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Chapter 1

Introduction

We work over the �eld C of complex numbers. We denote by SL2 the group
of complex 2×2-matrices with determinant 1. Let Vn = C[x, y]n be the SL2-
module of binary forms (homogeneous polynomials in x and y of degree n), on
which SL2 acts via

g · f(v) = f(g−1v),
for g ∈ SL2, f ∈ C[x, y] and v ∈ C2. The algebra of polynomial functions on
Vn, denoted by O(Vn), is a polynomial ring in n + 1 variables. The group SL2

acts on O(Vn) via the action

g · j(f) = j(g−1 · f),

for g ∈ SL2, j ∈ O(Vn) and f ∈ Vn. An invariant of Vn is an element j ∈ O(Vn)
such that g · j = j for all g ∈ SL2. The set of invariants of Vn forms the algebra
of invariants I := O(Vn)SL2 .

�The theory of invariants originated in England about the middle
of the nineteenth century as the genuine analytic instrument for
describing con�gurations and their inner geometric relations in pro-
jective geometry. The functions and algebraic relations expressing
them in terms of projective coordinates are to be invariant under all
homogeneous linear transformations. �([Wey46, page 27])

In the nineteenth century mathematicians studied invariants of binary forms
motivated by the philosophy that `any' property of polynomials una�ected by
linear transformations can be expressed by the vanishing of invariants. The
polynomial ax2 + 2bx + c for example has a double root if and only if the
invariant b2 − ac of ax2 + 2bxy + cy2 vanishes. Consider, as another example,
the non-zero quartic q(x, y) = ax4+bx3y+. . .+ey4; the solutions of the equation
q(x, y) = 0 correspond to 4 points on the projective line. These four points form
a harmonic division if and only if the invariant

j3 =

∣∣∣∣∣∣
a b c
b c d
c d e

∣∣∣∣∣∣
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CHAPTER 1. INTRODUCTION 8

of the quartic q vanishes (cf. Dixmier [Dix90], p.42). The invariants of binary
forms are related to the study of algebraic equations as well. For example,
the binary form q(x, y) of degree 5 has an invariant of degree 18 with a nice
property: if this invariant vanishes, then the equation q(x, 1) = 0 can be solved
by radicals (cf. Dixmier [Dix90], p.43).

Early in the 1800s it was known that the invariants of V2 are spanned by
the discriminant b2 − ac of ax2 + 2bxy + cy2, and that the invariants of V3 are
generated by the discriminant (ad− bc)2 − 4(ac− b2)(bd− c2) of ax3 + 3bx2y+
3cxy2 + dy3. About the binary forms ax4 + 4bx3y + . . . + ey4 of degree 4 it
was known that the invariant j3 de�ned above and j2 = ae − 4bd + 3c2 are
algebraically independent and generate the invariants of V4. The invariants j2
and j3 were discovered in the period 1840-1850 by Boole, Cayley, Eisenstein
(cf. Dixmier [Dix90], p.41). Regarding the invariants of V5, Hermite ([Her54])
proved in 1854 that they were generated by 4 irreducible invariants of degrees
4, 8, 12, and 18. Before that, only the invariants of degrees 4, 8, and 12 had
been known, and for a long time people believed that all invariants of V5 had
degrees divisible by 4 (cf. Dixmier [Dix90], p.41).

Cayley [Cay56] claimed in 1856 that that the algebra I of invariants of Vn
had no �nite bases for the cases n = 7 and n = 8. However, twelve years later,
in 1868, Gordan [Gor68] proved the contrary: he showed that I has a �nite basis
for all n.

�Im 146sten Bande der Philosophical Transactions pag. 101 hat Herr
Cayley sich mit der Frage beschäftigt, ob alle aus einer binären
Form entstehenden Covarianten und Invarianten als ganze Functio-
nen einer begrenzten Anzahl von Former mit numerischen Coe�-
cienten darstellbar seien; er hat gezeigt, dass bei Formen zweiten,
dritten und vierten Grades sich alles in der verlangten Weise aus-
drücken lässt. Im Folgenden gebe ich für binäre Formen nten Grades
ein endliches System von Covarianten und Invarianten an, von de-
nen ich zeige, dass und wie alle aus der Form abgeleitete Formen
sich als ganze rationale Functionen derselben mit numerischen Coef-
�cienten darstellen lassen. Dieses für den allgemeinen Fall gegebene
System ist immer zu gross und lässt sich in jedem besonderen Falle
reduciren; für Formen fünften und sechsten Grades habe ich auch
diese Reduction ausgeführt und ein möglichst kleines System von
Grundformen geliefert.� ([Gor68])

The study of invariants of binary forms was an important part of a new disci-
pline, �die neue Algebra (the new Algebra)�, as Clebsch named it in 1872. At
that time Clebsch wrote that

�die fundamentalen Untersuchungen von Gordan über die Endlichkeit
der Formensysteme [. . .] eine Perspective in eine neue Classe tiefer
und wichtiger Forschungen errö�net�.[Cle72]

About twenty years later, in 1890, Hilbert [Hil90] generalised the result of Gor-
dan to a system of several homogeneous forms in a �nite number of variables.
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His proof was non-constructive and did not provide any tools to determine such
�nite bases. Hilbert `only' proved that these �nite bases existed, to which Gor-
dan reacted with the famous exclamation ([Rei96]):

�Das ist nicht Mathematik. Das ist Theologie.�

Hilbert [Hil93] returned to the problem and in 1893 gave a proof which was
this time constructive. Eventually Gordan appreciated Hilbert's new ideas,
remarking

�I have convinced myself that Theology also has its merits.�[Rei96]

With his article from 1893 Hilbert opened a new chapter in mathematics: the
article contains famous results such as �Hilbert's basis theorem� and �Hilbert's
Nullstellensatz� (as they are known nowadays), without which it is hard to
imagine the mathematics of today.

It is known, hence, since the nineteenth century, that the algebra I of in-
variants of binary forms of degree n is �nitely generated over C, i.e. there exist
�nitely many invariants j1, . . . , jr ∈ I, such that I = C[j1, . . . , jr]. Nevertheless,
�nding the generators of I is, in general, a di�cult problem. Two methods were
developed in the nineteenth century: the symbolic method, and the enumerative
method.

The symbolic method was developed by Aronhold and Clebsch in the middle
of the nineteenth century. Called by Hermann Weyl �the great war-horse of
nineteenth century invariant theory�, the symbolic calculus allows the reduction
of the computations with binary forms of degree n to the special cases of the
nth power of a linear form (α1x+α2y)n. The classics proved that the invariants
of binary forms have symbolic representations as products of factors of type
[αβ], where [αβ] stands for the determinant α1β2 − α2β1. The manipulation of
invariants got simpli�ed by representing them in succinct symbolic expressions.
Kung & Rota [KR84] gave in 1984 �a rigorous and yet manageable account of the
umbral or symbolic calculus� that was performed in the nineteenth century (see
also Chap. 2.2). With the help of the symbolic method, Gordan [Gor68] proved,
in 1868, that the covariants of a binary form f of degree n are generated by a
�nite number of iterated transvectants f, (f, f)d, (f, (f, f)d)e, . . .. For a modern
interpretation of Gordan's algorithm we refer to Weyman [Wey93]. Gordan's
proof was constructive and provided sets of generators for the invariants and
covariants of V6 ([Gor87]). Following Gordan's method, von Gall [Gal88] found
in 1888 a set of generating covariants of V7, but this set was not minimal. In
two papers published in 1880, von Gall [Gal80] computed a set of generating
covariants of V8, but this set was again not minimal (he did found the correct
number of the generating invariants of V8). No sets of generating invariants
of covariants of Vn for n ≥ 9 were computed in the nineteenth century using
Gordan's method.

The enumerative method was developed by Sylvester in the nineteenth cen-
tury and aimed to �nd lower bounds for the number of generators of the invari-
ants of binary forms. This method used the Poincaré series of the algebra I of in-
variants of binary forms and tamisage for �nding these bounds. Tamisage meant
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the following: suppose that the Poincaré series of I is P (t) = 1+a2t
2+a3t

3+. . ..
We look for the smallest i such that the coe�cient ai is nonzero, as long as such
an i exists. If ai > 0, we put mi := ai, replace P (t) by P (t)(1 − ti)mi , and
repeat the procedure. If ai < 0, we stop. Unde�ned mi are considered equal to
0. Sylvester claimed that the number of generators of I is at least

∑
imi (more

precisely, that the number of generators of Ii is at least mi). For illustration,
the Poincaré series of the algebra of invariants of binary forms of degree 10 is:

P (t) = 1 + t2 + 2t4 + 6t6 + 12t8 + 5t9 + 24t10 + 13t11 + 52t12 + 33t13+

97t14 + 80t15 + 177t16 + 160t17 + 319t18 + 301t19 + · · · (see Chap. 4.9)

Using tamisage we obtain the following bounds mi on the number of generators
of invariants of degree i of V10 (the last row contains the actual number di of
generators of degree i, obtained in Chap. 4.9):

i 2 4 6 8 9 10 11 12 13 14 15 16 17 18 19 21

mi 1 1 4 5 5 8 8 12 15 13 19 5 3 0 0 0

di 1 1 4 5 5 8 8 12 15 13 19 5 5 1 2 2

Sylvester formulated a postulate as well, which stated that in a degree i one gets
either a new generator of I, or new relations among the already found generators,
but not both. This was not true: Hammond [Ham82] found a counterexample
in 1882. Assisted by Franklin, Sylvester [Sy79b] used tamisage and his postulate
for �nding the number of generators of invariants of binary forms of degree up
to 10. His predictions regarding the invariants of Vn were correct for n ≤ 6
and for n = 8. For the remaining cases, Sylvester's numbers were correct up to
degree 18 for n = 7 and for n = 9, and up to degree 16 for n = 10.

Both techniques were not powerful enough for solving complicated cases.
Grace and Young noted in 1903:

�Theoretically then Gordan's process gives an upper limit to the ir-
reducible systems. The enumerative method [. . .] gives a lower limit
to the system and when the two methods give the same result the
irreducible set has been obtained. The results even when identical
have to be received with some caution on account of the enormous
labour involved. It may be recalled in fact in connection with the si-
multaneous system of a cubic and quartic (Gundel�nger, Math.Ann.
Bd.iv.) that the two results originally agreed, but a revision of the
generating function led to a reduction of the lower limit which it
theoretically gives, and afterwards two forms included in the irredu-
cible system as derived by the methods of Gordan and Clebsch were
found to be reducible. The complete systems for the binary forms
up to the octavic may be considered as accurately determined by
the two methods combined.�([GY03, page 131])

In reality, the cases n = 7 and n = 8 were surrounded by a shade of doubt until
late in the 20th century. Gall's results [Gal88] regarding the generating invari-
ants of V7 were corrected by Dixmier & Lazard [DL86] in 1986. Shioda [Shi67]
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proved in 1967 that the algebra of invariants of V8 was generated by the nine
invariants found by Gall in 1880 and also explicitly calculated the relations be-
tween these nine invariants. Regarding the covariants of V7, Cröni [Crö02] and
Bedratyuk [Bed09] indicated that Gall [Gal88] had six super�uous generatoring
covariants in his set. However, they didn't prove that Gall's set was indeed a
generating set for the covariants of V7 (in particular they did not give an inde-
pendent proof of the fact that there were no generators in higher degrees than
the one indicated by Gall, but instead relied on Gall's results). Bedratyuk &
Bedratiuk [BB08] showed in 2008 that the set of generating covariants of V8

found by Gall [Gal80] contained a super�uous generator, con�rming a result of
Sylvester [Sy79b]. Again, they did not prove that no generators will appear in
degrees higher than the one indicated by Gall, but relied on this information. In
Chap. 5.7 and 5.8 we �nd sets of generating covariants of V7, respectively of V8,
independently of von Gall's work. As for the case of the simultaneous system
of a cubic and quartic, this was settled in 2012 by Brouwer and me [BP12] (see
also Chap. 5.19).

Earlier work on the cases n = 9 and n = 10 was done by Cröni [Crö02], and,
respectively by Hagedorn (unpublished). These last two cases were completed in
2010, when Brouwer and I [BP10a, BP10b] found sets of generators of O(Vn)SL2

for n = 9 and n = 10 (see also Chap. 4.8 and 4.9 in this thesis). The existence
of a generator of degree 22 in the case n = 9 and the existence of a generator of
degree 21 in the case n = 10 were new. No sets of generators of O(Vn)SL2 are
known for n ≥ 11. The bigger n is, the more di�cult it is to �nd the generating
invariants of Vn. The computations required for �nding such sets of generators
for the cases n = 11 and n = 12 are still too large.

An upper bound on the degree of the generating invariants of Vn is known
from the nineteenth century, found by Camille Jordan [Jor76, Jor79]. He proved
that the degree of the generating invariants of Vn was ≤ n6. About a century
later, Popov [Pop81, Pop82] generalised this result and determined a bound
on the degree of the generating invariants of a G-module, where G was any
semi-simple group. However, applied to the particular case of the binary forms,
Popov's result gives a weaker bound, compared to the one found by Jordan.
In 2001 Derksen [Der01] improved Popov's result, but again, applied to the
particular case of the binary forms, Derksen's bound was weaker than Jordan's
bound.

Another direction that the classics followed in the nineteenth century was
to �nd the generators of the invariants and of the covariants of several binary
forms Vn1 ⊕ . . . ⊕ Vnp , with p ≥ 2 and ni ≥ 1. Table 1.1 contains results of
computations made in the nineteenth century, for some particular SL2-modules
(we use the notation mVn for the direct sum

⊕m
i=1 Vn of m copies of Vn).

The references [Bes69, Ell95, Gor69, Gor87, GY03, Per87] give sets of generating
invariants ofmV1⊕nV2 in few particular cases, with smallm and n. Gordan and
Grace & Young ([Gor75, GY03]) gave an algorithm for computing the generators
of the covariants of V2⊕V . Gordan ([Gor69, Gor87]) gave good estimates on the
number of generators of the invariants of nV1 and of V1⊕nV2, with n ≥ 2. Peano
([Pea82]) showed that the covariants of nV3, with n ≥ 2, are generated by those
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module # generators of invariants # generators of covariants

V3 1 ([Gor87]) 4 ([Gor87])

V4 2 ([Gor87]) 5 ([Gor87])

V5 4 ([Gor87]) 23 ([Gor87])

V6 5 ([Gor87]) 26 ([Gor87])

V7 33 ([Gal88]), 30 ([DL86]) 153 ([Gal88]), 124 ([Sy79b]),

147 ([Crö02, Bed09], Chap. 5.7)

V8 12 ([Gal80]), 9 ([Gal80, Shi67]) 96,67,70 ([Gal80])

69 ([Sy79b, BB08], Chap. 5.8)

V2 ⊕ V3 5 ([Bes69, Gor87]) 15 ([Bes69, Gor87])

V2 ⊕ V4 6 ([GY03]) 18 ([GY03])

V2 ⊕ V5 29 ( [Win80]) 94 ([Win80]), 92 (Chap. 5.16)

V2 ⊕ V6 27 ([Gal74]) 99 ([Gal74])

2V3 7 ([Gor87, Pea82]) 26 ([Gor87, Pea82])

V3 ⊕ V4 20 ([Gun69]) 64 ([Gun69]), 61 ([Sy78b, Sy78c, Sy78d]),

63 ([BP12])

2V4 8 ([You99]) 28 ([You99])

3V3 28 ([Gal94]) 98 ([Gal94]), 97 ([Sin05])

3V4 25 ([You99]) 103 ([You99])

4V4 80 ([You99]) 305 ([You99])

nV1

`n
2

´
([Gor69])

`n+1
2

´
([Gor69])

nV2

`n+1
2

´
+

`n
3

´
([Gor87]) n(n + 1) +

`n
3

´
([Gor87])

Table 1.1: Cases treated in the 19th century (the underlined entries are results that
in the �rst place turned out to be false and were later corrected)

of degree ≤ 6 and order ≤ 4. Young ([You99]) showed that the covariants of
nV4, with n ≥ 5, are generated by those of degree ≤ 6 and order ≤ 6. These last
results were con�rmed and proved with modern methods by Kraft & Weyman
([KW99]) in 1999. They are extended in Chap. 5 of this thesis: we give sets of
generating invariants for mV1 ⊕ nV2, mV1 ⊕ nV3, and mV1 ⊕ nV4, with m ≥ 2.

The di�culty of �nding generators of the algebra I of invariants is captured
by the homological dimension hd I of I. If r is the minimal number of generators
of I, and m is the size of a system of parameters of I (set of algebraically
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independent elements P1, . . . , Pm ∈ I such that I is integral over C[P1, . . . , Pm]),
then m equals n − 2 for n ≥ 3, and the homological dimension hd I equals
r − m ([Pop83, Corollary 1]). Popov [Pop83] classi�ed in 1983 all the SL2-
modules Vn1 ⊕ . . . ⊕ Vnp with hd I ≤ 10 for a single binary form (p = 1) and
hd I ≤ 3 for several binary forms (p > 1). It turned out that all these cases
were known classically, as cases in which one could easily �nd minimal sets of
generating invariants. Brouwer and I [BP11] extended Popov's classi�cation
and determined for p = 1 the cases with hd I ≤ 100 and for p > 1 the cases
with hd I ≤ 15 (see also Chap. 6 in this thesis). In the case of a single binary
form, the homological dimension hd I rapidly increases if the degree is ≥ 9. The
bigger the homological dimension hd I is, the harder it is to �nd generating
invariants of I. The following table contains, for illustration, the values of hd I
for binary forms of degree less than 14:

degree 1 2 3 4 5 6 7 8 9 10 11 12 13

hd I 0 0 0 0 1 1 25 3 85 98 ≥ 149 ≥ 103 ≥ 491

r 1 1 1 2 4 5 30 9 92 106 ≥ 158 ≥ 113 ≥ 502

With his book published in 1939 Weyl [Wey46] aimed to give �a modern
introduction to the theory of invariants�, translating the problem of �nding the
generating invariants of binary forms into the language of representation theory
and the study of actions of the semisimple groups. He thought it was �high time
for a rejuvenation of the classic invariant theory, which has fallen into an almost
petri�ed state�([Wey46]). Parshall [Par90] talks in 1990 about a myth saying
that

�the death certi�cate of invariant theory e�ectively reads 15 February
1890. On that date, the twenty-eight-years-old David Hilbert signed
o� his paper Über die Theorie der algebraischen Formen [Hil90] and
presented his proof of the so-called �nite basis theorem to the read-
ership of the mathematische Annalen, a theorem and proof that
killed an entire area. Two and a half years later, he completed
yet another invariant-theoretic work, entitled Über die vollen Invari-
antensysteme [Hil93] and put an end to any lingering hopes of the
theory's resurrection. Thus, after �fty years of vigorous life, one
of the nineteenth century's major areas of mathematical research
abruptly ceased to exist.�([Par90])

This myth originated probably from Weyl's words on Hilberts papers:

�His papers (1890/92) mark a turning point in the history of invari-
ant theory. He solves the main problems and thus almost kills the
whole subject.� ([Wey46, page 27])

But we should note the words �turning point� and �almost� in Weyl's quote,
as Parshall [Par90] suggested. In the 1960's Mumford [Mum65] translated pro-
blems of invariant theory into the language of algebraic geometry. One of his
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key insights was that one could analyse the geometry of group actions without
actually knowing the invariants. For instance, he proved that a vector in a repre-
sentation cannot be distinguished from zero by means of invariants if and only
if there is a one-parameter subgroup sending the vector arbitrarily close to zero.
The remarkable thing here is that a purely algebraic property (namely that all
non constant homogeneous invariants vanish on a vector) can be checked in a
purely geometric fashion (involving orbits of the vector under one-parameter
subgroups). As a consequence, we know for instance that all invariants of bi-
nary forms of degree n vanish on the forms having a root of multiplicity > n

2
without any a priori information on the invariants themselves. Mumford's re-
sult generalises Hilbert's criterion mentioned in Chap. 2.7.1, which will be used
throughout this thesis.

In the second half of the 20th century new techniques in commutative algebra
became available that can be applied to invariant theory. These techniques are
both of a theoretical nature, such as Hochster& Roberts's result that invariant
rings of reductive group representations are Cohen Macaulay [HR74], and of an
algorithmic nature, such as the use of Gröbner bases in invariant theory [DK00]
or the computation of Poincaré series of invariant rings [Spr77, Bri82, Bro94].
Such algebraic and algorithmic techniques are the starting point of this thesis.

This thesis is organised as follows.
In Chapter 2 we introduce the de�nitions and notations that will be used in

this thesis. In Chapter 3 we present the computational methods that we use for
�nding the generating invariants of SL2-modules. In Chapter 4 we �nd the basic
invariants of Vn for n ∈ {2, 3, . . . , 10}, and give explicit systems of parameters in
all these cases (Chap. 4.8 and 4.9 are joint work with Brouwer [BP10a, BP10b]).
In Chapter 5 we review classical results regarding the invariants of Vn1 ⊕ . . .⊕
Vnp , with p ≥ 2. We correct a result of Winter [Win80] on the generating
covariants of V2 ⊕ V5 (see Chapter 5.16) and results of Gundel�nger [Gun69]
and Sylvester [Sy78b, Sy78c, Sy78d] on the generating covariants of V3⊕V4 (see
Chap. 5.19, joint work with Brouwer [BP12]). In Chapter 6 we classify the mo-
dules Vn1 ⊕ . . .⊕Vnp whose algebras of invariants have a homological dimension
≤ 15, extending a result of Popov [Pop83] (joint work with Brouwer [BP12]).



Chapter 2

Invariant Theory

2.1 De�nitions and notation

Recall from the introduction the de�nition of the group SL2. Denote by Vn the
space of binary forms of degree n.

Consider a rational, �nite-dimensional SL2-module V . Then there exist
(n1, . . . , np) such that V ' Vn1 ⊕ . . .⊕ Vnp as SL2-modules (cf. [Spr77, 3.2.2]).
The group SL2 acts on the algebra of polynomial functions on Vn1 ⊕ . . . ⊕ Vnp
via

g · j(f1, . . . , fp) = j(g−1 · f1, . . . , g−1 · fp),
where g ∈ SL2, j ∈ O(Vn1 ⊕ . . .⊕ Vnp) and (f1, . . . , fp) ∈ Vn1 ⊕ . . .⊕ Vnp .

De�nition 2.1.1. Consider V = Vn1 ⊕ . . . ⊕ Vnp . An invariant of V is an
element j in the algebra O(V ) of polynomial functions on V such that g · j = j
for all g ∈ SL2. The set of invariants of V is denoted O(V )SL2 .

Example 2.1.1. Consider the binary form f = a0x
2 + 2a1xy + a2y

2 ∈ V2 of
degree 2. The polynomial j(f) = a2

1 − a0a2 is an invariant of V2.
Indeed, for g =

(m n
p q

)
∈ SL2, mq − np = 1, we have g · j(f) = j(g−1 · f) and

g−1 · f = a0(mx+ ny)2 + 2a1(mx+ ny)(px+ qy) + a2(px+ qy)2 =

= (a0m
2 + 2a1mp+ a2p

2)x2 + 2(a0mn+ a1np+ a1mq + a2pq)xy+

+ (a0n
2 + 2a1nq + a2q

2)y2.

It follows that

j(g−1 · f) = (a0mn+ a1np+ a1mq + a2pq)2 − (a0m
2 + 2a1mp+ a2p

2)(a0n
2+

+ 2a1nq + a2q
2) = (a2

1 − a0a2)(mq − np)2 = a2
1 − a0a2 = j(f),

hence g · j(f) = j(f) for all g ∈ SL2.
The invariant j has a geometric interpretation: j(f) = 0 if and only if f has a
double root.

15
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Example 2.1.2. Let f, ` ∈ V2 ⊕ V1, with f = a0x
2 + 2a1xy + a2y

2 ∈ V2 and
` = b0x + b1y ∈ V1. The polynomial j(f, `) = a0b

2
1 − 2a1b0b1 + a2b

2
0 is an

invariant of V2 ⊕ V1. Indeed, for g =
(m n
p q

)
∈ SL2, mq − np = 1, we have

g · j(f, `) = j(g−1 · f, g−1 · `) and

g−1 · f = (a0m
2 + 2a1mp+ a2p

2)x2 + 2(a0mn+ a1np+ a1mq + a2pq)xy+

+ (a0n
2 + 2a1nq + a2q

2)y2,

g−1 · ` = (b0m+ b1p)x+ (b0n+ b1q)y.

It follows that

j(g−1 · f, g−1 · `) = (a0m
2 + 2a1mp+ a2p

2)(b0n+ b1q)2−
− 2(a0mn+ a1np+ a1mq + a2pq)(b0m+ b1p)(b0n+ b1q)+

+ (a0n
2 + 2a1nq + a2q

2)(b0m+ b1p)2 =

= (a0b
2
1 − 2a1b0b1 + a2b

2
0)(mq − np)2 = j(f, `),

hence g · j(f, `) = j(f, `) for all g ∈ SL2.
The invariant j has a geometric interpretation: j(f, `) = 0 if and only if ` and
f have a common root.

De�nition 2.1.2. Consider V = Vn1 ⊕ . . . ⊕ Vnp . A covariant of V of order
m and degree d of V is an SL2-equivariant polynomial map φ : V → Vm which
is homogeneous of degree d. In other words, for all g ∈ SL2 we have φ(g · v) =
g · φ(v), where v ∈ V , and for all t ∈ C we have φ(tv) = tdφ(v), where v ∈ V .
The set of covariants of V is denoted C(V ).

Remark 2.1.1. The covariants of V of order 0 are the homogeneous invari-
ants of V . They form the homogeneous components of the ring O(V )SL2 =⊕

dO(V )SL2
d of invariants of V , where O(V )SL2

d are the invariants of V of de-
gree d. The covariants form a doubly graded ring C(V ) =

⊕
d,e C(V )(d,e), where

C(V )(d,e) are the covariants of V of degree d and order e.

De�nition 2.1.3. For a covariant of Vn of order m and degree d we de�ne its
co-order to be (nd−m)/2.

The main way to construct covariants is via transvectants (Überschiebungen).
They are derived from the Clebsch-Gordan decomposition of the SL2-module
Vm ⊗ Vn, with m ≥ n:

Vm ⊗ Vn ' Vm+n ⊕ Vm+n−2 ⊕ . . .⊕ Vm−n([KP96, 9.1]).

This decomposition de�nes for each p, 0 ≤ p ≤ n, an SL2-equivariant linear map
Vm⊗Vn → Vm+n−2p, denoted (f, h) 7→ (f, h)p, and called the p-th transvectant.
It is given explicitly by the following formula:

(f, h) 7→ (f, h)p :=
(m− p)!(n− p)!

m!n!

p∑
i=0

(−1)i
(
p

i

)
∂pf

∂xp−i∂yi
∂ph

∂xi∂yp−i
(2.1)
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(see [Olv99, Chap. 5]). The maps (f, h) 7→ (f, h)p are clearly bilinear. Also, if
f = `m1 and h = `n2 , with `1 = a0x+ a1y and `2 = b0x+ b1y, we have then

(`m1 , `
n
2 )p = `m−p1 `n−p2 [`1, `2]p where [`1, `2] := det

[ a0 a1
b0 b1

]
= a0b1 − a1b0.

Furthermore, if g =
(m n
p q

)
∈ SL2, with mq − np = 1, we have

(g · `m1 , g · `n2 )p = (g · `1)m−p(g · `2)n−p[`1, `2]p(mq − np)p =

= (g · `1)m−p(g · `2)n−p[`1, `2]p = g · (`m1 , `n2 )p.

Because Vm and Vn are linearly spanned by powers of linear forms, it fol-
lows that (f, h) 7→ (f, h)p are SL2-equivariant. They are also non-zero and
as Vm+n, Vm+n−2, . . . , Vm−n are irreducible representations, it follows that

Vm ⊗ Vn → Vm+n ⊕ Vm+n−2 ⊕ . . .⊕ Vm−n,

(f, h) 7→
n∑
p=0

(f, h)p

is surjective. But Vm ⊗ Vn and Vm+n ⊕ Vm+n−2 ⊕ . . . ⊕ Vm−n have the same
dimension, which implies that the map is actually a bijection.

Example 2.1.3. Let f = a0x
3 + 3a1x

2y + 3a2xy
2 + a3y

3. The map

V3→V2,

f 7→(f, f)2= 2(a0a2 − a2
1)x

2 + 2(a0a3 − a1a2)xy + 2(a1a3 − a2
2)y

2 =

=
1
18

[
∂2f

∂x2

∂2f

∂y2
− (

∂2f

∂x∂y
)2],

de�nes a covariant of V3 of order 2 and degree 2. Note that the transvectant
(f, f)2 coincides, up to a constant, with the Hessian of f . This transvectant
vanishes if and only if f is the 3th power of a linear form (see Proposition 2.7.2).

Remark 2.1.2. The covariants of V can be identi�ed with the invariants of
V1 ⊕ V : we have V1 ⊕ V ' V ∗1 ⊕ V as SL2-representations and the algebra of
covariants of V is isomorphic to O(V ∗1 ⊕ V )SL2 (see [Pro07, Chap. 15]). Each
covariant φ of V of order m corresponds to the invariant of V1 ⊕ V de�ned by
the transvectant (φ(v), `m)m, where ` ∈ V1.

Notation agreement. Consider f ∈ Vm. One obvious covariant of Vm of
degree 1 and order m is the identity map on Vm. From now by �the covariant
f � we will mean the identity map on Vm.
Given two covariants φ1 : Vm → Vd and φ2 : Vm → Ve of Vm of orders d, re-
spectively e, they de�ne the covariants ψp : Vm → Vd+e−p, f 7→ (φ1(f), φ2(f))p,
with 0 ≤ p ≤ min(d, e). By �the covariant (φ1, φ2)p� we will mean the map
Vm → Vd+e−p, f 7→ (φ1(f), φ2(f))p.
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Theorem 2.1.3. (Gordan [Gor68]) Let f ∈ Vn. Then, the covariants of Vn
are generated by a �nite number of iterated transvectants

f, (f, f)p, (f, (f, f)p)q, . . .

In particular (see [Gor68, �2]), if C is a covariant of f of degree d, then C
can be written as a linear combination of transvectants (f, Ci)ri , where Ci are
covariants of f of degree d− 1.

This gives a method for �nding the generating covariants of f : suppose
we know the generating covariants of f up to degree d − 1. In order to �nd
the generating covariants of degree d, we have to write down all transvectants
(f, Cd−1)r, for suitable r, where Cd−1 is a covariant of degree d − 1, namely a
generating covariant of degree d−1 or a product of total degree d−1 of generating
covariants of lower degrees. Then we select out of this set the irreducible ones
(we call a covariant C reducible if C is contained in the algebra generated by
all covariants of degree ≤ degC and order ≤ ordC, where at least one of the
inequalities is strict).

Lemma 2.1.4. [KW99] Let V = Vn1 ⊕ . . . ⊕ Vnp be a representation of SL2

and C1, . . . , Cr, C covariants of V , of orders ordCi = ei. Then the transvec-
tant (C1 . . . Cr, C)k is reducible if there is a strict subset S ⊂ {1, 2, . . . , r} and
integers ki ≤ ei such that k =

∑
i∈S ki.

Proposition 2.1.5. Let f ∈ Vn and consider covariants C1, . . . , Cr of f , with
r ≥ 2. If the covariant C = (C1 . . . Cr, f)k is irreducible, then ordC ≤ n− r. If
n is even, then ordC ≤ n− 2r + 2.

Proof. Denote mi = ordCi. W.l.o.g. we can assume m1 ≥ m2 ≥ . . . ≥ mr > 0.
From the de�nition of transvectants, k must be ≤ n. From Lemma 2.1.4 we
obtain:

m1 +m2 + . . .+mr−1 < k ≤ m1 +m2 + . . .+mr.

Then,

ordC =(m1 +m2 + . . .+mr) + n− 2k ≤
≤(m1 +m2 + . . .+mr) + n− 2(m1 +m2 + . . .+mr−1 + 1) =
=n− (m1 −mr + (m2 + . . .+mr−1) + 2) ≤
≤n− r

If n is even, then all mi will be even as well and then

n− (m1 −mr + (m2 + . . .+mr−1) + 2) ≤ n− 2r + 2.

Example 2.1.4. Consider f ∈ V1. Then, we have (f, f)p = 0 for p 6= 0. The
covariants of V1 are generated by f .
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Consider f ∈ V2. The covariants of V2 are generated by f and (f, f)2; the
invariants of V2 are generated by (f, f)2 (see Chap. 4.1).

Consider f ∈ V3. The covariants of V3 are generated by

f, (f, f)2, (f, (f, f)2)1, ((f, f)2, (f, f)2)2 = −(f, (f, (f, f)2)1)3 (see Chap. 5.3.1).

The invariants of V3 are generated by ((f, f)2, (f, f)2)2 (see Chap. 4.2).
Consider f ∈ V4. The covariants of V4 are generated by

f, (f, f)2, (f, f)4, (f, (f, f)2)1, (f, (f, f)2)4 (see Chap. 5.4.1).

The invariants of V4 are generated by (f, f)4 and (f, (f, f)2)4 (see Chap. 4.3).
For further examples see Chap. 4 and 5.

Hilbert [Hil90] generalised Gordan's result to a system of several homogeneous
forms in a �nite number of variables. Formulated for the particular case of the
SL2-module Vn1 ⊕ . . .⊕ Vnp , Hilbert's result is:

Theorem 2.1.6. (Hilbert [Hil90]) Consider V = Vn1⊕. . .⊕Vnp . The algebra
of invariants of V is �nitely generated, i.e. there exist �nitely many invariants
j1, . . . , jr ∈ O(V )SL2 such that O(V )SL2 = C[j1, . . . , jr].

Example 2.1.5. Let f1, f2 ∈ V3. The invariants of V3 ⊕ V3 are generated by

(f1, f2)3, ((f1, f1)2, (f1, f1)2)2, ((f2, f2)2, (f2, f2)2)2, ((f1, f1)2, (f2, f2)2)2,
((f1, f1)2, (f1, f2)2)2, ((f2, f2)2, (f1, f2)2)2, ((f1, (f1, f2)2)2, (f2, (f1, f2)2)2)1

(see Chap. 5.3.2).
Let f ∈ V2 and g ∈ V4. The invariants of V2 ⊕ V4 are generated by

(f3, (g, (g, g)2)1)6, (f2, (g, g)2)4, (f2, g)4, (g, (g, g)2)4, (g, g)4, (f, f)2

(see Chap. 5.10).
For further examples see Chap. 5.

2.2 The symbolic method

The symbolic method was developed by Aronhold and Clebsch in the middle
of the nineteenth century. The symbolic calculus permits the reduction of the
computations with binary forms of degree n to the special cases of the nth power
of a linear form (α1x+α2y)n. The classics proved that the invariants of binary
forms have symbolic representations as products of factors of type [αβ], where
[αβ] stays for the determinant α1β2−α2β1. The manipulation of invariants got
simpli�ed by representing them in succinct symbolic expressions.

Kung & Rota [KR84] gave in 1984 �a rigorous and yet manageable account of
the umbral or symbolic calculus� that was performed in the nineteenth century.
We introduce in this section the symbolic calculus, closely following the ideas
of Kung & Rota [KR84].
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Consider an alphabet A = {α, β, . . . , ω, u} consisting of an in�nite num-
ber of Greek letters and the Roman letter u. The letters in A are called
umbral letters. To each Greek letter α and to u we associate two variables,
α1 and α2, respectively u1 and u2. The ring of polynomials in the variables
α1, α2, β1, β2, . . . , ω1, ω2, u1, u2 is an in�nite-dimensional vector space called the
umbral space U . We de�ne a linear operator U from the umbral space U to the
space C[A0, A1, . . . , An, X, Y ] of polynomials in the variables A0, . . . , An, X, Y
in the following way (we denote the image of an element P ∈ U under U by
〈U | P 〉):

〈U | αj1αk2〉 =

{
Ak, if j + k = n,

0, if j + k 6= n.

〈U | ui1〉 = (−Y )i,

〈U | uj2〉 = Xj ,

〈U | αi1α
j
2β

k
1β

l
2 . . . u

p
1u
q
2〉 = 〈U | αi1α

j
2〉〈U | βk1βl2〉 . . . 〈U | u

p
1〉〈U | u

q
2〉.

U is called the umbral operator associated to the space of binary forms of degree
n. If f =

∑n
i=0

(
n
i

)
aix

n−iyi, we de�ne the umbral functional U(f), which is a
linear map from U to C[x, y], as the composition of U with the homomorphism
C[A0, A1, . . . , An, X, Y ]→ C[x, y] determined by

A0 7→ a0, A1 7→ a1, . . . , An 7→ an, X 7→ x, Y 7→ y.

Every polynomial in the variables A0, . . . , An, X, Y can be written as 〈U |
P (α1, α2, . . .)〉 for some polynomial P (α1, α2, . . .) in the umbral space U . Indeed,
we have

Ad0
0 A

d1
1 . . . Adnn Xe1Y e2 = 〈U | αn1α0

2 . . . γ
n
1 γ

0
2︸ ︷︷ ︸

d0 times

δn−1
1 δ12 . . . ε

n−1
1 ε12︸ ︷︷ ︸

d1 times

. . . (−u1)e2ue12 〉,

where the umbral letters α, . . . , γ, δ, . . . , ε, . . . are distinct. In general, the umbral
representation of a polynomial is not unique.

We de�ne now

[αβ] = α1β2 − α2β1 and [αu] = α1u2 − α2u1.

We call a bracket monomial a nonconstant polynomial in U which can be written
as a product of brackets, for example [αβ][αδ] . . . [ωu]. The index of a bracket
monomial M is the number of brackets in M containing only Greek symbols.
The order of a bracket monomial M is the number of brackets in M containing
the Roman letter u. The height of a bracket monomial M is the total number
of brackets in M .

A bracket polynomial is a linear combination of bracket monomials. The
bracket polynomials form a subspace B of the umbral space U .

Theorem 2.2.1. First Fundamental Theorem ([KR84, Theorem 3.1], [GY03,
Chap. II]) Consider U the umbral operator associated to the space of binary
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forms of degree n. The umbral evaluation 〈U | P 〉 of a bracket polynomial of
index g is a covariant of Vn of co-order g. Vice-versa, if C is a covariant of
Vn of co-order g, then there exists a bracket polynomial P of index g such that
C = 〈U | P 〉.

Remark 2.2.2. If P =
∑
Pi is an umbral representation of a covariant of Vn

of degree d, order m, and co-order g, then the bracket monomials Pi share the
following properties: in all Pi will occur exactly d Greek letters α such that the
total degree of α1 and α2 in Pi is n; the order of Pi is m; the index of Pi is g.

Example 2.2.1. Let f = a0x
3 + 3a1x

2y+ 3a2xy
2 + a3y

3. In Example 2.1.3 we
saw that

C = 2(a0a2 − a2
1)x

2 + 2(a0a3 − a1a2)xy + 2(a1a3 − a2
2)y

2

is covariant of V3 of order 2, degree 2 and co-order 2, which up to a constant
coincides with the Hessian of f .

The bracket polynomial P = [αβ]2[αu][βu] is an umbral representation of
the covariant C. Indeed,

〈U(f) | P 〉 =〈U | α3
2β

2
1β2u

2
1 − 2α1α

2
2β1β

2
2u

2
1 + α2

1α2β
3
2u

2
1 − α3

2β
3
1u1u2+

+α1α
2
2β

2
1β2u1u2 + α2

1α2β1β
2
2u1u2 − α3

1β
3
2u1u2 + α1α

2
2β

3
1u

2
2−

−2α2
1α2β

2
1β2u

2
2 + α3

1β1β
2
2u

2
2〉 =

=a3a1y
2 − 2a2

2y
2 + a1a3y

2 − a3a0(−xy) + a2a1(−xy) + a1a2(−xy)−
−a0a3(−xy) + a2a0x

2 − 2a2
1x

2 + a0a2x
2 =

=2(a1a3 − a2
2)y

2 + 2(a0a3 − a1a2)xy + 2(a0a2 − a2
1)x

2.

Theorem 2.2.3. Second Fundamental Theorem ([KR84, Theorem 3.3]) Let
U be the umbral operator for binary forms of degree n and let P and Q be
polynomials in the umbral space U such that 〈U | P 〉 = 〈U | Q〉. Then P can be
obtained from Q by a sequence of of operations of the following kind:

(1) an application of the C-algebra axioms in the polynomial algebra
C[α1, α2, β1, β2, . . . , u1, u2];

(2) adding a scalar multiple of a redundant monomial (a monomial in U con-
taining a Greek letter γ such that the total degree of γ1 and γ2 is not equal
to n or 0);

(3) replacing any monomial M by M ′, where M ′ is obtained from M by re-
placing all occurences of α1 and α2 for some Greek letter α appearing in
M by the variables δ1 and δ2, where δ is not appearing in M ;

(4) replacing any monomial in M by M ′, where M ′ is obtained from M by
permuting the set of umbral letters occuring in M .
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The umbral notation can be extended to several binary forms f1, . . . , fr ∈
Vn1 ⊕ . . . ⊕ Vnr in the following way: we split the set of Greek letter in the
alphabet A into r disjoint in�nite subsets Ai and assign each letter in Ai to the
form fi. If two letters are assigned to the same form, they are called equivalent.
We de�ne now the umbral operator U as the linear operator from the umbral
space U to the space C[A10, A11, . . . , A1n1 , . . . , Ar0, Ar1, . . . , Arnr , X, Y ] of poly-
nomials in the variables A10, A11, . . . , A1n1 , . . . , Ar0, Ar1, . . . , Arnr , X, Y in the
following way (we denote the image of an element P ∈ U under U by 〈U | P 〉):

〈U | αj1αk2〉 =

{
Aik, if j + k = ni,

0, if j + k 6= ni.

〈U | ui1〉 = (−Y )i,

〈U | uj2〉 = Xj ,

〈U | αi1α
j
2β

k
1β

l
2 . . . u

p
1u
q
2〉 = 〈U | αi1α

j
2〉〈U | βk1βl2〉 . . . 〈U | u

p
1〉〈U | u

q
2〉.

(This last multiplication rule holds even if umbral letters are assigned to di�erent
forms.)

Theorem 2.2.4. ([You04, �3], Grace & Young [GY03, �265]) Any covariant
of Vn1 ⊕ . . . ⊕ Vnδ is represented by a bracket polynomial in the vector space
spanned by bracket polynomials of the following three shapes

(1) bracket monomials of the form

[α1α2]λ1 [α2α3]λ2 . . . [αδ−1αδ]λδ−1 [α1u]n1−λ1 [α2u]n2−λ1−λ2 . . . [αδu]nδ−λδ−1

where λ1 ≥ 2δ−2, λ2 ≥ 2δ−3, . . . λδ−1 ≥ 1, and the arrangement of the
letters α1, . . . , αδ is beforehand �xed;

(2) bracket monomials that have a factor of the form [αiαj ]λ[αjαk]nj−λ;

(3) products of covariants of lower total degree.

2.3 Bounds on the degrees and orders of the gen-

erating covariants

We recall the following degree bound on generators for invariants of binary
forms.

Proposition 2.3.1. (Jordan [Jor76, Jor79]) Let f ∈ Vn. Then the generating
covariants of f have degrees < n6.

This is the best known upper bound on the degree of the generating covari-
ants of Vn, for general n. However, in particular cases, for small n, the gap
between this bound and the highest degree of the generating covariants is still
big: for example, the covariants of V8 are generated by those of degree ≤ 10
(see Chap. 5.8), while Jordan's bound is 86.
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Proposition 2.3.2. (Jordan [Jor79]) Consider two sequences `(n) and ϕ(n)
de�ned by:

`(1) = 0, `(2) = 1, `(3) = 2,

`(2i+ 3) = `(2i+ 2) + 2[
`(i+ 3)

4
],

`(2i+ 2) = `(2i+ 1) + 2[
`(i+ 2) + 2

4
],

and

ϕ(1) = 0, ϕ(2) = 1, ϕ(3) = 3,
ϕ(j) = ϕ(j − 1) + `(j),

where i ≥ 1 and j ≥ 4.
Let f ∈ Vn and consider δ the greatest integer such that `(δ) < n

2 . Then the
generating covariants of f have orders < max{n, 2n− 2, nδ − 2ϕ(δ)}.

Proposition 2.3.3. (Grace & Young [GY03, �271]) Let f ∈ Vn. Write n =
2r + n1 with maximal possible r ∈ N and de�ne

cn = (r − 1)2r + n1(r + 1) + 2.

Then the generating covariants of f have orders ≤ cn.

Proof. We start by looking at the covariants of Vn1⊕. . .⊕Vnδ , with n1, . . . , nδ ≤
n. If C is such a covariant, then, from Theorem 2.2.4, C can be symbolically
expressed in terms of:

(1) covariants of the form

[α1α2]λ1 [α2α3]λ2 . . . [αδ−1αδ]λδ−1 [α1u]n1−λ1 [α2u]n2−λ1−λ2 . . . [αδu]nδ−λδ−1

where λ1 ≥ 2δ−2, λ2 ≥ 2δ−3, . . . λδ−1 ≥ 1, and the arrangement of the
letters α1, . . . , αδ is beforehand �xed;

(2) covariants which have a factor of the form [αiαj ]λ[αjαk]nj−λ;

(3) products of covariants of lower total degree.

Suppose C contains terms of second kind, containing a factor [αiαj ]λ[αjαk]nj−λ.
Suppose w.l.o.g. λ ≥ nj−λ. Then this term can be obtained from a transvectant
of the form

([αiαj ]λ[αiu]ni−λ[αju]nj−λ, C ′)w,

where the order of [αiαj ]λ[αiu]ni−λ[αju]nj−λ is ni + nj − 2λ ≤ n. By intro-
ducing a new symbol for the covariant [αiαj ]λ[αiu]ni−λ[αju]nj−λ, we reduce
the degree of ([αiαj ]λ[αiu]ni−λ[αju]nj−λ, C ′)w. In this way the terms of second
kind appearing in C are reduced in degree. Now, we apply again Theorem 2.2.4
to the reduced covariants, hence they can be expressed in terms of covariants
of the three di�erent kinds. We reduce again the degree of the terms of second
kind and so on until we are left with:
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(i) covariants of the form

[β1β2]λ1 [β2β3]λ2 . . . [βδ′−1βδ′ ]λδ′−1 [β1u]n1−λ1 . . . [βδ′u]nδ′−λδ′−1 ,

where λ1 ≥ 2δ
′−2, λ2 ≥ 2δ

′−3, . . . , λδ′−1 ≥ 1, and the symbols β1, . . . , βδ′

are assigned either to the original binary forms or to covariants of orders
≤ n of these binary forms;

(ii) products of covariants of lower total degree.

For this reason, the maximal possible order of a covariant of Vn1 ⊕ . . . ⊕ Vnδ ,
with n1, . . . , nδ ≤ n is attained by a covariant of the form

[α1α2]λ1 [α2α3]λ2 . . . [αε−1αε]λε−1 [α1u]n1−λ1 [α2u]n2−λ1−λ2 . . . [αεu]nε−λε−1

where λ1 ≥ 2ε−2, λ2 ≥ 2ε−3, . . . λε−1 ≥ 1. The order of this covariant is ≤

nε− (2ε−1 + 2ε−2 + . . .+ 2) = nε− 2ε + 2,

a maximum that is attained for n1 = n2 = . . . = n and λ1 = 2ε−2, λ2 =
2ε−3, . . . , λε−1 = 1.

We look now at the maximum of

n, 2n− 2, . . . , nε− 2ε + 2, . . .

If n = 2r + n1 with maximal possible r ∈ N, then the maximum is attained for
ε = r + 1. Hence, the order of a covariant of Vn will then be ≤

(r + 1)(2r + n1)− 2r+1 + 2 = (r − 1)2r + n1(r + 1) + 2.

Remark 2.3.4. Grace & Young [GY03, �271] claim that a generator of order
cn always appears if n 6= 3.

In Table 2.1 we compare the bounds of Jordan and of Grace & Young on
the orders of the generating covariants of Vn, with n ≤ 24:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

J. 2 4 6 9 12 15 18 22 26 30 34 39 44 49 54 60 66 72 78 85 92 99 106

G.&Y. 2 4 6 9 12 15 18 22 26 30 34 38 42 46 50 55 60 65 70 75 80 85 90

Table 2.1: The bounds of Jordan and of Grace & Young
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2.4 Cohen-Macaulayness

We start with recalling some properties of graded Cohen-Macaulay modules.
Let R = ⊕i≥0Ri be a �nitely generated graded C-algebra with dimC Ri < ∞.
Let M = ⊕jMj be a �nitely generated graded R-module.

A sequence r1, . . . , rp ∈ R is a homogeneous system of parameters (hsop) for
M if M/(r1, . . . , rp)M is �nite dimensional over C and p is minimal with this
property. We have p = dimM (see [Eis95, �10.1]). A sequence r1, . . . , rp ∈ R
is a regular sequence on M if (r1, . . . , rp)M 6= M and for i = 1, . . . , p, ri is a
non-zero divisor onM/(r1, . . . , ri−1)M . If r1, . . . , rp is a regular sequence onM ,
then M is a free module over C[r1, . . . , rp] (see [Eis95, �18.4]). If M is Cohen
Macaulay, then homogeneous systems of parameters are regular sequences.

If M is Cohen Macaulay and r1, . . . , rp ∈ R is a homogeneous system of
parameters forM of degrees d1, . . . , dp, denote by e1, . . . , es the degrees of the ge-
nerators ofM as a C[r1, . . . , rp]-module, ordered increasingly. Then the Poincaré
series of M is given by

PM (t) =
∑s
i=1 t

ei∏p
j=1(1− tdj )

.

This means that if we know the degrees of a homogeneous system of parameters
for M and the Poincaré series PM (t), then we also get a bound on the degrees
of the generators of M as a C[r1, . . . , rp]-module.

Theorem 2.4.1. (Hochster & Roberts [HR74]) The ring O(V )SL2 of invariants
is Cohen-Macaulay.

For certain values of m, the O(V )SL2-module C(V )m of covariants of V
of order m are Cohen Macaulay as well. In the paper [VdB91] Michel van
den Bergh gives a su�cient criterion for the Cohen-Macaulayness of a module
of covariants of a stable representation V of a reductive group G, based on
certain properties of the highest weight of irreducible representations of G. For
G = SL2, consider the maximal torus T = {

(
t 0
0 t−1

)
| t ∈ C∗} ⊂ SL2. The

one-dimensional representations of T are of the form

χi
(
t 0
0 t−1

)
:= ti,with i ∈ Z,

and form the character group X(T ) of T , which is identi�ed to Z. An SL2-
module V can be decomposed with respect to T into

V =
⊕

χ∈X (T )

Vχ, Vχ := {v ∈ V |
(
t 0
0 t−1

)
· v = χ

(
t 0
0 t−1

)
v for all t ∈ C∗}.

The characters χ ∈ X(T ) such that Vχ 6= 0 are called weights of V , the non-
zero elements of Vχ are called weight vectors, and Vχ are called weight spaces.
For example, the weights of the vector space Vn of binary forms of degree n are
−n+ 2i, corresponding to the weight vectors xn−iyi, with 0 ≤ i ≤ n.
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Given a one-parameter subgroup (1-PSG) λ ∈ X(T )∗ = Z,

λ : C∗→ SL2,

t 7→
(
tλ 0
0 t−λ

)
,

de�ne 〈λ, χ〉 as
χλ(t) = t〈λ,χ〉.

Let χ1, . . . , χN be the weights of V , with multiplicities. For λ ∈ X(T )∗ set

Iλ := {j ∈ {1, 2, . . . , N} | 〈λ, χj〉 ≥ 0}.

For example, if V = Vn and χ is the weight −n + 2i, with 0 ≤ i ≤ n, then
〈λ, χ〉 = −nλ+ 2iλ, and Iλ is the set of nonnegative weights of Vn if λ > 0.

De�nition 2.4.1. Let λ ∈ X(T )∗. A character α ∈ X(T ) is called good for
(T, V, λ) if α is not of the form

∑
j njχj , with nj ∈ Z, nj < 0 for j ∈ Iλ and

nj ≥ 0 otherwise.
A character α ∈ X(T ) is called good for (T, V ) if it is good for (T, V, λ) for all
λ 6= 0.

De�nition 2.4.2. Consider χ the highest weight of an irreducible representa-
tion W of G. Then χ is called good for (G,V ) if χ + µ is good for (T, V ) for
every µ which is a sum of distinct roots of G.

In our case G = SL2 and V = Vn1 ⊕ . . . ⊕ Vnp . Consider m the highest
weight of Vm (irreducible representation of SL2). Then, m is good for (SL2, V )
if m,m+ 2,m− 2 are good for (T, V ), because the roots of SL2 are 2 and -2.

Denote by N =
∑p
i=1b

ni+1
2 cd

ni+1
2 e the sum of nonnegative weights of V .

From De�nition 2.4.1, α is good for (T, V ) if α is good for (T, V, λ) for all λ 6= 0.
If λ is negative, then Iλ is the set of negative weights of V . If α < N , then the
coe�cients of the positive weights in α can't be ≥ 0 and the coe�cients of the
negative weights in α can't be < 0, hence α is good for (T, V, λ). If λ is positive,
then Iλ is the set of positive weights of V . If α > −N , then the coe�cients
of the positive weights in α can't be < 0 and the coe�cients of the negative
weights in α can't be ≥ 0, hence α is good for (T, V, λ).

In conclusion, m is good for (SL2, V ) if m < N − 2.

Theorem 2.4.2. ([VdB91, Thm. 1.2 applied to G = SL2] Let V a representa-
tion of SL2 of dimension > 2 which does not contain the trivial representation.
If m is good for (SL2, V ), i.e. if m < N − 2, then the O(V )SL2-module C(V )m
of covariants of V of order m is Cohen Macaulay.

For the case V = Vn we obtain:

Proposition 2.4.3. For n ≥ 2, the O(Vn)SL2-module C(Vn)m of covariants of
Vn of order m is Cohen-Macaulay if m < bn+1

2 cd
n+1

2 e − 2.
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Consider nowM = O(V )SL2 and d1, . . . , dp the degrees of a homogeneous system
of parameters of M . Then the Poincaré series of M can be written as

PM (t) =
∑s
i=1 t

ei∏p
j=1(1− tdj )

,

where the sequence e0 := 0, e1, . . . , es is a palindrome, i.e. ei + es−i = es for
all i and es ≤

∑p
j=1 dj − dim(V// SL2) ([Kno89, Satz 4]). The Poincaré series

of O(V )SL2 gives us some information about the degrees of the generators of
the invariants of V . In the examples considered in this thesis we will use the
following result:

Proposition 2.4.4. Let V be a SL2-module. Consider d1, . . . , dp the degrees
of a homogeneous system of parameters of O(V )SL2 and the Poincaré series of
O(V )SL2 given by

PO(V )SL2 (t) =
∑s
i=1 t

ei∏p
j=1(1− tdj )

.

Then the invariants of V are generated in degree ≤ max(es, d1, . . . , dp).

2.5 The Poincaré series

The Poincaré series of the algebra O(V )SL2 of invariants of V is de�ned as

P (t) =
∑
i

dimCO(V )SL2
i ti.

For the case V = Vn, a closed expression of P (t) as a rational function was given
by Springer [Spr77]:

P (t) =
∑

0≤j<n
2

(−1)jφn−2j

(
(1− t2)tj(j+1)

(j, t2)!(n− j, t2)!

)
(cf. [BC79]),

where for d ∈ N the notation (d, t)! stands for the polynomial function (d, t)! =
(1− t)(1− t2) . . . (1− td) and the operator φd transforms a rational function f
in t to a rational function φdf , with

(φdf)(td) =
1
d

d∑
j=1

f(e
2πij
d t).

Example 2.5.1. Consider n = 3. Then:

P (t) = φ3

(
1

(1− t4)(1− t6)

)
− φ1

(
t2

(1− t2)(1− t4)

)
=

=
1

(1− t2)2(1 + t2)
− t2

(1− t2)(1− t4)
=

1
1− t4

.
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Springer's formula was implemented by Brower & Cohen [BC79]. Littelman &
Procesi [LP90] also used this formula for the computation of Poincaré series of
binary forms of even degrees ≤ 36. The webpages [Bro09] list the results of the
Poincaré series computations for n ≤ 30.

While a closed form for the Poincaré series of Vn was found late in the
twentieth century, one has a formula for computing dimCO(Vn)SL2

i since the
nineteenth century. Cayley [Cay56] gave in 1856 an (unproved) formula for the
number of linear independent covariants of Vn of degree i and order j. This
formula was proved by Sylvester [Sy78a] in 1878. Formulated for the particular
case of invariants, this formula states:

dimCO(Vn)SL2
i =

{
( in2 : n, i)− (( in2 − 1) : n, i), if ni is even,

0, if ni is odd,

where (j : n, i) denotes the number of ways in which j can be written as the sum
of i integers that are ≥ 0 and ≤ n (see [Sy78a]). Equivalently, Springer [Spr77]
gave the formula:

dimCO(Vn)SL2
i =

{
γ(n+ i, i, ni2 )− γ(n+ i, i, ni2 − 1), if ni is even,

0, if ni is odd,

where γ(d, i, j) is the coe�cient of tj in (1−td−i+1)...(1−td)
(1−t)...(1−ti) when 0 < i ≤ d,

respectively 1 if i = j = 0, respectively 0 if i = 0 and j ≥ 1 or 0 < n < i (see
[Spr77, Thm. 3.3.4]). It follows then that

dimCO(Vn)SL2
i =

{
coe�cient of t

ni
2 in (1−tn+1)...(1−tn+i)

(1−t2)...(1−ti) , if ni is even,

0, if ni is odd.
(2.2)

Example 2.5.2. Let n = 8. We apply the formula 2.2: dimCO(V8)SL2
2 = 1

because the coe�cient of t8 in

(1− t9)(1− t10)
1− t2

= (1− t9)(t8 + t6 + t4 + t2 + 1)

is 1. Also, dimCO(V8)SL2
3 = 1 because the coe�cient of t12 in

(1− t9)(1− t10)(1− t11)
(1− t2)(1− t3)

= (1− t11)(t8 + t6 + t4 + t2 + 1)(t6 + t3 + 1)

is 1. In a similar way dimCO(V8)SL2
4 = 2, dimCO(V8)SL2

5 = 2, dimCO(V8)SL2
6 =

4, dimCO(V8)SL2
7 = 4, and the Poincaré series of the algebra of invariants of V8

is
P (t) = 1 + t2 + t3 + 2t4 + 2t5 + 4t6 + 4t7 + . . . ,

which can be written as well as

P (t) =
1 + t8 + t9 + t10 + t18

(1− t2)(1− t3)(1− t4)(1− t5)(1− t6)(1− t7)
([BC79,Results]).
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A closed expression of P (t) for the general case was given by Brion [Bri82].
Bedratyuk [Bed10] found formulas for the computation of Poincaré series of the
joint invariants and covariants of two binary forms. The webpages [Bro09] list
some Poincaré series computations due to Bedratyuk and Brouwer.

2.5.1 A result of Broer and Poincaré series

In the paper [Bro94] Bram Broer presented a new method for calculating Poincaré
series of the algebra of covariants of modules of covariants of G-modules, where
G is a reductive group. His method consists of writing down a solvable system
of linear equations between the Poincaré series of various modules of covariants,
and then use linear algebra to solve this system and compute the Poincaré series.

In this section we adapt Broer's method to the case G = SL2 and the SL2-
modules V = Vn1 ⊕ . . . ⊕ Vnp . Denote N =

∑p
i=1b

ni+1
2 cd

ni+1
2 e the sum of

nonnegative weights of V . With this method we compute the Poincaré series of
the O(V )SL2-module of covariants C(V )m with m ≤ N − 2.

Consider the standard maximal torus T ⊂ SL2. For each character µ ∈
X(T ), de�ne the Z[t]-linear operator B : Z[t, e, e−1]→ Z[t, e, e−1] by

B(eµ) =


eµ, if µ ≥ 0,
0, if µ = −1,
−e−µ−2, if µ ≤ −2.

([Bro94, §2])

Let S = {0, 1, . . . , N − 2}. Collect in S′ the weights of V that are ≤ 0, with
multiplicities. For λ, µ ∈ S we de�ne the matrix (αµλ)λ,µ∈S in the following way:

B(eµ
∏
i∈S′

(1− eit)) =:
∑
λ∈S

αµλe
λ([Bro94, §3]).

Theorem 2.5.1. ([Bro94, Thm, 4.1 with G = SL2 and V = Vn1 ⊕ . . .⊕ Vnp ])
With the notations above we have:

(1) the matrix (αµλ)λ,µ∈S is invertible as a matrix with coe�cients in Q(t);

(2) if P is the column vector (P0(t), . . . , PN−2(t)), where Pi(t) is the Poincaré
series of the O(V )SL2-module C(V )i, then

P = [(αµλ)λ,µ∈S ]−1


1
0
...
0

 .
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Example 2.5.3. Consider V = V4. We have N = 6, S′ = {−4,−2, 0}, and:

µ = 0 : B(e0(1− e−4t)(1− e−2t)(1− t)) = (1− t2)e0 − (t2 − t)e2 − (t2 − t3)e4;

µ = 1 : B(e1(1− e−4t)(1− e−2t)(1− t)) = (1− t2)e1 − (t2 − t3)e3;

µ = 2 : B(e2(1− e−4t)(1− e−2t)(1− t)) = (1− t− t2 + t3)e2;

µ = 3 : B(e3(1− e−4t)(1− e−2t)(1− t)) = (1− t)e3 + (−t+ t3)e1;

µ = 4 : B(e4(1− e−4t)(1− e−2t)(1− t)) = (1− t)e4 + (t2 − t)e2 + (−t+ t3)e0.

It follows that26666666666664

P0(t)

P1(t)

P2(t)

P3(t)

P4(t)

37777777777775
=

26666666666664

1− t2 0 −t2 + t 0 −t2 + t3

0 1− t2 0 −t2 + t3 0

0 0 (1− t)(1− t2) 0 0

0 −t+ t3 0 1− t 0

−t+ t3 0 t2 − t 0 1− t

37777777777775

−1 26666666666664

1

0

0

0

0

37777777777775
=

26666666666664

1
(1−t2)(1−t3)

0

0

0

t+t2

(1−t2)(1−t3)

37777777777775
Hence P0(t) = 1

(1−t2)(1−t3) and P4(t) = t+t2

(1−t2)(1−t3) .

Example 2.5.4. Consider V = V2 ⊕ V2. We have N = 4, S′ = {−2,−2, 0, 0},
and:

µ = 0 : B(e0(1− e−2t)2(1− t)2) = 1− 3t2 − e2t2 + 2t3 + 2e2t3 − e2t4;

µ = 1 : B(e1(1− e−2t)2(1− t)2) = e− 2et+ 2et3 − et4;

µ = 2 : B(e2(1− e−2t)2(1− t)2) = e2 − 2t− 2e2t+ 3t2 + e2t2 − t4.

It follows that2666664
P0(t)

P1(t)

P2(t)

3777775 =

2666664
1− 3t2 + 2t3 0 −t2 + 2t3 − t4

0 1− 2t+ 2t3 − t4 0

−2t+ 3t2 − t4 0 1− 2t+ t2

3777775
−1 2666664

1

0

0

3777775 =

2666664
1

(1−t2)3

0

t(t+2)

(1−t2)3

3777775
Hence P0(t) = 1

(1−t2)3 and P2(t) = t(t+2)
(1−t2)3 .

2.6 The quotient variety and nullforms

We de�ne V// SL2 the a�ne variety corresponding to the ring of invariants
O(V )SL2 . We have

dim(Vn//SL2) =


0, if n ≤ 1,
1, if n = 2, [Bri96,Chap. 3]
n− 2, if n ≥ 3.
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One de�nes the nullcone N (V ) of V as the �bre π−1(π(0)) of the quotient map
π : V → V// SL2, dual to the inclusion O(V )SL2 → O(V ) or, equivalently, as
the set of elements of V on which all invariants of V of positive degree vanish.

One can show that N (Vn) coincides with the set of binary forms of degree
n with a root of multiplicity > n

2 ([Bri96, Chap. 3]).
In a similar way, the nullcone N (Vn1 ⊕ . . .⊕ Vnp) is the set of binary forms

f1, . . . , fp of degrees n1, . . . , np with a common root that has multiplicity > ni
2

in fi for all i = 1, . . . , p.
If the equations of the nullcone N (Vn) are known, one can �nd the equations

of the nullcone N (mVn) of m copies of Vn using polarizations. Consider an
element j in the algebra O(Vn) of polynomial functions on Vn. For m ≥ 1,
f1, . . . , fm ∈ Vn and arbitrary parameters t1, . . . , tm we write

j(t1f1 + t2f2 + . . .+ tmfm) =
∑

Pi1,...,imj(f1, . . . , fm) · ti11 t
i2
2 . . . timm .

The regular functions Pi1,...,imj de�ned on mVn are called polarizations of j.

Example 2.6.1. Consider f ∈ V4 and the invariant j(f) = (f, f)4 of V4. The
polarizations of j de�ned on two copies of V4 are (f1, f1)4, (f1, f2)4 and (f2, f2)4,
where f1, f2 ∈ V4.

Theorem 2.6.1. [KW10, Theorem 4] Consider the set Vn of binary forms of
degree n > 1. Assume that the invariants j1, . . . , jp of Vn de�ne the nullcone
N (Vn), i.e. N (Vn) = V(j1, . . . , jp). Then the polarizations of the fi's for any
number m of copies of Vn de�ne the nullcone N (mVn) of mVn.

2.7 Finding a hsop

Finding a homogeneous systems of parameters (hsop) of O(V )SL2 or at least the
degrees of such a system is the �rst step in �nding the generators of the algebra
of invariants of V , as we will see in Chap. 3.1. Recall that a system of parameters
of O(V )SL2 is a set of algebraically independent elements P1, . . . , Pm ∈ O(V )SL2

such that O(V )SL2 is integral over C[P1, . . . , Pm], and m = dim(V// SL2).
One �nds a hsop of the algebra of invariants of V by �nding a set of invariants

of the right size, that de�nes the nullcone of V (Hilbert's criterion 2.7.1).
One �nds the degrees of a hsop of the algebra of invariants of V using

Dixmier's criterion 2.7.5.

2.7.1 Hilbert's criterion

The following result, due to Hilbert [Hil93], gives a characterisation of homoge-
neous systems of parameters of O(V )SL2 as sets that de�ne the nullcone of V
(V(J) stands for the vanishing locus of the ideal J):

Proposition 2.7.1. (Hilbert [Hil93]) Let V be a rational �nite-dimensional
SL2-module, I = O(V )SL2 , andm = dim(V// SL2). Consider a set {P1, . . . , Pm}
of homogeneous elements of I. The following are equivalent:
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(1) {P1, . . . , Pm} is a system of parameters of I,

(2) V(P1, . . . , Pm) = N (V ).

Example 2.7.1. Consider f ∈ V4. Denote j2 = (f, f)4 and j3 = (f, (f, f)2)4.
One can prove that if j2 = j3 = 0, then f has a root of multiplicity at least 3
(see Proposition 2.7.2). It follows that V(j2, j3) ⊂ N (V4). On the other hand,
both j2 and j3 vanish on forms of degree 4 with a root of multiplicity at least
3, hence V(j2, j3) = N (V4). From Proposition 2.7.1 it follows that {j2, j3} is a
hsop of the algebra of invariants of V4.

The following results will be used for �nding sets of invariants that de�ne
the nullcone of V :

Proposition 2.7.2. (Weyman [Wey93]) Let f ∈ Vn. If n > 4k − 4 and all
(f, f)2k, (f, f)2k+2, ... vanish, then f has a root of multiplicity at least n−k+1.
If n = 4k− 4, and ((f, f)2k−2, f)n, (f, f)2k, (f, f)2k+2, ... vanish, then f has a
root of multiplicity at least n− k + 1.

Example 2.7.2. Consider f ∈ V6. We apply Proposition 2.7.2.
If (f, f)2, (f, f)4, and (f, f)6 vanish, then f has a root of multiplicity 6.
If (f, f)4 and (f, f)6 vanish, then f has a root of multiplicity at least 5.

Lemma 2.7.3. Let f ∈ V2n+1, n ≥ 1. Denote c1 = (f, f)2n and c2 = (f, c1)2.
If c1 6= 0 and (c1, c2) ∈ N (V2⊕V2n−1), then f has a root of multiplicity at least
n+ 1, hence f is a nullform.

Proof. Let f = a0x
2n+1 + (2n+ 1)a1x

2ny + . . .+ a2n+1y
2n+1.

If (c1, c2) ∈ N (V2 ⊕ V2n−1), then c1 and c2 have a common root that has
multiplicity 2 in c1, and multiplicity n in c2. Without loss of generality we can
suppose c1 = x2. Then:

c2 = (f, x2)2 = b0a2x
2n−1 + b1a3x

2n−2y + . . .+ b2n−1a2n+1y
2n−1,

where bi are non-zero coe�cients. Because c2 is divisible by xn, we get an+2 =
an+3 = . . . = a2n+1 = 0. If we substitute these in (f, f)2n, then the coe�cient of
y2 becomes (−1)n

(
2n
n

)
a2
n+1. This coe�cient must vanish, because we assumed

c1 = x2. Therefore we get an+1 = 0, which implies xn+1|f .

Example 2.7.3. Consider f ∈ V5. Denote c1 = (f, f)4, c2 = (f, c1)2, and
suppose c1 6= 0. We apply Lemma 2.7.3: if (c1, c2) ∈ N (V2 ⊕ V3), then f has a
root of multiplicity at least 3.

Lemma 2.7.4. Let f ∈ V2n, n ≥ 2. Denote j2 = (f, f)2n, c1 = (f, f)2n−2, and
c2 = (f, c1)4. If c1 6= 0, j2 = 0, and (c1, c2) ∈ N (V4 ⊕ V2n−4), then f has a root
of multiplicity at least n+ 1, hence f is a nullform.

Proof. Let f = a0x
2n + 2na1x

2n−1y + . . .+ 2na2n−1xy
2n−1 + a2ny

2n.
If (c1, c2) ∈ N (V4 ⊕ V2n−4), then c1 and c2 have a common root that has
multiplicity 3 in c1, and multiplicity n− 1 in c2. Without loss of generality we
consider the following two cases:
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Case 1: c1 = x4. Then c2 becomes:

c2 = (f, x4)4 = b0a4x
2n−4 + b1a5x

2n−5y + . . .+ b2n−4a2ny
2n−4,

where bi are non-zero coe�cients. Because we assumed c2 divisible by xn−1, we
get an+2 = an+3 = . . . = a2n = 0. If we substitute these in (f, f)2n−2, then
the coe�cient of y4 becomes (−1)n−1

(
2n−2
n−1

)
a2
n+1. Because we assumed c1 = x4,

this coe�cient must vanish, and hence an+1 = 0. But then, the coe�cient of
x2y2 in (f, f)2n−2 becomes (−2)n

(
2n−2
n−1

)
n+1
n a2

n. Because of our assumption, this
coe�cient must again vanish, hence an = 0. It follows then that xn+1|f .

Case 2: c1 = x3y. Then c2 becomes:

c2 = (f, x3y)4 = b0a3x
2n−4 + b1a5x

2n−5y + . . .+ b2n−4a2n−1y
2n−4,

where bi are non-zero rational numbers depending on n. Because we assumed
c2 divisible by xn−1, we get an+1 = an+2 = . . . = a2n−1 = 0. From our
assumptions, the invariant j2 and the coe�cient of x2y2 in (f, f)2n−2 are both
equal to zero, which gives us the system:{

(−1)n
(
2n
n

)
a2
n + 2a0a2n = 0,

2(−1)n−1
(
2n−2
n−1

)
n+1
n a2

n + 2a0a2n = 0.

The matrix of this system has the determinant equal to 12(−1)n
(
2n−2
n−1

)
, which

is non-zero for all n ≥ 1. We obtain, in consequence, an = 0. But then the
coe�cient of x3y in (f, f)2n−2 will also vanish, which contradicts our assumption
c1 = x3y.

Example 2.7.4. Consider f ∈ V6. Denote c1 = (f, f)4, c2 = (f, c1)4, and
suppose c1 6= 0. We apply Lemma 2.7.4: if (f, f)6 = 0 and if (c1, c2) ∈ N (V4 ⊕
V2), then f has a root of multiplicity 4.

2.7.2 Dixmier's criterion

In some cases it is enough to have the degrees of a system of parameters in order
to �nd the generating invariants. The following result, due to Dixmier [Dix85],
can be used for �nding the degrees of a hsop of I:

Proposition 2.7.5. (Dixmier [Dix85]) Let G be a reductive group over C, with
a rational representation in a vector space V of �nite dimension over C. Let
O(V ) be the algebra of complex polynomials on V , I := O(V )G the subalgebra
of G-invariants, and Id the subset of homogeneous polynomials of degree d in I.
Let m = dim(V//G). Let (d1, . . . , dm) be a sequence of positive integers. As-
sume that for each subsequence (j1, . . . , jp) of (d1, . . . , dm), the subset of points
of V//G, where all elements of all Ij, with j ∈ {j1, . . . , jp}, vanish, has codi-
mension at least p in V//G. Then I has a system of parameters of degrees
d1, . . . , dm.
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When applying this criterion it is convenient to have a notation for `the
codimension of the subset of V//G de�ned by the vanishing of all invariants
with degree in {j1, . . . , jp}'. We use [j1, . . . , jp].

Note that for e ≥ 1 an invariant ge vanishes if and only if g vanishes. It
follows that if jh|ji, h 6= i, then [j1, . . . , jp] = [j1, . . . , jh−1, jh+1, . . . , jp].

2.8 Schur modules

Consider an n-dimensional vector space W . In this paragraph we are looking
at the m-fold tensor product W⊗d, on which the general linear group GL(W )
and the symmetric group Sd are acting via:

g(w1 ⊗ . . .⊗ wd) := gw1 ⊗ . . .⊗ gwd, where g ∈ GL(W ),
σ(w1 ⊗ . . .⊗ wd) := wσ−1(1) ⊗ . . .⊗ wσ−1(d), where σ ∈ Sd,

extended linearly to the entire tensor product. There is a correspondence be-
tween the irreducible representations of GL(W ) and the irreducible representa-
tions of Sd, which was discovered by Schur. We �rst introduce the exterior and
symmetric powers of W .

Exterior powers ([FH04, Appendix B.2]). The exterior power
∧d

W of
the vector space W is the quotient space of W⊗d by the subspace spanned by
all w1 ⊗ . . . ⊗ wd − (−1)sgnσwσ(1) ⊗ . . . ⊗ wσ(d) with σ ∈ Sd. We denote the

coset of w1 ⊗ . . . ⊗ wd by w1 ∧ . . . ∧ wd. De�ne
∧0

W to be the ground �eld.
If {bi}i=1,n is a basis for W , then {bi1 ∧ . . . ∧ bid | i1 < . . . < id} is a basis for∧d

W .

Symmetric powers ([FH04, Appendix B.2]). The symmetric power SdW
of the vector space W is the quotient space of W⊗d by the subspace spanned
by all w1 ⊗ . . .⊗ wd − wσ(1) ⊗ . . .⊗ wσ(d) with σ ∈ Sd. We denote the coset of
w1⊗ . . .⊗wd by w1 · . . . ·wd. De�ne S0W to be the ground �eld. If {bi}i=1,n is

a basis for W , then {bi11 · . . . · binn | i1 + . . .+ in = d} is a basis for SdW , hence
we can see this space as the space of homogeneous polynomials of degree d in
the variables bi.

Schur modules ([FH04, Chap. 6]). Consider an integer d ≥ 1. We call λ =
(λ1, . . . , λk) a partition of d if λ1 ≥ . . . λk ≥ 1 and d = λ1+. . .+λk. The number
of irreducible representations of Sd coincides with the number of partitions of d
([FH04, Chap. 4]). One can associate to each partition λ = (λ1, . . . , λk) of d a
diagram of type

λ1

λ2

λ3

λ4
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with λi boxes in the i-th row. For example, the diagram above corresponds to
the partition (4, 3, 2, 1) of 10. These kind of diagrams are called Young diagrams.
The number of rows in the Young diagram of the partition λ of d is called the
height of λ and denoted |λ|.

By numbering the boxes in a Young diagram by the integers 1, 2, . . . , d, we
obtain a tableau of shape the given Young diagram. For example, with the Young
diagram above we get

1 2 3 4
5 6 7
8 9
10

Given a partition λ of d and a tableau of the Young diagram associated to λ,
one can de�ne the following two subgroups of Sd:

Pλ = {σ ∈ Sd | σ preserves each row}
Qλ = {σ ∈ Sd | σ preserves each column}

Each σ ∈ Sd is associated to basis element eσ in the group algebra of Sd (the
structure of algebra is given by eσ1 · eσ2 = eσ1σ2). De�ne

cλ = (
∑
σ∈Pλ

eσ) · (
∑
σ∈Qλ

sgn(σ)eσ), and SλW = Im(cλ|W⊗d).

The subspaces SλW of W⊗d obtained in this way are called Schur modules.

Example 2.8.1. If λ = (2, 1) is a partition of 3, the tableau associated to it is

1 2
3

We have cλ = (e1 + e(12)) · (e1 − e(13)) = e1 + e(12) − e(13) − e(312) and SλW is
the subspace of W⊗3 spanned by all

w1 ⊗ w2 ⊗ w3 + w2 ⊗ w1 ⊗ w3 − w3 ⊗ w2 ⊗ w1 − w3 ⊗ w1 ⊗ w2.

If λ = (d), then SλW is the subspace of W⊗d spanned by
∑
σ∈Sd wσ(1) ⊗ . . .⊗

wσ(d), hence SλW ∼= SdW .
If λ = (1, . . . , 1) with |λ| = d, then SλW is the subspace of W⊗d spanned by all∑
σ∈Sd sgn(σ)wσ(1) ⊗ . . .⊗ wσ(d), hence SλW ∼=

∧d
W .

Theorem 2.8.1. ([Pro07, Chap. 8.1]) Consider a �nite-dimensional complex
vector space W with dimW = n. Then:

(1) The list of irreducible representations of GL(W ) is

SλW ⊗ (
∧n

W )⊗k, |λ| ≤ n− 1, k ∈ Z.
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(2) The list of irreducible representations of SL(W ) is

SλW, |λ| ≤ n− 1.

Theorem 2.8.2. ([FH04, Chap. 6]) Consider a �nite-dimensional complex
vector space W with dimW = n. Then:

(1) SλW is zero if the partition λ is of the form (λ1, . . . , λd), with d > n.
Otherwise

dimSλW =
∏

1≤i<j≤n

λi − λj + j − i
j − i

. (2.3)

In particular, dimSdW =
(
n+d−1

d

)
and dim

∧d
W =

(
n
d

)
.

(2) Ifmλ is the dimension of the irreducible representation of Sd corresponding
to λ, then

W⊗d '
⊕
λ

mλSλW.

Example 2.8.2. We have the following decompositions:

W ⊗W = S2W ⊕
∧2

W, W ⊗W ⊗W = S3W ⊕ 2S(2,1)W ⊕
∧3

W,

(see [FH04, Chap. 6]). With the formula 2.3, dimS3W =
(
n+2

3

)
, dimS(2,1)W =

2
(
n+1

3

)
, and dim

∧3
W =

(
n
3

)
.

Theorem 2.8.3. ([FH04, Chap. 6]) Consider two �nite-dimensional complex
vector spaces W1 and W2. Then,

Sd(W1 ⊕W2) =
⊕
a+b=d

(SaW1 ⊗ SbW2);

∧d
(W1 ⊕W2) =

⊕
a+b=d

(
∧a

W1 ⊗
∧b

W2);

Sd(W1 ⊗W2) =
⊕
|λ|=d

SλW1 ⊗ SλW2;

∧d
(W1 ⊗W2) =

⊕
|λ|=d

SλW1 ⊗ Sλ′W2,

where λ′ is the conjugate partition of λ, obtained by interchanging rows and
columns in the Young diagram corresponding to λ.

Example 2.8.3. If W1 and W2 are two �nite-dimensional vector spaces,

S2(W1 ⊕W2) =S2W2 ⊕ (W1 ⊗W2)⊕ S2W1;∧2
(W1 ⊕W2) =

∧2
W2 ⊕ (W1 ⊗W2)⊕

∧2
W1;

S2(W1 ⊗W2) = (S2W1 ⊗ S2W2)⊕ (
∧2

W1 ⊗
∧2

W2);∧2
(W1 ⊗W2) = (S2W1 ⊗

∧2
W2)⊕ (

∧2
W1 ⊗ S2W2).
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Remark 2.8.4. Consider the vector space Vn of binary forms of degree n. Then
we identify Vn with SnW ∗, where W = C2. The modules SdVn = Sd(SnW ∗)
and

∧d
Vn =

∧d(SnW ∗) decompose into irreducible representations of SL2. For
example,

S4V6 = 2V0 + 2V4 + V6 + 3V8 + V10 + 3V12 + V14 + 2V16 + V18 + V20 + V24,∧4
V6 = V0 + V4 + V6 + V8 + V12.

(We computed these decompositions using the program LiE [LCL92].)

Proposition 2.8.5. [Pro07, Chap. 15] The space of covariants of Vn of degree
d and order e is the sum of all irreducible representations of SdV ∗n of type Ve.
In particular, the dimension of the vector space of covariants of degree d and
order e of Vn equals the multiplicity with which Ve appears in the decomposition
of SdV ∗n .

Example 2.8.4. Consider f ∈ V3. We have:

S1(V3) = V3, S2(V3) = V2 + V6,

S3(V3) = V3 + V5 + V9, S4(V3) = V0 + V4 + V6 + V8 + V12.

(We computed these decompositions using the program LiE [LCL92].)
In other words, the vector space of covariants of V3 of degree 1 and order 3

has dimension 1 (spanned by f itself), the vector space of covariants of V3 of
degree 2 and order 2 has dimension 1 (spanned by (f, f)2), the vector space of
invariants of V3 of degree 2 has dimension 1 (spanned by ((f, f)2, (f, f)2)2), etc.

2.9 The type of the generating covariants

Denote by nVm the direct sum
⊕n

i=1 Vm of m copies of Vn. The space nVm can
be identi�ed with the GLn×SL2 module Cn∗ ⊗ Vm.

The covariants of nVm are coupled with GLn-subspaces of

O(Cn∗ ⊗ Vm) =
⊕
d

Sd(Cn∗ ⊗ Vm) =
⊕
d

⊕
|λ|=d

Sλ(Cn∗)⊗ Sλ(Vm)

Example 2.9.1. The generating covariants of nV1 are the linear forms them-
selves li ∈ V1, with 1 ≤ i ≤ n, and the invariants (li, lj)1, with 1 ≤ i < j ≤ n.
O(Cn∗ ⊗ V1) decomposes in the following way:

O(Cn∗ ⊗ V1)1 = Cn∗ ⊗ V1,

O(Cn∗ ⊗ V1)2 =S2Cn∗ ⊗ S2V1 ⊕
∧2

Cn∗ ⊗
∧2

V1 =

=S2Cn∗ ⊗ V2 ⊕
∧2

Cn∗ ⊗ V0.

(We used the program LiE [LCL92] to decompose SdV1 and
∧d
V1.)
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The generating covariants of nV1 of degree 1 and order 1 are of type Cn∗⊗V1,
and the vector space of covariants of nV1 of degree 1 and order 1 has dimension
n = dim Cn∗.

The generating invariants of nV1 of degree 2 are of type
∧2Cn∗⊗V0, and the

vector space of invariants of nV1 of degree 2 has dimension
(
n
2

)
= dim

∧2Cn∗.



Chapter 3

Computational methods

3.1 The method

In this chapter we describe the computational approach to �nding the generating
invariants of SL2-modules V := Vn1 ⊕ . . .⊕ Vnp , with ni ≥ 1 and p ≥ 1. Denote
I := O(V )SL2 and by Ii the vector space of invariants of V of degree i. We
start by giving a short description of our approach, followed in the second part
of this chapter by examples and computational details.

The strategy used for �nding the generating invariants of V combines math-
ematical results proved in the last two centuries. We start by determining an
upper bound on the degree of the generating invariants of V : we �nd the de-
grees d1, . . . , dp of a homogeneous system of parameters of I and we compute
the Poincaré series of I; then by Proposition 2.4.4 we obtain an upper bound on
the degree of the generating invariants of V . Once we have this bound, called b,
we construct a set of generators of I in the following way: we start with i = 2;
if dimC Ii 6= 0, then we look �rst at the set of invariants of degree i generated
by invariants in smaller degrees, to see what part of Ii is known. If the known
invariants don't span yet this vector space, we construct further invariants of
degree i, until we have a set of invariants spanning Ii. Then, we increase i by
1 and repeat the procedure. We stop when i is greater than the upper bound b
on the degree of the generating invariants.

As a remark, the hard part of the computational work involved in �nding
the generating invariants of V consists of �nding a homogeneous system of
parameters for the algebra of invariants I or the degrees of such a system (which
gives us an upper bound b on the degree of the generators) and of investigating
the existence of generators up to degree b. For example the generating invariants
of V9 have degrees ≤ 22, while the upper bound on the degree of the generating
invariants is 66 (see Chap. 4.8). This means that we had to prove that no
generators occured in degrees > 22 and ≤ 66, which required computing a
basis of vector spaces of dimension at most dimO(V9)SL2

66 = 99074. The entire
computation was done in less than one month (see [BP10a]).

39
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3.2 The computation of invariants and covariants

The main tool for computing invariants and covariants of binary forms are the
transvectants. We implemented the formula 2.1 (Chap. 2.1), computing the
p-th transvectant of two binary forms (in Mathematica [Wol10], see Chap. A.1
for details about implementation).

Example 3.2.1. For f = a0x
4 + 4a1x

3y + . . . a4y
4 ∈ V4, we compute (f, f)4,

(f, f)2, and (f, (f, f)2)4 (with Mathematica [Wol10]):

In[]:=ff=Table[a[4-i]Binomial[4,i],{i,0,4}]

Out[]={a[4],4a[3],6a[2],4a[1],a[0]}

//this corresponds to the binary form

x^4a[0]+4x^3ya[1]+6x^2y^2a[2]+4xy^3a[3]+y^4a[4]

In[]:=Transvectant[ff,ff,4]

Out[]={6a[2]^2-8a[1]a[3]+2a[0]a[4]}

In[]:=Transvectant[ff,ff,2]

Out[]={-2a[3]^2+2a[2]a[4],-4a[2]a[3]+4a[1]a[4],-6a[2]^2+4a[1]a[3]+2a[0]a[4],

-4a[1]a[2]+4a[0]a[3],-2a[1]^2+2a[0]a[2]}

Hence:

(f, f)2 = 6a2
2 − 8a1a3 + 2a0a4,

(f, (f, f)2)4 = 2x4(a0a2 − a2
1) + 4x3y(a0a3 − a1a2) + 2x2y2(2a1a3 + a0a4−

− 3a2
2) + 4xy3(a1a4 − a2a3) + 2y4(a2a4 − a2

3).

3.3 The computation of the Poincaré series

We implemented an algorithm computing the Poincaré series of modules of
covariants of V = Vn1 ⊕ . . .⊕Vnp , based on a result of Broer [Bro94] (see Chap.
2.5.1). The function poincare[{n_1,...n_p}] returns a closed expression as a
rational function for the Poincaré series of the O(V )SL2 -module of covariants
C(V )m, with m ≤

∏p
i=1b

ni+1
2 cd

ni+1
2 e − 2 (in Mathematica [Wol10], see Chap.

A.1 for details about implementation).

Example 3.3.1. We compute the Poincaré series of

O(V2)SL2 ,O(V3)SL2 ,O(V4)SL2 ,O(V2 ⊕ V2)SL2 ,O(V1 ⊕ V3)SL2 :

(with Mathematica [Wol10])

In[]:= poincare[{2}]

Out[]= {1/(1 - t^2)}

In[]:= poincare[{3}]

Out[]= {1/(1 - t^4), 0, t^2/(1 - t^4)}

In[]:= poincare[{4}]

Out[]= {1/(1 - t^2 - t^3 + t^5), 0, 0, 0, t/((-1 + t)^2 (1 + t + t^2))}

In[]:= poincare[{2, 2}]

Out[]= {-1/(-1 + t^2)^3, 0, -t(2 + t)/(-1 + t^2)^3}

In[]:= poincare[{1, 3}]

Out[]= {(-1 + t^2 - t^4)/((-1 + t^2)^3 (1 + t^2)^2),-t/((-1 + t^2)^3 (1 + t^2)),

-3t^2/((-1 + t^2)^3 (1 + t^2)^2),t(-1 - 2 t^2 + t^4)/((-1 + t^2)^3 (1 + t^2))}
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Hence:

PO(V2)SL2 (t) =
1

1− t2
,

PO(V3)SL2 (t) =
1

1− t4
,

P C(V3)2(t) =
t2

1− t4
,

PO(V4)SL2 (t) =
1

(1− t2)(1− t3)
,

P C(V4)4(t) =
t+ t2

(1− t2)(1− t3)
,

PO(V2⊕V2)SL2 (t) =
1

(1− t2)3
,

PO(V1⊕V3)SL2 (t) =
1− t2 + t4

(1− t2)3(1 + t2)2
=

1 + t6

(1− t4)3
.

The computation of dimCO(V )SL2
i . These dimensions can be computed

directly from the Poincaré series of V : the coe�cient of ti in the Poincaré series
of V equals dimCO(V )SL2

i .

Example 3.3.2. The Poincaré series of the algebra of invariants of V8 is

PO(V8)SL2 (t) =
1 + t8 + t9 + t10 + t18

(1− t2)(1− t3)(1− t4)(1− t5)(1− t6)(1− t7)
.

Then we have (with Mathematica [Wol10]):

In[]:=sp=poincare[{8}][[1]];

In[]:=Series[sp,{t,0,22}]

Out[]=1+t^2+t^3+2t^4+2t^5+4t^6+4t^7+7t^8+8t^9+12t^10+13t^11+20t^12+22t^13+31t^14+

36t^15+47t^16+54t^17+71t^18+80t^19+102t^20+117t^21+144t^22+O[t]^23

Hence

PO(V8)SL2 (t) = 1 + t2 + t3 + 2t4 + 2t5 + 4t6 + 4t7 + 7t8 + . . .

and

dimCO(V8)SL2
2 = 1, dimCO(V8)SL2

3 = 1,

dimCO(V8)SL2
4 = 2, dimCO(V8)SL2

5 = 2,

dimCO(V8)SL2
6 = 4, . . .

Another way of computing dimCO(Vn)SL2
i is using the formula 2.2 (Chap. 2.5).

The function CoefficientPoincare[k_,r_] returns the dimension dimCO(Vr)SL2
k

of the vector space of invariants of Vr of degree k (in Mathematica [Wol10], see
Chap. A.1 for details about implementation).
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Example 3.3.3. Consider n = 8. Then we have (with Mathematica [Wol10]):

In[]:= CoefficientPoincare[8, 4]

Out[]= 2

In[]:= CoefficientPoincare[8, 5]

Out[]= 2

In[]:= CoefficientPoincare[8, 6]

Out[]= 6

Hence

dimCO(V8)SL2
4 = 2, dimCO(V8)SL2

5 = 2,

dimCO(V8)SL2
6 = 4, . . .

Alternatively, dimCO(V )SL2
i equals the multiplicity of V0 in the decomposi-

tion of the i-th symmetric power Si(Vn) as an SL2-module (see Proposition
2.8.5). This decomposition can be computed using LiE [LCL92] or Mathematica
[Wol10].

Example 3.3.4. We have dimCO(V8)SL2
6 = 4 because the multiplicity of V0 in

the decomposition of S6(V8) is 4.
With LiE [LCL92]:

>sym_tensor(6,[8],A1)

4X[0]+1X[2]+7X[4]+5X[6]+11X[8]+7X[10]+13X[12]+9X[14]+13X[16]+10X[18]+12X[20]+

8X[22]+11X[24]+7X[26]+8X[28]+5X[30]+6X[32]+3X[34]+4X[36]+2X[38]+2X[40]+1X[42]+

1X[44]+1X[48]

With Mathematica [Wol10]:

In[]:=SymTensor[8,6]

Out[]=4v[0]+v[2]+7v[4]+5v[6]+11v[8]+7v[10]+13v[12]+9v[14]+13v[16]+10v[18]+

12v[20]+8v[22]+11v[24]+7v[26]+8v[28]+5v[30]+6v[32]+3v[34]+4v[36]+2v[38]+2v[40]+

v[42]+v[44]+v[48]

3.4 Linearly independent invariants

One situation that will often occur is the following: given a set listinv of
invariants of V of degrees listdeg and i ∈ N, decide whether listinv spans the
vector space Ii of invariants of V of degree i. We check this in the following
way.

The �rst step is to write down all invariants of degree i spanned by the
elements of listinv. Then we evaluate these invariants at dimC Ii random points
in V , and calculate the rank of the resulting matrix. If the rank coincides with
dimC Ii, then listinv spans Ii.

For the case V = Vn we implemented the function Dim[n,i,listinv,listdeg],
which does the following:

• computes and returns dimC Ii;

• computes the set M of all monomials of degree i spanned by the elements
of listinv of degree < i; returns the size of M ;
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• evaluates all the elements of M at dimC Ii random points in V ; returns
the rank of the resulting matrix (because the rank computations are made
modulo a prime, we obtain a lower bound on the dimension of the subspace
of Ii spanned by the elements of M);

• if listinv contains invariants of degree i, these invariants are added to
M ; then, all the elements of the new M are evaluated at dimC Ii random
points in V ; returns the rank of the resulting matrix (because the rank
computations are made modulo a prime, we obtain a lower bound on the
dimension of the subspace of Ii spanned by the elements of listinv).

Example 3.4.1. Let f ∈ V8. Consider the invariants

j2 = (f, f)8, j3 = (f, (f, f)4)8,
j4 = ((f, f)6, (f, f)6)4, j6 = (((f, f)6, (f, f)6)2, (f, f)6)4,

and listinv= {j2, j3, j4}. Then the invariants of degree 6 spanned by listinv

are {j32 , j2j4, j23}. After evaluating {j32 , j2j4, j23 , j6} at 4 random points in V8, we
obtain a matrix of rank ≥ 4. On the other hand we know that 4 = dimO(V8)SL2

6 ,
from the Poincaré series of O(V8)SL2 , hence it follows that {j2, j3, j4, j6} span
the vector space of invariants of V8 of degree 6 (with Mathematica [Wol10]):

In[]:=ff=Table[Binomial[8,i]*a[8-i],{i,0,8}]

Out[]={a[8],8a[7],28a[6],56a[5],70a[4],56a[3],28a[2],8a[1],a[0]}

In[]:=j2=Transvectant[ff,ff,8].{1};

In[]:=j3=Transvectant[ff,Transvectant[ff,ff,4],8].{1};

In[]:=j4=Transvectant[Transvectant[ff,ff,6],Transvectant[ff,ff,6],4].{1};

In[]:=cc1=Transvectant[ff,ff,6];cc2=Transvectant[ff,cc1,4];

In[]:=j6=Transvectant[cc1,Transvectant[cc1,cc1,2],4].{1};

In[]:=Dim[8,6,{j2,j3,j4,j6},{{2,1},{3,1},{4,1},{6,1}}]

Out[]=

<<The dimension of O(V_8)^SL2_6 is 4

<<There are 3 invariants of degree 6 spanned by the input invariants

of degrees <6

<<The subspace of O(V_8)^SL2_6 spanned by the input invariants of

degrees <6 has dimension >=3

<<The subspace of O(V_8)^SL2_6 spanned by the input invariants of

degrees <=6 has dimension >=4

3.5 The example of the binary octavic

In this chapter we illustrate our computational methods by �nding a set of
generating invariants of the binary octavic. First we look for an upper bound
on the degree of the generating invariants of the binary octavic. The algebra of
invariants of V8 has a homogeneous system of parameters of degrees 2, 3, 4, 5, 6, 7
(see Proposition 4.7.1).
We compute the Poincaré series of this algebra (in Mathematica [Wol10]):

In[]:=sp=poincare[{8}][[1]];

In[]:=Simplify[sp*(1-t^2)(1-t^3)(1-t^4)(1-t^5)(1-t^6)(1-t^7)]

Out[]=1+t^8+t^9+t^10+t^18
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In[]:=Series[sp,{t,0,22}]

Out[]=1+t^2+t^3+2t^4+2t^5+4t^6+4t^7+7t^8+8t^9+12t^10+13t^11+20t^12+22t^13+31t^14+

36t^15+47t^16+54t^17+71t^18+80t^19+102t^20+117t^21+144t^22+O[t]^23

Hence the Poincaré series can be written as:

P (t) =
1 + t8 + t9 + t10 + t18

(1− t2)(1− t3)(1− t4)(1− t5)(1− t6)(1− t7)
and

P (t) = 1 + t2 + t3 + 2t4 + 2t5 + 4t6 + 4t7 + 7t8 + 8t9 + 12t10 + . . .+ 71t18 + . . .

The highest degree in which we have to look for generators is 18. We start with
degree 2 and take j2 = (f, f)8, which spans the vector space of invariants of
degree 2:

In[]:=ff=Table[Binomial[8,i]*a[8-i],{i,0,8}]

Out[]={a[8],8a[7],28a[6],56a[5],70a[4],56a[3],28a[2],8a[1],a[0]}

In[]:=j2=Transvectant[ff,ff,8].{1};

In[]:=Dim[8,2,{j2},{{2,1}}]

Out[]=

<<The dimension of O(V_8)^SL2_2 is 1

<<There are 0 invariants of degree 2 spanned by the input invariants

of degrees <2

<<The subspace of O(V_8)^SL2_2 spanned by the input invariants of

degrees <2 has dimension >=0

<<The subspace of O(V_8)^SL2_2 spanned by the input invariants of

degrees <=2 has dimension >=1

In degree 3 we take j3 = (f, (f, f)4)8, which spans the vector space of invariants
of degree 3:

In[]:=j3=Transvectant[ff,Transvectant[ff,ff,4],8].{1};

In[]:=Dim[8,3,{j2,j3},{{2,1},{3,1}}]

Out[]=

<<The dimension of O(V_8)^SL2_3 is 1

<<There are 0 invariants of degree 3 spanned by the input invariants

of degrees <3

<<The subspace of O(V_8)^SL2_3 spanned by the input invariants of

degrees <3 has dimension >=0

<<The subspace of O(V_8)^SL2_3 spanned by the input invariants of

degrees <=3 has dimension >=1

In degree 4 we take j4 = ((f, f)6, (f, f)6)4. We evaluate {j4, j22} at 2 =
dimCO(V8)SL2

4 random points in V8 and obtain a matrix of rank 2. It follows
that the vector space of invariants of degree 4 is spanned by {j2, j4}:
In[]:=j4=Transvectant[Transvectant[ff,ff,6],Transvectant[ff,ff,6],4].{1};

In[]:=Dim[8,4,{j2,j3,j4},{{2,1},{3,1},{4,1}}]

Out[]=

<<The dimension of O(V_8)^SL2_4 is 2

<<There are 1 invariants of degree 4 spanned by the input invariants

of degrees <4

<<The subspace of O(V_8)^SL2_4 spanned by the input invariants of

degrees <4 has dimension >=1

<<The subspace of O(V_8)^SL2_4 spanned by the input invariants of

degrees <=4 has dimension >=2
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Denote c1 = (f, f)6 and c2 = (f, c1)4.
In degree 5 we take j5 = (c1, c2)4. We evaluate {j5, j2j3} at 2 = dimCO(V8)SL2

5

random points in V8 and obtain a matrix of rank 2. It follows that the vector
space of invariants of degree 5 is spanned by {j2, j3, j5}:

In[]:=cc1=Transvectant[ff,ff,6];cc2=Transvectant[ff,cc1,4];

In[]:=j5=Transvectant[cc1,cc2,4].{1};

In[]:=Dim[8,5,{j2,j3,j4,j5},{{2,1},{3,1},{4,1},{5,1}}]

Out[]=

<<The dimension of O(V_8)^SL2_5 is 2

<<There are 1 invariants of degree 5 spanned by the input invariants

of degrees <5

<<The subspace of O(V_8)^SL2_5 spanned by the input invariants of

degrees <5 has dimension >=1

<<The subspace of O(V_8)^SL2_5 spanned by the input invariants of

degrees <=5 has dimension >=2

In degree 6 we take j6 = (c1, (c1, c1)2)4. We evaluate {j6, j32 , j2j4, j23} at 4 =
dimCO(V8)SL2

6 random points in V8 and obtain a matrix of rank 4. It follows
that the vector space of invariants of degree 6 is spanned by {j2, j3, j4, j6}:

In[]:=j6=Transvectant[cc1,Transvectant[cc1,cc1,2],4].{1};

In[]:=Dim[8,6,{j2,j3,j4,j5,j6},{{2,1},{3,1},{4,1},{5,1},{6,1}}]

Out[]=

<<The dimension of O(V_8)^SL2_6 is 4

<<There are 3 invariants of degree 6 spanned by the input invariants

of degrees <6

<<The subspace of O(V_8)^SL2_6 spanned by the input invariants of

degrees <6 has dimension >=3

<<The subspace of O(V_8)^SL2_6 spanned by the input invariants of

degrees <=6 has dimension >=4

In degree 7 we take j7 = (c1, (c1, c2)2)4. We evaluate {j7, j22j3, j3j4, j2j5} at
4 = dimCO(V8)SL2

7 random points in V8 and obtain a matrix of rank 4. It follows
that the vector space of invariants of degree 7 is spanned by {j2, j3, j4, j5, j7}:

In[]:=j7=Transvectant[cc1,Transvectant[cc1,cc2,2],4].{1};

In[]:=Dim[8,7,{j2,j3,j4,j5,j6,j7},{{2,1},{3,1},{4,1},{5,1},{6,1},{7,1}}]

Out[]=

<<The dimension of O(V_8)^SL2_7 is 4

<<There are 3 invariants of degree 7 spanned by the input invariants

of degrees <7

<<The subspace of O(V_8)^SL2_7 spanned by the input invariants of

degrees <7 has dimension >=3

<<The subspace of O(V_8)^SL2_7 spanned by the input invariants of

degrees <=7 has dimension >=4

In degree 8 we take j8 = (c2, (c1, c2)2)4. We evaluate {j8, j42 , j22j4, j2j6, j2j23 , j3j5,
j24} at 7 = dimCO(V8)SL2

8 random points in V8 and obtain a matrix of rank
7. It follows that the vector space of invariants of degree 8 is spanned by
{j2, j3, j4, j5, j6, j8}:

In[]:=j8=Transvectant[cc2,Transvectant[cc1,cc2,2],4].{1};

In[]:=Dim[8,8,{j2,j3,j4,j5,j6,j7,j8},{{2,1},{3,1},{4,1},{5,1},{6,1},{7,1},{8,1}}]
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Out[]=

<<The dimension of O(V_8)^SL2_8 is 7

<<There are 6 invariants of degree 8 spanned by the input invariants

of degrees <8

<<The subspace of O(V_8)^SL2_8 spanned by the input invariants of

degrees <8 has dimension >=6

<<The subspace of O(V_8)^SL2_8 spanned by the input invariants of

degrees <=8 has dimension >=7

In degree 9 we take j9 = (c2, (c2, c2)2)4. We evaluate {j9, j2j7, j22j5, j32j3, j3j6, j33 ,
j4j5, j2j3j4} at 8 = dimCO(V8)SL2

9 random points in V8 and obtain a matrix of
rank 8. It follows that the vector space of invariants of degree 9 is spanned by
{j2, j3, j4, j5, j6, j7, j9}:

In[]:=j9=Transvectant[cc2,Transvectant[cc2,cc2,2],4].{1};

In[]:=Dim[8,9,{j2,j3,j4,j5,j6,j7,j8,j9},{{2,1},{3,1},{4,1},{5,1},{6,1},{7,1},

{8,1},{9,1}}]

Out[]=

<<The dimension of O(V_8)^SL2_9 is 8

<<There are 7 invariants of degree 9 spanned by the input invariants

of degrees <9

<<The subspace of O(V_8)^SL2_9 spanned by the input invariants of

degrees <9 has dimension >=7

<<The subspace of O(V_8)^SL2_9 spanned by the input invariants of

degrees <=9 has dimension >=8

In degree 10 we take j10 = ((c1, c1)2, (c2, c2)2)4. Using invariants of degree ≤ 9
we construct a set of 11 monomials of degree 10. We evaluate these monomials,
together with j10, at 12 = dimCO(V8)SL2

10 random points in V8 and obtain a
matrix of rank 12. It follows that the vector space of invariants of degree 10 is
spanned by {j2, j3, . . . , j10}:

In[]:=j10=Transvectant[Transvectant[cc2,cc2,2],Transvectant[cc1,cc1,2],4].{1};

In[]:=Dim[8,10,{j2,j3,j4,j5,j6,j7,j8,j9,j10},{{2,1},{3,1},{4,1},{5,1},{6,1},

{7,1},{8,1},{9,1},{10,1}}]

Out[]=

<<The dimension of O(V_8)^SL2_10 is 12

<<There are 11 invariants of degree 10 spanned by the input

invariants of degrees <10

<<The subspace of O(V_8)^SL2_10 spanned by the input invariants of

degrees <10 has dimension >=11

<<The subspace of O(V_8)^SL2_10 spanned by the input invariants of

degrees <=10 has dimension >=12

Using invariants of degree ≤ 10 we construct 73 monomials of degree 18. We
evaluate these monomials at 71 = dimCO(V8)SL2

18 random points in V8 and
obtain a matrix of rank 71. It follows that the vector space of invariants of
degree 18 is spanned by {j2, j3, . . . , j10}:

In[]:=Dim[8,18,{j2,j3,j4,j5,j6,j7,j8,j9,j10},{{2,1},{3,1},{4,1},{5,1},{6,1},

{7,1},{8,1},{9,1},{10,1}}]

Out[]=

<<The dimension of O(V_8)^SL2_18 is 71

<<There are 73 invariants of degree 18 spanned by the input
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invariants of degrees <=10

<<The subspace of O(V_8)^SL2_18 spanned by the input invariants of

degrees <=10 has dimension >=71

Then, the generating invariants of V8 are {j2, j3, j4, j5, j6, j7, j8, j9, j10}.



Chapter 4

Invariants of binary forms

In this chapter we �nd the basic invariants of Vn for n ∈ {2, 3, . . . , 10}, and
give explicit systems of parameters in all these cases. The sections 4.8 and 4.9
are based on joint work with Brouwer [BP10a, BP10b]. The main result of this
chapter is summarised in the following proposition.

Proposition 4.0.1. Let I = O(Vn)SL2 , with n ∈ {2, 3, . . . , 10}. Denote by r
the minimal number of generators of I, and by di the number of generators of
degree i. Then we have:

n = 2 : r = 1,
i 2
di 1

n = 3 : r = 1,
i 4
di 1

n = 4 : r = 2,
i 2 3
di 1 1

n = 5 : r = 4,
i 4 8 12 18
di 1 1 1 1

n = 6 : r = 5,
i 2 4 6 10 15
di 1 1 1 1 1

n = 7 : r = 30,
i 4 8 12 14 16 18 20 22 26 30
di 1 3 6 4 2 9 1 2 1 1

n = 8 : r = 9,
i 2 3 4 5 6 7 8 9 10
di 1 1 1 1 1 1 1 1 1

n = 9 : r = 92,
i 4 8 10 12 14 16 18 20 22
di 2 5 5 14 17 21 25 2 1

n = 10 : r = 106,
i 2 4 6 8 9 10 11 12 13 14 15 16 17 18 19 21
di 1 1 4 5 5 8 8 12 15 13 19 5 5 1 2 2

48
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Moreover, I has a system of parameters (hsop) of the following degrees:

n hsop degrees
2 2
3 4
4 2, 3
5 4, 8, 12
6 2, 4, 6, 10
7 4, 8, 12, 12, 20
8 2, 3, 4, 5, 6, 7
9 4, 8, 10, 12, 12, 14, 16
10 2, 4, 6, 6, 8, 9, 10, 14

4.1 The invariants of the binary quadratic

Let f ∈ V2,
f = a0x

2 + 2a1xy + a2y
2.

and consider the following invariant of V2:

j2 = (f, f)2 = 2(a2
1 − a0a2).

Proposition 4.1.1. The set {j2} forms a homogeneous system of parameters
of the algebra O(V2)SL2 of invariants of the binary quadratic.

Proof. We have N (V2) = V(j2), and, from Proposition 2.7.1, it follows that {j2}
forms a system of parameters of O(V2)SL2 .

The Poincaré series of the algebra O(V2)SL2 is

P (t) =
1

1− t2
= 1 + t2 + t4 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generating invariants is 2. There-
fore, the invariants of the binary quadratic are generated by {j2}.

4.2 The invariants of the binary cubic

Let f ∈ V3,
f = a0x

3 + 3a1x
2y + 3a2xy

2 + a3y
3,

and consider the following covariants and invariants of V3:

c1 = (f, f)2, j4 = (c1, c1)2.

Proposition 4.2.1. The set {j4} forms a homogeneous system of parameters
of the algebra O(V3)SL2 of invariants of the binary cubic.
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Proof. We have N (V3) = V(j4): if j4 = 0, then c1 is a nullform. If c1 = 0,
then f has a triple root (Proposition 2.7.2), i.e. f is a nullform. If c1 6= 0 is a
nullform, then f has a root of multiplicity 2 (Lemma 2.7.3), i.e. f is a nullform.

Then, from Proposition 2.7.1, it follows that {j4} forms a homogeneous
system of parameters of O(V3)SL2 .

The Poincaré series of the algebra O(V3)SL2 is

P (t) =
1

1− t4
= 1 + t4 + t8 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generating invariants is 4. There-
fore, the invariants of the binary cubic are generated by {j4}.

4.3 The invariants of the binary quartic

Let f ∈ V4,
f = a0x

4 + 4a1x
3y + 6a2x

2y2 + 4a3xy
3 + a4y

4,

and consider the following covariants and invariants of V4:

c1 = (f, f)2, j2 = (f, f)4, j3 = (f, c1)4.

Proposition 4.3.1. The set {j2, j3} forms a homogeneous system of parameters
of the algebra O(V4)SL2 of invariants of the binary quartic.

Proof. We have V(j2, j3) = N (V4): if j2 = j3 = 0, then f has a root of multi-
plicity 3 (see Proposition 2.7.2). From Proposition 2.7.1, it follows that {j2, j3}
forms a system of parameters of O(V4)SL2 .

The Poincaré series of the algebra O(V4)SL2 is

P (t) =
1

(1− t2)(1− t3)
= 1 + t2 + t3 + t4 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generating invariants is 3. There-
fore, the invariants of the binary quartic are generated by {j2, j3}.

4.4 The invariants of the binary quintic

Let f ∈ V5,
f = a0x

5 + 5a1x
4y + . . .+ 5a4xy

4 + a5y
5,

and consider the following covariants of V5:

c1 = (f, f)4, c2 = (f, f)2,
c3 = (f, c1)2, c4 = (c3, c3)2,
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and the following invariants of V5:

j4 = (c1, c1)2, j8 = (c4, c1)2,
j12 = (c4, c4)2.

Proposition 4.4.1. The invariants j4, j8, j12 form a homogeneous system of
parameters of the algebra O(V5)SL2 of invariants of the binary quintic.

Proof. First, we show that N (V5) = V(j4, j8, j12).
If j4 = 0, then c1 is a nullform. We distinguish the following two cases.

Case 1: c1 = 0.
Then, from Proposition 2.7.2 it follows that f has a root of multiplicity 4, i.e.
f is a nullform.

Case 2: c1 6= 0.
We show that (c1, c3) ∈ N (V2 ⊕ V3): in Chap. 5.9 we prove that N (V2 ⊕ V3)
is the zero set of the invariants j4, j8, j12, and j′12, where j

′
12 := (c31, c

2
3)6. But,

modulo j4, we have
3j12 + j′12 = 0.

Therefore, (c1, c3) ∈ N (V2 ⊕ V3), if j4 = j8 = j12 = 0. Then, from Lemma 2.7.3
it follows that f has a root of multiplicity 3, i.e. f is a nullform.

We apply now Proposition 2.7.1: if N (V5) = V(j4, j8, j12), then {j4, j8, j12}
forms a homogeneous system of parameters of O(V5)SL2 .

Proposition 4.4.2. The algebra of invariants of the binary quintic is generated
by 4 invariants. The nonzero numbers di of basic invariants of degree i are

i 4 8 12 18
di 1 1 1 1

Proof. The Poincaré series of the algebra O(V5)SL2 is

P (t) =
1 + t18

(1− t4)(1− t8)(1− t12)
=

= 1 + t4 + 2t8 + 3t12 + 4t16 + t18 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generating invariants is 18. The
vector space of invariants of degree 4 is spanned by {j4}. The vector space of
invariants of degree 8 is spanned by {j24 , j8}. The vector space of invariants of
degree 12 is spanned by {j34 , j4j8, j12}. The vector space of invariants of degree
18 is spanned by {j18}, where j18 = (c71, f(c2, f)1)14.

Then, the invariants of V5 are generated by j4, j8, j12, and j18.
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4.5 The invariants of the binary sextic

Let f ∈ V6,
f = a0x

6 + 6a1x
5y + . . .+ 6a5xy

5 + a6y
6,

and consider the following covariants and invariants of V6:

c1 = (f, f)4, j2 = (f, f)6,
c2 = (f, f)2, j4 = (c1, c1)4,
c3 = (f, c1)4, j6 = (c4, c1)4,

c4 = (c1, c1)2, j10 = (c4, c23)4.
c5 = (f, c1)1.

Proposition 4.5.1. The set {j2, j4, j6, j10} forms a homogeneous system of
parameters of the algebra O(V6)SL2 of invariants of the binary sextic.

Proof. First, we show that N (V6) = V(j2, j4, j6, j10).
If j4 = j6 = 0, then c1 is a nullform. We distinguish the following two cases.

Case 1: c1 = 0.
In this case, because j2 vanishes as well, from Proposition 2.7.2 it follows that
f has a root of multiplicity 5, i.e. f is a nullform.

Case 2: c1 6= 0.
We show that (c1, c3) ∈ N (V4 ⊕ V2): in Section 5.10 we prove that N (V2 ⊕ V4)
is the zero set of the invariants j4, j6, j′6, j8, and j10, where

j′6 = (c3, c3)2, j8 = (c1, c23)4.

But, modulo j2, we have j′6 = 6j6. Also, an easy Gröbner basis computation
shows that j8 ∈ (j2, j4, j6, j10). Therefore, (c1, c3) ∈ N (V4 ⊕ V2), if j2 = j4 =
j6 = j10 = 0. Then, from Lemma 2.7.4 it follows that f has a root of multiplicity
4, i.e. f is a nullform.

We apply now Proposition 2.7.1: if N (V6) = V(j2, j4, j6, j10), then it follows
that {j2, j4, j6, j10} forms a homogeneous system of parameters of O(V6)SL2 .

Proposition 4.5.2. The algebra of invariants of the binary sextic is generated
by 5 invariants. The nonzero numbers di of basic invariants of degree i are

i 2 4 6 10 15
di 1 1 1 1 1

Proof. The Poincaré series of the algebra O(V6)SL2 is

P (t) =
1 + t15

(1− t2)(1− t4)(1− t6)(1− t10)
=

= 1 + t2 + 2t4 + 3t6 + 4t8 + 6t10 + 8t12 + 10t14 + t15 + . . .
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We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generating invariants is 15. The
vector space of invariants of degree 2 is spanned by {j2}. The vector space of
invariants of degree 4 is spanned by {j22 , j4}. The vector space of invariants of
degree 6 is spanned by {j32 , j2j4, j6}. The vector space of invariants of degree
10 is spanned by {j52 , j32j4, j22j6, j2j24 , j4j6, j10}. The vector space of invariants
of degree 15 is spanned by {j15}, where j15 = (c43, c5)8.

Then, the invariants of V6 are generated by j2, j4, j6, j10, and j15.

4.6 The invariants of the binary septic

Let f ∈ V7,
f = a0x

7 + 7a1x
6y + . . .+ 7a6xy

6 + a7y
7.

Consider the following covariants of V7:

c1 = (f, f)6, c2 = (f, f)4,
c3 = (f, f)2, c4 = (f, c1)2,
c5 = (c2, c2)4, c6 = (f, c2)5,
c7 = (c4, c4)4, c8 = (c4, (c4, c4)4)2,
c9 = (c6, c6)2, c10 = (c5, c6)3,

Lemma 4.6.1. If c1 = 0, c2 6= 0, and c2 ∈ N (V6), then f has a root of
multiplicity at least 5.

Proof. If c2 is a nullform, then c2 has a root of multiplicity at least 4. Without
loss of generality we suppose x4 | c2. Also, by letting

( 1 0
a6
7a7

1

)
act on f , the

coe�cient of xy6 in f becomes zero, and x4 still divides c2. We have c1 = 0
and the coe�cients of x3y3, x2y4, xy5, y6 in c2 also vanish, which gives us the
following equations:

10a2
4 − 15a3a5 − a1a7 = 0, 3a2

5 + a3a7 = 0,
5a3a4 − 9a2a5 − a0a7 = 0, 2a4a5 + a2a7 = 0,

10a2
3 − 15a2a4 + 6a1a5 = 0, 5a2

4 − 5a3a5 + a1a7 = 0,
15a3a4 − 21a2a5 + a0a7 = 0.

If a7 = 0, it follows a5 = a4 = a3 = 0, and then x5 | f . If a7 6= 0, suppose
a7 = 1, which implies:

a3 = −3a2
5, a2 = −2a4a5,

a1 = −5a2
4 − 15a3

5, a0 = 3a4a
2
5,

and a2
4 + 4a3

5 = 0. But then we have

c2 = −90x4(−a5y
2 − a4xy + a2

5x
2)(a2

4 + 4a3
5) = 0,

which contradicts our assumption c2 6= 0.
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Consider now the following invariants of V7:

j4 = (c1, c1)2, j8,1 = (c7, c1)2,

j12,1 = ((c5, c5)2, c5)4, j12,2 = ((c4, c4)2, c31)6,

j20 = ([(c2, c5)4]2, (c5, c5)2)4.

Proposition 4.6.2. The set {j4, j8,1, j12,1, j12,2, j20} forms a homogeneous sys-
tem of parameters of the algebra O(V7)SL2 of invariants of the binary septic.

Proof. First we show that

N (V7) = V(j4, j8,1, j12,1, j12,2, j20).

If j4 = 0, then c1 is a nullform. We distinguish the following two cases.

Case 1: c1 = 0.
In this case we have (c2, c2)6 ∼ j4 = 0 (we use �∼� for equalities up to a nonzero
constant). A simple Gröbner basis computation shows that (c5, c5)4 vanishes
modulo the ideal generated by the coe�cients of c1. As j12,1 and j20 also vanish,
we obtain the equations of NV6 (see Chap. 4.5), hence c2 is a nullform. Then,
from Lemma 4.6.1 it follows that f has a root of multiplicity 5, i.e. f is a
nullform.

Case 2: c1 6= 0 and without loss of generality c1 = x2.
In this case we have (c1, c4) ∈ N (V2 ⊕ V5): in Chap. 5.11 we show that j4, j8,1,
and j12,2, together with the following invariants, de�ne the nullcone of V2 ⊕ V5:

j12,3 = (c7, c7)2, j16,1 = (c24, c
5
1)10,

j24 = ((c8, c8)2, c7)2, j36 = ((c8, c8)2, (c8, c8)2)2.

We prove that j4 = j8,1 = j12,2 = j12,1 = j20 = 0 implies that j12,3 = j16,1 =
j24 = j36 = 0. By letting

( 1 0
a6
a7

1

)
act on f , we bring the coe�cient of a6 in f to

zero, and x2 still divides c1. Then, we obtain (we use �∼� for equalities up to a
nonzero constant):

j12,2∼ a5a7, j8,1 ∼ 3a2
5 + a3a7.

If a7 = 0, then a5 = 0 and, then, j12,3 = j16,1 = j24 = j36 = 0.
If a7 6= 0, then a5 = a3 = 0. Suppose a7 = 1. In this case c1 becomes

c1 ∼ − (10a2
4 − a1)y2 + a0xy + 15a2a4x

2,

and, because we supposed x2 | c1, we have a0 = 0, a1 = 10a2
4 and a2, a4 6= 0.

Then we have:

j20 ∼ a2
2(−779446800a20

4 − 4828896a3
2a

15
4 + 67068a6

2a
10
4 +

+ 252a9
2a

5
4 + a12

2 ),

j12,1∼ a4
4(7290a10

4 + 54a3
2a

5
4 + a6

2).
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Because a2, a4 6= 0, we obtain,{
−779446800a20

4 − 4828896a3
2a

15
4 + 67068a6

2a
10
4 + 252a9

2a
5
4 + a12

2 = 0,
7290a10

4 + 54a3
2a

5
4 + a6

2 = 0.

But a25
4 belongs to the ideal generated by this two polynomials, hence we get a

contradiction with our assumption c1 6= 0.
Therefore, (c1, c4) ∈ N (V2 ⊕ V5). Then, from Lemma 2.7.3 it follows that f

has a root of multiplicity 4, i.e. f is a nullform.
We apply now Proposition 2.7.1: if N (V7) = V(j4, j8,1, j12,1, j12,2, j20), then

it follows that {j4, j8,1, j12,1, j12,2, j20} forms a homogeneous system of parame-
ters of O(V7)SL2 .

Proposition 4.6.3. The algebra of invariants of the binary septic is generated
by 30 invariants. The nonzero numbers di of basic invariants of degree i are

i 4 8 12 14 16 18 20 22 26 30
di 1 3 6 4 2 9 1 2 1 1

Proof. The Poincaré series of the algebra O(V7)SL2 is:

P (t) =
a(t)

(1− t4)(1− t8)(1− t12)2(1− t20)
=

= 1 + t4 + 4t8 + 10t12 + 4t14 + 18t16 + 13t18 + 35t20 + 26t22+

+ 62t24 + 52t26 + 97t28 + 92t30 + 153t32 + 144t34 + 229t36+

+ 223t38 + 325t40 + . . .+ 624t48 + . . .

with

a(t) = 1 + 2t8 + 4t12 + 4t14 + 5t16 + 9t18 + 6t20 + 9t22 + 8t24 + 9t26+

+ 6t28 + 9t30 + 5t32 + 4t34 + 4t36 + 2t40 + t48

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generating invariants is 48. Up to
degree 30 we �nd the following 30 invariants:

degree generators

4 j4 = (c1, c1)2,

8
j8,1 = (c7, c1)2, j8,2 = (c5, c5)4,

j8,3 = (c5, c21)4,

12

j12,1 = ((c5, c5)2, c5)4, j12,2 = ((c4, c4)2, c31)6,

j12,3 = (c7, c7)2, j12,4 = (c26, c31)6,

j12,5 = ((c9, c2)2, c21)4, j12,6 = (c9, c9)2,

14
j14,1 = (fc6, c51)10, j14,2 = ((c2, c5)1, c41)8,

j14,3 = ((c9, c2)1, c31)4, j14,4 = (c6c10, c21)4,

16 j16,1 = (c24, c51)10, j16,2 = (c210, c1)2,
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degree generators

18

j18,1 = ((c3, c2)1, c71)14, j18,2 = (f · (c2, c6)2, c61)12,

j18,3 = (c6 · (f, c2)2, c61)12, j18,4 = (c6 · (c2, c6)1, c51)10,

j18,5 = (c6 · (c5, c6)1, c41)8, j18,6 = (c6 · (c6, c9)1, c31)6,

j18,7 = ((c2, c6)2 · c10, c31)6, j18,8 = (((c5, c6)1, c10)1, c21)4,

j18,9 = (((c6, (c6, c6)2)1, c10)1, c1)2,

20 j20 = ([(c2, c5)4]2, (c5, c5)2)4,

22 j22,1 = (c10 · (c10, c5)1, c21)4, j22,2 = (c10 · (c10, c9)1, c1)2,

26 j26 = (c10 · (c10, (c10, c6)1)1, c1)2,

30 j30 = ((c6, c9)1, c310)3.

Then we prove that no generators are needed in degrees 32, 34, 36, 40, and
48 by showing that for each i ∈ {32, 34, 36, 40, 48} the vector space O(V7)SL2

i

is spanned by monomials of degree i generated by the 30 invariants found in
degrees ≤ 30. For details about the computations see Chap. A.2.

4.7 The invariants of the binary octavic

Let f ∈ V8,
f = a0x

8 + 8a1x
7y + . . .+ 8a7xy

7 + a8y
8.

Consider the following covariants of V8:

c1 = (f, f)6, c2 = (f, c1)4,
c3 = (f, f)4, c4 = (f, f)2,
c5 = (c1, c1)2, c6 = (c2, c2)2,

and the following invariants of V8:

j2 = (f, f)8, j3 = (f, c3)8,
j4 = (c1, c1)4, j5 = (c1, c2)4,
j6 = (c5, c1)4, j7 = ((c1, c2)2, c1)4.

Proposition 4.7.1. The set {j2, j3, j4, j5, j6, j7} forms a homogeneous system
of parameters of the algebra O(V8)SL2 of invariants of the binary octavic.

Proof. First, we show that

N (V8) = V(j2, j3, . . . , j7).

If j4 = j6 = 0, then c1 is a nullform. We distinguish the following two cases.

Case 1: c1 = 0.
In this case, because j2 and j3 vanish as well, it follows, from Proposition 2.7.2,
that f has a root of multiplicity 6, i.e. f is a nullform.

Case 2: c1 6= 0.
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In this case we have (c1, c2) ∈ N (V4⊕V4): from Proposition 5.4.4 it follows that
the nullcone N (V4 ⊕ V4) is generated by j4, j5, j6, j7, together with

j′6 = (c2, c2)4, j9 = (c6, c2)4,
j8 = ((c1, c2)2, c2)4.

The vector space of invariants of degree 6 is spanned by j32 , j
2
3 , j2j4, and j6. It

follows, then, that j′6 is a linear combination of these invariants, hence j′6 = 0,
if j2 = j3 = j6 = 0.

We introduce now the invariant j10 = (c5, c6)4. Using the invariants of
degrees ≤ 10, we built a list of forty-seven monomials of degree 16, each of them
divisible by one of the invariants j2, j3, j4, j5, j6, or j7. We evaluated these
monomials at dimCO(V8)SL2

16 = 47 random points in V8, and this resulted in
a matrix of rank 47. It follows, then, that j8 = 0 if j2 = j3 = . . . = j7 = 0.
Using the invariants of degrees ≤ 10, we built a list of seventy-two monomials
of degree 18, each of them divisible by one of the invariants j2, j3, j4, j5, j6,
j7, or j8. We evaluated these monomials at dimCO(V8)SL2

18 = 71 random points
in V8, and this resulted in a matrix of rank 71. It follows, then, that j9 = 0 if
j2 = j3 = . . . = j7 = 0.

Therefore, if j2 = j3 = . . . = j7 = 0, then (c1, c2) ∈ N (V4 ⊕ V4). But then,
from Lemma 2.7.4, it follows that f has a root of multiplicity 5, i.e. f is a
nullform.

We apply now Proposition 2.7.1: if N (V8) = V(j2, j3, . . . , j7), then the set
{j2, j3, . . . , j7} forms a homogeneous system of parameters of O(V8)SL2 .

Proposition 4.7.2. The algebra of invariants of the binary octavic is generated
by 9 invariants. The nonzero numbers di of basic invariants of degree i are

i 2 3 4 5 6 7 8 9 10
di 1 1 1 1 1 1 1 1 1

Proof. The Poincaré series of the algebra O(V8)SL2 is:

P (t) =
1 + t8 + t9 + t10 + t18

(1− t2)(1− t3)(1− t4)(1− t5)(1− t6)(1− t7)
=

= 1 + t2 + t3 + 2t4 + 2t5 + 4t6 + 4t7 + 7t8 + 8t9 + 12t10 + . . .

+ . . . 47t16 + 71t18 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generating invariants is 18. Up to
degree 10 we found the following 9 invariants:

degree generators

2 j2 = (f, f)8,

3 j3 = (f, c3)8,

4 j4 = (c1, c1)4,

5 j5 = (c1, c2)4,

degree generators

6 j6 = (c5, c5)4,

7 j7 = ((c1, c2)2, c1)4,

8 j8 = ((c1, c2)2, c2)4,

9 j9 = (c6, c2)4,

10 j10 = (c5, c6)4.
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In degree 18 there are no generators: we show that the vector space O(V8)SL2
18

is spanned by monomials of degree 18 generated by the nine invariants found in
degrees ≤ 10. The required computations can be seen in Chap. 3.5.

4.8 The invariants of the binary nonic

This chapter is based on joint work with Brouwer [BP10a].
Let f ∈ V9,

f = a0x
9 + 9a1x

8y + . . .+ 9a8xy
8 + a9y

9.

Consider the following covariants of V9:

c1 = (f, f)8, c2 = (f, f)6,
c3 = (f, f)4, c4 = (f, f)2,
c5 = (f, c1)2, c6 = (f, c2)6,
c7 = (c2, c2)4, c8 = (c5, c5)6,
c9 = (c5, c5)4, c10 = (c5, c8)2,
c11 = (c9, c9)4, c12 = (c9, c11)4,
c13 = (c2, c7)4, c14 = (c6, c6)2,
c15 = (c2, c4)6, c16 = (c2, c4)4,
c17 = (c2, c3)6, c18 = (c5, c6)3,
c19 = (c1, c3)2, c20 = (f, c1)2,
c21 = (f, c2)2, c22 = (f, c3)6,
c23 = (f, c3)8, c24 = (f, c4)8,
c25 = (c4, c4)10, c26 = (c3, c3)6,

c27 = (c36, c6)3, c28 = (c3, c4)10,
c29 = (c2, c4)2, c30 = (c3, c4)8.

Lemma 4.8.1. If c1 = 0, c2 6= 0, and (c2, c3) ∈ N (V3 ⊕ V6), then f has a root
of multiplicity at least 6.

Proof. From (c2, c3) ∈ N (V6 ⊕ V3) it follows that both c2 and c3 are nullforms
and have a common root that has multiplicity 4 in c2 and multiplicity 2 in c3.
Without loss of generality, we consider the following 3 cases: c2 = x6, c2 = x5y,
and c2 = x4y(x+ y).

Case 1: c2 = x6. Then

c3 = (f, x6)6 = a9y
3 + 3a8xy

2 + 3a7x
2y + a6x

3,
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and x2 must divide c3. We obtain a9 = a8 = 0, and substitute that in c2 and
c1:

c2 = (f, f)6 = (−20a 2
6 + 30a5a7)y6 + (−30a5a6 + 54a4a7)xy5+

(−90a 2
5 + 114a4a6 − 12a3a7)x2y4+

(−72a4a5 + 124a3a6 − 60a2a7)x3y3+

(−90a 2
4 + 114a3a5 − 12a2a6 − 18a1a7)x4y2+

(−30a3a4 + 54a2a5 − 30a1a6 + 6a0a7)x5y+

(−20a 2
3 + 30a2a4 − 12a1a5 + 2a0a6)x6,

c1 = (f, f)8 = (70a 2
5 − 112a4a6 + 56a3a7)y2+

(28a4a5 − 56a3a6 + 40a2a7)xy+

(70a 2
4 − 112a3a5 + 56a2a6 − 16a1a7)x2.

Since we suppose c2 = x6 and c1 = 0, the coe�cients of xiy6−i in c2, and of
xjy2−j in c1 are 0 for 0 ≤ i ≤ 5 and 0 ≤ j ≤ 2.
If a7 = 0, then it follows that a6 = a5 = a4 = 0, and then x6 | f , so f will have
a root of multiplicity 6. If a7 6= 0, then

a5 =
2a 2

6

3a7
, a4 =

10a 3
6

27a 2
7

, a3 =
5a 4

6

27a 3
7

,

a2 =
7a 5

6

81a 4
7

, a1 =
28a 6

6

729a 5
7

, a0 =
4a 7

6

243a 6
7

,

but then we have c2 = 0, contrary to the assumption.

Case 2: c2 = x5y. Then,

c3 = (f, c2)6 = − a8y
3 − 3a7xy

2 − 3a6x
2y − a5x

3,

and x2 must divide c3. We obtain a8 = a7 = 0, and substitute this in c2 and c1:

c2 = (f, f)6 = (−20a 2
6 + 2a3a9)y6 + (−30a5a6 + 6a2a9)xy5+

(−90a 2
5 + 114a4a6 + 6a1a9)x2y4 + · · ·+

(−90a 2
4 + 114a3a5 − 12a2a6)x4y2+

(−30a3a4 + 54a2a5 − 30a1a6)x5y + · · ·
c1 = (f, f)8 = (70a 2

5 − 112a4a6 + 2a1a9)y2 + · · ·

Since we supposed c2 = x5y and c1 = 0, the coe�cient c of y2 in c1, and the
coe�cients di of xiy6−i in c2 vanish for 0 ≤ i ≤ 4, while d5 6= 0. Now

5d5a9 = −75a4d0 + 45a5d1 − a6(9c+ 22d2) = 0,

so that a9 = 0, and then also a6 = a5 = a4 = 0, d5 = 0, contradicting d5 6= 0.
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Case 3: c2 = x4y(x+ y). Then:

c3 = (f, c2)6 = (a7 − a8)y3 + 3(a6 − a7)xy2 + 3(a5 − a6)x2y + (a4 − a5)x3,

and x2 must divide c3. We obtain a8 = a7 = a6 which we replace in c2 and c1:

c2 = (f, f)6 = − 2(6a4a6 − 15a5a6 + 10a 2
6 − a3a9)y6−

− 6(5a3a6 − 9a4a6 + 5a5a6 − a2a9)xy5−
− 6(15a 2

5 + 3a2a6 + 2a3a6 − 19a4a6 − a1a9)x2y4−
− 2(36a4a5 − 3a1a6 + 30a2a6 − 62a3a6 − a0a9)x3y3−
− 6(15a 2

4 − 19a3a5 − a0a6 + 3a1a6 + 2a2a6)x4y2−
− 6(5a3a4 − 9a2a5 − a0a6 + 5a1a6)x5y−
− 2(10a 2

3 − 15a2a4 + 6a1a5 − a0a6)x6,

c1 = (f, f)8 = 2(35a 2
5 − 8a2a6 + 28a3a6 − 56a4a6 + a1a9)y2+

2(14a4a5 − 7a1a6 + 20a2a6 − 28a3a6 + a0a9)xy+

2(35a 2
4 − 56a3a5 + a0a6 − 8a1a6 + 28a2a6)x2.

As we supposed c2 = x4y(x + y) and c1 = 0, the coe�cients of y6, xy5, x2y4,
x3y3, x6 in c2 and all coe�cients of c1 must vanish. We denote by J the ideal
generated by these coe�cients. Also, we denote by p1, p2 the coe�cients of
x4y2 and x5y in c2:

p1 = 15a 2
4 − 19a3a5 − a0a6 + 3a1a6 + 2a2a6,

p2 = 5a3a4 − 9a2a5 − a0a6 + 5a1a6.

A Gröbner basis computation shows that p4
1, p

2
2 ∈ J so that p1 and p2 vanish,

contradicting the assumption c2 = x4y(x+ y).

Consider now the following invariants of V9:

j4,1 = (c1, c1)2, j8,1 = (c2, c26)6,

j12,1 = ((c7, c7)2, c7)4, j12,2 = (c9, c31)6,

j14,1 = (c2, c27)3)6, j16,1 = ((c5, c5)2, c51)10,
j10,1 = (((c25, f)6, c21)5, c2)6.

Proposition 4.8.2. The seven invariants j4, j8,1, j10,1, j12,1, j12,2, j14,1, j16,1
form a homogeneous system of parameters for the algebra O(V9)SL2 of invariants
of the binary nonic.

Note that Dixmier (1985) proved the following.

Proposition 4.8.3. (Dixmier [Dix85]) The algebra O(V9)SL2 has a homoge-
neous system of parameters of degrees 4, 8, 10, 12, 12, 14, 16.
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Proposition 4.8.2 gives an explicit system of parameters for O(V9)SL2 with these
degrees. Brouwer & Popoviciu ([BP10a]) proved the existence of systems of
parameters for certain further sequences of degrees in the following.

Proposition 4.8.4. ([BP10a, Proposition 7.2]) The algebra of invariants of V9

has systems of parameters with each of the �ve sequences of degrees 4, 8, 10,
12, 12, 14, 16 and 4, 4, 10, 12, 14, 16, 24 and 4, 4, 8, 12, 14, 16, 30 and 4, 4,
8, 10, 12, 16, 42 and 4, 4, 8, 10, 12, 14, 48.

Before proving Proposition 4.8.2, we give the following lemma.

Lemma 4.8.5. Let s ∈ V6, c ∈ V3 be two non-zero binary forms. If both s and
c are nullforms and if

0 = ((s2, s)6, c2)6 = (((s, s)2, s)1, c4)12 = (s, c2)6 = (s, (c, c) 3
2 )6 =

= (s, (c3, c)3)6,

then (s, c) ∈ N (V6 ⊕ V3).

Proof. Suppose that (s, c) /∈ N (V6 ⊕ V3). This means that s and c have no
common root which has multiplicity 4 in s and multiplicity 2 in c. Without loss
of generality we consider two cases:{

s = x4(b1x2 + b2xy + b3y
2),

c = y3.
and

{
s = x4(b1x2 + b2xy + b3y

2),
c = xy2.

Case 1: c = y3.
In this case we have (�∼� is used for equalities up to a nonzero constant):

0 = ((s2, s)6, c2)6 ∼ b 3
3 ,

0 = (((s, s)2, s)1, c4)12 ∼ b2(5b 2
2 − 18b1b3),

0 = (s, c2)6 = b1,

and it follows that b1 = b2 = b3 = 0, which implies s = 0, contradicting the
assumption s 6= 0.

Case 2: c = xy2.
In this case we have (�∼� is used for equalities up to a nonzero constant):

0 = (s, (c, c) 3
2 )6 ∼ b1, 0 = (s, c2)6∼ b3,

0 = (s, (c3, c)3)6 ∼ b2.

and it follows that b1 = b2 = b3 = 0, which implies s = 0, contradicting the
assumption s 6= 0.
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Proof of Proposition 4.8.2. We introduce the invariants

j4,2 = (c2, c2)6, j8,2 = (c7, c7)4,

j8,3 = (c8, c1)2, j20,3 = (c 2
13, (c7, c7)2)4,

j20,4 = (c25, c
7
1)14.

First we show that

N (V9) = V(j4,1, j4,2, j8,2, j8,3, j12,1, j12,2, j14,1, j16,1, j20,3, j20,4).

If j4,1 = 0, then c1 ∈ V2 is a nullform. Without loss of generality, we consider
the following two cases: c1 = 0 and c1 = x2.

Case 1: c1 = 0.
If j4,2 = j8,2 = j12,1 = j20,3 = 0, then c2 is a nullform.

If c2 vanishes as well, then from Proposition 2.7.2 it follows that f has a
root of multiplicity 7, i.e. f is a nullform.

If c2 6= 0, without loss of generality, we suppose x4 | c2. Modulo the ideal
generated by the coe�cients of c1 and the coe�cients of x3y3, x2y4, xy5, y6 in
c2 we have

j8,1 = j12,3 = j12,4 = j18,1 = j20,1 = 0

where

j12,3 = (c14, c14)2, j12,4 = ((c22, c2)6, c
2
6)6,

j18,1 = (((c2, c2)2, c2)1, c46)12, j20,1 = (c2, c314)6.

It follows, then, from Lemma 4.8.5, that (c2, c6) ∈ N (V6 ⊕ V3), and then, from
Lemma 4.8.1, that f has a root of multiplicity 6, i.e. f is a nullform.

Case 2: c1 = x2.
Here we have (�∼� is used for equalities up to a nonzero constant):

0 = j20,4 = a 2
9 , 0 = j16,1 ∼ a 2

8 ,

0 = j12,2 ∼ a 2
7 , 0 = j8,3 ∼ a 2

6 .

It follows that a9 = a8 = a7 = a6 = 0, and, if we combine this with c1 = x2, we
get a5 = 0 too, and then f is a nullform.

This shows that N (V9) = V(j4,1, j4,2, j8,2, j8,3, j12,1, j12,2, j14,1, j16,1, j20,3, j20,4).

We introduce now the following invariants:

j8,4 = (c7, c21)4, j8,5 = (c7, c17)4,
j10,2 = (c18, c7)4, j10,4 = ((c6, c22)3, (c3, c3)8)4,

j10,3 = (c18, c21)4, j10,5 = (((c26, f)6, c20)3, c2)6.
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The invariants j8,1, j8,2, . . . , j8,5 are linearly independent and, together with
j 2
4,1, j

2
4,2, and j4,1j4,2, span the vector space of invariants of degree 8 which is of

dimension 8. (This can be seen, e.g., by a small computation in Mathematica.)
In a similar way it can be seen that the vector space of invariants of degree 10
is spanned by j10,1, j10,2, . . . j10,5. Using invariants of degree ≤ 16 we built a list
of 219 monomials of degree 20, each of them dividing one of the invariants j4,1,
j4,2, j8,1, . . . , j8,5, j10,5, and j10,1, to which we added

j20,1 = (c 3
14, c2)6, j20,2 = ((c27, c2)4, (c24, c23)3)4.

Denote I be the algebra O(V9)SL2 of invariants, and Ii its i-th graded part.
We evaluated the monomials at dimC I20 = 217 random points in V9, giving as
result a matrix of (full) rank 217. Adding j20,3, j20,4, j210,2, j

2
10,3, and j

2
10,4 to

the list of monomials and repeating the evaluation step gave (of course) again
matrices of rank 217. From the nullspaces of these matrices we obtained the
relations

j20,3, j20,4, j
2
10,2, j

2
10,3, j

2
10,4 ∈ (j4,1, j4,2, j8,1, j8,2, . . . , j8,5, j10,1, j10,5)

(that is, j20,1 and j20,2 are not needed to span the elements mentioned). Using
invariants of degree ≤ 20 we built a list of 3561 monomials of degree 32, each of
them dividing one of the invariants j4,1, j8,1, j8,5, j10,1, j10,5, j12,1, j12,2, j14,1,
or j16,1. We evaluated the monomials at dimC I32 = 2082 random points in V9,
and this resulted in a matrix of rank 2082. The rank computations were made
modulo 32003, but as we obtained the maximal rank, these monomials must
span I32. It follows that

j8,2, j8,3, j8,4, j4,2 ∈
√

(j4,1, j8,1, j8,5, j10,1, j10,5, j12,1, j12,2, j14,1, j16,1),

and then we get

N (V9) = V(j4,1, j8,1, j8,5, j10,1, j10,5, j12,1, j12,2, j14,1, j16,1).

In the same way one can show that

N (V9) = V(j4,2, j8,1, j8,5, j10,1, j10,5, j12,1, j12,2, j14,1, j16,1).

It remains to remove two elements from one of these two sets of generators.
Let H = (j4,1, j8,1, j10,1, j12,1, j12,2, j14,1, j16,1). We computed dimC Ii ∩ H

for i ≤ 60 and found dimC I60 ∩H = 59107 = dimC I60, so that I60 ⊆ H. But
then H contains powers of all invariants of degrees 4, 10, 20, so that in particular
j4,2, j10,5 ∈

√
H. Now let H ′ = (j4,1, j4,2, j8,1, j10,1, j12,1, j12,2, j14,1, j16,1). We

computed dimC Ii ∩H ′ for i ≤ 40 and found dimC I40 ∩H ′ = 6612 = dimC I40,
so that I40 ⊆ H ′. But then H ′ contains powers of all invariants of degree 8, so
that in particular j8,5 ∈

√
H ′. But then

√
H =

√
H ′ = I. Thus,

N (V9) = V(j4,1, j8,1, j10,1, j12,1, j12,2, j14,1, j16,1).
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Then, from Proposition 2.7.1, it follows that the set

{j4,1, j8,1, j10,1, j12,1, j12,2, j14,1, j16,1}

is a system of parameters of O(V9)SL2 .

Proposition 4.8.6. The algebra of invariants of the binary nonic is generated
by 92 invariants. The nonzero numbers di of basic invariants of degree i are

i 4 8 10 12 14 16 18 20 22
di 2 5 5 14 17 21 25 2 1

Proof. The Poincaré series of O(V9)SL2 is

P (t) =
a(t)

(1− t4)(1− t8)(1− t10)(1− t12)2(1− t14)(1− t16)
with

a(t) = 1 + t4 + 5t8 + 4t10 + 17t12 + 20t14 + 47t16 + 61t18 + 97t20+

120t22 + 165t24 + 189t26 + 223t28 + 241t30 + 254t32 + 254t34+

241t36 + 223t38 + 189t40 + 165t42 + 120t44 + 97t46 + 61t48+

47t50 + 20t52 + 17t54 + 4t56 + 5t58 + t62 + t66,

so that

P (t) = 1 + 2t4 + 8t8 + 5t10 + 28t12 + 27t14 + 84t16 + 99t18 + 217t20+

273t22 + 506t24 + 647t26 + 1066t28 + 1367t30 + 2082t32 + 2649t34+

3811t36 + 4796t38 + 6612t40 + 8228t42 + 10960t44 + 13483t46+

17487t48 + 21274t50 + 26979t52 + 32490t54 + 40443t56 + 48242t58+

59107t60 + 69885t62 + 84470t64 + 99074t66 + ...

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generating invariants is 66. Up to
degree 22 we found the following generators:

deg generators

4 j4,1 = (c1, c1)2, j4,2 = (c2, c2)6,

8

j8,1 = (c2, c26)6, j8,2 = (c7, c7)4,

j8,3 = (c8, c1)2, j8,4 = (c7, c21)4,

j8,5 = (c7, c17)4,

10

j10,1 = (((c25, f)6, c21)5, c2)6, j10,2 = (c18, c7)4,

j10,3 = (c18, c21)4, j10,4 = ((c6, c22)3, (c3, c3)8)4,

j10,5 = (((c26, f)6, c20)3, c2)6,

12

j12,1 = ((c7, c7)2, c7)4, j12,2 = (c9, c31)6,

j12,3 = (c14, c14)2, j12,4 = ((c22, c2)6, c26)6,

j12,5 = (c8, c8)2, j12,6 = (c8, c13)2,

j12,7 = ((c7, c2)2, (c7, c3)4)6, j12,8 = ((c7, c3)2, (c7, c4)4)10,

j12,9 = (c14, c8)2, j12,10 = (c14, c13)2,

j12,11 = (c26, (c7, c3)4)6, j12,12 = (c6c5, (c7, c3)2)10,

j12,13 = ((c6, c5)2, (c7, c2)2)6, j12,14 = ((c8, c4)2, c22)12,
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deg generators

14

j14,1 = (c2, c27)3)6, j14,2 = (c2, (c28c17, c1c2)5)6,

j14,3 = (c4, (c15c19, c1c4)9)14, j14,4 = (c1, (c15c19, c1c4)15)2,

j14,5 = (c2, (c15c19, c1c4)13)6, j14,6 = (c3, (c15c19, c1c4)11)10,

j14,7 = (c1, (c28c17, c1c2)7)2, j14,8 = (c3, (c28c17, c1c2)3)10,

j14,9 = (c4, (c28c17, c1c2)1)14, j14,10 = (((c16, c19)6, c2)5, c21)4,

j14,11 = (((c16, c19)4, c1)1, c22)12, j14,12 = (((c16, c19)2, c2)1, c23)20,

j14,13 = ((c29c19, c2)1, c24)28, j14,14 = ((c16, c19)7, c31)6,

j14,15 = ((c16, c19)1, c32)18, j14,16 = ((c2c4, c1c3)1, c33)30,

j14,17 = ((c29, c3)1, c42)24,

16

j16,1 = ((c5, c5)2, c51)10, j16,2 = (c7c8, c26)6,

j16,3 = ((c1, c4)2, c37)12, j16,4 = ((c2, c3)2, c37)12,

j16,5 = ((c2, c3)2, c46)12, j16,6 = ((c1, c4)2, c46)12,

j16,7 = (c2c41, c25)14, j16,8 = ((c2c3, c1c2)8, c41)8,

j16,9 = ((c2c3, c3c4)16, c41)8, j16,10 = ((c24, c2c4)20, c41)8,

j16,11 = ((c24, c2c4)20, c27)8, j16,12 = ((c3c4, c2c3)16, c27)8,

j16,13 = ((c3c2, c2c1)8, c27)8, j16,14 = (((c1, c3)2, c16)6, c27)8,

j16,15 = (((c1, c3)2, c16)6, c41)8, j16,16 = (((c2, c3)4, c30)4, c41)8,

j16,17 = (((c2, c3)4, c30)4, c27)8, j16,18 = ((c29, c19)8, c27)8,

j16,19 = ((c29, c19)8, c41)8, j16,20 = (c29c19, c42)24,

j16,21 = (c21c22, (c16, c19)2)16,

18

j18,1 = (((c2, c2)2, c2)1, c46)12, j18,2 = (c28, c18)4,

j18,3 = ((c7, c1c8)2, c18)4, j18,4 = (c27, (c30, (c3, (f, (f, c2)3)6)4)4)8,

j18,5 = (c21, ((c29, c3)1, c42)22)4, j18,6 = (c21, ((c2c4, c1c3)1, c33)28)4,

j18,7 = (c21, ((c16, c19)1, c32)16)4, j18,8 = (c1c2, ((c16, c19)7, c31)2)8,

18

j18,9 = (c21, ((c29c19, c2)1, c24)26)4, j18,10 = (c21, (((c16, c19)2, c2)1, c23)18)4,

j18,11 = (c21, (((c16, c19)4, c1)1, c22)10)4, j18,12 = (c1c2, ((c16, c19)6, c2)5 · c21)8,

j18,13 = (c21, (c4, (c28c17, c1c2)1)12)4, j18,14 = (c21, (c3, (c28c17, c1c2)3)8)4,

j18,15 = (c21, (c2, (c15c19, c1c4)13)4)4, j18,16 = (c1c2, (c2, (c15c19, c1c4)13)2)8,

j18,17 = (c21, (c4, (c15c19, c1c4)9)12)4, j18,18 = (c21, (c2, (c28c17, c1c2)5)4)4,

j18,19 = (c1c2, (c2, (c28c17, c1c2)5)2)8, j18,20 = (c1c2, (c4, (c15c19, c1c4)9)10)8,

j18,21 = (c1c2, (c3, (c28c17, c1c2)3)6)8, j18,22 = (c1c2, (c4, (c28c17, c1c2)1)10)8,

j18,23 = (c214, c18)4, j18,24 = (c2c3, (((c16, c19)2, c2)1, c23)12)16,

j18,25 = (c2c3, ((c29c19, c2)1, c24)20)16,

20 j20,1 = (c 3
14, c2)6, j20,2 = ((c27, c2)4, (c24, c23)3)4,

22 j22 = (c21, (c2c3, ((c29c19, c2)1, c24)20)14)4.

Then we prove that no generators are needed in degrees 24, 26, . . . 58, 62, 66
by showing that for each i ∈ {24, 26, . . . 58, 62, 66} the vector space O(V9)SL2

i

is spanned by monomials of degree i generated by the 92 invariants found in
degrees ≤ 22. The required computations for i ≤ 32 can be seen in Chap. A.3.
The computations in degrees ≥ 34 were performed by A.E. Brouwer, with his
own software ([BP10a]).

4.9 The invariants of the binary decimic

This chapter is based on joint work with Brouwer [BP10b]
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Consider f ∈ V10,

f = a0x
10 + 10a1x

9y + . . .+ 10a9xy
9 + a10y

10,

and the following covariants

j2 = (f, f)10, c1 = (f, f)8,
c2 = (f, f)6, c3 = (f, f)4,
c4 = (f, f)2, c5 = (f, c1)4,
c6 = (f, c2)8, c7 = (c2, c2)6,
c8 = (c5, c5)4, c9 = (c2, c7)4,
c10 = (c1, c1)2, c11 = (c4, c4)14,
c12 = (c3, c3)10, c13 = (c10, c1)2,
c14 = (c8, c5)4, c15 = (c2, c2)4,
c16 = (c5, c5)2, c17 = (c4, c2)4,
c18 = (c4, c2)2, c19 = (c5, c1)1,
c20 = (c5, c3)1, c21 = (c5, c2)1,
c22 = (c1, c2)2, c23 = (c1, c4)4,
c24 = (c7, c9)2, c25 = (c7, c7)2.

Lemma 4.9.1. If j2 = 0, c1 = 0, c2 6= 0, and c2 ∈ NV8 , then f has a root of
multiplicity at least 7.

Proof. The covariants c1, c2 and the invariant j2 are:

j2 = − 252a 2
5 + 420a4a6 − 240a3a7 + 90a2a8 − 20a1a9 + 2a0a10,

c1 = (70a 2
6 − 112a5a7 + 56a4a8 − 16a3a9 + 2a2a10)y4+

(56a5a6 − 112a4a7 + 80a3a8 − 28a2a9 + 4a1a10)xy3+

(168a 2
5 − 252a4a6 + 96a3a7 − 6a2a8 − 8a1a9 + 2a0a10)x2y2+

(56a4a5 − 112a3a6 + 80a2a7 − 28a1a8 + 4a0a9)x3y+

(70a 2
4 − 112a3a5 + 56a2a6 − 16a1a7 + 2a0a8)x4,

c2 = (−20a 2
7 + 30a6a8 − 12a5a9 + 2a4a10)y8+

(−40a6a7 + 72a5a8 − 40a4a9 + 8a3a10)xy7+

(−140a 2
6 + 168a5a7 − 40a3a9 + 12a2a10)x 2y6+

(−168a5a6 + 280a4a7 − 120a3a8 + 8a1a10)x3y5+

(−252a 2
5 + 280a4a6 + 40a3a7 − 90a2a8 + 20a1a9 + 2a0a10)x4y4+

(−168a4a5 + 280a3a6 − 120a2a7 + 8a0a9)x5y3+

(−140a 2
4 + 168a3a5 − 40a1a7 + 12a0a8)x6y2+

(−40a3a4 + 72a2a5 − 40a1a6 + 8a0a7)x7y+

(−20a 2
3 + 30a2a4 − 12a1a5 + 2a0a6)x8.
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Without loss of generality we suppose x5 | c2. We denote by J the ideal gener-
ated by j2, the coe�cients of c1, and the coe�cients of x4y4, x3y5, . . . , y8 in c2.
Denote also by p1, p2 and p3 the coe�cients of x7y, x6y2 and x5y3, respectively,
in c2. We have

p 4
1 , p

3
2 , p

2
3 ∈ J,

which implies that x8 | c2.
Consider now the ideal J generated by j2, the coe�cients of c1 and the

coe�cients of x7y, x6y2, . . . , y8 in c2. Denote by p0 the coe�cient of x8 in c2.
We have aip0 ∈ J for i = 10, 9, 8, 7, 6, 5, 4. Because c2 6= 0 we �nd a10 = . . . =
a4 = 0. This means that x7 | f , so f will have a root of multiplicity 7.

Consider now the following invariants of V10:

j4,1 = (c1, c1)4, j6,1 = (c5, c5)6,
j6,2 = (c6, c6)2, j8,1 = (c1, c8)4,

j9,1 = (c19, c21)8, j10,1 = (c16, c21)8,

j14,1 = (c25, c9)4, j14,2 = (c210, c16)8.

Proposition 4.9.2. The eight invariants j2, j4,1, j6,1, j6,2, j8,1, j9,1, j10,1,
j14,1 + j14,2 form a homogeneous system of parameters of the ring O(V10)SL2 of
invariants of the binary decimic.

Proof. We introduce the following invariants:

j6,3 = (c15, c2)8, j6,4 = (c10, c1)4, j12,2 = (c25, c
3
1)12.

First we prove that

N (V10) = V(j2, j4,1, j6,1, j6,3, j6,4, j8,1, j9,1, j10,1, j12,2, j14,1, j14,2).

If j4,1 = j6,4 = 0, then c1 is a nullform. Without loss of generality, we consider
the following three cases.

Case 1: c1 = 0.
In this case we have c2 ∈ N (V8): in Chap. 4.7 we proved that the nullcone of V8

is the vanishing locus of the the invariants j4,2, j6,3, j8,2, j10,2, j12,3, and j14,1,
where:

j4,2 = (c2, c2)8, j10,2 = (c9, c7)4,
j8,2 = (c7, c7)4, j12,3 = (c25, c7)4.

We show that these invariants vanish: denote by J = (j2, c1) the ideal generated
by j2 and the coe�cients of c1. Easy Gröbner basis computations show that
j4,2, j8,2, j10,2 ∈ J and j12,3 ∈ (J, j6,3). Hence if j2 = j6,3 = c1 = 0, then
j4,2 = j8,2 = j10,2 = j12,3 = 0. Because j14,1 vanishes as well, it follows that
c2 is a nullform. Then, we apply Lemma 4.9.1, and obtain that f has a root of
multiplicity 7, i.e. f is a nullform.
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Case 2: c1 = x4. In this case we have (�∼� is used for equalities up to a nonzero
constant):

j12,2∼ a 2
10,

j10,1∼ − a 2
9 + a8a10,

j8,1 ∼ 3a 2
8 − 4a7a9 + a6a10,

j6,1 ∼ − 10a 2
7 + 15a6a8 − 6a5a9 + a4a10.

If j12,2 = j10,1 = j8,1 = j6,1 = 0, then it follows that a10 = . . . = a7 = 0. If we
substitute this in c1, we obtain

c1 = 70a 2
6 y

4 + 56a5a6xy
3 + (168a 2

5 − 252a4a6)x2y2+

(56a4a5 − 112a3a6)x3y + (70a 2
4 − 112a3a5 + 56a2a6)x4,

and, as we supposed c1 = x4, we get also a6 = a5 = 0, which implies that f is
a nullform.

Case 3: c1 = x3y. In this case we have (�∼� is used for equalities up to a nonzero
constant):

j9,1 ∼ a9,

j14,2∼ a7a9 − a 2
8 ,

j10,1∼ − 5a 2
7 + 2a6a8 + 3a5a9,

j6,1 ∼ − 10a 2
6 + 15a5a7 − 6a4a8 + a3a9.

If j9,1 = j14,2 = j10,1 = j6,1 = 0, then a9 = . . . = a6 = 0. If we substitute this
in c1 and j2, we obtain:

c1 = 2a2a10y
4 + 4a1a10xy

3 + (168a 2
5 + 2a0a10)x2y2 + 56a4a5x

3y+

+ (70a 2
4 − 112a3a5)x4,

j2 = − 252a 2
5 + 2a0a10

From 168a 2
5 + 2a0a10 = −252a 2

5 + 2a0a10 = 0 we �nd a5 = 0, which contradicts
c1 = x3y.
Therefore, we have

N (V10) = V(j2, j4,1, j6,1, j6,3, j6,4, j8,1, j9,1, j10,1, j12,2, j14,1, j14,2).

So far, we de�ned the nullcone using 11 invariants, but we need a de�nition using
8 invariants. As a �rst step, replace the two invariants of degree 14 by a single
one. Now for f = x2y(2a1x

7 + 9a8y
7) all the invariants above de�ning N (V10)

will vanish, except j14,1. And for f = y3(120a3x
7 + a10y

7) all the invariants
above vanish, except j14,2. That means that the single invariant of degree 14
cannot be either j14,1 or j14,2. However, it turns out that we can use j14,1+j14,2.

The �nal part of the construction of the system of parameters was done by
computer. These computations were performed by A.E. Brouwer, with his own
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software ([BP10b]). All computations were carried out in the ring R generated
by the 106 invariants found in Proposition 4.9.3. Or, more precisely, in the
quotient Q = R/j2R, reduced mod p, where p = 197 (the di�erent p has no
signi�cance), and a4, a7 and a9 were taken to be zero. It was checked that the
graded parts of the resulting ring have the expected dimension (for degree up
to 54), so that no collapse occurred as a consequence of the reduction mod p or
the substitution of variables.

The ideal generated in this ring by all invariants of degrees 4, 6, 8, 9, 10,
14 has full dimension 542 for its graded part of degree 24. We know that
dimCO(V10)SL2

24 = 1429 and dimCO(V10)SL2
22 = 887 and multiplication by j2 is

an injection. Therefore we have 542 = dimCO(V10)SL2
24 /j2O(V10)SL2

22 . It follows
that the ideal generated by the invariants of degrees 4, 6, 8, 9, 10, 14, together
with j2, contains all of O(V10)SL2

24 , so that no invariants of degree 12 are needed
to de�ne the nullcone (since their squares are in O(V10)SL2

24 , and they themselves
are in the radical).

With only j14,1 + j14,2 instead of all invariants of degree 14 in the set of
generators of the ideal, one �nds full dimension 1148 for the graded part of
degree 28, so this single invariant of degree 14 su�ces.

With only j10,1 instead of all invariants of degree 10, one �nds full dimension
221 in degree 20, so this single invariant of degree 10 su�ces.

With only j9,1 instead of all invariants of degree 9, one �nds full dimension
890 in degree 27, so this single invariant of degree 9 su�ces.

With only j8,1 instead of all invariants of degree 8, one �nds full dimension
2279 in degree 32, so this single invariant of degree 8 su�ces.

That only leaves the invariants of degree 6. After some work it turned out
that with only j6,1 and j6,2 one �nds full dimension 37892 in degree 54, so
these su�ce, and we have constructed the promised homogeneous system of
parameters.

Proposition 4.9.3. The algebra of invariants of the binary decimic is generated
by 106 invariants. The nonzero numbers di of basic invariants of degree i are

i 2 4 6 8 9 10 11 12 13 14 15 16 17 18 19 21
di 1 1 4 5 5 8 8 12 15 13 19 5 5 1 2 2

Proof. The Poincaré series of O(V10)SL2 is

P (t) = a(t)/(1− t2)(1− t4)(1− t6)2(1− t8)(1− t9)(1− t10)(1− t14)

where

a(t) = 1 + 2t6 + 4t8 + 4t9 + 7t10 + 8t11 + 15t12 + 15t13 + 20t14 + 27t15+

29t16 + 35t17 + 40t18 + 44t19 + 47t20 + 55t21 + 52t22 + 57t23 + 56t24+

57t25 + 52t26 + 55t27 + 47t28 + 44t29 + 40t30 + 35t31 + 29t32 + 27t33+

20t34 + 15t35 + 15t36 + 8t37 + 7t38 + 4t39 + 4t40 + 2t42 + t48,
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so that

P (t) = 1 + t2 + 2t4 + 6t6 + 12t8 + 5t9 + 24t10 + 13t11 + 52t12 + 33t13 + 97t14+

80t15 + 177t16 + 160t17 + 319t18 + 301t19 + 540t20 + 547t21 + 887t22+

926t23 + 1429t24 + 1512t25 + 2219t26 + 2402t27 + 3367t28 + 3681t29+

5015t30 + 5502t31 + 7294t32 + 8064t33 + 10419t34 + 11550t35+

14664t36 + 16253t37 + 20287t38 + 22531t39 + 27682t40 + 30738t41+

37319t42 + 41378t43 + 49671t44 + 55060t45 + 65390t46 + 72391t47+

85250t48 + · · ·
We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generating invariants is 48. Up to
degree 21 we found the following generators:

deg generators

2 j2 = (f, f)10,

4 j4 = (c1, c1)4,

6
j6,1 = (c5, c5)6, j6,2 = (c6, c6)2,

j6,3 = (c15, c2)8, j6,4 = (c10, c1)4,

8

j8,1 = (c1, c8)4, j8,2 = (c7, c7)4,

j8,3 = (c12, c7)4, j8,4 = (c10, c11)4,

j8,5 = (c11, c11)4,

9

j9,1 = (c19, c21)8, j9,2 = (c20, c22)16,

j9,3 = (c21, c1c2)16, j9,4 = ((c5, c4)1, c2c3)20,

j9,5 = ((c6, c4)1, c22)16,

10

j10,1 = (c16, c21)8, j10,2 = (c9, c7)4,

j10,3 = (c7, c26)4, j10,4 = (c9, c12)4,

j10,5 = ((c23, c22)6, c2)8, j10,6 = (c8c5, f)10,

j10,7 = (((c1, c3)2, c17)12, c1)4, j10,8 = (((c1, c3)2, c18)8, c4)16,

11

j11,1 = ((c19, c21)4, c2)8, j11,2 = ((c19, c21)2, c3)12,

j11,3 = (c19c21, c4)16, j11,4 = ((c20, c22)14, c1)4,

j11,5 = ((c20, c22)12, c2)8, j11,6 = ((c20, c22)10, c3)12,

j11,7 = ((c20, c22)8, c4)16, j11,8 = ((c21, c1c2)10, c1)4,

12

j12,1 = (c8, c8)4, j12,2 = (c25, c31)12,

j12,3 = (c25, c7)4, j12,4 = ((c16, c21)6, c1)4,

j12,5 = (c24, c1)4, j12,6 = ((c16, c21)4, c2)8,

j12,7 = ((c16, c21)2, c3)12, j12,8 = (c16c21, c4)16,

j12,9 = ((c7, c26)2, c1)4, j12,10 = (c7c26, c2)8,

j12,11 = ((c9, c12)2, c1)4, j12,12 = (((c23, c22)6, c2)6, c1)4,

13

j13,1 = (((c19, c21)4, c2)6, c1)4, j13,2 = (((c19, c21)4, c2)4, c2)8,

j13,3 = (((c19, c21)4, c2)2, c3)12, j13,4 = (((c19, c21)2, c3)10, c1)4,

j13,5 = (((c19, c21)2, c3)8, c2)8, j13,6 = (((c19, c21)2, c3)6, c3)12,

j13,7 = (((c20, c22)14, c1)2, c1)4, j13,8 = (c1 · (c20, c22)14, c2)8,

j13,9 = (((c20, c22)12, c2)6, c1)4, j13,10 = (((c20, c22)12, c2)4, c2)8,

j13,11 = (((c20, c22)12, c2)2, c3)12, j13,12 = (((c20, c22)10, c3)10, c1)4,

j13,13 = (((c20, c22)10, c3)8, c2)8, j13,14 = (((c20, c22)10, c3)6, c3)12,

j13,15 = (((c20, c22)8, c4)14, c1)4,
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deg generators

14

j14,1 = (c25, c9)4, j14,2 = (c210, c16)8,

j14,3 = ((c8, c8)2, c1)4, j14,4 = (c28, c2)8,

j14,5 = ((c25, c31)10, c1)4, j14,6 = ((c25, c31)8, c2)8,

j14,7 = ((c25, c31)6, c3)12, j14,8 = ((c25, c31)4, c4)16,

j14,9 = (c1 · (c16, c21)6, c2)8, j14,10 = ((c24, c1)2, c1)4,

j14,11 = (c1c24, c2)8, j14,12 = (((c16, c21)4, c2)6, c1)4,

j14,13 = (((c16, c21)4, c2)4, c2)8,

15

j15,1 = ((((c19, c21)4, c2)6, c1)2, c1)4, j15,2 = (c1 · (c19, c21)4, c2)6, c2)8,

j15,3 = ((((c19, c21)4, c2)4, c2)6, c1)4, j15,4 = ((((c19, c21)4, c2)4, c2)4, c2)8,

j15,5 = ((((c19, c21)4, c2)4, c2)2, c3)12, j15,6 = ((((c19, c21)4, c2)2, c3)10, c1)4,

j15,7 = ((((c19, c21)4, c2)2, c3)8, c2)8, j15,8 = ((((c19, c21)4, c2)2, c3)6, c3)12,

j15,9 = ((((c19, c21)2, c3)10, c1)2, c1)4, j15,10 = (c1 · ((c19, c21)2, c3)10, c2)8,

j15,11 = ((((c19, c21)2, c3)8, c2)6, c1)4, j15,12 = ((((c19, c21)2, c3)8, c2)4, c2)8,

j15,13 = ((((c19, c21)2, c3)8, c2)2, c3)12, j15,14 = (c1 · ((c20, c22)14, c1)2, c2)8,

j15,15 = ((((c20, c22)12, c2)6, c1)2, c1)4, j15,16 = ((c1 · (c20, c22)14, c2)6, c1)4,

j15,17 = ((c1 · (c20, c22)14, c2)4, c2)8, j15,18 = ((c1 · (c20, c22)14, c2)2, c3)12,

j15,19 = ((((c20, c22)12, c2)2, c3)8, c2)8,

16

j16,1 = ((c25, c9)2, c1)4, j16,2 = (c9c25, c2)8,

j16,3 = (((c8, c8)2, c1)2, c1)4, j16,4 = ((c28, c2)6, c1)4,

j16,5 = (((c25, c31)8, c2)6, c1)4,

17

j17,1 = ((c1 · ((c19, c21)4, c2)6, c2)6, c1)4,

j17,2 = (((((c19, c21)4, c2)4, c2)2, c3)10, c1)4,

j17,3 = (((((c19, c21)4, c2)2, c3)10, c1)2, c1)4,

j17,4 = (((((c20, c22)12, c2)2, c3)8, c2)4, c2)8,

j17,5 = (((c1 · (c20, c22)14, c2)2, c3)8, c2)8,

18 j18 = (c4 · (c25, c31)4, (f2, f2)4)32,

19
j19,1 = (c3 · (((c19, c21)4, c2)2, c3)6, (f2, f2)8)24,

j19,2 = (c24 · (f, (((f2, c4)8, f)5, f)10)8, c2)8,

21 j21,1 = ((f, c25)1, c37)12, j21,2 = (((((f, c310)8, f)4, f)6, c19)2, f)10.

Then we prove that no generators are needed in degrees 4, 6, 8, 9, . . . , 40, 42, 48,
by showing that for each i ∈ {4, 6, 8, 9, . . . , 40, 42, 48} the vector space O(V SL2

10 )i
is spanned by monomials of degree i generated by the 106 invariants found in
degrees ≤ 21. The required computations for i ≤ 26 can be seen in Chap. A.4.
The computations in degrees ≥ 27 were performed by A.E. Brouwer, with his
own software ([BP10b]).



Chapter 5

Invariants of several forms

In this chapter we review classical results regarding the invariants and the co-
variants of Vn1 ⊕ . . .⊕ Vnp , with p ≥ 2.

Most of the cases that we treat in this chapter were considered in the nine-
teenth century as well. We certify the �classical� results (i.e. obtained in
the nineteenth century) with our computations and correct those results that
turned out to be wrong. Table 5.1 contains results of computations made in
the nineteenth century (the underlined entries are results that in the �rst place
turned out to be false and were later corrected). In this chapter we concen-
trate on these cases and correct a result of Winter [Win80] regarding the co-
variants of V2 ⊕ V5 (see Chap. 5.16) and results of Gundel�nger [Gun69] and
Sylvester [Sy78b, Sy78c, Sy78d] regarding the covariants of V3 ⊕ V4 (see Chap.
5.19; joint work with Brouwer [BP12]).

Further, we give a set of generating invariants of mV1 ⊕ nV2 with m ≥ 2
and n ≥ 3 (see Chap. 5.2). Using results of Peano [Pea82], Young [You99] and
Kraft & Weyman [KW99], we give a set of generating invariants of mV1 ⊕ nV3

with m ≥ 2 and n ≥ 2 (see Chap. 5.3) and a set of generating invariants of
mV1 ⊕ nV4 with m ≥ 2 and n ≥ 5 (see Chap. 5.4).

For the cases considered in the coming sections, we give systems of parame-
ters or, in some of them, only the degrees of a system of parameters, and a set
of generators of their invariants. Table 5.2 gives an overview on the degrees of
systems of parameters (hsop) in the cases that we consider. As a remark, not
all these systems of parameters are multihomogeneous. In fact, such multiho-
mogeneous hsop only exist in few cases:

Proposition 5.0.4. (Brion [Bri82]) Consider V an SL2-module and O(V )SL2

the algebra of invariants of V . There exist multihomogeneous systems of param-
eters of O(V )SL2 i� V is one of the following modules: 2V1, V1 ⊕ V2, V1 ⊕ V3,
V1 ⊕ V4, 2V2, V2 ⊕ V3, V2 ⊕ V4, 2V3, 2V4, 3V1, 2V1 ⊕ V2, V1 ⊕ 2V2, or 3V2.

Whenever the classics looked for the generators of the covariants of V ⊕ W ,
with V and W two SL2-modules, they used the information they had about the

72
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module # generators of invariants # generators of covariants

V3 1 ([Gor87]) 4 ([Gor87])

V4 2 ([Gor87]) 5 ([Gor87])

V5 4 ([Gor87]) 23 ([Gor87])

V6 5 ([Gor87]) 26 ([Gor87])

V7 33 ([Gal88]), 30 ([DL86]) 153 ([Gal88]), 124 ([Sy79b]),

147 ([Crö02, Bed09], Chap. 5.7)

V8 12 ([Gal80]), 9 ([Gal80, Shi67]) 96,67,70 ([Gal80])

69 ([Sy79b, BB08], Chap. 5.8)

V2 ⊕ V3 5 ([Bes69, Gor87]) 15 ([Bes69, Gor87])

V2 ⊕ V4 6 ([GY03]) 18 ([GY03])

V2 ⊕ V5 29 ( [Win80]) 94 ([Win80]), 92 (Chap. 5.16)

V2 ⊕ V6 27 ([Gal74]) 99 ([Gal74])

2V3 7 ([Gor87, Pea82]) 26 ([Gor87, Pea82])

V3 ⊕ V4 20 ([Gun69]) 64 ([Gun69]), 61 ([Sy78b, Sy78c, Sy78d]),

63 ([BP12], Chap. 5.19)

2V4 8 ([You99]) 28 ([You99])

3V3 28 ([Gal94]) 98 ([Gal94]), 97 ([Sin05])

3V4 25 ([You99]) 103 ([You99])

4V4 80 ([You99]) 305 ([You99])

nV1
`n

2

´
([Gor69])

`n+1
2

´
([Gor69])

nV2
`n+1

2

´
+

`n
3

´
([Gor87]) n(n+ 1) +

`n
3

´
([Gor87])

Table 5.1: Cases treated in the 19th century

covariants of V and the covariants of W . The following result, due to Clebsch,
plays an important role:

Proposition 5.0.5. ([Cle72, �54],[KW99, Proposition 7]) Let V and W be
two SL2-modules whose covariants are �nitely generated. Then the covariants
of V ⊕ W are also �nitely generated. If P1, . . . , Pr are the generators of the
covariants of V , and Q1, . . . , Qs are the generators of the covariants of W , then
a �nite generating system can be chosen from the set of all transvectants [P,Q]l,
l ≥ 0, where P is a monomial in the Pi's and Q a monomial in the Qj's.

Remark 5.0.6. More precisely, a (�nite) generating system for the covariants
of V ⊕W will be given by the non-irrelevant transvectants [P,Q]l.

(A transvectant [P,Q]l is called irrelevant if there exist P1, P2, Q1, Q2 and
l1, l2 such that l = l1 + l2, P = P1 · P2, Q = Q1 · Q2, and l1 ≤ ordP1, ordQ1,
l2 ≤ ordP2, ordQ2)

Gordan and Grace & Young ([Gor75, GY03]) gave an algorithm for computing
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module hsop degrees module hsop degrees

mV1 2( ×(2m− 3)) nV2 2(×(3n− 3))

V1 ⊕ V3 4,4,4 V1 ⊕ V4 2,3,5,6

V1 ⊕ V5 4,4,6,8,12 V1 ⊕ V6 4,5,6,6,7,10

V2 ⊕ V3 2,3,4,5 V2 ⊕ V4 2,2,3,3,4

V2 ⊕ V5 3,4,5,7,8,12 V2 ⊕ V6 2,2,4,4,6,6,10

V3 ⊕ V4 2,3,4,5,6,7 2V3 2, 4(×4)

2V4 2( ×3), 3(×4) V1 ⊕ 2V3 4 (×7)

2V1 ⊕ V3 2, 4 (×4) V1 ⊕ 2V4 2,2,2,3,3,5,5,6,6

2V1 ⊕ V4 2,2,3,5,5,6,6 V1 ⊕ V2 ⊕ V3 3,3,4,4,4,5

V1 ⊕ V2 ⊕ V4 2,2,3,3,4,5,6 V1 ⊕ V3 ⊕ V4 3,4,4,5,5,6,6,7

Table 5.2: Degrees of hsop

the generators of the covariants of V2 ⊕ V . Their result will be used as well in
this chapter:

Proposition 5.0.7. (Gordan, Grace & Young [Gor75, GY03])
Consider q ∈ V2 a quadratic form and V an SL2-module whose covariants are
generated by {C1, . . . , Cλ}. The set of generators of the covariants of V2 ⊕ V
will contain q, (q, q)2, and the generators C1, . . . , Cλ. The rest of the generators
belong to one of the following three classes:

(Ci, qr)2r−1, (Ci, qr)2r, (CjCk, qr)2r,

where the orders of Cj and Ck are both odd.

Proposition 5.0.7 gives us a set of generators of the covariants of V2 ⊕ V .
However, this set might not be minimal, as some of the transvectants belonging
to these three classes could be reducible. Nevertheless, we obtain an upper
bound on the degree of the generators of the covariants of V2 ⊕ V by applying
this algorithm.

5.1 The invariants of mV1 ⊕W

Proposition 5.1.1. ([Cle72, �55], [GY03, �138A]) ConsiderW an SL2-module
with the generating covariants C1, . . . , Cp, of orders n1, . . . , np respectively.
Then, the generating covariants of V1 ⊕W are

C1, . . . , Cp, `, and {(Ci, `γ)γ}1≤γ≤ni ,

with ` ∈ V1 and i = 1, p.
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Proof. We apply Proposition 5.0.5.
The transvectants of type (Cα1

1 . . . C
αp
p , `s)γ , with s > γ, will contain a factor

`, so they can't contribute to a generating set.
We look now at transvectants of type (Cα1

1 . . . C
αp
p , `γ)γ . Suppose there exist

r, q such that αr, αq 6= 0. Then we can write

(Cα1
1 . . . Cαpp , `γ)γ = (Cr · C, `nr`γ−nr )γ ,

with nr ≤ ordCr, ord `nr and γ−nr ≤ ordC, ord `γ−nr , hence the transvectants
(Cα1

1 . . . C
αp
p , `γ)γ are irrelevant in this case. In the same way, the transvectants

(Cαii , `γ)γ , with αi > 1, are irrelevant as well, for all i = 1, p.
Therefore, the covariants of of V1 ⊕ W are generated by C1, . . . , Cp, `, and
{(Ci, `γ)γ}1≤γ≤ni with ` ∈ V1 and i = 1, p.

Proposition 5.1.2. Consider W an SL2-module with the generating covariants
C1, . . . , Cp, of orders n1, . . . , np respectively. Consider `1, . . . `m ∈ V1.
The generating invariants of mV1 ⊕W are the

invariants of W, {(`i, `j)1}i6=j and {(Ci, `γ1
1 . . . `γmm )ni}γ1+...γm=ni .

Proof. If m = 1, we apply Proposition 5.1.1 and obtain that the invariants of
V1 ⊕W are generated by {(Ci, `ni)ni}i=1,p, with ` ∈ V1 and i = 1, p and by the
invariants of W .

We look now at the case m = 2. Consider `1, `2 ∈ V1. From Proposition
5.1.1 we know that the covariants of V1 ⊕W are generated by C1, . . . , Cp, `1,
and {(Ci, `γ1)γ}1≤γ≤ni . We apply again Proposition 5.1.1 for V1⊕ (V1⊕W ) and
obtain that the covariants of 2V1 ⊕W are generated by

C1, . . . , Cp, `1, `2, (`1, `2)1, {(Ci, `γ1)γ}1≤γ≤ni , {(Ci, `
γ
2)γ}1≤γ≤ni ,

{((Ci, `γ1
1 )γ1 , `

γ2
2 )γ2}γ1+γ2≤ni .

But ((Ci, `
γ1
1 )γ1 , `

γ2
2 )γ2 = (Ci, `

γ1
1 `

γ2
2 )γ1+γ2 , hence the invariants of 2V1 ⊕W are

generated by the invariants of W , (`1, `2)1 and by {(Ci, `γ1
1 `

γ2
2 )ni}γ1+γ2=ni .

We proceed now by induction. Using the equality

((Ci, `
γ1
1 . . . `

γm−1
m−1 )γ1+...γm−1 , `

γm
m )γm = (Ci, `

γ1
1 . . . `γmm )γ1+...γm ,

it follows that the invariants ofmV1⊕W are generated by {(Ci, `j11 . . . `jmm )ni}i=1,p

with j1 + . . . jm = ni, by {(`i, `j)1}i 6=j , and by the invariants of W .

Example 5.1.1. The algebra of invariants of 2V1 ⊕ V3 is generated by 13 in-
variants. We can see this in the following way: the generating covariants of
c ∈ V3 are c, (c, c)2, (c, (c, c)2)1, and ((c, c)2, (c, c)2)2. Then, the invariants of
(`, c) ∈ V1 ⊕ V3 are generated by (c, `3)3, ((c, c)2, `2)2, ((c, (c, c)2)1, `3)3, and
((c, c)2, (c, c)2)2.
By polarization, the invariants of (`1, `2, c) ∈ 2V1 ⊕ V3 are then generated by

(c, `31)3 ((c, c)2, `
2
1)2 ((c, (c, c)2)1, `

3
1)3 ((c, c)2, (c, c)2)2 (`1, `2)1

(c, `21`2)3 ((c, c)2, `1`2)2 ((c, (c, c)2)1, `
2
1`2)3

(c, `1`
2
2)3 ((c, c)2, `

2
2)2 ((c, (c, c)2)1, `1`

2
2)3

(c, `32)3 ((c, (c, c)2)1, `
3
2)3
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One �nds in a similar way the following results (r stays for the number of the
generating invariants):

module r module r module r

2V1 ⊕ V3 13 2V1 ⊕ V4 20 3V1 ⊕ V3 30

2V1 ⊕ V2 ⊕ V3 35 2V1 ⊕ 2V4 103 3V1 ⊕ V4 63

2V1 ⊕ V2 ⊕ V4 57

Table 5.3: The number of the generating invariants

5.2 The invariants of mV1 ⊕ nV2

The cases 2V1, 3V1, 4V1, V2, 2V2, 3V2, V1 ⊕ V2, V1 ⊕ 2V2, V1 ⊕ 3V2, 2V1 ⊕ V2,
2V1⊕ 2V2, and 3V1⊕ 2V2, are classically treated in the references [Bes69, Ell95,
Gor69, Gor87, GY03, Per87]. Gordan and Kraft & Weyman [Gor87, KW99]
proved that the covariants of nV2 are generated by those of order ≤ 2 and
degree ≤ 2.

Theorem 5.2.1. (Gordan, Kraft & Weyman [Gor87, KW99]) Let q1, . . . , qn ∈
V2, with n ≥ 3. The covariants of nV2 are generated by

1) n covariants of type Cn∗⊗V2, of degree 1 and order 2; these are the forms
themselves qi, with i = 1, . . . , n;

2)
(
n+1

2

)
invariants of type S2Cn∗⊗V0, of degree 2; these are the transvectants

(qi, qj)2, with i ≤ j;

3)
(
n
2

)
covariants of type

∧2Cn∗ ⊗ V2, of degree 2 and order 2; these are the
transvectants (qi, qj)1, with i < j;

4)
(
n
3

)
invariants of type

∧3Cn∗ ⊗ V0, of degree 3; these are (qi, (qj , qk)1)2,
with i < j < k;

Theorem 5.2.2. Let `1, . . . , `m ∈ V1 and q1, . . . , qn ∈ V2, with m ≥ 2, n ≥ 3.
The invariants of mV1 ⊕ nV2 are generated by

1)
(
m
2

)
invariants of type

∧2Cm∗⊗V0, of degree 2; these are the transvectants
(`i, `j)1, with i < j;

2)
(
n+1

2

)
invariants of type S2Cn∗⊗V0, of degree 2; these are the transvectants

(qi, qj)2, with i ≤ j;

3)
(
n
3

)
invariants of type

∧3Cn∗⊗V0, of degree 3; these are the transvectants
(qi, (qj , qk)1)2, with i < j < k;

4) n
(
m+1

2

)
invariants of type S2Cm∗ ⊗ Cn∗ ⊗ V0, of degree 3; these are the

transvectants (qk, `i`j)2, with i ≤ j
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5)
(
m+1

2

)(
n
2

)
invariants of type S2Cm∗ ⊗

∧2Cn∗ ⊗ V0, of degree 4; these are
the transvectants ((qi, qj)1, `k`m)2, with i < j, k ≤ m.

Proof of Theorem 5.2.1. The covariants of q ∈ V2 are generated by q itself
and the invariant (q, q)2. We apply Proposition 5.0.7:

• if (q1, q2) ∈ 2V2, then the covariants of 2V2 are generated by q1, q2,
(q1, q2)1, (q1, q1)2, (q2, q2)2, and (q1, q2)2.

• if (q1, q2, q3) ∈ 3V2, then the covariants of 3V2 are generated by {qi}1≤i≤3,
{(qi, qj)2}1≤i≤j≤3, {(qi, qj)1}1≤i<j≤3, {(qi, (qj , qk)1)1}1≤i<j<k≤3, and re-
spectively {(qi, (qj , qk)1)2}1≤i<j<k≤3.

But, for any three quadratic forms q1, q2, q3 ∈ V2 we have

((q1, q2)1, q3)1 =
1
2
(q2(q1, q3)2 − q1(q2, q3)2).

Then, the generators (qi, (qj , qk)1)1 are super�uous. Therefore, the covariants
of 3V2 are generated by the following covariants: {qi}1≤i≤3, {(qi, qj)1}1≤i<j≤3,
{(qi, qj)2}1≤i≤j≤3, and {(qi, (qj , qk)1)2}1≤i<j<k≤3.

By induction, the covariants of nV2 are generated by the following covariants:
{qi}1≤i≤n, {(qi, qj)1}1≤i<j≤n, {(qi, qj)2}1≤i≤j≤n, and {(qi, (qj , qk)1)2}1≤i<j<k≤n.

We look now at the type of the generating covariants. We have:

O(Cn∗ ⊗ V2)1 = Cn∗ ⊗ V2,

O(Cn∗ ⊗ V2)2 =S2Cn∗ ⊗ S2V2 ⊕
∧2

Cn∗ ⊗
∧2

V2

=S2Cn∗ ⊗ (V4 ⊕ V0)⊕
∧2

Cn∗ ⊗ V2,

O(Cn∗ ⊗ V2)3 =S3Cn∗ ⊗ S3V2 ⊕ S(2,1)Cn∗ ⊗ S(2,1)V2 ⊕
∧3

Cn∗ ⊗
∧3

V2

=S3Cn∗ ⊗ (V6 ⊕ V2)⊕ S(2,1)Cn∗ ⊗ (V4 ⊕ V2)⊕
∧3

Cn∗ ⊗ V0.

(We used the program LiE [LCL92] to obtain the decompositions of SλV2.)
The generators {qi} correspond to Cn∗ ⊗ V2. There are n such generators.
The generators {(qi, qj)1} correspond to

∧2Cn∗⊗V2. There are
(
n
2

)
= dim

∧2Cn∗
such generators.
The generators {(qi, qj)2} correspond to S2Cn∗⊗V0. There are

(
n+1

2

)
= dimS2Cn∗

such generators.
The generators {(qi, (qj , qk)1)2} correspond to

∧3Cn∗ ⊗ V0. There are
(
n
3

)
=

dim
∧3Cn∗ such generators.

(We used Theorem 2.8.2 for computing these dimensions.)

Proof of Theorem 5.2.2. We apply Proposition 5.0.5 with V = mV1 and
W = nV2. The covariants of mV1 are generated by the `i themselves, and the
invariants (`i, `j)1 for i < j. The covariants of nV2 are generated by the qi
themselves, the covariants (qi, qj)1 for i ≤ j, and the invariants (qi, qj)2 for
i ≤ j and (qi, (qj , qk)1)2 for i < j < k.
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Then, the invariants of mV1 ⊕ nV2 will be generated by the generators of
O(mV1)SL2 , the generators of O(nV2)SL2 , the invariants (qk, `i`j)2 for i ≤ j,
of degree 3, and the invariants ((qi, qj)1, `k`m)2 for i < j, k ≤ m, of degree 4.
Given that (∼ is used for equalities up to a nonzero constant)

(q1 . . . qp, `1 . . . `2p)2p ∼
∑

(q1, `i1`i2)2 . . . (qp, `i2p−1`i2p)2,

there are no other irreducible invariants.
We look now at the type of the generating covariants.

Denote W = Cm∗ ⊗ V1 ⊕ Cn∗ ⊗ V2. Then:

O(W )2=S2(Cm∗ ⊗ V1)⊕ Cm∗ ⊗ V1 ⊗ Cn∗ ⊗ V2 ⊕ S2(Cn∗ ⊗ V2) =

= . . .⊕
∧2

Cm∗ ⊗ V0 ⊕ . . .⊕ S2Cn∗ ⊗ (V4 ⊕ V0)⊕ . . . ,

O(W )3=S3(Cm∗ ⊗ V1)⊕ S2(Cm∗ ⊗ V1)⊗ Cn∗ ⊗ V2 ⊕ Cm∗ ⊗ V1⊗
⊗S2(Cn∗ ⊗ V2)⊕ S3(Cn∗ ⊗ V2) =

= . . .⊕ S2Cm∗ ⊗ Cn∗ ⊗ (V4 ⊕ V0)⊕ . . .
∧3

Cn∗ ⊗ V0 ⊕ . . .

O(W )4=S4(Cm∗ ⊗ V1)⊕ S3(Cm∗ ⊗ V1)⊗ Cn∗ ⊗ V2 ⊕ S2(Cm∗ ⊗ V1)⊗
⊗S2(Cn∗ ⊗ V2)⊕ Cm∗ ⊗ V1 ⊗ S3(Cn∗ ⊗ V2)⊕ S4(Cn∗ ⊗ V2) =

= . . .⊕ S2Cm∗ ⊗
∧2

Cn∗ ⊗ (V4 ⊕ V0)⊕ . . .

(We used the program LiE [LCL92] to obtain the decompositions of SλV2 and
of SλV1.)
The generators {(`i, `j)1} correspond to

∧2Cm∗⊗V0. There are
(
m
2

)
= dim

∧2Cm∗
such generators.
The generators {(qi, qj)2} correspond to S2Cn∗⊗V0. There are

(
n+1

2

)
= dimS2Cn∗

such generators.
The generators {(qi, (qj , qk)1)2} correspond to

∧3Cn∗ ⊗ V0. There are
(
n
3

)
=

dim
∧3Cn∗ such generators.

The generators (qk, `i`j)2 correspond to S2Cm∗⊗Cn∗⊗V0. There are n
(
m+1

2

)
=

dim(S2Cm∗ ⊗ Cn∗) such generators.
The generators ((qi, qj)1, `k`m)2 correspond to S2Cm∗⊗

∧2Cn∗⊗V0. There are(
m+1

2

)(
n
2

)
= dim(S2Cm∗ ⊗

∧2Cn∗) such generators.
(We used Theorem 2.8.2 for computing these dimensions.)

The following result proved by Brouwer ([BP11]) gives the degrees of a system
of parameters of the algebra O(mV1 ⊕ nV2)SL2 :

Proposition 5.2.3. Let V = mV1 ⊕ nV2, and let I = O(V )SL2 .
If 2n+ 1 ≥ m, then I has a system of parameters consisting of m+ 2n− 2

invariants of degree 2 and m+ n− 1 invariants of degree 3.
If 2n+ 1 < m, then I has a system of parameters consisting of m+ 2n− 2

invariants of degree 2 and 3n invariants of degree 3, and m− 2n− 1 invariants
of degree 6.
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If n = 0, then I has a system of parameters consisting of 2m− 3 invariants
of degree 2.

If m = 0, then I has a system of parameters consisting of 3n− 3 invariants
of degree 2.

5.3 The invariants of mV1 ⊕ nV3

The generating invariants and covariants of V3, 2V3 [Pea82, Gor87, Ell95, GY03],
and of V1 ⊕ V3 [Ell95] can be found in the classical literature. Von Gall found
28 generating invariants of 3V3 and respectively 98 generating covariants of
3V3 [Gal94]. His result was corrected later by Sinigallia, who found 97 generating
covariants of 3V3 [Sin05]. Peano and Kraft & Weyman [Pea82, KW99] proved
that the covariants of nV3 are generated by those of order ≤ 4 and degree ≤ 6.

Theorem 5.3.1. (Peano, Kraft &Weyman [Pea82, KW99]) Consider the cubics
c1, . . . , cn ∈ V3, with n ≥ 2. The generators of the covariants of nV3 are of the
following types:

1) n covariants of type Cn∗ ⊗ V3, of degree 1; these are the cubics ci ∈ V3

themselves;

2)
(
n
2

)
covariants of type

∧2Cn∗⊗V4, of degree 2 and order 4; these are given
by the transvectants (ci, cj)1, with i 6= j;

3)
(
n+1

2

)
covariants of type S2Cn∗ ⊗ V2, of degree 2 and order 2; these are

given by the transvectants (ci, cj)2;

4)
(
n
2

)
invariants of type

∧2Cn∗ ⊗ V0, of degree 2; these are given by the
transvectants (ci, cj)3, with i 6= j;

5)
(
n+2

3

)
covariants of type S3Cn∗ ⊗ V3, of degree 3 and order 3; these are

given by the transvectants (ci, (cj , ck)2)1;

6) 2
(
n+1

3

)
covariants of type S(2,1)Cn∗ ⊗ V1, of degree 3 and order 1; these

are given by the transvectants (ci, (cj , ck)2)2;

7)
(
n+3

4

)
invariants of type S4Cn∗ ⊗ V0, of degree 4; these are given by the

transvectants ((ci, cj)2, (ck, cl)2)2;

8) 3
(
n+2

4

)
covariants of type S(3,1)Cn∗ ⊗ V2, of degree 4 and order 2; these

are given by the transvectants ((ci, cj)2, (ck, cl)2)1;

9) 4
(
n+3

5

)
covariants of type S(4,1)Cn∗ ⊗ V1, of degree 5 and order 1; these

are given by the transvectants ((ci, cj)2, (ck, (cl, cm)2)2)1.

10) 1
4

(
n+1

3

)(
n+2

3

)
invariants of type S(3,3)Cn∗⊗V0, of degree 6; these are given

by the transvectants ((ci, (cj , ck)2)2, (cl, (cm, cn)2)2)1.

(We used Theorem 2.8.2 for computing these dimensions.)
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Remark 5.3.2. Peano [Pea82] estimated correctly the number of the generating
covariants of nV3, except the number of those in degree 6. In an article from
1899, Young [You99] mentions a result �due to Peano�, which states that the
generating set of covariants of nV3 contains

(
n+4

6

)
invariants of degree 6. How-

ever, the correct number of these generators is 1
4

(
n+1

3

)(
n+2

3

)
= dimS(3,3)Cn∗.

Theorem 5.3.3. Let `1, . . . , `m ∈ V1 and c1, . . . , cn ∈ V3, with m ≥ 2, n ≥ 2.
The invariants of mV1 ⊕ nV3 are generated by

1)
(
m
2

)
invariants of type

∧2Cm∗ ⊗ V0, of degree 2; these are given by the
transvectants (`i, `j)1, with i 6= j;

2)
(
n
2

)
invariants of type

∧2Cn∗ ⊗ V0, of degree 2; these are given by the
transvectants (ci, cj)3, with i 6= j;

3) n
(
m+2

3

)
invariants of type S3Cm∗⊗Cn∗⊗ V0, of degree 4; these are given

by the transvectants {(ci, `j`k`l};

4)
(
m+1

2

)(
n+1

2

)
invariants of type S2Cm∗⊗S2Cn∗⊗V0, of degree 4; these are

given by the transvectants {((ci, cj)2, `k`l)2};

5) 2m
(
n+1

3

)
invariants of type Cm∗ ⊗ S(2,1)Cn∗ ⊗ V0, of degree 4; these are

given by the transvectants ((ci, (cj , ck)2)2, `l)1;

6)
(
n+3

4

)
invariants of type S4Cn∗ ⊗ V0, of degree 4; these are given by the

transvectants ((ci, cj)2, (ck, cl)2)2;

7)
(
m+3

4

)(
n
2

)
invariants of type S4Cm∗ ⊗

∧2Cn∗ ⊗ V0, of degree 6; these are
given by the transvectants ((ci, cj)1, `k`l`p`q)4;

8)
(
m+2

3

)(
n+2

3

)
invariants of type S3Cm∗⊗S3Cn∗⊗V0, of degree 6; these are

given by the transvectants ((ci, (cj , ck)2)1, `l`p`q)3;

9) 3
(
m+1

2

)(
n+2

4

)
invariants of type S2Cm∗⊗S(3,1)Cn∗⊗V0, of degree 6; these

are given by the transvectants (((ci, cj)2, (ck, cl)2)1, `p`q)2;

10) 4m
(
n+3

5

)
invariants of type Cm∗ ⊗ S(4,1)Cn∗ ⊗ V0, of degree 6; these are

given by the transvectants (((ci, cj)2, (ck, (cl, cp)2)2)1, `q)1;

11) 1
4

(
n+1

3

)(
n+2

3

)
invariants of type S(3,3)Cn∗⊗V0, of degree 6; these are given

by the transvectants ((ci, (cj , ck)2)2, (cl, (cm, cn)2)2)1.

Proof. We obtain the invariants of V1 ⊕ nV3 in the following way: we replace
each covariant C of nV3 of order s > 0 by the invariant (C, `s)s. These invariants
together with the invariants of nV3 will generate the invariants of V1 ⊕ nV3.
The invariants of mV1⊕nV3 are then obtained by polarisation (see Proposition
5.1.2).

We give the type of the generating covariants.
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Denote W = Cm∗ ⊗ V1 ⊕ Cn∗ ⊗ V3. Then:

O(W )2=S2(Cm∗ ⊗ V1)⊕ (Cm∗ ⊗ V1)⊗ (Cn∗ ⊗ V3)⊕ S2(Cn∗ ⊗ V3) =

= . . .⊕
∧2

Cm∗ ⊗ V0 ⊕ . . .⊕
∧2

Cn∗ ⊗ (V4 ⊕ V0)⊕ . . . ,

O(W )4=S4(Cm∗ ⊗ V1)⊕ S3(Cm∗ ⊗ V1)⊗ (Cn∗ ⊗ V3)⊕ S2(Cm∗ ⊗ V1)

⊗S2(Cn∗ ⊗ V3)⊕ (Cm∗ ⊗ V1)⊗ S3(Cn∗ ⊗ V3)⊕ S4(Cn∗ ⊗ V3)

= . . .⊕ S3Cm∗ ⊗ Cn∗ ⊗ V0 ⊕ . . .⊕ S2Cm∗ ⊗ S2Cn∗ ⊗ V0 ⊕ . . .
⊕Cm∗ ⊗ S(2,1)Cn∗ ⊗ V0 ⊕ . . .⊕ S4Cn∗ ⊗ V0 ⊕ . . . ,

O(W )6=S6(Cm∗ ⊗ V1)⊕ S5(Cm∗ ⊗ V1)⊗ (Cn∗ ⊗ V3)⊕ S4(Cm∗ ⊗ V1)

⊗S2(Cn∗ ⊗ V3)⊕ S3(Cm∗ ⊗ V1)⊗ S3(Cn∗ ⊗ V3)

⊕S2(Cm∗ ⊗ V1)⊗ S4(Cn∗ ⊗ V3)⊕ (Cm∗ ⊗ V1)⊗ S5(Cn∗ ⊗ V3)

⊕S6(Cn∗ ⊗ V3) = . . .⊕ S4Cm∗ ⊗
∧2

Cn∗ ⊗ V0 ⊕ . . .

⊕S3Cm∗ ⊗ S3Cn∗ ⊗ V0 ⊕ . . .⊕ S2Cm∗ ⊗ S(3,1)Cn∗ ⊗ V0 ⊕ . . .
⊕Cm∗ ⊗ S(4,1)Cn∗ ⊗ V0 ⊕ . . . S(3,3)Cn∗ ⊗ V0 ⊕ . . .

(We used the program LiE [LCL92] to obtain the decompositions of SλV3 and
of SλV1.)
The generators {(`i, `j)1} correspond to

∧2Cm∗⊗V0. There are
(
m
2

)
= dim

∧2Cm∗
such generators.
The generators {(ci, cj)3} correspond to

∧2Cn∗⊗V0. There are
(
n
2

)
= dim

∧2Cn∗
such generators.
The generators {(ci, `j`k`l)3} correspond to S3Cm∗ ⊗ Cn∗ ⊗ V0. There are
n
(
m+2

3

)
= dimS3Cm∗ ⊗ Cn∗ such generators.

The generators {((ci, cj)2, `k`l)2} correspond to S2Cm∗ ⊗ S2Cn∗ ⊗ V0. There
are

(
m+1

2

)(
n+1

2

)
= dimS2Cm∗ ⊗ S2Cn∗ such generators.

The generators ((ci, (cj , ck)2)2, `l)1 correspond to Cm∗ ⊗ S(2,1)Cn∗ ⊗ V0. There
are 2m

(
n+1

3

)
= dim Cm∗ ⊗ S(2,1)Cn∗ such generators.

The generators ((ci, cj)2, (ck, cl)2)2 correspond to S4Cn∗⊗V0. There are
(
n+3

4

)
=

dimS4Cn∗ such generators.
The generators ((ci, cj)1, `k`l`p`q)4 correspond to S4Cm∗ ⊗

∧2Cn∗ ⊗ V0. There
are

(
m+3

4

)(
n
2

)
= dimS4Cm∗ ⊗

∧2Cn∗ such generators.
The generators ((ci, (cj , ck)2)1, `l`p`q)3 correspond to S3Cm∗ ⊗ S3Cn∗ ⊗ V0.
There are

(
m+2

3

)(
n+2

3

)
= dimS3Cm∗ ⊗ S3Cn∗ such generators.

The generators (((ci, cj)2, (ck, cl)2)1, `p`q)2 correspond to S2Cm∗ ⊗ S(3,1)Cn∗ ⊗
V0. There are 3

(
m+1

2

)(
n+2

4

)
= dimS2Cm∗ ⊗ S(3,1)Cn∗ such generators.

The generators (((ci, cj)2, (ck, (cl, cp)2)2)1, `q)1 correspond to Cm∗⊗S(4,1)Cn∗⊗
V0. There are 4m

(
n+3

5

)
= dim Cm∗ ⊗ S(4,1)Cn∗ such generators.

The generators ((ci, (cj , ck)2)2, (cl, (cm, cn)2)2)1 correspond to S(3,3)Cn∗ ⊗ V0.
There are 1

4

(
n+1

3

)(
n+2

3

)
= dimS(3,3)Cn∗ such generators.

(We used Theorem 2.8.2 for computing these dimensions.)



CHAPTER 5. INVARIANTS OF SEVERAL FORMS 82

5.3.1 The invariants of V1 ⊕ V3

Proposition 5.3.4. The algebra of invariants of V1⊕V3 has systems of param-
eters with each of the two sequences of degrees 4, 4, 4 and 4, 4, 6.

Proof. Let ` ∈ V1 and c ∈ V3,

` = a0x+ a1y, c = b0x
3 + 3b1x2y + 3b2xy2 + b3y

3,

and consider the following invariants:

j4,1 = ((c, c)2, (c, c)2)2, j4,2 = ((c, c)2, `2)2,

j4,3 = (c, `3)3, j6 = ((c, (c, c)2)1, `3)3.

First we show that N (V1 ⊕ V3) = V(j4,1, j4,2, j4,3) = V(j4,1, j4,3, j6).
Indeed, if j4,1 = 0, then c is a nullform, and without loss of generality we can
suppose x2 | c, i.e. b3 = b2 = 0. Then

j4,2∼ a2
1b

2
1, j6∼ a3

1b
3
1,

j4,3 = a2
1(a1b0 − 3a0b1),

where ∼ denotes equalities up to a nonzero constant. If a1 = 0, then ` ∼ x and
it follows that (`, c) ∈ N (V1⊕V3). If a1 6= 0, then we get b1 = b0 = 0, and again
(`, c) ∈ N (V1 ⊕ V3).
We proved that N (V1 ⊕ V3) = V(j4,1, j4,2, j4,3) = V(j4,1, j4,3, j6). From Propo-
sition 2.7.1 it follows that {j4,1, j4,2, j4,3} and {j4,1, j4,3, j6} are two systems of
parameters of O(V1 ⊕ V3)SL2 .

Let ` ∈ V1 and c ∈ V3. The generating invariants of V1 ⊕ V3 are:

deg generators

4
((c, c)2, (c, c)2)2 ((c, c)2, `2)2

(c, `3)3

6 ((c, (c, c)2)1, `3)3

5.3.2 The invariants of 2V3

Let c1, c2 ∈ V3.

Proposition 5.3.5. The algebra of invariants of 2V3 has systems of parameters
of degrees 2, 4, 4, 4, 4.

Proof. We apply Dixmier's criterion (Proposition 2.7.5). First we show that
[4] = 5. Indeed, if all invariants of degree 4 vanish, then (c1, c2) ∈ N (2V3):
these invariants are the polarizations of ((c, c)2, (c, c)2)2 with c ∈ V3. Because
((c, c)2, (c, c)2)2 de�nes the nullcone of N (V3), it follows that its polarizations
de�ne the nullcone of 2V3 (see Theorem 2.6.1). Hence [4] = 5. Because [2] ≥ 1,
if follows that O(2V3)SL2 has a system of parameters of degrees 2, 4, 4, 4, 4.
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The generating invariants of 2V3 are:

deg generators

2 (c1, c2)3

4

((c1, c1)2, (c1, c1)2)2 ((c2, c2)2, (c2, c2)2)2

((c1, c1)2, (c2, c2)2)2 ((c1, c1)2, (c1, c2)2)2

((c2, c2)2, (c1, c2)2)2

6 ((c1, (c1, c2)2)2, (c2, (c1, c2)2)2)1

5.3.3 The invariants of V1 ⊕ 2V3

Let ` ∈ V1 and c1, c2 ∈ V3.

Proposition 5.3.6. The algebra of invariants of V1 ⊕ 2V3 has systems of pa-
rameters with each of the two sequences of degrees 2(×1), 4(×6) and 4(×7) re-
spectively.

Proof. We apply Dixmier's criterion (Proposition 2.7.5). From Propositions
5.3.4 and 5.3.5 it follows that if all invariants of degree 4 vanish, then (`, c1, c2) ∈
N (V1 ⊕ 2V3). Then, we have [4] = 7, which implies that O(V1 ⊕ 2V3)SL2 has a
system of parameters of degrees 4(×7). Because [2] ≥ 1, if follows that there is
also a system of parameters of O(V1 ⊕ 2V3)SL2 of degrees 2(×1), 4(×6).

The generating invariants of V1 ⊕ 2V3 are:

deg generators

2 (c1, c2)3

4

((c1, c1)2, (c1, c1)2)2 ((c2, c2)2, (c2, c2)2)2

((c1, c1)2, (c2, c2)2)2 ((c1, c1)2, (c1, c2)2)2

((c2, c2)2, (c1, c2)2)2 ((c1, c1)2, `2)2

((c2, c2)2, `2)2 ((c1, c2)2, `2)2

(c1, `3)3 (c2, `3)3

((c1, (c1, c2)2)2, `)1 ((c2, (c1, c2)2)2, `)1

6

((c1, (c1, c2)2)2, (c2, (c1, c2)2)2)1 ((c1, (c1, c1)2)1, `3)3

((c1, (c2, c2)2)1, `3)3 ((c1, (c1, c2)2)1, `3)3

((c2, (c2, c2)2)1, `3)3 ((c1, c1)2, (c2, c2)2)1, `2)2

((c1, c1)2, (c1, c2)2)1, `2)2 ((c2, c2)2, (c1, c2)2)1, `2)2

((c1, c2)1, `4)4 (((c1, c1)2, (c1, (c2, c2)2)2)1, `)1

(((c1, c1)2, (c1, (c1, c2)2)2)1, `)1 (((c2, c2)2, (c1, (c1, c2)2)2)1, `)1

(((c2, c2)2, (c1, (c2, c2)2)2)1, `)1

5.3.4 The invariants of 2V1 ⊕ V3

Proposition 5.3.7. The algebra of invariants of 2V1 ⊕ V3 has systems of pa-
rameters of degrees 2, 4, 4, 4, 4.
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Proof. Let `1, `2 ∈ V1 and c ∈ V3,

`1 = a0x+ a1y, c = c0x
3 + 3c1x2y + 3c2xy2 + c3y

3,

`2 = b0x+ b1y.

and consider the following invariants:

j2 = (`1, `2)2, j4,1 = ((c, c)2, (c, c)2)2,

j4,2 = ((c, c)2, `21)2, j4,3 = ((c, c)2, `22)2,

j4,4 = (c, `31)3, j4,5 = (c, `32)3,

j4,6 = ((c, c)2, `1`2)2, j4,7 = (c, `21`2)3,

j4,8 = (c, `1`22)3.

We prove that {j2, j4,1, j4,2 + j4,3, j4,4 + j4,6, j4,5 + j4,6} forms a system of pa-
rameters of the algebra of invariants of 2V1 ⊕ V3.
First we show that

N (2V1 ⊕ V3) = V(j2, j4,1, j4,2 + j4,3, j4,4 + j4,6, j4,5 + j4,6).

We consider the following cases:

Case 1: `1 = 0.
In this case j4,1 = j4,3 = j4,5 = 0 implies that (`2, c) ∈ N (V1 ⊕ V3), see
Proposition 5.3.4.

Case 2: `2 = 0.
In this case j4,1 = j4,2 = j4,4 = 0 implies that (`1, c) ∈ N (V1 ⊕ V3) (the proof is
similar to Case 1).

Case 3: `1 = `2 = 0.
In this case j4,1 = 0 implies that c ∈ N (V3).

Case 4: c = 0.
In this case j2 = 0 implies that (`1, `2) ∈ N (2V1).

Case 5: `1, `2, c 6= 0.
In this case j4,1 = 0 implies that c is a nullform. Without loss of generality we
suppose x2 | c, i.e. c2 = c3 = 0. Also, j2 = 0 implies that `1 and `2 have a
common root. Suppose that this root is y, i.e. a0 = b0 = 0. Then:

j4,2 + j4,3 ∼ c21(a2
1 + b21),

j4,4 + j4,6 = a1(a2
1c0 − 2b1c21),

j4,5 + j4,6 = b1(b21c0 − 2a1c
2
1),

If c1 = 0, it follows either c0 = 0, or a1 = b1 = 0, which both contradict the
assumption `1, `2, c 6= 0. If c1 6= 0, then we get a1 = −b1, which together with
a2
1 + b21 = 0 implies a1 = b1 = 0, and contradicts the assumption `1, `2 6= 0.
Therefore, N (2V1 ⊕ V3) = V(j2, j4,1, j4,2 + j4,3, j4,4 + j4,6, j4,5 + j4,6). From

Proposition 2.7.1 it follows that {j2, j4,1, j4,2 + j4,3, j4,4 + j4,6, j4,5 + j4,6} is a
system of parameters of O(2V1 ⊕ V3)SL2 .
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Let `1, `2 ∈ V1 and c ∈ V3. The generating invariants of 2V1 ⊕ V3 are:

deg generators

2 (`1, `2)3

4

((c, c)2, (c, c)2)2 ((c, c)2, `21)2

((c, c)2, `22)2 ((c, c)2, `1`2)2

(c, `31)3 (c, `32)3

(c, `21`2)3 (c, `1`22)3

6
((c, (c, c)2)1, `31)3 ((c, (c, c)2)1, `21`2)3

((c, (c, c)2)1, `1`22)3 ((c, (c, c)2)1, `32)3

5.4 The invariants of mV1 ⊕ nV4

The generating invariants and covariants of 2V4, 3V4 [Ber77, You99] and of
V1 ⊕ V4 [Ell95] can be found in the classical literature. Young and Kraft &
Weyman [You99, KW99] proved that the covariants of nV4 are generated by
those of order ≤ 6 and degree ≤ 6.

Theorem 5.4.1. (Young, Kraft & Weyman [You99, KW99]) The generating
covariants of nV4, n ≥ 2, are:

1) n covariants of type Cn∗ ⊗ V4, of degree 1 and order 4; these are the
quartics qi ∈ V4 themselves;

2)
(
n+1

2

)
invariants of type S2Cn∗ ⊗ V0, of degree 2; these are given by the

transvectants (qi, qj)4;

3)
(
n
2

)
covariants of type

∧2Cn∗⊗V2, of degree 2 and order 2; these are given
by the transvectants (qi, qj)3, with i 6= j;

4)
(
n+1

2

)
covariants of type S2Cn∗ ⊗ V4, of degree 2 and order 4; these are

given by the transvectants (qi, qj)2;

5)
(
n
2

)
covariants of type

∧2Cn∗⊗V6, of degree 2 and order 6; these are given
by the transvectants (qi, qj)1, with i 6= j;

6)
(
n+2

3

)
invariants of type S3Cn∗ ⊗ V0, of degree 3; these are given by the

transvectants (qi, (qj , qk)2)4;

7)
(
n
3

)
+2
(
n+1

3

)
covariants of type (S(2,1)Cn∗⊕

∧3Cn∗)⊗V2, of degree 3 and
order 2;

8) 2
(
n+1

3

)
covariants of type S(2,1)Cn∗ ⊗ V4, of degree 3 and order 4;

9)
(
n+2

3

)
covariants of type S3Cn∗ ⊗ V6, of degree 3 and order 6;

10)
(
n+1

4

)
+
(
n+2

4

)
invariants of type S(2,2)Cn∗ ⊗ V0, of degree 4;

11) 3
(
n+2

4

)
+3
(
n+1

4

)
covariants of type (S(3,1)Cn∗⊕S(2,1,1)Cn∗)⊗V2, of degree

4 and order 2;
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12) 3
(
n+1

4

)
covariants of type S(2,1,1)Cn∗ ⊗ V4, of degree 4 and order 4;

13)
(
n
5

)
+ 2
(
n+1

5

)
+ 3
(
n+2

5

)
invariants of type (S(2,2,1)Cn∗ ⊕

∧5Cn∗) ⊗ V0, of
degree 5;

14) 3
(
n+2

5

)
+ 2
(
n+3

5

)
covariants of type S(3,2)Cn∗ ⊗ V2, of degree 5 and order

2;

15) 10
(
n+2

6

)
invariants of type S(3,1,1,1)Cn∗ ⊗ V0, of degree 6.

(We used Theorem 2.8.2 for computing these dimensions.)

Theorem 5.4.2. The generating invariants of mV1 ⊕ nV4, m ≥ 2, n ≥ 2, are:

1)
(
m
2

)
invariants of type

∧2Cm∗ ⊗ V0, of degree 2;

2)
(
n+1

2

)
invariants of type S2Cn∗ ⊗ V0, of degree 2;

3)
(
n+2

3

)
invariants of type S3Cn∗ ⊗ V0, of degree 3;

4)
(
m+1

2

)(
n
2

)
invariants of type S2Cm∗ ⊗

∧2Cn∗ ⊗ V0, of degree 4;

5)
(
n+1

4

)
+
(
n+2

4

)
invariants of type S(2,2)Cn∗ ⊗ V0, of degree 4;

6) n
(
m+3

4

)
invariants of type S4Cm∗ ⊗ Cn∗ ⊗ V0, of degree 5;

7)
(
m+1

2

)
[
(
n
3

)
+2
(
n+1

3

)
] invariants of type S2Cm∗⊗ (S(2,1)Cn∗⊕

∧3Cn∗)⊗V0,
of degree 5;

8)
(
n
5

)
+ 2
(
n+1

5

)
+ 3
(
n+2

5

)
invariants of type (S(2,2,1)Cn∗ ⊕

∧5Cn∗) ⊗ V0, of
degree 5;

9)
(
m+3

4

)(
n+1

2

)
invariants of type S4Cm∗ ⊗ S2Cn∗ ⊗ V0, of degree 6;

10) 3
(
m+1

2

)
(
(
n+2

4

)
+
(
n+1

4

)
) invariants of type S2Cm∗⊗ (S(3,1)Cn∗⊕S(2,1,1))⊗

V0, of degree 6;

11) 10
(
n+2

6

)
invariants of type S(3,1,1,1)Cn∗ ⊗ V0, of degree 6;

12) 2
(
m+3

4

)(
n+1

3

)
invariants of type S4Cm∗ ⊗ S(2,1)Cn∗ ⊗ V0, of degree 7;

13)
(
m+1

2

)
[3
(
n+2

5

)
+ 2

(
n+3

5

)
] covariants of type S2Cm∗ ⊗ S(3,2)Cn∗ ⊗ V0, of

degree 7;

14)
(
m+5

6

)(
n
2

)
invariants of type S6Cm∗ ⊗

∧2Cn∗ ⊗ V0, of degree 8;

15) 3
(
m+3

4

)(
n+1

4

)
invariants of type S4Cm∗ ⊗ S(2,1,1)Cn∗ ⊗ V0, of degree 8;

16)
(
m+5

6

)(
n+2

3

)
invariants of type S6Cm∗ ⊗ S3Cn∗ ⊗ V6, of degree 9.

(We used Theorem 2.8.2 for computing these dimensions.)
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Proof. We obtain the invariants of V1 ⊕ nV4 in the following way: we replace
each covariant C of nV4 of order s > 1 by the invariant (C, `s)s. These invariants
together with the invariants of nV4 will generate the invariants of V1 ⊕ nV4.
By polarization we obtain now the invariants of mV1 ⊕ nV4 (see Proposition
5.1.2).

5.4.1 The invariants of V1 ⊕ V4

Proposition 5.4.3. The algebra invariants of V1⊕V4 has systems of parameters
of degrees 2, 3, 5, 6.

Proof. Let ` ∈ V1 and q ∈ V4,

` = a0x+ a1y, q = b0x
4 + 4b1x3y + . . . 4b3xy3 + b4y

4,

and consider the following invariants:

j2 = (q, q)4, j3 = (q, (q, q)2)4,

j5 = (q, `4)4, j6 = ((q, q)2, `4)4.

We �rst show that
N (V1 ⊕ V4) = V(j2, j3, j5, j6).

Indeed, if j2 = j3 = 0, then q is a nullform, and without loss of generality we
can suppose x3 | q, i.e. b2 = b3 = b4 = 0. Then j6 ∼ a4

1b
2
1, where ∼ denotes

equalities up to a nonzero constant. If a1 = 0, then ` ∼ x and it follows that
(`, q) ∈ N (V1 ⊕ V4). If a1 6= 0, then we have b1 = 0, which implies j5 ∼ a4

1b0,
and we obtain b0 = 0.Hence q = 0 and, again, (`, q) ∈ N (V1 ⊕ V4).
We proved that N (V1⊕V4) = V(j2, j3, j5, j6). From Proposition 2.7.1 it follows
that {j2, j3, j5, j6} is a system of parameters of O(V1 ⊕ V4)SL2 .

Let ` ∈ V1 and q ∈ V4. The generating invariants of V1 ⊕ V4 are:

deg generators

2 (q, q)4

3 (q, (q, q)2)4

5 (q, `4)4

6 ((q, q)2, `4)4

9 ((q, (q, q)2)1, `6)6

5.4.2 The invariants of 2V4

Proposition 5.4.4. The algebra of invariants of 2V4 has systems of parameters
of degrees 2(×3), 3(×4).
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Proof. Let q1, q2 ∈ V4. Consider the following invariants:

j2,1 = (q1, q1)4, j2,2 = (q2, q2)4,
j2,3 = (q1, q2)4, j3,1 = (q1, (q1, q1)2)4,
j3,2 = (q2, (q2, q2)2)4, j3,3 = (q1, (q1, q2)2)4,
j3,4 = (q2, (q1, q2)2)4.

In Chap. 4.3 we saw that (q, q)4 and (q, (q, q)2)4, with q ∈ V4, de�ne the nullcone
of V4. Theorem 2.6.1 implies that the polarizations of these two invariants de-
�ne the nullcone N (2V4), hence N (2V4) = V(j2,1, . . . , j2,3, j3,1, . . . , j3,4). Then,
from Proposition 2.7.1, it follows that {j2,1, . . . , j2,3, j3,1, . . . , j3,4} is a system
of parameters of O(2V4)SL2 .

Let q1, q2 ∈ V4. The generating invariants of 2V4 are:

deg generators

2
(q1, q1)4 (q2, q2)4

(q1, q2)4

3
(q1, (q1, q1)2)4 (q2, (q2, q2)2)4

(q1, (q1, q2)2)4 (q2, (q1, q2)2)4

4 ((q1, q1)2, (q2, q2)2)4

5.4.3 The invariants of V1 ⊕ 2V4

Proposition 5.4.5. The algebra of invariants of invariants of V1 ⊕ 2V4 has
systems of parameters of degrees 2(×3), 3(×2), 5(×2), 6(×2).

Proof. Let l ∈ V1, and q1, q2 ∈ V4. Consider the following invariants:

j2,1 = (q1, q1)4, j2,2 = (q2, q2)4,
j2,3 = (q1, q2)4, j3,1 = (q1, (q1, q1)2)4,
j3,2 = (q2, (q2, q2)2)4, j3,3 = (q1, (q1, q2)2)4,

j3,4 = (q2, (q1, q2)2)4, j5,1 = (q1, `4)4,

j5,2 = (q2, `4)4, j6,1 = ((q1, q1)2, `4)4,

j6,2 = ((q2, q2)2, `4)4.

Propositions 5.4.3 and 5.4.4 imply that if j2,1 = . . . = j2,3 = j3,1 = . . . =
j3,4 = j5,1 = j5,2 = j6,1 = j6,2, then (`, q1, q2) ∈ N (V1 ⊕ 2V4) . A Gröbner basis
computations shows that j33,1 and j

3
3,2 are in the ideal generated by j2,1, j2,2, j2,3,

j3,3, j3,4, j5,1, j5,2, j6,1 + j23,2, j6,2 + j23,1, which implies that

N (V1 ⊕ 2V4) = V(j2,1, j2,2, j2,3, j3,3, j3,4, j5,1, j5,2, j6,1 + j23,2, j6,2 + j23,1).

From Proposition 2.7.1, it follows that these invariants form a system of param-
eters of O(V1 ⊕ 2V4)SL2 .
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Let q1, q2 ∈ V4 and ` ∈ V1. The generating invariants of V1 ⊕ 2V4 are:

deg generators

2
(q1, q1)4 (q2, q2)4

(q1, q2)4

3
(q1, (q1, q1)2)4 (q2, (q2, q2)2)4

(q1, (q1, q2)2)4 (q2, (q1, q2)2)4

4 ((q1, q1)2, (q2, q2)2)4 ((q1, q2)3, `2)2

5
(q1, `4)4 (q2, `4)4

((q1, (q1, q2)1)4, `2)2 ((q2, (q1, q2)1)4, `2)2

6

((q1, q1)2, `4)4 ((q2, q2)2, `4)4

((q1, q2)2, `4)4 (((q1, q1)2, (q2, q2)2)3, `2)2

(((q1, q1)2, (q1, q2)2)3, `2)2 (((q1, q2)2, (q2, q2)2)3, `2)2

7
((q1, (q1, q2)2)2, `4)4 ((q2, (q1, q2)2)2, `4)4

(((q1, (q1, q2)2)2, (q1, q2)2)3, `2)2 (((q2, (q1, q2)2)2, (q1, q2)2)3, `2)2

8 ((q1, q2)1, `6)6

9
((q1, (q1, q1)2)1, `6)6 ((q2, (q2, q2)2)1, `6)6

((q1, (q1, q2)2)1, `6)6 ((q2, (q1, q2)2)1, `6)6

5.4.4 The invariants of 2V1 ⊕ V4

Proposition 5.4.6. The algebra of invariants of 2V1 ⊕ V4 has systems of pa-
rameters of degrees 2, 3, 5, 5, 6, 6.

Proof. Let `1, `2 ∈ V1 and q ∈ V4. Consider the following invariants:

j2,1 = (q, q)4, j2,2 = (`1, `2)1,

j3 = (q, (q, q)2)4, j5,1 = (q, `41)4,

j5,2 = (q, `42)4, j6,1 = ((q, q)2, `41)4,

j6,2 = ((q, q)2, `42)4.

We prove that {j2,1 + j2,2, j3, j5,1, j5,2, j6,1, j6,2} forms a system of parameters
of the algebra of invariants 2V1 ⊕ V4. First we show that

N (2V1 ⊕ V4) = V(j2,1, j2,2, j3, j5,1, j5,2, j6,1, j6,2).

Indeed, j2,2 = 0 implies that (`1, `2) ∈ N (2V1). Also, j2,1 = j3 = j5,1 = j5,2 =
j6,1 = j6,2 = 0 implies that (`1, q) ∈ N (V1 ⊕ V4) and (`2, q) ∈ N (V1 ⊕ V4), see
Proposition 5.4.3. Therefore, N (2V1 ⊕ V4) = V(j2,1, j2,2, j3, j5,1, j5,2, j6,1, j6,2).
A Gröbner basis computation shows that j102,1, j

10
2,2 are in the ideal generated by

j2,1 + j2,2, j3, j5,1, j5,2, j6,1, j6,2. Then, we have

N (2V1 ⊕ V4) = V(j2,1 + j2,2, j3, j5,1, j5,2, j6,1, j6,2).

From Proposition 2.7.1 it follows that these invariants form a system of param-
eters of O(2V1 ⊕ V4)SL2 .
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Let `1, `2 ∈ V1 and q ∈ V4. The generating invariants of V1 ⊕ 2V4 are:

deg generators

2 (q, q)4 (`1, `2)1

3 (q, (q, q)2)4

5

(q, `41)4 (q, `42)4

(q, `31`2)4 (q, `21`22)4

(q, `1`32)4

6

((q, q)2, `41)4 ((q, q)2, `42)4

((q, q)2, `31`2)4 ((q, q)2, `21`22)4

((q, q)2, `1`32)4

9

((q, (q, q)2)1, `61)6 ((q, (q, q)2)1, `51`2)6

((q, (q, q)2)1, `41`22)6 ((q, (q, q)2)1, `31`32)6

((q, (q, q)2)1, `21`42)6 ((q, (q, q)2)1, `1`52)6

((q, (q, q)2)1, `62)6

5.5 The invariants of V1 ⊕ V5

This case is treated in [Gor87, GY03].
Let ` ∈ V1 and q ∈ V5,

` = a0x+ a1y, q = b0x
5 + 5b1x4y + . . . 5b4xy4 + b5y

5.

Consider the covariants c1 = (q, q)4, c2 = (q, q)2, c3 = (q, c1)2, and the following
invariants:

j4,1 = (c1, c1)2, j4,2 = (c1, `2)2,

j6,1 = (q, `5)5, j8,1 = (c1, (c3, c3)2)5,

j12,1 = ((c3, c3)2, (c3, c3)2)2, j12,2 = ((q, c2)1, `9)9.

Proposition 5.5.1. The set {j4,1, j4,2, j6,1, j8,1, j12,1 + j12,2} forms a system of
parameters of the ring of invariants of V1 ⊕ V5.

Proof. We show that N (V1 ⊕ V5) = V(j4,1, j4,2, j6,1, j8,1, j12,1 + j12,2). We con-
sider the following cases:

Case 1: ` = 0.
In this case we have j4,1 = j8,1 = j12,1 = 0, which implies that q ∈ N (V5) (see
Chap. 4.4).

Case 2: ` 6= 0.
If j4,1 = 0, then c1 is a nullform.

Subcase 2.1: c1 = 0.
In this case we can suppose without loss of generality that a1 = 0. Then we
have j6,1 ∼ a5

0b5, where ∼ denotes equalities up to a nonzero constant. Because
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` 6= 0, we obtain b5 = 0. But then we have j12,1 + j12,2 ∼ a9
0b

3
4, which implies

b4 = 0. Then we have

0 = c1 = (6b22 − 8b1b3)x2 + 8b2b3xy + 6b23y
2,

which implies b3 = b2 = 0. Therefore we have ` ∼ x and x4 | q, i.e. (`, q) ∈
N (V1 ⊕ V5).

Subcase 2.2: c1 6= 0.
In this case we can suppose without loss of generality that c1 = x2. Then, we
have j4,2 = a2

1, which implies a1 = 0. Then we obtain j6,1 ∼ a5
0b5, which implies

b5 = 0. Then we have j8,1 ∼ b24, which implies b4 = 0. Then we have

x2 = c1 = (6b22 − 8b1b3)x2 + 8b2b3xy + 6b23y
2,

which implies b3 = 0. Therefore, we have ` ∼ x and x3 | q, i.e. (l, q) ∈
N (V1 ⊕ V5).
We proved that N (V1 ⊕ V5) = V(j4,1, j4,2, j6,1, j8,1, j12,1 + j12,2). From Propo-
sition 2.7.1 it follows that {j4,1, j4,2, j6,1, j8,1, j12,1 + j12,2} forms a system of
parameters of O(V1 ⊕ V5)SL2 .

Proposition 5.5.2. The algebra of invariants of V1 ⊕ V5 is generated by 23
invariants. The nonzero numbers di of basic invariants of degree i are

i 4 6 8 10 12 14 18
di 2 3 7 3 6 1 1

Proof. The Poincaré series of O(V1 ⊕ V5)SL2 is

P (t) =
a(t)

(1− t4)2(1− t6)(1− t8)(1− t12)

with

a(t) = 1 + 2t6 + 6t8 + 3t10 + 7t12 + 7t14 + 3t16 + 6t18 + 2t20 + t26

so that

P (t) = 1 + 2t4 + 3t6 + 10t8 + 9t10 + 29t12 + 31t14 + 61t16 + 75t18+

+ 125t20 + 144t22 + 229t24 + 264t26 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generators is 26. Up to degree 18
we �nd the following 23 invariants:
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deg generators

4 (c1, c1)2 (c1, `2)2

6
(q, `5)5 (c3, `3)3

((c1, c3)2, `)1

8

(c1, (c3, c3)2)5 (c2, `6)6

((c2, q)3, `5)5 ((c1, c3)1, `3)3

((c1, c2)2, `4)4 ((c21, c2)4, `2)2

((c31, q)5, `)1

10
((c1, c2)1, `6)6 ((c21, c2)3, `4)4

((c31, c2)5, `2)2

12

((c3, c3)2, (c3, c3)2)2 ((q, c2)1, `9)9

(((q, c2)1, c1)2, `7)7 (((q, c2)1, c21)4, `5)5

(((q, c2)1, c31)6, `3)3 (((q, c2)1, c41)8, `)1

14 (((q, c2)1, c51)9, `)1

18 (c71, q · (q, c2)1)14

Then we prove that no generators are needed in degrees 20 and 26 by showing
that for each i ∈ {20, 26} the vector space O(V1⊕V5)SL2

i is spanned by monomi-
als of degree i generated by the 23 invariants found in degrees ≤ 18. For details
about the computations see Chap. A.5.

5.6 The invariants of V1 ⊕ V6

This case is treated in [Gor87, GY03].
Let ` ∈ V1 and s ∈ V6,

` = a0x+ a1y, s = b0x
6 + 6b1x5y + . . . 6b5xy5 + b6y

6.

Consider the covariants c1 = (s, s)4, c2 = (s, s)2, c3 = (s, c1)4, c4 = (c1, c1)2,
c5 = (s, c1)1, and the following invariants:

j2,1 = (s, s)6, j4,1 = (c1, c1)4,

j5,1 = (c3, `2)2, j6,1 = (c1, c4)4,

j6,2 = (c1, `4)4, j7,1 = (s, `6)6,

j10,1 = (c4, c23)4, j10,2 = (c2, `8)8.

Proposition 5.6.1. The set {j4,1, j5,1, j6,1, j6,2 + j321, j7,1, j10,1 + j10,2} forms a
system of parameters of the ring of invariants of V1 ⊕ V6.

Proof. We �rst show that

N (V1 ⊕ V6) = V(j2,1, j4,1, j6,1, j6,2, j7,1, j10,1, j10,2).

Indeed, if j2,1 = j4,1 = j6,1 = j10,1 = 0, then s is a nullform (see Chap. 4.5).
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Without loss of generality suppose b6 = b5 = b4 = b3 = 0. Then, we have:

j6,2 ∼ a4
1b

2
2,

j7,1 ∼ a4
1(a

2
1b0 − 6a0a1b1 + 15a2

0b2),

j10,2∼ a6
1(a

2
1b

2
1 − a2

1b0b2 − 4a0a1b1b2 + 10a2
0b

2
2),

where ∼ denotes equalities up to a non-zero constant. If a1 = 0, then (`, s) ∈
N (V1⊕V6). If a1 6= 0, then b2 = b1 = b0 = 0, i.e. s = 0 and (`, s) ∈ N (V1⊕V6).
Now we show that

N (V1 ⊕ V6) = V(j4,1, j5,1, j6,1, j6,2 + j32,1, j7,1, j10,1 + j10,2).

Indeed, if j4,1 = j6,1 = 0, then c1 is a nullform. We consider the following cases:

Case 1: c1 = 0.
In this case we have j6,2 = j10,2 = 0, which implies j2,1 = j10,2 = 0. We
obtain j2,1 = j4,1 = j6,1 = j6,2 = j7,1 = j10,1 = j10,2 = 0, and this implies
(`, s) ∈ N (V1 ⊕ V6).

Case 2: c1 = x4.
In this case we have

x4 = c1 = 2(3b22 − 4b1b3 + b0b4)x4 + 4(2b2b3 − 3b1b4 + 4b0b5)x3y+

+ 2(8b23 − 9b2b4 + b0b6)x2y2 + 4(2b3b4 − 3b2b5 + b1b6)xy3+

+ 2(3b24 − 4b3b5 + b2b6)y4.

A Gröbner basis computation shows that b6, b5, b4, b3 are in the ideal generated
by 6b22 − 8b1b3 + 2b0b4 − 1, 2b2b3 − 3b1b4 + 4b0b5, 8b23 − 9b2b4 + b0b6, 2b3b4 −
3b2b5 + b1b6, and 3b24 − 4b3b5 + b2b6. If b6 = b5 = b4 = b3 = 0, then we obtain
j6,2 + j32,1 = a4

1, so a1 will vanish as well. Then, x | ` and x4 | s, and therefore
(`, s) ∈ N (V1 ⊕ V6).

Case 3: c1 = x3y.
In this case we have

x3y = c1 = 2(3b22 − 4b1b3 + b0b4)x4 + 4(2b2b3 − 3b1b4 + 4b0b5)x3y+

+ 2(8b23 − 9b2b4 + b0b6)x2y2 + 4(2b3b4 − 3b2b5 + b1b6)xy3+

+ 2(3b24 − 4b3b5 + b2b6)y4.

A Gröbner basis computation shows that b6, b4, b3, b2,−1+16b0b5 are in the ideal
generated by 3b22− 4b1b3 + b0b4, 4(2b2b3− 3b1b4 + 4b0b5)− 1, 8b23− 9b2b4 + b0b6,
2b3b4 − 3b2b5 + b1b6, and 3b24 − 4b3b5 + b2b6. If b6 = b4 = b3 = b2 = 0, then we
obtain j5,1 ∼ a2

0b5. Because b5 6= 0, we have a0 = 0. Then, j7,1 ∼ b31b
3
5, which

implies b1 = 0. But then, j10,1 + j10,2 ∼ b25, which leads to a contradiction.
We proved that N (V1 ⊕ V6) = V(j4,1, j5,1, j6,1, j6,2 + j32,1, j7,1, j10,1 + j10,2).

From Proposition 2.7.1 it follows that {j4,1, j5,1, j6,1, j6,2 + j321, j7,1, j10,1 + j10,2}
forms a system of parameters of the ring of invariants of V1 ⊕ V6.
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Proposition 5.6.2. The algebra of invariants of V1 ⊕ V6 is generated by 26
invariants. The nonzero numbers di of basic invariants of degree i are

i 2 4 5 6 7 8 9 10 11 12 13 14 15
di 1 1 1 2 2 1 3 4 2 3 2 2 2

Proof. The Poincaré series of O(V1 ⊕ V6)SL2 is

P (t) =
a(t)

(1− t4)(1− t5)(1− t6)2(1− t7)(1− t10)
with

a(t) = 1 + t2 + t4 + t6 + t7 + 2t8 + 4t9 + 5t10 + 6t11 + 8t12 + 7t13 + 9t14 + 9t15+

+ 7t16 + 8t17 + 6t18 + 5t19 + 4t20 + 2t21 + t22 + t23 + t25 + t27 + t29

so that

P (t) = 1 + t2 + 2t4 + t5 + 4t6 + 3t7 + 6t8 + 7t9 + 13t10 + 13t11 + 23t12 + 23t13+

+ 38t14 + 43t15 + 61t16 + 69t17 + 94t18 + 108t19 + 143t20 + 164t21+

+ 209t22 + 236t23 + . . .+ 339t25 + . . .+ 472t27 + . . .+ 641t29 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generators is 29. Up to degree 15
we �nd the following 26 invariants:

deg generators

2 (s, s)6

4 (c1, c1)4

5 (c3, `2)2

6 (c1, c4)4 (c1, `4)4

7 (s, `6)6 ((c1, c3)2, l2)2

8 ((s, c3)2, l4)4

9 ((s, c1)2, `6)6 ((c1, c3)1, `4)4

((s, c23)4, `2)2

10 (c4, c23)4 (c2, `8)8

((s, c3)1, `6)6 ((c1, c23)3, `2)2

11 (c5, `8)8 ((s, c23)3, `4)4

12 (((s, c1)2, c3)1, `6)6 (((s, c1)1, c3)2, `6)6

((s, c33)5, `2)2

13 ((c2, c3)1, `8)8 ((c5, c23)4, `4)4

14 ((c1, c2)1, l10)10 ((c5, c33)6, l2)2

15 (c5, c43)8 ((s, c2)1, `12)12

Then we prove that no generators are needed in degrees 16, . . . , 23, 25, 27, 29 by
showing that for each i ∈ {16, . . . , 23, 25, 27, 29} the vector space O(V1⊕V6)SL2

i

is spanned by monomials of degree i generated by the 26 invariants found in
degrees ≤ 15. For details about the computations see Chap. A.6.
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5.7 The covariants of V7

In 1888 von Gall [Gal88] computed a set of 153 generating covariants of V7, of
order ≤ 15 and degree ≤ 30. This set was not minimal: in 1879 Sylvester [Sy79b]
found 124 generators; about ten years ago Cröni [Crö02] found 147 generators
and this result was (independently) con�rmed by Bedratyuk [Bed09] seven years
later. However, both Cröni and Bedratyuk relied in their proofs on Gall's state-
ment, saying that no generating covariant occurs in degree > 30.

In this chapter we show that V7 has 147 generating covariants of order ≤ 15
and degree ≤ 30. We prove, independently of von Gall's work, that the maximal
degree of the generators is indeed 30. We are working with the covariants
mentioned by Gall [Gal88] in his paper, after removing the super�uous ones.
Tables 5.4 and 5.5 show the orders and the degrees of these covariants. We use
the following notations:

l = (f, f)6, κ = (f, f)4, H = (f, f)2, r = (f, κ)5, ε = (f, κ)2,
γ = (f, κ)1, T = (f,H)1, p = (κ, κ)4, ∆ = (κ, κ)2, ζ = (H,κ)1,
g = (r, κ)2, η = (r, κ)1, τ = (r, r)2, β = (p, κ)1, α = (p, r)3,
ϑ = (p, r)1, µ = (τ, κ)2, λ = (τ, κ)1, Q = (r, τ)1, ν = (r, α)1,
ϕ = (p, α)1, ρ = (τ, α)1, ψ = (ϑ, α)1, σ = (Q,α)1, ω = (ν, α)1.

0 1 2 3 4 5 6

1 - - - - - - -

2 - l - - - κ -

3 - - - r - (f, l)2 -

4 (l, l)2 - - - p, (κ, l)2 - (κ, l)1

5
- (r, l)2 - (r, l)1 - g -

(f, l2)4 (f, l2)3

6

- - τ - (κ, l2)3 - (H, l2)4
(κ, l2)4 (p, l)1 (∆, l)2
(p, l)2

7

- α - (f, l3)5 - ϑ -

(f, l3)6 (g, l)2 (ε, l2)4
(r, l2)3 (η, l)2

(g, l)1

8

(κ, l3)6 - (κ, l3)5 - µ - λ

(p, l2)4 (p, l2)3 (H, l3)6 (H, l3)5
(τ, l)2 (τ, l)1 (∆, l2)4 (β, l)2

9

- (f, l4)7 - Q - (γ, l3)6 -

(g, l2)4 (ε, l3)6 (ε, l3)5
(α, l)1 (η, l2)4

(g, l2)3
(ϑ, l)2

10
- - ν, (H, l4)8 - (H, l4)7, (β, l

2)4 - -

(∆, l3)6, (µ, l)2 (λ, l)2, (µ, l)1

11

- (ε, l4)8, (µ, l
3)6 - (γ, l4)8, (ε, l

4)7 - - -

(g, l3)5, (ϑ, l
2)4 ϕ

(Q, l)2

12

(τ, τ)2, (H, l
5)10 - (H, l5)9, (∆, l

4)7 - - - (ζ, l4)8
(∆, l4)8, (r

2, l3)6 (β, l3)6, (λ, l
2)4

(µ, l2)4, (ν, l)2 (µ, l2)3, (ν, l)1

13

- ρ, (γ, l5)10 - (ϕ, l)1 - (T, l5)10 -

(ε, l5)9, (η, l
4)7

(ϑ, l3)5, (Q, l
2)3
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0 1 2 3 4 5 6

13 (ϕ, l)2

14
(rf, l5)10, (β, l

4)8 - - - ψ, (ζ, l5)10 - -

(λ, l3)6, (rα, l
2)4

15
- (γ, l6)11 - (T, l6)12 - - -

(ϕ, l2)3, (ρ, l)1

16
(f2, l7)14 - σ, (ψ, l)2 - - - -

(α2, l)2 (ζ, l6)12
17 - ω, (T, l7)14 - - - - -

18

(ζ, l7)14, (σ, l)2 - - - - - -

(fg, l6)12, (ψ, l
2)4

(εr, l6)12, (gα, l
3)6

(rϑ, l4)8, (rQ, l
3)6

(rη, l5)10
19 - (ω, l)1 - - - - -

20 (τ, α2)2 - - - - - -

22
(ϕα, l2)4 - - - - - -

(ρα, l)2
23 - (σ, α)1 - - - - -

24 - - - - - - -

. . .

25 - - - - - - -

26 (αω, l)2 - - - - - -

27 - - - - - - -

. . .

29 - - - - - - -

30 ((σ, α)1, α)1 - - - - - -

Table 5.4: The generating covariants of V7 of orders ≤ 7

7 8 9 10 11 12 13 14 15

1 f - - - - - - - -

2 - - - H - - - - -

3 (f, l)1 - ε - γ - - - T

4 - ∆, (H, l)2 - (H, l)1 - - - ζ -

5
η - (ε, l)1 - - - (T, l)2 - -

(ε, l)2 (γ, l)2

6
- β - - - (ζ, l)2 - - -

(H, l2)3
7 (γ, l2)4, (ε, l

2)3 - - - (T, l2)4 - - - -

8 - - - (ζ, l2)4 - - - - -

9 - - (T, l3)6 - - - - - -

10 - (ζ, l3)6 - - - - - - -

11 - - - - - - - - -

. . .

31 - - - - - - - - -

Table 5.5: The generating covariants of V7 of orders ≥ 7

Proposition 5.7.1. The generating covariants of V7 are the 147 covariants
contained in Tables 5.4 and 5.5.

Proof. The generating covariants of V7 have order ≤ 15 (this follows from Propo-
sition 2.3.3).

First we show that the covariants from Tables 5.4 and 5.5 generate the
vector space of covariants of order m and degree d with m ≤ 15 and d ≤ 24
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(with Mathematica, for details about the computations see Chap. A.7).
The invariants of V7 are generated by those of degree ≤ 30 (see Chap. A.7).

If there are generators of degree > 24 and order ≥ 1, then they are of the form
C = (C1 . . . Cr, f)k, where C1, C2, . . . , Cr are covariants of lower degrees. If this
transvectant is irreducible, from Proposition 2.1.5 it follows that

(1) r = 1, or

(2) r = 2 and ordC ≤ 5, or

(3) r = 3 and ordC ≤ 4, or

(4) r = 4 and ordC ≤ 3, or

(5) r = 5 and ordC ≤ 2, or

(6) r = 6 and ordC ≤ 1.

We �rst �nd sets of generators for the covariants of V7 of order m, with m ∈
{1, 2, . . . , 5}. These �ve modules of covariants (over the invariant ring of V7)
are Cohen-Macaulay, from Proposition 2.4.3. Then, from their Poincaré series,
using Proposition 2.4.4, we know the highest degree in which we have to look
for generators. Here are the Poincaré series of these modules (we already know
from Chapter 4.6 that O(V7)SL2 has a homogeneous system of parameters of
degrees 4, 8, 12, 12, 20):

order 1:
p1(t)

(1− t4)(1− t8)(1− t12)2(1− t20)
, where

p1(t) = t5 + 3t7 + 3t9 + 5t11 + 9t13 + 9t15 + 12t17 + 15t19 + 14t21 + 17t23 + 17t25+

+ 14t27 + 15t29 + 12t31 + 9t33 + 9t35 + 5t37 + 3t39 + 3t41 + t43.

order 2:
p2(t)

(1− t4)(1− t8)(1− t12)2(1− t20)
, where

p2(t) = t2 + 3t6 + 3t8 + 7t10 + 9t12 + 13t14 + 18t16 + 19t18 + 23t20 + 23t22 + 26t24+

+ 23t26 + 23t28 + 19t30 + 18t32 + 13t34 + 9t36 + 7t38 + 3t40 + 3t42 + t46.

order 3:
p3(t)

(1− t4)(1− t8)(1− t12)2(1− t20)
, where

p3(t) = t3 + 2t5 + 3t7 + 8t9 + 11t11 + 14t13 + 21t15 + 24t17 + 28t19 + 32t21 + 32t23+

+ 32t25 + 32t27 + 28t29 + 24t31 + 21t33 + 14t35 + 11t37 + 8t39 + 3t41 + 2t43 + t45.

order 4:
p4(t)

(1− t4)(1− t8)(1− t12)2(1− t20)
, where

p4(t) = 3t4 + 2t6 + 7t8 + 11t10 + 16t12 + 22t14 + 28t16 + 33t18 + 37t20 + 42t22+

+ 38t24 + 42t26 + 37t28 + 33t30 + 28t32 + 22t34 + 16t36 + 11t38 + 7t40 + 2t42 + 3t44.

order 5:
p5(t)

(1− t4)(1− t8)(1− t12)2(1− t20)
, where

p5(t) = t3 + 3t5 + 6t7 + 10t9 + 16t11 + 23t13 + 30t15 + 37t17 + 42t19 + 47t21 + 49t23+

+ 49t25 + 47t27 + 42t29 + 37t31 + 30t33 + 23t35 + 16t37 + 10t39 + 6t41 + 3t43 + t45.
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Then C(V7)1 is generated in degree ≤ 43, C(V7)2 is generated in degree ≤ 46,
C(V7)3 is generated in degree ≤ 45, C(V7)4 is generated in degree ≤ 44, and
C(V7)5 is generated in degree ≤ 45. We prove that the covariants from Tables
5.4 and 5.5 generate the vector space of covariants of V7 of order 1 and degree
d with d ≤ 43, the vector space of covariants of V7 of order 2 and degree d with
d ≤ 46, the vector space of covariants of V7 of order 3 and degree d with d ≤ 45,
the vector space of covariants of V7 of order 4 and degree d with d ≤ 44, and
the vector space of covariants of V7 of order 5 and degree d with d ≤ 45 (with
Mathematica, for details about the computations see Chap. A.7).

Finally, there is no irreducible covariant of the form (C, f)k of degree ≥
24: there are no generators in degree 24 and any other irreducible covariant
(C1 . . . Cr, f)k, with r > 1, should have order ≤ 5 and there are none in degree
≥ 24. This concludes our proof.

5.8 The covariants of V8

In two papers published in 1880, von Gall [Gal80] computed a set of 70 gen-
erating covariants of V8, of order ≤ 18 and degree ≤ 12. This set was not
minimal: Sylvester [Sy79b] found 69 generating covariants in 1879; few years
ago Cröni [Crö02] and Bedratyuk & Bedratiuk [BB08] independently found 69
generating covariants of V8. However, both of them relied in their proofs on
Gall's statement saying that no generating covariant occurs in degree ≥ 13.

In this chapter we show that V8 has indeed 69 generating covariants of or-
ders ≤ 18 and degree ≤ 12. We prove, independently of Gall's work, that no
generator has degree ≥ 13. Table 5.6 contains the generators.

0 2 4 6 8 10 12 14 18

1 - - - - f - - - -

2 (f, f)8 - k = (f, f)6 - i = (f, f)4 - h = (f, f)2 - -

3 (f, i)8 - (f, k)4 (f, k)3 (f, k)2 (f, k)1 p = (f, i)2 θ = (f, i)1 (f, h)1

4
(k, k)4 - ∆ = (k, k)2 (i, k)3 (i, k)2 (i, k)1 (h, k)2 (h, k)1 (h, i)1

(i, k)4 (h, k)3

5

(f, k2)8 ((f, k)4, k)3 ((f, k)4, k)2 ((f, k)4, k)1 (f,∆)2 (f,∆)1 - (p, k)1 -

(f,∆)4 (f,∆)3 (p, k)3
(θ, k)4

6

(i, k2)8 ((i, k)4, k)3 ((i, k)4, k)2 ((i, k)4, k)1 (i,∆)2 (i,∆)1 - - -

(i,∆)4 (i,∆)3
τ = (k,∆)1

7

((f, k)4,∆)4 ((f, k)4,∆)3 ((f, k)4,∆)2 ((f, k)4,∆)1 - - - - -

(f, τ)6 (f, τ)5 (f, τ)4
(θ, k2)8

8
((i, k)4,∆)4 ((i, k)4,∆)3 ((i, k)4,∆)2 ((i, k)4,∆)1 - - - - -

(i, τ)6 (i, τ)5 (i, τ)4

9

(f,∆2)8 ((f, k)4, τ)4 ((f,∆)4,∆)2 - - - - - -

((f,∆)4,∆)3
((θ, k)4, k

2)8

10
(i,∆2)8 ((i, k)4, τ)4 - - - - - - -

((i,∆)4,∆)3

11
- ((f,∆)4, τ)4 - - - - - - -

(((θ, k)4, k
2)8, k)2

12 - ((i,∆)4, τ)4 - - - - - - -

13 - - - - - - - - -

Table 5.6: The generating covariants of V8
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Proposition 5.8.1. The generating covariants of V8 are the covariants con-
tained in Table 5.6.

Proof. The generating covariants of V8 have order ≤ 18 (this follows from Propo-
sition 2.3.3).

First we show that the covariants from Table 5.6 generate the vector space of
covariants of order m and degree d with m ≤ 18 and d ≤ 13 (with Mathematica,
for details about the computations see Chap. A.8).

If there are generators of degree > 13, then they are of the form C =
(C1 . . . Cr, f)k, where C1, C2, . . . , Cr are covariants of lower degrees. If this
transvectant is irreducible, from Proposition 2.1.5 it follows that

(1) r = 4 and ordC ≤ 2, or

(2) r = 3 and ordC ≤ 4, or

(3) r = 2 and ordC ≤ 6, or

(4) r = 1, or

(5) C is an invariant.

The invariants of V8 are generated by those of degree ≤ 10 (see Chap. 4.7).
This settles case (5).

We consider now the cases (1), (2) and (3). The modules of covariants of
V8 of order m, with m ∈ {2, 4, 6} are Cohen-Macaulay (as modules over the
invariant ring of V8), from Proposition 2.4.3. Then, from their Poincaré series,
using Proposition 2.4.4, we determine the highest degree in which we have to
look for generators. Here are the Poincaré series of these modules (we already
know from Chapter 4.7 that O(V8)SL2 has a homogeneous system of parameters
of degrees 2, 3, 4, 5, 6, 7):

order 2:
t5 + t6 + 2t7 + 2t8 + 3t9 + 2t10 + 2t11 + t12 + t13

(1− t2)(1− t3)(1− t4)(1− t5)(1− t6)(1− t7)
,

order 4:
p(t)

(1− t2)(1− t3)(1− t4)(1− t5)(1− t6)(1− t7)
, where

p(t) = t2 + t3 + 2t4 + 2t5 + 2t6 + 2t7 + 2t8 + t9 + 2t10 + 2t11 + 2t12 + 2t13 + 2t14+

+ t15 + t16,

order 6:
q(t)

(1− t2)(1− t3)(1− t4)(1− t5)(1− t6)(1− t7)
, where

q(t) = t3 + t4 + 2t5 + 3t6 + 4t7 + 4t8 + 5t9 + 4t10 + 4t11 + 3t12 + 2t13 + t14 + t15.

Then C(V8)2 is generated in degree ≤ 13, C(V8)4 is generated in degree ≤ 16,
and C(V8)6 is generated in degree ≤ 15. We already know that no generators
occur in degree 13, hence there are no generating covariants of V8 of order 2
and degree ≥ 13. In Chapter A.8 we show that the covariants from Table 5.6
generate the vector space of covariants of V8 of order 4 and degree d with d ≤ 16
and the vector space of covariants of V8 of order 6 and degree d with d ≤ 15
(with Mathematica, for details about the computations see Chap. A.8).
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Finally, there is no irreducible covariant of the form (C, f)k of degree ≥
13: there are no generators in degree 13 and any other irreducible covariant
(C1 . . . Cr, f)k, with r > 1, should have order ≤ 6 and there are none in degree
≥ 13. This concludes our proof.

5.9 The invariants of V2 ⊕ V3

This case is treated in [Bes69, Ell95, Gor87, GY03].
Let q ∈ V2 and c ∈ V3,

q = a0x
2 + 2a1xy + a2y

2, c = b0x
3 + 3b1x2y + 3b2xy2 + b3y

3,

and consider the following invariants:

j2 = (q, q)2, j4 = ((c, c)2, (c, c)2)2,

j3 = ((c, c)2, q)2, j5 = (c2, q3)6.

Proposition 5.9.1. The invariants j2, j3, j4, j5 form a system of parameters of
the ring of invariants of V2 ⊕ V3.

Proof. First we show that N (V2 ⊕ V3) = V(j2, j3, j4, j5).
Indeed, if j2 = j4 = 0, then q and c are nullforms. Suppose q, c 6= 0 and
(q, c) /∈ N (V2⊕V3). Without loss of generality we can then suppose q = x2 and
y2 | c. This implies j3 = −2b22 and j5 = b23. But then j3 = j5 = 0 will imply
c = 0, which contradicts our assumption c 6= 0.
We proved that N (V2⊕V3) = V(j2, j3, j4, j5). From Proposition 2.7.1 it follows
that {j2, j3, j4, j5} forms a system of parameters of O(V2 ⊕ V3)SL2 .

Proposition 5.9.2. The algebra of invariants of V2 ⊕ V3 is generated by 5
invariants. The nonzero numbers di of basic invariants of degree i are

i 2 3 4 5 7
di 1 1 1 1 1

Proof. The Poincaré series of O(V2 ⊕ V3)SL2 is

P (t)=
1 + t7

(1− t2)(1− t3)(1− t4)(1− t5)
=

=1 + t2 + t3 + 2t4 + 2t5 + 3t6 + 4t7 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generators is 7. We �nd the
following 5 invariants:

deg generators

2 (q, q)2

3 ((c, c)2, q)2

4 ((c, c)2, (c, c)2)2

5 (c2, q3)6

7 (q3, c(c, (c, c)2)1)6
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For details about the computations see Chap. A.9.

5.10 The invariants of V2 ⊕ V4

This case is treated in [GY03]
Let q ∈ V2 and f ∈ V4,

q= a0x
2 + 2a1xy + a2y

2,

f = b0x
4 + 4b1x3y + . . .+ 4b3xy3 + b4y

4.

Consider the following invariants:

j2,1 = (q, q)2, j2,2 = (f, f)4,

j3,1 = ((f, f)2, f)4, j3,2 = (f, q2)4,

j4 = ((f, f)2, q2)4.

Proposition 5.10.1. The invariants j2,1, j2,2, j3,1, j3,2, j4 form a system of pa-
rameters of the ring of invariants of V2 ⊕ V4.

Proof. We �rst show that N (V2 ⊕ V4) = V(j2,1, j2,2, j3,1, j3,2, j4).
Indeed, if j2,1 = j2,2 = j3,1 = 0, then q and f are nullforms. Suppose q, f 6= 0
and (q, f) /∈ N (V2⊕V4). Without loss of generality we can then suppose q = x2

and y3 | c. This implies j3,2 = b4 and j4 = −2b23. But then j3,2 = j4 = 0 will
imply f = 0, which contradicts our assumption f 6= 0.
We proved that N (V2 ⊕ V4) = V(j2,1, j2,2, j3,1, j3,2, j4). From Proposition 2.7.1
it follows that {j2,1, j2,2, j3,1, j3,2, j4} is a system of parameters of O(V2⊕V4)SL2 .

Proposition 5.10.2. The algebra of invariants of V2 ⊕ V4 is generated by 6
invariants. The nonzero numbers di of basic invariants of degree i are

i 2 3 4 6
di 2 2 1 1

Proof. The Poincaré series of O(V2 ⊕ V4)SL2 is

P (t)=
1 + t6

(1− t2)2(1− t3)2(1− t4)
= 1 + 2t2 + 2t3 + 4t4 + 4t5 + 10t6 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generators is 6. We �nd the
following 6 invariants:

deg generators

2 (q, q)2 (f, f)4

3 ((f, f)2, f)4 (f, q2)4

4 ((f, f)2, q2)4

6 (q3, (f, (f, f)2)1)6

For details about the computations see Chap. A.10.
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5.11 The invariants of V2 ⊕ V5

This case is treated in [Win80].
Let q ∈ V2 and f ∈ V5,

q= a0x
2 + 2a1xy + a2y

2,

f = b0x
5 + 5b1x4y + . . .+ 5b4xy4 + b5y

5.

Consider the covariants c1 = (f, f)4, c2 = (f, c1)2, c3 = (f, f)2, c4 = (f, c1)1,
c5 = (f, c3)1, and the invariants:

j2 = (q, q)2, j3 = (c1, q)2,

j4 = (c1, c1)2, j5 = (c3, q3)6,

j7,1 = (f2, q5)10, j8,1 = ((c2, c2)2, c1)2,
j12,1 = ((c2, c2)2, (c2, c2)2)2.

Proposition 5.11.1. The set {j3, j4+j22 , j5, j7,1, j8,1−j42 , j12,1} forms a system
of parameters of the ring of invariants of V2 ⊕ V5.

Proof. We �rst show that N (V2 ⊕ V5) = V(j3, j22 + j4, j5, j7,1, j8,1 − j42 , j12,1).
We consider the following cases:

Case 1: q = 0.
In this case we have j4 = j8,1 = j12,1 = 0, and this implies that f is a nullform
(see Proposition 4.4.1), i.e. (q, f) ∈ N (V2 ⊕ V5).

Case 2: q 6= 0 and q ∈ N (V2).
In this case we have j2 = 0, and then we get j4 = j8,1 = j12,1 = 0, hence f is
a nullform as well (see Proposition 4.4.1). Suppose, without loss of generality,
that x2 | q and y3 | f , i.e. a2 = a1 = b0 = b1 = b2 = 0. Then we have:

j3 ∼ a0b
2
3, j5 ∼ a3

0(b
2
4 − b3b5), j7,1 ∼ a3

0b
2
5,

where ∼ denotes equalities up to a nonzero constant. Because q 6= 0, we obtain
f = 0. Then we have (q, f) ∈ N (V2 ⊕ V5).

Case 3: q 6= 0 and q /∈ N (V2).
In this case we can suppose without loss of generality that xy | q. We obtain:

j3 ∼ a1(2b2b3 − 3b1b4 + b0b5),

j5 ∼ a3
1(8b2b3 − 7b1b4 − b0b5),

j7,1∼ a5
1(100b2b3 + 25b1b4 + b0b5),

Because we supposed q 6= 0, we get b2b3 = b1b4 = b0b5 = 0. If b5 = b4 = b3 = 0,
then f is a nullform, and then j4 = j8,1 = j12,1 = 0, which implies j2 = 0. This
contradicts our assumption q /∈ N (V2). If b5 = b4 = b2 = 0, then we have

j4 + j22 ∼ a4
1 − 24b1b33,

j8,1 − j42 ∼ a8
1 − 9b21b

6
3,
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which implies a1 = 0. This contradicts the assumption q 6= 0. If b5 = b1 = b2 =
0, then we have

j4 + j22 ∼ a4
1 + 6b0b23b4,

j8,1 − j42 ∼ a8
1 − 9b20b

4
3b

2
4 + b30b

5
4,

j12,1 ∼ b20b23(27b83 − 14b0b43b
3
4 + 3b20b

6
4),

and b20b
14
3 lies in the ideal generated by these three polynomials. Then, we get

a1 = 0, hence q = 0, which contradicts the assumption q 6= 0. If b5 = b1 = b3 =
0, then we have

j4 + j22 ∼ a4
1 − 24b32b4 − 8b0b2b24,

j8,1 − j42 ∼ a8
1 − 9b62b

2
4 + 19b0b42b

3
4 − 11b20b

2
2b

4
4 + b30b

5
4,

j12,1 ∼ b2b34(b22 − b0b4)4,

and b132 b
3
4 lies in the ideal generated by these three polynomials. Then, we get

a1 = 0, hence q = 0, which contradicts the assumption q 6= 0.
Therefore, we have N (V2 ⊕ V5) = V(j3, j22 + j4, j5, j7,1, j8,1 − j42 , j12,1). From
Proposition 2.7.1 it follows that {j3, j22+j4, j5, j7,1, j8,1−j42 , j12,1} forms a system
of parameters of O(V2 ⊕ V5)SL2 .

Proposition 5.11.2. The algebra of invariants of V2 ⊕ V5 is generated by 29
invariants. The nonzero numbers di of basic invariants of degree i are

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
di 1 1 1 1 1 3 3 3 2 3 3 2 1 1 1 1 1

Proof. The Poincaré series of O(V2 ⊕ V5)SL2 is

P (t) =
a(t)

(1− t3)(1− t4)(1− t5)(1− t7)(1− t8)(1− t12)
with

a(t) = 1 + t2 + t4 + 2t6 + 2t7 + 4t8 + 5t9 + 6t10 + 8t11 + 8t12 + 10t13 + 8t14+

+ 10t15 + 8t16 + 10t17 + 8t18 + 8t19 + 6t20 + 5t21 + 4t22 + 2t23 + 2t24+

+ t26 + t28 + t30

so that

P (t) = 1 + t2 + t3 + 2t4 + 2t5 + 4t6 + 6t7 + 9t8 + 12t9 + 17t10 + 24t11 + 33t12+

+ 42t13 + 56t14 + 73t15 + 94t16 + 117t17 + 148t18 + 183t19 + 226t20+

+ 274t21 + 332t22 + 400t23 + 479t24 + 566t25 + 669t26 + 787t27 + 920t28+

+ 1067t29 + 1238t30 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generators is 30. Up to degree 18
we �nd the following 29 invariants:
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deg generators

2 (q, q)2

3 (c1, q)2

4 (c1, c1)2

5 (c3, q3)6

6 ((c1, c3)2, q2)4

7
(f2, q5)10 ((f, c4)2, q3)6

((c21, c3)4, q)2

8
((c2, c2)2, c1)2 ((c21, c3)3, q2)4

(fc2, q4)8

9
(f · (c21, f)4, q3)6 ((c31, c3)5, q)2

(q5, fc4)10

10 (c2 · (c21, f)4, q2)4 (c2c4, q4)8

11
(fc5, q7)14 (f · (c31, f)5, q3)6

([(c21, f)4]2, q)2

12
((c2, c2)2, (c2, c2)2)2 (c2 · (c31, f)5, q2)4

(f · (c1, c5)2, q6)12)6

13 ((c31, f)5 · (c21, f)4, q)2 (f · (c21, c5)4, q5)10

14 (f · (c31, c5)6, q4)8

15 (f · (c41, c5)8, q3)6

16 (c2 · (c41, c5)8, q2)4

17 ((c21, f)4 · (c41, c5)8, q)2

18 (c71, fc5)14

Then we prove that no generators are needed in degrees 19, . . . , 24, 26, 28, 30 by
showing that for each i ∈ {19, . . . , 24, 26, 28, 30} the vector space O(V2⊕V5)SL2

i

is spanned by monomials of degree i generated by the 29 invariants found in
degrees ≤ 18. For details about the computations see Chap. A.11.

5.12 The invariants of V2 ⊕ V6

This case is treated in [Gal74].
Let q ∈ V2 and s ∈ V6,

q= a0x
2 + 2a1xy + a2y

2,

s= b0x
6 + 6b1x5y + . . .+ 6b5xy5 + b6y

6.

Consider the covariants c1 = (s, s)4, c2 = (s, s)2, c3 = (s, c1)4, c4 = (c1, c1)2,
c5 = (s, c1)1, and the invariants:

j2,1 = (s, s)6, j2,2 = (q, q)2, j4,1 = (c1, c1)4,

j4,2 = (c1, q2)4, j4,3 = (s, q3)6, j4,4 = (c3, q)2,

j6,1 = (c1, c4)4, j6,2 = (c2, q4)8, j10 = (c4, c23)4.
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Proposition 5.12.1. The set {j2,1, j2,2, j4,1 + j4,2− 2j4,4, j4,2− j4,3 + j4,4, j6,1,
j6,2, j10} forms a system of parameters of the ring of invariants of V2 ⊕ V6.

Proof. We �rst show that

N (V2 ⊕ V6) = V(j2,1, j2,2, j4,1 + j4,2 − 2j4,4, j4,2 − j4,3 + j4,4, j6,1, j6,2, j10).

If j2,2 = 0, then q is a nullform. We distinguish the following two cases.

Case 1: q = 0. In this case we obtain j2,1 = j4,1 = j6,1 = j10 = 0, which implies,
from Chap. 4.5, that s is a nullform, and then (q, s) ∈ N (V2 ⊕ V6).

Case 2: q 6= 0. In this case we can suppose without loss of generality that
q = x2.
If b6 = 0, then j6,2 ∼ b25, where ∼ denotes equalities up to a nonzero constant.
It follows that b5 = 0. Then, j4,2 − j4,3 + j4,4 + 2

5b4j2,1 ∼ b24, and it follows
that b4 = 0. Then, j2,1 ∼ b23, and it follows that b3 = 0. We obtain that
(q, s) ∈ N (V2 ⊕ V6).
If b6 6= 0, then without loss of generality we can suppose b6 = 1, and then
j6,2 ∼ b4 − b55, hence b4 = b55. We replace this in j2,1, j4,1 + j4,2 − 2j4,4, j4,2 −
j4,3+j4,4, j6,1, j10, and, using Singular [DGPS], we show that the Gröbner basis
of the ideal generated by these polynomials is 1, which leads to a contradiction.
We proved that N (V2 ⊕ V6) is the vanishing locus of the ideal generated by
the invariants j2,1, j2,2, j4,1 + j4,2 − 2j4,4, j4,2 − j4,3 + j4,4, j6,1, j6,2, j10. From
Proposition 2.7.1 it follows that these invariants form a system of parameters
of O(V2 ⊕ V6)SL2 .

Proposition 5.12.2. The algebra of invariants of V2 ⊕ V6 is generated by 27
invariants. The nonzero numbers di of basic invariants of degree i are

i 2 4 6 7 8 9 10 11 13 15
di 2 4 5 3 1 7 1 2 1 1

Proof. The Poincaré series of O(V2 ⊕ V6)SL2 is

P (t) =
a(t)

(1− t2)2(1− t4)2(1− t6)2(1− t10)

with

a(t) = 1 + 2t4 + 3t6 + 3t7 + 4t8 + 7t9 + 4t10 + 7t11 + 6t12 + 7t13 + 4t14+

+ 7t15 + 4t16 + 3t17 + 3t18 + 2t20 + t24

so that

P (t) = 1 + 2t2 + 7t4 + 17t6 + 3t7 + 38t8 + 13t9 + 78t10 + 36t11 + 151t12+

+ 86t13 + 271t14 + 180t15 + 469t16 + 341t17 + 774t18 + 607t19 + 1233t20+

+ 2857t24 + . . .
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We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generators is 24. Up to degree 15
we �nd the following 27 invariants:

deg generators

2 (s, s)6 (q, q)2

4
(c1, c1)4 (c1, q2)4

(s, q3)6 (c3, q)2

6

(c1, c4)4 (c2, q4)8

((c1, c3)2, q)2 ((s, c1)2, q3)6

((s, c3)2, q2)4

7
((c1, c3)1, q2)4 ((s, c3)1, q3)6

((s, c1)1, q4)8

8 ((s, c23)4, q)2

9

((c1, c23)3, q)2 ((s, c23)3, q2)4

(((s, c1)2, c3)1, q3)6 (((s, c1)1, c3)2, q3)6

((c2, c3)1, q4)8 ((c2, c1)1, q5)10

((s, c2)1, q6)12

10 (c4, c23)4

11 ((s, c33)5, q)2 (((s, c1)1, c23)4, q2)4

13 (((s, c1)1, c33)6, q)2

15 (c5, c43)8

Then we prove that no generators are needed in degrees 16, 17, 18, 20, 24 by
showing that for each i ∈ {16, 17, 18, 20, 24} the vector space O(V2 ⊕ V6)SL2

i

is spanned by monomials of degree i generated by the 27 invariants found in
degrees ≤ 15. For details about the computations see Chap. A.12.

5.13 The invariants of V3 ⊕ V4

This case is treated in [Gun69].
Let c ∈ V3, and q ∈ V4,

c = a0x
3 + 3a1x

2y + 3a2xy
2 + a3y

3,

q = b0x
4 + 4b1x3y + 6b2x2y2 + 4b3xy3 + b4y

4.

Consider the covariants c1 = (c, c)2, c2 = (q, q)2, and the following invariants:

j2 = (q, q)4, j3 = (c2, q)4,

j4 = (c1, c1)2, j5,1 = ((q, c2)1, c2)6,

j5,2 = ((q, c2)2, c2)6, j6,1 = (c21, c2)4,

j7,1 = (c4, q3)12.

Proposition 5.13.1. The invariants j2, j3, j4, j5,1+j5,2, j6,1, j7,1 form a system
of parameters of the algebra of invariants of V3 ⊕ V4.
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Proof. We �rst show that N (V3 ⊕ V4) = V(j2, j3, j4, j5,1 + j5,2, j6,1, j7,1).
Indeed, if j2 = j3 = j4 = 0, then c and q are nullforms. If c or q vanish
identically, then (c, q) ∈ N (V3 ⊕ V4).
If c, q 6= 0, suppose without loss of generality, that x2 | c and y3 | q, i.e.
a3 = a2 = b0 = b1 = b2 = 0. Then, j61 ∼ a1b3, where ∼ denotes equalities
up to non-zero constants. If a1 = 0, then j51 + j52 ∼ a0b3, and j7 ∼ a0b4,
which implies either c = 0, or q = 0, and contradicts the assumption c, q 6= 0.
If b3 = 0, then j51 + j52 ∼ a1b4, and j7 ∼ a0b4, which implies either c = 0, or
q = 0, and contradicts again the assumption c, q 6= 0.
We proved that N (V3⊕V4) = V(j2, j3, j4, j5,1+j5,2, j6,1, j7,1). From Proposition
2.7.1 it follows that {j2, j3, j4, j5,1 + j5,2, j6,1, j7,1} forms a system of parameters
of O(V3 ⊕ V4)SL2 .

Proposition 5.13.2. The algebra of invariants of V3 ⊕ V4 is generated by 20
invariants. The nonzero numbers di of basic invariants of degree i are

i 2 3 4 5 6 7 8 9 10 11
di 1 1 1 2 2 3 3 4 2 1

Proof. The Poincaré series of O(V3 ⊕ V4)SL2 is

P (t) =
1 + t5 + t6 + 2t7 + 3t8 + 4t9 + 3t10 + 2t11 + t12 + t13 + t18

(1− t2)(1− t3)(1− t4)(1− t5)(1− t6)(1− t7)
=

= 1 + t2 + t3 + 2t4 + 3t5 + 5t6 + 7t7 + 11t8 + 16t9 + 22t10 + 30t11+

+ 42t12 + 55t13 + . . .+ 193t18 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generators is 18. Up to degree 11
we �nd the following 20 invariants:

deg generators

2 (q, q)4

3 (c2, q)4

4 (c1, c1)2

5 ((q, c2)1, c2)6 ((q, c2)2, c2)6

6 (c21, c2)4 (((q, c1)2, c2)2, q)4

7
(c4, q3)12 (((q, c1)2, c2)2, c2)4

((q, c2)1, c(c, c1)1)6

8
(((q, c1)2, c(c, c1)1)2, q)4 (c4, c2q2)12

(((c1, c2)2, c2)2, c2)4

9
(((c1, c2)2, c(c, c1)1)2, q)4 (c4, qc22)12

(c3(c, c1)1, q3)12 (((q, c1)2, c(c, c1)1)2, c2)4

10 (((c1, c2)2, c(c, c1)1)2, c2)4 ((c3(c, c1)1, q3)10, q)4

11 (((c3(c, c1)1, q3)10, q)2, q)4

Then we prove that no generators are needed in degrees 12, 13, 18 by showing
that for each i ∈ {12, 13, 18} the vector space O(V3 ⊕ V4)SL2

i is spanned by
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monomials of degree i generated by the 20 invariants found in degrees ≤ 11.
For details about the computations see Chap. A.13.

5.14 The invariants of V1 ⊕ V2 ⊕ V3

This case is classically treated in [Bes69, Ell95, Gor87, GY03].
Let ` ∈ V1, q ∈ V2, and c ∈ V3,

`= a0x+ a1y,

q= b0x
2 + 2b1xy + b2y

2,

c= c0x
3 + 3c1x2y + 3c2xy2 + c3y

3.

Consider the covariants c1 = (c, c)2, c2 = (c, c1)1, and the following invariants:

j2 = (q, q)2, j3,1 = (q, `2)2,
j3,2 = (q, c1)2, j4,1 = (c1, c1)2,

j4,2 = (c, `3)3, j4,3 = (c1, `2)2,

j5,1 = (c2, q3)6, j5,2 = (((c, `)1, q)1, `2)2,

Proposition 5.14.1. The set {j3,1, j3,2, j4,1, j4,2+j22 , j4,3−j22 , j5,1+j5,2} forms
a system of parameters of the algebra of invariants of V1 ⊕ V2 ⊕ V3.

Proof. First we show that

N (V1 ⊕ V2 ⊕ V3) = V(j3,1, j3,2, j4,1, j4,2 + j22 , j4,3 − j22 , j5,1 + j5,2).

We distinguish the following four cases:

Case 1: ` = 0.
In this case we obtain j2 = j4,1 = j3,2 = j5,1 = 0, which implies (q, c) ∈
N (V2 ⊕ V3) (see Proposition 5.9.1).

Case 2: q = 0.
In this case we obtain j4,1 = j4,2 = j4,3 = 0, which implies (`, c) ∈ N (V1 ⊕ V3)
(see Proposition 5.3.4).

Case 3: c = 0.
In this case we obtain j2 = j3,1 = 0, which implies (`, q) ∈ N (V1 ⊕ V2).

Case 4: `, c, q 6= 0.
In this case we have j4,1 = 0, which implies that c is a nullform. Without loss
of generality we suppose that x2 | c, i.e. c2 = c3 = 0. Then, j3,2 ∼ b2c

2
1, where

∼ denotes equalities up to a nonzero constant.
If c1 = 0, then we have j4,3 = 0, hence j2 = j4,2 = 0. But j4,2 ∼ a3

1c0, which
implies a1 = 0, as c 6= 0. Then, j5,1 + j5,2 ∼ b32c

2
0, which implies b2 = 0, as

c 6= 0. Then, j2 ∼ b21, which implies b1 = 0. But then ` ∼ x, x2 | c, and q ∼ x2,
therefore (`, c, q) ∈ N (V1 ⊕ V2 ⊕ V3).
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If b2 = 0, then j3,1 = a1(a1b0 − 2a0b1). If a1 = 0, then j4,2 + j22 ∼ b41, which
implies b1 = 0. Hence, we obtain (`, c, q) ∈ N (V1 ⊕ V2 ⊕ V3). If a1 6= 0, then
a1b0− 2a0b1 = 0, and then we obtain j5,1 + j5,2 = a2

1b1(a1c0− 3a0c1). If b1 = 0,
then it follows b0 = 0 as well, and we get a contradiction with the assumption
q 6= 0. If a1c0 − 3a0c1 = 0, then j4,2 + j22 ∼ b21, hence b1 = 0, and we get again
a contradiction.
We proved that the invariants j3,1, j3,2, j4,1, j4,2 + j22 , j4,3 − j22 , j5,1 + j5,2 de-
�ne the nullcone of V1 ⊕ V2 ⊕ V3. From Proposition 2.7.1 it follows that
{j3,1, j3,2, j4,1, j4,2 + j22 , j4,3 − j22 , j5,1 + j5,2} forms a system of parameters of
the algebra of invariants of V1 ⊕ V2 ⊕ V3.

Proposition 5.14.2. The algebra of invariants of V1⊕ V2⊕ V3 is generated by
15 invariants. The nonzero numbers di of basic invariants of degree i are

i 2 3 4 5 6 7
di 1 3 4 4 2 1

Proof. The Poincaré series of O(V1 ⊕ V2 ⊕ V3)SL2 is

P (t) =
1 + t2 + t3 + 2t4 + 4t5 + 5t6 + 6t7 + 5t8 + 4t9 + 2t10 + t11 + t12 + t14

(1− t3)2(1− t4)3(1− t5)
=

= 1 + t2 + 3t3 + 5t4 + 7t5 + 13t6 + 20t7 + 31t8 + 44t9 + 63t10+

+ 88t11 + 123t12 + . . .+ 213t14 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generators is 14. Up to degree 7
we �nd the following 15 invariants:

deg generators

2 (q, q)2

3
(q, `2)2 (q, c1)2

(c, q`)3

4
(c1, c1)2 (c, `3)3

(c1, `2)2, (c`, q2)4

5
(c2, q3)6 (((c, `)1, q)1, `2)2

(q, (c2, `)1)2 ((c1, q)1, `2)2

6 (`c, (`c, `c)2)4 ((c1, q)1, (q`, c)2)2

7 (q3, c2c)6

Then we prove that no generators are needed in degrees 8, . . . , 12, 14 by showing
that for each i ∈ {8, . . . , 12, 14} the vector space O(V1 ⊕ V2 ⊕ V3)SL2

i is spanned
by monomials of degree i generated by the 15 invariants found in degrees ≤ 7.
For details about the computations see Chap. A.14.
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5.15 The invariants of V1 ⊕ V2 ⊕ V4

Let ` ∈ V1, q ∈ V2, and f ∈ V4,

l= a0x+ a1y,

q= b0x
2 + 2b1xy + b2y

2,

f = c0x
4 + 4c1x3y + . . .+ 4c3xy3 + c4y

4.

Consider the covariants c1 = (f, f)2, c2 = (f, c1)1, c3 = (q, f)2, and the following
invariants:

j2,1 = (q, q)2, j2,2 = (f, f)4,

j3,1 = (f, c1)4, j3,2 = (f, q2)4,

j3,3 = (q, `2)2, j4,1 = (c1, q2)4,

j5,1 = (f, `4)4 j6,1 = (c1, `4)4.

Proposition 5.15.1. The set {j2,1, j2,2, j3,1+j3,2, j3,3−j3,1, j4,1, j5,1, j6,1} forms
a system of parameters of the algebra of invariants of V1 ⊕ V2 ⊕ V4.

Proof. We �rst show that

N (V1 ⊕ V2 ⊕ V4) = V(j2,1, j2,2, j3,1 + j3,2, j3,3 − j3,1, j4,1, j5,1, j6,1)

Consider the following three cases.

Case 1: ` = 0.
In this case we obtain j2,1 = j2,2 = j3,1 = j3,2 = j4,1 = 0, which implies
(q, f) ∈ N (V2 ⊕ V4) (see Proposition 5.10.1).

Case 2: ` 6= 0.
Without loss of generality we suppose l ∼ x, i.e. a1 = 0. This implies:

j5,1∼ a4
0c4, j6,1∼ a4

0(c
2
3 − c2c4),

hence c4 = c3 = 0. But then, j2,2 ∼ c22, which implies c2 = 0. Therefore x3 | f .
In this case 0 = j3,3 ∼ a2

0b2, which implies b2 = 0. Then 0 = j2,1 ∼ b21, which
implies b1 = 0 as well. Therefore x2 | q. Then (`, q, f) ∈ N (V1 ⊕ V2 ⊕ V4).
We proved that the invariants j2,1, j2,2, j3,1 + j3,2, j3,3 − j3,1, j4,1, j5,1, j6,1 de-
�ne the nullcone of V1 ⊕ V2 ⊕ V4. From Proposition 2.7.1 it follows that
j2,1, j2,2, j3,1 + j3,2, j3,3 − j3,1, j4,1, j5,1, j6,1 form a system of parameters of the
algebra of invariants of V1 ⊕ V2 ⊕ V4.

Proposition 5.15.2. The algebra of invariants of V1⊕ V2⊕ V4 is generated by
18 invariants. The nonzero numbers di of basic invariants of degree i are

i 2 3 4 5 6 7 8 9
di 2 3 2 3 4 2 1 1
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Proof. The Poincaré series of O(V1 ⊕ V2 ⊕ V4)SL2 is

P (t) =
1 + t3 + t4 + 2t5 + 4t6 + 3t7 + 3t8 + 4t9 + 2t10 + t11 + t12 + t15

(1− t2)2(1− t3)2(1− t4)(1− t5)(1− t6)
=

= 1 + 2t2 + 3t3 + 5t4 + 9t5 + 18t6 + 23t7 + 43t8 + 63t9 + 93t10+

+ 136t11 + 200t12 + . . .+ 510t15 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generators is 15. Up to degree 9
we �nd the following 18 invariants:

deg generators

2 (q, q)2 (f, f)4

3
(f, c1)4 (f, q2)4

(q, `2)2

4 (c1, q2)4 (c3, `2)2

5
(f, `4)4 (c1, q`2)4

((q, `2)1, c3)2

6
(c1, `4)4 (c2, q3)6

((q, `2)1, (q, c1)2)2 ((q, f)1, `4)4

7 ((q, c1)1, `4)4 ((c2, q2)4, `2)2

8 (((q, c1)2, `)1, `4)4

9 (c2, `6)6

Then we prove that no generators are needed in degrees 10, 11, 12, 15 by showing
that for each i ∈ {10, 11, 12, 15} the vector space O(V1⊕V2⊕V4)SL2

i is spanned
by monomials of degree i generated by the 18 invariants found in degrees ≤ 9.
For details about the computations see Chap. A.15.

5.16 The invariants of V1 ⊕ V2 ⊕ V5

In a paper from 1880 Winter [Win80] found 94 generating covariants of V2⊕V5.
We prove that the actual number of generators is 92.
The algebra of invariants of V2⊕V5 is generated by 29 invariants, see Chap. 5.11.
Let q ∈ V2, f ∈ V5, and c1 = (f, f)4, c2 = (f, c1)2, c3 = (f, f)2, c4 = (f, c1)1,
c6 = (f, c3)1, c7 = (c1, c3)2, c8 = (c1, c3)1, c9 = (c6, c1)2, c10 = (c6, c21)4, c11 =
(c21, c3)3. Using Proposition 5.0.7 we obtain a not minimal set of generating
covariants of V2 ⊕ V5, shown in Table 5.7 (we excluded the invariants).

deg
order

1 2 3 4 5 6 7 9

1 - q - - f - - -

2 - c1 (f, q)2 - (f, q)1 c3 - -

3 (f, q2)4 (c1, q)1 c2, (f, q2)3 (c3, q)2 c4 (c3, q)1 - c6

4
(c2, q)2 (c3, q

2)4 (c4, q)2 c7 (c4, q)1 c8 (c6, q)2 (c6, q)1
(f, q3)5 (c2, q)1 (c3, q

2)3
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deg
order

1 2 3 4 5 6 7 9

5

(c1, c2)2 (c7, q)2 (c1, c2)1 (c8, q)2 (c6, q
2)4 (c8, q)1 c9 -

(c4, q
2)4 (c3, q

3)5 (c4, q
2)3 (c7, q)1 (c6, q

2)3
(c2, q

2)3

6

((c1, c2)1, q)2 (c21, c3)4 (c6, q
3)6 c11 (c9, q)2 - (c9, q)1 -

(c4, q
3)5 (c8, q

2)4 ((c1, c2)1, q)1 (c8, q
2)3 (c6, q

3)5
((c1, c2)2, q)1 (c7, q

2)3

7

(c31, f)5 (c11, q)2 (c9, q
2)4 (c11, q)1 c10 - - -

(c6, q
4)8 (c8, q

3)5 (c6, q
4)7 (c9, q

2)3
((c1, c2)1, q

2)3 ((c21, c3)4, q)1

8

(c9, q
3)6 (c31, c3)5 (c10, q)2 - (c10, q)1 - - -

(c6, q
5)9 (c11, q

2)3 (c9, q
3)5

((c31, f)5, q)1

9
(c10, q

2)4 ((c31, c3)5, q)1 (c6, c
3
1)6 - - - - -

(c9, q
4)7 (c10, q

2)3

10
((c6, c

3
1)6, q)2 - ((c6, c

3
1)6, q)1 - - - - -

(c10, q
3)5

11
(c6, c

4
1)8 - - - - - - -

((c6, c
3
1)6, q

2)3
12 ((c6, c

4
1)8, q)1 - - - - - - -

13 (c6, c
5
1)9 - - - - - - -

14 ((c6, c
5
1)9, q)1 - - - - - - -

Table 5.7: A (not minimal) set of generating covariants of V2 ⊕ V5, of ord ≥ 1

Each covariant C of V2 ⊕ V5 of order s corresponds to the invariant (C, ls)s of
V1 ⊕ V2 ⊕ V5. We obtain in this way a (not minimal) set of generators for the
invariants of V1⊕V2⊕V5: the (known) invariants of V2⊕V5, of degrees ≤ 18 (see
Chap. 5.11), and the set of invariants derived from Table 5.7, of degrees ≤ 15.
For each i ≤ 18 we look now for a set of invariants that spans the vector space
of invariants of V1 ⊕ V2 ⊕ V5 of degree i. The dimensions of these vector spaces
are known from the Poincaré series of the algebra of invariants of V1 ⊕ V2 ⊕ V5:

P (t) = t2 + 2t3 + 4t4 + 7t5 + 15t6 + 25t7 + 45t8 + 70t9 + 112t10 + 175t11+

+ 270t12 + 385t13 + 566t14 + 800t15 + . . .

After isolating the super�uous generators (underlined in Table 5.7), we con-
cluded that the generating invariants of V1 ⊕ V2 ⊕ V5 had the following degrees
(i denotes the degree of the generators and di the number of generators that are
needed in degree i):

i 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
di 29 1 2 3 5 8 12 14 12 9 8 9 3 2 1 1 1 1

For details about the computations see Chap. A.16.
It follows that the algebra of invariants of V1 ⊕ V2 ⊕ V5 has 92 generators.

Therefore the algebra of covariants of V2 ⊕ V5 has 92 generators as well.
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5.17 The invariants of 2V2 ⊕ V3

Denote our binary forms q1, q2 ∈ V2, and f ∈ V4:

q1 = a0x
2 + 2a1xy + a2y

2,

q2 = b0x
2 + 2b1xy + b2y

2,

c = c0x
3 + 3c1x2y + 3c2xy2 + c3y

3.

Consider the covariants c1 = (c, c)2, c2 = (c, c1)1, and the following invariants:

j2,1 = (q1, q1)2, j2,2 = (q1, q2)2,
j2,3 = (q2, q2)2, j3,1 = (c1, q1)2,
j3,2 = (c1, q2)2, j4,1 = (c1, c1)2,

j5,1 = (c2, q31)2, j5,2 = (c2, q32)2,

j6,1 = ((q1, c)2 · (q21 , c)3, q2)2.

Proposition 5.17.1. The set {j2,1, j2,3, j3,1+j3,2, j4,1, j5,1, j5,2, j6,1+j32,2−j23,1}
forms a system of parameters of the algebra of invariants of 2V2 ⊕ V3.

Proof. We �rst show that

N (2V2 ⊕ V3) = V(j2,1, j2,3, j3,1 + j3,2, j4,1, j5,1, j5,2, j6,1 + j32,2 − j23,1).

Consider the following cases:

Case 1: q1 = 0.
In this case we have j2,3 = j3,2 = j4,1 = j5,2 = 0, which implies (q2, c) ∈
N (V2 ⊕ V3) (see Proposition 5.9.1).

Case 2: q2 = 0.
In this case we have j2,1 = j3,1 = j4,1 = j5,1 = 0, which implies (q1, c) ∈
N (V2 ⊕ V3) (see Proposition 5.9.1).

Case 3: c = 0.
In this case we have j2,1 = j2,2 = j2,3 = 0, which implies (q1, q2) ∈ N (2V2).

Case 4: q1, q2, c 6= 0.
In this case we have j4,1 = 0, which implies that c is a nullform. Also, j2,1 = 0
implies that q1 is a nullform. If (q1, q2, c) /∈ N (2V2 ⊕ V3), then, without loss
of generality, we can suppose that x2 | c, i.e. c2 = c3 = 0, and y2 | q1, i.e.
a0 = a1 = 0. Then, j5,1 = a3

2c
2
0, which implies c0 = 0, as q1 6= 0. Then,

j3,1 + j3,2 ∼ c21(a2 + b2), where ∼ denotes equalities up to a nonzero constant.
This implies b2 = −a2, as c 6= 0. Then, we have

j2,3∼ b21 + a2b0,

j5,2∼ a2c
2
1(4b

2
1 − a2b0),
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which implies b0 = b1 = 0, as c, q1 6= 0. But then, j6,1 + j32,2− j23,1 ∼ a2
2c

4
1, which

leads to a contradiction with the assumption c, q1 6= 0.
We proved that the invariants j2,1, j2,3, j3,1 + j3,2, j4,1, j5,1, j5,2, j6,1 + j32,2 −
j23,1 de�ne the nullcone of 2V2 ⊕ V3. From Proposition 2.7.1 it follows that
{j2,1, j2,3, j3,1 + j3,2, j4,1, j5,1, j5,2, j6,1 + j32,2 − j23,1} forms a system of parame-
ters of the ring of invariants of 2V2 ⊕ V3.

Proposition 5.17.2. The algebra of invariants of 2V2 ⊕ V3 is generated by 18
invariants. The nonzero numbers di of basic invariants of degree i are

i 2 3 4 5 6 7
di 3 2 2 4 3 4

Proof. The Poincaré series of O(2V2 ⊕ V3)SL2 is

P (t) =
a(t)

(1− t2)2(1− t3)(1− t4)(1− t5)2(1− t6)

with

a(t) = 1 + t2 + t3 + 2t4 + 3t5 + 5t6 + 8t7 + 7t8 + 7t9 + 8t10 + 5t11+

+ 3t12 + 2t13 + t14 + t15 + t17,

so that

P (t) = 1 + 3t2 + 2t3 + 8t4 + 10t5 + 22t6 + 32t7 + 55t8 + 80t9 + 128t10+

+ 178t11 + 268t12 + 362t13 + 515t14 + 686t15 + . . .+ 1218t17 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generators is 17. Up to degree 7
we �nd the following 18 invariants:

deg generators

2
(q1, q1)2 (q1, q2)2

(q2, q2)2

3 (c1, q1)2 (c1, q2)2

4 (c1, c1)2 ((q1, c)1, q2)2

5
(c2, q3

1)2 (c2, q3
2)2

(q1q2
2 , c2)6 (q2

1q2, c2)6

6
((q1, c)2 · (q2

1 , c)3, q2)2 ((q1, c)2 · (q1, c)1, q2
2)4

(c · (q1, c)1, q3
2)6

7
(q3

1 , cc2)6 (q3
2 , cc2)6

(q1q2
2 , cc2)6 (q2

1q2, cc2)6

Then we prove that no generators are needed in degrees 8, . . . , 15, 17 by showing
that for each i ∈ {8, . . . , 15, 17} the vector space O(2V2 ⊕ V3)SL2

i is spanned by
monomials of degree i generated by the 18 invariants found in degrees ≤ 7. For
details about the computations see Chap. A.17.
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5.18 The invariants of 2V2 ⊕ V4

Denote our binary forms q1, q2 ∈ V2, and f ∈ V4. Consider the covariants c1 =
(f, f)2, c2 = (f, c1)1, c3 = (q1, f)2, c4 = (q2, f)2, and the following invariants:

j2,1 = (q1, q1)2, j2,2 = (q2, q2)2,
j2,3 = (q1, q2)2, j2,4 = (f, f)4,

j3,1 = (f, c1)4, j3,2 = (f, q21)4,

j3,3 = (f, q22)4, j4,1 = (c1, q21)4,

j4,2 = (c1, q22)4,

Proposition 5.18.1. The set {j2,1 + j2,3, j2,2 + j2,4, j2,1 − j2,4, j3,1, j3,2,
j3,3, j4,1, and j4,2} forms a system of parameters of the algebra of invariants of
2V2 ⊕ V4.

Proof. We �rst prove that

N (2V2 ⊕ V4) = V(j2,1 . . . , j2,4, j3,1, . . . , j3,3, j4,1, j4,2).

Indeed, j2,1 = j2,2 = j2,3 = 0 implies that (q1, q2) ∈ N (2V2), and j2,1 = j2,2 =
j2,4 = j3,1 = j3,2 = j3,3 = j4,1 = j4,2 = 0 implies that (q1, f) and (q2, f) are
both in the nullcone N (V2 ⊕ V4) (see Proposition 5.10.1). Then, it follows that
(q1, q2, f) ∈ N (2V2 ⊕ V4).
Using Singular [DGPS], we found that j72,1, . . . , j

7
2,4 are in the ideal generated

by j2,1 + j2,3, j2,2 + j2,4, j2,1 − j2,4, j3,1, j3,2, j3,3, j4,1, and j4,2. It follows that
these invariants generate the nullcone of 2V2 ⊕ V4, and then, from Proposition
2.7.1, it follows that they form a system of parameters of O(2V2 ⊕ V4)SL2 .

Proposition 5.18.2. The algebra of invariants of 2V2 ⊕ V4 is generated by 19
invariants. The nonzero numbers di of basic invariants of degree i are

i 2 3 4 5 6
di 4 4 5 2 4

Proof. The Poincaré series of O(2V2 ⊕ V4)SL2 is

P (t) =
1 + t2 + t3 + 4t4 + 3t5 + 6t6 + 3t7 + 4t8 + t9 + t10 + t12

(1− t2)3(1− t3)3(1− t4)2
=

= 1 + 4t2 + 4t3 + 15t4 + 18t5 + 53t6 + 65t7 + 148t8 + 198t9+

+ 371t10 + . . .+ 853t12 + . . .

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generators is 12. Up to degree 6
we �nd the following 19 invariants:
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deg generators

2
(q1, q1)2 (q2, q2)2

(q1, q2)2 (f, f)4

3
(f, c1)4 (f, q2

1)4

(f, q2
2)4 (q1q2, f)4

4

(c1, q2
1)4 (c1, q2

2)4

(c1, q1q2)4 ((c3, q1)1, q2)2

((c4, q2)1, q1)2

5 ((c1, q1q2)3, q1)2 ((c1, q1q2)3, q2)2

6
(c2, q3

1)6 (c2, q3
2)6

(c2, q2
1q2)6 (c2, q1q2

2)6

Then we prove that no generators are needed in degrees 7, . . . , 10, 12 by showing
that for each i ∈ {7, . . . , 10, 12} the vector space O(2V2 ⊕ V4)SL2

i is spanned by
monomials of degree i generated by the 19 invariants found in degrees ≤ 6. For
details about the computations see Chap. A.18.

5.19 The invariants of V1 ⊕ V3 ⊕ V4

This chapter is based on joint work with Brouwer [BP12].
In a paper from 1869 Gundel�nger [Gun69] found 64 generating covariants of
V3⊕V4. In a series of papers from 1878 Sylvester [Sy78b, Sy78c, Sy78d] claimed
that there were only 61 generating covariants for V3 ⊕ V4. We prove that the
actual number of generators is 63.
We identify the covariants of V3⊕V4 with the invariants of V1⊕V3⊕V4 and show
that a minimal set of generators for the algebra of invariants of this module has
size 63. Denote our binary forms ` ∈ V1, c ∈ V3, and q ∈ V4:

` = c0x+ c1y,

c = a0x
3 + 3a1x

2y + 3a2xy
2 + a3y

3,

q = b0x
4 + 4b1x3y + 6b2x2y2 + 4b3xy3 + b4y

4.

Consider the covariants c1 = (c, c)2, c2 = (q, q)2, c3 = (c, q)2, and the following
invariants:

j2 = (q, q)4, j3,1 = (c2, q)4,
j4,1 = (c1, c1)2, j4,2 = (`c, `c)4,

j4,3 = (c, `3)3, j5,1 = ((q, c2)1, c2)6,

j5,2 = ((q, c2)2, c2)6, j5,3 = (q, `4)4,

j6,1 = (c21, c2)4, j6,2 = ((`c, `c)2, `c)4,

j6,3 = (c2, `4)4, j7,1 = (c4, q3)12.
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Proposition 5.19.1. With the notations above, the invariants

p1 = j3,1, p2 = j4,1 + j22 , p3 = j4,2 + j4,3 − j22 , p4 = j5,1 + j5,2,

p5 = j5,3, p6 = j6,1 + j6,2, p7 = j6,3, p8 = j7,1,

form a system of parameters of the algebra of invariants of V1 ⊕ V3 ⊕ V4.

Proof. We show that V(p1, . . . , p8) = N (V1 ⊕ V3 ⊕ V4). Consider three cases.

Case 1: q = 0.
In this case, the vanishing of p1, . . . , p8 reduces to j4,1 = j4,2 + j4,3 = j6,2 = 0,
which implies that (`, c) ∈ N (V1 ⊕ V3) (see Proposition 5.3.4).

Case 2: ` = 0.
In this case, the vanishing of p1, . . . , p8 reduces to j2 = j3,1 = j4,1 = j5,1+k5,2 =
j6,1 = j7,1 = 0, which implies that (c, q) ∈ N (V3 ⊕ V4) (see Proposition 5.13.1).

Case 3: q, ` 6= 0.
In this case, p5 = 0 implies that q and ` have a common root (up to a constant,
p5 is the resultant of q and `). Without loss of generality, we can suppose that
the common factor of q and ` is x, i.e., c1 = b4 = 0 and c0 6= 0. Then p7 ∼ b23c40,
which implies b3 = 0. Then p1 ∼ b32, which implies b2 = 0. Then a3 becomes
a factor of p8. If a3 = 0, then p3 ∼ a2

2c
2
0, which implies a2 = 0, and then

(`, c, q) ∈ N (V1 ⊕ V3 ⊕ V4). If a3 6= 0, we may take a3 = c0 = 1. Now

p3 ∼ 3a2
2 − 3a1 − 2,

and it follows that a1 = a2
2 − 2

3 . Then

p6 ∼ 27a3
2 − 54a2 − 27a0 − 256b21,

and it follows that a0 = a3
2 − 2a2 − 256

27 b
2
1. Then

p4 ∼ 36b0 − 144a2b1 − 949b31,

and it follows that b0 = 4a2b1 + 949
36 b

3
1. Then

p2 ∼ 27− 2048b41,

p8 ∼ b51(33205248− 4273351745b41).

But p2 = p8 = 0 has no solution. This settles Case 3.
By Proposition 2.7.1, it follows that these eight invariants form a hsop of

the ring of invariants of V1 ⊕ V3 ⊕ V4.

Proposition 5.19.2. The algebra of invariants of V1⊕ V3⊕ V4 is generated by
63 invariants. The nonzero numbers di of basic invariants of degree i are

i 2 3 4 5 6 7 8 9 10 11
di 1 2 4 8 10 13 11 10 3 1
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Proof. The Poincaré series of O(V1 ⊕ V3 ⊕ V4)SL2 is

P (t) = 1 + t2 + 2t3 + 5t4 + 10t5 + 18t6 + 31t7 + 55t8 + 92t9+

144t10 + 223t11 + 341t12 + 499t13 + 725t14 + 1031t15+

1436t16 + 1978t17 + 2685t18 + 3592t19 + 4761t20 + 6235t21+

8078t22 + 10379t23 + 13226t24 + 16698t25 + 20937t26+

26069t27 + 32230t28 + 39614t29 + 48401t30 + ... =

=
a(t)

(1− t3)(1− t4)2(1− t5)2(1− t6)2(1− t7)

where

a(t) = 1 + t2 + t3 + 3t4 + 7t5 + 12t6 + 21t7 + 32t8 + 47t9+

58t10 + 72t11 + 83t12 + 89t13 + 94t14 + 94t15 + 89t16+

83t17 + 72t18 + 58t19 + 47t20 + 32t21 + 21t22 + 12t23+

7t24 + 3t25 + t26 + t27 + t29

We apply the strategy described in Chap. 3.1. From the Poincaré series, the
maximal degree in which we have to look for generators is 29. Up to degree 11
we �nd the following 63 invariants:

deg generators

2 (q, q)4

3 (c2, q)4 (q, `c)4

4
(c1, c1)2 (`c, `c)4

(c, `3)3 (c2, `c)4

5

((q, c2)1, c2)6 ((q, c2)2, c2)6

(q, `4)4 (q`2, c2)6

((q, c1)2, `2)2 (c3, `3)3

(` · (c, c1)1, q)4 ((`, c1)1, (q, c)3)1

6

(c21, c2)4 ((`c, `c)2, `c)4

(c2, `4)4 (c2, ` · (c, c1)1)4

(((c1, q)2, c2)2, q)4 (c2, c · (`, c1)1)4

(`2c2, c2)6 ((c2, c1)2, `2)2

((c, c2)2, `3)3 ((c2, q2)6, (c, `)1)2

7

(c4, q3)12 (((c1, q)2, c2)2, c2)4

((c2, q)1, c · (c, c1)1)6 ((c1, `)1, (q, (c1, c)1)3)1

((c2, qc2)6, (c, `)1)2 (((c1, c)1, q)2, `3)3

(q`2, c · (c1, c)1)6 ((q, (c1, `2)1)2, `2)2

(`5, (c, q)1)5 (((c3, (q, `)1)2, c3)1, c)3

(((c3, c)2, (q, `)1)1, (q, `)1)3 (`2(q, c1)1, c2)6

((c3, (q, `)1)2, (q, `2)2)2
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deg generators

8

((c2, q2)6, ((c, c1)1, `)1)2 (ql · (c, q)3, c · (c, c1)1)6

(((c1, q)2, c · (c, c1)1)2, q)4 (c4, c2q2)12

(((c2, c1)2, c2)2, c2)4 ((c2, c2q)6, (c3, `)1)2

((c1, `)1, (q, (c1, (q, `)1)1)3)1 (((c1, c3)1, q)2, `3)3

(((c1, (q, `)1)1, q)2, `3)3 (q`2, c · (c1, c3)1)6

((q, ((c, (q, `)1)2, `2)1)2, `2)2

9

(((c2, c1)2, c · (c, c1)1)2, q)4 (c4, qc22)12

(c3(c, c1)1, q3)12 (((q, c1)2, c · (c, c1)1)2, c2)4

(((q, c1)2, c · ((q, `)1, c1)1)2, q)4 ((c2, cc2`)6, (c3, `)1)2

((c2, cc2`)6, ((q, `)1, `)1)2 ((((q, (q, c`)2)2, c1)2, c2)2, q)4

(((q, `)1, c2)1, `5)5 (((q, c2)1, c2)4, `4)4

10
(((c2, c1)2, c · (c, c1)1)2, c2)4 (((c3(c, c1)1, q3)10, q)4

((c, (c, (c, (c, (q, c2)1)3)1)3 · (c, q)2)3, `)1

11 (((c3(c, c1)1, q3)10, q)2, q)4

Then we prove that no generators are needed in degrees 12, . . . , 27, 29 by showing
that for each i ∈ {12, . . . , 27, 29} the vector space O(V1⊕V3⊕V4)SL2

i is spanned
by monomials of degree i generated by the 63 invariants of degrees ≤ 11.
The computations in degrees ≥ 16 were performed by A.E. Brouwer, with his
own software ([BP12]). The computations in degrees < 16 are in Chap. A.19.



Chapter 6

Homological dimension

6.1 The main results

This chapter is based on joint work with Brouwer [BP11].
Consider V an SL2-module and I := O(V )SL2 the algebra of polynomial

functions on V invariant under the action of SL2. The algebra I is �nitely
generated ([Hil90]), i.e. there exist a �nite number of invariants j1, . . . , jr of V
such that I = C[j1, . . . , jr]. Denote by r the minimal number of generators of I
and bym the size of a system of parameters of I (set of algebraically independent
elements P1, . . . , Pm of I, such that I is integral over C[P1, . . . , Pm]). Then m
equals dimV//G, and the homological dimension hd I of I equals r − m (see
[Pop83, Corollary 1]).

Popov [Pop83] classi�ed the modules V with the property that hd I ≤ 3 (see
Table 6.1), and noticed that all of these were known classically.

V hd I

V1, V2, V3, V4, 2V1, V1 ⊕ V2, 2V2, 3V1 0

V5, V6,

V1 ⊕ V3, V1 ⊕ V4, V2 ⊕ V3, V2 ⊕ V4, 2V4 1

2V1 ⊕ V2, V1 ⊕ 2V2, 3V2, 4V1

2V3 2

V8, 5V1 3
Table 6.1: Popov's classi�cation of SL2-modules with small hd I

We extend Popov's classi�cation by �nding the modules V with the property
that 4 ≤ hd I ≤ 15. The two main results of this chapter are:

Theorem 6.1.1. Let I := O(Vn)SL2 and suppose that hd I ≤ 100. Then n ≤ 10.

120
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Theorem 6.1.2. Let I := O(V )SL2 where V = Vn1 ⊕ . . . ⊕ Vnp , and suppose
that 4 ≤ hd I ≤ 15. Then we have one of the following:

n1, . . . , np hd m hsop degrees r d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

1, 1, 1, 2 4 6 2 (3×), 3 (3×) 10 4 6
1, 2, 2, 2 5 8 2 (5×), 3 (3×) 13 6 4 3
2, 2, 2, 2 5 9 2 (9×) 14 10 4
1, 1, 2, 2 6 7 2 (4×), 3 (3×) 13 4 6 3
1 (6×) 6 9 2 (9×) 15 15
1, 1, 3 8 5 2, 4 (4×) 13 1 8 4
1, 2, 3 9 6 3, 3, 4, 4, 4, 5 15 1 3 4 4 2 1

1, 1, 1, 1, 2 9 8 2 (4×), 3 (3×), 6 17 7 10
1 (7×) 10 11 2 (11×) 21 21
1, 2, 4 11 7 2, 2, 3, 3, 4, 5, 6 18 2 3 2 3 4 2 1 1
2, 2, 3 11 7 2, 2, 3, 4, 5, 5, 6 18 3 2 2 4 3 4
2, 2, 4 11 8 2, 2, 2, 3, 3, 3, 4, 4 19 4 4 5 2 4

1, 2, 2, 2, 2 13 11 2 (7×), 3 (4×) 24 10 8 6
2, 2, 2, 2, 2 13 12 2 (12×) 25 15 10

4, 4, 4 13 12 2 (6×), 3 (6×) 25 6 10 6 3
1, 1, 4 14 6 2, 3, 5, 5, 6, 6 20 2 1 5 5 7
3, 4 14 6 2, 3, 4, 5, 6, 7 20 1 1 1 2 2 3 3 4 2 1

1 (8×) 15 13 2 (13×) 28 28
1, 1, 1, 2, 2 15 9 2 (5×), 3 (4×) 24 6 12 6

Here V has a minimal set of generators of size r, with di generators of degree
i (2 ≤ i ≤ 11). The size of any homogeneous system of parameters (hsop) is
m, and the degrees for one particular such system are as given. The column hd
gives hd I.

6.2 Bounds on hdO(V )G

Consider a group G acting on a set V .
If v ∈ V , then Gv = {g · v | g ∈ G} is called the orbit of v, and Gv =

{g ∈ G | g · v = v} is called the stabilizer of v. If the orbit Gv of a point
v ∈ V is closed, then the stabilizer Gv is reductive and the tangent space of
V at v decomposes into the direct sum of the tangent space of Gv at v and a
complementary Gv-module Nv. The corresponding representation (Gv, Nv) is
called slice-representation (cf. [Pop83]).

If S ⊂ G, then NG(S) = {g ∈ G | gSg−1 = S} is called the normalizer of S,
and ZG(S) = {g ∈ G | gsg−1 = s for all s ∈ S} is called the centralizer of S.

Consider the group T = {
(
t 0
0 t−1

)
| t ∈ C∗} ⊂ SL2. Then the normalizer of

T is
NSL2(T ) = {

(
t 0
0 t−1

)
,
(

0 t
−t−1 0

)
| t ∈ C∗}.

Lemma 6.2.1. ([Pop83, Lemma 1]) Consider v = xnyn ∈ V2n, n > 0. Then:
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a) SL2 v is closed in V2n.

b) SL2v =

{
T if n = 1 modulo 2,
NSL2(T ) if n = 0 modulo 2.

Proposition 6.2.2. ([Pop83, Proposition 4]) Consider G a reductive group of
rank 1 and V a G-module. Consider T a maximal torus of G and suppose that
p, n, r are the dimensions of the T-weight subspaces of V which have positive,
negative, zero weight respectively.

If pn > 0, then hdO(V )G ≥ (p− 1)(n− 1).

Proposition 6.2.3. ([Pop83, Proposition 4]) Consider G a reductive group
of dimension 1, T a maximal torus of G, with ZG(T ) diagonalizable and with
ZG(T ) 6= G. Consider and V a G-module, and V +, V −, V 0 the sum of those T -
weight subspaces of V which have positive, negative, and zero weight respectively.

Then, there exist bases of ZG(T )-weight vectors x1, . . . , xp and y1, . . . , yp
in (V +)∗ and in (V −)∗ respectively, such that the T -weights of xi and yi are
inverse of each other, and g〈xi〉 = 〈yi〉 and g〈yi〉 = 〈xi〉, if g /∈ ZG(T ).

If p > 0, then, hdO(V )G ≥ (p−1)(p−2)
2 .

Proposition 6.2.4. ([Pop83, Propositions 6 and 7])

a) If n ≥ 2, then hdO(V2n)SL2 ≥

{
(n− 2)2 if n is odd,
(n−2)(n−3)

2 if n is even.

b) If n ≥ 3, then hdO(V2n−1)SL2 ≥ n2 − 2n− 2.

c) If hdO(V2n)SL2 = d and n ≥ 2, then n ≤

{√
8d+1+5

2 if n is even,√
d+ 2 if n is odd.

d) If hdO(V2n−1)SL2 = d and n ≥ 3, then n ≤
√
d+ 3 + 1.

Theorem 6.2.5. ([Pop83, Theorem 2]) (A monotony theorem.) Consider G a
reductive group and V a G-module. We have the following:

a) If v ∈ V and Gv is closed in V . Denote by (Gv, Nv) the slice-representation.
Then hdO(Nv)Gv ≤ hdO(V )G.

b) If V = W1 ⊕ . . .⊕Wp, then
∑p
i=1 hdO(Wi)G ≤ hdO(V )G.

c) If W is a submodule of V , then hdO(W )G ≤ hdO(V )G.

One can use the Poincaré series of the algebra I of invariants of an SL2-
module V to obtain a lower bound on the number of generators of I, and hence
on the homological dimension of this algebra. The following result was proved
by Brower [BP12]:

Proposition 6.2.6. (Brouwer [BP12]) Table 6.2 contains lower bounds on the
homological dimension of the algebra of invariants of several SL2-modules. In
the table are listed the modules, the Poincaré series of the algebra I of invariants
of these modules, and lower bounds on the number of generators r of I and on
hd I:
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module Poincaré series r ≥ hd I ≥
V11 1 + 2t4 + 13t8 + 13t10 + 73t12 + 110t14 + . . . 158 149
V12 1 + t2 + t3 + 3t4 + 3t5 + 8t6 + 10t7 + 20t8+

28t9 + 52t10 + 73t11 + 127t12 + 181t13 + . . . 113 103
V13 1 + 2t4 + 22t8 + 33t10 + 181t12 + 375t14 + . . . 502 491
V14 1 + t2 + 3t4 + 10t6 + 4t7 + 31t8 + 27t9+

97t10 + 110t11 + . . . 182 170
V15 1 + 3t4 + t6 + 36t8 + 80t10 + 418t12 + . . . 425 412
V16 1 + t2 + t3 + 3t4 + 4t5 + 13t6 + 18t7 + 47t8+

84t9 + 177t10 + . . . 198 184
V18 1 + t2 + 4t4 + t5 + 16t6 + 13t7 + 71t8 + 99t9+ 161 145
V20 1 + t2 + t3 + 4t4 + 5t5 + 20t6 + 35t7 + 102t8+ 123 105
V22 1 + t2 + 4t4 + t5 + 24t6 + 26t7 + 144t8 + . . . 164 144
V24 1 + t2 + t3 + 5t4 + 7t5 + 29t6 + 62t7 + 201t8+ 242 220
V28 1 + t2 + t3 + 5t4 + 8t5 + 40t6 + 97t7 + 365t8+ 440 414
V32 1 + t2 + t3 + 6t4 + 10t5 + 54t6 + 153t7 + . . . 201 171

V2 ⊕ V8 1 + 2t2 + t3 + 5t4 + 5t5 + 15t6 + 17t7+
41t8 + 54t9 + 108t10 + . . . 35 26

V3 ⊕ V8 1 + t2 + t3 + 3t4 + 4t5 + 9t6 + 16t7 + 30t8+ . . . 37 27
V4 ⊕ V8 1 + 2t2 + 4t3 + 8t4 + 16t5 + 35t6 + 60t7 + . . . 42 31
V5 ⊕ V8 1 + t2 + t3 + 3t4 + 6t5 + 15t6 + 31t7 + . . . 43 31
V6 ⊕ V8 1 + 2t2 + 2t3 + 10t4 + 14t5 + 46t6 + 82t7 + . . . 88 75
V1 ⊕ 2V3 1 + t2 + 13t4 + 26t6 + . . . 26 19
V2 ⊕ 2V3 1 + 2t2 + 3t3 + 9t4 + 12t5 + 26t6 + 44t7 + . . . 26 18

V1 ⊕ 2V2 ⊕ V3 1 + 3t2 + 6t3 + 15t4 + 30t5 + 65t6 + . . . 34 25
V2 ⊕ V3 ⊕ V4 1 + 2t2 + 3t3 + 7t4 + 14t5 + 29t6 + 52t7 + . . . 43 34
V1 ⊕ 2V2 ⊕ V4 1 + 4t2 + 6t3 + 18t4 + 33t5 + . . . 27 17

3V2 ⊕ V4 1 + 7t2 + 8t3 + 42t4 + 64t5 + . . . 37 26
2V3 ⊕ V4 1 + 2t2 + 2t3 + 9t4 + 16t5 + 37t6 + 71t7 + . . . 69 59
V3 ⊕ 2V4 1 + 3t2 + 4t3 + 10t4 + 22t5 + 49t6 + 96t7 + . . . 45 34
V3 ⊕ V5 1 + 6t4 + 7t6 + 36t8 + . . . 28 21
V4 ⊕ V5 1 + t2 + t3 + 2t4 + 4t5 + 8t6 + 12t7 + 22t8+

37t9 + 56t10 + . . . 59 51
2V5 1 + t2 + 7t4 + 14t6 + 72t8 + 168t10 + . . . 105 96

V3 ⊕ V6 1 + t2 + t3 + 3t4 + 4t5 + 8t6 + 12t7 + 21t8 + . . . 24 16
V4 ⊕ V6 1 + 2t2 + 2t3 + 7t4 + 8t5 + 24t6 + 31t7 + 68t8+ 33 24
V5 ⊕ V6 1 + t2 + t3 + 3t4 + 5t5 + 12t6 + 22t7 + . . . 31 21

2V6 1 + 3t2 + 12t4 + 6t5 + 44t6 + 40t7 + 150t8 + . . . 29 18
Table 6.2: Bounds from the Poincaré series

6.3 The proofs of the main results

Proof of Theorem 6.1.1. Consider the SL2-module Vn and denote by I the
algebra of invariants of Vn. We want to determine n such that hd I ≤ 100.
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By Proposition 6.2.4, if n is even and hd I ≤ 100, then n ≤ 24 or n ∈ {28, 32}.
By [Kac83, p. 106], if n is odd, then r ≥ p(n−2)+φ(n−2)−1, where p() is the
partition function and φ() is Euler's totient function. It follows that hd I ≥ 168
for odd n ≥ 17. For n ≤ 10, hd I takes the following values:

n 1 2 3 4 5 6 7 8 9 10
hd I 0 0 0 0 1 1 25 3 85 98

(This follows from Proposition 4.0.1.)
For the remaining cases we have hd I ≥ 103 from Table 6.2. This proves Theo-
rem 6.1.1.

Proof of Theorem 6.1.2. Consider V = Vn1 ⊕ . . . ⊕ Vnp with ni ≥ 1 for all
i and p > 1. Let I := O(V )SL2 be the algebra of invariants of V . We want to
determine V such that hd I ≤ 15.
We follow Popov's proof ([Pop83, Theorem 4]), in which he determined V with
hd I ≤ 3.
By the monotony theorem 6.2.5 it follows that if V = W ⊕W ′, then hd I ≥
hdO(W )SL2 + hdO(W ′)SL2 . Therefore, all ni belong to {1, 2, 3, 4, 5, 6, 8}, and
direct summands W have hdO(W )SL2 ≤ 15.

If all ni are either 1 or 2, so that V = mV1⊕nV2, then we have explicit formulas
for the number of generators of I and for the size of a system of parameters of
I (see Chap. 5.2). Therefore we have the following table:

n\m 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 1 3 6 10 15 21
1 0 0 1 4 9 16 25
2 0 1 6 15 28
3 1 5 16 34
4 5 13 32
5 13 26
6 26

We investigate the remaining possibilities.

Case 1: One of the ni, say n1, is equal to 8.
Let v = x4y4 ∈ V8. From Lemma 6.2.1 it follows that the orbit SL2 ·v is closed
and SL2v = NSL2(T ). We apply Proposition 6.2.3 for G = SL2v and for the
slice-representation (SL2v, Nv) of SL2v for the module V .
We obtain hdO(Nv)SL2v ≥ (b−1)(b−2)

2 , where b = dimN+
v . By the monotony

theorem 6.2.5 it follows that hd I ≥ (b−1)(b−2)
2 . We determine b. We have:

(SL2v, Nv) = (SL2v, Nv,V8)⊕ (SL2v, Vn2 ⊕ . . .⊕ Vnp).

Now dim(Vn2 ⊕ . . . ⊕ Vnp)+ = [n2+1
2 ] + . . . + [np+1

2 ], where [α] is the maximal
integer ≤ α. The positive weights ofNxnyn are 4, 6, . . . , 2n, hence dimN+

v,V8
= 3.

Therefore,

b = 3 + [
n2 + 1

2
] + . . .+ [

np + 1
2

],
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and hd I ≥ (b−1)(b−2)
2 . If b ≥ 8, then hd I ≥ 21. We check the cases with b ≤ 7.

By monotony it su�ces to look at Vm⊕V8 for m = 1, 2, 3, 4, 5, 6. If V = V1⊕V8

then I is the algebra of covariants of V8, generated by 69 elements ([BB08]),
and hd I = 61. In the other cases hd I ≥ 26 by Table 6.2.

Case 2: One of the ni, say n1, is equal to 2.
Let v = xy ∈ V2. From Lemma 6.2.1 it follows that the orbit SL2 ·v is

closed and SL2v = T . We apply Proposition 6.2.2 for G = SL2v and for the
slice-representation (SL2v, Nv) of SL2v for the module V .
We obtain hdO(Nv)SL2v ≥ (c − 1)2, where c = dimN+

v . By the monotony
theorem 6.2.5 it follows that hd I ≥ (c− 1)2. We determine c. We have:

(SL2v, Nv) = (SL2v, Nv,V2)⊕ (SL2v, Vn2 ⊕ . . .⊕ Vnp).

Now dim(Vn2 ⊕ . . . ⊕ Vnp)+ = [n2+1
2 ] + . . . + [np+1

2 ], where [α] is the maximal
integer ≤ α. The positive weights ofNxnyn are 4, 6, . . . , 2n, hence dimN+

v,V2
= 0.

Therefore,

c = [
n2 + 1

2
] + . . .+ [

np + 1
2

],

and hd I ≥ (c− 1)2. Since ni > 2 for some i, we have c ≥ 2. We have hd I ≥ 16
for c ≥ 5. We therefore check the cases c ∈ {2, 3, 4}.

If c = 2, then V is V2 ⊕ V3 or V2 ⊕ V4 and hd I = 1 (this follows from Chap.
5.9 and 5.10).

If c = 3, then V is one of V1 ⊕ V2 ⊕ V3, V1 ⊕ V2 ⊕ V4, 2V2 ⊕ V3, 2V2 ⊕ V4,
V2 ⊕ V5 or V2 ⊕ V6. In these six cases one has hd I = 9, 11, 11, 11, 23, 20 (this
follows from Table 5.1).

If c = 4, then by monotony and the above V does not have a direct summand
V5 or V6, so that V is one of V2 ⊕ 2V3, V2 ⊕ V3 ⊕ V4, V2 ⊕ 2V4, 2V1 ⊕ V2 ⊕ V3,
2V1 ⊕ V2 ⊕ V4, V1 ⊕ 2V2 ⊕ V3, V1 ⊕ 2V2 ⊕ V4, 3V2 ⊕ V3, 3V2 ⊕ V4. If V is
2V1 ⊕ V2 ⊕ V3 or 2V1 ⊕ V2 ⊕ V4, then hd I = 27 or 48 by Table 5.3. Explicit
generation of invariants for V2⊕ 2V4 and 3V2⊕V3 shows that r ≥ 29, 49 so that
hd I ≥ 19, 39 in these cases. By Table 6.2 hd I ≥ 17 in the remaining �ve cases.

Case 3: All of the ni equal 1, 3, 4, 5 or 6.
If V is V1⊕ V3, V1⊕ V4, 2V3, V3⊕ V4, 2V4, V1⊕ V5, or V1⊕V6, then hd I equals
1, 1, 2, 14, 1, 18, 20, respectively (this follows from Table 5.1). If V is V3 ⊕ V5,
V4⊕V5, 2V5, V3⊕V6, V4⊕V6, V5⊕V6, 2V6, 2V3⊕V4 or V3⊕2V4, then hd I ≥ 16
by Table 6.2.

If V is 2V1⊕V3, 2V1⊕V4, V1⊕2V3, V1⊕V3⊕V4, V1⊕2V4, 3V3, 3V4, 3V1⊕V3,
3V1 ⊕ V4, 4V4, then hd I equals 8, 14, 19, 55, 19, 19, 13, 23, 55, 63, respectively
(this follows from Tables 5.1 and 5.3). By monotony we are done.

This �nishes the determination of the V with hd I ≤ 15.
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Computations

A.1 Implemented functions

The function Transvectant[ll1,ll2,r] implemented in Mathematica [Wol10]
returns the coe�cient list of (ff1,ff2)_r, where ff1 is a binary form with the
coe�cient list ll1 and ff2 is a binary form with the coe�cient list ll2:

<<Combinatorica`

Transvectant[ll1_,ll2_,rr_]:=Module[{w1,w2,yy,xx,tt,zz},

w1[nn_]:=Table[yy^(nn-i)*xx^i,{i,0,nn}];

w2[mm_]:=Table[tt^(mm-i)*zz^i,{i,0,mm}];

Coefficient[ Expand[((Length[ll1]-1-rr)!*(Length[ll2]-1-rr)!*

Sum[(-1)^i*Binomial[rr,i]*

D[D[ll1.w1[Length[ll1]-1],{xx,rr-i}],{yy,i}]*

D[D[ll2.w2[Length[ll2]-1],{tt,rr-i}],{zz,i}],{i,0,rr}])/

((Length[ll1]-1)!*(Length[ll2]-1)!)/.{zz->xx,tt->yy}]/.{yy->1},xx,#]

&/@Range[0,Length[ll1]+Length[ll2]-2*(rr+1)]];

Example:

In[]:=ff=Table[Binomial[3,i]*a[3-i],{i,0,3}]

Out[]={a[3],3a[2],3a[1],a[0]}

In[]:=Transvectant[ff,ff,2]

Out[]={-2a[2]^2+2a[1]a[3],-2a[1]a[2]+2a[0]a[3],-2a[1]^2+2a[0]a[2]}

The function TransvectantPoly[ff1,ff2,r] implemented in Mathematica [Wol10]
returns the transvectant (ff1,ff2)_r, where ff1 and ff2 are two binary forms:

<<Combinatorica`

TransvectantPoly[ff1_,ff2_,rr_]:=Module[{w1,w2,yy,xx,tt,zz,LL,pp,ll1,ll2},

ll1=CoefficientList[ff1/.y->1,x];

ll2=CoefficientList[ff2/.y->1,x];

w1[nn_]:=Table[yy^(nn-i)*xx^i,{i,0,nn}];

w2[mm_]:=Table[tt^(mm-i)*zz^i,{i,0,mm}];

LL=Coefficient[Expand[((Length[ll1]-1-rr)!*(Length[ll2]-1-rr)!*

Sum[(-1)^i*Binomial[rr,i]*

D[D[ll1.w1[Length[ll1]-1],{xx,rr-i}],{yy,i}]*

D[D[ll2.w2[Length[ll2]-1],{tt,rr-i}],{zz,i}],{i,0,rr}])/

126
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((Length[ll1]-1)!*(Length[ll2]-1)!)/.{zz->xx,tt->yy}]/.{yy->1},xx,#]

&/@Range[0,Length[ll1]+Length[ll2]-2*(rr+1)];

pp=Length[LL];

If[pp==1,LL.{1},LL.Table[y^(pp-1-i)*x^i,{i,0,pp-1}]]];

Example:

In[]:=ff=a[0]x^3+3a[1]x^2y+3a[2]xy^2+a[3]y^3;

In[]:=TransvectantPoly[ff,ff,2]

Out[]=x^2(-2a[1]^2+2a[0]a[2])+ xy(-2a[1]a[2]+2a[0]a[3])+y^2(-2a[2]^2+2a[1]a[3])

The function prod[lf_,lg_] implemented in Mathematica [Wol10] returns the
coe�cient list of fg, where f is a binary form with the coe�cient list lf and g
is a binary form with the coe�cient list lg:

<<Combinatorica`

prod[lf_, lg_] := Transvectant[lf, lg, 0]

Example:

In[]:=f={a[1],a[0]};

In[]:=g={b[2],2b[1],b[0]};

In[]:=prod[f,g]

Out[]={a[1]b[2],2a[1]b[1]+a[0]b[2],a[1]b[0]+2a[0]b[1],a[0]b[0]}

The function exp[lf_,m_] implemented in Mathematica [Wol10] returns the
coe�cient list of fm, where f is a binary form with the coe�ent list lf:

<<Combinatorica`

exp[lf_,2]:=prod[lf,lf];

exp[lf_,m_]:=Transvectant[ff,exp[ff,m-1],0]

Example:

In[]:=f={a[1],a[0]};

In[]:=exp[f,4]

Out[]={a[1]^4,4a[0]a[1]^3,6a[0]^2a[1]^2,4a[0]^3a[1],a[0]^4}

The function poincare[listdeg_] returns for listdeg={n1, . . . , np} the Poincaré
series of the modules of covariants of Vn1⊕. . .⊕Vnp of order≤

∏p
i=1b

ni+1
2 cd

ni+1
2 e−

2 (in Mathematica [Wol10]):

<< Combinatorica`

poincare[listdeg_] := Module[{N,pp,qq,rr,LL,rules,matr,n,ww},

N =Sum[Ceiling[(listdeg[[i]]+1)/2]*Floor[(listdeg[[i]]+1)/2],

{i,1,Length[listdeg]}]-2;

n =Sum[listdeg[[i]], {i, 1, Length[listdeg]}];

matr = {};

ww = Sort[Flatten[

Table[Table[i,{i,-listdeg[[j]],0,2}],{j,1,Length[listdeg]}],1]];

For[mu = 0, mu < N + 1, mu++,

pp = Expand[e^mu*Product[1-te^ww[[i]],{i,1,Length[ww]}]];

rules = Table[e^(-i)->-e^(i - 2),{i,2,4N}];

qq = pp /. rules /. e^(-1)->0 /. e^(-2)->-e^0;

rr = PadRight[CoefficientList[qq,e],N+1];

matr = Flatten[{matr,{rr}},1]];

LL = PadRight[{1}, N + 1];

Simplify[Inverse[matr].LL]]
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Example:

In[]:= poincare[{2, 3}]

Out[]= {(1-t+t^2-t^3+t^4-t^5+t^6)/(1-t-t^3+t^6+t^7-t^10-t^12+t^13),

t^2/(1-t-t^2+t^4+t^7-t^9-t^10+t^11),

t(1-t+t^2))/((-1+t)^4(1+2t+3t^2+4t^3+4t^4+3t^5+2t^6+t^7)),

(t+t^3)/(1-t-t^2+t^4+t^7-t^9-t^10+t^11),

(t^2+t^4-t^5)/((-1+t)^4(1+2t+3t^2+3t^3+2t^4+t^5))}

The function CoefficientPoincare[k_,r_] returns the dimension of the vector
space of invariants of Vr of degree k (in Mathematica [Wol10]):

CoefficientPoincare[k_,r_]:=Module[{x,p},p=kr/2;

If[EvenQ[k r]==True,Coefficient[Series[

Product[(1-x^i),{i,k+1,k+r}]/Product[(1-x^i),{i,2,r}],{x,0,p + 1}],x,p],

Print["There are no invariants of degree ",r,"!"]]]

Example:

In[]:= CoefficientPoincare[10, 8]

Out[]= 12

In[]:= CoefficientPoincare[10, 10]

Out[]= 24

The function SymTensor[k,r] returns the decomposition of the k-th symmetric
power Sk(Vr) of Vr as an SL2-module (Mathematica [Wol10]):

SymTensor[k_,r_]:=Module[{x},Sum[Coefficient[Series[

Product[(1-x^i),{i,k+1,k+r}]/Product[(1-x^i),{i,2,r}],{x,0,p+1}],x,p]*v[kr-2p],

{p,0,IntegerPart[kr/2]}]];

Example:

In[]:=SymTensor[10, 8]

Out[]=12v[0]+10v[2]+32v[4]+30v[6]+51v[8]+48v[10]+66v[12]+61v[14]+77v[16]

+70v[18]+83v[20]+74v[22]+84v[24]+74v[26]+80v[28]+69v[30]+74v[32]+62v[34]

+64v[36]+53v[38]+54v[40]+43v[42]+43v[44]+33v[46]+33v[48]+25v[50]+24v[52]

+17v[54]+17v[56]+11v[58]+11v[60]+7v[62]+7v[64]+4v[66]+4v[68]+2v[70]+2v[72]

+v[74]+v[76]+v[80]

The function Dim[n,N,listinv,listdeg] takes as input n, a list listinv of
invariants of Vn, and a list listdeg of the degrees of the elements of listinv,
together with their multiplicities, and returns:

• the dimension of the vector space of invariants of Vn of degree N;

• the size of the vector space of invariants of degree N spanned by the ele-
ments of listinv of degree <N.

• a lower bound for the dimension of the subspace of invariants of degrees
N spanned by the elements of listinv of degree <N.

• a lower bound for the dimension of the subspace of invariants of degree N
spanned by the elements of listinv of degree ≤N (in the case listinv

contains elements of degree N).
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This has been implemented in Mathematica [Wol10] as follows:

<<Combinatorica`

Dim[n_,N_,listinv_,listdeg_]:=

Module[{old,inv,matr1,r1,matr2,r2,invariants,jj,listdeg1,p,invariantsN,MM,var,ss},

var=Variables[listinv[[1]]];ss=CoefficientPoincare[n,N];

If[ss==0,Print["There are no invariants of degree",N,"!"],

MM=Table[listinv/.Table[var[[j]]->Random[Integer,{-10,10}],{j,1,Length[var]}],

{i,1,ss+1}];

If[Dimensions[MM][[1]]<ss,Print["<<The evaluation matrix is too small"],

listdeg1=Table[listdeg[[i]][[1]],{i,1,Length[listdeg]}];

invariants=Table[Table[jj[listdeg[[i]][[1]]][j],{j,1,listdeg[[i]][[2]]}],{i,1,

Length[listdeg]}];

inv=Flatten[invariants];old=listmonomials[N,invariants,listdeg1];

matr1=Table[old/.Table[inv[[j]]->MM[[i]][[j]],{j,1,Length[inv]}],{i,1,ss+1}];

r1=If[old=={},0,MatrixRank[matr1,Modulus->32003]];

p=0;For[i=1,i<Length[listdeg]+1,i++,If[listdeg[[i]][[1]]==N,p=i]];

If[p=!=0,invariantsN=invariants[[p]];

Print["<<The dimension of O(V_",n,")^SL2_",N,"is",ss];

Print["<<There are",Length[old],"invariants of degree",N,

"spanned by the given invariants of degrees<",N];

Print["<<The subspace of O(V_",n,")^SL2_",N,"spanned by the given invariants

of degrees<",N,"has","dimension>=",r1];

matr2=Table[Union[old,invariantsN]/.Table[inv[[j]]->MM[[i]][[j]],

{j,1,Length[inv]}],{i,1,ss+1}];r2=MatrixRank[matr2,Modulus->32003];

Print["<<The subspace of O(V_",n,")^SL2_",N,"spanned by the given

invariants of degrees<=",N,"has dimension >=",r2],

Print["<<The dimension of O(V_",n,")^SL2_",N,"is",ss];

Print["<<There are",Length[old],"invariants of degree",N,"spanned by

the given invariants of degrees<=",listdeg[[Length[listdeg]]][[1]]];

Print["<<The subspace of O(V_",n,")^SL2_",N,"spanned by the given invariants

of degrees<=",listdeg[[Length[listdeg]]][[1]],"has","dimension>=",r1];]]]]

Example:

In[]:=ff=Table[Binomial[3,i]*a[3-i],{i,0,3}];

j4=Transvectant[Transvectant[ff,ff,2],Transvectant[ff,ff,2],2].{1};

In[]:=Dim[3,4,{j4},{{4,1}}]

<<The dimension of O(V_3)^SL2_4 is 1

<<There are 0 invariants of degree 4 spanned by the given

invariants of degree <4

<<The subspace of O(V_3)^SL2_4 spanned by the given invariants

of degree <4 has dimension >=0

<<The subspace of O(V_3)^SL2_4 spanned by the given invariants

of degree <=4 has dimension >=1

In[]:= Dim[3,8,{j4},{{4,1}}]

<<The dimension of O(V_3)^SL2_8 is 1

<<There are 1 invariants of degree 8 spanned by the given

invariants of degree <8

<<The subspace of O(V_3)^SL2_8 spanned by the given invariants

of degree <8 has dimension >=1

The function Dim2[n,N,matr,listdeg] takes as input n, a matrix matr, which
contains the evaluations of a �input� set of invariants of Vn, and a list listdeg
of the degrees of these invariants, together with their multiplicities, and returns:

• the dimension of the vector space of invariants of Vn of degree N;
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• the size of the vector space of invariants of degrees N spanned by the input
invariants of degrees <N.

• a lower bound for the dimension of the subspace of invariants of degrees
N spanned by the input invariants of degrees <N.

• a lower bound for the dimension of the subspace of invariants of degrees
N spanned by the input invariants of degrees ≤N.

This has been implemented in Mathematica [Wol10] as follows:

<<Combinatorica`

Dim2[n_,N_,MM_,listdeg_]:=

Module[{old,inv,matr1,r1,matr2,r2,invariants,jj,listdeg1,p,invariantsN,ee},

ee=Coefficient[SymTensor[n,N],v[0]];

If[Dimensions[MM][[1]]<ee,Print["<<Theevaluationmatrixistoosmall"],

listdeg1=Table[listdeg[[i]][[1]],{i,1,Length[listdeg]}];

invariants=Table[Table[jj[listdeg[[i]][[1]]][j],{j,1,listdeg[[i]][[2]]}],

{i,1,Length[listdeg]}];

inv=Flatten[invariants];old=listmonomials[N,invariants,listdeg1];

matr1=Table[old/.Table[inv[[j]]->MM[[i]][[j]],{j,1,Length[inv]}],{i,1,ee}];

r1=If[old=={},0,MatrixRank[matr1,Modulus->32003]];

Print["<<The dimension of O(V_",n,")^SL2_",N,"is",ee];

Print["<<The set of invariants of degree",N,"spanned by the given

invariants of degrees <",N,"has size",Length[old]];

Print["<<The subspace of O(V_",n,")^SL2_",N,"spanned by the given

invariants of degrees <",N,"has","dimension >=",r1];

p=0;For[i=1,i<Length[listdeg]+1,i++,If[listdeg[[i]][[1]]==N,p=i]];

If[p=!=0,invariantsN=invariants[[p]];

matr2=Table[Union[old,invariantsN]/.Table[inv[[j]]->MM[[i]][[j]],

{j,1,Length[inv]}],{i,1,ee}];

r2=MatrixRank[matr2,Modulus->32003];

Print["<<The subspace of O(V_",n,")^SL2_",N,"spanned by the given

invariants of degrees <=",N,"has dimension >=",r2]]]]

Example:

In[]:=ff=Table[Binomial[3,i]*a[3-i],{i,0,3}];

In[]:=matr={};For[i=1,i<10,i++,

j4=Transvectant[Transvectant[ff,ff,2],Transvectant[ff,ff,2],2].{1}/.

Table[a[j]->Random[Integer,{-10,10}],{j,0,3}];matr=Append[matr,{j4}]];

In[]:Dimensions[matr]

Out[]={9,1}

In[]:=Dim2[3,4,matr,{{4,1}}]

<<The dimension of O(V_3)^SL2_4 is 1

<<The set of invariants of degree 4 spanned by the given

invariants of degree <4 has size 0

<<The subspace of O(V_3)^SL2_4 spanned by the given invariants

of degree <4 has dimension >=0

<<The subspace of O(V_3)^SL2_4 spanned by the given invariants

of degree <=4 has dimension >=1

A.2 The invariants of the binary septic

Here are the Mathematica computations supporting the proof of Proposition
4.6.3. We �rst compute the invariants found in Proposition 4.6.3:
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In[]:=Timing[ff=Table[Binomial[7,i]*a[7-i],{i,0,7}];

cc1=Transvectant[ff,ff,6]; cc2=Transvectant[ff,ff,4];

cc4=Transvectant[ff,cc1,2]; cc3=Transvectant[ff,ff,2];

cc5=Transvectant[cc2,cc2,4]; cc6=Transvectant[ff,cc2,5];

alpha=Transvectant[cc6,cc5,3];j4=Transvectant[cc1,cc1,2].{1};

j81=Transvectant[Transvectant[cc4,cc4,4],cc1,2].{1};

j82=Transvectant[cc5,cc5,4].{1};j83=Transvectant[cc5,exp[cc1,2],4].{1};

j121=Transvectant[Transvectant[cc5,cc5,2],cc5,4].{1};

j122=Transvectant[Transvectant[cc4,cc4,2],exp[cc1,3],6].{1};

j123=Transvectant[Transvectant[cc4,cc4,4],Transvectant[cc4,cc4,4],2].{1};

j124=Transvectant[exp[cc6,2],exp[cc1,3],6].{1};

j125=Transvectant[Transvectant[Transvectant[cc6,cc6,2],cc2,2],exp[cc1,2],4].{1};

j126=Transvectant[Transvectant[cc6,cc6,2],Transvectant[cc6,cc6,2],2].{1};

j141=Transvectant[prod[cc6,ff],exp[cc1,5],10].{1};

j142=Transvectant[Transvectant[cc2,cc5,1],exp[cc1,4],8].{1};

j143=Transvectant[Transvectant[Transvectant[cc6,cc6,2],cc2,1],exp[cc1,3],6].{1};

j144=Transvectant[prod[cc6,alpha],exp[cc1,2],4].{1};

j161=Transvectant[exp[cc4,2],exp[cc1,5],10].{1};

j162=Transvectant[exp[alpha,2],cc1,2].{1};

j181=Transvectant[Transvectant[cc3,cc2,1],exp[cc1,7],14].{1};

j182=Transvectant[prod[ff,Transvectant[cc2,cc6,2]],exp[cc1,6],12].{1};

j183=Transvectant[prod[cc6,Transvectant[cc2,ff,2]],exp[cc1,6],12].{1};

j184=Transvectant[prod[cc6,Transvectant[cc2,cc6,1]],exp[cc1,5],10].{1};

j185=Transvectant[prod[cc6,Transvectant[cc6,cc5,1]],exp[cc1,4],8].{1};

j186=Transvectant[prod[cc6,Transvectant[cc6,Transvectant[cc6,cc6,2],1]],

exp[cc1,3],6].{1};

j187=Transvectant[prod[Transvectant[cc2,cc6,2],alpha],exp[cc1,3],6].{1};

j188=Transvectant[Transvectant[Transvectant[cc6,cc5,1],alpha,1],exp[cc1,2],4].{1};

j189=Transvectant[Transvectant[Transvectant[cc6,

Transvectant[cc6,cc6,2],1],alpha,1],cc1,2].{1};

j20=Transvectant[Transvectant[cc5,cc5,2],exp[Transvectant[cc2,cc5,4],2],4].{1};

j221=Transvectant[prod[alpha,Transvectant[alpha,cc5,1]],exp[cc1,2],4].{1};

j222=Transvectant[cc1,prod[alpha,Transvectant[alpha,

Transvectant[cc6,cc6,2],1]],2].{1};

j26=Transvectant[cc1,prod[alpha,Transvectant[alpha,

Transvectant[alpha,cc6,1],1]],2].{1};

j30=Transvectant[Transvectant[cc6,Transvectant[cc6,cc6,2],1],exp[alpha,3],3].{1};]

Out[]={1466.9,Null} // the computation took 1466.9 seconds

Here are the rank computations:

In[]:=listinv={j4,j81,j82,j83,j121,j122,j123,j124,j125,j126,j141,j142,j143,j144,

j161,j162,j181,j182,j183,j184,j185,j186,j187,j188,j189,j20,j221,j222,j26,j30};

In[]:=listdeg={{4,1},{8,3},{12,6},{14,4},{16,2},{18,9},{20,1},{22,2},{26,1},{30,1}};

In[]:=For[l=1,l<49,l++,pp=Timing[Dim[7,l,listinv,listdeg]];

Print["Computation time: ",pp[[1]]];Print["=============="]]

Out[]=

There are no invariants of degree 1!

Computation time: 0.384024

==============

There are no invariants of degree 2!

Computation time: 0.396025

==============

There are no invariants of degree 3!

Computation time: 1.21608

==============

<<The dimension of O(V_7)^SL2_4 is 1

<<There are 0 invariants of degree 4 spanned by the given invariants
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of degrees <4

<<The subspace of O(V_7)^SL2_4 spanned by the given invariants of

degrees <4 has dimension >=0

<<The subspace of O(V_7)^SL2_4 spanned by the given invariants of

degrees <=4 has dimension >=1

Computation time: 19.7492

==============

There are no invariants of degree 5!

Computation time: 0.400025

==============

There are no invariants of degree 6!

Computation time: 0.408025

==============

There are no invariants of degree 7!

Computation time: 1.21608

==============

<<The dimension of O(V_7)^SL2_8 is 4

<<There are 1 invariants of degree 8 spanned by the given invariants

of degrees <8

<<The subspace of O(V_7)^SL2_8 spanned by the given invariants of

degrees <8 has dimension >=1

<<The subspace of O(V_7)^SL2_8 spanned by the given invariants of

degrees <=8 has dimension >=4

Computation time: 46.0509

==============

There are no invariants of degree 9!

Computation time: 0.396024

==============

There are no invariants of degree 10!

Computation time: 0.408026

==============

There are no invariants of degree 11!

Computation time: 1.24808

==============

<<The dimension of O(V_7)^SL2_12 is 10

<<There are 4 invariants of degree 12 spanned by the given

invariants of degrees <12

<<The subspace of O(V_7)^SL2_12 spanned by the given invariants of

degrees <12 has dimension >=4

<<The subspace of O(V_7)^SL2_12 spanned by the given invariants of

degrees <=12 has dimension >=10

Computation time: 99.4462

==============

There are no invariants of degree 13!

Computation time: 0.416026

==============

<<The dimension of O(V_7)^SL2_14 is 4

<<There are 0 invariants of degree 14 spanned by the given

invariants of degrees <14

<<The subspace of O(V_7)^SL2_14 spanned by the given invariants of

degrees <14 has dimension >=0

<<The subspace of O(V_7)^SL2_14 spanned by the given invariants of

degrees <=14 has dimension >=4

Computation time: 45.2508

==============

There are no invariants of degree 15!

Computation time: 0.396025
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==============

<<The dimension of O(V_7)^SL2_16 is 18

<<There are 16 invariants of degree 16 spanned by the given

invariants of degrees <16

<<The subspace of O(V_7)^SL2_16 spanned by the given invariants of

degrees <16 has dimension >=16

<<The subspace of O(V_7)^SL2_16 spanned by the given invariants of

degrees <=16 has dimension >=18

Computation time: 173.035

==============

There are no invariants of degree 17!

Computation time: 0.396025

==============

<<The dimension of O(V_7)^SL2_18 is 13

<<There are 4 invariants of degree 18 spanned by the given

invariants of degrees <18

<<The subspace of O(V_7)^SL2_18 spanned by the given invariants of

degrees <18 has dimension >=4

<<The subspace of O(V_7)^SL2_18 spanned by the given invariants of

degrees <=18 has dimension >=13

Computation time: 127.624

==============

There are no invariants of degree 19!

Computation time: 0.396025

==============

<<The dimension of O(V_7)^SL2_20 is 35

<<There are 36 invariants of degree 20 spanned by the given

invariants of degrees <20

<<The subspace of O(V_7)^SL2_20 spanned by the given invariants of

degrees <20 has dimension >=34

<<The subspace of O(V_7)^SL2_20 spanned by the given invariants of

degrees <=20 has dimension >=35

Computation time: 320.972

==============

There are no invariants of degree 21!

Computation time: 0.400025

==============

<<The dimension of O(V_7)^SL2_22 is 26

<<There are 25 invariants of degree 22 spanned by the given

invariants of degrees <22

<<The subspace of O(V_7)^SL2_22 spanned by the given invariants of

degrees <22 has dimension >=24

<<The subspace of O(V_7)^SL2_22 spanned by the given invariants of

degrees <=22 has dimension >=26

Computation time: 247.499

==============

There are no invariants of degree 23!

Computation time: 0.392025

==============

<<The dimension of O(V_7)^SL2_24 is 62

<<There are 74 invariants of degree 24 spanned by the given

invariants of degrees <24

<<The subspace of O(V_7)^SL2_24 spanned by the given invariants of

degrees <24 has dimension >=62

Computation time: 569.244

==============

There are no invariants of degree 25!
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Computation time: 0.392025

==============

<<The dimension of O(V_7)^SL2_26 is 52

<<There are 78 invariants of degree 26 spanned by the given

invariants of degrees <26

<<The subspace of O(V_7)^SL2_26 spanned by the given invariants of

degrees <26 has dimension >=51

<<The subspace of O(V_7)^SL2_26 spanned by the given invariants of

degrees <=26 has dimension >=52

Computation time: 478.346

==============

==============

<<The dimension of O(V_7)^SL2_28 is 97

<<There are 135 invariants of degree 28 spanned by the given

invariants of degrees <28

<<The subspace of O(V_7)^SL2_28 spanned by the given invariants of

degrees <28 has dimension >=97

Computation time: 884.471

==============

==============

<<The dimension of O(V_7)^SL2_30 is 92

<<There are 171 invariants of degree 30 spanned by the given

invariants of degrees <30

<<The subspace of O(V_7)^SL2_30 spanned by the given invariants of

degrees <30 has dimension >=91

<<The subspace of O(V_7)^SL2_30 spanned by the given invariants of

degrees <=30 has dimension >=92

Computation time: 832.364

==============

==============

<<The dimension of O(V_7)^SL2_32 is 153

<<There are 270 invariants of degree 32 spanned by the given

invariants of degrees <32

<<The subspace of O(V_7)^SL2_32 spanned by the given invariants of

degrees <32 has dimension >=153

Computation time: 1392.58

==============

==============

<<The dimension of O(V_7)^SL2_34 is 144

<<There are 335 invariants of degree 34 spanned by the given

invariants of degrees <34

<<The subspace of O(V_7)^SL2_34 spanned by the given invariants of

degrees <34 has dimension >=144

Computation time: 1304.78

==============

==============

<<The dimension of O(V_7)^SL2_36 is 229

<<There are 513 invariants of degree 36 spanned by the given

invariants of degrees <36

<<The subspace of O(V_7)^SL2_36 spanned by the given invariants of

degrees <36 has dimension >=229

Computation time: 2080.95

==============

==============

<<The dimension of O(V_7)^SL2_38 is 223

<<There are 679 invariants of degree 38 spanned by the given

invariants of degrees <38
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<<The subspace of O(V_7)^SL2_38 spanned by the given invariants of

degrees <38 has dimension >=223

Computation time: 2015.41

==============

==============

<<The dimension of O(V_7)^SL2_40 is 325

<<There are 940 invariants of degree 40 spanned by the given

invariants of degrees <40

<<The subspace of O(V_7)^SL2_40 spanned by the given invariants of

degrees <40 has dimension >=325

Computation time: 2927.34

==============

==============

<<The dimension of O(V_7)^SL2_48 is 624

<<There are 3262 invariants of degree 48 spanned by the given

invariants of degrees <48

<<The subspace of O(V_7)^SL2_48 spanned by the given invariants of

degrees <48 has dimension >=624

Computation time: 5661.69

A.3 The invariants of the binary nonic

Here are the computations supporting the proof of Proposition 4.8.6. We �rst
write a matrix MM with 4000 evaluations at random points in V9 of the 92 in-
variants found in Proposition 4.8.6:

In[]:=MM={}; For[p=1,p<4001,p++,

ff=Table[Binomial[9,i]*a[9-i],{i,0,9}]/.{

a[9]->Random[Integer,{-10,10}],a[8]->Random[Integer,{-10,10}],

a[7]->Random[Integer,{-10,10}],a[6]->Random[Integer,{-10,10}],

a[5]->Random[Integer,{-10,10}],a[4]->Random[Integer,{-10,10}],

a[3]->Random[Integer,{-10,10}],a[2]->Random[Integer,{-10,10}],

a[1]->Random[Integer,{-10,10}],a[0]->Random[Integer,{-10,10}]};

cc1=Transvectant[ff,ff,8];cc2=Transvectant[ff,ff,6];

cc3=Transvectant[ff,ff,4];cc4=Transvectant[ff,ff,2];

cc5=Transvectant[ff,cc1,2];cc6=Transvectant[ff,cc2,6];

cc7=Transvectant[cc2,cc2,4];cc8=Transvectant[cc5,cc5,6];

cc9=Transvectant[cc5,cc5,4];cc10=Transvectant[cc5,cc8,2];

cc11=Transvectant[cc9,cc9,4];cc12=Transvectant[cc9,cc11,4];

cc13=Transvectant[cc2,cc7,4];cc14=Transvectant[cc6,cc6,2];

cc15=Transvectant[cc2,cc4,6];cc16=Transvectant[cc2,cc4,4];

cc17=Transvectant[cc2,cc3,6];cc18=Transvectant[cc5,cc6,3];

cc19=Transvectant[cc1,cc3,2];cc20=Transvectant[ff,cc1,2];

cc21=Transvectant[ff,cc2,2];cc22=Transvectant[ff,cc3,6];

cc23=Transvectant[ff,cc3,8];cc24=Transvectant[ff,cc4,8];

cc25=Transvectant[cc4,cc4,10];cc26=Transvectant[cc3,cc3,6];

cc27=Transvectant[exp[cc6,3],cc6,3];cc28=Transvectant[cc3,cc4,10];

cc29=Transvectant[cc2,cc4,2];cc30=Transvectant[cc3,cc4,8];

j41=Transvectant[cc1,cc1,2].{1};j42=Transvectant[cc2,cc2,6].{1};

j82=Transvectant[cc7,cc7,4].{1};j83=Transvectant[cc8,cc1,2].{1};

j81=Transvectant[cc2,exp[cc6,2],6].{1};

j84=Transvectant[cc7,exp[cc1,2],4].{1};

j85=Transvectant[cc7,cc17,4].{1};j102=Transvectant[cc18,cc7,4].{1};

j103=Transvectant[cc18,exp[cc1,2],4].{1};

j104=Transvectant[Transvectant[cc6,cc22,3],Transvectant[cc3,cc3,8],4].{1};
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j105=Transvectant[Transvectant[Transvectant[cc26,ff,6],cc20,3],cc2,6].{1};

j101=Transvectant[Transvectant[Transvectant[cc25,ff,6],cc21,5],cc2,6].{1};

j121=Transvectant[Transvectant[cc7,cc7,2],cc7,4].{1};

j122=Transvectant[cc9,exp[cc1,3],6].{1};j123=Transvectant[cc14,cc14,2].{1};

j124=Transvectant[Transvectant[exp[cc2,2],cc2,6],exp[cc6,2],6].{1};

j125=Transvectant[cc8,cc8,2].{1};j126=Transvectant[cc8,cc13,2].{1};

j127=Transvectant[Transvectant[cc7,cc2,2],Transvectant[cc7,cc3,4],6].{1};

j128=Transvectant[Transvectant[cc7,cc3,2],Transvectant[cc7,cc4,4],10].{1};

j129=Transvectant[cc14,cc8,2].{1};j1210=Transvectant[cc14,cc13,2].{1};

j1211=Transvectant[exp[cc6,2],Transvectant[cc7,cc3,4],6].{1};

j1212=Transvectant[prod[cc6,cc5],Transvectant[cc7,cc3,2],10].{1};

j1213=Transvectant[Transvectant[cc6,cc5,2],Transvectant[cc7,cc2,2],6].{1};

j1214=Transvectant[Transvectant[cc8,cc4,2],exp[cc2,2],12].{1};

j141=Transvectant[cc2,cc27,6].{1};

j142=Transvectant[cc2,Transvectant[prod[cc28,cc17],prod[cc1,cc2],5],6].{1};

j143=Transvectant[cc4,Transvectant[prod[cc15,cc19],prod[cc1,cc4],9],14].{1};

j144=Transvectant[cc1,Transvectant[prod[cc15,cc19],prod[cc1,cc4],15],2].{1};

j145=Transvectant[cc2,Transvectant[prod[cc15,cc19],prod[cc1,cc4],13],6].{1};

j146=Transvectant[cc3,Transvectant[prod[cc15,cc19],prod[cc1,cc4],11],10].{1};

j147=Transvectant[cc1,Transvectant[prod[Transvectant[cc3,cc4,10],cc17],

prod[cc1,cc2],7],2].{1};

j148=Transvectant[cc3, Transvectant[prod[cc28,cc17],prod[cc1,cc2],3],10].{1};

j149=Transvectant[cc4,Transvectant[prod[cc28,cc17],prod[cc1,cc2],1],14].{1};

j1410=Transvectant[Transvectant[Transvectant[cc16,cc19,6],cc2,5],

exp[cc1,2],4].{1};

j1411=Transvectant[Transvectant[Transvectant[cc16,cc19,4],cc1,1],

exp[cc2,2],12].{1};

j1412=Transvectant[Transvectant[Transvectant[cc16,cc19,2],cc2,1],

exp[cc3,2],20].{1};

j1413=Transvectant[Transvectant[prod[cc29,cc19],cc2,1],exp[cc4,2],28].{1};

j1414=Transvectant[Transvectant[cc16,cc19,7],exp[cc1,3],6].{1};

j1415=Transvectant[Transvectant[cc16,cc19,1],exp[cc2,3],18].{1};

j1416=Transvectant[Transvectant[prod[cc2,cc4],prod[cc1,cc3],1],exp[cc3,3],30].{1};

j1417=Transvectant[Transvectant[cc29,cc3,1],exp[cc2,4],24].{1};

j161=Transvectant[Transvectant[cc5,cc5,2],exp[cc1,5],10].{1};

j162=Transvectant[prod[cc7,cc8],exp[cc6,2],6].{1};

j163=Transvectant[exp[cc7,3],Transvectant[cc1,cc4,2],12].{1};

j164=Transvectant[exp[cc7,3],Transvectant[cc2,cc3,2],12].{1};

j165=Transvectant[exp[cc6,4],Transvectant[cc2,cc3,2],12].{1};

j166=Transvectant[exp[cc6,4],Transvectant[cc1,cc4,2],12].{1};

j167=Transvectant[prod[exp[cc1,4],cc2],exp[cc5,2],14].{1};

j168=Transvectant[exp[cc1,4],Transvectant[prod[cc2,cc3],prod[cc2,cc1],8],8].{1};

j169=Transvectant[exp[cc1,4],Transvectant[prod[cc2,cc3],prod[cc3,cc4],16],8].{1};

j1610=Transvectant[exp[cc1,4],Transvectant[exp[cc4,2],prod[cc2,cc4],20],8].{1};

j1611=Transvectant[exp[cc7,2],Transvectant[exp[cc4,2],prod[cc2,cc4],20],8].{1};

j1612=Transvectant[exp[cc7,2],Transvectant[prod[cc3,cc4],prod[cc2,cc3],16],8].{1};

j1613=Transvectant[exp[cc7,2],Transvectant[prod[cc3,cc2],prod[cc2,cc1],8],8].{1};

j1614=Transvectant[exp[cc7,2], Transvectant[cc16,Transvectant[cc3,cc1,2],6],8].{1};

j1615=Transvectant[exp[cc1,4],Transvectant[cc16,Transvectant[cc3,cc1,2],6],8].{1};

j1616=Transvectant[exp[cc1,4],Transvectant[cc30,Transvectant[cc3,cc2,4],4],8].{1};

j1617=Transvectant[exp[cc7,2],Transvectant[cc30,Transvectant[cc3,cc2,4],4],8].{1};

j1618=Transvectant[exp[cc7,2],Transvectant[cc29,cc19,8],8].{1};

j1619=Transvectant[exp[cc1,4],Transvectant[cc29,cc19,8],8].{1};

j1620=Transvectant[exp[cc2,4],prod[cc29,cc19],24].{1};

j1621=Transvectant[prod[exp[cc2,2],exp[cc1,2]],Transvectant[cc16,cc19,2],16].{1};

j181=Transvectant[Transvectant[Transvectant[cc2,cc2,2],cc2,1],exp[cc6,4],12].{1};

j182=Transvectant[exp[cc8,2],cc18,4].{1};
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j183=Transvectant[Transvectant[cc7,prod[cc1,cc8],2],cc18,4].{1};

j184=Transvectant[exp[cc7,2],Transvectant[cc30,Transvectant[cc3,

Transvectant[ff,Transvectant[ff,cc2,3],6],4],4],8].{1};

j185=Transvectant[exp[cc1,2],Transvectant[Transvectant[cc29,cc3,1],

exp[cc2,4],22],4].{1};

j186=Transvectant[exp[cc1,2],Transvectant[Transvectant[

prod[cc2,cc4],prod[cc1,cc3],1],exp[cc3,3],28],4].{1};

j187=Transvectant[exp[cc1,2],Transvectant[

Transvectant[cc16,cc19,1],exp[cc2,3],16],4].{1};

j188=Transvectant[prod[cc1,cc2],Transvectant[

Transvectant[cc16,cc19,7],exp[cc1,3],2],8].{1};

j189=Transvectant[exp[cc1,2],Transvectant[

Transvectant[prod[cc29,cc19],cc2,1],exp[cc4,2],26],4].{1};

j1810=Transvectant[exp[cc1,2],Transvectant[Transvectant[

Transvectant[cc16,cc19,2],cc2,1],exp[cc3,2],18],4].{1};

j1811=Transvectant[exp[cc1,2],Transvectant[Transvectant[

Transvectant[cc16,cc19,4],cc1,1],exp[cc2,2],10],4].{1};

j1812=Transvectant[prod[cc1,cc2],prod[Transvectant[

Transvectant[cc16,cc19,6],cc2,5],exp[cc1,2]],8].{1};

j1813=Transvectant[exp[cc1,2],Transvectant[cc4,

Transvectant[prod[cc28,cc17],prod[cc1,cc2],1],12],4].{1};

j1814=Transvectant[exp[cc1,2],Transvectant[cc3,

Transvectant[prod[cc28,cc17],prod[cc1,cc2],3],8],4].{1};

j1815=Transvectant[exp[cc1,2],Transvectant[cc2,

Transvectant[prod[cc15,cc19],prod[cc1,cc4],13],4],4].{1};

j1816=Transvectant[prod[cc1,cc2],Transvectant[cc2,

Transvectant[prod[cc15,cc19],prod[cc1,cc4],13],2],8].{1};

j1817=Transvectant[exp[cc1,2],Transvectant[cc4,

Transvectant[prod[cc15,cc19],prod[cc1,cc4],9],12],4].{1};

j1818=Transvectant[exp[cc1,2],Transvectant[cc2,

Transvectant[prod[cc28,cc17],prod[cc1,cc2],5],4],4].{1};

j1819=Transvectant[prod[cc1,cc2],Transvectant[cc2,

Transvectant[prod[cc28,cc17],prod[cc1,cc2],5],2],8].{1};

j1820=Transvectant[prod[cc1,cc2],Transvectant[cc4,

Transvectant[prod[cc15,cc19],prod[cc1,cc4],9],10],8].{1};

j1821=Transvectant[prod[cc1,cc2],Transvectant[cc3,

Transvectant[prod[cc28,cc17],prod[cc1,cc2],3],6],8].{1};

j1822=Transvectant[prod[cc1,cc2],Transvectant[cc4,

Transvectant[prod[cc28,cc17],prod[cc1,cc2],1],10],8].{1};

j1823=Transvectant[exp[cc14,2],cc18,4].{1};

j1824=Transvectant[prod[cc2,cc3],Transvectant[Transvectant[

Transvectant[cc16,cc19,2],cc2,1],exp[cc3,2],12],16].{1};

j1825=Transvectant[prod[cc2,cc3],Transvectant[

Transvectant[prod[cc29,cc19],cc2,1],exp[cc4,2],20],16].{1};

j201=Transvectant[cc2,prod[exp[cc14,2],cc14],6].{1};

j202=Transvectant[Transvectant[cc2,cc27,4],Transvectant[cc24,cc23,3],4].{1};

j203=Transvectant[exp[cc13,2],Transvectant[cc7,cc7,2],4].{1};

j204=Transvectant[exp[cc5,2],exp[cc1,7],14].{1};

j22=Transvectant[exp[cc1,2],Transvectant[prod[cc2,cc3],Transvectant[

Transvectant[prod[cc29,cc19],cc2,1],exp[cc4,2],20],14],4].{1};

MM=Append[MM,{j41,j42,j81,j82,j83,j84,j85,j101,j102,j103,j104,j105,j121,j122,

j123,j124,j125,j126,j127,j128,j129,j1210,j1211,j1212,j1213,j1214,j141,j142,

j143,j144,j145,j146,j147,j148,j149,j1410,j1411,j1412,j1413,j1414,j1415,j1416,

j1417,j161,j162,j163,j164,j165,j166,j167,j168,j169,j1610,j1611,j1612,j1613,

j1614,j1615,j1616,j1617,j1618,j1619,j1620,j1621,j181,j182,j183,j184,j185,j186,

j187,j188,j189,j1810,j1811,j1812,j1813,j1814,j1815,j1816,j1817,j1818,j1819,

j1820, j1821,j1822,j1823,j1824,j1825,j201,j202,j203,j204,j22}]]
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Here are the rank computations:

In[]:=listdeg={{4,2},{8,5},{10,5},{12,14},{14,17},{16,21},{18,25},{20,2},{22,1}};

In[]:=For[l = 1,l<31,l++,pp = Timing[Dim2[9,l,MM,listdeg]];

Print["Computation time: ",pp[[1]]]; Print["=============="]]

Out[]=

There are no invariants of degree 1!

Computation time: 0.

==============

There are no invariants of degree 2!

Computation time: 0.004001

==============

There are no invariants of degree 3!

Computation time: 0.

==============

<<The dimension of O(V_9)^SL2_4 is 2

<<The set of invariants of degree 4 spanned by the given invariants

of degrees <4 has size 0

<<The subspace of O(V_9)^SL2_4 spanned by the given invariants of

degrees <4 has dimension >=0

<<The subspace of O(V_9)^SL2_4 spanned by the given invariants of

degrees <=4 has dimension >=2

Computation time: 0.008001

==============

There are no invariants of degree 5!

Computation time: 0.

==============

There are no invariants of degree 6!

Computation time: 0.008001

==============

There are no invariants of degree 7!

Computation time: 0.

==============

<<The dimension of O(V_9)^SL2_8 is 8

<<The set of invariants of degree 8 spanned by the given invariants

of degrees <8 has size 3

<<The subspace of O(V_9)^SL2_8 spanned by the given invariants of

degrees <8 has dimension >=3

<<The subspace of O(V_9)^SL2_8 spanned by the given invariants of

degrees <=8 has dimension >=8

Computation time: 0.024002

==============

There are no invariants of degree 9!

Computation time: 0.

==============

<<The dimension of O(V_9)^SL2_10 is 5

<<The set of invariants of degree 10 spanned by the given invariants

of degrees <10 has size 0

<<The subspace of O(V_9)^SL2_10 spanned by the given invariants of

degrees <10 has dimension >=0

<<The subspace of O(V_9)^SL2_10 spanned by the given invariants of

degrees <=10 has dimension >=5

Computation time: 0.028002

==============

There are no invariants of degree 11!

Computation time: 0.

==============

<<The dimension of O(V_9)^SL2_12 is 28
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<<The set of invariants of degree 12 spanned by the given invariants

of degrees <12 has size 14

<<The subspace of O(V_9)^SL2_12 spanned by the given invariants of

degrees <12 has dimension >=14

<<The subspace of O(V_9)^SL2_12 spanned by the given invariants of

degrees <=12 has dimension >=28

Computation time: 0.060003

==============

There are no invariants of degree 13!

Computation time: 0.004

==============

<<The dimension of O(V_9)^SL2_14 is 27

<<The set of invariants of degree 14 spanned by the given invariants

of degrees <14 has size 10

<<The subspace of O(V_9)^SL2_14 spanned by the given invariants of

degrees <14 has dimension >=10

<<The subspace of O(V_9)^SL2_14 spanned by the given invariants of

degrees <=14 has dimension >=27

Computation time: 0.064005

==============

There are no invariants of degree 15!

Computation time: 0.

==============

<<The dimension of O(V_9)^SL2_16 is 84

<<The set of invariants of degree 16 spanned by the given invariants

of degrees <16 has size 63

<<The subspace of O(V_9)^SL2_16 spanned by the given invariants of

degrees <16 has dimension >=63

<<The subspace of O(V_9)^SL2_16 spanned by the given invariants of

degrees <=16 has dimension >=84

Computation time: 0.296018

==============

There are no invariants of degree 17!

Computation time: 0.

==============

<<The dimension of O(V_9)^SL2_18 is 99

<<The set of invariants of degree 18 spanned by the given invariants

of degrees <18 has size 74

<<The subspace of O(V_9)^SL2_18 spanned by the given invariants of

degrees <18 has dimension >=74

<<The subspace of O(V_9)^SL2_18 spanned by the given invariants of

degrees <=18 has dimension >=99

Computation time: 0.428027

==============

There are no invariants of degree 19!

Computation time: 0.

==============

<<The dimension of O(V_9)^SL2_20 is 217

<<The set of invariants of degree 20 spanned by the given invariants

of degrees <20 has size 225

<<The subspace of O(V_9)^SL2_20 spanned by the given invariants of

degrees <20 has dimension >=215

<<The subspace of O(V_9)^SL2_20 spanned by the given invariants of

degrees <=20 has dimension >=217

Computation time: 2.28014

==============

There are no invariants of degree 21!
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Computation time: 0.

==============

<<The dimension of O(V_9)^SL2_22 is 273

<<The set of invariants of degree 22 spanned by the given invariants

of degrees <22 has size 326

<<The subspace of O(V_9)^SL2_22 spanned by the given invariants of

degrees <22 has dimension >=272

<<The subspace of O(V_9)^SL2_22 spanned by the given invariants of

degrees <=22 has dimension >=273

Computation time: 5.63635

=============

==============

<<The dimension of O(V_9)^SL2_24 is 506

<<The set of invariants of degree 24 spanned by the given invariants

of degrees <24 has size 700

<<The subspace of O(V_9)^SL2_24 spanned by the given invariants of

degrees <24 has dimension >=506

Computation time: 9.88062

==============

==============

<<The dimension of O(V_9)^SL2_26 is 647

<<The set of invariants of degree 26 spanned by the given invariants

of degrees <26 has size 1098

<<The subspace of O(V_9)^SL2_26 spanned by the given invariants of

degrees <26 has dimension >=647

Computation time: 21.7054

=============

==============

<<The dimension of O(V_9)^SL2_28 is 1066

<<The set of invariants of degree 28 spanned by the given invariants

of degrees <28 has size 2040

<<The subspace of O(V_9)^SL2_28 spanned by the given invariants of

degrees <28 has dimension >=1066

Computation time: 74.5487

==============

==============

<<The dimension of O(V_9)^SL2_30 is 1367

<<The set of invariants of degree 30 spanned by the given invariants

of degrees <30 has size 3231

<<The subspace of O(V_9)^SL2_30 spanned by the given invariants of

degrees <30 has dimension >=1367

Computation time: 173.235

==============

==============

<<The dimension of O(V_9)^SL2_32 is 2082

<<The set of invariants of degree 32 spanned by the given invariants

of degrees <32 has size 5614

<<The subspace of O(V_9)^SL2_32 spanned by the given invariants of

degrees <32 has dimension >=2082

Computation time: 563.463

A.4 The invariants of the binary decimic

Here are the computations supporting the proof of Proposition 4.9.3. We �rst
write a matrix MM with 3000 evaluations at random points in V10 of the 106
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generating invariants from Proposition 4.9.3:

Timing[MM={};For[p=1,p<3001,p++,ff=Table[Binomial[10,i]*a[10-i],{i,0,10}]/.

Table[a[i]->Random[Integer,{-4,4}],{i,0,10}];

cc1=Transvectant[ff,ff,8];cc2=Transvectant[ff,ff,6];

cc3=Transvectant[ff,ff,4];cc4=Transvectant[ff,ff,2];

cc5=Transvectant[ff,cc1,4];cc6=Transvectant[ff,cc2,8];

cc7=Transvectant[cc2,cc2,6];cc8=Transvectant[cc5,cc5,4];

cc9=Transvectant[cc2,cc7,4];cc10=Transvectant[cc1,cc1,2];

cc11=Transvectant[cc4,cc4,14];cc12=Transvectant[cc3,cc3,10];

cc13=Transvectant[cc10,cc1,2];cc14=Transvectant[cc8,cc5,4];

cc15=Transvectant[cc2,cc2,4];cc16=Transvectant[cc5,cc5,2];

cc17=Transvectant[cc4,cc2,4];cc18=Transvectant[cc4,cc2,2];

cc19=Transvectant[cc5,cc1,1];cc20=Transvectant[cc5,cc3,1];

cc21=Transvectant[cc5,cc2,1];cc22=Transvectant[cc1,cc2,2];

cc23=Transvectant[cc1,cc4,4];cc24=Transvectant[cc7,cc9,2];

cc25=Transvectant[cc7,cc7,2];j2=Transvectant[ff,ff,10].{1};

j4=Transvectant[cc1,cc1,4].{1};j61=Transvectant[cc5,cc5,6].{1};

j62=Transvectant[cc10,cc1,4].{1};j63=Transvectant[cc15,cc2,8].{1};

j64=Transvectant[cc6,cc6,2].{1};j81=Transvectant[cc8,cc1,4].{1};

j82=Transvectant[cc7,cc7,4].{1};j83=Transvectant[cc12,cc7,4].{1};

j84=Transvectant[cc10,cc11,4].{1};j85=Transvectant[cc11,cc11,4].{1};

j91=Transvectant[cc19,exp[cc1,2],8].{1};j92=Transvectant[cc20,exp[cc2,2],16].{1};

j93=Transvectant[cc21,prod[cc2,cc1],12].{1};

j94=Transvectant[Transvectant[cc5,cc4,1],prod[cc2,cc3],20].{1};

j95=Transvectant[Transvectant[cc6,cc4,1],exp[cc2,2],16].{1};

j101=Transvectant[cc16,exp[cc1,2],8].{1};j102=Transvectant[cc9,cc7,4].{1};

j103=Transvectant[cc7,exp[cc6,2],4].{1};j104=Transvectant[cc9,cc12,4].{1};

j105=Transvectant[Transvectant[cc23,cc22,6],cc2,8].{1};

j106=Transvectant[prod[cc8,cc5],ff,10].{1};

j107=Transvectant[Transvectant[Transvectant[cc1,cc3,2],cc17,12],cc1,4].{1};

j108=Transvectant[Transvectant[Transvectant[cc1,cc3,2],cc18,8],cc4,16].{1};

j111=Transvectant[Transvectant[cc19,exp[cc1,2],4],cc2,8].{1};

j112=Transvectant[Transvectant[cc19,exp[cc1,2],2],cc3,12].{1};

j113=Transvectant[prod[cc19,exp[cc1,2]],cc4,16].{1};

j114=Transvectant[Transvectant[cc20,exp[cc2,2],14],cc1,4].{1};

j115=Transvectant[Transvectant[cc20,exp[cc2,2],12],cc2,8].{1};

j116=Transvectant[Transvectant[cc20,exp[cc2,2],10],cc3,12].{1};

j117=Transvectant[Transvectant[cc20,exp[cc2,2],8],cc4,16].{1};

j118=Transvectant[Transvectant[cc21,prod[cc2,cc1],10],cc1,4].{1};

j121=Transvectant[cc8,cc8,4].{1};j122=Transvectant[exp[cc5,2],exp[cc1,3],12].{1};

j123=Transvectant[cc25,cc7,4].{1};

j124=Transvectant[Transvectant[cc16,exp[cc1,2],6],cc1,4].{1};

j125=Transvectant[cc24,cc1,4].{1};

j126=Transvectant[Transvectant[cc16,exp[cc1,2],4],cc2,8].{1};

j127=Transvectant[Transvectant[cc16,exp[cc1,2],2],cc3,12].{1};

j128=Transvectant[prod[cc16,exp[cc1,2]],cc4,16].{1};

j129=Transvectant[Transvectant[cc7,exp[cc6,2],2],cc1,4].{1};

j1210=Transvectant[prod[cc7,exp[cc6,2]],cc2,8].{1};

j1211=Transvectant[Transvectant[cc9,cc12,2],cc1,4].{1};

j1212=Transvectant[Transvectant[Transvectant[cc23,cc22,6],cc2,6],cc1,4].{1};

j131=Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],4],cc2,6],cc1,4].{1};

j132=Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],4],cc2,4],cc2,8].{1};

j133=Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],4],cc2,2],cc3,12].{1};

j134=Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],2],cc3,10],cc1,4].{1};

j135=Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],2],cc3,8],cc2,8].{1};

j136=Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],2],cc3,6],cc3,12].{1};

j137=Transvectant[Transvectant[Transvectant[cc20,exp[cc2,2],14],cc1,2],cc1,4].{1};



APPENDIX A. COMPUTATIONS 142

j138=Transvectant[prod[Transvectant[cc20,exp[cc2,2],14],cc1],cc2,8].{1};

j139=Transvectant[Transvectant[Transvectant[cc20,exp[cc2,2],12],cc2,6],cc1,4].{1};

j1310=Transvectant[Transvectant[Transvectant[cc20,exp[cc2,2],12],cc2,4],cc2,8].{1};

j1311=Transvectant[Transvectant[Transvectant[cc20,exp[cc2,2],12],cc2,2],cc3,12].{1};

j1312=Transvectant[Transvectant[Transvectant[cc20,exp[cc2,2],10],cc3,10],cc1,4].{1};

j1313=Transvectant[Transvectant[Transvectant[cc20,exp[cc2,2],10],cc3,8],cc2,8].{1};

j1314=Transvectant[Transvectant[Transvectant[cc20,exp[cc2,2],10],cc3,6],cc3,12].{1};

j1315=Transvectant[Transvectant[Transvectant[cc20,exp[cc2,2],8],cc4,14],cc1,4].{1};

j141=Transvectant[cc25,cc9,4].{1};j142=Transvectant[exp[cc10,2],cc16,8].{1};

j143=Transvectant[Transvectant[cc8,cc8,2],cc1,4].{1};

j144=Transvectant[exp[cc8,2],cc2,8].{1};

j145=Transvectant[Transvectant[exp[cc5,2],exp[cc1,3],10],cc1,4].{1};

j146=Transvectant[Transvectant[exp[cc5,2],exp[cc1,3],8],cc2,8].{1};

j147=Transvectant[Transvectant[exp[cc5,2],exp[cc1,3],6],cc3,12].{1};

j148=Transvectant[Transvectant[exp[cc5,2],exp[cc1,3],4],cc4,16].{1};

j149=Transvectant[prod[Transvectant[cc16,exp[cc1,2],6],cc1],cc2,8].{1};

j1410=Transvectant[Transvectant[cc24,cc1,2],cc1,4].{1};

j1411=Transvectant[prod[cc24,cc1],cc2,8].{1};

j1412=Transvectant[Transvectant[Transvectant[cc16,exp[cc1,2],4],cc2,6],cc1,4].{1};

j1413=Transvectant[Transvectant[Transvectant[cc16,exp[cc1,2],4],cc2,4],cc2,8].{1};

j151=Transvectant[Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],4],cc2,6],

cc1,2],cc1,4].{1};

j152=Transvectant[prod[Transvectant[Transvectant[cc19,exp[cc1,2],4],cc2,6],cc1],

cc2,8].{1};

j153=Transvectant[Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],4],cc2,4],

cc2,6],cc1,4].{1};

j154=Transvectant[Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],4],cc2,4],

cc2,4],cc2,8].{1};

j155=Transvectant[Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],4],cc2,4],

cc2,2],cc3,12].{1};

j156=Transvectant[Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],4],cc2,2],

cc3,10],cc1,4].{1};

j157=Transvectant[Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],4],cc2,2],

cc3,8],cc2,8].{1};

j158=Transvectant[Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],4],cc2,2],

cc3,6],cc3,12].{1};

j159=Transvectant[Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],2],cc3,10],

cc1,2],cc1,4].{1};

j1510=Transvectant[prod[Transvectant[Transvectant[cc19,exp[cc1,2],2],cc3,10],cc1],

cc2,8].{1};

j1511=Transvectant[Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],2],cc3,8],

cc2,6],cc1,4].{1};

j1512=Transvectant[Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],2],cc3,8],

cc2,4],cc2,8].{1};

j1513=Transvectant[Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],2],cc3,8],

cc2,2],cc3,12].{1};

j1514=Transvectant[prod[Transvectant[Transvectant[cc20,exp[cc2,2],14],cc1,2],cc1],

cc2,8].{1};

j1515=Transvectant[Transvectant[Transvectant[Transvectant[cc20,exp[cc2,2],12],cc2,6],

cc1,2],cc1,4].{1};

j1516=Transvectant[Transvectant[prod[Transvectant[cc20,exp[cc2,2],14],cc1],cc2,6],

cc1,4].{1};

j1517=Transvectant[Transvectant[prod[Transvectant[cc20,exp[cc2,2],14],cc1],cc2,4],

cc2,8].{1};

j1518=Transvectant[Transvectant[prod[Transvectant[cc20,exp[cc2,2],14],cc1],cc2,

2],cc3,12].{1};

j1519=Transvectant[Transvectant[Transvectant[Transvectant[cc20,exp[cc2,2],12],
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cc2,2],cc3,8],cc2,8].{1};

j161=Transvectant[Transvectant[cc25,cc9,2],cc1,4].{1};

j162=Transvectant[prod[cc25,cc9],cc2,8].{1};

j163=Transvectant[Transvectant[Transvectant[cc8,cc8,2],cc1,2],cc1,4].{1};

j164=Transvectant[Transvectant[exp[cc8,2],cc2,6],cc1,4].{1};

j165=Transvectant[Transvectant[Transvectant[exp[cc5,2],exp[cc1,3],8],cc2,6],

cc1,4].{1};

j171=Transvectant[Transvectant[prod[Transvectant[Transvectant[cc19,exp[cc1,2],4],

cc2,6],cc1],cc2,6],cc1,4].{1};

j172=Transvectant[Transvectant[Transvectant[Transvectant[Transvectant[cc19,

exp[cc1,2],4],cc2,4],cc2,2],cc3,10],cc1,4].{1};

j173=Transvectant[Transvectant[Transvectant[Transvectant[Transvectant[cc19,

exp[cc1,2],4],cc2,2],cc3,10],cc1,2],cc1,4].{1};

j174=Transvectant[Transvectant[Transvectant[Transvectant[Transvectant[cc20,

exp[cc2,2],12],cc2,2],cc3,8],cc2,4],cc2,8].{1};

j175=Transvectant[Transvectant[Transvectant[prod[Transvectant[cc20,exp[cc2,2],14],

cc1],cc2,2],cc3,8],cc2,8].{1};

j18=Transvectant[prod[Transvectant[exp[cc5,2],exp[cc1,3],4],cc4],Transvectant[

exp[ff,2],exp[ff,2],4],32].{1};

j191=Transvectant[prod[Transvectant[Transvectant[Transvectant[cc19,exp[cc1,2],4],

cc2,2],cc3,6],cc3],Transvectant[exp[ff,2],exp[ff,2],8],24].{1};

j192=Transvectant[prod[cc24,Transvectant[ff,Transvectant[Transvectant[ff,

Transvectant[exp[ff,2],cc4,8],5],ff,10],8]],cc2,8].{1};

j211=Transvectant[Transvectant[cc25,ff,1],exp[cc7,3],12].{1};

j212=Transvectant[Transvectant[Transvectant[Transvectant[Transvectant[

exp[cc10,3],ff,8],ff,4],ff,6],cc19,2],ff,10].{1};

MM=Append[MM,{j2,j4,j61,j62,j63,j64,j81,j82,j83,j84,j85,j91,j92,j93,j94,j95,j101,

j102,j103,j104,j105,j106,j107,j108,j111,j112,j113,j114,j115,j116,j117,j118,j121,

j122,j123,j124,j125,j126,j127,j128,j129,j1210,j1211,j1212,j131,j132,j133,j134,j135,

j136,j137,j138,j139,j1310,j1311,j1312,j1313,j1314,j1315,j141,j142,j143,j144,j145,

j146,j147,j148,j149,j1410,j1411,j1412,j1413,j151,j152,j153,j154,j155,j156,j157,j158,

j159,j1510,j1511,j1512,j1513,j1514,j1515,j1516,j1517,j1518,j1519,j161,j162,j163,j164,

j165,j171,j172,j173,j174,j175,j18,j191,j192,j211,j212}]]]

Here are the rank computations:

In[]:=listdeg={{2,1},{4,1},{6,4},{8,5},{9,5},{10,8},{11,8},{12,12},{13,15},{14,13},

{15,19},{16,5},{17,5},{18,1},{19,2},{21,2}};

In[]:=For[l=1,l<27,l++,pp=Timing[Dim2[10,l,MM,listdeg]];

Print["Computation time: ",pp[[1]]];Print["=============="]]

Out[]=

There are no invariants of degree 1!

Computation time: 0.044003

==============

<<The dimension of O(V_10)^SL2_2 is 1

<<The set of invariants of degree 2 spanned by the given invariants

of degrees <2 has size 0

<<The subspace of O(V_10)^SL2_2 spanned by the given invariants of

degrees <2 has dimension >=0

<<The subspace of O(V_10)^SL2_2 spanned by the given invariants of

degrees <=2 has dimension >=1

Computation time: 0.008001

==============

There are no invariants of degree 3!

Computation time: 0.004

==============

<<The dimension of O(V_10)^SL2_4 is 2

<<The set of invariants of degree 4 spanned by the given invariants
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of degrees <4 has size 1

<<The subspace of O(V_10)^SL2_4 spanned by the given invariants of

degrees <4 has dimension >=1

<<The subspace of O(V_10)^SL2_4 spanned by the given invariants of

degrees <=4 has dimension >=2

Computation time: 0.008

==============

There are no invariants of degree 5!

Computation time: 0.008

==============

<<The dimension of O(V_10)^SL2_6 is 6

<<The set of invariants of degree 6 spanned by the given invariants

of degrees <6 has size 2

<<The subspace of O(V_10)^SL2_6 spanned by the given invariants of

degrees <6 has dimension >=2

<<The subspace of O(V_10)^SL2_6 spanned by the given invariants of

degrees <=6 has dimension >=6

Computation time: 0.020002

==============

There are no invariants of degree 7!

Computation time: 0.016001

==============

<<The dimension of O(V_10)^SL2_8 is 12

<<The set of invariants of degree 8 spanned by the given invariants

of degrees <8 has size 7

<The subspace of O(V_10)^SL2_8 spanned by the given invariants of

degrees <8 has dimension >=7

<<The subspace of O(V_10)^SL2_8 spanned by the given invariants of

degrees <=8 has dimension >=12

Computation time: 0.032001

==============

<<The dimension of O(V_10)^SL2_9 is 5

<<The set of invariants of degree 9 spanned by the given invariants

of degrees <9 has size 0

<<The subspace of O(V_10)^SL2_9 spanned by the given invariants of

degrees <9 has dimension >=0

<<The subspace of O(V_10)^SL2_9 spanned by the given invariants of

degrees <=9 has dimension >=5

Computation time: 0.028003

==============

<<The dimension of O(V_10)^SL2_10 is 24

<<The set of invariants of degree 10 spanned by the given invariants

of degrees <10 has size 16

<<The subspace of O(V_10)^SL2_10 spanned by the given invariants of

degrees <10 has dimension >=16

<<The subspace of O(V_10)^SL2_10 spanned by the given invariants of

degrees <=10 has dimension >=24

Computation time: 0.064004

==============

<<The dimension of O(V_10)^SL2_11 is 13

<<The set of invariants of degree 11 spanned by the given invariants

of degrees <11 has size 5

<<The subspace of O(V_10)^SL2_11 spanned by the given invariants of

degrees <11 has dimension >=5

<<The subspace of O(V_10)^SL2_11 spanned by the given invariants of

degrees <=11 has dimension >=13

Computation time: 0.044002
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==============

<<The dimension of O(V_10)^SL2_12 is 52

<<The set of invariants of degree 12 spanned by the given invariants

of degrees <12 has size 40

<<The subspace of O(V_10)^SL2_12 spanned by the given invariants of

degrees <12 has dimension >=40

<<The subspace of O(V_10)^SL2_12 spanned by the given invariants of

degrees <=12 has dimension >=52

Computation time: 0.16401

==============

<<The dimension of O(V_10)^SL2_13 is 33

<<The set of invariants of degree 13 spanned by the given invariants

of degrees <13 has size 18

<<The subspace of O(V_10)^SL2_13 spanned by the given invariants of

degrees <13 has dimension >=18

<<The subspace of O(V_10)^SL2_13 spanned by the given invariants of

degrees <=13 has dimension >=33

Computation time: 0.092006

==============

<<The dimension of O(V_10)^SL2_14 is 97

<<The set of invariants of degree 14 spanned by the given invariants

of degrees <14 has size 84

<<The subspace of O(V_10)^SL2_14 spanned by the given invariants of

degrees <14 has dimension >=84

<<The subspace of O(V_10)^SL2_14 spanned by the given invariants of

degrees <=14 has dimension >=97

Computation time: 0.488031

==============

<<The dimension of O(V_10)^SL2_15 is 80

<<The set of invariants of degree 15 spanned by the given invariants

of degrees <15 has size 61

<<The subspace of O(V_10)^SL2_15 spanned by the given invariants of

degrees <15 has dimension >=61

<<The subspace of O(V_10)^SL2_15 spanned by the given invariants of

degrees <=15 has dimension >=80

Computation time: 0.348021

==============

<<The dimension of O(V_10)^SL2_16 is 177

<<The set of invariants of degree 16 spanned by the given invariants

of degrees <16 has size 172

<<The subspace of O(V_10)^SL2_16 spanned by the given invariants of

degrees <16 has dimension >=172

<<The subspace of O(V_10)^SL2_16 spanned by the given invariants of

degrees <=16 has dimension >=177

Computation time: 1.6081

==============

<<The dimension of O(V_10)^SL2_17 is 160

<<The set of invariants of degree 17 spanned by the given invariants

of degrees <17 has size 157

<<The subspace of O(V_10)^SL2_17 spanned by the given invariants of

degrees <17 has dimension >=155

<<The subspace of O(V_10)^SL2_17 spanned by the given invariants of

degrees <=17 has dimension >=160

Computation time: 1.38409

==============

<<The dimension of O(V_10)^SL2_18 is 319

<<The set of invariants of degree 18 spanned by the given invariants
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of degrees <18 has size 345

<<The subspace of O(V_10)^SL2_18 spanned by the given invariants of

degrees <18 has dimension >=318

<<The subspace of O(V_10)^SL2_18 spanned by the given invariants of

degrees <=18 has dimension >=319

Computation time: 7.14045

==============

<<The dimension of O(V_10)^SL2_19 is 301

<<The set of invariants of degree 19 spanned by the given invariants

of degrees <19 has size 349

<<The subspace of O(V_10)^SL2_19 spanned by the given invariants of

degrees <19 has dimension >=299

<<The subspace of O(V_10)^SL2_19 spanned by the given invariants of

degrees <=19 has dimension >=301

Computation time: 6.64441

==============

<<The dimension of O(V_10)^SL2_20 is 540

<<The set of invariants of degree 20 spanned by the given invariants

of degrees <20 has size 664

<<The subspace of O(V_10)^SL2_20 spanned by the given invariants of

degrees <20 has dimension >=540

Computation time: 11.3727

==============

<<The dimension of O(V_10)^SL2_21 is 547

<<The set of invariants of degree 21 spanned by the given invariants

of degrees <21 has size 758

<<The subspace of O(V_10)^SL2_21 spanned by the given invariants of

degrees <21 has dimension >=545

<<The subspace of O(V_10)^SL2_21 spanned by the given invariants of

degrees <=21 has dimension >=547

Computation time: 26.2616

==============

<<The dimension of O(V_10)^SL2_22 is 887

<<The set of invariants of degree 22 spanned by the given invariants

of degrees <22 has size 1265

<<The subspace of O(V_10)^SL2_22 spanned by the given invariants of

degrees <22 has dimension >=887

Computation time: 39.1344

==============

<<The dimension of O(V_10)^SL2_23 is 926

<<The set of invariants of degree 23 spanned by the given invariants

of degrees <23 has size 1525

<<The subspace of O(V_10)^SL2_23 spanned by the given invariants of

degrees <23 has dimension >=926

Computation time: 52.5793

==============

<<The dimension of O(V_10)^SL2_24 is 1429

<<The set of invariants of degree 24 spanned by the given invariants

of degrees <24 has size 2419

<<The subspace of O(V_10)^SL2_24 spanned by the given invariants of

degrees <24 has dimension >=1429

Computation time: 141.369

==============

<<The dimension of O(V_10)^SL2_25 is 1512

<<The set of invariants of degree 25 spanned by the given invariants

of degrees <25 has size 2973

<<The subspace of O(V_10)^SL2_25 spanned by the given invariants of
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degrees <25 has dimension >=1512

Computation time: 192.716

==============

<<The dimension of O(V_10)^SL2_26 is 2219

<<The set of invariants of degree 26 spanned by the given invariants

of degrees <26 has size 4487

<<The subspace of O(V_10)^SL2_26 spanned by the given invariants of

degrees <26 has dimension >=2219

Computation time: 505.208

==============

A.5 The invariants of V1 ⊕ V5

Here are the Mathematica computations supporting the proof of Proposition
5.5.2. We compute �rst the invariants j4,1, j4,2, j6,1, . . . , j6,3, j8,1, . . . j8,7, j10,1,
j10,2, j10,3, j12,1, . . . , j12,6, j14,1, j18,1:

ll=Table[a[1-i]Binomial[1,i],{i,0,1}];

qq=Table[b[5-i]Binomial[5,i],{i,0,5}];

cc1=Transvectant[qq,qq,4];cc2=Transvectant[qq,qq,2];

cc3=Transvectant[qq,cc1,2];j41=Transvectant[cc1,cc1,2].{1};

j42=Transvectant[cc1,exp[ll,2],2].{1};j61=Transvectant[qq,exp[ll,5],5].{1};

j62=Transvectant[cc3,exp[ll,3],3].{1};

j63=Transvectant[Transvectant[cc1,cc3,2],ll,1].{1};

j81=Transvectant[cc1,Transvectant[cc3,cc3,2],2].{1};

j82=Transvectant[cc2,exp[ll,6],6].{1};

j83=Transvectant[Transvectant[cc2,qq,3],exp[ll,5],5].{1};

j84=Transvectant[Transvectant[cc1,cc3,1],exp[ll,3],3].{1};

j85=Transvectant[Transvectant[cc1,cc2,2],exp[ll,4],4].{1};

j86=Transvectant[Transvectant[exp[cc1,2],cc2,4],exp[ll,2],2].{1};

j87=Transvectant[Transvectant[exp[cc1,3],qq,5],ll,1].{1};

j101=Transvectant[Transvectant[cc1,cc2,1],exp[ll,6],6].{1};

j102=Transvectant[Transvectant[exp[cc1,2],cc2,3],exp[ll,4],4].{1};

j103=Transvectant[Transvectant[exp[cc1,3],cc2,5],exp[ll,2],2].{1};

j121=Transvectant[Transvectant[cc3,cc3,2],Transvectant[cc3,cc3,2],2].{1};

j122=Transvectant[Transvectant[qq,cc2,1],exp[ll,9],9].{1};

j123=Transvectant[Transvectant[Transvectant[qq,cc2,1],cc1,2],exp[ll,7],7].{1};

j124=Transvectant[

Transvectant[Transvectant[qq,cc2,1],exp[cc1,2],4],exp[ll,5],5].{1};

j125=Transvectant[

Transvectant[Transvectant[qq,cc2,1],exp[cc1,3],6],exp[ll,3],3].{1};

j126=Transvectant[

Transvectant[Transvectant[qq,cc2,1],exp[cc1,4],8],ll,1].{1};

j141=Transvectant[

Transvectant[Transvectant[qq,cc2,1],exp[cc1,5],9],ll,1].{1};

j181=Transvectant[exp[cc1,7],prod[qq,Transvectant[qq,cc2,1]],14].{1};

Here are the rank computations:

In[]:=gens={{j41,j42},{j61,j62,j63},{j81,j82,j83,j84,j85,j86,j87},

{j101,j102,j103},{j121,j122,j123,j124,j125,j126},{j141},{j181}};

degrees={4,6,8,10,12,14,18};

=== computations in degree 4 ===

In[]:=mon={j41,j42};

In[]:=mat=Table[mon/.
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Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,4}];

MatrixRank[mat]

Out[]=2

=== computations in degree 6 ===

In[]:=mon={j61,j62,j63};

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,4}];

MatrixRank[mat]

Out[]=3

=== computations in degree 8 ===

In[]:=mon1=listmonomials[8,gens,degrees];Length[mon1]

Out[]=3

In[]:=mon=Union[mon1,{j81,j82,j83,j84,j85,j86,j87}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,11}];

MatrixRank[mat]

Out[]=10

=== computations in degree 10 ===

In[]:=mon1=listmonomials[10,gens,degrees];Length[mon1]

Out[]=6

In[]:=mon=Union[mon1,{j101,j102,j103}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,10}];

MatrixRank[mat]

Out[]=9

=== computations in degree 12 ===

In[]:=mon1=listmonomials[12,gens,degrees];Length[mon1]

Out[]=24

In[]:=mon=Union[mon1,{j121,j122,j123,j124,j125,j126}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,30}];

MatrixRank[mat]

Out[]=29

=== computations in degree 14 ===

In[]:=mon1=listmonomials[14,gens,degrees];Length[mon1]

Out[]=36

In[]:=mon=Union[mon1,{j141}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,32}];

MatrixRank[mat]

Out[]=31

=== computations in degree 16 ===

In[]:=mon1=listmonomials[16,gens,degrees];Length[mon1]

Out[]=87

In[]:=Timing[

mat=Table[mon1/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,62}];

MatrixRank[mat]]

Out[]={9.79661,61} //the rank is 61;

//the computation took 9.7 seconds

=== computations in degree 18 ===
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In[]:=mon1=listmonomials[18,gens,degrees];Length[mon1]

Out[]=114

In[]:=mon=Union[mon1,{j181}];

In[]:=Timing[

mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,76}];

MatrixRank[mat]]

Out[]={24.5055,75} //the rank is 75;

//the computation took 24.5 seconds

=== computations in degree 20 ===

In[]:=mon1=listmonomials[20,gens,degrees];Length[mon1]

Out[]=237

In[]:=Timing[

mat=Table[mon1/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,126}];

MatrixRank[mat,Modulus->32003]]

Out[]={77.9809,125} //the rank is 125;

//the computation took 77.9 seconds

=== computations in degree 26 ===

In[]:=mon1=listmonomials[26,gens,degrees];Length[mon1]

Out[]=842

In[]:=Timing[

mat=Table[mon1/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,265}];

MatrixRank[mat,Modulus->32003]]

Out[]={810.687,264} //the rank is 264;

//the computation took 810.6 seconds

A.6 The invariants of V1 ⊕ V6

Here are the Mathematica computations supporting the proof of Proposition
5.6.2. First we compute the invariants j2,1, j4,1, j5,1, j6,1, j6,2, j7,1, j7,2, j8,1, j9,1
. . . j9,3, j10,1, . . . , j10,4, j11,1, j11,2, j12,1, j12,3, j13,1, j13,2, j14,1, j14,2, j15,1, j15,2:

ll=Table[a[1-i]Binomial[1,i],{i,0,1}];

ss=Table[b[6-i]Binomial[6,i],{i,0,6}];

cc1=Transvectant[ss,ss,4];cc2=Transvectant[ss,ss,2];

cc3=Transvectant[ss,cc1,4];cc4=Transvectant[cc1,cc1,2];

cc5=Transvectant[ss,cc1,1];j21=Transvectant[ss,ss,6].{1};

j41=Transvectant[cc1,cc1,4].{1};j51=Transvectant[cc3,exp[ll,2],2].{1};

j61=Transvectant[cc1,cc4,4].{1};j62=Transvectant[cc1,exp[ll,4],4].{1};

j71=Transvectant[ss,exp[ll,6],6].{1};

j72=Transvectant[Transvectant[cc1,cc3,2],exp[ll,2],2].{1};

j81=Transvectant[Transvectant[ss,cc3,2],exp[ll,4],4].{1};

j91=Transvectant[Transvectant[ss,cc1,2],exp[ll,6],6].{1};

j92=Transvectant[Transvectant[cc1,cc3,1],exp[ll,4],4].{1};

j93=Transvectant[Transvectant[ss,exp[cc3,2],4],exp[ll,2],2].{1};

j101=Transvectant[cc4,exp[cc3,2],4].{1};

j102=Transvectant[cc2,exp[ll,8],8].{1};

j103=Transvectant[Transvectant[ss,cc3,1],exp[ll,6],6].{1};

j104=Transvectant[Transvectant[cc1,exp[cc3,2],3],exp[ll,2],2].{1};

j111=Transvectant[cc5,exp[ll,8],8].{1};

j112=Transvectant[Transvectant[ss,exp[cc3,2],3],exp[ll,4],4].{1};

j121=Transvectant[Transvectant[Transvectant[ss,cc1,2],cc3,1],

exp[ll,6],6].{1};
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j122=Transvectant[Transvectant[Transvectant[ss,cc1,1],cc3,2],

exp[ll,6],6].{1};

j123=Transvectant[Transvectant[ss,exp[cc3,3],5],exp[ll,2],2].{1};

j131=Transvectant[Transvectant[cc2,cc3,1],exp[ll,8],8].{1};

j132=Transvectant[Transvectant[cc5,exp[cc3,2],4],exp[ll,4],4].{1};

j141=Transvectant[Transvectant[cc1,cc2,1],exp[ll,10],10].{1};

j142=Transvectant[Transvectant[cc5,exp[cc3,3],6],exp[ll,2],2].{1};

j151=Transvectant[cc5,exp[cc3,4],8].{1};

j152=Transvectant[Transvectant[ss,cc2,1],exp[ll,12],12].{1};

Here are the rank computations:

In[]:=gens={{j21},{j41},{j51},{j61,j62},{j71,j72},{j81},{j91,j92,j93},

{j101,j102,j103,j104},{j111,j112},{j121,j122,j123},{j131,j132},

{j141,j142},{j151,j152}};

degrees={2,4,5,6,7,8,9,10,11,12,13,14,15};

=== computations in degree 4 ===

In[]:=mon1=listmonomials[4,gens,degrees];Length[mon1]

Out[]=1

In[]:=mon=Union[mon1,{j41}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,3}];

MatrixRank[mat]

Out[]=2

=== computations in degree 6 ===

In[]:=mon1=listmonomials[6,gens,degrees];Length[mon1]

Out[]=2

In[]:=mon=Union[mon1,{j61,j62}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,5}];

MatrixRank[mat]

Out[]=4

=== computations in degree 7 ===

In[]:=mon1=listmonomials[7,gens,degrees];Length[mon1]

Out[]=1

In[]:=mon=Union[mon1,{j71,j72}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,4}];

MatrixRank[mat]

Out[]=3

=== computations in degree 8 ===

In[]:=mon1=listmonomials[8,gens,degrees];Length[mon1]

Out[]=5

In[]:=mon=Union[mon1,{j81}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,7}];

MatrixRank[mat]

Out[]=6

=== computations in degree 9 ===

In[]:=mon1=listmonomials[9,gens,degrees];Length[mon1]

Out[]=4

In[]:=mon=Union[mon1,{j91,j92,j93}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.
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Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,8}];

MatrixRank[mat]

Out[]=7

=== computations in degree 10 ===

In[]:=mon1=listmonomials[10,gens,degrees];Length[mon1]

Out[]=9

In[]:=mon=Union[mon1,{j101,j102,j103,j104}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,14}];

MatrixRank[mat]

Out[]=13

=== computations in degree 11 ===

In[]:=mon1=listmonomials[11,gens,degrees];Length[mon1]

Out[]=11

In[]:=mon=Union[mon1,{j111,j112}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,14}];

MatrixRank[mat]

Out[]=13

=== computations in degree 12 ===

In[]:=mon1=listmonomials[12,gens,degrees];Length[mon1]

Out[]=20

In[]:=mon=Union[mon1,{j121,j122,j123}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,24}];

MatrixRank[mat]

Out[]=23

=== computations in degree 13 ===

In[]:=mon1=listmonomials[13,gens,degrees];Length[mon1]

Out[]=22

In[]:=mon=Union[mon1,{j131,j132}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,24}];

MatrixRank[mat]

Out[]=23

=== computations in degree 14 ===

In[]:=mon1=listmonomials[14,gens,degrees];Length[mon1]

Out[]=38

In[]:=mon=Union[mon1,{j141,j142}];

In[]:=Timing[mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,39}];

MatrixRank[mat]]

Out[134]={4.97631,38}} //the rank is 38;

//the computation took 4.9 seconds

=== computations in degree 15 ===

In[]:=mon1=listmonomials[15,gens,degrees];Length[mon1]

Out[]=43

In[]:=mon=Union[mon1,{j151,j152}];

In[]:=Timing[mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,44}];

MatrixRank[mat]]
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Out[]={5.90037,43} //the rank is 43;

//the computation took 5.9 seconds

=== computations in degree 16 ===

In[]:=mon1=listmonomials[16,gens,degrees];Length[mon1]

Out[]=69

In[]:=Timing[mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,62}];

MatrixRank[mat]]

Out[]={15.253,61} //the rank is 61;

//the computation took 15.2 seconds

=== computations in degree 17 ===

In[]:=mon1=listmonomials[17,gens,degrees];Length[mon1]

Out[]=79

In[]:=Timing[mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,70}];

MatrixRank[mat,Modulus->32003]]

Out[]={18.2731,69} //the rank is 69;

//the computation took 18.2 seconds

=== computations in degree 18 ===

In[]:=mon1=listmonomials[18,gens,degrees];Length[mon1]

Out[]=117

In[]:=Timing[mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,95}];

MatrixRank[mat,Modulus->32003]]

Out[]={44.0708,94} //the rank is 94;

//the computation took 44.0 seconds

=== computations in degree 19 ===

In[]:=mon1=listmonomials[19,gens,degrees];Length[mon1]

Out[]=140

In[]:=Timing[mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,109}];

MatrixRank[mat,Modulus->32003]]

Out[]={66.5602,108} //the rank is 108;

//the computation took 66.5 seconds

=== computations in degree 20 ===

In[]:=mon1=listmonomials[20,gens,degrees];Length[mon1]

Out[]=197

In[]:=Timing[mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,144}];

MatrixRank[mat,Modulus->32003]]

Out[]={128.156,143} //the rank is 143;

//the computation took 128.1 seconds

=== computations in degree 21 ===

In[]:=mon1=listmonomials[21,gens,degrees];Length[mon1]

Out[]=237

In[]:=Timing[mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,165}];

MatrixRank[mat,Modulus->32003]]

Out[]={207.713,164} //the rank is 164;

//the computation took 207.7 seconds

=== computations in degree 22 ===
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In[]:=mon1=listmonomials[22,gens,degrees];Length[mon1]

Out[]=324

In[]:=Timing[mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,210}];

MatrixRank[mat,Modulus->32003]]

Out[]={380.392,209} //the rank is 209;

//the computation took 380.3 seconds

=== computations in degree 23 ===

In[]:=mon1=listmonomials[23,gens,degrees];Length[mon1]

Out[]=390

In[]:=Timing[mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,237}];

MatrixRank[mat,Modulus->32003]]

Out[]={478.538,236} //the rank is 236;

//the computation took 478.5 seconds

=== computations in degree 25 ===

In[]:=mon1=listmonomials[25,gens,degrees];Length[mon1]

Out[]=639

In[]:=Timing[mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,340}];

MatrixRank[mat,Modulus->32003]]

Out[]={1304.81,339} //the rank is 339;

//the computation took 1304.8 seconds

=== computations in degree 27 ===

In[]:=mon1=listmonomials[27,gens,degrees];Length[mon1]

Out[]=1027

In[]:=Timing[mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,473}];

MatrixRank[mat,Modulus->32003]]

Out[]={3144.84,472} //the rank is 472;

//the computation took 3144.8 seconds

=== computations in degree 29 ===

In[]:=mon1=listmonomials[29,gens,degrees];Length[mon1]

Out[]=1629

In[]:=Timing[mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,642}];

MatrixRank[mat,Modulus->32003]]

Out[]={7260.85,641}

A.7 The covariants of V7

First we create a matrix with the evaluations of the 147 covariants from Tables
5.4 and 5.5 at 2750 random integers.

Next we show that the 147 covariants generate C(V7)d,m with d ≤ 23 and
m ≤ 15. For each d ≤ 24 and m ≤ 15 we do the following: we construct all
possible monomials of degree d and order m spanned by the 147 covariants and
evaluate them at random integers (using the matrix we just created). These
monomials will span C(V7)d,m if their evaluation matrix has the rank equal to
the dimension of C(V7)d,m. We will use a function that we implemented and
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called mon{deg,ord} which returns a list of all covariants degree deg and order
ord as monomials of degree deg spanned by the above 147 covariants.

In[]:=listdeg={{1,7},{2,2},{2,6},{2,10},{3,3},{3,5},{3,7},{3,9},{3,11},

{3,15},{4,0},{4,4},{4,4},{4,6},{4,8},{4,8},{4,10},{4,14},{5,1},{5,3},

{5,3},{5,5},{5,5},{5,7},{5,7},{5,9},{5,9},{5,13},{6,2},{6,2},{6,2},

{6,4},{6,4},{6,6},{6,6},{6,8},{6,8},{6,12},{7,1},{7,1},{7,1},{7,3},

{7,3},{7,5},{7,5},{7,5},{7,5},{7,7},{7,7},{7,11},{8,0},{8,0},{8,0},

{8,2},{8,2},{8,2},{8,4},{8,4},{8,4},{8,6},{8,6},{8,6},{8,10},{9,1},

{9,1},{9,1},{9,3},{9,3},{9,3},{9,3},{9,3},{9,5},{9,5},{9,9},{10,2},

{10,2},{10,2},{10,2},{10,4},{10,4},{10,4},{10,4},{10,8},{11,1},

{11,1},{11,1},{11,1},{11,1},{11,3},{11,3},{11,3},{11,7},{12,0},{12,0},

{12,0},{12,0},{12,0},{12,0},{12,2},{12,2},{12,2},{12,2},{12,2},{12,2},

{12,6},{13,1},{13,1},{13,1},{13,1},{13,1},{13,1},{13,1},{13,3},{13,5},

{14,0},{14,0},{14,0},{14,0},{14,4},{14,4},{15,1},{15,1},{15,1},{15,3},

{16,0},{16,0},{16,2},{16,2},{16,2},{17,1},{17,1},{18,0},{18,0},{18,0},

{18,0},{18,0},{18,0},{18,0},{18,0},{18,0},{19,1},{20,0},{22,0},{22,0},

{23,1},{26,0},{30,0}};

In[]:=listgen={FF,LL,CHI,HH,RR,C35,C37,Epsilon,Gamm,TT,Inv4,PP,C44,C46,

Delta,C48,C410,Zet,C51,C531,C532,GG,C55,ETA,C57,C591,C592,C513,Tau,

C621,C622,C641,C642,C661,C662,Bet,C68,C612,Alpha,C711,C712,C731,C732,

Theta,C751,C752,C753,C771,C772,Cov711,C801,C802,C803,C821,C822,C823,MU,

C841,C842,Lambda,C861,C862,C810,C911,C912,C913,QQ,C931,C932,C933,C934,

C951,C952,C99,NU,C1021,C1022,C1023,C1041,C1042,C1043,C1044,C108,C1111,

C1112,C1113,C1114,C1115,PHI,C1131,C1132,C117,Rbig,C1201,C1202,C1203,

C1204,C1205,C1221,C1222,C1223,C1224,C1225,C1226,C126,RO,C1311,C1312,

C1313,C1314,C1315,C1316,C133,C135,C1401,C1402,C1403,C1404,PSI,C1441,

C1511,C1512,C1513,C153,C1601,C1602,Sigma,C1621,C1622,Omega,C1711,C1801,

C1802,C1803,C1804,C1805,C1806,C1807,C1808,C1809,C191,C201,C2201,C2202,

C231,C260,C300};

In[]:=mon[md_,j_]:=

mon[md,j]=If[md=={0,0},1,If[md[[1]]<0||md[[2]]<0,{},

Flatten[Table[listgen[[i]]mon[md-listdeg[[i]],i],{i,1,j}]]]]

Here we show that the 147 covariants generate C(V7)d,m with d ≤ 24 and
m ≤ 15:

In[]:= Timing[

For[deg=2,deg<24,deg++,ord=1;

While[ord<16,

symm=SymTensor[7,deg]/.Table[v[i]->0,{i,16,1000}];

kk=Coefficient[symm,v[ord]]+1;

If[kk!=1,

Print[{deg,ord},": the vector space of covs has dimension",kk-1];

ss=mon[{deg,ord},147];

If[ss!={},

tt=Intersection[ss,listgen];

If[tt!={},

ss1=Complement[ss,tt];

eval1 = Table[ss1 /.Table[listgen[[j]]->Matr[[k]][[j]][[1]],

{j,1,Length[Matr[[k]]]}],{k,1,kk}];

rk1=If[ss1=={},0,MatrixRank[eval1,Modulus->32003]];

Print["-- the subpace spanned by covs of degree < ", deg,

" has dim >=", rk1];

Print["-- there are ", Length[tt], " gens of degree ", deg];

eval=Table[ss/.Table[listgen[[j]]->Matr[[k]][[j]][[1]],

{j,1,Length[Matr[[k]]]}],{k,1,kk}];
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rk=MatrixRank[eval,Modulus->32003];

Print["-- the subpace spanned by covs of degree <= ", deg,

" has dim >=", rk],

If[Length[ss]>3000,DIM=kk-1;

dd1=RandomSample[ss,kk+10];

dd2=Complement[ss,dd1];

eval=Table[dd1/.Table[listgen[[j]]->Matr[[k]][[j]][[1]],

{j,1,Length[Matr[[k]]]}],{k,1,kk}];

eval1=ColumnEchelon[eval];

rk1=MatrixRank[eval1,Modulus->32003];

rk=rk1;

While[rk!=DIM,

AA=Table[RandomInteger[{-10,10}],{i,1,50}];

uu=RandomSample[dd2,50].AA;

evaluu=Table[uu/.Table[listgen[[j]]->Matr[[k]][[j]][[1]],

{j,1,Length[Matr[[k]]]}],{k,1,kk}];

eval=Table[Join[eval1[[i]],{evaluu[[i]]}],{i,1,kk}];

eval=Mod[eval,32003];

rk=MatrixRank[eval,Modulus->32003];

If[rk>rk1,eval1=eval;rk1=rk]];

Print["-- the subpace spanned by covs of degree < ", deg,

" has dim >=", rk],

eval=Table[ss/.Table[listgen[[j]]->Matr[[k]][[j]][[1]],

{j,1,Length[Matr[[k]]]}],{k,1,kk}];

rk=MatrixRank[eval,Modulus->32003];

Print["-- the subpace spanned by covs of degree < ", deg,

" has dim >=", rk]]]]]; ord++]

]]

{2,2}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 2 has dim >=0

-- there are 1 gens of degree 2

-- the subpace spanned by covs of degree <= 2 has dim >=1

{2,6}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 2 has dim >=0

-- there are 1 gens of degree 2

-- the subpace spanned by covs of degree <= 2 has dim >=1

{2,10}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 2 has dim >=0

-- there are 1 gens of degree 2

-- the subpace spanned by covs of degree <= 2 has dim >=1

{2,14}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 2 has dim >=1

{3,3}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=0

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=1

{3,5}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=0

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=1

{3,7}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=0

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=1

{3,9}: the vector space of covs has dimension 2

-- the subpace spanned by covs of degree < 3 has dim >=1

-- there are 1 gens of degree 3
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-- the subpace spanned by covs of degree <= 3 has dim >=2

{3,11}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=0

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=1

{3,13}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=1

{3,15}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=0

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=1

{4,4}: the vector space of covs has dimension 3

-- the subpace spanned by covs of degree < 4 has dim >=1

-- there are 2 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=3

{4,6}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 4 has dim >=0

-- there are 1 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=1

{4,8}: the vector space of covs has dimension 3

-- the subpace spanned by covs of degree < 4 has dim >=1

-- there are 2 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=3

{4,10}: the vector space of covs has dimension 2

-- the subpace spanned by covs of degree < 4 has dim >=1

-- there are 1 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=2

{4,12}: the vector space of covs has dimension 3

-- the subpace spanned by covs of degree < 4 has dim >=3

{4,14}: the vector space of covs has dimension 2

-- the subpace spanned by covs of degree < 4 has dim >=1

-- there are 1 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=2

{5,1}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 5 has dim >=0

-- there are 1 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=1

{5,3}: the vector space of covs has dimension 2

-- the subpace spanned by covs of degree < 5 has dim >=0

-- there are 2 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=2

{5,5}: the vector space of covs has dimension 3

-- the subpace spanned by covs of degree < 5 has dim >=1

-- there are 2 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=3

{5,7}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 5 has dim >=2

-- there are 2 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=4

{5,9}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 5 has dim >=2

-- there are 2 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=4

{5,11}: the vector space of covs has dimension 5

-- the subpace spanned by covs of degree < 5 has dim >=5

{5,13}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 5 has dim >=3
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-- there are 1 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=4

{5,15}: the vector space of covs has dimension 5

-- the subpace spanned by covs of degree < 5 has dim >=5

{6,2}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 6 has dim >=1

-- there are 3 gens of degree 6

-- the subpace spanned by covs of degree <= 6 has dim >=4

{6,4}: the vector space of covs has dimension 2

-- the subpace spanned by covs of degree < 6 has dim >=0

-- there are 2 gens of degree 6

-- the subpace spanned by covs of degree <= 6 has dim >=2

{6,6}: the vector space of covs has dimension 7

-- the subpace spanned by covs of degree < 6 has dim >=5

-- there are 2 gens of degree 6

-- the subpace spanned by covs of degree <= 6 has dim >=7

{6,8}: the vector space of covs has dimension 5

-- the subpace spanned by covs of degree < 6 has dim >=3

-- there are 2 gens of degree 6

-- the subpace spanned by covs of degree <= 6 has dim >=5

{6,10}: the vector space of covs has dimension 8

-- the subpace spanned by covs of degree < 6 has dim >=8

{6,12}: the vector space of covs has dimension 7

-- the subpace spanned by covs of degree < 6 has dim >=6

-- there are 1 gens of degree 6

-- the subpace spanned by covs of degree <= 6 has dim >=7

{6,14}: the vector space of covs has dimension 9

-- the subpace spanned by covs of degree < 6 has dim >=9

{7,1}: the vector space of covs has dimension 3

-- the subpace spanned by covs of degree < 7 has dim >=0

-- there are 3 gens of degree 7

-- the subpace spanned by covs of degree <= 7 has dim >=3

{7,3}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 7 has dim >=2

-- there are 2 gens of degree 7

-- the subpace spanned by covs of degree <= 7 has dim >=4

{7,5}: the vector space of covs has dimension 7

-- the subpace spanned by covs of degree < 7 has dim >=3

-- there are 4 gens of degree 7

-- the subpace spanned by covs of degree <= 7 has dim >=7

{7,7}: the vector space of covs has dimension 9

-- the subpace spanned by covs of degree < 7 has dim >=7

-- there are 2 gens of degree 7

-- the subpace spanned by covs of degree <= 7 has dim >=9

{7,9}: the vector space of covs has dimension 10

-- the subpace spanned by covs of degree < 7 has dim >=10

{7,11}: the vector space of covs has dimension 11

-- the subpace spanned by covs of degree < 7 has dim >=10

-- there are 1 gens of degree 7

-- the subpace spanned by covs of degree <= 7 has dim >=11

{7,13}: the vector space of covs has dimension 13

-- the subpace spanned by covs of degree < 7 has dim >=13

{7,15}: the vector space of covs has dimension 12

-- the subpace spanned by covs of degree < 7 has dim >=12

{8,2}: the vector space of covs has dimension 3

-- the subpace spanned by covs of degree < 8 has dim >=0

-- there are 3 gens of degree 8
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-- the subpace spanned by covs of degree <= 8 has dim >=3

{8,4}: the vector space of covs has dimension 10

-- the subpace spanned by covs of degree < 8 has dim >=7

-- there are 3 gens of degree 8

-- the subpace spanned by covs of degree <= 8 has dim >=10

{8,6}: the vector space of covs has dimension 9

-- the subpace spanned by covs of degree < 8 has dim >=6

-- there are 3 gens of degree 8

-- the subpace spanned by covs of degree <= 8 has dim >=9

{8,8}: the vector space of covs has dimension 16

-- the subpace spanned by covs of degree < 8 has dim >=16

{8,10}: the vector space of covs has dimension 14

-- the subpace spanned by covs of degree < 8 has dim >=13

-- there are 1 gens of degree 8

-- the subpace spanned by covs of degree <= 8 has dim >=14

{8,12}: the vector space of covs has dimension 19

-- the subpace spanned by covs of degree < 8 has dim >=19

{8,14}: the vector space of covs has dimension 17

-- the subpace spanned by covs of degree < 8 has dim >=17

{9,1}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 9 has dim >=1

-- there are 3 gens of degree 9

-- the subpace spanned by covs of degree <= 9 has dim >=4

{9,3}: the vector space of covs has dimension 10

-- the subpace spanned by covs of degree < 9 has dim >=5

-- there are 5 gens of degree 9

-- the subpace spanned by covs of degree <= 9 has dim >=10

{9,5}: the vector space of covs has dimension 13

-- the subpace spanned by covs of degree < 9 has dim >=11

-- there are 2 gens of degree 9

-- the subpace spanned by covs of degree <= 9 has dim >=13

{9,7}: the vector space of covs has dimension 17

-- the subpace spanned by covs of degree < 9 has dim >=17

{9,9}: the vector space of covs has dimension 21

-- the subpace spanned by covs of degree < 9 has dim >=20

-- there are 1 gens of degree 9

-- the subpace spanned by covs of degree <= 9 has dim >=21

{9,11}: the vector space of covs has dimension 24

-- the subpace spanned by covs of degree < 9 has dim >=24

{9,13}: the vector space of covs has dimension 25

-- the subpace spanned by covs of degree < 9 has dim >=25

{9,15}: the vector space of covs has dimension 29

-- the subpace spanned by covs of degree < 9 has dim >=29

{10,2}: the vector space of covs has dimension 12

-- the subpace spanned by covs of degree < 10 has dim >=8

-- there are 4 gens of degree 10

-- the subpace spanned by covs of degree <= 10 has dim >=12

{10,4}: the vector space of covs has dimension 13

-- the subpace spanned by covs of degree < 10 has dim >=9

-- there are 4 gens of degree 10

-- the subpace spanned by covs of degree <= 10 has dim >=13

{10,6}: the vector space of covs has dimension 23

-- the subpace spanned by covs of degree < 10 has dim >=23

{10,8}: the vector space of covs has dimension 23

-- the subpace spanned by covs of degree < 10 has dim >=22

-- there are 1 gens of degree 10

-- the subpace spanned by covs of degree <= 10 has dim >=23
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{10,10}: the vector space of covs has dimension 34

-- the subpace spanned by covs of degree < 10 has dim >=34

{10,12}: the vector space of covs has dimension 31

-- the subpace spanned by covs of degree < 10 has dim >=31

{10,14}: the vector space of covs has dimension 40

-- the subpace spanned by covs of degree < 10 has dim >=40

{11,1}: the vector space of covs has dimension 8

-- the subpace spanned by covs of degree < 11 has dim >=3

-- there are 5 gens of degree 11

-- the subpace spanned by covs of degree <= 11 has dim >=8

{11,3}: the vector space of covs has dimension 16

-- the subpace spanned by covs of degree < 11 has dim >=13

-- there are 3 gens of degree 11

-- the subpace spanned by covs of degree <= 11 has dim >=16

{11,5}: the vector space of covs has dimension 24

-- the subpace spanned by covs of degree < 11 has dim >=24

{11,7}: the vector space of covs has dimension 31

-- the subpace spanned by covs of degree < 11 has dim >=30

-- there are 1 gens of degree 11

-- the subpace spanned by covs of degree <= 11 has dim >=31

{11,9}: the vector space of covs has dimension 38

-- the subpace spanned by covs of degree < 11 has dim >=38

{11,11}: the vector space of covs has dimension 43

-- the subpace spanned by covs of degree < 11 has dim >=43

{11,13}: the vector space of covs has dimension 49

-- the subpace spanned by covs of degree < 11 has dim >=49

{11,15}: the vector space of covs has dimension 52

-- the subpace spanned by covs of degree < 11 has dim >=52

{12,2}: the vector space of covs has dimension 12

-- the subpace spanned by covs of degree < 12 has dim >=6

-- there are 6 gens of degree 12

-- the subpace spanned by covs of degree <= 12 has dim >=12

{12,4}: the vector space of covs has dimension 29

-- the subpace spanned by covs of degree < 12 has dim >=29

{12,6}: the vector space of covs has dimension 33

-- the subpace spanned by covs of degree < 12 has dim >=32

-- there are 1 gens of degree 12

-- the subpace spanned by covs of degree <= 12 has dim >=33

{12,8}: the vector space of covs has dimension 48

-- the subpace spanned by covs of degree < 12 has dim >=48

{12,10}: the vector space of covs has dimension 49

-- the subpace spanned by covs of degree < 12 has dim >=49

{12,12}: the vector space of covs has dimension 65

-- the subpace spanned by covs of degree < 12 has dim >=65

{12,14}: the vector space of covs has dimension 64

-- the subpace spanned by covs of degree < 12 has dim >=64

{13,1}: the vector space of covs has dimension 14

-- the subpace spanned by covs of degree < 13 has dim >=7

-- there are 7 gens of degree 13

-- the subpace spanned by covs of degree <= 13 has dim >=14

{13,3}: the vector space of covs has dimension 26

-- the subpace spanned by covs of degree < 13 has dim >=25

-- there are 1 gens of degree 13

-- the subpace spanned by covs of degree <= 13 has dim >=26

{13,5}: the vector space of covs has dimension 39

-- the subpace spanned by covs of degree < 13 has dim >=38

-- there are 1 gens of degree 13
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-- the subpace spanned by covs of degree <= 13 has dim >=39

{13,7}: the vector space of covs has dimension 53

-- the subpace spanned by covs of degree < 13 has dim >=53

{13,9}: the vector space of covs has dimension 62

-- the subpace spanned by covs of degree < 13 has dim >=62

{13,11}: the vector space of covs has dimension 74

-- the subpace spanned by covs of degree < 13 has dim >=74

{13,13}: the vector space of covs has dimension 83

-- the subpace spanned by covs of degree < 13 has dim >=83

{13,15}: the vector space of covs has dimension 91

-- the subpace spanned by covs of degree < 13 has dim >=91

{14,2}: the vector space of covs has dimension 30

-- the subpace spanned by covs of degree < 14 has dim >=30

{14,4}: the vector space of covs has dimension 37

-- the subpace spanned by covs of degree < 14 has dim >=35

-- there are 2 gens of degree 14

-- the subpace spanned by covs of degree <= 14 has dim >=37

{14,6}: the vector space of covs has dimension 62

-- the subpace spanned by covs of degree < 14 has dim >=62

{14,8}: the vector space of covs has dimension 68

-- the subpace spanned by covs of degree < 14 has dim >=68

{14,10}: the vector space of covs has dimension 91

-- the subpace spanned by covs of degree < 14 has dim >=91

{14,12}: the vector space of covs has dimension 95

-- the subpace spanned by covs of degree < 14 has dim >=95

{14,14}: the vector space of covs has dimension 116

-- the subpace spanned by covs of degree < 14 has dim >=116

{15,1}: the vector space of covs has dimension 20

-- the subpace spanned by covs of degree < 15 has dim >=17

-- there are 3 gens of degree 15

-- the subpace spanned by covs of degree <= 15 has dim >=20

{15,3}: the vector space of covs has dimension 42

-- the subpace spanned by covs of degree < 15 has dim >=41

-- there are 1 gens of degree 15

-- the subpace spanned by covs of degree <= 15 has dim >=42

{15,5}: the vector space of covs has dimension 62

-- the subpace spanned by covs of degree < 15 has dim >=62

{15,7}: the vector space of covs has dimension 80

-- the subpace spanned by covs of degree < 15 has dim >=80

{15,9}: the vector space of covs has dimension 101

-- the subpace spanned by covs of degree < 15 has dim >=101

{15,11}: the vector space of covs has dimension 116

-- the subpace spanned by covs of degree < 15 has dim >=116

{15,13}: the vector space of covs has dimension 132

-- the subpace spanned by covs of degree < 15 has dim >=132

{15,15}: the vector space of covs has dimension 147

-- the subpace spanned by covs of degree < 15 has dim >=147

{16,2}: the vector space of covs has dimension 33

-- the subpace spanned by covs of degree < 16 has dim >=30

-- there are 3 gens of degree 16

-- the subpace spanned by covs of degree <= 16 has dim >=33

{16,4}: the vector space of covs has dimension 70

-- the subpace spanned by covs of degree < 16 has dim >=70

{16,6}: the vector space of covs has dimension 81

-- the subpace spanned by covs of degree < 16 has dim >=81

{16,8}: the vector space of covs has dimension 117

-- the subpace spanned by covs of degree < 16 has dim >=117
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{16,10}: the vector space of covs has dimension 129

-- the subpace spanned by covs of degree < 16 has dim >=129

{16,12}: the vector space of covs has dimension 159

-- the subpace spanned by covs of degree < 16 has dim >=159

{16,14}: the vector space of covs has dimension 168

-- the subpace spanned by covs of degree < 16 has dim >=168

{17,1}: the vector space of covs has dimension 31

-- the subpace spanned by covs of degree < 17 has dim >=29

-- there are 2 gens of degree 17

-- the subpace spanned by covs of degree <= 17 has dim >=31

{17,3}: the vector space of covs has dimension 62

-- the subpace spanned by covs of degree < 17 has dim >=62

{17,5}: the vector space of covs has dimension 92

-- the subpace spanned by covs of degree < 17 has dim >=92

{17,7}: the vector space of covs has dimension 122

-- the subpace spanned by covs of degree < 17 has dim >=122

{17,9}: the vector space of covs has dimension 149

-- the subpace spanned by covs of degree < 17 has dim >=149

{17,11}: the vector space of covs has dimension 177

-- the subpace spanned by covs of degree < 17 has dim >=177

{17,13}: the vector space of covs has dimension 200

-- the subpace spanned by covs of degree < 17 has dim >=200

{17,15}: the vector space of covs has dimension 225

-- the subpace spanned by covs of degree < 17 has dim >=225

{18,2}: the vector space of covs has dimension 63

-- the subpace spanned by covs of degree < 18 has dim >=63

{18,4}: the vector space of covs has dimension 85

-- the subpace spanned by covs of degree < 18 has dim >=85

{18,6}: the vector space of covs has dimension 137

-- the subpace spanned by covs of degree < 18 has dim >=137

{18,8}: the vector space of covs has dimension 157

-- the subpace spanned by covs of degree < 18 has dim >=157

{18,10}: the vector space of covs has dimension 203

-- the subpace spanned by covs of degree < 18 has dim >=203

{18,12}: the vector space of covs has dimension 223

-- the subpace spanned by covs of degree < 18 has dim >=223

{18,14}: the vector space of covs has dimension 265

-- the subpace spanned by covs of degree < 18 has dim >=265

{19,1}: the vector space of covs has dimension 46

-- the subpace spanned by covs of degree < 19 has dim >=45

-- there are 1 gens of degree 19

-- the subpace spanned by covs of degree <= 19 has dim >=46

{19,3}: the vector space of covs has dimension 88

-- the subpace spanned by covs of degree < 19 has dim >=88

{19,5}: the vector space of covs has dimension 133

-- the subpace spanned by covs of degree < 19 has dim >=133

{19,7}: the vector space of covs has dimension 176

-- the subpace spanned by covs of degree < 19 has dim >=176

{19,9}: the vector space of covs has dimension 216

-- the subpace spanned by covs of degree < 19 has dim >=216

{19,11}: the vector space of covs has dimension 255

-- the subpace spanned by covs of degree < 19 has dim >=255

{19,13}: the vector space of covs has dimension 295

-- the subpace spanned by covs of degree < 19 has dim >=295

{19,15}: the vector space of covs has dimension 326

-- the subpace spanned by covs of degree < 19 has dim >=326

{20,2}: the vector space of covs has dimension 71
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-- the subpace spanned by covs of degree < 20 has dim >=71

{20,4}: the vector space of covs has dimension 140

-- the subpace spanned by covs of degree < 20 has dim >=140

{20,6}: the vector space of covs has dimension 175

-- the subpace spanned by covs of degree < 20 has dim >=175

{20,8}: the vector space of covs has dimension 241

-- the subpace spanned by covs of degree < 20 has dim >=241

{20,10}: the vector space of covs has dimension 273

-- the subpace spanned by covs of degree < 20 has dim >=273

{20,12}: the vector space of covs has dimension 335

-- the subpace spanned by covs of degree < 20 has dim >=335

{20,14}: the vector space of covs has dimension 363

-- the subpace spanned by covs of degree < 20 has dim >=363

{21,1}: the vector space of covs has dimension 61

-- the subpace spanned by covs of degree < 21 has dim >=61

{21,3}: the vector space of covs has dimension 126

-- the subpace spanned by covs of degree < 21 has dim >=126

{21,5}: the vector space of covs has dimension 185

-- the subpace spanned by covs of degree < 21 has dim >=185

{21,7}: the vector space of covs has dimension 245

-- the subpace spanned by covs of degree < 21 has dim >=245

{21,9}: the vector space of covs has dimension 304

-- the subpace spanned by covs of degree < 21 has dim >=304

{21,11}: the vector space of covs has dimension 360

-- the subpace spanned by covs of degree < 21 has dim >=360

{21,13}: the vector space of covs has dimension 411

-- the subpace spanned by covs of degree < 21 has dim >=411

{21,15}: the vector space of covs has dimension 466

-- the subpace spanned by covs of degree < 21 has dim >=466

{22,2}: the vector space of covs has dimension 119

-- the subpace spanned by covs of degree < 22 has dim >=119

{22,4}: the vector space of covs has dimension 173

-- the subpace spanned by covs of degree < 22 has dim >=173

{22,6}: the vector space of covs has dimension 261

-- the subpace spanned by covs of degree < 22 has dim >=261

{22,8}: the vector space of covs has dimension 312

-- the subpace spanned by covs of degree < 22 has dim >=312

{22,10}: the vector space of covs has dimension 400

-- the subpace spanned by covs of degree < 22 has dim >=400

{22,12}: the vector space of covs has dimension 443

-- the subpace spanned by covs of degree < 22 has dim >=443

{22,14}: the vector space of covs has dimension 525

-- the subpace spanned by covs of degree < 22 has dim >=525

{23,1}: the vector space of covs has dimension 85

-- the subpace spanned by covs of degree < 23 has dim >=84

-- there are 1 gens of degree 23

-- the subpace spanned by covs of degree <= 23 has dim >=85

{23,3}: the vector space of covs has dimension 169

-- the subpace spanned by covs of degree < 23 has dim >=169

{23,5}: the vector space of covs has dimension 253

-- the subpace spanned by covs of degree < 23 has dim >=253

{23,7}: the vector space of covs has dimension 334

-- the subpace spanned by covs of degree < 23 has dim >=334

{23,9}: the vector space of covs has dimension 415

-- the subpace spanned by covs of degree < 23 has dim >=415

{23,11}: the vector space of covs has dimension 491

-- the subpace spanned by covs of degree < 23 has dim >=491
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{23,13}: the vector space of covs has dimension 567

-- the subpace spanned by covs of degree < 23 has dim >=567

{23,15}: the vector space of covs has dimension 636

-- the subpace spanned by covs of degree < 23 has dim >=636

{24,2}: the vector space of covs has dimension 136

-- the subpace spanned by covs of degree < 24 has dim >=136

{24,4}: the vector space of covs has dimension 254

-- the subpace spanned by covs of degree < 24 has dim >=254

{24,6}: the vector space of covs has dimension 330

-- the subpace spanned by covs of degree < 24 has dim >=330

{24,8}: the vector space of covs has dimension 445

-- the subpace spanned by covs of degree < 24 has dim >=445

{24,10}: the vector space of covs has dimension 513

-- the subpace spanned by covs of degree < 24 has dim >=513

{24,12}: the vector space of covs has dimension 626

-- the subpace spanned by covs of degree < 24 has dim >=626

{24,14}: the vector space of covs has dimension 688

-- the subpace spanned by covs of degree < 24 has dim >=688

Out[]= {1453.54, Null}

Here we prove that the covariants from Tables 5.4 and 5.5 generate the
vector space of covariants of V7 of order 1 and degree d with d ≤ 43, the vector
space of covariants of V7 of order 2 and degree d with d ≤ 46, the vector space
of covariants of V7 of order 3 and degree d with d ≤ 45, the vector space of
covariants of V7 of order 4 and degree d with d ≤ 44, and the vector space of
covariants of V7 of order 5 and degree d with d ≤ 45:

In[]:=listdeg2 = {{1, 43}, {2, 46}, {3, 45}, {4, 44}, {5, 45}};

In[]:=Timing[

For[zz=1,zz<6,zz++,

ord=listdeg2[[zz]][[1]];

For[deg = 25, deg < listdeg2[[zz]][[2]] + 1, deg++,

symm = SymTensor[7, deg] /. Table[v[i] -> 0, {i, 16, 1000}];

kk = Coefficient[symm, v[ord]] + 1;

If[kk != 1,

Print[{deg,ord},": the vector space of covs has dimension",kk-1];

ss = mon[{deg, ord}, 147];

If[ss != {},

DIM = kk - 1;

dd1 = RandomSample[ss, kk + 10];

dd2 = Complement[ss, dd1];

eval=Table[dd1/.Table[listgen[[j]]->Matr[[k]][[j]][[1]],

{j,1,Length[Matr[[k]]]}],{k,1,kk}];

eval1= ColumnEchelon[eval];

rk1= MatrixRank[eval1, Modulus -> 32003];

rk= rk1;

While[rk != DIM,

AA = Table[RandomInteger[{-10, 10}], {i, 1, 50}];

uu = RandomSample[dd2, 50].AA;

evaluu= Table[uu/.Table[listgen[[j]]->Matr[[k]][[j]][[1]],

{j,1,Length[Matr[[k]]]}],{k,1,kk}];

eval= Table[Join[eval1[[i]], {evaluu[[i]]}], {i, 1, kk}];

eval= Mod[eval, 32003];

rk= MatrixRank[eval, Modulus -> 32003];

If[rk > rk1, eval1 = eval; rk1 = rk]];

Print["-- the subpace spanned by covs of degree < ", deg,
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" has dim >=", rk]

]]]]

{25,1}: the vector space of covs has dimension 114

-- the subpace spanned by covs of degree < 25 has dim >=114

{27,1}: the vector space of covs has dimension 146

-- the subpace spanned by covs of degree < 27 has dim >=146

{29,1}: the vector space of covs has dimension 189

-- the subpace spanned by covs of degree < 29 has dim >=189

{31,1}: the vector space of covs has dimension 241

-- the subpace spanned by covs of degree < 31 has dim >=241

{33,1}: the vector space of covs has dimension 297

-- the subpace spanned by covs of degree < 33 has dim >=297

{35,1}: the vector space of covs has dimension 369

-- the subpace spanned by covs of degree < 35 has dim >=369

{37,1}: the vector space of covs has dimension 452

-- the subpace spanned by covs of degree < 37 has dim >=452

{39,1}: the vector space of covs has dimension 543

-- the subpace spanned by covs of degree < 39 has dim >=543

{41,1}: the vector space of covs has dimension 653

-- the subpace spanned by covs of degree < 41 has dim >=653

{43,1}: the vector space of covs has dimension 780

-- the subpace spanned by covs of degree < 43 has dim >=780

{26,2}: the vector space of covs has dimension 207

-- the subpace spanned by covs of degree < 26 has dim >=207

{28,2}: the vector space of covs has dimension 236

-- the subpace spanned by covs of degree < 28 has dim >=236

{30,2}: the vector space of covs has dimension 336

-- the subpace spanned by covs of degree < 30 has dim >=336

{32,2}: the vector space of covs has dimension 383

-- the subpace spanned by covs of degree < 32 has dim >=383

{34,2}: the vector space of covs has dimension 519

-- the subpace spanned by covs of degree < 34 has dim >=519

{36,2}: the vector space of covs has dimension 589

-- the subpace spanned by covs of degree < 36 has dim >=589

{38,2}: the vector space of covs has dimension 769

-- the subpace spanned by covs of degree < 38 has dim >=769

{40,2}: the vector space of covs has dimension 868

-- the subpace spanned by covs of degree < 40 has dim >=868

{42,2}: the vector space of covs has dimension 1100

-- the subpace spanned by covs of degree < 42 has dim >=1100

{44,2}: the vector space of covs has dimension 1235

-- the subpace spanned by covs of degree < 44 has dim >=1235

{46,2}: the vector space of covs has dimension 1529

-- the subpace spanned by covs of degree < 46 has dim >=1529

{25,3}: the vector space of covs has dimension 224

-- the subpace spanned by covs of degree < 25 has dim >=224

{27,3}: the vector space of covs has dimension 295

-- the subpace spanned by covs of degree < 27 has dim >=295

{29,3}: the vector space of covs has dimension 378

-- the subpace spanned by covs of degree < 29 has dim >=378

{31,3}: the vector space of covs has dimension 476

-- the subpace spanned by covs of degree < 31 has dim >=476

{33,3}: the vector space of covs has dimension 599

-- the subpace spanned by covs of degree < 33 has dim >=599

{35,3}: the vector space of covs has dimension 736

-- the subpace spanned by covs of degree < 35 has dim >=736

{37,3}: the vector space of covs has dimension 898
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-- the subpace spanned by covs of degree < 37 has dim >=898

{39,3}: the vector space of covs has dimension 1090

-- the subpace spanned by covs of degree < 39 has dim >=1090

{41,3}: the vector space of covs has dimension 1306

-- the subpace spanned by covs of degree < 41 has dim >=1306

{43,3}: the vector space of covs has dimension 1551

-- the subpace spanned by covs of degree < 43 has dim >=1551

{45,3}: the vector space of covs has dimension 1838

-- the subpace spanned by covs of degree < 45 has dim >=1838

{26,4}: the vector space of covs has dimension 309

-- the subpace spanned by covs of degree < 26 has dim >=309

{28,4}: the vector space of covs has dimension 433

-- the subpace spanned by covs of degree < 28 has dim >=433

{30,4}: the vector space of covs has dimension 513

-- the subpace spanned by covs of degree < 30 has dim >=513

{32,4}: the vector space of covs has dimension 686

-- the subpace spanned by covs of degree < 32 has dim >=686

{34,4}: the vector space of covs has dimension 810

-- the subpace spanned by covs of degree < 34 has dim >=810

{36,4}: the vector space of covs has dimension 1039

-- the subpace spanned by covs of degree < 36 has dim >=1039

{38,4}: the vector space of covs has dimension 1212

-- the subpace spanned by covs of degree < 38 has dim >=1212

{40,4}: the vector space of covs has dimension 1520

-- the subpace spanned by covs of degree < 40 has dim >=1520

{42,4}: the vector space of covs has dimension 1748

-- the subpace spanned by covs of degree < 42 has dim >=1748

{44,4}: the vector space of covs has dimension 2144

-- the subpace spanned by covs of degree < 44 has dim >=2144

{25,5}: the vector space of covs has dimension 336

-- the subpace spanned by covs of degree < 25 has dim >=336

{27,5}: the vector space of covs has dimension 440

-- the subpace spanned by covs of degree < 27 has dim >=440

{29,5}: the vector space of covs has dimension 564

-- the subpace spanned by covs of degree < 29 has dim >=564

{31,5}: the vector space of covs has dimension 715

-- the subpace spanned by covs of degree < 31 has dim >=715

{33,5}: the vector space of covs has dimension 892

-- the subpace spanned by covs of degree < 33 has dim >=892

{35,5}: the vector space of covs has dimension 1103

-- the subpace spanned by covs of degree < 35 has dim >=1103

{37,5}: the vector space of covs has dimension 1346

-- the subpace spanned by covs of degree < 37 has dim >=1346

{39,5}: the vector space of covs has dimension 1630

-- the subpace spanned by covs of degree < 39 has dim >=1630

{41,5}: the vector space of covs has dimension 1954

-- the subpace spanned by covs of degree < 41 has dim >=1954

{43,5}: the vector space of covs has dimension 2327

-- the subpace spanned by covs of degree < 43 has dim >=2327

{45,5}: the vector space of covs has dimension 2748

-- the subpace spanned by covs of degree < 45 has dim >=2748

Out[]= {132186., Null}
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A.8 The covariants of V8

First we create a matrix with the evaluations of the 69 covariants from Table
5.6 at 250 random integers:

In[]:=MatrixEvaluations[N_]:=Module[{FF,Inv2,KK,II,HH,Inv3,Fk,F3,F2,F1,PP,Teta,

TT,Inv4,Delta,Ik,I3,I2,I1,H3,H2,H1,SS,Inv5,FK3,FK2,Fdelta,FK1,F3rd,F2nd,

F1st,PP3,Tetak,PP1,Inv6,Ik3,Ik2,Idelta,Ik1,I3rd,Tau,I2nd,I1st,Inv7,Fk3rd,

Ftau6,Fk2nd,Ftau5,Fk1st,Ftau4,Tetakk,Inv8,Ik3rd,Itau6,Ik2nd,Itau5,Ik1st,

Itau4,Inv9,Fktau4,Fdelta3rd,Tetakkk,Fdelta2nd,Inv10,Iktau4,Idelta3rd,

Fdeltatau4,Last,Ideltatau4},

MM={};

For[i=1,i<N+1,i++,FF=Table[Binomial[8,i]*a[8-i],{i,0,8}]/.

Table[a[j]->RandomInteger[{-10,10}],{j,0,8}];

Inv2=Transvectant[FF,FF,8];KK=Transvectant[FF,FF,6];

II=Transvectant[FF,FF,4];HH=Transvectant[FF,FF,2];

Inv3=Transvectant[FF,II,8];Fk=Transvectant[FF,KK,4];

F3=Transvectant[FF,KK,3];F2=Transvectant[FF,KK,2];

F1=Transvectant[FF,KK,1];PP=Transvectant[FF,II,2];

Teta=Transvectant[FF,II,1];TT=Transvectant[FF,HH,1];

Inv4=Transvectant[KK,KK,4];Delta=Transvectant[KK,KK,2];

Ik=Transvectant[II,KK,4];I3=Transvectant[II,KK,3];

I2=Transvectant[II,KK,2];I1=Transvectant[II,KK,1];

H3=Transvectant[HH,KK,3];H2=Transvectant[HH,KK,2];

H1=Transvectant[HH,KK,1];SS=Transvectant[HH,II,1];

Inv5=Transvectant[FF,exp[KK,2],8];FK3=Transvectant[Fk,KK,3];

FK2=Transvectant[Fk,KK,2];Fdelta=Transvectant[FF,Delta,4];

FK1=Transvectant[Fk,KK,1];F3rd=Transvectant[FF,Delta,3];

F2nd=Transvectant[FF,Delta,2];F1st=Transvectant[FF,Delta,1];

PP3=Transvectant[PP,KK,3];Tetak=Transvectant[Teta,KK,4];

PP1=Transvectant[PP,KK,1];Inv6=Transvectant[II,exp[KK,2],8];

Ik3=Transvectant[Ik,KK,3];Ik2=Transvectant[Ik,KK,2];

Idelta=Transvectant[II,Delta,4];Ik1=Transvectant[Ik,KK,1];

I3rd=Transvectant[II,Delta,3];Tau=Transvectant[KK,Delta,1];

I2nd=Transvectant[II,Delta,2];I1st=Transvectant[II,Delta,1];

Inv7=Transvectant[Fk,Delta,4];Fk3rd=Transvectant[Fk,Delta,3];

Ftau6=Transvectant[FF,Tau,6];Fk2nd=Transvectant[Fk,Delta,2];

Ftau5=Transvectant[FF,Tau,5];Fk1st=Transvectant[Fk,Delta,1];

Ftau4=Transvectant[FF,Tau,4];Tetakk=Transvectant[Teta,exp[KK,2],8];

Inv8=Transvectant[Ik,Delta,4];Ik3rd=Transvectant[Ik,Delta,3];

Itau6=Transvectant[II,Tau,6];Ik2nd=Transvectant[Ik,Delta,2];

Itau5=Transvectant[II,Tau,5];Ik1st=Transvectant[Ik,Delta,1];

Itau4=Transvectant[II,Tau,4];Inv9=Transvectant[FF,exp[Delta,2],8];

Fktau4=Transvectant[Fk,Tau,4];Fdelta3rd=Transvectant[Fdelta,Delta,3];

Tetakkk=Transvectant[Tetak,exp[KK,2],8];

Fdelta2nd=Transvectant[Fdelta,Delta,2];

Inv10=Transvectant[II,exp[Delta,2],8];Iktau4=Transvectant[Ik,Tau,4];

Idelta3rd=Transvectant[Idelta,Delta,3];

Fdeltatau4=Transvectant[Fdelta,Tau,4];Last=Transvectant[Tetakkk,KK,2];

Ideltatau4=Transvectant[Idelta,Tau,4];

MM=Append[MM,{FF,Inv2,KK,II,HH,Inv3,Fk,F3,F2,F1,PP,Teta,TT,Inv4,Delta,

Ik,I3,I2,I1,H3,H2,H1,SS,Inv5,FK3,FK2,Fdelta,FK1,F3rd,F2nd,F1st,PP3,

Tetak,PP1,Inv6,Ik3,Ik2,Idelta,Ik1,I3rd,Tau,I2nd,I1st,Inv7,Fk3rd,Ftau6,

Fk2nd,Ftau5,Fk1st,Ftau4,Tetakk,Inv8,Ik3rd,Itau6,Ik2nd,Itau5,Ik1st,Itau4,

Inv9,Fktau4,Fdelta3rd,Tetakkk,Fdelta2nd,Inv10,Iktau4,Idelta3rd,Fdeltatau4,

Last,Ideltatau4}]]]

In[]:=Timing[MatrixEvaluations[250];Matr=MM;]
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Out[]={107.624000,Null}

Next we show that the 69 covariants generate C(V8)d,m with d ≤ 13 and
m ≤ 18. For each d ≤ 13 and m ≤ 18 we do the following: we construct all
possible monomials of degree d and order m spanned by the 69 covariants and
evaluate them at random integers (using the matrix we just created). These
monomials will span C(V8)d,m if their evaluation matrix has the rank equal to
the dimension of C(V8)d,m. We will use a function that we implemented and
called mon{deg,ord} which returns a list of all covariants degree deg and order
ord as monomials of degree deg spanned by the above 69 covariants.

In[]:=listdeg={{1,8},{2,0},{2,4},{2,8},{2,12},{3,0},{3,4},{3,6},{3,8},

{3,10},{3,12},{3,14},{3,18},{4,0},{4,4},{4,4},{4,6},{4,8},{4,10},

{4,10},{4,12},{4,14},{4,18},{5,0},{5,2},{5,4},{5,4},{5,6},{5,6},{5,8},

{5,10},{5,10},{5,10},{5,14},{6,0},{6,2},{6,4},{6,4},{6,6},{6,6},{6,6},

{6,8},{6,10},{7,0},{7,2},{7,2},{7,4},{7,4},{7,6},{7,6},{7,6},{8,0},

{8,2},{8,2},{8,4},{8,4},{8,6},{8,6},{9,0},{9,2},{9,2},{9,2},{9,4},{10,0},

{10,2},{10,2},{11,2},{11,2},{12,2}};

In[]:=listgen={FF,Inv2,KK,II,HH,Inv3,Fk,F3,F2,F1,PP,Teta,TT,Inv4,Delta,Ik,

I3,I2,I1,H3,H2,H1,SS,Inv5,FK3,FK2,Fdelta,FK1,F3rd,F2nd,F1st,PP3,Tetak,PP1,

Inv6,Ik3,Ik2,Idelta,Ik1,I3rd,Tau,I2nd,I1st,Inv7,Fk3rd,Ftau8,Fk2nd,Ftau5,

Fk1st,Ftau4,Tetakk,Inv8,Ik3rd,Itau6,Ik2nd,Itau5,Ik1st,Itau4,Inv9,Fktau4,

Fdelta3rd,Tetakkk,Fdelta2nd,Inv10,Iktau4,Idelta3rd,Fdeltatau4,Last11,

Ideltatau4};

In[]:=mon[md_,j_]:= mon[md,j]=If[md=={0,0},1,If[md[[1]]<0||md[[2]]<0,{},

Flatten[Table[listgen[[i]]mon[md-listdeg[[i]],i],{i,1,j}]]]]

Here we show that the 69 covariants generate C(V8)d,m with d ≤ 13 and
m ≤ 18:

In[]:=Timing[

For[deg=2,deg<14,deg++,

For[j=0,j<10,j++,ord=2j;

symm=SymTensor[8,deg]/.Table[v[i]->0,{i,19,1000}];

kk=Coefficient[symm,v[ord]]+1;

If[kk!=1,

Print[{deg,ord},": the vector space of covs has dimension",kk-1]];

ss=mon[{deg,ord},69];

If[ss!={},

tt=Intersection[ss,listgen];

If[tt!={},

ss1 = Complement[ss, tt];

eval1=Table[ss1/.Table[listgen[[j]]->Matr[[k]][[j]][[1]],

{j,1,Length[Matr[[k]]]}],{k,1,kk}];

rk1=If[ss1=={},0,MatrixRank[eval1,Modulus->32003]];

Print["-- the subpace spanned by covs of degree < ", deg,

" has dim >=", rk1];

Print["-- there are ", Length[tt], " gens of degree ", deg];

eval=Table[ss/.Table[listgen[[j]]->Matr[[k]][[j]][[1]],

{j,1,Length[Matr[[k]]]}],{k,1,kk}];

rk = MatrixRank[eval, Modulus -> 32003];

Print["-- the subpace spanned by covs of degree <= ", deg,

" has dim >=", rk],

eval=Table[ss/.Table[listgen[[j]]->Matr[[k]][[j]][[1]],

{j,1,Length[Matr[[k]]]}],{k,1,kk}];
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rk=MatrixRank[eval,Modulus->32003];

Print["-- the subpace spanned by covs of degree < ", deg,

" has dim >=", rk]]]

]]]

{2,0}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 2 has dim >=0

-- there are 1 gens of degree 2

-- the subpace spanned by covs of degree <= 2 has dim >=1

{2,4}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 2 has dim >=0

-- there are 1 gens of degree 2

-- the subpace spanned by covs of degree <= 2 has dim >=1

{2,8}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 2 has dim >=0

-- there are 1 gens of degree 2

-- the subpace spanned by covs of degree <= 2 has dim >=1

{2,12}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 2 has dim >=0

-- there are 1 gens of degree 2

-- the subpace spanned by covs of degree <= 2 has dim >=1

{2,16}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 2 has dim >=1

{3,0}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=0

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=1

{3,4}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=0

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=1

{3,6}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=0

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=1

{3,8}: the vector space of covs has dimension 2

-- the subpace spanned by covs of degree < 3 has dim >=1

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=2

{3,10}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=0

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=1

{3,12}: the vector space of covs has dimension 2

-- the subpace spanned by covs of degree < 3 has dim >=1

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=2

{3,14}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=0

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=1

{3,16}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=1

{3,18}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 3 has dim >=0

-- there are 1 gens of degree 3

-- the subpace spanned by covs of degree <= 3 has dim >=1

{4,0}: the vector space of covs has dimension 2
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-- the subpace spanned by covs of degree < 4 has dim >=1

-- there are 1 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=2

{4,4}: the vector space of covs has dimension 3

-- the subpace spanned by covs of degree < 4 has dim >=1

-- there are 2 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=3

{4,6}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 4 has dim >=0

-- there are 1 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=1

{4,8}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 4 has dim >=3

-- there are 1 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=4

{4,10}: the vector space of covs has dimension 2

-- the subpace spanned by covs of degree < 4 has dim >=0

-- there are 2 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=2

{4,12}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 4 has dim >=3

-- there are 1 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=4

{4,14}: the vector space of covs has dimension 2

-- the subpace spanned by covs of degree < 4 has dim >=1

-- there are 1 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=2

{4,16}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 4 has dim >=4

{4,18}: the vector space of covs has dimension 2

-- the subpace spanned by covs of degree < 4 has dim >=1

-- there are 1 gens of degree 4

-- the subpace spanned by covs of degree <= 4 has dim >=2

{5,0}: the vector space of covs has dimension 2

-- the subpace spanned by covs of degree < 5 has dim >=1

-- there are 1 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=2

{5,2}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 5 has dim >=0

-- there are 1 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=1

{5,4}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 5 has dim >=2

-- there are 2 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=4

{5,6}: the vector space of covs has dimension 3

-- the subpace spanned by covs of degree < 5 has dim >=1

-- there are 2 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=3

{5,8}: the vector space of covs has dimension 6

-- the subpace spanned by covs of degree < 5 has dim >=5

-- there are 1 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=6

{5,10}: the vector space of covs has dimension 5

-- the subpace spanned by covs of degree < 5 has dim >=2

-- there are 3 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=5
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{5,12}: the vector space of covs has dimension 7

-- the subpace spanned by covs of degree < 5 has dim >=7

{5,14}: the vector space of covs has dimension 5

-- the subpace spanned by covs of degree < 5 has dim >=4

-- there are 1 gens of degree 5

-- the subpace spanned by covs of degree <= 5 has dim >=5

{5,16}: the vector space of covs has dimension 7

-- the subpace spanned by covs of degree < 5 has dim >=7

{5,18}: the vector space of covs has dimension 5

-- the subpace spanned by covs of degree < 5 has dim >=5

{6,0}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 6 has dim >=3

-- there are 1 gens of degree 6

-- the subpace spanned by covs of degree <= 6 has dim >=4

{6,2}: the vector space of covs has dimension 1

-- the subpace spanned by covs of degree < 6 has dim >=0

-- there are 1 gens of degree 6

-- the subpace spanned by covs of degree <= 6 has dim >=1

{6,4}: the vector space of covs has dimension 7

-- the subpace spanned by covs of degree < 6 has dim >=5

-- there are 2 gens of degree 6

-- the subpace spanned by covs of degree <= 6 has dim >=7

{6,6}: the vector space of covs has dimension 5

-- the subpace spanned by covs of degree < 6 has dim >=2

-- there are 3 gens of degree 6

-- the subpace spanned by covs of degree <= 6 has dim >=5

{6,8}: the vector space of covs has dimension 11

-- the subpace spanned by covs of degree < 6 has dim >=10

-- there are 1 gens of degree 6

-- the subpace spanned by covs of degree <= 6 has dim >=11

{6,10}: the vector space of covs has dimension 7

-- the subpace spanned by covs of degree < 6 has dim >=6

-- there are 1 gens of degree 6

-- the subpace spanned by covs of degree <= 6 has dim >=7

{6,12}: the vector space of covs has dimension 13

-- the subpace spanned by covs of degree < 6 has dim >=13

{6,14}: the vector space of covs has dimension 9

-- the subpace spanned by covs of degree < 6 has dim >=9

{6,16}: the vector space of covs has dimension 13

-- the subpace spanned by covs of degree < 6 has dim >=13

{6,18}: the vector space of covs has dimension 10

-- the subpace spanned by covs of degree < 6 has dim >=10

{7,0}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 7 has dim >=3

-- there are 1 gens of degree 7

-- the subpace spanned by covs of degree <= 7 has dim >=4

{7,2}: the vector space of covs has dimension 3

-- the subpace spanned by covs of degree < 7 has dim >=1

-- there are 2 gens of degree 7

-- the subpace spanned by covs of degree <= 7 has dim >=3

{7,4}: the vector space of covs has dimension 10

-- the subpace spanned by covs of degree < 7 has dim >=8

-- there are 2 gens of degree 7

-- the subpace spanned by covs of degree <= 7 has dim >=10

{7,6}: the vector space of covs has dimension 9

-- the subpace spanned by covs of degree < 7 has dim >=6

-- there are 3 gens of degree 7
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-- the subpace spanned by covs of degree <= 7 has dim >=9

{7,8}: the vector space of covs has dimension 16

-- the subpace spanned by covs of degree < 7 has dim >=16

{7,10}: the vector space of covs has dimension 14

-- the subpace spanned by covs of degree < 7 has dim >=14

{7,12}: the vector space of covs has dimension 19

-- the subpace spanned by covs of degree < 7 has dim >=19

{7,14}: the vector space of covs has dimension 17

-- the subpace spanned by covs of degree < 7 has dim >=17

{7,16}: the vector space of covs has dimension 21

-- the subpace spanned by covs of degree < 7 has dim >=21

{7,18}: the vector space of covs has dimension 18

-- the subpace spanned by covs of degree < 7 has dim >=18

{8,0}: the vector space of covs has dimension 7

-- the subpace spanned by covs of degree < 8 has dim >=6

-- there are 1 gens of degree 8

-- the subpace spanned by covs of degree <= 8 has dim >=7

{8,2}: the vector space of covs has dimension 4

-- the subpace spanned by covs of degree < 8 has dim >=2

-- there are 2 gens of degree 8

-- the subpace spanned by covs of degree <= 8 has dim >=4

{8,4}: the vector space of covs has dimension 16

-- the subpace spanned by covs of degree < 8 has dim >=14

-- there are 2 gens of degree 8

-- the subpace spanned by covs of degree <= 8 has dim >=16

{8,6}: the vector space of covs has dimension 13

-- the subpace spanned by covs of degree < 8 has dim >=11

-- there are 2 gens of degree 8

-- the subpace spanned by covs of degree <= 8 has dim >=13

{8,8}: the vector space of covs has dimension 25

-- the subpace spanned by covs of degree < 8 has dim >=25

{8,10}: the vector space of covs has dimension 21

-- the subpace spanned by covs of degree < 8 has dim >=21

{8,12}: the vector space of covs has dimension 31

-- the subpace spanned by covs of degree < 8 has dim >=31

{8,14}: the vector space of covs has dimension 26

-- the subpace spanned by covs of degree < 8 has dim >=26

{8,16}: the vector space of covs has dimension 35

-- the subpace spanned by covs of degree < 8 has dim >=35

{8,18}: the vector space of covs has dimension 29

-- the subpace spanned by covs of degree < 8 has dim >=29

{9,0}: the vector space of covs has dimension 8

-- the subpace spanned by covs of degree < 9 has dim >=7

-- there are 1 gens of degree 9

-- the subpace spanned by covs of degree <= 9 has dim >=8

{9,2}: the vector space of covs has dimension 8

-- the subpace spanned by covs of degree < 9 has dim >=5

-- there are 3 gens of degree 9

-- the subpace spanned by covs of degree <= 9 has dim >=8

{9,4}: the vector space of covs has dimension 21

-- the subpace spanned by covs of degree < 9 has dim >=20

-- there are 1 gens of degree 9

-- the subpace spanned by covs of degree <= 9 has dim >=21

{9,6}: the vector space of covs has dimension 22

-- the subpace spanned by covs of degree < 9 has dim >=22

{9,8}: the vector space of covs has dimension 35

-- the subpace spanned by covs of degree < 9 has dim >=35
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{9,10}: the vector space of covs has dimension 33

-- the subpace spanned by covs of degree < 9 has dim >=33

{9,12}: the vector space of covs has dimension 45

-- the subpace spanned by covs of degree < 9 has dim >=45

{9,14}: the vector space of covs has dimension 42

-- the subpace spanned by covs of degree < 9 has dim >=42

{9,16}: the vector space of covs has dimension 51

-- the subpace spanned by covs of degree < 9 has dim >=51

{9,18}: the vector space of covs has dimension 48

-- the subpace spanned by covs of degree < 9 has dim >=48

{10,0}: the vector space of covs has dimension 12

-- the subpace spanned by covs of degree < 10 has dim >=11

-- there are 1 gens of degree 10

-- the subpace spanned by covs of degree <= 10 has dim >=12

{10,2}: the vector space of covs has dimension 10

-- the subpace spanned by covs of degree < 10 has dim >=8

-- there are 2 gens of degree 10

-- the subpace spanned by covs of degree <= 10 has dim >=10

{10,4}: the vector space of covs has dimension 32

-- the subpace spanned by covs of degree < 10 has dim >=32

{10,6}: the vector space of covs has dimension 30

-- the subpace spanned by covs of degree < 10 has dim >=30

{10,8}: the vector space of covs has dimension 51

-- the subpace spanned by covs of degree < 10 has dim >=51

{10,10}: the vector space of covs has dimension 48

-- the subpace spanned by covs of degree < 10 has dim >=48

{10,12}: the vector space of covs has dimension 66

-- the subpace spanned by covs of degree < 10 has dim >=66

{10,14}: the vector space of covs has dimension 61

-- the subpace spanned by covs of degree < 10 has dim >=61

{10,16}: the vector space of covs has dimension 77

-- the subpace spanned by covs of degree < 10 has dim >=77

{10,18}: the vector space of covs has dimension 70

-- the subpace spanned by covs of degree < 10 has dim >=70

{11,0}: the vector space of covs has dimension 13

-- the subpace spanned by covs of degree < 11 has dim >=13

{11,2}: the vector space of covs has dimension 17

-- the subpace spanned by covs of degree < 11 has dim >=15

-- there are 2 gens of degree 11

-- the subpace spanned by covs of degree <= 11 has dim >=17

{11,4}: the vector space of covs has dimension 42

-- the subpace spanned by covs of degree < 11 has dim >=42

{11,6}: the vector space of covs has dimension 45

-- the subpace spanned by covs of degree < 11 has dim >=45

{11,8}: the vector space of covs has dimension 69

-- the subpace spanned by covs of degree < 11 has dim >=69

{11,10}: the vector space of covs has dimension 70

-- the subpace spanned by covs of degree < 11 has dim >=70

{11,12}: the vector space of covs has dimension 91

-- the subpace spanned by covs of degree < 11 has dim >=91

{11,14}: the vector space of covs has dimension 90

-- the subpace spanned by covs of degree < 11 has dim >=90

{11,16}: the vector space of covs has dimension 108

-- the subpace spanned by covs of degree < 11 has dim >=108

{11,18}: the vector space of covs has dimension 105

-- the subpace spanned by covs of degree < 11 has dim >=105

{12,0}: the vector space of covs has dimension 20
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-- the subpace spanned by covs of degree < 12 has dim >=20

{12,2}: the vector space of covs has dimension 22

-- the subpace spanned by covs of degree < 12 has dim >=21

-- there are 1 gens of degree 12

-- the subpace spanned by covs of degree <= 12 has dim >=22

{12,4}: the vector space of covs has dimension 58

-- the subpace spanned by covs of degree < 12 has dim >=58

{12,6}: the vector space of covs has dimension 61

-- the subpace spanned by covs of degree < 12 has dim >=61

{12,8}: the vector space of covs has dimension 96

-- the subpace spanned by covs of degree < 12 has dim >=96

{12,10}: the vector space of covs has dimension 95

-- the subpace spanned by covs of degree < 12 has dim >=95

{12,12}: the vector space of covs has dimension 128

-- the subpace spanned by covs of degree < 12 has dim >=128

{12,14}: the vector space of covs has dimension 124

-- the subpace spanned by covs of degree < 12 has dim >=124

{12,16}: the vector space of covs has dimension 152

-- the subpace spanned by covs of degree < 12 has dim >=152

{12,18}: the vector space of covs has dimension 147

-- the subpace spanned by covs of degree < 12 has dim >=147

{13,0}: the vector space of covs has dimension 22

-- the subpace spanned by covs of degree < 13 has dim >=22

{13,2}: the vector space of covs has dimension 33

-- the subpace spanned by covs of degree < 13 has dim >=33

{13,4}: the vector space of covs has dimension 75

-- the subpace spanned by covs of degree < 13 has dim >=75

{13,6}: the vector space of covs has dimension 85

-- the subpace spanned by covs of degree < 13 has dim >=85

{13,8}: the vector space of covs has dimension 126

-- the subpace spanned by covs of degree < 13 has dim >=126

{13,10}: the vector space of covs has dimension 133

-- the subpace spanned by covs of degree < 13 has dim >=133

{13,12}: the vector space of covs has dimension 169

-- the subpace spanned by covs of degree < 13 has dim >=169

{13,14}: the vector space of covs has dimension 173

-- the subpace spanned by covs of degree < 13 has dim >=173

{13,16}: the vector space of covs has dimension 205

-- the subpace spanned by covs of degree < 13 has dim >=205

{13,18}: the vector space of covs has dimension 205

-- the subpace spanned by covs of degree < 13 has dim >=205

Out[63]= {48.459, Null}

Further we show that no generating covariants of V8 occur in degree ≤ 16
and orders 2, 4, or 6:

In[]:=Timing[

For[deg=14,deg<17,deg++,

For[j=1,j<4,j++,ord=2j;

symm=SymTensor[8,deg]/.Table[v[i]->0,{i,19,1000}];

kk=Coefficient[symm,v[ord]]+1;

If[kk!=1,

Print[{deg,ord},": the vector space of covs has dimension",kk-1]];

ss=mon[{deg,ord},69];

eval=Table[ss/.Table[listgen[[j]]->Matr[[k]][[j]][[1]],

{j,1,Length[Matr[[k]]]}],{k,1,kk}];

rk=MatrixRank[eval,Modulus->32003];
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Print["-- the subpace spanned by covs of degree <= ", deg,

" has dim >=", rk];

]]]

{14,2}: the vector space of covs has dimension 42

-- the subpace spanned by covs of degree < 14 has dim >=42

{14,4}: the vector space of covs has dimension 101

-- the subpace spanned by covs of degree < 14 has dim >=101

{14,6}: the vector space of covs has dimension 111

-- the subpace spanned by covs of degree < 14 has dim >=111

{15,2}: the vector space of covs has dimension 59

-- the subpace spanned by covs of degree < 15 has dim >=59

{15,4}: the vector space of covs has dimension 126

-- the subpace spanned by covs of degree < 15 has dim >=126

{15,6}: the vector space of covs has dimension 150

-- the subpace spanned by covs of degree < 15 has dim >=150

{16,2}: the vector space of covs has dimension 74

-- the subpace spanned by covs of degree < 16 has dim >=74

{16,4}: the vector space of covs has dimension 165

-- the subpace spanned by covs of degree < 16 has dim >=165

{16,6}: the vector space of covs has dimension 190

-- the subpace spanned by covs of degree < 16 has dim >=190

Out[]= {10.3206, Null}

A.9 The invariants of V2 ⊕ V3

Here are the Mathematica computations supporting the proof of Proposition
5.9.2. We �rst compute the invariants j2, j3, j4, j5, j7 of V2 ⊕ V3:

qq=Table[a[2-i]Binomial[2,i],{i,0,2}];

cc=Table[b[3-i]Binomial[3,i],{i,0,3}];

cc1=Transvectant[cc,cc,2];cc2=Transvectant[cc1,cc,1];

j21=Transvectant[qq,qq,2].{1};j31=Transvectant[qq,cc1,2].{1};

j41=Transvectant[cc1,cc1,2].{1};

j51=Transvectant[exp[cc,2],exp[qq,3],6].{1};

j71=Transvectant[exp[qq,3],prod[cc,cc2],6].{1};

Here are the rank computations:

In[]:=gens={{j21},{j31},{j41},{j51}};degrees={2,3,4,5};

=== computations in degree 4 ===

In[]:=mon1=listmonomials[4,gens,degrees];Length[mon1]

Out[]=1

In[]:=mon=Union[mon1,{j41}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,3}];

MatrixRank[mat]

Out[]=2

=== computations in degree 5 ===

In[]:=mon1=listmonomials[5,gens,degrees];Length[mon1]

Out[]=1

In[]:=mon=Union[mon1,{j51}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,3}];
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MatrixRank[mat]

Out[]=2

=== computations in degree 6 ===

In[]:=mon1=listmonomials[6,gens,degrees];Length[mon1]

Out[]=3

In[]:=mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,4}];

MatrixRank[mat]

Out[]=3

=== computations in degree 7 ===

In[]:=mon1=listmonomials[7,gens,degrees];Length[mon1]

Out[]=3

In[]:=mon=Union[mon1,{j71}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,5}];

MatrixRank[mat]

Out[]=4

A.10 The invariants of V2 ⊕ V4

Here are the Mathematica computations supporting the proof of Proposition
5.10.2. We �rst compute the invariants j2,1, j2,2, j3,1, j3,2, j4, j6 of V2 ⊕ V4:

qq=Table[a[2-i]Binomial[2,i],{i,0,2}];

ff=Table[b[4-i]Binomial[4,i],{i,0,4}];

cc1=Transvectant[ff,ff,2];cc2=Transvectant[cc1,ff,1];

cc3=Transvectant[qq,ff,2];j21=Transvectant[qq,qq,2].{1};

j22=Transvectant[ff,ff,4].{1};j31=Transvectant[ff,cc1,4].{1};

j32=Transvectant[ff,exp[qq,2],4].{1};

j41=Transvectant[cc1,exp[qq,2],4].{1};

j61=Transvectant[cc2,exp[qq,3],6].{1};

Here are the rank computations:

In[]:=gens={{j21,j22},{j31,j32},{j41}};degrees={2,3,4};

=== computations in degree 4 ===

In[]:=mon1=listmonomials[4,gens,degrees];Length[mon1]

Out[]=3

In[]:=mon=Union[mon1,{j41}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,5}];

MatrixRank[mat]

Out[]=4

=== computations in degree 5 ===

In[]:=mon1=listmonomials[5,gens,degrees];Length[mon1]

Out[]=4

In[]:=mat=Table[mon1/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,5}];

MatrixRank[mat]

Out[]=4

=== computations in degree 6 ===
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In[]:=mon1=listmonomials[6,gens,degrees];Length[mon1]

Out[]=9

In[]:=mon=Union[mon1,{j61}];

In[]:=mat=Table[mon/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,11}];

MatrixRank[mat]

Out[]=10

A.11 The invariants of V2 ⊕ V5

Here are the computations supporting the proof of Proposition 5.11.2. We �rst
compute the invariants j2, j3, j4, j5, j6, j7,1, . . . , j7,3, j8,1, . . . , j8,3, j9,1 . . . , j9,3, j10,1,
j10,2, j11,1, . . . , j11,3, j12,1, . . . , j12,3, j13,1, . . . , j13,3, j14, j15, j16, j17, j18 of V2⊕V5:

qq=Table[a[2-i]Binomial[2,i],{i,0,2}];

ff=Table[b[5-i]Binomial[5,i],{i,0,5}];

cc1=Transvectant[ff,ff,4];cc2=Transvectant[ff,cc1,2];

cc3=Transvectant[ff,ff,2];cc4=Transvectant[ff,cc1,1];

cc5=Transvectant[ff,cc3,1];j21=Transvectant[qq,qq,2].{1};

j31=Transvectant[cc1,qq,2].{1};j41=Transvectant[cc1,cc1,2].{1};

j51=Transvectant[cc3,exp[qq,3],6].{1};

j61=Transvectant[Transvectant[cc1,cc3,2],exp[qq,2],4].{1};

j71=Transvectant[exp[qq,5],exp[ff,2],10].{1};

j72=Transvectant[Transvectant[cc4,ff,2],exp[qq,3],6].{1};

j73=Transvectant[Transvectant[exp[cc1,2],cc3,4],qq,2].{1};

j81=Transvectant[Transvectant[cc2,cc2,2],cc1,2].{1};

j82=Transvectant[Transvectant[exp[cc1,2],cc3,3],exp[qq,2],4].{1};

j83=Transvectant[prod[ff,cc2],exp[qq,4],8].{1};

j91=Transvectant[prod[ff,Transvectant[exp[cc1,2],ff,4]],exp[qq,3],6].{1};

j92=Transvectant[Transvectant[exp[cc1,3],cc3,5],qq,2].{1};

j93=Transvectant[exp[qq,5],prod[cc4,ff],10].{1};

j101=Transvectant[prod[Transvectant[exp[cc1,2],ff,4],cc2],

exp[qq,2],4].{1};

j102=Transvectant[prod[cc4,cc2],exp[qq,4],8].{1};

j111=Transvectant[prod[ff,cc5],exp[qq,7],14].{1};

j112=Transvectant[prod[ff,Transvectant[exp[cc1,3],ff,5]],exp[qq,3],6].{1};

j113=Transvectant[exp[Transvectant[exp[cc1,2],ff,4],2],qq,2].{1};

j121=Transvectant[Transvectant[cc2,cc2,2],

Transvectant[cc2,cc2,2],2].{1};

j122=Transvectant[prod[Transvectant[exp[cc1,3],ff,5],cc2],

exp[qq,2],4].{1};

j123=Transvectant[prod[Transvectant[cc1,cc5,2],ff],exp[qq,6],12].{1};

j131=Transvectant[prod[Transvectant[exp[cc1,3],ff,5],

Transvectant[exp[cc1,2],ff,4]],qq,2].{1};

j132=Transvectant[prod[ff,Transvectant[exp[cc1,2],cc5,4]],

exp[qq,5],10].{1};

j141=Transvectant[prod[ff,Transvectant[exp[cc1,3],cc5,6]],

exp[qq,4],8].{1};

j151=Transvectant[prod[ff,Transvectant[exp[cc1,4],cc5,8]],

exp[qq,3],6].{1};

j161=Transvectant[prod[cc2,Transvectant[exp[cc1,4],cc5,8]],

exp[qq,2],4].{1};

j171=Transvectant[prod[Transvectant[exp[cc1,2],ff,4],

Transvectant[exp[cc1,4],cc5,8]],qq,2].{1};
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j181=Transvectant[exp[cc1,7],prod[ff,cc5],14].{1};

Here are the rank computations:

In[]:=gens={{j21},{j31},{j41},{j51},{j61},{j71,j72,j73},

{j81,j82,j83},{j91,j92,j93},{j101,j102},{j111,j112,j113},

{j121,j122,j123},{j131,j132},{j141},{j151},{j161},{j171}};

degrees={2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17};

=== computations in degree 4 ===

In[]:=mon1=listmonomials[4,gens,degrees];Length[mon1]

Out[]=1

In[]:=mon=Union[mon1,{j41}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,3}];

MatrixRank[mat]

Out[]=2

=== computations in degree 5 ===

In[]:=mon1=listmonomials[5,gens,degrees];Length[mon1]

Out[]=1

In[]:=mon=Union[mon1,{j51}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,3}];

MatrixRank[mat]

Out[]=2

=== computations in degree 6 ===

In[]:=mon1=listmonomials[6,gens,degrees];Length[mon1]

Out[]=3

In[]:=mon=Union[mon1,{j61}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,5}];

MatrixRank[mat]

Out[]=4

=== computations in degree 7 ===

In[]:=mon1=listmonomials[7,gens,degrees];Length[mon1]

Out[]=3

In[]:=mon=Union[mon1,{j71,j72,j73}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,7}];

MatrixRank[mat]

Out[]=6

=== computations in degree 8 ===

In[]:=mon1=listmonomials[8,gens,degrees];Length[mon1]

Out[]=6

In[]:=mon=Union[mon1,{j81,j82,j83}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,10}];

MatrixRank[mat]

Out[]=9

=== computations in degree 9 ===

In[]:=mon1=listmonomials[9,gens,degrees];Length[mon1]

Out[]=9

In[]:=mon=Union[mon1,{j91,j92,j93}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,13}];

MatrixRank[mat]

Out[]=12

=== computations in degree 10 ===

In[]:=mon1=listmonomials[10,gens,degrees];Length[mon1]
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Out[]=15

In[]:=mon=Union[mon1,{j101,j102}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,18}];

MatrixRank[mat]

Out[]=17

=== computations in degree 11 ===

In[]:=mon1=listmonomials[11,gens,degrees];Length[mon1]

Out[]=21

In[]:=mon=Union[mon1,{j111,j112,j113}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,25}];

MatrixRank[mat]

Out[]=24

=== computations in degree 12 ===

In[]:=mon1=listmonomials[12,gens,degrees];Length[mon1]

Out[]=31

In[]:=mon=Union[mon1,{j121,j122,j123}];

In[]:=Timing[mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,34}];

MatrixRank[mat]]

Out[]={3.33221,33} //the rank is 33;

//the computation took 3.3 seconds

=== computations in degree 13 ===

In[]:=mon1=listmonomials[13,gens,degrees];Length[mon1]

Out[]=42

In[]:=mon=Union[mon1,{j131,j132}];

In[]:=Timing[mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,43}];

MatrixRank[mat]]

Out[]={6.14438,42} //the rank is 42;

//the computation took 6.1 seconds

=== computations in degree 14 ===

In[]:=mon1=listmonomials[14,gens,degrees];Length[mon1]

Out[]=62

In[]:=mon=Union[mon1,{j141}];

In[]:=Timing[mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,57}];

MatrixRank[mat]]

Out[]={12.4968,56} //the rank is 56;

//the computation took 12.4 seconds

=== computations in degree 15 ===

In[]:=mon1=listmonomials[15,gens,degrees];Length[mon1]

Out[]=83

In[]:=mon=Union[mon1,{j151}];

In[]:=Timing[mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,74}];

MatrixRank[mat]]

Out[]={30.7419,73} //the rank is 73;

//the computation took 30.7 seconds

=== computations in degree 16 ===

In[]:=mon1=listmonomials[16,gens,degrees];Length[mon1]

Out[]=115

In[]:=mon=Union[mon1,{j161}];

In[]:=Timing[mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,95}];

MatrixRank[mat]]
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Out[]={65.2281,94} //the rank is 94;

//the computation took 65.2 seconds

=== computations in degree 17 ===

In[]:=mon1=listmonomials[17,gens,degrees];Length[mon1]

Out[]=150

In[]:=mon=Union[mon1,{j171}];

In[]:=Timing[mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,118}];

MatrixRank[mat]]

Out[]={127.956,117} //the rank is 117;

//the computation took 127.9 seconds

=== computations in degree 18 ===

In[]:=mon1=listmonomials[18,gens,degrees];Length[mon1]

Out[]=206

In[]:=mon=Union[mon1,{j181}];

In[]:=Timing[mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,149}];

MatrixRank[mat]]

Out[]={335.941,148} //the rank is 148;

//the computation took 335.9 seconds

For the computations in degrees ≥ 19, we write a matrix eval with 1240
evaluations of our 29 invariants. This saves computation time.

In[]:=gens={{jj21},{jj31},{jj41},{jj51},{jj61},{jj71,jj72,jj73},

{jj81,jj82,jj83},{jj91,jj92,jj93},{jj101,jj102},

{jj111,jj112,jj113},{jj121,jj122,jj123},{jj131,jj132},{jj141},

{jj151},{jj161},{jj171},{jj181}};

degrees={2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18};

gens1=Flatten[gens];

=== computations in degree 19 ===

In[]:=mon=listmonomials[19,gens,degrees];Length[mon]

Out[]=269

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,184}];

MatrixRank[mat,Modulus->32003]]

Out[]={1.00006,183} //the rank is 183;

//the computation took 1.0 seconds

=== computations in degree 20 ===

In[]:=mon=listmonomials[20,gens,degrees];Length[mon]

Out[239]=360

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,227}];

MatrixRank[mat,Modulus->32003]]

Out[]={1.46809,226} //the rank is 226;

//the computation took 1.4 seconds

=== computations in degree 21 ===

In[]:=mon=listmonomials[21,gens,degrees];Length[mon]

Out[]=467

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,275}];

MatrixRank[mat,Modulus->32003]]

Out[]={2.32415,274} //the rank is 274;

//the computation took 2.3 seconds

=== computations in degree 22 ===

In[]:=mon=listmonomials[22,gens,degrees];Length[mon]

Out[]=615
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In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,333}];

MatrixRank[mat,Modulus->32003]]

Out[]={4.42828,332} //the rank is 332;

//the computation took 4.4 seconds

=== computations in degree 23 ===

In[]:=mon=listmonomials[23,gens,degrees];Length[mon]

Out[]=796

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,401}];

MatrixRank[mat,Modulus->32003]]

Out[]={7.07644,400} //the rank is 400;

//the computation took 7.0 seconds

=== computations in degree 24 ===

In[]:=mon=listmonomials[24,gens,degrees];Length[mon]

Out[]=1039

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,480}];

MatrixRank[mat,Modulus->32003]]

Out[]={11.7567,479} //the rank is 479;

//the computation took 11.7 seconds

=== computations in degree 26 ===

In[]:=mon=listmonomials[26,gens,degrees];Length[mon]

Out[]=1721

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,670}];

MatrixRank[mat,Modulus->32003]]

Out[]={32.9141,669} //the rank is 669;

//the computation took 32.9 seconds

=== computations in degree 28 ===

In[]:=mon=listmonomials[28,gens,degrees];Length[mon]

Out[]=2815

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,921}];

MatrixRank[mat,Modulus->32003]]

Out[]={89.5536,920} //the rank is 920;

//the computation took 89.5 seconds

=== computations in degree 30 ===

In[]:=mon=listmonomials[30,gens,degrees];Length[mon]

Out[]=4543

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,1239}];

MatrixRank[mat,Modulus->32003]]

Out[]={226.434,1238} //the rank is 1238;

//the computation took 226.4 seconds

A.12 The invariants of V2 ⊕ V6

Here are the Mathematica computations supporting the proof of Proposition
5.12.2. We �rst compute the invariants j2,1, j2,2, j4,1, . . . , j4,4, j6,1, . . . , j6,5, j7,1,
. . . , j7,3, j8, j9,1, . . . , j9,7, j10, j11,1, j11,2, j13, j15 of V2 ⊕ V6:

qq=Table[a[2-i]Binomial[2,i],{i,0,2}];

ss=Table[b[6-i]Binomial[6,i],{i,0,6}];

cc1=Transvectant[ss,ss,4];cc2=Transvectant[ss,ss,2];
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cc3=Transvectant[ss,cc1,4];cc4=Transvectant[cc1,cc1,2];

cc5=Transvectant[ss,cc1,1];j21=Transvectant[ss,ss,6].{1};

j22=Transvectant[qq,qq,2].{1};j41=Transvectant[cc1,cc1,4].{1};

j42=Transvectant[cc1,exp[qq,2],4].{1};j43=Transvectant[ss,exp[qq,3],6].{1};

j44=Transvectant[cc3,qq,2].{1};j61=Transvectant[cc1,cc4,4].{1};

j62=Transvectant[cc2,exp[qq,4],8].{1};

j63=Transvectant[Transvectant[cc1,cc3,2],qq,2].{1};

j64=Transvectant[Transvectant[ss,cc1,2],exp[qq,3],6].{1};

j65=Transvectant[Transvectant[ss,cc3,2],exp[qq,2],4].{1};

j71=Transvectant[Transvectant[cc1,cc3,1],exp[qq,2],4].{1};

j72=Transvectant[Transvectant[ss,cc3,1],exp[qq,3],6].{1};

j73=Transvectant[Transvectant[ss,cc1,1],exp[qq,4],8].{1};

j81=Transvectant[Transvectant[ss,exp[cc3,2],4],qq,2].{1};

j91=Transvectant[Transvectant[cc1,exp[cc3,2],3],qq,2].{1};

j92=Transvectant[Transvectant[ss,exp[cc3,2],3],exp[qq,2],4].{1};

j93=Transvectant[Transvectant[Transvectant[ss,cc1,2],cc3,1],

exp[qq,3],6].{1};

j94=Transvectant[Transvectant[Transvectant[ss,cc1,1],cc3,2],

exp[qq,3],6].{1};

j95=Transvectant[Transvectant[cc2,cc3,1],exp[qq,4],8].{1};

j96=Transvectant[Transvectant[cc2,cc1,1],exp[qq,5],10].{1};

j97=Transvectant[Transvectant[cc2,ss,1],exp[qq,6],12].{1};

j101=Transvectant[cc4,exp[cc3,2],4].{1};

j111=Transvectant[Transvectant[ss,exp[cc3,3],5],qq,2].{1};

j112=Transvectant[Transvectant[Transvectant[ss,cc1,1],

exp[cc3,2],4],exp[qq,2],4].{1};

j131=Transvectant[Transvectant[Transvectant[ss,cc1,1],

exp[cc3,3],6],qq,2].{1};

j151=Transvectant[cc5,exp[cc3,4],8].{1};

Here are the Singular [DGPS] computations supporting the proof of Propo-
sition 5.12.1:

> ring r=0,(a0,a1,a2,b0,b1,b2,b3,b4,b5,b6),dp;

//here we import the invariants we computed with Mathematica:

> <"j21_26.csv";

> <"j41_26.csv";

> <"j42_26.csv";

> <"j43_26.csv";

> <"j44_26.csv";

> <"j61_26.csv";

> <"j62_26.csv";

> <"j101_26.csv";

//here we show that if q=x^2 and b6=1, then

(j21,j41+j42-2*j44,j42-j43+j44,j61,j101) is the unit ideal:

> ideal ii=a0-1,a1,a2,b6-1,b4-b5^2,j21,j41+j42-2*j44,

j42-j43+j44,j61,j101;

> ideal jj=std(ii);jj;

jj[1]=1

Here are the rank computations supporting the proof of Proposition 5.12.2:

In[]:=gens={{j21,j22},{j41,j42,j43,j44},{j61,j62,j63,j64,j65},

{j71,j72,j73},{j81},{j91,j92,j93,j94,j95,j96,j97},{j101},

{j111,j112},{j131}};degrees={2,4,6,7,8,9,10,11,13};

=== computations in degree 2 ===

In[]:=mon={j21,j22};
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In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,3}];MatrixRank[mat]

Out[]=2

=== computations in degree 4 ===

In[]:=mon1=listmonomials[4,gens,degrees];Length[mon1]

Out[]=3

In[]:=mon=Union[mon1,{j41,j42,j43,j44}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,8}];MatrixRank[mat]

Out[]=7

=== computations in degree 6 ===

In[]:=mon1=listmonomials[6,gens,degrees];Length[mon1]

Out[]=12

In[]:=mon=Union[mon1,{j61,j62,j63,j64,j65}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,18}];MatrixRank[mat]

Out[]=17

=== computations in degree 7 ===

In[]:=mon1=listmonomials[7,gens,degrees];Length[mon1]

Out[]=0

In[]:=mon=Union[mon1,{j71,j72,j73}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,18}];MatrixRank[mat]

Out[]=3

=== computations in degree 8 ===

In[]:=mon1=listmonomials[8,gens,degrees];Length[mon1]

Out[]=37

In[]:=mon=Union[mon1,{j81}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,39}];MatrixRank[mat]

Out[]=38

=== computations in degree 9 ===

In[]:=mon1=listmonomials[9,gens,degrees];Length[mon1]

Out[]=6

In[]:=mon=Union[mon1,{j91,j92,j93,j94,j95,j96,j97}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,14}];MatrixRank[mat]

Out[]=13

=== computations in degree 10 ===

In[]:=mon1=listmonomials[10,gens,degrees];Length[mon1]

Out[]=79

In[]:=mon=Union[mon1,{j101}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,79}];MatrixRank[mat]

Out[]=78

=== computations in degree 11 ===

In[]:=mon1=listmonomials[11,gens,degrees];Length[mon1]

Out[]=35

In[]:=mon=Union[mon1,{j111,j112}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,37}];MatrixRank[mat]

Out[]=36

=== computations in degree 12 ===

In[]:=mon1=listmonomials[12,gens,degrees];Length[mon1]

Out[]=161

In[]:=mon=Union[mon1,{}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.
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Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,152}];MatrixRank[mat]

Out[]=151

=== computations in degree 13 ===

In[]:=mon1=listmonomials[13,gens,degrees];Length[mon1]

Out[]=104

In[]:=mon=Union[mon1,{j131}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,87}];MatrixRank[mat]

Out[]=86

=== computations in degree 14 ===

In[]:=mon1=listmonomials[14,gens,degrees];Length[mon1]

Out[]=307

In[]:=mon=Union[mon1,{}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,272}];MatrixRank[mat]

Out[]=271

=== computations in degree 15 ===

In[]:=mon1=listmonomials[15,gens,degrees];Length[mon1]

Out[]=249

In[]:=mon=Union[mon1,{j151}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,6}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,181}];MatrixRank[mat]

Out[]=180

For the computations in degrees ≥ 16, we write a matrix eval with 2860
evaluations of our 27 invariants. This saves computation time.

=== computations in degree 16 ===

In[]:=mon=listmonomials[16,gens,degrees];Length[mon]

Out[]=585

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,470}];

MatrixRank[mat,Modulus->32003]]

Out[]={14.1249,469} //the rank is 469;

//the computation took 14.1 seconds

=== computations in degree 17 ===

In[]:=mon=listmonomials[17,gens,degrees];Length[mon]

Out[]=549

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,342}];

MatrixRank[mat,Modulus->32003]]

Out[]={6.4084,341} //the rank is 341;

//the computation took 6.4 seconds

=== computations in degree 18 ===

In[]:=mon=listmonomials[18,gens,degrees];Length[mon]

Out[]=1087

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,775}];

MatrixRank[mat,Modulus->32003]]

Out[]={45.0068,774} //the rank is 774;

//the computation took 45.0 seconds

=== computations in degree 20 ===

In[]:=mon=listmonomials[20,gens,degrees];Length[mon]

Out[]=1986

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,1234}];

MatrixRank[mat,Modulus->32003]]
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Out[]={162.37,1233} //the rank is 1233;

//the computation took 162.3 seconds

=== computations in degree 24 ===

In[]:=mon=listmonomials[24,gens,degrees];Length[mon]

Out[]=6465

In[]:=Timing[mat=Table[mon/.

Table[gens1[[j]]->eval[[i]][[j]],{j,1,Length[gens1]}],{i,1,2858}];

MatrixRank[mat,Modulus->32003]]

Out[]={1836.,2857} //the rank is 2857;

//the computation took 1836 seconds

A.13 The invariants of V3 ⊕ V4

Here are the Mathematica computations supporting the proof of Proposition
5.13.2. We �rst compute the invariants j2, j3, j4, j5,1, j5,2, j6,1, j6,2, j7,1, . . . , , j7,3,
j8,1, . . . , j8,3, j9,1, . . . , j9,4, j10,1, j10,2, j11 of V3 ⊕ V4:

cc=Table[a[3-i]Binomial[3,i],{i,0,3}];

qq=Table[b[4-i]Binomial[4,i],{i,0,4}];

cc1=Transvectant[cc,cc,2];cc2=Transvectant[qq,qq,2];

j21=Transvectant[qq,qq,4].{1};j31=Transvectant[cc2,qq,4].{1};

j41=Transvectant[cc1,cc1,2].{1};

j51=Transvectant[Transvectant[qq,cc2,1],exp[cc,2],6].{1};

j52=Transvectant[Transvectant[qq,exp[cc,2],2],exp[cc,2],6].{1};

j61=Transvectant[exp[cc1,2],cc2,4].{1};

j62=Transvectant[Transvectant[Transvectant[qq,cc1,2],exp[cc,2],2],

qq,4].{1};

j71=Transvectant[exp[cc,4],exp[qq,3],12].{1};

j72=Transvectant[

Transvectant[Transvectant[qq,cc1,2],exp[cc,2],2],cc2,4].{1};

j73=Transvectant[Transvectant[qq,cc2,1],

prod[cc,Transvectant[cc,cc1,1]],6].{1};

j81=Transvectant[Transvectant[Transvectant[qq,cc1,2],

prod[cc,Transvectant[cc,cc1,1]],2],qq,4].{1};

j82=Transvectant[exp[cc,4],prod[exp[qq,2],cc2],12].{1};

j83=Transvectant[

Transvectant[Transvectant[cc2,cc1,2],exp[cc,2],2],cc2,4].{1};

j91=Transvectant[Transvectant[Transvectant[cc2,cc1,2],

prod[cc,Transvectant[cc,cc1,1]],2],qq,4].{1};

j92=Transvectant[exp[cc,4],prod[prod[qq,cc2],cc2],12].{1};

j93=Transvectant[prod[exp[cc,3],Transvectant[cc,cc1,1]],

exp[qq,3],12].{1};

j94=Transvectant[Transvectant[Transvectant[qq,cc1,2],

prod[cc,Transvectant[cc,cc1,1]],2],cc2,4].{1};

j101=Transvectant[Transvectant[Transvectant[cc2,cc1,2],

prod[cc,Transvectant[cc,cc1,1]],2],cc2,4].{1};

j102=Transvectant[Transvectant[prod[exp[cc,3],

Transvectant[cc,cc1,1]],exp[qq,3],10],qq,4].{1};

j111=Transvectant[Transvectant[Transvectant[prod[exp[cc,3],

Transvectant[cc,cc1,1]],exp[qq,3],10],qq,2],4].{1};

Here are the rank computations:

In[]:=gens={{j21},{j31},{j41},{j51,j52},{j61,j62},{j71,j72,j73},

{j81,j82,j83},{j91,j92,j93,j94},{j101,j102},{j111}};
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degrees={2,3,4,5,6,7,8,9,10,11};

=== computations in degree 4 ===

In[]:=mon1=listmonomials[4,gens,degrees];Length[mon1]

Out[]=1

In[]:=mon=Union[mon1,{j41}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,3}];MatrixRank[mat]

Out[]=2

=== computations in degree 5 ===

In[]:=mon1=listmonomials[5,gens,degrees];Length[mon1]

Out[]=1

In[]:=mon=Union[mon1,{j51,j52}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,4}];MatrixRank[mat]

Out[]=3

=== computations in degree 6 ===

In[]:=mon1=listmonomials[6,gens,degrees];Length[mon1]

Out[]=3

In[]:=mon=Union[mon1,{j61,j62}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,6}];MatrixRank[mat]

Out[]=5

=== computations in degree 7 ===

In[]:=mon1=listmonomials[7,gens,degrees];Length[mon1]

Out[]=4

In[]:=mon=Union[mon1,{j71,j72,j73}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,8}];MatrixRank[mat]

Out[]=7

=== computations in degree 8 ===

In[]:=mon1=listmonomials[8,gens,degrees];Length[mon1]

Out[]=8

In[]:=mon=Union[mon1,{j81,j82,j83}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,12}];MatrixRank[mat]

Out[]=11

=== computations in degree 9 ===

In[]:=mon1=listmonomials[9,gens,degrees];Length[mon1]

Out[]=12

In[]:=mon=Union[mon1,{j91,j92,j93,j94}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,17}];MatrixRank[mat]

Out[]=16

=== computations in degree 10 ===

In[]:=mon1=listmonomials[10,gens,degrees];Length[mon1]

Out[]=20

In[]:=mon=Union[mon1,{j101,j102}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,23}];MatrixRank[mat]

Out[]=22

=== computations in degree 11 ===

In[]:=mon1=listmonomials[11,gens,degrees];Length[mon1]

Out[]=29

In[]:=mon=Union[mon1,{j111}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,31}];MatrixRank[mat]

Out[]=30
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=== computations in degree 12 ===

In[]:=mon1=listmonomials[12,gens,degrees];Length[mon1]

Out[]=44

In[]:=mat=Table[mon1/.Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,43}];MatrixRank[mat]

Out[]=42

=== computations in degree 13 ===

In[]:=mon1=listmonomials[13,gens,degrees];Length[mon1]

Out[]=59

In[]:=mat=Table[mon1/.Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,56}];MatrixRank[mat]

Out[]=55

=== computations in degree 18 ===

In[]:=mon1=listmonomials[18,gens,degrees];Length[mon1]

Out[]=283

In[]:=mat=Table[mon1/.Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,194}];

MatrixRank[mat,Modulus->32003]

Out[]=193

A.14 The invariants of V1 ⊕ V2 ⊕ V3

Here are the Mathematica computations supporting the proof of Proposition
5.14.2. We compute the invariants j2, j3,1, . . . .j3,3, j4,1, . . . , j4,4, j5,1, . . . , j5,4, j6,1,
j6,2, j7 of V1 ⊕ V2 ⊕ V3:

ll=Table[a[1-i]Binomial[1,i],{i,0,1}];

qq=Table[b[2-i]Binomial[2,i],{i,0,2}];

cc=Table[c[3-i]Binomial[3,i],{i,0,3}];

cc1=Transvectant[cc,cc,2];cc2=Transvectant[cc1,cc,1];

j21=Transvectant[qq,qq,2].{1};j31=Transvectant[qq,exp[ll,2],2].{1};

j32=Transvectant[qq,cc1,2].{1};j33=Transvectant[cc,prod[qq,ll],3].{1};

j41=Transvectant[cc1,cc1,2].{1};j42=Transvectant[cc,exp[ll,3],3].{1};

j43=Transvectant[cc1,exp[ll,2],2].{1};

j44=Transvectant[prod[cc,ll],exp[qq,2],4].{1};

j51=Transvectant[exp[cc,2],exp[qq,3],6].{1};

j52=Transvectant[Transvectant[Transvectant[cc,ll,1],qq,1],exp[ll,2],2].{1};

j53=Transvectant[qq,Transvectant[cc2,ll,1],2].{1};

j54=Transvectant[Transvectant[cc1,qq,1],exp[ll,2],2].{1};

j61=Transvectant[prod[ll,cc],Transvectant[prod[ll,cc],prod[ll,cc],2],4].{1};

j62=Transvectant[Transvectant[cc1,qq,1],

Transvectant[prod[ll,qq],cc,2],2].{1};

j71=Transvectant[exp[qq,3],prod[cc,cc2],6].{1};

Here are the rank computations:

In[]:=gens={{j21},{j31,j32,j33},{j41,j42,j43,j44},{j51,j52,j53,j54},

{j61,j62},{j71}};degrees={2,3,4,5,6,7};

=== computations in degree 3 ===

In[]:=mon1=listmonomials[3,gens,degrees];

In[]:=mon=Union[mon1,{j31,j32,j33}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,3}];MatrixRank[mat]

Out[]=3
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=== computations in degree 4 ===

In[]:=mon1=listmonomials[4,gens,degrees];Length[mon1]

Out[]=1

In[]:=mon=Union[mon1,{j41,j42,j43,j44}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,6}];MatrixRank[mat]

Out[]=5

=== computations in degree 5 ===

In[]:=mon1=listmonomials[5,gens,degrees];Length[mon1]

Out[]=3

In[]:=mon=Union[mon1,{j51,j52,j53,j54}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,8}];MatrixRank[mat]

Out[]=7

=== computations in degree 6 ===

In[]:=mon1=listmonomials[6,gens,degrees];Length[mon1]

Out[]=11

In[]:=mon=Union[mon1,{j61,j62}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,14}];MatrixRank[mat]

Out[]=13

=== computations in degree 7 ===

In[]:=mon1=listmonomials[7,gens,degrees];Length[mon1]

Out[]=19

In[]:=mon=Union[mon1,{j71}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,21}];MatrixRank[mat]

Out[]=20

=== computations in degree 8 ===

In[]:=mon1=listmonomials[8,gens,degrees];Length[mon1]

Out[]=35

In[]:=mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,32}];MatrixRank[mat]

Out[]=31

=== computations in degree 9 ===

In[]:=mon1=listmonomials[9,gens,degrees];Length[mon1]

Out[]=52

In[]:=mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,45}];MatrixRank[mat]

Out[]=44

=== computations in degree 10 ===

In[]:=mon1=listmonomials[10,gens,degrees];Length[mon1]

Out[]=80

In[]:=mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,64}];MatrixRank[mat]

Out[]=63

=== computations in degree 11 ===

In[]:=mon1=listmonomials[11,gens,degrees];Length[mon1]

Out[]=118

In[]:=Timing[mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.
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Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,89}];MatrixRank[mat]]

Out[]={5.22033,88} //the rank is 88;

//the computation took 5.2 seconds

=== computations in degree 12 ===

In[]:=mon1=listmonomials[12,gens,degrees];Length[mon1]

Out[]=182

In[]:=Timing[mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,124}];MatrixRank[mat]]

Out[]={22.3214,123} //the rank is 123;

//the computation took 22.3 seconds

=== computations in degree 14 ===

In[]:=mon1=listmonomials[14,gens,degrees];Length[mon1]

Out[]=379

In[]:=Timing[mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,214}];MatrixRank[mat]]

Out[]={25.9656,213} //the rank is 213;

//the computation took 25.9 seconds

A.15 The invariants of V1 ⊕ V2 ⊕ V4

Here are the Mathematica computations supporting the proof of Proposition
5.15.2. We �rst compute the invariants j2,1, j2,2, j3,1, . . . , j3,3, j4,1, j4,2, j5,1, . . . ,
j5,3, j6,1, . . . , j6,4, j7,1, j7,2, j8, j9 of V1 ⊕ V2 ⊕ V4:

ll=Table[a[1-i]Binomial[1,i],{i,0,1}];

qq=Table[b[2-i]Binomial[2,i],{i,0,2}];

ff=Table[c[4-i]Binomial[4,i],{i,0,4}];

cc1=Transvectant[ff,ff,2];cc2=Transvectant[cc1,ff,1];

cc3=Transvectant[qq,ff,2];j21=Transvectant[qq,qq,2].{1};

j22=Factor[Transvectant[ff,ff,4].{1}];j31=Transvectant[ff,cc1,4].{1};

j32=Transvectant[ff,exp[qq,2],4].{1};j33=Transvectant[qq,exp[ll,2],2].{1};

j41=Transvectant[cc1,exp[qq,2],4].{1};j42=Transvectant[cc3,exp[ll,2],2].{1};

j51=Transvectant[ff,exp[ll,4],4].{1};

j52=Transvectant[cc1,prod[qq,exp[ll,2]],4].{1};

j53=Transvectant[Transvectant[qq,exp[ll,2],1],cc3,2].{1};

j61=Transvectant[cc1,exp[ll,4],4].{1};j62=Transvectant[cc2,exp[qq,3],6].{1};

j63=Transvectant[Transvectant[qq,exp[ll,2],1],Transvectant[qq,cc1,2],2].{1};

j64=Transvectant[Transvectant[qq,ff,1],exp[ll,4],4].{1};

j71=Transvectant[Transvectant[qq,cc1,1],exp[ll,4],4].{1};

j72=Transvectant[Transvectant[cc2,exp[qq,2],4],exp[ll,2],2].{1};

j8=Transvectant[Transvectant[Transvectant[qq,cc1,2],ff,1],exp[ll,4],4].{1};

j9=Transvectant[cc2,exp[ll,6],6].{1};

Here are the rank computations:

In[]:=gens={{j21,j22},{j31,j32,j33},{j41,j42},{j51,j52,j53},

{j61,j62,j63,j64},{j71,j72},{j8},{j9}};

degrees={2,3,4,5,6,7,8,9};

=== computations in degree 4 ===

In[]:=mon1=listmonomials[4,gens,degrees];

mon=Union[mon1,{j41,j42}];Length[mon]

Out[]=5
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In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,6}];MatrixRank[mat]

Out[]=5

=== computations in degree 5

In[]:=mon1=listmonomials[5,gens,degrees];

mon=Union[mon1,{j51,j52,j53}];Length[mon]

Out[]=9

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,10}];MatrixRank[mat]

Out[]=9

=== computations in degree 6 ===

In[]:=mon1=listmonomials[6,gens,degrees];

mon=Union[mon1,{j61,j62,j63,j64}];Length[mon]

Out[]=18

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,19}];MatrixRank[mat]

Out[]=18

=== computations in degree 7 ===

In[]:=mon1=listmonomials[7,gens,degrees];

mon=Union[mon1,{j71,j72}];Length[mon]

Out[]=23

In[]:=mat=Table[mon/.

Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,24}];

MatrixRank[mat]

Out[]=23

=== computations in degree 8 ===

In[]:=mon1=listmonomials[8,gens,degrees];

mon=Union[mon1,{j8}];Length[mon]

Out[]=44

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,44}];MatrixRank[mat]

Out[]=43

=== computations in degree 9 ===

In[]:=mon1=listmonomials[9,gens,degrees];

mon=Union[mon1,{j9}];Length[mon]

Out[]=66

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,64}];MatrixRank[mat]

Out[]=63

=== computations in degree 10 ===

In[]:=mon=listmonomials[10,gens,degrees];Length[mon]

Out[]=102

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,94}];MatrixRank[mat]

Out[]=93

=== computations in degree 11 ===

In[]:=mon=listmonomials[11,gens,degrees];Length[mon]

Out[]=155

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.
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Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,137}];MatrixRank[mat]

Out[]=136

=== computations in degree 12 ===

In[]:=mon=listmonomials[12,gens,degrees];Length[mon]

Out[]=242

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,201}];

MatrixRank[mat,Modulus->32003]

Out[]=200

=== computations in degree 15 ===

In[]:=mon=listmonomials[15,gens,degrees];Length[mon]

Out[]=740

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,1}],{i,1,511}];

MatrixRank[mat,Modulus->32003]

Out[]=510

A.16 The invariants of V1 ⊕ V2 ⊕ V5

We compute the generating invariants with Mathematica:

qq=Table[a[2-i]Binomial[2,i],{i,0,2}];

ff=Table[b[5-i]Binomial[5,i],{i,0,5}];

ll=Table[c[1-i]Binomial[1,i],{i,0,1}];

cc1=Transvectant[ff,ff,4];cc2=Transvectant[ff,cc1,2];

cc3=Transvectant[ff,ff,2];cc4=Transvectant[ff,cc1,1];

cc5=Transvectant[qq,ff,2];cc6=Transvectant[ff,cc3,1];

cc7=Transvectant[cc1,cc3,2];cc8=Transvectant[cc1,cc3,1];

cc9=Transvectant[cc6,cc1,2];cc10=Transvectant[cc6,exp[cc1,2],4];

cc11=Transvectant[exp[cc1,2],cc3,3];j21=Transvectant[qq,qq,2].{1};

j31=Transvectant[cc1,qq,2].{1};j32=Transvectant[qq,exp[ll,2],2].{1};

j41=Transvectant[cc1,cc1,2].{1};

j42=Transvectant[Transvectant[ff,exp[qq,2],4],ll,1].{1};

j43=Transvectant[cc1,exp[ll,2],2].{1};

j51=Transvectant[cc3,exp[qq,3],6].{1};

j52=Transvectant[Transvectant[cc2,qq,2],ll,1].{1};

j53=Transvectant[Transvectant[ff,exp[qq,3],5],ll,1].{1};

j54=Transvectant[Transvectant[cc1,qq,1],exp[ll,2],2].{1};

j55=Transvectant[Transvectant[ff,qq,2],exp[ll,3],3].{1};

j61=Transvectant[cc7,exp[qq,2],4].{1};

j62=Transvectant[Transvectant[cc1,cc2,2],ll,1].{1};

j63=Transvectant[Transvectant[cc4,exp[qq,2],4],ll,1].{1};

j64=Transvectant[Transvectant[cc3,exp[qq,2],4],exp[ll,2],2].{1};

j65=Transvectant[cc2,exp[ll,3],3].{1};

j66=Transvectant[Transvectant[ff,exp[qq,2],3],exp[ll,3],3].{1};

j67=Transvectant[ff,exp[ll,5],5].{1};

j68=Transvectant[Transvectant[cc2,exp[qq,2],3],ll,1].{1};

j71=Transvectant[exp[qq,5],exp[ff,2],10].{1};

j72=Transvectant[Transvectant[cc4,ff,2],exp[qq,3],6].{1};

j73=Transvectant[Transvectant[exp[cc1,2],cc3,4],qq,2].{1};

j74=Transvectant[Transvectant[ff,qq,1],exp[ll,5],5].{1};

j75=Transvectant[Transvectant[cc3,qq,2],exp[ll,4],4].{1};

j76=Transvectant[Transvectant[cc4,qq,2],exp[ll,3],3].{1};
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j77=Transvectant[Transvectant[cc2,qq,1],exp[ll,3],3].{1};

j78=Transvectant[Transvectant[cc7,qq,2],exp[ll,2],2].{1};

j79=Transvectant[Transvectant[cc3,exp[qq,3],5],exp[ll,2],2].{1};

j710=Transvectant[Transvectant[Transvectant[cc1,cc2,1],qq,2],

ll,1].{1};

j711=Transvectant[Transvectant[cc4,exp[qq,3],5],ll,1].{1};

j712=Transvectant[Transvectant[Transvectant[cc1,cc2,2],qq,1],

ll,1].{1};

j81=Transvectant[Transvectant[cc2,cc2,2],cc1,2].{1};

j82=Transvectant[cc11,exp[qq,2],4].{1};

j83=Transvectant[prod[ff,cc2],exp[qq,4],8].{1};

j84=Transvectant[Transvectant[exp[cc1,3],ff,5],ll,1].{1};

j85=Transvectant[Transvectant[exp[qq,4],cc6,8],ll,1].{1};

j86=Transvectant[Transvectant[Transvectant[cc1,cc2,1],exp[qq,2],3],

ll,1].{1};

j87=Transvectant[Transvectant[exp[cc1,2],cc3,4],exp[ll,2],2].{1};

j88=Transvectant[Transvectant[cc8,exp[qq,2],4],

exp[ll,2],2].{1};

j89=Transvectant[Transvectant[cc7,exp[qq,2],3],

exp[ll,2],2].{1};

j810=Transvectant[Transvectant[cc1,cc2,1],exp[ll,3],3].{1};

j811=Transvectant[cc7,exp[ll,4],4].{1};

j812=Transvectant[Transvectant[cc3,exp[qq,2],3],exp[ll,4],4].{1};

j813=Transvectant[cc4,exp[ll,5],5].{1};

j814=Transvectant[cc3,exp[ll,6],6].{1};

j91=Transvectant[prod[ff,Transvectant[exp[cc1,2],ff,4]],

exp[qq,3],6].{1};

j92=Transvectant[Transvectant[exp[cc1,3],cc3,5],qq,2].{1};

j93=Transvectant[prod[cc4,ff],exp[qq,5],10].{1};

j94=Transvectant[Transvectant[cc3,qq,1],exp[ll,6],6].{1};

j95=Transvectant[Transvectant[cc8,qq,2],exp[ll,4],4].{1};

j96=Transvectant[Transvectant[cc7,qq,1],exp[ll,4],4].{1};

j97=Transvectant[Transvectant[cc6,exp[qq,3],6],exp[ll,3],3].{1};

j98=Transvectant[Transvectant[Transvectant[cc3,exp[cc1,2],3],qq,2],

exp[ll,2],2].{1};

j99=Transvectant[Transvectant[Transvectant[ff,exp[cc1,3],5],qq,1],

ll,1].{1};

j910=Transvectant[Transvectant[cc9,exp[qq,3],6],

ll,1].{1};

j911=Transvectant[Transvectant[cc6,exp[qq,5],9],ll,1].{1};

j912=Transvectant[Transvectant[Transvectant[exp[cc1,2],cc3,4],qq,1],

exp[ll,2],2].{1};

j101=Transvectant[prod[Transvectant[exp[cc1,2],ff,4],cc2],exp[qq,2],

4].{1};

j102=Transvectant[prod[cc4,cc2],exp[qq,4],8].{1};

j103=Transvectant[cc8,exp[ll,6],6].{1};

j104=Transvectant[Transvectant[cc6,exp[qq,2],4],exp[ll,5],5].{1};

j105=Transvectant[Transvectant[cc3,exp[cc1,2],3],exp[ll,4],4].{1};

j106=Transvectant[Transvectant[Transvectant[cc1,cc6,2],exp[qq,2],4],

exp[ll,3],3].{1};

j107=Transvectant[Transvectant[cc3,exp[cc1,3],5],exp[ll,2],2].{1};

j108=Transvectant[

Transvectant[Transvectant[exp[cc1,2],cc6,4],exp[qq,2],4],ll,1].{1};

j109=Transvectant[Transvectant[Transvectant[cc1,cc6,2],exp[qq,4],7],

ll,1].{1};

j111=Transvectant[prod[ff,cc6],exp[qq,7],14].{1};

j112=Transvectant[prod[ff,Transvectant[exp[cc1,3],ff,5]],exp[qq,3],
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6].{1};

j113=Transvectant[exp[Transvectant[exp[cc1,2],ff,4],2],qq,2].{1};

j114=Transvectant[Transvectant[cc6,qq,2],exp[ll,7],7].{1};

j115=Transvectant[Transvectant[Transvectant[cc1,cc6,2],qq,2],

exp[ll,5],5].{1};

j116=Transvectant[Transvectant[cc10,qq,2],

exp[ll,3],3].{1};

j117=Transvectant[Transvectant[Transvectant[cc6,exp[cc1,3],6],qq,2],

ll,1].{1};

j118=Transvectant[

Transvectant[cc10,exp[qq,3],5],ll,1].{1};

j121=Transvectant[Transvectant[cc2,cc2,2],Transvectant[cc2,cc2,2],

2].{1};

j122=Transvectant[prod[Transvectant[exp[cc1,3],ff,5],cc2],exp[qq,2],

4].{1};

j123=Transvectant[prod[Transvectant[cc1,cc6,2],ff],exp[qq,6],12].{1};

j124=Transvectant[cc6,exp[ll,9],9].{1};

j125=Transvectant[cc9,exp[ll,7],7].{1};

j126=Transvectant[cc10,exp[ll,5],5].{1};

j127=Transvectant[Transvectant[cc6,exp[cc1,3],6],exp[ll,3],3].{1};

j128=Transvectant[Transvectant[cc6,exp[cc1,4],8],ll,1].{1};

j129=Transvectant[

Transvectant[Transvectant[cc6,exp[cc1,3],6],exp[qq,2],3],ll,1].{1};

j131=Transvectant[prod[Transvectant[exp[cc1,3],ff,5],

Transvectant[exp[cc1,2],ff,4]],qq,2].{1};

j132=Transvectant[prod[ff,Transvectant[exp[cc1,2],cc6,4]],exp[qq,5],

10].{1};

j133=Transvectant[Transvectant[Transvectant[cc6,exp[cc1,4],8],qq,1],

ll,1].{1};

j141=Transvectant[prod[ff,Transvectant[exp[cc1,3],cc6,6]],exp[qq,4],

8].{1};

j142=Transvectant[Transvectant[cc6,exp[cc1,5],9],ll,1].{1};

j15=Transvectant[prod[ff,Transvectant[exp[cc1,4],cc6,8]],

exp[qq,3],6].{1};

j16=Transvectant[prod[cc2,Transvectant[exp[cc1,4],cc6,8]],

exp[qq,2],4].{1};

j17=Transvectant[prod[Transvectant[exp[cc1,2],ff,4],

Transvectant[exp[cc1,4],cc6,8]],qq,2].{1};

j18=Transvectant[exp[cc1,7],prod[ff,cc6],14].{1};

Here are the rank computations:

In[]:=gens={{j21},{j31,j32},{j41,j42,j43},{j51,j52,j53,j54,j55},

{j61,j62,j63,j64,j65,j66,j67,j68},{j71,j72,j73,j74,j75,j76,j77,j78,

j79,j710,j711,j712},{j81,j82,j83,j84,j85,j86,j87,j88,j89,j810,j811,

j812,j813,j814},{j91,j92,j93,j94,j95,j96,j97,j98,j99,j910,j911,j912},

{j101,j102,j103,j104,j105,j106,j107,j108,j109},{j111,j112,j113,j114,

j115,j116,j117,j118},{j121,j122,j123,j124,j125,j126,j127,j128,j129},

{j131,j132,j133},{j141,j142},{j15},{j16},{j17},{j18}};

degrees={2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18};

=== computations in degree 4 ===

In[]:=mon1=listmonomials[4,gens,degrees];Length[mon1]

Out[]=1

In[]:=mon=Union[mon1,{j41,j42,j43}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,5}];

MatrixRank[mat]
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Out[]=4

=== computations in degree 5 ===

In[]:=mon1=listmonomials[5,gens,degrees];Length[mon1]

Out[]=2

In[]:=mon=Union[mon1,{j51,j52,j53,j54,j55}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,7}];

MatrixRank[mat]

Out[]=7

=== computations in degree 6 ===

In[]:=mon1=listmonomials[6,gens,degrees];Length[mon1]

Out[]=7

In[]:=mon=Union[mon1,{j61,j62,j63,j64,j65,j66,j67,j68}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,18}];

MatrixRank[mat]

Out[]=15

=== computations in degree 7 ===

In[]:=mon1=listmonomials[7,gens,degrees];Length[mon1]

Out[]=13

In[]:=mon=Union[mon1,{j71,j72,j73,j74,j75,j76,j77,j78,j79,j710,

j711,j712}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,26}];

MatrixRank[mat]

Out[]=25

=== computations in degree 8 ===

In[]:=mon1=listmonomials[8,gens,degrees];Length[mon1]

Out[]=31

In[]:=mon=Union[mon1,{j81,j82,j83,j84,j85,j86,j87,j88,j89,j810,

j811,j812,j813,j814}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,46}];

MatrixRank[mat]

Out[]=45

=== computations in degree 9 ===

In[]:=mon1=listmonomials[9,gens,degrees];Length[mon1]

Out[]=60

In[]:=mon=Union[mon1,{j91,j92,j93,j94,j95,j96,j97,j98,j99,j910,

j911,j912}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,71}];

MatrixRank[mat,Modulus->32003]

Out[]=70

=== computations in degree 10 ===

In[]:=mon1=listmonomials[10,gens,degrees];Length[mon1]

Out[]=117

In[]:=mon=Union[mon1,{j101,j102,j103,j104,j105,j106,j107,j108,j109}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,113}];

MatrixRank[mat,Modulus->32003]
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Out[]=112

=== computations in degree 11 ===

In[]:=mon1=listmonomials[11,gens,degrees];Length[mon1]

Out[]=203

In[]:=mon=Union[mon1,{j111,j112,j113,j114,j115,j116,j117,j118}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,176}];

MatrixRank[mat,Modulus->32003]

Out[]=175

=== computations in degree 12 ===

In[]:=mon1=listmonomials[12,gens,degrees];Length[mon1]

Out[]=357

In[]:=mon=Union[mon1,{j121,j122,j123,j124,j125,j126,j127,j128,j129}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,271}];

MatrixRank[mat,Modulus->32003]

Out[]=270

=== computations in degree 13 ===

In[]:=mon1=listmonomials[13,gens,degrees];Length[mon1]

Out[]=587

In[]:=mon=Union[mon1,{j131,j132,j133}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,386}];

MatrixRank[mat,Modulus->32003]

Out[]=385

=== computations in degree 14 ===

In[]:=mon1=listmonomials[14,gens,degrees];Length[mon1]

Out[]=984

In[]:=mon=Union[mon1,{j141,j142}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,567}];

MatrixRank[mat,Modulus->32003]

Out[]=566

=== computations in degree 15 ===

In[]:=mon1=listmonomials[15,gens,degrees];Length[mon1]

Out[]=1583

In[]:=mon=Union[mon1,{j15}];

In[]:=mat=Table[mon/.Table[b[j]->Random[Integer,{0,10}],{j,0,5}]/.

Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,801}];

MatrixRank[mat,Modulus->32003]

Out[]=800

A.17 The invariants of 2V2 ⊕ V3

Here are the Mathematica computations supporting the proof of Proposition
5.17.2. We �rst compute the invariants j2,1 . . . , j2,3, j3,1, j3,2, j4,1, j4,2, j5,1, . . . ,
j5,4, j6,1, . . . , j6,3, j7,1 . . . , j7,4 of 2V2 ⊕ V3:

qq1=Table[a[2-i]Binomial[2,i],{i,0,2}];

qq2=Table[b[2-i]Binomial[2,i],{i,0,2}];
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cc=Table[c[3-i]Binomial[3,i],{i,0,3}];

cc1=Transvectant[cc,cc,2];cc2=Transvectant[cc,cc1,1];

j21=Transvectant[qq1,qq1,2].{1};j22=Transvectant[qq1,qq2,2].{1};

j23=Transvectant[qq2,qq2,2].{1};j31=Transvectant[cc1,qq1,2].{1};

j32=Transvectant[cc1,qq2,2].{1};j41=Transvectant[cc1,cc1,2].{1};

j42=Transvectant[Transvectant[qq1,cc1,1],qq2,2].{1};

j51=Transvectant[exp[qq1,3],exp[cc,2],6].{1};

j52=Transvectant[exp[qq2,3],exp[cc,2],6].{1};

j53=Transvectant[prod[exp[qq2,2],qq1],exp[cc,2],6].{1};

j54=Transvectant[prod[exp[qq1,2],qq2],exp[cc,2],6].{1};

j61=Transvectant[prod[Transvectant[qq1,cc,2],

Transvectant[exp[qq1,2],cc,3]],qq2,2].{1};

j62=Transvectant[prod[Transvectant[qq1,cc,2],

Transvectant[qq1,cc,1]],exp[qq2,2],4].{1};

j63=Transvectant[prod[cc,Transvectant[qq1,cc,1]],exp[qq2,3],6].{1};

j71=Transvectant[exp[qq1,3],prod[cc,cc2],6].{1};

j72=Transvectant[exp[qq2,3],prod[cc,cc2],6].{1};

j73=Transvectant[prod[exp[qq2,2],qq1],prod[cc,cc2],6].{1};

j74=Transvectant[prod[exp[qq1,2],qq2],prod[cc,cc2],6].{1};

Here are the rank computations:

In[]:=gens={{j21,j22,j23},{j31,j32},{j41,j42},{j51,j52,j53,j54},

{j61,j62,j63},{j71,j72,j73,j74}};degrees={2,3,4,5,6,7};

=== computations in degree 2 ===

In[]:=mon={j21,j22,j23};

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,4}];MatrixRank[mat]

Out[]=3

=== computations in degree 3 ===

In[]:=mon={j31,j32};

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,4}];MatrixRank[mat]

Out[]=2

=== computations in degree 4 ===

In[]:=mon1=listmonomials[4,gens,degrees];Length[mon1]

Out[]=6

In[]:=mon=Union[mon1,{j41,j42}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,9}];MatrixRank[mat]

Out[]=8

=== computations in degree 5 ===

In[]:=mon1=listmonomials[5,gens,degrees];Length[mon1]

Out[]=6

In[]:=mon=Union[mon1,{j51,j52,j53,j54}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,11}];MatrixRank[mat]

Out[]=10

=== computations in degree 6 ===

In[]:=mon1=listmonomials[6,gens,degrees];Length[mon1]

Out[]=19

In[]:=mon=Union[mon1,{j61,j62,j63}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.
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Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,23}];MatrixRank[mat]

Out[]=22

=== computations in degree 7 ===

In[]:=mon1=listmonomials[7,gens,degrees];Length[mon1]

Out[]=28

In[]:=mon=Union[mon1,{j71,j72,j73,j74}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,33}];MatrixRank[mat]

Out[]=32

=== computations in degree 8 ===

In[]:=mon1=listmonomials[8,gens,degrees];Length[mon1]

Out[]=56

In[]:=mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,56}];MatrixRank[mat]

Out[]=55

=== computations in degree 9 ===

In[]:=mon1=listmonomials[9,gens,degrees];Length[mon1]

Out[]=86

In[]:=mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,81}];

MatrixRank[mat,Modulus->32003]

Out[]=80

=== computations in degree 10 ===

In[]:=mon1=listmonomials[10,gens,degrees];Length[mon1]

Out[]=140

In[]:=mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,129}];

MatrixRank[mat,Modulus->32003]

Out[]=128

=== computations in degree 11 ===

In[]:=mon1=listmonomials[11,gens,degrees];Length[mon1]

Out[]=210

In[]:=Timing[mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,179}];

MatrixRank[mat,Modulus->32003]]

Out[]={19.3252,178} //the rank is 178;

//the computation took 19.3 seconds

=== computations in degree 12 ===

Computationsindegree12

In[]:=mon1=listmonomials[12,gens,degrees];Length[mon1]

Out[]=330

In[]:=Timing[mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,269}];

MatrixRank[mat,Modulus->32003]]

Out[]={43.8027,268} //the rank is 268;

//the computation took 43.8 seconds

=== computations in degree 13 ===

In[]:=mon1=listmonomials[13,gens,degrees];Length[mon1]

Out[]=480

In[]:=Timing[mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.
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Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,363}];

MatrixRank[mat,Modulus->32003]]

Out[]={103.666,362} //the rank is 362;

//the computation took 103.6 seconds

=== computations in degree 14 ===

In[]:=mon1=listmonomials[14,gens,degrees];Length[mon1]

Out[]=730

In[]:=Timing[mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,516}];

MatrixRank[mat,Modulus->32003]]

Out[]={223.402,515} //the rank is 515;

//the computation took 223.4 seconds

=== computations in degree 15 ===

In[]:=mon1=listmonomials[15,gens,degrees];Length[mon1]

Out[]=1046

In[]:=Timing[mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,687}];

MatrixRank[mat,Modulus->32003]]

Out[]={514.496,686} //the rank is 686;

//the computation took 514.4 seconds

=== computations in degree 17 ===

In[]:=mon1=listmonomials[17,gens,degrees];Length[mon1]

Out[]=2182

In[]:=Timing[mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,3}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,1219}];

MatrixRank[mat,Modulus->32003]]

Out[]={2072.15,1218} //the rank is 1218;

//the computation took 2072.1 seconds

A.18 The invariants of 2V2 ⊕ V4

Here are the computations supporting the proofs of Propositions 5.18.1 and
5.18.2. We �rst compute the invariants j2,1 . . . , j2,4, j3,1, . . . , j3,4, j4,1, . . . , j4,5,
j5,1, j5,2, j6,1, . . . , j6,4 of 2V2 ⊕ V4, using Mathematica:

qq1=Table[a[2-i]Binomial[2,i],{i,0,2}];

qq2=Table[b[2-i]Binomial[2,i],{i,0,2}];

ff=Table[c[4-i]Binomial[4,i],{i,0,4}];

cc1=Transvectant[ff,ff,2];cc2=Transvectant[cc1,ff,1];

cc3=Transvectant[qq1,ff,2];cc4=Transvectant[qq2,ff,2];

j21=Transvectant[qq1,qq1,2].{1};j22=Transvectant[qq2,qq2,2].{1};

j23=Transvectant[qq1,qq2,2].{1};j24=Transvectant[ff,ff,4].{1};

j31=Transvectant[ff,cc1,4].{1};j32=Transvectant[exp[qq1,2],ff,4].{1};

j33=Transvectant[exp[qq2,2],ff,4].{1};

j34=Transvectant[prod[qq1,qq2],ff,4].{1};

j41=Transvectant[exp[qq1,2],cc1,4].{1};

j42=Transvectant[exp[qq2,2],cc1,4].{1};

j43=Transvectant[prod[qq1,qq2],cc1,4].{1};

j44=Transvectant[Transvectant[cc3,qq1,1],qq2,2].{1};

j45=Transvectant[Transvectant[cc4,qq2,1],qq1,2].{1};

j51=Transvectant[Transvectant[cc1,prod[qq1,qq2],3],qq1,2].{1};

j52=Transvectant[Transvectant[cc1,prod[qq1,qq2],3],qq2,2].{1};
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j61=Transvectant[cc2,exp[qq1,3],6].{1};

j62=Transvectant[cc2,exp[qq2,3],6].{1};

j63=Transvectant[cc2,prod[exp[qq1,2],qq2],6].{1};

j64=Transvectant[cc2,prod[exp[qq2,2],qq1],6].{1};

Here are the Singular [DGPS] computations that support the proof of
Proposition 5.18.1:

> ring r=0,(a0,a1,a2,b0,b1,b2,c0,c1,c2,c3,c4),dp;

//here we import the invariants we computed with Mathematica:

> <"j21_224.csv";

> <"j22_224.csv";

> <"j23_224.csv";

> <"j24_224.csv";

> <"j31_224.csv";

> <"j32_224.csv";

> <"j33_224.csv";

> <"j41_224.csv";

> <"j42_224.csv";

> ideal ii=j21+j23,j22+j24,j21-j24,j31,j32,j33,j41,j42;

> ideal jj=std(ii);

> reduce(j21^7,jj);

r

0

> reduce(j22^7,jj);

r

0

> reduce(j23^7,jj);

r

0

> reduce(j24^7,jj);

r

0

Here are the rank computations, performed in Mathematica:

In[]:=gens={{j21,j22,j23,j24},{j31,j32,j33,j34},

{j41,j42,j43,j44,j45},{j51,j52},{j61,j62,j63,j64}};

degrees={2,3,4,5,6};

=== computations in degree 2 ===

In[]:=mon={j21,j22,j23};

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,4}];MatrixRank[mat]

Out[]=3

=== computations in degree 3 ===

In[]:=mon={j31,j32,j33,j34};

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,5}];MatrixRank[mat]

Out[]=4

=== computations in degree 4 ===

In[]:=mon1=listmonomials[4,gens,degrees];Length[mon1]

Out[]=10

In[]:=mon=Union[mon1,{j41,j42,j43,j44,j45}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.
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Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,16}];MatrixRank[mat]

Out[]=15

=== computations in degree 5 ===

In[]:=mon1=listmonomials[5,gens,degrees];Length[mon1]

Out[]=16

In[]:=mon=Union[mon1,{j51,j52}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,19}];MatrixRank[mat]

Out[]=18

=== computations in degree 6 ===

In[]:=mon1=listmonomials[6,gens,degrees];Length[mon1]

Out[]=50

In[]:=mon=Union[mon1,{j61,j62,j63,j64}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,54}];MatrixRank[mat]

Out[]=53

=== computations in degree 7 ===

In[]:=mon1=listmonomials[7,gens,degrees];Length[mon1]

Out[]=68

In[]:=mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,66}];MatrixRank[mat]

Out[]=65

=== computations in degree 8 ===

In[]:=mon1=listmonomials[8,gens,degrees];Length[mon1]

Out[]=164

In[]:=mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,149}];

MatrixRank[mat,Modulus->32003]

Out[]=148

=== computations in degree 9 ===

In[]:=mon1=listmonomials[9,gens,degrees];Length[mon1]

Out[]=226

In[]:=mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,199}];

MatrixRank[mat,Modulus->32003]

Out[]=198

=== computations in degree 10 ===

In[]:=mon1=listmonomials[10,gens,degrees];Length[mon1]

Out[]=461

In[]:=Timing[mat=Table[mon1/.Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,372}];

MatrixRank[mat,Modulus->32003]]

Out[]={59.0917,371} //the rank is 371;

//the computation took 59.0 seconds

=== computations in degree 12 ===

In[]:=mon1=listmonomials[12,gens,degrees];Length[mon1]

Out[]=1221

In[]:=Timing[mat=Table[mon1/.

Table[c[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,2}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,2}],{i,1,854}];
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MatrixRank[mat,Modulus->32003]]

Out[]={477.706, 853} //the rank is 853;

//the computation took 477.7 seconds

A.19 The invariants of V1 ⊕ V3 ⊕ V4

Here are the Mathematica computations supporting the proof of Proposition
5.19.2. We �rst compute the 63 generators:

cc=Table[a[3-i]Binomial[3,i],{i,0,3}];

qq=Table[b[4-i]Binomial[4,i],{i,0,4}];

ll=Table[c[1-i]Binomial[1,i],{i,0,1}];

cc1=Transvectant[cc,cc,2];cc2=Transvectant[qq,qq,2];

cc3=Transvectant[cc,qq,2];j21=Transvectant[qq,qq,4].{1};

j31=Transvectant[cc2,qq,4].{1};j32=Transvectant[qq,prod[ll,cc],4].{1};

j41=Transvectant[cc1,cc1,2].{1};

j42=Transvectant[prod[ll,cc],prod[ll,cc],4].{1};

j43=Transvectant[cc,exp[ll,3],3].{1};

j44=Transvectant[cc2,prod[ll,cc],4].{1};

j51=Transvectant[Transvectant[qq,cc2,1],exp[cc,2],6].{1};

j52=Transvectant[Transvectant[qq,exp[cc,2],2],exp[cc,2],6].{1};

j53=Transvectant[qq,exp[ll,4],4].{1};

j54=Transvectant[prod[qq,exp[ll,2]],exp[cc,2],6].{1};

j55=Transvectant[Transvectant[qq,cc1,2],exp[ll,2],2].{1};

j56=Transvectant[cc3,exp[ll,3],3].{1};

j57=Transvectant[prod[ll,Transvectant[cc,cc1,1]],qq,4].{1};

j58=Transvectant[Transvectant[ll,cc1,1],Transvectant[qq,cc,3],1].{1};

j61=Transvectant[exp[cc1,2],cc2,4].{1};

j62=Transvectant[Transvectant[prod[ll,cc],prod[ll,cc],2],prod[ll,cc],4].{1};

j63=Transvectant[cc2,exp[ll,4],4].{1};

j65=Transvectant[Transvectant[Transvectant[qq,cc1,2],exp[cc,2],2],qq,4].{1};

j64=Transvectant[cc2,prod[ll,Transvectant[cc,cc1,1]],4].{1};

j66=Transvectant[cc2,prod[cc,Transvectant[ll,cc1,1]],4].{1};

j67=Transvectant[prod[exp[ll,2],cc2],exp[cc,2],6].{1};

j68=Transvectant[Transvectant[cc1,cc2,2],exp[ll,2],2].{1};

j69=Transvectant[Transvectant[cc,cc2,2],exp[ll,3],3].{1};

j610=Transvectant[Transvectant[exp[cc,2],exp[qq,2],6],

Transvectant[cc,ll,1],2].{1};

j71=Transvectant[exp[cc,4],exp[qq,3],12].{1};

j72=Transvectant[Transvectant[Transvectant[qq,cc1,2],exp[cc,2],2],cc2,4].{1};

j73=Transvectant[Transvectant[qq,cc2,1],

prod[cc,Transvectant[cc,cc1,1]],6].{1};

j74=Transvectant[Transvectant[cc1,ll,1],

Transvectant[qq,Transvectant[cc1,cc,1],3],1].{1};

j75=Transvectant[Transvectant[exp[cc,2],prod[qq,cc2],6],

Transvectant[cc,ll,1],2].{1};

j76=Transvectant[Transvectant[Transvectant[cc1,cc,1],qq,2],exp[ll,3],3].{1};

j77=Transvectant[prod[qq,exp[ll,2]],prod[cc,Transvectant[cc1,cc,1]],6].{1};

j78=Transvectant[Transvectant[qq,Transvectant[cc1,exp[ll,2],1],2],

exp[ll,2],2].{1};

j79=Transvectant[exp[ll,5],Transvectant[cc,qq,1],5].{1};

j710=Transvectant[Transvectant[Transvectant[cc3,

Transvectant[qq,ll,1],2],cc3,1],cc,3].{1};

j711=Transvectant[Transvectant[Transvectant[cc3,cc,2],

Transvectant[qq,ll,1],1],Transvectant[qq,ll,1],3].{1};

j712=Transvectant[prod[Transvectant[qq,cc1,1],exp[ll,2]],exp[cc,2],6].{1};



APPENDIX A. COMPUTATIONS 201

j713=Transvectant[Transvectant[cc3,Transvectant[qq,ll,1],2],

Transvectant[qq,exp[ll,2],2],2].{1};

j81=Transvectant[Transvectant[Transvectant[qq,cc1,2],prod[cc,

Transvectant[cc,cc1,1]],2],qq,4].{1};

j82=Transvectant[exp[cc,4],prod[exp[qq,2],cc2],12].{1};

j83=Transvectant[Transvectant[Transvectant[cc2,cc1,2],exp[cc,2],2],

cc2,4].{1};

j84=Transvectant[Transvectant[exp[cc,2],prod[cc2,qq],6],

Transvectant[cc3,ll,1],2].{1};

j85=Transvectant[Transvectant[cc1,ll,1],Transvectant[qq,

Transvectant[cc1,Transvectant[qq,ll,1],1],3],1].{1};

j86=Transvectant[Transvectant[Transvectant[cc1,cc3,1],qq,2],exp[ll,3],3].{1};

j87=Transvectant[Transvectant[Transvectant[cc1,

Transvectant[qq,ll,1],1],qq,2],exp[ll,3],3].{1};

j88=Transvectant[prod[qq,exp[ll,2]],prod[cc,Transvectant[cc1,cc3,1]],6].{1};

j89=Transvectant[Transvectant[qq,Transvectant[Transvectant[cc,

Transvectant[qq,ll,1],2],exp[ll,2],1],2],exp[ll,2],2].{1};

j810=Transvectant[Transvectant[exp[cc,2],exp[qq,2],6],

Transvectant[Transvectant[cc,cc1,1],ll,1],2].{1};

j811=Transvectant[prod[qq,prod[ll,Transvectant[cc,qq,3]]],

prod[cc,Transvectant[cc1,cc,1]],6].{1};

j91=Transvectant[Transvectant[Transvectant[cc2,cc1,2],prod[cc,

Transvectant[cc,cc1,1]],2],qq,4].{1};

j92=Transvectant[exp[cc,4],prod[prod[qq,cc2],cc2],12].{1};

j93=Transvectant[prod[exp[cc,3],Transvectant[cc,cc1,1]],exp[qq,3],12].{1};

j94=Transvectant[Transvectant[Transvectant[qq,cc1,2],prod[cc,

Transvectant[cc,cc1,1]],2],cc2,4].{1};

j95=Transvectant[Transvectant[Transvectant[qq,cc1,2],prod[cc,

Transvectant[Transvectant[qq,ll,1],cc1,1]],2],qq,4].{1};

j96=Transvectant[Transvectant[exp[cc,2],prod[cc2,prod[cc,ll]],6],

Transvectant[cc3,ll,1],2].{1};

j97=Transvectant[Transvectant[exp[cc,2],prod[cc2,prod[cc,ll]],6],

Transvectant[Transvectant[qq,ll,1],ll,1],2].{1};

j98=Transvectant[Transvectant[Transvectant[Transvectant[qq,

Transvectant[qq,prod[cc,ll],2],2],cc1,2],exp[cc,2],2],qq,4].{1};

j99=Transvectant[Transvectant[Transvectant[qq,ll,1],cc2,1],exp[ll,5],5].{1};

j910=Transvectant[Transvectant[Transvectant[qq,cc2,1],exp[cc,2],4],

exp[ll,4],4].{1};

j101=Transvectant[Transvectant[Transvectant[cc2,cc1,2],prod[cc,

Transvectant[cc,cc1,1]],2],cc2,4].{1};

j102=Transvectant[Transvectant[prod[exp[cc,3],Transvectant[cc,cc1,1]],

exp[qq,3],10],qq,4].{1};

j103=Transvectant[Transvectant[cc,prod[Transvectant[cc,Transvectant[cc,

Transvectant[cc,Transvectant[qq,cc2,1],3],1],3],

Transvectant[cc,qq,2]],3],ll,1].{1};

j111=Transvectant[Transvectant[Transvectant[prod[exp[cc,3],

Transvectant[cc,cc1,1]],exp[qq,3],10],qq,2],qq,4].{1};

Here are the rank computations:

In[]:=gens={{j21},{j31,j32},{j41,j42,j43,j44},{j51,j52,j53,j54,j55,j56,

j57,j58},{j61,j62,j63,j64,j65,j66,j67,j68,j69,j610},{j71,j72,j73,j74,j75,

j76,j77,j78,j79,j710,j711,j712,j713},{j81,j82,j83,j84,j85,j86,j87,j88,

j89,j810,j811},{j91,j92,j93,j94,j95,j96,j97,j98,j99,j910},{j101,j102,j103},

{j111}};degrees={2,3,4,5,6,7,8,9,10,11};

=== computations in degree 4 ===

In[]:=mon1=listmonomials[4,gens,degrees];Length[mon1]

Out[]=1
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In[]:=mon=Union[mon1,{j41,j42,j43,j44}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,6}];MatrixRank[mat]

Out[]=5

=== computations in degree 5 ===

In[]:=mon1=listmonomials[5,gens,degrees];Length[mon1]

Out[]=2

In[]:=mon=Union[mon1,{j51,j52,j53,j54,j55,j56,j57,j58}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,11}];MatrixRank[mat]

Out[]=10

=== computations in degree 6 ===

In[]:=mon1=listmonomials[6,gens,degrees];Length[mon1]

Out[]=8

In[]:=mon=Union[mon1,{j61,j62,j63,j64,j65,j66,j67,j68,j69,j610}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,19}];MatrixRank[mat]

Out[]=18

=== computations in degree 7 ===

In[]:=mon1=listmonomials[7,gens,degrees];Length[mon1]

Out[]=18

In[]:=mon=Union[mon1,{j71,j72,j73,j74,j75,j76,j77,j78,j79,j710,j711,j712,

j713}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,32}];MatrixRank[mat]

Out[]=31

=== computations in degree 8 ===

In[]:=mon1=listmonomials[8,gens,degrees];Length[mon1]

Out[]=44

In[]:=mon=Union[mon1,{j81,j82,j83,j84,j85,j86,j87,j88,j89,j810,j811}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,56}];MatrixRank[mat]

Out[]=55

=== computations in degree 9 ===

In[]:=mon1=listmonomials[9,gens,degrees];Length[mon1]

Out[]=87

In[]:=mon=Union[mon1,{j91,j92,j93,j94,j95,j96,j97,j98,j99,j910}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,93}];MatrixRank[mat]

Out[]=92

=== computations in degree 10 ===

In[]:=mon1=listmonomials[10,gens,degrees];Length[mon1]

Out[]=169

In[]:=mon=Union[mon1,{j101,j102,j103}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,145}];MatrixRank[mat]

Out[]=144

=== computations in degree 11 ===

In[]:=mon1=listmonomials[11,gens,degrees];Length[mon1]

Out[]=295
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In[]:=mon=Union[mon1,{j111}];

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,224}];

MatrixRank[mat,Modulus->32003]

Out[]=223

=== computations in degree 12 ===

In[]:=mon=listmonomials[12,gens,degrees];Length[mon]

Out[]=514

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,342}];

MatrixRank[mat,Modulus->32003]

Out[]=341

=== computations in degree 13 ===

In[]:=mon=listmonomials[13,gens,degrees];Length[mon]

Out[]=847

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,500}];

MatrixRank[mat,Modulus->32003]

Out[]=499

=== computations in degree 14 ===

In[]:=mon=listmonomials[14,gens,degrees];Length[mon]

Out[]=1412

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,726}];

MatrixRank[mat,Modulus->32003]

Out[]=725

=== computations in degree 15 ===

In[]:=mon=listmonomials[15,gens,degrees];Length[mon]

Out[]=2306

In[]:=mat=Table[mon/.Table[c[j]->Random[Integer,{0,10}],{j,0,1}]/.

Table[b[j]->Random[Integer,{0,10}],{j,0,4}]/.

Table[a[j]->Random[Integer,{0,10}],{j,0,3}],{i,1,1032}];

MatrixRank[mat,Modulus->32003]

Out[]=1031
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