surfaces 

determine vegetation density and spatial distribution. Atypically large bedrock outcrops in an EHE, 

which is characterized by a uniform surface structure and equally randomly distributed and dense 

vegetation coverage, lead to a misclassification of these areas. For instance we found areas within 

SVC that are void of vegetation. In contrast there are areas in BS that show a very high vegetation 

density because of runoff concentration and deep infiltration at the interface between rock and soil 

covered surfaces. Misclassifications occur more pronounced in EHEs that have previously been 
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identified as being discriminated only poorly. The inset in Figure 8 shows the spatially defined 

classification for the EHEs FDP/SDP. It can be identified that number of samples are misclassified as 

BS and FBS. Due to very similar values for vegetation density for both ecohydrological units based on 

similar uniform surface properties an accurate differentiation is hard to establish.  

Generalization filters are common tools to smooth classification maps. To obtain a more contiguous 

segmentation of EHEs and to smooth EHE outlines a majority filter with a von-Neumann 

neighbourhood was applied to the classification results. The majority definition was defined as HALF 

which means, that half of the cells must have the same value and be contiguous. This majority 

definition has an even stronger smoothing effect. The application of the majority results in a much 

smoother representation of EHEs with most of the misclassified cells being replaced by the expected 

EHE. The results (Fig. 8) show that the spatial variability within each EHE was reduced. The model and 

the generalization filter was run for the whole extent of the orthoimage (Fig. 8). 

 

Figure 8: Results of the decision tree based classification model. Spurious misclassifications were 
removed using a majority filter. The classification model was run for the experimental catchment and 
for the whole extent of the image. 
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Whilst being relatively coarsely resolved the model captures the most fundamental spatial 

characteristics of the distribution of EHEs, which are the spatial sequence along the topographic 

gradient and the alignment parallel to the elevation contours as suggested by the horizontal bedding 

of the geological formations. The degree of generalization is dependent on the scale of the results. In 

general there is no common rule which degree of generalization is most suitable. But more often 

generalization is used the results will lose detailed spatial information. The tree-based classification 

model can predict with a relative high accuracy the affiliation to a defined EHE, but cannot 

compensate the natural homogeneity and spatial variability within each EHE. 

5. Discussion 
During the last decades, interactions between Earth surface processes such as runoff, soil erosion 

and vegetation have received increasing attention (Imeson & Prinsen 2004). Studies by Bergkamp 

(1998) and Cammeraat & Imeson (1999) showed that vegetation patterns indicate the location of 

runoff and sediment source and sink areas that determine vegetation growth and distribution 

(Tongway & Ludwig 1994, Puigdefábregas & Sánchez 1996). In turn, vegetation patterns provide 

information on dominant hydrology and geomorphological processes (Imeson & Prinsen 2004) and 

are thus potential proxies towards understanding these processes and their variability in space. With 

increasing availability of very high-resolution satellite imagery with submeter spatial resolution 

vegetation patterns become more precisely detectable. Detecting patterns from imagery will thus 

provide new insights into the variability of hydrological and geomorphological processes at 

unprecedented spatial extents. Amongst other, this information will be of value for the assessment 

of food production and carbon fluxes between plants and the atmosphere (Shoshany 2012).  

Shoshany et al. (1995) suggested that the understanding of vegetation and vegetation patterns and 

how they reflect and respond to rainfall events is of value for the up- and down-scaling that is 

required to link remotely sensed and ground based studies. Spatial heterogeneity constitutes a great 

problem here. To incorporate spatial heterogeneity in modeling approaches requires large amounts 

of parameters, which are often not available for larger areas (Calver & Cammeraat 1993). An 

approach to translate fine-scale properties into a broader-scale framework is to define distinctive 

units which represent characteristic surface properties and specific process responses. Busch et al. 

(1999) and Becker & Braun (1999) used response units to characterize spatial heterogeneity within a 

study site. The identification of these response units is generally achieved using key indicators 

depending on the geo-ecosystem (Imeson & Cammeraat 2000). In this study different vegetation 

pattern indices were studied to identify different EHEs. We showed that some of these indices 

perform particularly well in quantitatively describing patterns that usually require very high 

resolution data. A machine learning based approach towards automated, supervised classification of 

spatially distributed indices was then shown to plausibly reconstruct the patterns previously mapped 

EHEs. It was shown that vegetation and vegetation distribution are related to previously mapped 

surface properties and that occurrence and extent of the latter can be spatially predicted using 

information on vegetation patterns.  

Studies by Puigdefabregas & Sanchez (1996), Ludwig et al. (1999) and Cammeraat & Imeson (1999) 

underscore the importance of integrating vegetation patterns and their spatial distribution into 

hydrological and erosion research. Many models on erosion and sedimentation processes are based 

on highly simplified representations of spatial patterns of water redistribution which fail to account 

for the feedback mechanisms between runoff and surface properties (De Roo & Jetten 1999, Sun et 
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al. 2002). Hence a good representation of water redistribution processes and patterns is therefore 

essential, especially in catchments with varying surface properties which yield very different water 

redistribution patterns (Buis & Veldkamp 2008). Modeling runoff and erosion at catchment scale 

makes simplifications unavoidable, but without taking processes and surface conditions at plot and 

hillslope scale into account runoff and sediment yield will often be overestimated (Lesschen et al. 

2009). The introduced approach is based on the identification of EHEs which integrate distinctive 

surface properties that feedback with hydrological and geomorphological processes. At present we 

are still unable to quantify these feedback mechanisms, but we think that the presented approach is 

a significant step forward to regionalize such information when available. In addition, patterns of 

runoff source and sink areas will allow to investigate hydrological and sediment connectivity and will 

thus provide important input to the study of non-climatic factors governing water availability in 

drylands. 

Remote sensed images with different spatial resolutions were frequently used to estimate vegetation 

coverage (Xiao & Moody 2005). Lesschen (2008) studied different vegetation indices on fractional 

vegetation cover in a semi-arid environment using QuickBird imagery. The results of this study show 

that vegetation indices derived from visible spectral bands are highly correlated with vegetation 

coverage. In contrast, vegetation indices based on red and NIR reflectance (e.g. NDVI) showed a low 

or weak correlation. The adaption of dryland vegetation to high temperature and low water 

availability cause a lack of a strong red edge, reduced leaf absorption in the visible spectra and strong 

wax absorptions (Calvao & Palmeirim 2004). The resulting limited detectability by remote sensing 

techniques leads to an underestimation of vegetation coverage. The identification of vegetation 

based on the differences in reflectance between ground and vegetation seem to be more 

appropriate for the determination of vegetation coverage than on the difference between the NIR 

and red reflectance (Sandholt et al. 2002).  

The implemented remote sensing approach in this study bridges the gap between the need of high 

resolution and a differentiated detection of vegetation coverage based on bands in the visible 

spectra. It could be also shown that calibration based on field data (e.g. vegetation coverage 

estimation from georeferenced plots) is essential for correct estimation of vegetation coverage. 

Studies by Francis & Thornes (1990), Rogers & Schumm (1991) and Quinton et al. (1997) show that a 

vegetation coverage >30% is already enough to decrease soil erosion considerably. Maps combining 

information about vegetation coverage and ecohydrology (e.g. topography, geology, rock-soil ratio, 

soil distribution) provide a quick identification of erosion hotspots within a study site. The benefit of 

high resolution data is that areas of high erosion risks are identified at the scale it occurs. In a next 

step, conservation practices can be applied at locations with high erosion risk. In addition these maps 

can also be applied for vegetation monitoring as an indicator for desertification (Kefi et al. 2007) or 

as input for vegetation-climate models (Pitman 2003). 
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6. Conclusion 
This study presents an automated approach towards mapping EHEs on the basis of vegetation 

patterns using very high-resolution ground imagery and an orthophoto with 0.5 m ground resolution. 

The study was conducted in the Negev Desert, Israel, where surface properties exert a strong 

influence on vegetation patterns and the distribution of runoff and thus plant available water in the 

landscape. The dependence of different vegetation pattern indices on the spatial resolution of the 

image data was investigated and indices identified that are insensitive against the resolution 

difference in our imagery. A decision tree model was successfully used to classify EHEs from different 

vegetation pattern indices the interactions of which were shown to have sufficient discriminative 

power even at a relatively coarse spatial scale. While being restricted to EHEs we assume that our 

approach can be transferred to other areas and research questions that address interactions 

between hydrological, geomorphological and vegetation patterns.  
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Abstract 
In the context of global warming dryland ecosystems are considered to be highly sensitive to 

climate change. Despite the fact that a not insignificant portion of the world’s total soil 

organic carbon (SOC) is stored in global drylands, there is insufficient research about the 

quantification of SOC sink and source capacity of soils in changing desert environments. 

Several studies in drylands document that dynamic geomorphic processes, small scale spatial 

variability of surface properties and vegetation distribution affects the formation and 

degradation of organic carbon in soils. This study aimed at the quantification of SOC-stocks 

at regional scale considering small scale spatial heterogeneity of SOC concentrations and 

driving processes at local scale. A GIS-based image analysis approach was therefore 

developed using vegetation coverage and ecohydrological environments (EHEs) as proxy 

indicators for SOC concentrations and patterns.  

To determine vegetation coverage within the study site a GIS-based orthoimage analysis 

method was used. To imply the influence of the spatial variability of surface properties in the 

SOC-stock calculation an approach to determine EHEs within the study site was 

implemented. The distinctive EHEs are characterized by similar surface conditions (such as 

geology, rock/soil ratio, soil distribution) and vegetation density. 

The results clearly show that the combination of field data and digital image processing 

approaches are practical and beneficial for the precise estimation of SOC-stocks at regional 

scale in arid environments. The calculated SOC-stock for the total area is 1.19t C ha-1, 

indicating that dryland soil contain a significant amount of SOC. 

Vegetation distribution and EHEs can be used as proxy variables for the estimation of SOC-

stocks in arid environments. The results suggest that the implemented approach is generally 

applicable to estimate SOC inventory, spatial SOC patterns and to increase our knowledge in 

up-scaling data from local scale to regional scales. 

 

Keywords  Drylands • Ecohydrology • SOC-inventory • Soil Organic Carbon 
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1 Introduction 
1.1 Soil organic carbon stocks in drylands  

Deserts and semi-deserts occupy more than one-third of the Earth’s land surface (LAITY, 2008). 

About 50% of these regions are dominated by rocky surfaces, where patches of bedrock and shallow 

soils or pavements prevail (BUIS & VELDKAMP, 2008). Despite the predominantly patchy and shallow 

soil cover, 15.5% of the world’s total SOC to 1-meter depth (LAL, 2003; SCHIMEL ET AL., 2000) is 

stored in global dryland soils. Nevertheless literature is still dominated by studies in humid 

environments and the dynamics of the soil organic carbon (SOC) pool in drylands are still not well 

known (QUINTON ET AL., 2010; SEIP, 2001). In the context of global warming, dryland ecosystems 

seem to be regions sensitive to climate change (MISHRA ET AL., 2007; SMITH ET AL., 2008). Studies 

by FARAGE ET AL. (2003), LAL (2003) and YAIR (1999) show that changing climate conditions will 

result in large, rapid and variable responses of desert ecosystems. Dryland soils are determined as far 

from SOC saturation, which indicates a high potential of SOC uptake. Limited water availability in arid 

environments reduces SOC mineralization. As a result dryland soils are less likely to lose SOC and 

therefore the flux of SOC into the atmosphere is limited (FANG & MONCRIEFF, 2001; FARAGE ET AL., 

2003; QI ET AL, 2000). According to the studies by FARAGE ET AL. (2003) and LAL (2009, 2001) the 

residence time of SOC in desert soils can be much longer than in humid regions. The ratio of the soil 

to living biomass SOC pool might be greater in drylands than in tropical forest. In the last 15 years 

SOC studies largely focused on the estimation of SOC stocks at plot scale or along transect (CERDAN 

ET AL., 2010; COLEMAN & JENKINSON, 1999; DOETTERL ET AL., 2012b). According to the Kyoto 

Protocol SOC inventories at coarser scales such as regional or global scale are required. Data are 

therefore generally extrapolated from small scale to coarser scale. But the results are only partially 

appropriate and characterized by large uncertainties due to high spatial heterogeneity of 

environmental factors and soil properties and limited sampling densities (ASBJORNSEN ET AL., 2011; 

DOETTERL ET AL., 2012a). Hence, there is a need for more case studies with precise measurements of 

SOC stocks at regional scale considering the spatial heterogeneity of SOC concentrations and 

patterns at local scale. This is particularly important for the quantification of SOC sink or source 

capacities of soils in changing desert environments. 

1.2 Spatial variability of carbon sequestration 

In arid areas vegetation patterns constitute hotspots of biological productivity and diversity of 

herbaceous plants (BOEKEN & SHACHAK, 1994; GOLODETS & BOEKEN, 2006). The mosaic of 

vegetated and non-vegetated patches is dynamically interdependent. Bare ground acts as a source of 

water and sediments; vegetated patches act as sinks where water and sediments are trapped 

(PARIENTE, 2002; PUIGDEFABREGAS, 2005). Vegetated patches absorb more water due to higher soil 

porosity, infiltration capacity, water holding capacity, hydraulic conductivity, structural stability, 

organic matter content, and lower bulk density (CAMMERAAT, 2002; PUIGDEFABREGAS, 2005). The 

variability of soil moisture availability generates a patchy vegetation distribution, which in turn exerts 

a strong control on carbon stocks (JOBBÁGY & JACKSON, 2000; LI ET AL., 2010; OLSVIG-WHITTAKER 

ET AL., 1983; SCHLESINGER ET AL., 1996).  

HOFFMANN ET AL. (2012) determined SOC-stocks at plot scale (plot sizes vary between 9 to 100m2) 

in a range of different ecohydrological environments (EHEs) in the Negev Desert, Israel and identified 

soil properties relevant for SOC concentrations and stocks. The results of the study show, that the 

soils in the study area contain a significant amount of SOC of 1.54 kg C m-2, with an average SOC stock 

over the entire study site of 0.58 kg C m-2. The SOC is determined by the different EHEs, which are 

characterised by (i) aspect-driven differences, (ii) microscale topography and soil formation, and (iii) 
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vegetation coverage (HIKEL ET AL., 2012, 2013; HOFFMANN ET AL., 2012). The study also 

documented that in general high SOC concentrations and stocks are found at slope positions that 

favour high soil moisture and thus high vegetation densities (HOFFMANN ET AL., 2012). In addition, 

similar results are reported by JOBBÁGY & JACKSON (2000) and LI ET AL. (2010) who found a strong 

link between aboveground vegetation properties and SOC. Hence, EHEs and vegetation distribution 

need to be considered as a major controlling factor on SOC concentrations and stocks in arid 

environments.  

1.3 Remote sensing and quantification of SOC-stocks  

Vegetation coverage and EHEs have been demonstrated to provide a direct indicator of spatial 

pattern of SOC-concentrations in an arid catchment (HOFFMANN ET AL., 2012). This correlation can 

be of great value for up- and down-scaling that is required to link remotely sensed and ground based 

studies. In general spatial point data at local scale are interpolated to inventory at regional / global 

scale. Although plots and long transects have been intensely studied, it is difficult to extrapolate 

findings from field studies at small scale to larger areas (DOETTERL ET AL., 2012a,b; HILL & SCHUETT, 

2000) because of many thresholds, non-linear processes, the large spatial variability of 

environmental factors, soil properties and limited sampling densities. These estimated SOC stocks are 

not well represented and a more detailed investigation is required (ASBJORNSEN ET AL., 2011; 

DOETTERL ET AL., 2012a).    

For the precise quantification of SOC stocks an approach is necessary which considers small scale 

spatial SOC heterogeneity, its driving processes and the ability to incorporate these dependencies at 

coarser scales. For regional-wide assessment remote sensing with a commonly used spatial 

resolution of several decimetres seems to be a practical method of data collection (JARMER ET AL., 

2010; PUIGDEFABREGAS, 2005; SCHWANGHART & JARMER, 2011). HIKEL ET AL. (2013) developed (i) 

a GIS-based image analysis approach to map vegetation patterns from orthoimages and (ii) an 

approach towards automated mapping of EHEs in drylands using vegetation pattern indices derived 

from high-resolution imagery. Both mentioned image analysis approaches were combined to one 

methodological procedure due to the major aim of this study to estimate SOC inventory and to map 

SOC patterns in an arid environment. The calculation of the SOC-stock is based on the strong 

correlation between SOC-concentrations with vegetation coverage and EHEs. In this study we focus 

on the quantification of a SOC inventory at regional scale considering SOC spatial heterogeneity at 

local scale. 

2 Study site 
The study was conducted near Sede Boqer (30°52’N, 34°48’E) in the Northern Highlands of the Negev 

Desert, Israel (Fig.1), which was ideally suited because of well-researched ecohydrology. EVENARI ET 

AL. (1980), OLSVIG-WHITTAKER ET AL. (1983) and YAIR (1999) intensively investigated there the 

influence of surface properties and rock and soil covered surfaces on ecohydrology and vegetation. 

The study area has an extent of about 1 km2 and elevation ranges between 480 m and 540 m above 

zero.  
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Figure 1: Study area (1 km2) in the Negev Desert (Israel) and the experimental catchment site (0.05 
km2) studied by HIKEL ET AL. (2012) and HOFFMANN ET AL. 2012. 

The mean annual air temperature is 20° C and mean monthly temperatures vary from 9 °C in January 

to 25 °C in August. Average annual rainfall, observed during a 30-y-period at the study site is 90 mm 

characterized by high interannual variability with extreme values between 34 mm and 167 mm 

(KUHN & YAIR, 2003; KUHN ET AL., 2004; YAIR & KOSSOVSKY, 2002). Rainfall is concentrated during 

the winter season between October and April. Potential evaporation rates vary between 2000 mm 

and 2600 mm, generating an arid climate (KIDRON & ZOHAR, 2010; NATIV ET AL., 1997). The Upper 

Cretaceous bedrock stratigraphy is composed of three limestone formations: the Netser, Shivta, and 

Drorim formation (Fig.2). The three formations are bedded almost horizontally and differ greatly in 

surface properties. The lithological formations within the study site provide distinctive structural 

properties creating different surface environments (OLSVIG-WHITTAKER ET AL., 1983; SCHREIBER ET 

AL., 1995; YAIR & SHACHAK, 1982). In accordance to HOFFMANN ET AL. (2012) and OLSVIG-

WHITTAKER ET AL. (1983) following EHEs are distinguished within the study area at hillslope scale 

(Fig.2): flat desert pavement (FDP), gently sloped desert pavement (SDP), non-fissured bedrock slope 

(BS), stepped and fissured bedrock slope (FBS) and slope and valley colluvium (SVC). These EHEs 

differ regarding hydrology, lithology and water redistribution (OLSVIG-WHITTAKER ET AL., 1983; 

SCHREIBER ET AL., 1995; YAIR & DANIN, 1980). 
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Figure 2: Lithological formations within the studied catchment (modified after YAIR & SHACHAK, 
1982; OLSVIG-WHITTAKER ET AL., 1983; SCHREIBER ET AL., 1995) and the different EHEs at the 
hillslope scale: flat desert pavement (FDP), gently sloped desert pavement (SDP), non-fissured 
bedrock slope (BS), stepped and fissured bedrock slope (FBS) and slope and valley colluvium (SVC). 

In-situ chemical weathering of bedrock is of minor importance for soil formation. The mineral 

substrate is not solely derived from the local limestone bedrock, but largely composed of loessial 

sediments deposited since the early Quaternary (BRUINS, 1986; YAALON & DAN, 1974). Based on the 

World Reference Base for Soil Ressources (FAO 2006), soils are dominantly classified as a desert 

brown Lithosol with patchy and thin soil coverage. Soils are rich in sand and silt (85-93%) while clay 

content varies between 14.5% in joints and 7-10% in soil patches covering bedrock (YAIR & DANIN, 

1980).  

Plant communities in the study area represent a transition between the Irano-Turanian plant 

geographical region and the Saharo-Arabian region (OLSVIG-WHITTAKER ET AL., 1983; YAIR & 

SHACHAK, 1982). The study area hosts a range of communities from semi-desert (10-30% perennials 

vegetation cover) on rocky upper slopes to some patches of true desert (less than 10% perennial 

cover) at the lower colluviums (OLSVIG-WHITTAKER ET AL., 1983; YAIR & DANIN, 1980).  

3 Methods 
The applied methodological approach is based on the results of the studies by HIKEL ET AL. (2012, 

2013) and HOFFMANN ET AL. (2012). The main findings of both studies are that (i) vegetation 

distribution is a direct indicator for SOC concentrations and patterns, (ii) SOC concentrations are 

determined by the different EHEs which are characterized by similar surface conditions (such as 

geology, rock/soil ratio, soil distribution) and vegetation density and (iii) EHEs are detectable by 

remote sensing techniques using vegetation indices as a proxy indicators for the different EHEs. 

Combining this information is innovative in the field of SOC-stock quantification due to the fact that 

the spatial heterogeneity of SOC concentrations and patterns at local scale are considered for the 

estimation of SOC stocks and patterns at regional scale. This approach is especially applicable for 

(semi-) arid environments because vegetation is clearly distinguishable from soil and rock covered 

surfaces by strong contrasts in the Pixel Digital Numbers (QIN ET AL., 2006).  Particularly in such 

dynamic geomorphic systems, which are considered as highly sensitive to climate change, precise 

measurements and estimates of the spatial distribution of SOC stocks and patterns are necessary to 

quantify the SOC sink and source capacity of changing environments. 

Based on the aim of the study the following objectives for data analysis are derived: (i) determine 

vegetation coverage by orthoimage analysis (ii) map automatically EHEs by using vegetation pattern 
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indices (iii) calculate the SOC inventory for the study area. The methodical procedure is described in 

detail below. 

3.1 Measurement of aerial photograph 

The aerial photograph used for the analysis has three channels in the visible range and a 

spatial resolution of 0.5m that is high enough to clearly distinguish the shrub canopies from 

their surrounding background. The approach applied in this study was described by HIKEL ET 

AL. (2013) to determine vegetation patterns and distribution within the study site. The basis 

for this approach is that pixels with low DN-values (Pixel Digital Number) are usually desert 

shrub canopies in the photograph (QIN ET AL., 2006) due to the fact that vegetation absorbs 

most incoming light at visible wavelengths. HIKEL ET AL. (2013) used grayscale image 

morphology to identify vegetation patches. To obtain a binary image representing 

vegetation and bare ground, regional minima were extracted from the band with the first 

principal component scores (PC1) using the flood fill operator in ArcGIS 10.0 (ESRI). In a next 

step the flooded image was subtracted from PC1 band and a threshold was defined to the 

difference image. The result is a map showing spatial vegetation distribution within the 

study site. 

3.2 Mapping EHEs 

The approach to determine EHEs within the study site was described by HIKEL ET AL. (2013). 

Vegetation and its spatial extent were mapped by analyzing the orthoimage. The subsequently 

generated dataset was used to calculate spatial vegetation pattern indices such as vegetation 

density, lacunarity and bare area fragmentation index. The indices were then used in a decision tree 

model for automated mapping of EHEs. This approach is an identification tool for EHEs in (semi-) arid 

environments supported by vegetation detection using remote sensing and digital image processing 

(HIKEL ET AL., 2013). 

3.3 Calculation of SOC-stock  

Based on an adapted sample strategy for this arid environment the SOC-stock was calculated for the 

different EHEs (SOCstock,EHE). According to HOFFMANN ET AL. (2012) the estimation of SOCstock,EHE is 

based on three different equations. 

With equation 1 the SOC-stock (SOCstock,i [kg C m-²]) was estimated for each representative layer i of a 

soil sample with thickness dsoil,i [cm]: 

SOCstock,i = 0.1 × dsoil, i × BD × SOCci × (1-CFi / 100)   (equation 1) 

Equation 2 calculates SOC-stocks (SOCstock) per sampling site by summarizing the SOC-stock of each 

layer i (SOCstock,i) at the corresponding sampling site: 

SOCstock = ∑ SOCstock,i.   (equation 2) 

The stocks given in equation 2 were multiplied with the mean soil coverage of each unit (equation 3). 

Hence the SOC stock for each EHE (SOCstock,EHE) was determined considering  the limited soil coverage 

in each EHE. 

SOCstock,EHE = SOCstock × soil coverage (equation 3). 

 

Based on these calculated SOC-stocks for each EHE (SOCstock,EHE) the total SOC-stock (SOCstock,total) was 

determined by summing up the SOCstock,EHE. 
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4 Results 
4.1 Determination of vegetation coverage 

Vegetation density values were calculated for 40 plots based on the different EHEs within the study 

site by the introduced orthoimage analysis approach. HIKEL ET AL. (2012, 2013) and HOFFMANN ET 

AL. (2012) calculated in their studies vegetation density values for exact the same 40 plots by field 

observation. The field data were used to determine ground truth for the generated orthoimage 

dataset. 

Table 1 shows the vegetation density values (%) of the field dataset and the orthoimage dataset. For 

further analysis the field dataset was used as reference. Linear regression analysis (Fig. 3) and the 

RMSE calculation show a R2=0.86 and an RMSEges=0.2. The RMSE values for the different EHEs shows 

values between 0.3 - 1.3 (Table 1). Hence, it can be identified that vegetation density values do not 

differ significantly between the different analysis methods. Based on these results, the RGB image 

analysis approach could be validated by the field dataset. In a next step a vegetation distribution map 

was generated (Fig. 4) where the ones (black grid cells) in the binary image refer to vegetation and 

the zeros (grey grid cells) to bare ground.  

Ecohydrological 

environments 

Field 

dataset 

Orthoimage 

dataset 

RMSE  

FDP 11 10 0.7 

SDP 15 17 1.1 

FBS 20 18 0.6 

BS 10 9 0.3 

SVC 30 36 1.3 

Table 1: Average vegetation density in percent and the calculated coefficient of variation for the 
different EHEs as calculated from the orthoimage and obtained from field observation 

 

Figure 3: Relationship between the different vegetation density analysis methods plotted as linear 
regression (R2=0.86). 
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Figure 4: Binary image showing vegetation distribution within the study area. 

4.2 Automated mapping of EHEs 

The introduced decision tree model was run with the vegetation pattern indices calculated from the 

entire extent of the orthoimage.  As a result a mapping of estimates of EHEs was obtained. The 

resulting prediction map of EHEs (Fig. 5) allows a visual interpretation for identifying and checking 

the plausibility of the general patterns of EHEs. As mentioned in the previous study by HIKEL ET AL. 

(2013) who implemented this methodological approach for automated mapping, the mapped 

estimates show a relatively consistent classification. In general, the patterns agree well with 

impressions obtained in the field. But it must be mentioned that misclassifications prevail in the 

results. This salt-and-pepper error (LANGFORD ET AL., 2006) inhibits the formation of spatially 

homogeneous EHE segments, which are largely missing in the resulting map. Nevertheless the 

decision tree model has a high predicting accuracy of ~70%. The spatial extent of the different EHEs is 

shown in Table 2. 
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Figure 5: Results of the decision tree based classification model showing the estimated EHEs after 
removing spurious misclassification with a majority filter. 

4.3 SOC-stock and SOC-patterns 

Based on the field measurement data by HOFFMANN ET AL. (2012) and the calculated spatial extent 

of the different EHEs by the decision tree based classification model, the SOC-stocks for each EHE 

were determined. Table 2 shows the results of the calculation. The calculated SOC inventory for the 

total area is 1.19t C ha-2. The SOC stocks of the different EHEs show a wide variability ranging from 

0.095kg C m-2 to 1.065 kg C m-2. The greatest SOC concentrations are shown in the EHE FBS, the 

lowest in the EHE BS. The trend of the SOCstocks,EHE is similar to the SOC concentrations.  

Figure 6 shows the spatial patterns of SOC within the study site. The spatial patterns are related to 

the spatial variability of SOC concentrations within the study site, determined by vegetation 

distribution and the heterogeneity of surface properties.  The results indicate in due consideration of 

soil moisture, vegetation coverage as well as surface properties as driving factors for SOC-

concentrations and patterns, a proper and differentiated calculation of SOC inventory.  

Ecohydrological 

environments 

(EHEs) 

Area 

EHEs 

(km2) 

Vegetation 

covered area 

(km2) 

SOC-stock 

EHE          

(kg C m-2) 

SOC-stock 

EHE          

(kg C) 

FDP 0.064 0.006 0.245 1564 

SDP 0.182 0.031 0.445 13774 

FBS 0.378 0.068 1.065 72511 

BS 0.098 0.009 0.095 838 

SVC 0.089 0.032 0.930 29873 

Table 2: Area, vegetation covered area, SOCstocks,ehe and SOCstock,total with respect to the different EHEs. 
The mean SOCstock,ehe (kg C m-2) is based on the study by HOFFMANN ET AL. (2012) 
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Figure 6: Spatial distribution of SOC-pattern within the study area controlled by vegetation 
distribution and surface properties.   

5 Discussion 
5.1 SOC stocks, surface properties and vegetation 

The SOC concentrations and stocks show strong differences between the distinctive EHEs (Table 2). 

These results suggest that different ecohydrologic conditions affect the SOC stocks on the different 

EHEs. HIKEL ET AL. (2012) and HOFFMANN ET AL. (2012) investigated in their studies the influence of 

soil and surface properties and vegetation on SOC concentrations for the experimental site in the 

Negev Desert, Israel. The highest SOC concentrations and SOCstock,EHE are found at northern exposed 

slopes and lower slope positions which favour high soil moisture and thus high vegetation densities. 

Only a weak correlation (R2 = 0.25) exists between the mean soil depths of the EHEs and SOC 

concentrations and no correlation (R2 = 0.03) between soil depth and SOCstock,EHE (HOFFMANNN ET 

AL., 2012). In contrast to rocky desert slope environments, studies by BERHE ET AL. (2008) and YOO 

ET AL. (2006) show, that soil thickness is highly relevant for SOC stocks in more humid areas. The 

positive relationship (R2 = 0.91) between vegetation coverage and SOC stocks at the experimental 

site (HOFFMANN ET AL., 2012) indicates that the findings by OLSVIG-WHITTAKER ET AL. (1983), who 

studied the effects of surface properties on vegetation, can also be applied to SOC stocks.  
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Figure 7: Conceptual model of the effect of surface properties, water availability and vegetation 
coverage on SOC concentrations.   

The variability of soil properties and SOC stocks is associated with differences in net primary 

production (NPP) and the relative moisture supply (HOFFMANN ET AL., 201; OLSVIG-WHITTAKER ET 

AL., 1983). HIKEL ET AL. (2012) examined therefore the relevance of soil volume and rock-soil 

interactions for plant available water. The effects of surface properties and water availability on 

vegetation coverage and hence on SOC concentrations are shown in Fig. 7. The interactions between 

soil volume, total infiltration, wetting depth, rock-soil ratio, volumetric water content and vegetation 

coverage regarding SOC concentration were combined in a conceptual model (Fig. 7). Compared to 

soil covered surfaces, which are characterized by a high porosity and high water absorbing capacity, 

runoff generation is faster on relatively impermeable bare rocky surfaces. In turn lower flow 

frequency and lower magnitude of runoff are observed on soil-covered surfaces (HIKEL ET AL., 2012; 

YAIR & RAZ-YASSIF, 2004; YAIR, 1992). For the simulated rainfall total infiltration values range from 

5.7 l on soil covered areas to 1.6 l on areas nearly devoid of any soil. In addition, runoff redistribution 

is determined by differences in infiltration rates due to rock and soil covered surfaces influencing the 

rate of transformation of rainfall into runoff. Rock-soil ratio declines with soil volume. Hence, small 

soil volumes receive their water from a proportionally greater rock surface than those with a high soil 

volume. Rock-soil ratio and soil volume are strongly correlated (R2=0.8). For small soil volumes total 

infiltration is lower due to the fact that the limited soil volume reduces the amount of infiltration. 

Low infiltration rates indicate that only a limited amount of water entered the soil. The low depth of 

wetting which declines with rock-soil ratio confirms this. Hence, low soil volumes limit plant available 

water. Soil volume displays a moderate negative relationship (R2=-0.56) with volumetric water 

content (water storage capacity) indicating that small soil volumes are filled up closer to their 

maximum water storage capacity than the large ones during the simulated rainfall. In contrast, low 

volumetric water content therefore indicates high total infiltration but also that the soil volume was 

not filled up to its maximum. Soil volume determines the frequency of watering that is required to 

maintain vegetation and the risk of drought stress. High vegetation coverage is therefore found 

where soil volume and total infiltration is high. In contrast low vegetation coverage is found where 

soil volume, total infiltration and wetting depth are low. According to the findings by CAMMERAAT 

(2002), PUIGDEFABREGAS (2005) and STAVI ET AL. (2009), vegetation patches absorb more water 

due to higher soil porosity, infiltration capacity water holding capacity, hydraulic conductivity, 

structural stability and organic matter content and lower bulk density. This suggests that high 
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vegetation densities indicate high soil volumes and hence high SOC concentrations per unit area. 

Vegetation coverage and SOC concentrations and stock are strongly correlated (R2=0.81, R2=0.91). 

Vegetation is distributed patchily within the area due to soil and water availability resulting in a high 

spatial variability of SOC concentrations and stocks. SOC concentrations range between 3 g kg-1 and 

15 g kg-1. Soil depth varies on a centimetre to meter scale and the SOC concentration change is 

therefore limited by depth. 

The presented approach bears some importance regarding the expected changing climate conditions 

related to the global warming process. YAIR & KOSSOVSKY (2002) state for the Negev Desert that the 

same regional climatic change may have different effects on the environmental responses. Different 

surface conditions and processes control the ecohydrological response and therefore lead to a non-

uniform reaction to a regional climatic change. Determining spatial heterogeneity and interrelation 

between surfaces and processes as introduced by the experimental procedure contributes to a 

better understanding and estimation of the impact of climate change on the spatial variability of SOC 

concentrations and stocks in arid environments. 

5.2 Estimation of SOC using remotely sensed data 

For the last three decades remote sensing techniques are used for the assessment and monitoring of 

arid ecosystems (HEIN ET AL., 2011; MULDER ET AL., 2011; SCHMIDT & KARNIELI, 2000). Especially in 

arid ecosystems remote sensed images with different spatial resolutions were frequently utilized to 

estimate environmental properties and vegetation coverage (XIAO & MOODY, 2005). Several 

techniques exist to determine vegetation coverage by the analysis of remote sensing images (BARATI 

ET AL., 2011; FRANK & TWEDDALE, 2006; MCGLYNN & OKIN, 2006; XIAO & MOODY, 2005). ANDREW 

& USTIN (2008) for example used 128-band HyMap image data for the spectral analysis of Lepidium 

by aggregated classification and regression tree models (CART). QI ET AL. (2000) developed a 

modelling approach for the estimation of Leaf Area Index in semiarid regions, which are available 

from many sensors such as AVHRR, VEGETATION, MODIS and MISR. The adaption of dryland 

vegetation to high temperatures and lower water availability (e.g. strong wax absorptions, reduced 

leaf absorption) lead to a limited detectability by remote sensing techniques and hence an 

underestimation of vegetation coverage (LESSCHEN, 2008; CALVAO & PALMEIRIM, 2004). SANDHOLT 

ET AL. (2002) states that the identification of vegetation based on the differences in reflectance 

between surface (e.g. soil and rock cover) and vegetation seems to be more appropriate for the 

determination of vegetation coverage in drylands than on the difference between the NIR and red 

reflectance. The implemented GIS-based image analysis approach is based on the analysis of aerial 

imagery (orthophotos) using digital image processing and hence provides a simple solution for 

estimation of vegetation coverage and distribution in arid environments. This approach was 

developed on the actual vegetation and the vegetation density values of the image datasets used. 

The key to establish near natural and accurate vegetation coverage values is to use a sufficient large 

training dataset that covers a wide range of vegetation densities (from non-vegetated areas as well 

as low-, medium and high-density areas). Especially vegetation coverage and EHEs as a proxy variable 

for the estimation of SOC-concentrations and stocks provides to link remotely sensed and ground 

based studies. The GIS-based image analysis approach generated exact results for this specific area. 

The field data were used to determine the prediction accuracy of the implemented method. The 

results of 40 plot measurements were therefore compared with the generated results of the GIS-

based image analysis approach. The approach shows a prediction accuracy of 86%. This analysis 

approach furthermore provides some key benefits such as (i) fast and comprehensive of vegetation 

coverage analysis, (ii) sparse long and expensive field trips, (iii) integrates small scale spatial 
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heterogeneity of SOC concentration and (iv) enables the precise determination of SOC sink and 

source areas at regional scale. 

The GIS-based image analysis approach also bears some advantages regarding the estimation of SOC 

inventories using soil reflectance by remote sensing techniques. Using hyperspectral remote sensing 

for the estimation of SOC inventories is limited to soils devoid of any vegetation, which leads to large 

uncertainties (JARMER ET AL. 2010, SCHWANGHART & JARMER 2011). The GIS-based image analysis 

approach copes with the need to consider vegetation density and distribution and the relationship 

between SOC concentrations in the quantification of SOC inventories.  The spatial resolution of the 

sensor is also a limiting factor (SCHWANGHART & JARMER, 2011) resulting in simplifying assumptions 

regarding the SOC spatial heterogeneity at local scale (COX ET AL., 2000; JONES ET AL., 2005). Based 

on the consideration of vegetation coverage and EHEs as proxy indicators for SOC concentrations and 

patterns in the implemented approach, SOC spatial heterogeneity at local scale is figured into the 

calculation of regional SOC inventory. SOC inventories generated by hyperspectral remote sensing 

techniques are generally limited to the uppermost 2 cm of topsoil (JARMER ET AL., 2010; 

SCHWANGHART & JARMER, 2011). By combining field data and digital image processing approaches 

soil volume is considered in the SOC-stock calculation. 

But a certain limitation was brought for orthoimages with (i) a high variability in the greyscale values 

for vegetation and (ii) a very low albedo contrast between vegetation and bare ground. Detection 

errors are mostly based on these two aspects. Over-estimation was a result of an inability to 

distinguish a small range of high greyscale values representing vegetation as well as bare ground. 

Vegetation patterns, characterized by low greyscale values, were classified as bare ground when the 

surrounding raster cells also show low greyscale values. This results in an under-estimation of 

vegetation coverage. In general the detection of vegetation coverage is difficult if the albedo contrast 

between vegetation and bare ground is greatly diminished. Based on the generated image analysis 

approach, identification was very simple and for the most part very precise. This remote sensing 

approach shows the potential benefits of using image data with carefully located in situ field data in 

digital soil mapping. 

5.3 SOC-stock comparison with other drylands  

Table 3 summarizes results of SOC-studies in arid and semi-arid areas regarding the measured SOC-

stocks. To compare the results of the different studies the SOC-stocks were calculated for the area of 

the spatial extent of the orthoimage (1 km2). The estimated SOC-stock for the study site in Israel 

shows a medium to high value compared to those in other arid environments cited in Table 3. The 

even medium SOC-stock indicates an exact calculation of the generated analysis method due to the 

high variability of SOC-concentration values regarding previous studies (HOFFMANN ET AL., 2012). 

According to the findings of HOFFMANN ET AL. (2012) higher SOC-concentrations are attributed to 

the patchiness of the soil cover in the study area. The mosaic of soil and rock covered surfaces 

determines the distribution of vegetation. Vegetation is concentrated were soil cover prevails. These 

“islands of fertility” (SCHLESINGER & PILMANIS, 1998) are characterized by increased biochemical 

processes, net primary production (NPP) and SOC-concentrations (BONANOMI ET AL., 2008; SCHADE 

& HOBBIE, 2005). These higher SOC-concentrations can be also attributed to the reduced 

mineralization of SOC due to water scarcity in the Negev desert (YAO ET AL., 2010).  
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Reference Region Environment SOC-stock (t C km-2) 

Schlesinger (1977) Global World desert soils 18.6 - 44.6 

Amundson (2001) Global Warm desert 1136.0 

Watson et al. (2000) Global Deserts and semi-deserts 3546.0 

Feng et al. (2002) Land region of china Different desert types 16.2 - 1882.3  

Feng et al. (2002) Land regions of china Different desert types 16.2 - 908.7  

Ardö (2003) Sudan Semi-arid Sudan 48.7 

This study Negev, Israel Rocky desert 118.6 

Table 3: Calculated SOC-stock (t C) for an extent of 1km2 based on studies in several arid 
environments. 

The comparison of the different SOC studies (Table 3) remains limited due to the fact that the studies 

rely on different measurement techniques, up-scaling approaches and variable reference soil depths. 

Hence differences in SOC stocks may not represent environmental conditions but simply the different 

methodologies applied for inventorying (HOFFMANN ET AL., 2012). But the comparison indicates 

that the number of high-resolution SOC inventories in drylands is very limited. This implies that more 

case studies should focus on comparable methodology to evaluate the importance and potential 

changes of SOC in arid environments. In contrast to the notion that rocky deserts do not contain 

significant soil or SOC, the results of the SOC-stock calculation in the Negev Desert Israel show that 

the SOC-stock is higher than generally expected. Due to the fact that SOC-stocks in arid environments 

are highly sensitive to climate change and thus represent a major unstable C-pool within the global 

carbon cycle monitoring approaches are needed to detect and quantify changes at the scale they 

occurs. The implemented GIS-based image analysis approach ensures the required consideration of 

spatial heterogeneity regarding SOC distribution at local scale for the calculation of SOC inventories 

at regional scale as mentioned in the introduction. 

6 Summary and conclusions  
This article describes the combination of field data and digital image processing approaches for the 

calculation of SOC-stocks in arid environments. Vegetation density and EHEs within the study site 

were used as proxy variables for SOC-concentrations. The combination of the different approaches 

facilitates the assessment of spatial SOC patterns. High-resolution satellite imagery (1 m and higher) 

are recently more and more available which enables to detect small single plants and hence to 

calculate more exactly SOC patterns and distribution. This approach can be then implemented on 

broader regional scales to facilitate mapping of the estimated SOC stocks. The use of remotely 

sensed data in the manner proposed in this paper can also be used to monitor and better understand 

the impact of climate change on SOC-pools. But further empirical assessment of the approach in 

wide arid and semi-arid areas and at different spatial scales is needed. Future developments of the 

approach may include vegetation type and utilize other vegetation pattern indices combined with 

seasonal variability and a drought index.  



Chapter 6: Spatial prediction of SOC-patterns based on vegetation distribution and remote sensing 

104 

References 
ANDREW, M.E. & USTIN, S.L., 2008: The role of environmental context in mapping invasive plants 

with hyperspectral image data. Remote Sensing of Environment 112, 4301-4317. 

ASBJORNSEN, H., GOLDSMITH, G.R., ALVARADO-BARRIENTOS, M.S., REBEL, K., VAN OSCH, F.P., 

RIETKERK, M., CHEN, J., GOTSCH, S., TOBÓN, C., GEISSERT, D.R., GÓMEZ-TAGLE, A., VACHE, K., 

DAWSON, T.E., 2011: Ecohydological advances and applications in plant-water relations research: a 

review. Journal of Plant Ecology 4 (1-2), 3-22. 

BARATI, S., RAYEGANI, B., SAATI, M., SHARIFI, A., NASRI, M., 2011: Comparison the accuracies of 

different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas. The 

Egyptian Journal of Remote Sensing and Space Science 14 (1), 49-56. 

BERHE, A.A., HARDEN, J.W., TORN, M.S., HARTE, J., 2008: Linking soil organic matter dynamics and 

erosion-induced terrestrial carbon sequestration at different landform positions. Journal of 

Gepphysical Research 113, 1-12. 

BOEKEN, B. & SHACHAK, M., 1994: Desert plant communities in human-made patches-implications 

for management. Ecololgical Applications 4, 702-716.  

BONANOMI, G., RIETKERK, M., DEKKER, S.C., MAZZELONI, S., 2008: Islands of fertility induce co-

occuring negative and positive plant-soil feedbacks promoting coexistence. Plant Ecology 197, 207-

218. 

BRUINS, H., 1986: Desert Environment and Agriculture in the Central Negev and Kadesh Barnea 

During Historical Times, PhD-Thesis. Wageningen Agricultural University, Nijkerk, The Netherlands. 

BUIS, E. & VELDKAMP, A., 2008: Modelling dynamic water redistribution patterns in arid catchments 

in the Negev Desert of Israel. Earth Surface Processes and Landforms 33, 107–122. 

CALVAO, T. & PALMEIRIM, J.M., 2004: Mapping Mediterranean scrub with satellite imagery: biomass 

estimation and spectral behavior. International Journal of Remote Sensing 25 (16), 3113-3126. 

CAMMERAAT, L.H., 2002: A review of two strongly contrasting geomorphological systems within the 

context of scale. Earth Surface Processes and Landforms 27, 1201-1222. 

CERDAN, O., GOVERS, G., LE BISSONNAIS, Y., VAN OOST, K., POESEN, J., SABY, N., GOBIN, A., VACCA, 

A., QUINTON, J., AUERSWALD, K., KLIK, A., KWAAD, F.J.P.M., RACLOT, D., IONITA, I., REIJMAN, J., 

ROUSSEVA, S., MUXART, T., ROXO, M.J., DOSTAL, T., 2010: Rates and spatial variations of soil erosion 

in Europe: a case study based on erosion plot data. Geomorphology 122 (1-2), 167-177.   

COLEMAN, K. & JENKINSON, D.S., 1999 : ROTHC-26.3. A Model for the Turnover of Carbon in Soil. 

Model Description and Users Guide. IACR, Rothamsted, Harpenden, UK. 

COX, P.M., BETTS, R.A., JONES C.D., SPALL, S.A., TOTTERDELL, I.J., 2000: Acceleration of global 

warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184-187. 

DOETTERL, S., SIX, J., VAN WESEMAEL, B., VAN OOST, K., 2012a: Carbon cycling in eroding 

landscapes: geomorphic controls on soil organic C pool composition and C stabilization. Global 

Change Biology 18, 2218-2232.  



Chapter 6: Spatial prediction of SOC-patterns based on vegetation distribution and remote sensing 

105 

DOETTERL, S., VAN OOST, K., SIX, J., 2012b: Towards constraining the magnitude of global agricultural 

sediment and soil organic carbon fluxes. Earth Surface Processes and Landforms 37, 642-655. 

EVENARI, M., MASIG, D., ROGEL, A., 1980 : Runoff-farming in the Negev Desert of Israel (VI). Jacob 

Blaustein Institute for Desert Research, Sede Boqer. 

FAO, 2006: World reference base for soil resources, Rome. 

FANG, C. & MONCRIEFF, J.B., 2001: The dependence of soil CO2 efflux on temperature. Soil Biology 

and Biochemistry 33, 155-165. 

FARAGE, P., PRETTY, J., BALL, A., 2003: Biophysical Aspects of Carbon Sequestration in Drylands, 

University of Essex. 

FRANK, T.D. & TWEDDALE, S.A., 2006: The effect of spatial resolution on measurement of vegetation 

coverage in three Mojave Desert shrub communities. Journal of Arid Environments 67, 88-99. 

GOLODETS, C. & BOEKEN, B., 2006: Moderate sheep grazing in semiarid shrubland alters small scale 

soil surface structure and patch properties. Catena 65, 285-291. 

HEIN, L., DE RIDDER, N., HIERNAUX, P., LEEMANS, R., DE WIT, A., SCHAEPMANN, M., 2011: 

Desertification in the Sahel : Towards better accounting for ecosystem dynamics in the interpretation 

of remote sensing. Journal of Arid Environments 75 (11), 1164-1172.  

HIKEL, H., YAIR, A., SCHWANGHART, W., HOFFMANN, U., STRAEHL, S., KUHN, N.J., 2012: 

Experimental investigation of soil ecohydrology on rocky desert slopes in the Negev Highlands, Israel. 

Zeitschrift für Geomorphologie 57, Suppl. 1, 039-058. 

HIKEL, H., JARMER, T., KUHN, N.J., SHOSHANY, M., SCHWANGHART, W., 2013: Combining remote 

sensing and spatial statistics for the analysis of shrub patterns in arid regions. Journal of Arid 

Environments, (in Review).  

HILL, J. & SCHUETT, B., 2000: Mapping complex patterns of erosion and stability in dry 

Mediterranean ecosystems. Remote Sensing of Environment 74, 557-569. 

HOFFMANN, U., YAIR, A., HIKEL, H., KUHN, N.J., 2012. Soil organic carbon in the rocky desert of 

northern Negev (Israel). Journal of Soils and Sediments 12, 811-825.  

JARMER, T., HILL, J., LAVEE, H., SARAH, P., 2010: Mapping soil organic carbon in non-agricultural 

semi-arid and arid ecosystems of Israel. Photogrammetric Engineering and Remote Sensing 75, 85-

94. 

JOBBÁGY, E.G. & JACKSON, R.B., 2000: The vertical distribution of soil organic carbon and its relation 

to climate and vegetation. Ecological Applications 10, 423-436. 

JONES, C., McCONNELL, C., COLEMAN, K., COX, P.M., FALLON, P., JENKINSON, D., POWLSON, D., 

2005: Global climate change and soil carbon stocks; predictions from two contrasting models for the 

turnover of organic carbon in soil. Global Change Biology 11 (1), 154-166. 

KIDRON, G.J. & ZOHAR, M., 2010: Spatial evaporation patterns within a small drainage basin in the 

Negev Desert. Journal of Hydrology 380, 376-385.  



Chapter 6: Spatial prediction of SOC-patterns based on vegetation distribution and remote sensing 

106 

KUHN, N.J., YAIR, A., 2003: Spatial distribution of surface conditions and runoff generation in small 

arid watersheds, Zin Valley Badlands, Israel. Geomorphology 57, 183-200. 

KUHN, N.J., YAIR, A., KASANIN-GRUBIN, M., 2004: Spatial distribution of surface properties, runoff 

generation and landscape development in the Zin Valley Badlands, northern Negev, Israel. Earth 

Surface Processes and Landforms 29, 1417-1430. 

LAITY L., 2008: Deserts and desert environments, 342. Wiley-Blackwell, Singapore. 

LAL, R., 2001: Potential of desertification control to sequester carbon and mitigate the greenhouse 

effect. Climatic Change 51, 35-72. 

LAL, R., 2003: Carbon Sequestration in Dryland Ecosystems. Environmental Management 33 (4), 528-

544. 

LAL, R., 2009: Sequestering Carbon in Soils of Arid Ecosystems. Land Degradation and Development 

20, 441-454. 

LANGFORD, W.T., GERGEL, S.E., DIETTERICH, T.G., COHEN, W., 2006: Map misclassification can cause 

large errors in landscape pattern indices: examples from habitat fragmentation. Ecosystems 9, 474-

488.  

LESSCHEN, J.P., 2008: Multi-scale interactions between soil, vegetation and erosion in the context of 

agricultural land abandonment in a semi-arid environment. Dissertation. University of Amsterdam. 

Faculty of Science.  

LI, Y., 2010: Can the spatial prediction of soil organic matter contents at various sampling scales be 

improved by using regression kriging with auxiliary information? Geoderma 159, 63-75. 

MCGLYNN, I.O. & OKIN, G.S., 2006: Characterization of shrub distribution using high spatial 

resolution remote sensing: Ecosystem implications for a former Chihuahuan Desert grassland. 

Remote Sensing of Environment 101 (4), 554-566. 

MISHRA, U., LAL, R., SLATER, B., CALHOUN, F., LIU, D., VAN MEIRVENNE, M., 2007: Predicting soil 

organic carbon stock using profile depth distribution functions and ordinary kriging. Soil Science 

Society of America Journal 73 (2), 614-621. 

MULDER,V.L., DE BRUIN, S., SCHAEPMANN, M.E., MAYR, T.R., 2011: The use of remote sensing in soil 

and terrain mapping – A review. Geoderma 162 (1-2), 1-19. 

NATIV, R., ADAR, E., DAHAN, O., NISSIM, I., 1997: Water salinization in arid regions – observations 

from the Negev desert, Israel. Journal of Hydrology 196, 271-96. 

OLSVIG-WHITTAKER, L., SHACHAK, M., YAIR, A., 1983: Vegetation patterns related to environmental 

factors in a Negev Desert watershed. Plant Ecology 54, 153-165. 

PARIENTE, S., 2002: Spatial patterns of soil moisture as affected by shrubs in different climatic 

conditions. Environmental Monitoring and Assessment 73, 237-251. 

PUIGDEFABREGAS, J., 2005: The role of vegetation patterns in structuring runoff and sediment fluxes 

in drylands. Earth Surface Processes and Landforms 30, 133-147. 



Chapter 6: Spatial prediction of SOC-patterns based on vegetation distribution and remote sensing 

107 

QI, J., KERR, Y.H., MORAN, M.S., WELTZ, M., HUETE, A.R., SOROOSHIAN, S., BRYANT, R., 2000: Leaf 

Area Index Estimates Using Remotely Sensed Data and BRDF Models in a Semiarid Region. Remote 

Sensing of Environment 73, 18-30. 

QIN, Z., LI, W., BURGMEIER, J., KARNIELI, A., 2006: Quantitative estimation of land cover structure in 

an arid region across the Israel-Egypt border using remote sensing data. Journal of Arid Environments 

66, 336-352. 

QUINTON, J.N., GOVERS, G., VAN OOST, K., BARDGETT, R.D., 2010: The impact of agricultural soil 

erosion on biogeochemical cycling. Nature Geosciences 3, 311-314. 

SANDHOLT, I., RASMUSSEN, K., ANDERSEN, J., 2002: A simple interpretation of the surface 

temperature/vegetation index space for assessment of soil moisture status. Remote Sensing of 

Environment 19, 213-224. 

SCHADE, J.D. & HOBBIE, S.E., 2005: Spatial and temporal variation in islands of fertility in the Sonoran 

Desert. Biogeochemistry 73, 541-553. 

SCHIMEL, D., MELILLO, J., TIAN, H., 2000: Contribution of increasing CO2 and climate to carbon 

storage by ecosystems in the United states. Science 287, 2004-2006. 

SCHLESINGER, W.H, PILMANIS, A.M., 1998: Plant-Soil Interactions in Deserts. Biogeochemistry 42, 

169-187. 

SCHLESINGER, W.H., RAIKES, J., HARTLEY, A., CROSS, A., 1996: On the spatial pattern of soil nutrients 

in desert ecosystems. Ecology 77, 364-374. 

SCHMIDT, H. & KARNIELI, A., 2000: Remote Sensing of the seasonal variability of vegetation in a semi-

arid environment. Journal of Arid Environments 45 (1), 43-59. 

SCHREIBER, K.F., YAIR, A., SHACHAK, M., 1995: Ecological Gradients Along Slopes of the Northern 

Negev Highlands, Israel. Advances in GeoEcology 28, 209-229. 

SCHWANGHART, W., JARMER, T., 2011: Linking spatial patterns of soil organic carbon to topography - 

A case study from south-eastern Spain. Geomorphology 126, 252-263. 

SEIP, H.M., 2001: We know too little about the carbon cycle, Oslo.  

SMITH, P., FANG, C., DAWSON, J.J.C., MONCREIFF, J.B., 2008: Impact of global warming on soil 

organic carbon. Advances in Agronomy 97, 1-43. 

STAVI, I., LAVEE, H., UNGAR, E.D., SARAH, P., 2009: Ecogeomorphic feedbacks in semiarid rangelands: 

a review. Pedosphere 19 (2), 217-229. 

XIAO, J. & MOODY, A., 2005: Geographical distribution of global greening trends and their climatic 

correlates: 1982-1998. International Journal of Remote Sensing 26, 2371-2390. 

YAALON, D.H. & DAN, J., 1974 : Accumulation and distribution of loess-derived deposits in the semi-

desert and desert fringe areas of Israel. Zeitschrift für Geomorphologie 20, 91-105. 



Chapter 6: Spatial prediction of SOC-patterns based on vegetation distribution and remote sensing 

108 

YAIR, A., 1992: The control of headwater area on channel runoff in a small arid watershed. In: 

PARSONS, T., ABRAHAMS, A., (Eds.). Environmental Change in Drylands: Biogeophysical and 

Geomorphological Perspectives, 199-227. 

YAIR, A., 1999: Spatial variability in the runoff generated in small arid watersheds: implications for 

water harvesting, in: HOEKSTRA, T.M. & SHACHAK, M., (Eds.), Arid Land Management, toward 

Ecological Sustainability, 212-222. 

YAIR, A., DANIN, A., 1980: Spatial variations in vegetation as related to the soil moisture regime over 

an arid limestone hillside, Northern Negev Israel. Oecologia 47, 83-88. 

YAIR, A., KOSSOVSKY, A., 2002: Climate and surface properties: hydrological response of small arid 

and semi-arid watersheds. Geomorphology 42 (1/2), 43-57. 

YAIR, A., SHACHAK, M., 1982: A case study of energy, water and soil flow chains in an arid ecosystem. 

Oecologia 54 (3), 389-397. 

YAIR, A., RAZ-YASSIF, N., 2004: Hydrological processes in a small arid catchment: scale effects of 

rainfall and slope length. Geomorphology 61, 155-169. 

YAO, S.H, ZHANG, B., HU, F., 2010: Biophysical controls over mineralization and sequestration of 

amended organic carbon in soil: Effects of intensity and frequency of drying and wetting cycles. 

World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia. 

YOO, K., AMUNDSON, R., HEIMSATH, A.M., DIETRICH, W.E., 2006: Spatial patterns of soil organic 

carbon on hillslopes: integrating geomorphic processes and the biological C cycle. Geoderma 130, 47-

65. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7: Synthesis 

109 

7. Synthesis 

This thesis proposes the development of a GIS-based image analysis approach for the 

quantification of SOC stocks at regional scale considering SOC spatial heterogeneity at local 

scale in arid environments by combining field data and digital image processing approaches. 

Based on field measurements, ecohydrological conditions and processes; controlling SOC 

concentrations and patterns at local scale were determined. A major focus was the 

determination of parameters characterizing environmental heterogeneity in dynamic 

geomorphic systems. Special attention was put on small-scale surface properties, the spatial 

heterogeneity of SOC stocks, data extrapolation of spatially limited sampling densities and 

the identification of proxy indicators for SOC concentrations and patterns such as vegetation 

density and EHEs. The results (Chapter 6, Research Paper, 4.3) show that the developed 

image analysis approach (Chapter 4, Research Paper, 3) in combination with field sampling 

strategies (Chapter 3, Research Paper, 3; Chapter 2, Research Paper, 4) provides an effective 

tool to quantify SOC stocks in highly heterogeneous arid environments and to improve the 

methodological setup of future regional SOC inventories. 

The results of the individual studies have already been discussed above in more detail. 

However, the following synthesis briefly summarizes the results of the four studies and then 

discusses the major findings with reference to the questions raised in the introduction. 

7.1 Relationship between surface characteristics, vegetation coverage and SOC 

The relationship between surface characteristics, vegetation coverage, SOC concentrations 

and stocks was identified for the study site in the Negev Desert, Israel (Chapter 3, Research 

Article, 4). The results show a large spatial variability of SOC depending on differences in 

micro-topography, surface processes, soil formation and properties and vegetation. These 

differences were mapped within the study site based on EHEs, which provide an effective 

tool to detect ecological processes governing the spatial patterns of SOC. The calculated SOC 

stocks show that soil in the study site contains a significant amount of SOC (Chapter 3, 

Research Paper, 4). Despite the fact that this amount is smaller than in more humid 

environments, it is still substantial and important for the functioning and thus conservation 

of arid ecosystems. Data analyses derived from field sampling indicates that soil moisture 

and vegetation coverage affect and control SOC concentrations. High SOC concentrations 

and SOC stocks are found at slope positions which favour high soil moisture and thus high 

vegetation densities (Chapter 3, Research Paper, Fig. 3, Fig. 4). In turn, high vegetation 

densities indicate high SOC concentrations. The positive relationship between vegetation 

coverage and SOC stocks at the study site shows that the findings of Olsvig-Whittaker et al. 

(1983), who studied the surface properties on vegetation, can also be applied to SOC stocks. 

This strong link between SOC and aboveground vegetation properties, such as vegetation 

density and spatial vegetation distribution is also reported in studies by Jobbágy & Jackson 

(2000) and Li et al. (2010). Furthermore the results indicate that vegetation coverage 

provides a direct index for the spatial patterns of SOC stocks in drylands. In general the 

variability of SOC stocks, driven by precipitation, soil volume, water redistribution and 

vegetation density also implies that SOC stocks in arid environments are highly sensitive to 
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climate change. The impact of climate change will result in a major unstable SOC-pool within 

the global carbon cycle of the twenty-first century. 

7.2 Relationship between environmental properties and vegetation coverage 

To determine the relationship between precipitation, soil volume, water redistribution and 

vegetation density the study aimed at the examination of rock-soil interactions and the 

relevance of soil volume for storing plant available water in the Northern Negev, Israel 

(Chapter 4, Research Paper, 2). Therefore, a suitable rainfall simulation procedure was 

developed. Short and low magnitude rainfall events, which occur in a high frequency in the 

study area, only lead to a limited amount of rainfall and runoff infiltrating into the soil, 

resulting in a partial wetting of the soil profile. Soil volume potentially affects plant water 

supply when the infiltration capacity of the soil body is smaller than the amount of water 

required by the vegetation until the next rainfall. High vegetation densities are found, where 

soil volume is high. The results clearly show (Chapter 4, Research Paper, 5) that micro-scale 

water supply and soil volume determine vegetation density. In turn this suggests that high 

vegetation densities indicate high soil volumes and hence high SOC concentrations per unit 

area. Furthermore the analysis of rainfall magnitude and frequency in this region in 

conjunction with the critical role of soil volume and infiltration rate indicate that the 

duration of periods without rainfall seem to be more important for vegetation growth than 

the absolute event or annual rainfall amount. Soil volume and infiltration regulate whether 

drought stress occurs once the water in the soil has evaporated. Overall, rainfall frequency 

rather than magnitude or annual precipitation amount appear to determine plant available 

water in an area with a given pattern of rock-soil cover and soil volumes. This is highly 

relevant for the assessment of the impact of climate change on SOC stocks and patterns in 

arid environments. 

7.3 Automated mapping of ecohydrological environments (EHEs) 

The distinctive EHEs reflect the spatial variability of environmental and ecohydrological 

conditions within the study site. Each EHE is characterized by distinctive relationships 

between precipitation, soil volume, water redistribution, vegetation density and SOC 

concentrations and patterns. Micro-scale water supply and soil volume determine 

vegetation density and spatial distribution. In turn, high vegetation densities indicate high 

soil volumes and hence high SOC concentrations per unit area. The different surface 

conditions of the distinctive EHEs lead to variable SOC concentrations and vegetation 

patterns regarding vegetation density and spatial distribution. The aim of the study was 

therefore to develop an approach towards automated mapping of EHEs on the basis of 

vegetation patterns using imagery with different resolutions (Chapter 5, Research Paper 1). 

The dependence of different vegetation pattern indices on the spatial resolution of the 

image data was investigated and indices identified that are insensitive to the resolution 

difference in the imagery. Indices with a high degree of explanatory power were then used 

as variables in a decision tree model. The results of the decision tree based classification 

model show that spatial pattern indices can be used as an identification tool for EHEs 

(Chapter 5, Research Paper, 4). The implemented remote sensing approach bridges the gap 
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between the need for high resolution and the detection of vegetation coverage based on 

bands in the visible spectra. The benefit of high-resolution data is that areas of interest are 

identified as the scale processes occur. This approach represents an easy way to map EHEs 

using vegetation pattern indices and the adaptability of a range of differently generated 

satellite imageries (e.g. orthophoto (RGB), Quickbird, Iconos or GeoEye-1 images). Further 

potentially valuable studies could take the form of a more detailed determination of the 

SOC-pool regarding sink and source areas and a better assessment of the impact of climate 

change in desert environments. 

7.4 Spatial prediction of SOC stock and patterns 

The study aimed at the estimation of SOC stocks and patterns at regional scale considering 

small-scale spatial heterogeneity of SOC concentration (Chapter 6, Research Paper, 1). As 

identified in the previous studies, spatial vegetation patterns are related to the different 

EHEs and SOC concentrations and patterns. Therefore vegetation coverage and EHEs were 

implemented as proxy indicators for SOC concentration and spatial distribution. Finally SOC 

stocks and patterns were calculated for the study site using the interrelations and 

methodological procedures derived from the previous investigations by remote sensing and 

digital image processing. The results (Chapter 6, Research Paper, 4) show that the adopted 

image analysis approach for arid environments provides a simple solution for the estimation 

of vegetation coverage and EHEs and hence the precise estimation of SOC stocks and 

patterns. In combination with the identified relationships between precipitation, soil, 

vegetation, water redistribution and SOC, this method delivers some key benefits such as 

being (i) fast and comprehensive (ii) cheap, due to shortened field trips and easy and often 

free access to orthoimages and (iii) scale-invariant. Nevertheless, a certain limitation of this 

approach exists for images with (i) a high variability in the greyscale values for vegetation 

and (ii) a very low albedo contrast between vegetation and bare ground. By taking these 

limitations into consideration, the resulting adequate selection of remotely sensed images 

diminishes detection and analysis errors. This is intended to be the first study that has 

employed SOC-stock calculation by using spatial distribution of vegetation coverage and 

EHEs as proxy variables for SOC-concentrations. In contrast to the notion that rocky desert 

environments do not contain significant soil or SOC, the results of this study show that the 

SOC-stock is higher than generally expected. This fact confirms the necessity to quantify the 

SOC sink and source capacity of soils in changing desert environments.  
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7.5 Discussion of the guided research questions 

Based on the results of the four studies, the major research questions that were raised in the 

introduction (chapter 1) are addressed below: 

Question 1: How much are surface properties, water availability and vegetation coverage 

related to SOC concentrations and stocks? 

The study site in the Negev Desert is characterized by highly complex and variable 

environmental settings (Chapter 3, Research Paper, Table 1). Surface properties range 

between a mosaic of small soil patches and soil filled bedrock fissures to soil free bedrock 

surfaces prohibiting the formation and storage of SOC (Hoffmann et al. 2012, Olsvig-

Whittaker et al. 1983, Schreiber et al. 1995). The variability of surface properties and SOC 

stocks is related to the different EHEs within the study site (Chapter 4, Research Paper, Table 

1) and water availability as a key limiting factor (Hoffmann et al. 2012). The effects of surface 

properties and water availability on vegetation coverage and hence on SOC concentrations 

are shown in Fig.2.  

 

 
 

The relationships between soil volume, total infiltration, wetting depth, rock-soil ratio, 

volumetric water content and vegetation coverage regarding SOC concentrations are 

reflected in this conceptual model. Compared to soil covered surfaces, which are 

characterized by a high porosity and high water absorbing capacity, runoff generation is 

faster on relatively impermeable bare rocky surfaces. In turn lower flow frequency and lower 

magnitude of runoff are observed on soil-covered surfaces (Hikel et al. 2012, Yair & Raz-

Yassif 2004, Yair 1992). For the simulated rainfall, total infiltration values range from 5.7 l on 

soil covered areas to 1.6 l on areas nearly devoid of any soil. In addition, runoff redistribution 

is determined by differences in infiltration rates due to rock and soil covered surfaces 

influencing the rate of transformation of rainfall into runoff (Chapter 4, Research Paper, 

Table 3 and Figure 9). Rock-soil ratio declines with soil volume (Chapter 4, Research Paper, 

Figure 11). Hence, small soil volumes receive their water from a proportionally greater rock 

Fig. 2: Conceptual model of the effect of 
surface properties, water availability and 
vegetation coverage on SOC concentrations.  
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surface than those with a high soil volume. Rock-soil ratio and soil volume are strongly 

correlated (R2=0.8). For small soil volumes total infiltration is lower due to the fact that the 

limited soil volume reduces the amount of infiltration. Low infiltration rates indicate that 

only a limited amount of water entered the soil. The low depth of wetting which declines 

with rock-soil ratio confirms this. Hence, low soil volumes limit plant available water. Soil 

volume displays a moderate negative relationship (R2=-0.56) with volumetric water content 

(water storage capacity) indicating that small soil volumes are filled up closer to their 

maximum water storage capacity than the large ones during the simulated rainfall. In 

contrast, low volumetric water content therefore indicates high total infiltration but also 

that the soil volume was not filled up to its maximum (Chapter 4, Research Paper, Figure 11). 

Soil volume determines the frequency of watering that is required to maintain vegetation 

and the risk of drought stress. High vegetation coverage is therefore found where soil 

volume and total infiltration is high. In contrast low vegetation coverage is found where soil 

volume, total infiltration and wetting depth are low. According to the findings by Cammeraat 

(2002), Puigdefabregas (2005) and Stavi et al. (2009), vegetation patches absorb more water 

due to higher soil porosity, infiltration capacity water holding capacity, hydraulic 

conductivity, structural stability, organic matter content and lower bulk density. This 

suggests that high vegetation densities indicate high soil volumes and hence high SOC 

concentrations per unit area. Vegetation coverage and SOC concentrations and stock are 

strongly correlated (R2=0.81, R2=0.91) (Chapter 3, Research Paper, 4). Vegetation is 

distributed patchily within the area due to soil and water availability resulting in a high 

spatial variability of SOC concentrations and stocks. SOC concentrations range between 3 g 

kg-1 and 15 g kg-1. Soil depth varies on a centimetre to meter scale and the SOC 

concentration change is therefore limited by depth. 

The presented approach bears some importance regarding the expected changing climate 

conditions related to the global warming process. Yair & Kossovsky (2002) state for the 

Negev Desert that the same regional climatic change may have different effects on the 

environmental responses. Different surface conditions and processes control the 

ecohydrological response and therefore lead to a non-uniform reaction to a regional climatic 

change. Determining spatial heterogeneity and interrelation between surfaces and 

processes as introduced by the experimental procedure contributes to a better 

understanding and estimation of the impact of climate change on the spatial variability of 

SOC concentrations and stocks in arid environments. 

 

Question 2: At which level of detail and accuracy can SOC inventories be made using field 

measurements, remote sensing and digital image processing?  

The results generated to address research question 1 show that micro-scale differences in 

topography and soil and surface properties determine the spatial distribution of vegetation 

and hence the spatial variability of SOC concentrations and stocks (Chapter 3, Research 

Paper, 4; Chapter 4, Research Paper, 5). It was shown that vegetation density and spatial 

distribution are related to previously mapped EHEs which consider the small-scale spatial 
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variability of environmental properties and that the occurrence and extent of the latter can 

be spatially predicted using information on vegetation patterns (Chapter 5, Research Paper, 

4). Several studies (Cammeraat & Imeson 1999, Imeson & Prinsen 2004, Lesschen 2008, 

Puigdefabregas 2005) show that vegetation patterns provide information on dominant 

hydrology and geomorphological processes and are thus potential proxies towards 

understanding these processes and their variability in space. This implies the need for a 

precise detection of vegetation coverage using imagery with submeter spatial resolution. 

The implemented GIS-based image analysis approach bridges the gap between the need for 

high resolution and a differentiated detection of vegetation coverage and generated exact 

results for the specific area. Due to the detection of vegetation coverage based on bands in 

the visible spectra using digital image processing, this approach provides a simple solution 

for the accurate estimation of vegetation coverage (accuracy of 89%, RMSE=0.8) and spatial 

patterns in arid environments. The precise estimation of vegetation coverage and the 

subsequent identification of EHEs using vegetation indices, as proxy variables for SOC 

concentrations and patterns (prediction accuracy of ~70%) provide a link between remotely 

sensed and ground based studies (Chapter 5, Research Paper, 4). 

A certain limitation was brought for orthoimages with (i) a high variability in the greyscale 

values for vegetation and (ii) a very low albedo contrast between vegetation and bare 

ground. Detection errors are mostly based on these two aspects. Vegetation patterns, 

characterized by low greyscale values were classified as bare ground when the surrounding 

raster cells also show low greyscale values resulting in an under-estimation of vegetation 

coverage. If a small range of high greyscale values was representing vegetation as well as 

bare ground, vegetation coverage was over-estimated. In general the estimation of 

vegetation coverage is difficult if the albedo contrast between vegetation and bare ground is 

greatly diminished.   

But the approach provides some key benefits. First, it allows the estimation of vegetation 

coverage and its spatial patterns from orthoimages with a high spatial resolution. Second, 

the identification of distinctive EHEs using vegetation indices are possible. Third, the precise 

quantification of SOC stocks and patterns are possible at regional scale (prediction accuracy 

of 86%) using vegetation distribution and EHEs as proxy variables for SOC concentrations and 

patterns (Chapter 6, Research Paper, 4). Compared to SOC studies in other arid 

environments (e.g. Amundson 2001, Ardö & Olsson 2003, Feng et al. 2003, Schlesinger 

1977), the estimated SOC concentrations and stocks for the study site in Israel show medium 

to high values (see Chapter3, Table 4). The SOC stock averaged over the entire study site is 

0.58 kg C m-2. SOC stocks vary between zero in uncovered areas and 1.54 kg C m-2 in soil 

covered areas. Jarmer et al. (2010) identified in his study similar SOC concentrations in this 

area (3 g kg-1 - 15 g kg-1). The even medium SOC-stock indicates an exact quantification due 

to the high variability of SOC-concentration values regarding previous studies (Hoffmann et 

al. 2012). Higher SOC-concentrations in the Negev Desert are attributed to the patchy nature 

of the rock and soil cover. This is in accordance with the “islands of fertility” (Schlesinger & 

Pilmanis 1998) with increased biogeochemical processes, NPP, SOC-concentrations, reduced 
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mineralization of SOC due to water scarcity (Yao et al. 2010) and/or soil degradation (Bolton 

et al. 1993).  

The potential benefit of the implemented GIS-based image analysis approach for the 

quantification of SOC inventories is that the spatial heterogeneity of SOC concentrations at 

local scale is considered in the SOC stock calculation at regional scale (Chapter 6, Research 

Paper, 6). Studies at regional scale are generally based on simplified relations where 

uncertainty associated with small scale variability at local scale is not considered (Cox et al. 

2000, Jones et al. 2005). The results are therefore characterized by large uncertainties of 

regional SOC estimates. The uncertainties based on commonly used interpolation or 

extrapolation techniques are diminished by using the GIS-based image analysis approach 

which shows a prediction accuracy of 86% (Chapter 6, Research Paper, 5). The relationship 

between surface properties, water availability, vegetation coverage and SOC concentrations 

related to the different EHEs is identified at local scale (Chapter 3, Research Paper, 5; 

Chapter 4, Research Paper, 5). In turn these relationships are determined at regional scale by 

using vegetation indices as an identification tool for the distinctive EHEs (Chapter 5, 

Research Paper, 3). By combining field measurements, remote sensing and digital image 

processing the implemented approach therefore ensures the required consideration of 

spatial heterogeneity regarding SOC-distribution at local scale for the quantification of SOC 

stocks at regional scale as mentioned in the introduction (Chapter 1). 

 

Question 3: How does the GIS-based image analysis approach contribute to reducing the 

uncertainty of SOC inventories in arid environments?  

The GIS-based image analysis approach shows the potential benefits of using image data 

with carefully located in situ field data in digital SOC mapping (Chapter 6, Research Paper, 

4.3). The results also indicate the benefit of combining ecohydrologic studies with spatial 

data analysis. A detailed mapping of small scale surface properties and processes (Chapter 3, 

Research Paper, 3; Chapter 4, Research Paper, 4) and the stratification of the study site into 

EHEs of similar surface process regimes (Chapter 5, Research Paper, 3) provides the potential 

to decrease the uncertainty of SOC inventories in arid environments. The calculated SOC 

concentrations are in accordance with the findings by Jarmer et al. (2010) who studied SOC 

variability in this area. The implemented GIS-based image analysis approach shows a 

prediction accuracy of 86% and bears some advantages regarding generally used methods 

for SOC stock assessment at regional scale such as remote sensing and / or interpolation / 

extrapolation approaches. First, using remote sensing for the estimation of SOC inventories 

is limited to soils devoid of any vegetation which leads to large uncertainties (Schwanghart & 

Jarmer 2011). SOC concentrations and stocks are strongly correlated with aboveground 

vegetation (Jobbágy & Jackson 2000, Li et al. 2010). As a result, these “islands of fertility” 

(Schlesinger & Pilmanis 1998, Austin et al. 2004, Cánton et al. 2004) therefore remain hidden 

from airborne monitoring. Vegetation density and distribution and the relationship with SOC 

concentrations are considered in the quantification of SOC inventories using the GIS-based 

image analysis approach. Second, the spatial resolution of the sensor is a limiting factor 
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(Schwanghart & Jarmer 2011) resulting in simplifying assumptions regarding the SOC spatial 

heterogeneity at local scale (Cox et al. 2000, Jones et al. 2005). In contrast interpolation and 

extrapolation techniques are used to estimate SOC inventories at coarser scales (Li & Heap 

2011, Liu et al. 2006, Mondini 2012). Both approaches lead to large uncertainties in the 

assessment of SOC stocks (Aufdenkampe et al. 2011). Using vegetation coverage and EHEs as 

proxy indicators for SOC concentrations and patterns SOC spatial heterogeneity at local scale 

is considered in the calculation of regional SOC inventory by the implemented GIS-based 

image analysis approach. Third, by combining field data and digital image processing 

approaches, SOC inventories are not limited to the uppermost 2cm of topsoil as provided by 

common remote sensing techniques (Jarmer et al. 2010, Schwanghart & Jarmer 2011) due to 

the fact that soil volume is considered in the SOC stock calculation. 

Based on the GIS-based image analysis approach the uncertainties in the estimation of SOC 

inventories are reduced. Compared to previous studies in arid environments it is difficult to 

quantify the reduction of uncertainty due to different applied methods and environmental 

conditions.  

For this reason examples are presented below to illustrate how the implemented GIS-based 

image analysis approach can be applied to existing studies to reduce the uncertainty in the 

quantification of SOC inventories.   

For the quantification of regional SOC inventories soil groups are defined and for each group 

SOC densities are calculated by soil sampling. SOC densities of each group are then 

multiplied with their respective area for the quantification of SOC stock (Feng et al. 2002, 

Singh et al. 2007, Sinoga et al. 2012). Data from the FAO/UNESCO Soil Map of the World 

(FAO-UNESCO, 1995) are generally used (Alam et al. 2013, Henry et al. 2009, Jobbágy & 

Jackson 2000). The results show that uncertainties exist, due to the fact that FAO soil data 

are based on extrapolation and substitution from similar soil types and soil formation factors 

rather than actual survey and sampling (Alam et al. 2013, Selvaradjou et al. 2005). The 

implemented GIS-based image analysis approach copes with the need for point 

measurements and regional assessment of SOC stock quantification. The determination of 

the relationship between SOC concentrations and stocks and environmental conditions 

provides the required information at local scale. At regional scale the mapped small scale 

surface properties and processes defined by EHEs of similar surface process regimes are 

detectable using remote sensing techniques and spatial statistics. Combining both 

information uncertainties in the estimation of SOC stocks are reduced. While a strong link 

between SOC and ecohydrological processes has been recognized (Lal 2009, Yoo et al. 2006) 

there is no simple and straightforward way to quantitatively determine these relationships 

on a local scale basis for a study site with an extent of regional scale.  

Yoo et al. (2006) measured the relationship between SOC storage, soil thickness and 

topographic curvature to create SOC storage maps at regional scale for two watersheds. But 

questions remain about the broad applicability of one or two local scale attributes to a 

regional scale. The SOC stock calculation using the implemented GIS-based image analysis 

approach is based on the spatial distribution of vegetation coverage and EHEs as proxy 

variables for SOC-concentrations. Each EHE is characterized by distinctive relationships 
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between precipitation, soil volume, water redistribution, vegetation density and SOC 

concentrations and patterns at local scale. Due to the fact that the distinctive EHEs are 

detectable by remote sensing techniques at regional scale, the driving factors for SOC 

concentrations and patterns at local scale are considered in the calculation of SOC stocks at 

regional scale.  The quantification of SOC inventories at regional scale is therefore not 

reduced to one or two attributes at local scale which improves the accuracy of SOC 

inventories.  

For the estimation of SOC inventories, ecosystem models are frequently used (Falloon et al. 

1998, Falloon et al. 2002, Poussart et al. 2004a, b). Ecosystem models require input data of 

high quality for reliable SOC estimates and are therefore generally combined with field 

measurements (Ardö & Olsson 2003). However, modelling at regional scale makes 

simplifications unavoidable resulting in uncertain model outputs (Ardö et al. 2000, Poussart 

2002, Poussart et al. 2004a,b). The input data are mostly based on the FAO Soil Map of the 

World (FAO-UNESCO, 1995) or the IGBP soil dataset (Global Soil Data Task, 2000) (Ardö & 

Olsson 2004, 2003, Farage et al. 2007) which do not represent the environmental conditions 

at local scale. The implemented GIS-based image analysis approach provides the required 

high quality input data for such ecosystem models due to the fact that environmental 

conditions and relationships between environmental factors at local scale are detectable at 

regional scale. Using the generated data in ecosystem models suggests reducing the 

uncertainty of the model output.  

The implemented GIS-based image analysis approach copes with the need to observe the 

spatial structure and extent of the studied system, whilst simultaneously observing the 

functional components. The increasing availability of diversified remote sensing data 

concerning spatial resolution and eco/geomorphic system structure (Mulder et al. 2011) 

complies with the required observation of multiple biotic and abiotic parameters over 

various spatial and temporal times.  
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8. Outlook 

This PhD thesis applied a GIS-based image analysis approach for the estimation of SOC stocks 

and patterns at regional scale in the arid Negev Highlands, Israel. The approach provides 

reliable estimates of SOC inventories and copes with the need to consider the spatial 

heterogeneity of SOC concentrations at local scale and the necessity to determine the 

importance and potential changes of SOC stocks in arid environments. The approach thus 

fulfils the increasing demand on spatially distributed, quantitative information on SOC 

inventories in arid ecosystems and contributes to recent endeavours of digital SOC mapping 

and monitoring. The study site was analysed with regard to the relationship between surface 

characteristics, vegetation coverage, water availability and SOC concentrations and stocks. 

Based on the generated dataset distinctive EHEs were identified which reflect dominant 

processes and surface properties and specific hydro-geomorphological responses in reaction 

to rainfall. The results show a large spatial variability of SOC regarding the different EHEs at 

which ecohydrologic conditions and hence vegetation density and distribution exerts a 

strong control on SOC concentrations. The variability of SOC stocks, driven by aspect, soil 

moisture availability and vegetation coverage also implies that SOC stocks in arid 

environments are highly sensitive to climate change and thus represent a major unstable C 

pool within the global carbon cycle. The generated dataset on vegetation densities and 

distribution derived from hyperspectral remote sensing and orthoimage analysis was applied 

to automatically map the distinctive EHEs at regional scale using a decision tree model. The 

results show that the proposed method is appropriate for simulating the different EHEs 

within the study site with a prediction accuracy of the classification tree of 70%. Vegetation 

coverage and EHEs were used as proxy indicators for SOC concentrations and patterns in a 

GIS-based image analysis approach for the calculation of SOC inventory at regional scale. The 

results show that the study site contains a significant amount of SOC (1.19t C ha-2). The 

results also show that the combination of field data and digital image processing approaches 

lead to a precise estimation of SOC stocks (accuracy of 86%) at regional scale considering 

local scale SOC heterogeneity in arid environments. So far our findings refer only to rocky 

desert environments in the Negev Highlands, Israel and further studies are required to test if 

the approach is applicable in other (rocky) desert environments. The literature review on 

SOC inventories in these dynamic geomorphic systems has indicated that studies are 

characterized by different measurement techniques, variable reference soil depth and 

different interpolation or extrapolation techniques respectively. The comparison of the 

calculated SOC inventories therefore proved to be difficult. More comparable and detailed 

SOC inventories are therefore needed to verify the results of this study in arid environments. 

Our data provides only a snapshot of present SOC stocks and patterns. But SOC stocks and 

patterns are related to vegetation density and spatial distribution, which are sensitive to 

changing climate conditions. This temporal aspect could not be covered in our analysis but 

should be included in future research in this area. Additionally, the results of the 

implemented approach regarding the detailed mapping of small scale surface properties and 

processes and the stratification of the study site into EHEs of similar surface process regimes 

could be applied in hydrological and erosion models and research. By combining information 
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about vegetation coverage and ecohydrology, the efficient identification of erosion hotspots 

within a study site could be provided. Nevertheless future studies should first focus on 

testing the implemented approach in different desert environments and comparing the 

results using standardised methods.  
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