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Abstract in English 

Background: Psychosocial stress, especially early in life, is a risk factor for mental disorders. 

Recent evidence suggests that stress-related changes in epigenetic patterns, including DNA 

methylation, could mediate this association. 

Aim: to examine a potential association between psychosocial stress exposure and DNA 

methylation of two stress-related genes: the oxytocin receptor (OXTR) and the brain-derived 

neurotrophic factor (BDNF). 

Methods: We investigated DNA methylation in three target sequences: OXTR1, OXTR2 and 

BDNF. The psychosocial stressors included: (1) maternal stress during pregnancy (prenatal 

stress, N=39); (2) low versus high maternal care during childhood (maternal care, N=85) and 

(3) acute psychosocial stress (N=83). In the prenatal stress study, DNA methylation of OXTR1 

was quantified in cord-blood cells. In the maternal care and acute psychosocial stress study, 

DNA methylation of OXTR1, OXTR2 and BDNF was quantified in peripheral blood cells of 

adults. 

Results: (1) Several indicators of increased prenatal stress predicted higher DNA methylation 

of OXTR1. (2) Adults reporting low maternal care showed increased OXTR2 DNA methylation 

compared to those reporting high maternal care. (3) Exposure to acute psychosocial stress was 

associated with dynamic changes in DNA methylation of OXTR – DNA methylation 

increased from pre- to post-stress in OXTR1 and decreased from post-stress to follow up in 

OXTR1 and OXTR2. Some of these changes might have been due to variations in blood cell 

count. 

Discussion: Exposure to psychosocial stress was associated with target sequence-specific 

changes in OXTR DNA methylation. These results could contribute to our understanding of 

epigenetic processes involved in stress-adaptation.  
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Abstract in German 

Hintergrund: Psychosozialer Stress, insbesondere während der frühen Entwicklung, ist ein 

Risikofaktor für psychische Erkrankungen. Dieser Zusammenhang könnte durch stress-

assoziierte epigenetische Veränderungen, z.B. in der DNA Methylierung, mediiert werden. 

Ziel: ein potentieller Zusammenhang zwischen verschiedenen psychosozialen Stressoren und 

der DNA Methylierung zweier stress-assoziierter Gene zu untersuchen: dem Oxytozin 

Rezeptor (OXTR) und dem Brain-Derived Neurotrophic Factor (BDNF). 

Methode: DNA Methylierung wurde in drei DNA Zielsequenzen gemessen: OXTR1, OXTR2 

und BDNF. Die untersuchten psychosozialen Stressoren waren: (1) mütterlicher Stress 

während der Schwangerschaft (pränataler Stress, N=39); (2) mütterliche Zuwendung in der 

Kindheit (N=85) und (3) akuter psychosozialer Stress im Erwachsenenalter (N=83). In der 

Studie zu pränatalem Stress wurde DNA Methylierung von OXTR1 im Nabelschnurblut 

gemessen; in den Studien zu mütterlicher Zuwendung und akutem psychosoziale Stress wurde 

DNA Methylierung von OXTR1, OXTR2 und BDNF in peripherem Blut gemessen. 

Resultate: (1) Mehrere Indikatoren von pränatalem Stress sagten eine stärkere OXTR1 DNA 

Methylierung vorher. (2) Erwachsene, welche von wenig mütterlicher Zuwendung berichteten, 

hatten eine stärkere Methylierung in OXTR2 im Vergleich zu denjenigen mit mehr 

Zuwendung. (3) Akuter psychosozialer Stress war mit dynamischen Veränderungen in OXTR 

DNA Methylierung assoziiert: eine Erhöhung von Prä-Stress zu Post-Stress in OXTR1 und 

eine Erniedrigung von Post-Stress zu Follow-Up in OXTR1 und OXTR2, wobei einige dieser 

Veränderungen allenfalls durch Variationen in der Blutzell-Verteilung zustande kamen. 

Diskussion: Psychosozialer Stress war assoziiert mit Veränderungen in der DNA 

Methylierung des OXTR. Die Resultate könnten zu einem besseren Verständnis von 

epigenetischen Stress-Adaptionsmechanismen beitragen.  
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“Adaptability is probably the most distinctive characteristic of life.” 

Hans Selye (1956) 
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Introduction 

Mental health problems are accounting for a high proportion of the social and financial 

burden worldwide (Kessler & Ustun, 2011; Schuler & Burla, 2012; Wittchen et al., 2011). In 

the latest Swiss Health Observatory survey, 17% of the general Swiss population reported to 

suffer from at least moderate psychological strain, and the overall financial costs caused by 

psychological problems added up to around 11 billion Swiss Francs (Schuler & Burla, 2012). 

A major factor contributing to the diathesis of mental disorders is exposure to chronic or 

severe stress, especially during early development (Carr, Martins, Stingel, Lemgruber, & 

Juruena, 2013; Lupien, McEwen, Gunnar, & Heim, 2009; Schlotz & Phillips, 2009; Scott, 

2012). This association is illustrated by the National Comorbidity Survey Replication, in 

which early adverse experiences accounted for 44.6% of childhood-onset disorders and for 

around 30% of later-onset mental disorders (Green et al., 2010). 

The effects of psychosocial stress experiences can be observed as early as during fetal 

development: intrauterine exposure to psychosocial stress experiences of the mother during 

pregnancy affects birth outcome and offspring behavior and health later in life (Entringer, 

Buss, & Wadhwa, 2010; Schlotz & Phillips, 2009). During childhood, adverse psychosocial 

experiences – such as interpersonal loss, family difficulties, abuse or neglect, and physical or 

economic adversity and disaster – might exceed the child’s coping resources and induce a 

continued state of stress (Green et al., 2010). The relationship between early psychosocial 

stress and mental health is most likely mediated by developmental (mal-) adaptations in i) 

psychobiological systems, particularly those involved in the stress response (Andrews, Ali, & 

Pruessner, 2013; Lupien et al., 2009; Phillips & Jones, 2006; Tarullo & Gunnar, 2006) as well 

as ii) in brain structures related to cognitive functioning and emotional regulation (Pechtel & 

Pizzagalli, 2011). Therefore, scrutinizing the molecular basis underlying stress-adaptation is 

highly relevant for understanding the diathesis of mental disorders, as well as the processes 
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underlying resilience (Hellhammer & Hellhammer, 2008). Moreover, consolidated knowledge 

of these processes could have implications for the prevention and treatment of stress-related 

mental disorders. 

A recent line of evidence suggests that DNA methylation – an epigenetic process 

regulating gene activity – could provide one of the molecular mechanisms mediating these 

psychobiological consequences of early life stress. This behavioral epigenetic research has 

suggested that early psychosocial experiences could shape epigenetic patterns of genes 

involved in stress-adaptation, such as the hypothalamic-pituitary-adrenal (HPA) axis, the 

hypothalamic-pituitary-gonadal (HPG) axis, neurotrophins, as wells as other neurotransmitter 

and hormonal systems (e.g. Champagne & Curley, 2009; Lutz & Turecki, 2013). Furthermore, 

findings indicate that certain epigenetic patterns might contribute to the pathogenesis of 

stress-related mental disorders (e.g. Docherty & Mill, 2008; Dudley, Li, Kobor, Kippin, & 

Bredy, 2011). Today, behavioral epigenetic research questions are in the focus of basic and 

clinical research worldwide (Lester et al., 2011). However, since only a limited number of 

studies have been published, further research scrutinizing potential changes in epigenetic 

patterns related to psychosocial stress is necessary, especially in humans. Additionally, a 

highly neglected research question concerns the dynamics of epigenetic changes after 

psychosocial stress experiences. 

Taken together, epigenetic research – especially on candidate genes interacting with the 

stress-response, as well as on the dynamics of epigenetic changes after acute psychosocial 

stress – could improve our understanding of how psychosocial stress affects molecular 

processes of stress-adaptation with potential consequences for mental health and disease. 
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Scope of the Thesis 

Objectives. 

This thesis and the presented scientific papers aim to examine changes in DNA methylation 

associated with exposure to psychosocial stress, and to discuss the relevance of the findings 

with regard to stress-adaptation and their potential implications for resilience. The research 

presented here is based on three studies investigating DNA methylation of two stress-related 

candidate genes – the oxytocin receptor (OXTR) and the brain-derived neurotrophic factor 

(BDNF) – after exposure to different psychosocial stressors, including (1) intrauterine 

exposure to maternal adversities (prenatal stress), (2) low maternal care during childhood and 

adolescence (low maternal care) and finally (3), acute psychosocial stress in adulthood (acute 

psychosocial stress). Up to date, both genes were not in the direct focus of epigenetic studies 

on psychosocial stress in humans, but might play a role in stress-adaptation and resilience 

(Cicchetti & Rogosch, 2012; Duclot & Kabbaj, 2013; Karatsoreos & McEwen, 2013; Ozbay 

et al., 2007; Taliaz et al., 2011). Scrutinizing epigenetic patterns after psychosocial stress 

might improve our understanding of how epigenetic processes could contribute to the 

development of stress-related mental disorders in the future. 

 

Research Questions 

Based on previous animal and human research, the papers presented here address the 

following specific and overall research questions: 

• Prenatal stress: Do different indicators of maternal psychosocial stress during 

pregnancy predict DNA methylation in a target sequence in the OXTR in cord blood at 

birth? 
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• Low maternal care: Is maternal care during childhood and adolescence associated with 

DNA methylation of OXTR and BDNF in peripheral blood collected in adults? 

• Acute psychosocial stress: Are there any dynamic changes in DNA methylation of 

OXTR and BDNF in peripheral blood after exposure to psychosocial stress in adults? 

• Overall research question 1: Can we observe stress-associated changes in DNA 

methylation of two genes involved in stress-adaptation (OXTR and BDNF) in human 

blood cells? 

• Overall research question 2: Are potential changes in DNA methylation specific to 

different stressors? 

Since epigenetic research is only at the beginning and exposure to psychosocial stress has 

been associated with bi-directional changes in DNA methylation in previous studies 

(depending on stressor, gene and tissue investigated), we did not state specific directions of 

stress-related changes in DNA methylation in any of the three studies.  

Approach. 

To answer our research questions, we assessed DNA methylation in two OXTR (OXTR1, 

OXTR2) and one BDNF target sequence in whole blood samples after different kinds of 

psychosocial stress exposure: 

• Prenatal stress: The indicators of maternal stress during pregnancy included i) exposure 

to life-changing events during the two years prior to the second trimester; ii) cortisol 

profiles during the second trimester; iii) depressive symptoms during the third trimester; 

and finally iv) chronic stress during the course of pregnancy. DNA methylation of 

OXTR1 was measured in cord blood collected at birth. 

• Early life stress: we compared peripheral blood DNA methylation of OXTR1, OXTR2, 

BDNF between adults reporting high and low maternal care during the first 16 years of 

life.  
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• Acute psychosocial stress: dynamic changes in DNA methylation of OXTR1, OXTR2, 

BDNF was assessed in peripheral whole blood collected one minute before (pre-stress), 

10 minutes after (post-stress) and 90 minutes after (follow-up) an acute psychosocial 

stressor. 

The insight from the specific and overall research questions could have implications for i) the 

epiphenotype of psychosocial stress; ii) the potential use of peripheral blood DNA to 

investigate stress-related epigenetic patterns; iii) the understanding of stress-related dynamics 

in DNA methylation; and iv) the understanding of stress specificity of the investigated target 

sequences. 

 

Outline of the Thesis 

This thesis is structured as follows: The “Introduction” described the general background and 

relevance of the research presented in this thesis. The “Theoretical Framework” will cover the 

theoretical background and current state of research in the field of psychosocial stress, 

behavioral epigenetics and the selected candidate genes. The “Methods” section will give an 

overview on the research designs, samples, applied instruments and biological and statistical 

analyses. The section “Results and Main Conclusions” contains a summary of the results and 

the main conclusions for the stated research questions. Finally, the “General Discussion” will 

consider the general psychobiological implications and the implications for stress-adaptation 

and resilience. Additionally, strengths, limitations and outlook for future research will be 

presented. A detailed description for the theoretical background, methods, results and 

discussion of the three presented scientific papers can be found in Appendix A to D. 
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Theoretical Framework 

Psychosocial Stress 

Stress is a reaction to a psychological or physiological demand drawing on an organism’s 

resources (Margraf, Lieb, & Pschyrembel, 2012). Thereby, psychosocial and other stressors1 

(e.g. physical or physiological) can destabilize an organism’s psychological, endocrine and 

physiological balance. After stress exposure, the balance of the organism has to be 

reestablished by processes of adaptation in order to maintain health (Chrousos & Gold, 1992; 

Conrad, 2011; Selye, 1950). The interplay between the psychological, the endocrine and the 

physiological systems orchestrates the stress response: a stressful event is perceived and 

centrally processed to evoke an emotional reaction, which initiates the activation of the 

physiological and endocrine stress system (Andrews et al., 2013). Activation of these three 

systems induces psychobiological processes supporting a fight or flight response, which 

promotes the organism’s survival. However, an inability to adapt to the stress – for instance 

due to the severity or chronicity of the stressor, or due to a dysfunctional stress response 

system – threatens physical and mental health (e.g. Hellhammer & Hellhammer, 2008). 

Therefore, the identification of psychobiological processes underlying stress-adaptation might 

improve our understanding of stress-related mental disorders. 

Psychobiological Concepts of the Stress Response and Stress-Adaptation. 

Hans Selye’s “General Adaptation Syndrome” (Selye, 1950) was one of the first modern 

concepts of the stress response and stress-adaptation. The model postulates three stages: i) 

Phase of alarm: a stressor triggers an alarm reaction with rapid activation of the sympathetic 

nervous system and release of stress hormones, which mobilizes energy resources to improve 

performance. ii) Phase of resistance: the organism needs to adapt to the stress, in order to 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 the term stressor refers to the condition causing a stress response, whereas the term stress refers to the 
organism’s psychophysiological reaction to the stressor (Margraf et al., 2012). Whether a certain condition is 
perceived as a stressor depends on the individual’s evaluation (Lazarus, 1993). 
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reestablish normality and homeostasis. iii) Phase of exhaustion: since adaptation energy is 

restricted, exposure to prolonged stress will eventually result in exhaustion and impaired 

health. Subsequent psychobiological concepts of stress-adaptation aimed to describe how 

different psychobiological stress-systems interact, how individual patterns of stress-reactivity 

in these systems are established and how these individual patterns could contribute to 

maintaining mental health. For example, the “Biopsychosocial Stress Model” (Dienstbier, 

1989) categorizes psychophysiological stress responses according to the interaction between 

cognitive processes (demands versus individual resources) and the associated release of 

catecholamine and cortisol. The “Biological Sensitivity to Context Model” (Boyce & Ellis, 

2005) takes individual differences of the stress systems into account and states that stress 

reactivity – e.g. autonomic, adrenocortical and immune system reactivity – moderates the 

association between environmental adversities and the risk to develop a disorder. Finally, the 

“Adaptive Calibration Model“ (Del Giudice, Ellis, & Shirtcliff, 2011) suggests that 

environmental factors (e.g. parental investment) and population competence (e.g. age or 

status) shape different interacting stress response systems, which results in an individual 

pattern of sympathetic nervous system and HPA axis reactivity, with relevance for mental 

health. Thereby, it seems that particularly early psychosocial experiences determine an 

individual’s stress-response pattern and potential for stress-adaptation, which might contribute 

to the vulnerability to develop a stress-related disorder later in life (Hankin, 2005; Heim, 

Meinlschmidt, & Nemeroff, 2003). 

Early Psychosocial Stress and Mental Health. 

The effects of chronic or severe psychosocial stress during the early stages of development 

have extensively been investigated (Carr et al., 2013; Lupien et al., 2009). For example, 

intrauterine exposure to maternal psychosocial stress, including adverse life events, depressed 

mood and increased cortisol levels during pregnancy, was associated with adverse birth 
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outcomes, as well as behavioral and stress-related problems later in life (Baibazarova et al., 

2013; Bolten et al., 2011; Brand, Engel, Canfield, & Yehuda, 2006; Coussons-Read et al., 

2012; Dancause et al., 2011; Duthie & Reynolds, 2013; Engel, Berkowitz, Wolff, & Yehuda, 

2005; King & Laplante, 2005; Li et al., 2012; Martini, Knappe, Beesdo-Baum, Lieb, & 

Wittchen, 2010; Meinlschmidt, Martin, Neumann, & Heinrichs, 2010; Tegethoff, Greene, 

Olsen, Meyer, & Meinlschmidt, 2010; Tegethoff, Greene, Olsen, Schaffner, & Meinlschmidt, 

2011, 2012; Tegethoff, Pryce, & Meinlschmidt, 2009; Yehuda et al., 2005). During the stages 

of childhood and adolescence, exposure to childhood abuse, neglect or restrictions in parental 

care, increased the risk for physical and mental disorders across life (Carr et al., 2013; Green 

et al., 2010; McLaughlin et al., 2010a, 2010b). Research on the biological mechanisms 

mediating the association between early psychosocial stress experience and physical and 

mental health suggests that psychosocial early life experiences shape psychoneuroendocrine 

systems affecting an individual’s stress response patterns and neuronal development (Engert 

et al., 2010; Heim et al., 2003; Heim et al., 2000; Lovallo, Farag, Sorocco, Cohoon, & 

Vincent, 2012; Pechtel & Pizzagalli, 2011; Tarullo & Gunnar, 2006). Thereby, dysfunctional 

adaptations in stress-related psychobiological systems might contribute to an individual’s 

vulnerability to stress later in life (Gutman & Nemeroff, 2003; Heim, et al., 2009; Heim & 

Nemeroff, 1999; Heim, Newport, Bonsall, Miller, & Nemeroff, 2001; Lovallo, 2013). Recent 

studies have indicated that these psychobiological systems could be shaped by changes in 

epigenetic patterns of stress-related genes (e.g. Heim & Binder, 2012; Kofink, Boks, Timmers, 

& Kas, 2013; Lutz & Turecki, 2013). 

Taken together, stressful psychosocial experiences induce a stress response involving 

the activation of different stress-related psychobiological systems. These psychobiological 

stress-systems could be shaped by psychosocial stress experiences, particularly during early 
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development, with consequences for stress reactivity and health. Evidence suggests that these 

processes might be epigenetically mediated. 

Behavioral Epigenetics 

Background. 

The genome contains the blueprint that defines all organisms from bacteria to humans. 

Thereby, every cell of an individual organism comprises exactly the same genetic information. 

During embryonic development, tissue-specific gene activity has to be established and 

propagated. Hereby, epigenetic programming determines cell fate and consequently defines 

tissue characteristics. Certain aberrations in epigenetic patterns are associated with 

pathological cellular processes and cancer (for a review see Sharma, Kelly, & Jones, 2010). 

Several lines of evidence suggest a limited potential for dynamic changes within the 

epigenome (Bergman & Cedar, 2013; Caldji, Hellstrom, Zhang, Diorio, & Meaney, 2011; 

Szulwach & Jin, 2014). These dynamic processes might provide the organism with a certain 

degree of phenotypic plasticity and the ability to adapt to specific environmental conditions 

through regulation in gene expression (e.g. Gluckman, Hanson, & Low, 2011; Weaver, 2009). 

A prime epigenetic mechanism is DNA methylation, which affects the chromatin architecture 

and regulates gene transcription (for further reading on epigenetic mechanisms see Allis, 

2007). 

DNA methylation is a type of DNA modification defined as the addition of a methyl-

group to typically a cytosine-guanine dinucleotide (CpG) in the DNA strand (for a review see 

Auclair & Weber, 2012). DNA sequences containing high CpG density are called CpG 

islands and are mainly located within regulatory promoter regions of a gene. A high degree of 

DNA methylation within a promoter sequence or an exon is usually associated with a closed 

chromatin state and a reduced accessibility for transcription factors, which in turn is 

associated with a silencing of the respective gene (Allis, 2007). DNA methylation can be 
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influenced by genetic determinants (Lienert et al., 2011; Xie et al., 2012), other epigenetic 

mechanisms (e.g. modifications of the histone code) and through the biological translation of 

environmental cues, including psychosocial experiences (e.g. McGowan et al., 2011; Weaver 

et al., 2004). 

Animal Models of Behavioral Epigenetics. 

The most cited behavioral epigenetic studies investigated the “epigenetic programming” of 

the stress-response. These studies compared epigenetic patterns of the glucocorticoid receptor 

gene (GR) – a gene involved in the negative feedback system of the HPA axis in the 

hippocampus – between the offspring of rat mothers showing a high or low amount of pup 

licking/grooming and arched-back nursing (Francis, Diorio, Liu, & Meaney, 1999; Weaver et 

al., 2004). In more detail, these findings suggest that offspring of low caring mothers showed 

i) increased hippocampal DNA methylation of an important regulatory CpG site located at an 

NGFI-A (nerve growth-factor inducible protein A; a transcription factor) consensus region of 

the GR exon 17 promoter (Weaver et al., 2004); ii) This DNA hypermethylation and 

associated histone modifications resulted in a decreased NGFI-A binding to its consensus 

region (Weaver et al., 2004); iii) this reduced GR expression in offspring raised by low caring 

mothers, iv) causing decreased HPA axis feedback sensitivity, v) a less moderate stress 

response and vi) augmented fear behavior (Caldji et al., 2011; Francis et al., 1999; Liu et al., 

1997). These results indicated that epigenetic modifications in the GR could mediate the 

association of low maternal care with augmented stress reactivity and the behavioral 

consequences thereof. Of note, the effects of received maternal care were confirmed in cross-

fostering experiments (Cameron et al., 2008; Francis et al., 1999; Weaver et al., 2004), which 

rules out an exclusive role of epigenetic inheritance. Moreover, the effects induced by low 

maternal care were reversed by pharmacological treatment targeting the closed chromatin 

structure, which resulted in epigenetic patterns, hippocampal GR expression, GR protein 
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levels and stress responses comparable to offspring raised by high caring mothers (Weaver et 

al., 2004). Subsequent animal studies demonstrated stress-related changes in DNA 

methylation patterns in additional candidate gene, as well as on a global level. Thereby, the 

investigated stressors included i) prenatal stress (Boersma et al., 2013; Jensen Pena, Monk, & 

Champagne, 2012; Matrisciano et al., 2013; Mueller & Bale, 2008; Mychasiuk, Harker, 

Ilnytskyy, & Gibb, 2013; Mychasiuk, Ilnytskyy, Kovalchuk, Kolb, & Gibb, 2011; Mychasiuk, 

et al., 2011; Onishchenko, Karpova, Sabri, Castren, & Ceccatelli, 2008; Paternain et al., 2012; 

Petropoulos, Matthews, & Szyf, 2014); ii) early life stress (Anier et al., 2013; Blaze, Scheuing, 

& Roth, 2013; Champagne & Meaney, 2006; Chen et al., 2012; Edelmann & Auger, 2011; 

Franklin et al., 2010; Kember et al., 2012; McGowan et al., 2011; Murgatroyd et al., 2009; 

Qin et al., 2011; Roth, Lubin, Funk, & Sweatt, 2009; Wang, Meyer, & Korz, 2013; Zhang et 

al., 2010) and iii) exposure to psychosocial stress in adulthood (Elliott, Ezra-Nevo, Regev, 

Neufeld-Cohen, & Chen, 2010; Roth, Zoladz, Sweatt, & Diamond, 2011; Sterrenburg et al., 

2011). 

Human Studies on Behavioral Epigenetics. 

Several studies reported an association of early life stress with DNA methylation in humans. 

One of the first behavioral epigenetic human studies was conducted on post-mortem brain 

tissue, which revealed increased DNA methylation in the human glucocorticoid receptor 

(NR3C1) promoter 1F
2 in the hippocampus of suicide victims who suffered from childhood 

abuse compared to suicide victims and non-suicide controls without experiences of abuse 

(McGowan et al., 2009). Subsequent findings from human post-mortem studies have extended 

our knowledge on stress-related alterations in DNA methylation after psychosocial stress in 

neuronal tissue (Keller et al., 2010; Labonté et al., 2012; McGowan et al., 2008; Suderman et 

al., 2012). Notably, recent studies suggest that an association between psychosocial stress 
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exposure and mental disorders with changes in DNA methylation can also be observed in 

DNA derived from peripheral blood and buccal cells (for a comprehensive review see Klengel, 

Pape, Binder, & Mehta, 2014).  

In sum, behavioral epigenetic studies in animal models and humans suggest that 

psychosocial experiences, especially those occurring early in development, could shape the 

stress-response system by alterations in epigenetic patterns of stress-related genes. These 

epigenetic processes might contribute to an individual’s vulnerability for stress-related 

physical and mental disorders (Zannas & West, 2013). However, behavioral epigenetic 

research is only at the beginning and the number of studies is limited, especially in humans 

and with regard to candidate genes participating in stress-adaptation beyond the HPA axis.  

 

Stress-Related Candidate Genes 

Two genes presumably involved in stress-adaptation and mental health are the oxytocin 

receptor (OXTR) and the brain-derived neurotrophic factor (BDNF).  

Oxytocin Receptor (OXTR). 

The oxytocin receptor is expressed in a wide range of central and peripheral tissues and binds 

to oxytocin, a neurohypophyseal hormone (Gimpl & Fahrenholz, 2001). The primary 

functions of oxytocin signaling include induction of childbirth, lactation and maternal as well 

as sexual behavior (Grewen, Davenport, & Light, 2010; Lee, Macbeth, Pagani, & Young, 

2009; Pena, Neugut, & Champagne, 2013). Notably, the oxytocin system might also be 

relevant in social bonding and stress-adaptation (Carter, 2003; Gimpl & Fahrenholz, 2001): 

First, oxytocin signaling was shown to be involved in the regulation of the autonomic nervous 

system, having especially parasympathic action, and to interfere with the HPA axis to dampen 

the stress response (Grewen & Light, 2011; Holst, Uvnas-Moberg, & Petersson, 2002; 

Liberzon & Young, 1997; Neumann, 2002). Second, oxytocin signaling might mediate the 
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effects of social support and interpersonal relationships on the stress system (Ditzen et al., 

2013; Ditzen et al., 2009; Grewen, Girdler, Amico, & Light, 2005; Heinrichs, Baumgartner, 

Kirschbaum, & Ehlert, 2003; Heinrichs, Ditzen, Kirschbaum, & Ehlert, 2003; Holt-Lunstad, 

Birmingham, & Light, 2008; Light, Grewen, & Amico, 2005; Olff et al., 2013; Pedersen & 

Boccia, 2002). Third, adverse early experiences were associated with decreased oxytocin 

concentration in plasma, urine and cerebrospinal fluid (Fries, Ziegler, Kurian, Jacoris, & 

Pollak, 2005; Heim, et al., 2009; Opacka-Juffry & Mohiyeddini, 2012), decreased oxytocin 

sensitivity (Meinlschmidt & Heim, 2007), and reduced OXTR levels in specific rodent brain 

regions (Francis, Champagne, & Meaney, 2000; Francis, Young, Meaney, & Insel, 2002). 

Last, disturbances in the oxytocin system are associated with a variety of mental disorders 

(Olff et al., 2013), including schizophrenia (Goldman, Marlow-O'Connor, Torres, & Carter, 

2008; Keri, Kiss, & Kelemen, 2009) and depression (Cyranowski et al., 2008; Skrundz, 

Bolten, Nast, Hellhammer, & Meinlschmidt, 2011). 

To date, only a few studies investigated OXTR DNA methylation, although the OXTR 

seems to be a promising epigenetic candidate gene (Kumsta, Hummel, Chen, & Heinrichs, 

2013; Kusui et al., 2001). Recent studies proposed that OXTR DNA methylation could be 

involved in the pathology of autism spectrum disorders (Gregory et al., 2009), and be 

associated with callous-unemotional traits in teenage boys diagnosed with conduct disorder 

(Dadds et al., 2013). Finally, a recent fMRI study demonstrated that OXTR DNA methylation 

was associated with brain activity in a social animacy task (Jack, Connelly, & Morris, 2012). 

Brain Derived Neurotrophic Factor (BDNF). 

BDNF is a neurotrophin associated with neuronal development, -differentiation, -function and 

-plasticity, as well as long-term potentiation (Binder & Scharfman, 2004; Cirulli & Alleva, 

2009; Huang & Reichardt, 2001; Thoenen, 1995). Although BDNF plays a key role in the 

central nervous system, it crosses the blood-brain barrier and is also synthesized in blood cells 
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(Braun et al., 1999; Gielen, Khademi, Muhallab, Olsson, & Piehl, 2003; Kerschensteiner et al., 

1999; Pan, Banks, Fasold, Bluth, & Kastin, 1998). Animal models suggest that stress 

exposure bi-directionally affects BDNF expression, depending on brain structure (Bath, 

Schilit, & Lee, 2013). Furthermore, BDNF signaling could mediate the association between 

early psychosocial stress experience and neuronal development with consequences for mental 

health (e.g. see Cirulli et al., 2009). For instance, reduced peripheral BDNF protein levels 

were associated with depression (Bocchio-Chiavetto et al., 2010; Karege et al., 2002; Pandey 

et al., 2010), suicide (Kim et al., 2007; Sher, 2011), schizophrenia (Palomino et al., 2006; 

Toyooka et al., 2002), symptoms of insomnia (Giese et al., 2013) and posttraumatic stress 

disorder (Angelucci et al., 2014; Dell'Osso et al., 2009).  

Animal models showed that exposure to various environmental factors was associated 

with changes in BDNF DNA methylation in several exon and promoter regions (table 1) 

(Blaze et al., 2013; Boersma et al., 2013; Gomez-Pinilla, Zhuang, Feng, Ying, & Fan, 2011; 

Lubin, Roth, & Sweatt, 2008; Mizuno, Dempster, Mill, & Giese, 2012; Onishchenko et al., 

2008; Roth et al., 2009; Roth et al., 2011; Sui, Wang, Ju, & Chen, 2012). Additionally, human 

studies reported that early psychosocial stress, psychopathology and prenatal toxin exposure 

were associated with differences in BDNF DNA methylation as compared to subjects not 

exposed to early life stress or toxins, or healthy controls, respectively (table 1) (Fuchikami et 

al., 2011; Keller et al., 2010; Kordi-Tamandani, Sahranavard, & Torkamanzehi, 2012; Mill et 

al., 2008; Perroud et al., 2013; Toledo-Rodriguez et al., 2010). 
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Table 1 

	
   	
   	
  Animal and Human Studies investigating DNA Methylation of BDNF 

Authors Variable Species and Tissue 

Change in 

DNA 

Methylation  

Blaze et al. (2013) early life stress rat PFC éêa 

Boersma et al. (2013) prenatal stress rat HC, AMY é 

D'Addario et al. (2012) bipolar disorder II human PBC é 

Fuchikami et al. (2011) major depression human PBC éêa 

Gomez-Pinilla et al. (2011) exercise rat HC ê 

Ikegame et al. (2013) schizophrenia human PBC é 

Keller et al. (2011) suicide human WERN é 

Kordi-Tamandani et al. (2012) schizophrenia human PBC ê 

Lubin et al. (2008) fear conditioning rat HC éêa 

Mizuno et al. (2012) fear conditioning mouse HC ê 

Onishchenko et al. (2008) prenatal toxin 

exposure 

mouse HC é 

Perroud et al. (2013) early life stress human PBC é 

Perroud et al. (2013) BPD human PBC é 

Roth et al. (2009) early life stress rat PFC é 

Roth et al. (2011) traumatic stress rat HC éêb 

Sui et al. (2012) long-term potentiation rat PFC ê 

Toledo-Rodriguez et al. (2010) prenatal maternal 

smoking 

human PBC é 

Note. The variable column gives the investigated exposure, model or mental disorder. Change in DNA 

methylation is indicated as increase (é) or decrease (ê) as compared to unexposed/healthy subjects. Only 

results on BDNF DNA methylation of a respective study are given. PFC=prefrontal cortex; HC=hippocampus; 

AMY=amygdala; PBC=peripheral blood cells; WERN=Wernicke Area; BPD=borderline personality disorder. 
aDepending on genomic target region (e.g. exon number). bDepending on target tissue (e.g. brain region) 

In sum, there is evidence that oxytocin and BDNF signaling might mediate the association of 

early psychosocial experiences with the stress response, neuronal plasticity and mental health. 

Moreover, DNA methylation of the genes encoding BDNF and OXTR seems to be sensitive 

to psychosocial experiences. Therefore, DNA methylation of OXTR and BDNF is a promising 
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molecular candidate mechanism underlying stress-vulnerability and -resilience (Cicchetti & 

Rogosch, 2012; Duclot & Kabbaj, 2013; Karatsoreos & McEwen, 2013; Ozbay et al., 2007; 

Taliaz et al., 2011). 

The overall aim of the research presented here is to explore stress-related differences in 

DNA methylation of OXTR and BDNF. The investigated stressors included prenatal stress, 

low maternal care during childhood and acute psychosocial stress in adulthood. 
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Methods 

This section intends to give an overview on study design, sample and methods applied in the 

three studies. A detailed description for each study is given in the respective paper, which can 

be found in Appendices A to C. All studies applied a cross-sectional study design. A more 

detailed description of DNA methylation analysis is given in Appendix D. 

 

Prenatal Stress 

The sample of the prenatal stress study (N=39) consisted of pregnant mothers participating in 

the “Individual Project C: Psychobiological Programming of the Stress Response”, which was 

conducted between the years 2007 to 2010 in Basel, Switzerland, as a part project of the 

National Center of Competence in Research, Swiss Etiological Study of Adjustment and 

Mental Health (NCCR sesam). We assessed indicators of maternal psychosocial stress 

experience during pregnancy and DNA methylation of an OXTR target sequence in cord 

blood at birth. The indicators of maternal stress included: i) number of stressful life events up 

to two years prior to the second pregnancy trimester and current strain caused by the reported 

events; ii) depressive symptoms during the past seven days assessed in the third trimester; iii) 

chronic stress during the course of pregnancy and iv) cortisol awakening response (CAR) and 

diurnal cortisol profiles (DAY) in the second trimester. 
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Table 2 

    Main Predictor Measures for the Prenatal Stress Study 

Applied instrument   Construct   Reference 

Prenatal stress     

Inventory of Life Events 

(ILE) 

 number and strain caused by 

stressful life events 

 (Siegrist & Geyer, 

2003) 

Edinburgh Postnatal 

Depression Scale (EPDS) 

 depressive symptoms  (Bergant, Nguyen, 

Heim, Ulmer, & 

Dapunt, 1998) 

Trier Inventory of Chronic 

Stress (TICS-K) 

 chronic stress  (Wolff Schlotz & 

Schulz, 2005) 

Cortisol awakening response 

(CAR, AUCg) 

 anticipation of upcoming 

demands 

 (E. Fries, Dettenborn, 

& Kirschbaum, 

2009) 

Diurnal cortisol profile 

(DAY, AUCi) 

 HPA axis sensitivity  (Pruessner, 

Kirschbaum, 

Meinlschmid, & 

Hellhammer, 2003) 
Note. AUCg=area under the curve with respect to ground; AUCi=area under the curve with respect to increase; 

HPA=hypothalamic-pituitary-adrenal 

 

Low Maternal Care 

Within the scope of the NCCR sesam “Pre-Study II: Epigenetic Information and Metabolic 

Profiling”, which was conducted from 2007 to 2008 in Basel, Switzerland, we screened an ad-

hoc sample of university students (N=709) for perceived parental care and parental protection 

during the first 16 years of their life using the Parental Bonding Instrument (Parker, Tupling, 

& Brown, 1979). We then recruited participants scoring within the two extreme groups of the 

maternal care subscale (N=85) and compared peripheral whole blood DNA methylation of the 

two OXTR and the BDNF target sequence between subjects reporting to have experienced 

high (n=40) or low maternal care (n=45). Additionally, we assessed blood cell count as a 

potential mediator in the association between maternal care and DNA methylation. 



Psychosocial Stress and DNA Methylation 

	
  

22 

Acute Psychosocial Stress 

We recruited a cohort sample of elderly participants (N=83, age 60-67) from the research 

project “Sequelea of a Persisting HPA Axis Hyperactivity”, which was funded by the German 

Research Foundation and conducted at the University of Trier, Germany from 2006 to 2008. 

All participants underwent the Trier Social Stress Test, which is an established procedure to 

induce an acute psychosocial stress response (TSST, see Foley & Kirschbaum, 2010). Blood 

was drawn one minute before start of the TSST (pre-stress), one minute after completion of 

the TSST (post-stress) and 90 minutes after stress  (follow-up). DNA methylation of the three 

blood samples of both OXTR and the BDNF target sequences was assessed. Additionally, we 

measured blood cell count as a time-varying covariate. 

 

Analysis of DNA Methylation 

While sample collection and DNA extraction differed between studies (see Appendices A to 

C), DNA methylation analysis was performed identically for all three studies reported here. 

Blood samples were collected in cord blood at birth (prenatal stress) or from brachial vein in 

adults (maternal care, acute psychosocial stress). DNA was bisulfite-converted (EZ-96 DNA 

methylation kit, ZYMO research) and target sequences in OXTR and BDNF were amplified 

using bisulfite polymerase chain reaction (PCR). The OXTR1 and OXTR2 target sequences are 

located within OXTR exon 3, which is part of a CpG island. The BDNF target sequence is 

located within exon 6, which is expressed in the periphery (Pruunsild, Kazantseva, Aid, Palm, 

& Timmusk, 2007). DNA methylation was quantified using the standard protocol for 

Sequenom EpiTYPER, which applies base-specific cleavage and matrix-assisted laser 

desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS). The resolution of 

EpiTYPER does not always yield single CpG sites, but combines CpGs into CpG units. CpG 

units with more than 20% missing data, for example due to high or low detection limits, were 
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excluded from the analysis (see Appendix D for detailed information on analysis of DNA 

methylation). 

 

Statistical Analysis.  

To analyze the associations between psychosocial stress and DNA methylation, we applied 

mixed model analyses. The statistical mixed models performed in the prenatal stress and early 

life stress study allowed unstructured covariance matrices between CpG units, because these 

models yielded highest model fit compared to more restricted models. The applied mixed 

models could provide a statistical solution for future studies using a similar approach to 

investigate DNA methylation across a target sequence consisting of multiple CpG units. 
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Results and Main Conclusions 

This section provides a brief summary of the results and the main conclusions drawn in the 

three research papers. For more detailed information on results, see Appendices A to C. 

 

Prenatal Stress 

The number of life events up to two years prior to the second trimester (ILE), an augmented 

cortisol awakening response (CAR) during the second trimester and increased symptoms of 

depression (EPDS) during the third trimester were associated with decreased DNA 

methylation of OXTR1. Neither the strain caused by the number of stressful life events at the 

time of assessment, nor diurnal cortisol profile (DAY) during the second trimester or chronic 

stress (TICS-K) during the course of pregnancy predicted DNA methylation of OXTR1. We 

concluded that intrauterine exposure to several indicators of maternal psychosocial stress 

predicted decreased OXTR DNA methylation in cord blood at birth. This suggests that 

maternal psychosocial stress experience during pregnancy could be linked with alterations in 

accessibility of the OXTR for transcription. This conclusion would support the notion that the 

developing embryo might get prepared for a potentially stressful future environment 

(Gluckman, Hanson, & Spencer, 2005).  

 

Low Maternal Care 

In the second study, we found that subjects reporting low maternal care during childhood and 

adolescence had increased DNA methylation in OXTR2. There was no indication that this 

association was mediated by blood cell count. We therefore concluded that low maternal care 

during childhood is associated with decreased DNA methylation of the OXTR in peripheral 

blood in adults. This could indicate a psychobiological mechanism of how low maternal care 

might becomes a risk factor for later mental disorders. 
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Acute Psychosocial Stress 

Exposure to acute psychosocial stress induced by the TSST was associated with dynamic 

changes in OXTR DNA methylation: DNA methylation in the OXTR1 sequence increased 

from pre-stress to post-stress and decreased from post-stress to follow-up, even below 

baseline levels. The decrease from post-stress to follow-up remained significant after 

controlling for time-related variation in blood cell count. In OXTR2 we found a decrease from 

post-stress to follow-up, which lost significance after controlling for blood cell count. We 

concluded that DNA methylation of the OXTR seems to be dynamically regulated after stress 

experiences, which could provide a potential mechanism by which an organism adapts to a 

short-term psychosocial stressors. To the best of our knowledge, this was the first study 

reporting dynamic changes in DNA methylation after acute psychosocial stress. 

 

Overall Research Question 1 

The first overall research question was whether or not stress-associated changes in DNA 

methylation could be observed in genes involved in stress-adaptation in human blood cells. 

This question could be affirmed for OXTR. In the three studies presented here, we observed 

stress-related changes in the OXTR target sequences, while DNA methylation of the BDNF 

target sequence remained stable. Whether blood cell DNA methylation of this particular 

BDNF target sequence is generally not sensitive to psychosocial stress or to other 

environmental factors, remains to be investigated in future studies. 

 

Overall Research Question 2 

The second overall research question was whether stress-related changes in DNA methylation 

are stressor specific. Indeed, the results from the three studies indicated that this might be the 

case, even across target sequences within the same gene. In conclusion, DNA methylation of 
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OXTR1 and OXTR2 could be sensitive to specific psychosocial stress experiences, while DNA 

methylation of BDNF remained stable. The results are summarized in table 3 

 

Table 3 

	
   	
   	
  Summary of the Results 

Psychosocial Stressor OXTR1 OXTR2 BDNF 

Prenatal stress ê NA NA 

Low maternal care = é = 

Acute psychosocial stressa (é) ê = (ê) = = 
Notes. Observed changes in DNA methylation: é=increase in DNA methylation; ê=decrease in DNA 

methylation. Arrows in brackets indicate that the change in DNA methylation was not significant after 

controlling for blood cell count. OXTR=oxytocin receptor; BDNF= brain-derived neurotrophic factor; 

NA=not analyzed; equals sign=no changes. 
a left arrow: change from pre-stress to post-stress; right arrow: change from post-stress to follow-up 
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General Discussion 

The aim of the three research papers presented here was to investigate different psychosocial 

stressors with regard to changes in DNA methylation of three target sequences within two 

candidate genes (OXTR1, OXTR2 and BDNF). First, intrauterine exposure to several indicators 

of maternal psychosocial stress during pregnancy predicted decreased OXTR1 DNA 

methylation. Second, experience of low maternal care during childhood and adolescence was 

associated with increased OXTR2 DNA methylation. Third, DNA methylation of OXTR1 was 

increased immediately after exposure to acute psychosocial stress and fell even below 

baseline levels 90 minutes after stress exposure. This DNA methylation decrease could also 

be observed in OXTR2. While the decrease from post-stress to follow-up remained significant 

after accounting for time-related variations in blood cell count, all other dynamic DNA 

methylation changes did not. 

 

General Psychobiological Implications 

The three studies reported here have identified stress-related changes in DNA methylation of 

the OXTR. I speculate that these changes might be relevant for gene activity (Gregory et al., 

2009). If so, the findings might provide insight into how exposure to psychosocial stress could 

epigenetically shape the oxytocin system. These results not only expand the existing literature 

on stress-related epigenetic changes to an additional candidate gene, but also contribute to the 

increasing literature on stress-related changes in the oxytocin system (Kumsta et al., 2013).  

Results on the BDNF target sequence suppose that DNA methylation of this sequence 

was neither associated with acute psychosocial stress nor low maternal care. Whether BDNF 

is epigenetically regulated by other stressors or environmental factors, or whether different 

BDNF target sequences (e.g. comprising other exons) possess different stress-sensitivity, 

should be investigated in future studies.  
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Overall, the reported results have some general psychobiological implications: 

• Stress-related changes in peripheral blood: Up to date, only few studies investigated 

epigenetic patterns in living humans and most results on early life stress and DNA 

methylation are derived from animal models. The fact that stress-related changes in 

DNA methylation could be observed in DNA samples extracted from peripheral blood 

supports the potential gain of investigating epigenetic patterns in this highly accessible 

tissue (Davies et al., 2012), although several methodological questions remain to be 

answered (see limitations and future directions).  

• Stress-related dynamic changes: Stress-related epigenetic processes are highly dynamic. 

Stress-related changes in OXTR DNA methylation were not only associated with 

prolonged psychosocial stress experiences in early development, such as intrauterine 

adversities and maternal care during childhood and adolescence, but also after an acute 

psychosocial stressor. Whether stress-related epigenetic adaptations after early life 

stress are associated with the observed dynamic changes in OXTR DNA methylation in 

adulthood could be investigated in future studies. 

• Stress-specificity: stress-related changes in DNA methylation of the assessed target 

sequences are – at least to some degree – specific to the psychosocial stressor. Results 

suggest that DNA methylation of OXTR1 might be sensitive to prenatal stress and to 

acute psychosocial stress in adulthood while DNA methylation of OXTR2 seems 

sensitive to maternal care. This is especially noteworthy with regard to the fact that the 

OXTR target sequences were in close proximity, indicating that changes in OXTR DNA 

methylation might not only be stressor-, but also target sequence-specific. 

• Direction of stress-related changes in DNA methylation: The stress-related changes in 

DNA methylation were bi-directional and seemed specific to the psychosocial stressor 

(table 3). However, it might also be possible that it is not the psychosocial stressor per 
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se that defines direction of the observed changes but rather the timing of stress exposure, 

which could be investigated in future studies. 

 

Implications for Stress-Adaptation and -Resilience 

Oxytocin signaling was described to dampen the stress response. Therefore, I speculate that 

decreased OXTR DNA methylation and presumably augmented flexibility for regulation of 

OXTR expression could be a protective factor promoting stress-adaptation and -resilience.  

Prenatal Stress. 

Based on the finding that intrauterine exposure to several indicators of maternal adversities 

resulted in decreased DNA methylation of OXTR1, I assu,e that specific prenatal adversities 

are associated with increased accessibility of the OXTR gene for transcription. Although this 

seems surprising, the result is in line with the assumptions of the Adaptive Calibration Model 

(Del Giudice et al., 2011) and the Predictive Adaptive Response Model (Gluckman et al., 

2005). These models of phenotypic plasticity state that early in development, an organism 

produces a phenotype appropriate for an expected environment, based on cues from the 

immediate environment. An adverse maternal environment during pregnancy is associated 

with decreased positive maternal behavior (Lovejoy et al., 2000). Consequently, one could 

speculate that alleviated OXTR expression might support the infant’s development by an 

increased dampening of its stress response and improved oxytocin signaling. This could 

protect the developing neuronal structures, which are highly sensitive to exposure to stress 

hormones and actions of the sympathetic nervous system (Li et al., 2012). Improved 

accessibility of OXTR could support stress-adaptation and resilience in a potentially stressful 

environment. However, one has to keep in mind, that other biological systems could still be 

programmed differently. 
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Low Maternal Care. 

The quality and quantity of care provided by a primary care-person is essential for the normal 

development of a child (Bowlby, 1969). Based on our findings and the assumptions of the 

diathesis-stress model (e.g. Wittchen & Hoyer, 2011), I speculate that a reduced OXTR 

accessibility and expression could provide a molecular basis by which low maternal care 

contributes to the increased predisposition of an individual to develop a mental disorder, after 

exposure to a major stressor. Thereby, decreased OXTR signaling could contributes to an 

diminished stress-adaptation potential – for instance by a reduced ability to dampen the HPA-

axis or sympathetic nervous system. 

Acute Psychosocial Stress. 

The response to an acute stressor consists of a fast response with increased sympathetic 

activity and release of stress hormones. Our finding that OXTR DNA methylation increased 

during the immediate alarm phase could indicate a molecular reaction to acute stress, in which 

an increased stress-response supports the organism’s survival. However, due to potential 

contributions made by time-related changes in blood cell count, this finding has to be 

interpreted carefully. During the phase of resistance, DNA methylation decreased even below 

baseline levels. This process could support stress recovery on a molecular level, namely by an 

increased OXTR accessibility for transcription. Notably, the sample investigated grew up 

during World War II and it is likely that these participants were exposed to war adversities. 

Therefore, the results are not generalizable to other cohorts and have to be interpreted with 

caution. Subsequent research questions could examine whether the severity of early stress 

exposure associates with the quantity of stress-related changes in DNA methylation, or 

whether observed changes in DNA methylation are related to the stress reactivity of other 

psychobiological stress systems, such as HPA axis or sympathetic nervous system activity. 
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General Strengths and Limitations 

The presented studies have some general strength and limitations. 

General Strengths. 

• Stress-related candidate genes: The studies presented here were highly innovative, 

because we investigated stress-related candidate genes beyond the HPA axis, which 

were not in the focus of epigenetic research on psychosocial stress in humans yet. 

Therefore, the presented studies have the potential to scrutinize the epiphenotype of 

psychosocial stress by providing new insights in the field of behavioral epigenetics.  

• Multiple target sequences: In the maternal care and acute psychosocial stress study, we 

did not only investigate one candidate gene but two and included two target sequences 

within one gene. Therefore, our results could lead the presumption that psychosocial 

stress experiences are associated with gene- and target sequence-specific changes in 

DNA methylation, rather than global alterations.  

• Multiple stressors: We investigated DNA methylation of identical target sequences in 

combination with three different psychosocial stressors. Since target sequences often 

differ between studies and are therefore not comparable, our study provides insight into 

the stress-specificity of our selected target sequences.  

• Assessment of blood cell count: We tried to account for blood-cell specific DNA 

methylation patterns by assessing blood cell count whenever possible.  

• Advanced statistical models: We applied statistical mixed models that, at least in the 

prenatal stress and maternal care study, accounted for the independence of DNA 

methylation values across CpG units, which might have implications for future studies. 
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General Limitations. 

• Sample sizes: The sample sizes were relatively small, especially with regard to the 

mixed model analyses. This resulted in difficulties with regard to the stability of the 

results. Moreover, we were not able to conduct subgroup analyses. For example, it 

would have been interesting to investigate specific exposures to life-changing events 

prior to the second pregnancy trimester or the influence of the severity of war exposure 

on the dynamic changes in DNA methylation after acute psychosocial stress. 

• Study design: The study designs do not allow drawing conclusions about causality. 

Therefore, we cannot determine whether prenatal or early life stress is a cause or a 

simple correlate of the observed changes in OXTR DNA methylation. In the acute 

psychosocial stress study, we could have applied a randomized experimental design 

with a group exposed to a non-stressful control-TSST. 

• Epigenetic tissue- and cell-specificity: DNA methylation was measured in blood 

samples. Due to the assumed tissue-specificity of epigenetic patterns, we cannot draw 

conclusions about epigenetic patterns in neuronal tissue. Additionally, we should be 

careful with the interpretation of DNA methylation in cord-blood samples, as we do not 

know to what degree these patterns relate to DNA methylation in the tissue of newborns. 

Moreover, even the assessment of epigenetic patterns in blood is problematic, since 

epigenetic patterns are not only tissue- but for some genes also blood cell type-specific 

(Adalsteinsson et al., 2012). However, we tried to address this issue by statistically 

analyzing the influence of blood cell count. 

• Assessment of epigenetic patterns: Sequenom EpiTYPER is an established method to 

assess DNA methylation, but does not yield single CpG resolution. Up two seven 

neighboring CpG sites can be combined into a CpG unit. In our analyses, we did not 

weight CpG units according to the number of CpG sites included in a unit. Another 
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weakness is that the sole assessment of DNA methylation might not provide an overall 

epigenetic picture, since additional epigenetic processes affect gene expression, for 

instance histone modifications or microRNAs (e.g. Allis, 2007). 

• Significance of investigated target sequences: In all studies, we did not analyze 

expression or protein levels of OXTR or BDNF, therefore we cannot draw conclusion 

about the functional relevance of the assessed target sequences. However, they were 

designed to cover functionally relevant regions identified in previous studies. 

Nevertheless, we can only speculate about the implications for stress-adaptation and 

resilience. 

• Generalizability: The reported studies are not generalizable to other populations. The 

prenatal stress and maternal care study included low-risk samples with above-average 

socioeconomic backgrounds and high educational levels. The cohort of the acute 

psychosocial stress study grew up during World War II, which might have affected 

biological stress systems. 

 

Outlook 

First, there is a strong need for prospective longitudinal human studies in behavioral 

epigenetics research. Although the prenatal and the early life stress study provide evidence 

that psychosocial stress early in life is associated with distinct epigenetic alterations, future 

studies should scrutinize whether these changes are caused by psychosocial stress exposure or 

are a simple biological correlate. For example, longitudinal studies could repeatedly assess 

epigenetic patterns, as well as the psychobiological and behavioral consequences of stress-

related epigenetic alterations. 

Second, future epidemiological studies could compare epigenetic patterns between 

exposed and non-exposed individuals who did or did not develop a specific disorder (e.g. see 
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Mehta et al., 2013). These epidemiological studies, especially in combination with a 

longitudinal study design, might shed light on epigenetic processes shaping the stress 

response systems, which could contribute to an individual’s predispositions for mental 

disorders. 

Third, future studies should replicate our findings in different populations. It might be 

interesting to include high-risk samples, e.g. with low socio-economic status or low levels of 

education. Successful replication could validate our findings and expand generalizability. 

Last, an essential question that remains to be answered in future studies is the comparability 

of epigenetic patterns between different tissues. Up to date, there is evidence that tissue-

specificity of epigenetic patterns depends on the gene investigated (Adalsteinsson et al., 2012; 

Davies et al., 2012). Correlating epigenetic patterns measured in blood cells with peripheral 

levels of proteins that are synthesized exclusively in the brain, e.g. hormones of the pituitary, 

could provide a potential approach for future research. 

 

Overall Conclusions 

DNA methylation of the OXTR could be sensitive to different psychosocial stressors during 

all periods of life. While stress-associated changes in DNA methylation of different OXTR 

target sequences seemed to be stressor-specific, we did not identify psychosocial stressors 

associated with DNA methylation of BDNF in the three papers presented here. The findings 

in OXTR could support our understanding of an epigenetic contribution in stress-adaptation. 

Notably, the results indicate that OXTR DNA methylation, which seems epigenetically 

sensitive to acute psychosocial stress, is associated with exposure to prenatal and early life 

stress. This could support our understanding of how stressful psychosocial experiences might 

contribute to an individual’s potential for stress-adaptation and presumably the vulnerability 

or resilience to develop mental disorders later in life.  
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ABSTRACT 

Background 

The aim of this study was to investigate whether maternal adversities and cortisol levels 

during pregnancy predict cord blood DNA methylation of the oxytocin receptor (OXTR), a 

gene involved in maternal behavior and stress adaptation. 

Methods 

Cord blood of 39 newborns was collected from offspring of mothers recruited from a cross-

sectional study including 100 pregnant women in Basel, Switzerland, conducted from 2007 to 

2010. In the second (T2) and third (T3) trimester, mothers completed questionnaires on 

stressful life events during the past two years (Inventory of Life Events, T2), depressive 

symptoms during the past seven days (Edinburgh Postnatal Depression Scale, T3), and 

provided saliva samples for maternal cortisol awakening response (CAR) and diurnal cortisol 

profiles (T2). One to three weeks postpartum, mothers indicated chronic stress experience 

during pregnancy (Trier Inventory of chronic stress). Cord blood DNA methylation of OXTR 

was quantified using Sequenom EpiTYPER®. Statistical analyses were performed using 

mixed models. 

Results 

The number of stressful life events (Loglikelihood-Ratio(1)=4.606; p=0.032), depressive 

symptoms (Loglikelihood-Ratio(1)=7.183; p=0.007), and cortisol awakening response 

(Loglikelihood-Ratio(1)=5.027; p=0.025) but not chronic stress during the course of 

pregnancy (Loglikelihood-Ratio(1)=0.173; p=0.677) or diurnal cortisol profiles 

(Loglikelihood-Ratio(1)=3.011; p=0.083), were negatively associated with cord blood DNA 

methylation of OXTR. 
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Conclusions 

Our findings suggest that maternal adverse experiences and cortisol awakening response 

during pregnancy predict DNA methylation of an OXTR sequence in cord blood. The results 

are in line with the assumption that adverse maternal life events and mood might prepare the 

offspring for the future environment by epigenetic stress-adaptation mechanisms. 
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Introduction 

Maternal adverse psychosocial experiences, endogenous cortisol levels and exogenous 

glucocorticoid response during pregnancy are associated with an increased risk for poor birth 

outcome, behavioral and stress-related abnormalities and later physical and mental disorders 

in the offspring (1-17). Although the molecular mechanisms in these phenomena are not fully 

understood, a recent line of evidence suggests that the association between intrauterine 

environment and offspring’s health could be epigenetically mediated (18). DNA methylation 

– the binding of a methyl-group to a CpG site – is commonly associated with transcriptional 

silencing of a gene and has been shown to be responsive to early life adversities and other 

environmental factors (19, 20). So far, several intrauterine predictors of cord blood DNA 

methylation in newborns have been identified, including maternal diet (21-26), maternal 

substance consumption (27-30) and maternal depression and stress experience (31-35). 

Although the identification of epigenetic patterns associated with maternal mood and her 

psychosocial environment could increase our understanding of how maternal psychosocial 

experiences during pregnancy affect offspring development, only few epigenetic studies 

addressed this issue: First, maternal depressed mood during pregnancy was related to 

increased cord blood DNA methylation in the cell growth-related Maternally Expressed Gene 

3 (MEG3) (32, 36) and to decreased cord blood DNA methylation in the serotonin transporter 

gene (SLC6A4) (31). Second, maternal experience of pregnancy related anxiety and 

augmented maternal cortisol levels, particularly in the second trimester, predicted increased 

cord blood DNA methylation in several CpG sites of the human glucocorticoid receptor gene 

(NR3C1) promoter (35). Third, maternal exposure to war stress, material deprivation and 

daily hassles during pregnancy were found to be associated with increased cord blood DNA 

methylation in a NR3C1 promoter region (34). Finally, intimate partner violence during 

pregnancy was positively associated with NR3C1 DNA methylation in adolescent offspring 
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(37), suggesting long-term epigenetic adaptations in the offspring after intrauterine exposure 

to maternal psychosocial adversities. In sum, DNA methylation of some genes seems to be 

responsive to maternal mood and stress experience during pregnancy. However, further 

candidate genes should be investigated to improve our understanding of how the maternal 

psychosocial environment relates to the offspring’s epigenome. The oxytocin receptor 

(OXTR) is a potential candidate gene, due to the involvement of the oxytocin system in 

maternal (reproductive) behavior, mother-child bonding, and its interaction with the 

hypothalamic-pituitary-adrenal (HPA) axis to dampen the stress-response (38-46). Despite 

oxytocin’s relevance for early neuronal and social development and mental health (47, 48), 

DNA methylation of the OXTR has – to the best of our knowledge – not been examined in 

cord blood of newborns at birth. 

The aim of this study was to investigate different maternal adversities and cortisol levels 

during pregnancy as predictors of cord blood DNA methylation of the OXTR. To cover a 

spectrum of maternal adverse experiences during pregnancy (49), we included several 

measures of maternal adversities: i) life changing events during the two years prior to the 

second trimester and current strain experienced by those events; ii) chronic stress experience 

during the whole course of pregnancy; and iii) maternal depressive symptoms during the third 

trimester. Additionally, we assessed iv) salivary cortisol levels (cortisol awakening response 

and diurnal cortisol profiles) during the third trimester as an indicator of HPA axis activity. 

Because maternal adverse experiences during pregnancy were associated with an increase or 

decrease in DNA methylation depending on the investigated gene in the above-mentioned 

previous studies, we did not state explicit hypotheses regarding direction of the association. 
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Methods and Materials 

Participants 

The final sample consisted of 39 pregnant women representing a sub-sample of a larger cross-

sectional study with multiple measuring time-points, which included 100 pregnant women 

and which was conducted in Basel, Switzerland from 2007 to 2010. Using different 

recruitment strategies, including promotion at local hospitals and advertisements in local 

newspapers and television stations, we recruited pregnant women between their 21th and 32nd 

week of gestation. Inclusion criteria for study participation were assessed during a telephone 

screening, and at a personal appointment at the facilities of the University of Basel, where we 

conducted a structural clinical interview and applied a biomedical questionnaire. Inclusion 

criteria were 1) no current mental disorder; 2) no severe medical complications; 3) no acute or 

chronic physical disease, such as metabolic disease or thyroid dysfunction; 4) no signs of fetal 

malformation, 5) pre-pregnancy body mass index below 32 kg/m2; 6) no cigarette, alcohol or 

drug consumption beyond the 10th week of gestation; 7) good knowledge of the German 

language. A total of four women were excluded after study enrollment due to multiple 

outcome (i.e. twins), preterm delivery or not meeting inclusion criteria, which was detected 

only after the clinical interview. One woman terminated study participation before delivery. 

Cord blood samples could not be analyzed for 56 of the remaining 95 women, due to sample 

unavailability or insufficient quality or quantity of the cord blood sample. A flowchart of 

study participants is depicted in figure 1. Participants and pregnancy characteristics (N=39), 

birth parameters and descriptive values of predictors are shown in table 1. The subsets of 

participants providing versus those not providing cord blood for DNA methylation analyses 

did not differ with regard to birth parameters, socioeconomic status, pregnancy characteristics, 

scores on the maternal adversity questionnaires and cortisol profiles. 
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Procedure 

At gestational week 21 to 32, participants completed a telephone screening to assess inclusion 

criteria and underwent the standardized DIA-X Munich-Composite International Diagnostic 

Interview (M-CIDI (50-52)). Between gestational week 20-24, included women completed 

questionnaires on stressful life events during the past two years (Inventory of Life Events, 

ILE (53)). Additionally, they provided saliva samples to assess morning and diurnal salivary 

cortisol levels. During gestational week 32 to 34 they completed a questionnaire on 

depressive symptoms during the past seven days (Edinburgh Postnatal Depression Scale, 

EPDS (54, 55)). At birth, cord blood samples were collected for DNA methylation analysis. 

One to three weeks post-partum, the mothers were asked to complete a questionnaire on 

chronic stress experience during the course of their pregnancy (Trier Inventory of Chronic 

Stress – Short Version, TICS-K (56)). 

 

Questionnaires 

Inventory of life events (ILE (53)). The ILE assesses the number of life-changing events 

during the last two years, such as being a victim or witness of assault, severe chronic illness 

or accident, or death in the family or close friends. A total of 32 life events are listed, 

including two open questions. Additionally, the ILE measures current strain caused by the 

respective life event on a 4-point Likert scale ranging from 1 to 4, whereby a high score 

indicates high levels of strain. The questionnaire provides information on three subscales: 1) 

number of life events (ILE life events); 2) total strain currently caused by all experienced life 

events (ILE total strain); and 3) average strain per experienced life event (ILE average strain 

per event). Reliability and criterion validity of the ILE are considered sufficient (53). 

Edinburgh Postnatal Depression Scale (EPDS (54, 55)). The EPDS is a 10-item scale which 

assesses maternal depressive symptoms. Respondents have to indicate their mood during the 
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last seven days, such as the ability to experience joy, levels of anxiety, experience of 

excessive demands or sadness. Answers are given on a 4-point Likert scale. High scores on 

the EPDS indicate high levels of depressive symptoms. The EPDS was identified as gold 

standard to assess maternal depressive symptoms during pregnancy, due to its high reliability 

and validity coefficients and the exclusion of somatic symptoms overlapping with pregnancy-

related somatic changes (55). 

Trier Inventory of Chronic Stress – Short Version (TICS-K, (56)). The short version of the 

TICS consists of 30 items assessing chronic stress in different areas, including social life, 

working life or interpersonal communication. Respondents rated the amount of stress they 

experienced during the course of their pregnancy on a 5-point Likert scale ranging from 0 (“I 

never made this experience”) to 4 (“I made this experience very often”). The subscales of the 

TICS-K possess good to very good reliability, the validity of the TICS-K scales is considered 

to be sufficient (56, 57). For the statistical analyses, we calculated an overall sum score. 

We collected sociodemographic information, including maternal age (in years), education (in 

years) and family income rating (categories: “income is not enough for living”, “income is 

just enough for living”, “income is good to live with”) using a sociodemographics interview. 

Information on pre-pregnancy body mass index (BMI), parity and birth outcomes (length of 

gestation, delivery mode, birth weight) was collected from medical records and a biomedical 

questionnaire. 

 

Salivary Cortisol 

Women were requested to collected saliva six times a day during two consecutive normal 

workdays during gestational week 20-24. Samples had to be collected immediately after 

awakening, 30 minutes, 45 minutes and 60 minutes after awakening, at 1500h and at 2000h. 

We asked mothers to report sampling time, using written documentation, and excluded 
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samples from the analyses if they were collected outside a time frame before or after the 

scheduled sampling time of i) ±15 minutes for the first three samples; ii) ±30 minutes for the 

fourth sample and iii) ±60 minutes for the fifth and sixth sample. Participants received 

salivettes for saliva collection (Sarstedt, Nümbrecht, Germany) together with a detailed 

instruction sheet. Women stored the salivettes in a refrigerator until handing them in at the 

study center. Furthermore, we asked them not to collect saliva if they felt sick or ill and to 

avoid coffee, black tea and physical exercise on the day of saliva collection. Upon arrival at 

the study center, saliva samples were stored at –20°C until further analysis. Saliva samples 

were centrifuged at 2000 × g for 6 minutes before free salivary cortisol levels were measured 

using a time-resolved fluorescence immunoassay (DELFIA®, PerkinElmer Inc., Waltham, 

Massachusetts). All analyses were performed in duplicates and all intra- and inter-assay 

coefficients of variation were below 10%. 

To analyze the cortisol awakening response within the first hour of awakening (CAR), 

we calculated the area under the curve with respect to ground (CAR AUCg: samples one to 

four). Since the AUCg provides information on total hormonal output (58) the AUCg was 

preferred to the AUCi because the CAR extenuates during pregnancy (59). For the diurnal 

cortisol profiles, we calculated the area under the curve with respect to increase (DAY AUCi: 

samples one to six) to assess HPA axis sensitivity (as suggested in 58). AUC values 

calculated for the two consecutive days separately and were then averaged to obtain one 

measure for CAR AUCg and one measure for DAY AUCi. In the case of missing data on one 

day, the AUC calculated for the other of the two days was used for further statistical analyses. 

 

Cord Blood Sample Preparation and DNA Methylation Analysis 

Cord blood was collected by medical staff immediately after birth using 2.7 ml S-Monovette 

(Sarstedt, Nuembrecht, Germany). Samples were centrifuged at room temperature at 1650 × g 
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for 10 minutes. DNA was extracted from whole blood using the standard protocol of the 

Gentra Puregene Cell Kit (QIAGEN, Hilden, Germany) and stored at –20°C until further 

analyses. 540ng of genomic DNA was bisulfite converted using EZ-96 DNA MethylationTM 

Kit (Zymo Research, Irvine, California), according to manufacturer’s protocol. Using the 

Sequenom EpiDesigner software, the OXTR target sequence (chromosome 3, p25, nt 

8809275-8809534; figure 2) was designed to be located in the protein-coding region of OXTR 

exon III, which is part of a CpG island spanning across exons I to III and which was 

previously described to be associated with transcriptional regulation (60). Bisulfite PCR 

amplification of the target sequence was conducted using Hot Star Taq DNA polymerase 

(QIAGEN, Hilden, Germany). We quantified DNA methylation (%5meC) using 

EpiTYPERTM 1.0 (Sequenom Inc., San Diego, California). For each run, we included a fully 

methylated positive control (New England BioLabs® Inc., Ipswich, Massachusetts) and a 

blank control (destilled water). 

 

Statistical Analyses 

Data preparation included visual inspection for assumption of normality distribution (qq-plots, 

histograms, boxplots) of all predictors and the outcome variable (DNA methylation values, 

5%meC). Sum score on the EPDS was the only predictor variable not normally distributed 

and was therefore transformed using the natural logarithm. To test whether the subsample of 

women who provided cord blood for DNA methylation analysis versus those who did not 

provide these samples differed with regard to sociodemographic data, pre-pregnancy BMI, 

pregnancy characteristics or birth outcomes, we used t-tests (continuously distributed data), 

Whitney U-test (ordinally distributed data) or χ2-test (nominal data). To examine the inter-

correlation between predictors we calculated Pearson’s bivariate correlation coefficient. 
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Resolution of Sequenom EpiTYPER yielded 10 individual CpG units including a total of 22 

CpG sites (figure 2). Two CpG units (CpG unit 3 and CpG unit 6) could not be analyzed due 

to high mass detection limit. CpG unit 4 (CpG site 9) was excluded because data was 

available for less than 10% of the participants. 

For all statistical analyses on DNA methylation we used linear mixed models, with CpG 

unit as within subject factor. We specified an unstructured variances-covariance matrix for the 

within-subject factor as this pattern lead to the best model fit, based on the Akaike 

information criterion (AIC).  Each model contained batch number as covariate to statistically 

control measurement bias due to batch effects. Then, each maternal predictor of adversity 

(ILE, EPDS, TICS-K, salivary CAR AUCg and DAY AUCi) was analyzed in a separate 

model to avoid model over fitting. In order to obtain information about possible confounders 

or mediators in the association between maternal predictors and DNA methylation, we 

examined maternal age, pre-pregnancy BMI, years of education, income category rating, (see 

questionnaire section), parity, length of gestation (days), mode of delivery (vaginal versus 

cesarean section) and birth weight (g) (61-65). To assess the effect of a specific predictor we 

used a Loglikelihood-Ratio (L-Ratio) test, comparing the mixed model including the 

respective predictor with the corresponding model excluding it. In addition to the TICS-K 

overall sum score we also analyzed its ten subscales, thereby adjusting for multiple testing 

using the Bonferroni-Holm method (66). 

The descriptive statistics, predictor correlations and subsample comparisons were 

conducted using IBM SPSS 20. All mixed model analyses were performed using R version 

3.0.1 (2013-05-16) (67) using the gls function of the nlme package (68). A p-value less than 

0.05 was considered as statistically significant. 
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Figure	
  1.	
  Flowchart	
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  study	
  participants.	
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Figure	
  2.	
  Schematic	
  view	
  of	
  the	
  oxytocin	
  receptor	
  gene	
  (OXTR).	
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  sites	
  within	
  the	
  target	
  

sequence	
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  underlined	
  and	
  numbered	
  consecutively.	
  Unit	
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  indicate	
  the	
  CpG	
  units	
  

based	
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  resolution	
  yielded	
  by	
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  Sequenom	
  EpiTYPER. 
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Table 1. Characteristics of participants (N=39), pregnancy and birth outcomes 

and descriptive statistics (range, mean and standard deviation, SD) of 

predictors. 

  Range Mean SD 

Maternal age (years) 24 – 40 31.9 3.9 

Education (years) 8 – 24 15.2 4.0 

Pre-pregnancy BMI (kg/m2) 16.2 – 31.2 22.5 3.8 

Length of gestation (days) 256 – 291 277 8.2 

Birth weight (g) 2270 – 4440 3313 430 

    Life changing events (ILE score) 

  Number of life events 1 – 15 7.08 3.67 

Total strain 2 – 35 14.95 8.87 

Average strain per life event 1 – 2.8 2.05 0.47 

Depressive symptoms (EPDS score) 0 – 17 4.68 4.42 

Chronic stress (TICS-K score) 16 – 60 34.08 11.00 

Salivary cortisol CAR AUCg  537 – 1607 963 299 

Salivary cortisol DAY AUCi  -138 – 745 269 237 

   

  

  N % 

 Household income rating1 

   „Income is not enough“ 0 0% 

 „Income is just enough“ 6 17% 

 „Income is good to live with“ 29 83% 

 
    Parity2 

   First 25 66% 

 Second 11 29% 

 Third (or more) 2 5% 

 
    Delivery mode3 

   Vaginal 24 63% 

 Caesarean section 14 37%   

Abbrev:  ILE: Inventory of Life Events; EPDS: Edinburgh Postnatal Depression 

Scale; TICS-K: Trier Inventory of Chronic Stress – Short Version; CAR AUCg: 

area under the curve with respect to ground of the cortisol awakening response; 

DAY AUCi: area under the curve with respect to increase for the diurnal cortisol 

profile; SD: standard deviation. 
1Missing data (N=4); 2Missing data (N=1); 3Missing data (N=1). 
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Results 

The EPDS sum score, the ILE score for number of life events and AUCg CAR were all 

negatively associated with cord blood DNA methylation, whereas the ILE scores for total 

strain, strain per life event, sum score on the TICS-K and diurnal cortisol profiles were not 

(table 2). Of the ten subscales of the TICS-K, only the subscale assessing social isolation was 

negatively associated with cord blood DNA methylation (L-Ratio=4.181; p=0.0409). 

However, this result was not significant after correction for multiple testing for the ten TICS-

K subscales. 

Table 2. Modell parameters and estimates from mixed model analysis (N=39) calculated for 

each predictor of OXTR DNA methylation. Shown is goodness of model fit (Akaike Information 

Criterion, AIC), degrees of freedom of the model (df), Loglikelihood-Ratio (L-Ratio) between 

model with and without the predictor of interest and p value of model comparison. Parameter 

estimates indicate the direction and estimated value with standard error (SE) of the predictor. 

 

Model Parameters 

 

Parameter Estimates 

Predictors AIC df L-Ratio p   Estimate SE 

        Model without predictors 1190 

              Life changing events (ILE score) 

      Number of life events 1135 1 5.047 0.025 

 

-1.54E-01 6.03E-02 

Total strain 1137 1 3.093 0.079 

 

-5.24E-02 2.64E-02 

Average strain per life event 1139 1 0.967 0.326 

 

5.82E-01 5.07E-01 

Depressive symptoms (EPDS score)* 1114 1 7.050 0.008 

 

-7.04E-01 2.37E-01 

Chronic stress (TICS-K score) 1097 1 0.173 0.677 

 

-8.62E-03 2.02E-02 

Salivary cortisol CAR AUCg  776 1 5.545 0.019 

 

-1.90E-03 7.15E-04 

Salivary cortisol DAY AUCi  777 1 4.117 0.043   -2.43E-03 9.83E-04 

TICS: Trier Inventory of Chronic Stress; EPDS: Edinburgh Postnatal Depression Scale, ILE: 

Inventory of Life Events, AUCg: area under the curve with respect to ground, AUCi: Area under 

the curve with respect to increase; CAR cortisol awakening response; DAY: diurnal cortisol 

levels; AIC: Akaike Information Criterion; df: degrees of freedom; L-Ratio: Loglikelihood-Ratio; 

SE: standard error of the estimate. 

* transformed using natural logarithm 

 

None of the potential confounding (e.g. sociodemographic factors) or mediating factors (e.g. 

birth outcomes), were associated with OXTR DNA methylation. Therefore, we did not 
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investigate these factors further and did not include any of them in the primary analyses. 

Coefficients of inter-correlation between the predictors are shown in supplemental table 1 

(S1). The numbers of participants indicating a specific life event on the ILE are illustrated in 

supplemental figure 1 (S2). Graphical illustration of mean scores and standard deviations for 

the TICS-K subscales are shown in supplemental figure 2 (S3). 

 

Discussion 

The aim of this study was to investigate maternal adversities as predictors of OXTR cord 

blood DNA methylation. Total number of stressful life events up to two years prior to the 

second pregnancy trimester, but not the strain caused by these events at the time of 

assessment predicted cord blood OXTR DNA methylation at birth. Increased cortisol 

awakening response during the second trimester and maternal depressive symptoms were 

associated with decreased cord blood OXTR DNA methylation. In contrast, chronic stress 

during the course of pregnancy and diurnal cortisol profiles were not associated with cord 

blood OXTR DNA methylation. 

Overall, our results suggest that more stressful life-events, higher levels of depressive 

symptoms, and an increased cortisol awakening response in mothers during pregnancy are 

linked to a decreased OXTR DNA methylation status in cord blood at parturition, even in a 

low-risk sample. These findings are intriguing, since the oxytocin system contributes to 

stress-adaptation and neuronal- and social development, and may thus be associated with 

mental wellbeing of the offspring later in life (47, 69). 

This study has three main findings. First, the absolute number of maternal critical life 

events before the second trimester – rather than event-related strain or chronic stress that 

women experienced during pregnancy – predicted OXTR DNA methylation. Previous studies 

imply that maternal exposure to stressful life events even prior to conception increase the risk 
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for infant mortality and low birth weight (70, 71). The discrepancy that life changing events 

prior to the second trimester, but not stress experience during pregnancy per se predict cord 

blood OXTR DNA methylation seems surprising; however, they are in line with the finding 

that stressful war experiences (number of events, such as rape or death of a family member) 

were the strongest predictors of increased DNA methylation of the human glucocorticoid 

receptor gene (NR3C1), compared to more chronic stressors, such as material deprivation or 

daily hassles (34). However, the stress induction by war experiences might not be comparable 

with life changing events as assessed in our study with women from a generally secure 

environment. 

Second, DNA methylation of OXTR seems sensitive to maternal depressed mood. This 

result extends previous studies showing that maternal depressive symptoms predicted 

decreased SLC6A4 and increased NR3C1 cord blood DNA methylation (31, 33). Regarding 

these bidirectional changes in DNA methylation – increase in NR3C1 and decrease in 

SLC6A4 or OXTR DNA methylation after maternal adversities during pregnancy – we 

speculate that offspring DNA methylation is sensitive to maternal depressive symptoms and 

mood during pregnancy in a gene-specific manner. Notably, maternal symptoms of 

depression during pregnancy and the first week post-partum are a predictor of negative 

maternal affect, hostility, or coercive behavior as well as maternal disengaged behavior (72). 

This association might be mediated, in part, by maternal oxytocin (73, 74). In addition, 

oxytocin signaling has important functions for bonding between mother and child and vice 

versa (45, 75, 76). Thus, we hypothesize that OXTR DNA methylation could be considered an 

adaptive molecular mechanism, by which offspring with decreased DNA methylation in 

OXTR can regulate expression of this gene more flexibly. This molecular adaptation might 

provide better oxytocin signaling in an environment with potentially restricted maternal 

caring behavior due to maternal depressive symptoms. Interestingly, a previous paper by our 
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group based on data from the same study, suggests that decreased maternal OXT levels in the 

third trimester predicted an increased risk to develop postpartum depression (77). 

Third, a higher maternal CAR during pregnancy was associated with decreased OXTR 

DNA methylation. We suspect that maternal morning cortisol levels might serve as an 

intrauterine signal for an anticipated stressful extrauterine environment (4), in which 

improved accessibility of the OXTR might represent a beneficial mechanism for stress-

adaptation. Furthermore, our results suggest that anticipated stress predicts cord blood OXTR 

DNA methylation rather than HPA axis sensitivity of the mother. To the best of our 

knowledge, this is the first study examining a connection between maternal cortisol levels and 

offspring DNA methylation of a gene, which is not directly but indirectly associated with the 

HPA axis. 

In sum, our findings are in line with the assumptions of the predictive-adaptive response 

model. This model states that a developing organism adapts to the future environment by 

using cues from the current environment, providing the organism with an evolutionary 

advantage (78). We speculate that relevant experiences of an adverse environment of the 

mother before and during pregnancy, signal this information to the unborn child (8, 35, 79). 

Decreased DNA methylation in the OXTR could result in changes in OXTR accessibility for 

transcription (60). If this results in an improved OXTR availability, it could be advantageous 

in a stressful environment, because oxytocin signaling is linked to social bonding and 

interferes with the HPA axis to dampen the stress response (38-41, 80, 81). In short, we 

hypothesize that the unborn child might get prepared for a potentially challenging 

environment by an epigenetic adaptation of the OXTR. 

This study has several strengths. First, cord blood is an available target tissue providing 

information about an organism right at birth. At this stage, there was no direct postnatal 

exposure to environmental factors potentially affecting DNA methylation, such as nutritional 
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intake or psychosocial experiences. Second, we used statistical mixed model analysis, which 

were defined according to the patterns in DNA methylation across the CpG units. Using these 

models, we were able to account for different structures in variances and covariances between 

CpG units, which might give more reliable results as compared to statistical models 

investigating DNA methylation values averaged across a given target sequence. Last, we 

applied several instruments assessing different forms of maternal adversities, including 

maternal depressive symptoms and included cortisol awakening response and diurnal cortisol 

levels as indicators of HPA axis activity. 

The study has several limitations: First, we were only able to collect cord blood from a 

subsample of the initial study, which is critical with regard to our mixed model calculations 

that would profit from more observations. Thus, the results should be replicated in a larger 

sample. However, our subsample did not differ from the total sample with respect to 

sociodemographic data, pregnancy characteristics, general birth outcome or the predictor 

variables. Second, the reported maternal adversities and levels of depression were rather 

moderate. It would be interesting to repeat the study in a sample of pregnant women with 

experiences of trauma before or during pregnancy or a mental disorder, to examine an 

interaction between severity of maternal adversities or socioeconomic status with the 

predictors investigated in this study. Third, we cannot draw conclusions about the functional 

relevance of the assessed target sequence, as we did not assess OXTR expression- or protein 

levels. Fourth, due to the small amount of cord blood available, we were not able to determine 

blood cell count and could therefore not statistically control for this potential mediator (82). 

Fifth, some of the assessed parameters of maternal adversities were inter-correlated (see 

supplemental materials S1), suggesting that some predictors were not independent from each 

other and could – at least in part – measure the same constructs. Last, despite multiple 

measuring time-points, our study design does not allow conclusions about causality. 
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Moreover, our results are not generalizable to pregnant women with different socioeconomic 

characteristics, experience of severe traumatization, suffering from physical and mental 

disorders, women having birth complications or pregnant women outside Switzerland. 

In conclusion, increased maternal stress experience, depressive symptoms and cortisol 

awakening response predicted decreased cord blood DNA methylation in an OXTR target 

sequence. Our data provide first evidence that an adverse maternal environment increases the 

accessibility of the OXTR. Activity of this gene potentially facilitates social bonding and 

stress adaptation and could therefore provide a mechanism by which the offspring adapts to a 

potentially stressful environment. If replicated in a larger sample of mother-child dyads, the 

results could provide information on molecular mechanisms underlying the association 

between maternal adversities during pregnancy and physical and mental health of the 

offspring. 
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Supplemental Materials S1 

Table 1. Inter-correlation between measures of maternal adversities and maternal cortisol levels. Depicted are Pearson's 

correlation coefficients. 

  EPDS ILE1 ILE2 ILE3 CAR AUCg DAY AUCi 

TICS-K 0.293 0.241 .418* .507* -0.209 -.450* 

EPDS 1 0.317 .361* 0.133 -0.01 -0.143 

ILE number of life events (ILE1) 0.317 1 .942* 0.246 0.156 -0.04 

ILE total strain (ILE2) .361* .942* 1 .522* 0.092 -0.171 

ILE average strain per life event (ILE3) 0.133 0.246 .522* 1 0.022 -0.207 

CAR AUCg -0.01 0.156 0.092 0.022 1 .680* 

DAY AUCi -0.143 -0.04 -0.171 -0.207 .680* 1 

Abbreviations: TICS-K: Trier Inventory of Chronic Stress - Short Version; EPDS: Edinburgh Postnatal Depression Scale; ILE: 

Inventory of life events; ILE1: ILE number of life events; ILE2: ILE total strain; ILE3: ILE average strain per life event; CAR: 

Cortisol Awakening Response; AUCg: Area under the curve with respect to ground; DAY: Diurnal cortisol profile; AUCi: Area 

under the curve with respect to increase. 

* significant correlation with p<0.05 
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Supplementary figure 1. Number of participants indicating a specific live   

the Inventory of Life Events (ILE).
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Supplementary Materials S3 

	
  

Supplementary figure 2. Mean score on the subscales of the Trier Inventory of Chronic Stress (TICS). Error bars represent standard 

d i ti  
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Abstract 

Background 

The aim of this study was to compare DNA methylation between participants reporting low 

and high maternal care during childhood in two stress-associated genes (two target sequences 

in the oxytocin receptor, OXTR; one target sequence in brain-derived neurotrophic factor, 

BDNF) in peripheral whole blood. 

Methods  

This cross-sectional study took place at the University of Basel, Switzerland between 2007 

and 2008. We recruited 89 participants scoring lower than 27 or higher than 33 on the 

subscale maternal care of the Parental Bonding Instrument (PBI) at a previous assessment 

(N=709). At a personal appointment, 85 subjects provided blood samples for DNA 

methylation analyses (SequenomR EpiTYPER) and blood cell count (Sysmex PocH-100iTM). 

Statistical analyses on whole blood DNA methylation were performed using mixed models. 

Results 

DNA methylation was decreased in the high maternal care group compared to the low 

maternal care group in one OXTR target sequence (χ2(1)=4.45; p=0.035). We found no 

differences in a second OXTR (χ2(1)=0.010; p=0.920) assay and in the BDNF target sequence 

(χ2(1)=3.65; p=0.056). Preliminary analyses indicated that blood cell count did not mediate 

the association between low maternal care and increased OXTR DNA methylation (estimate= 

-0.014, standard error=0.009; p=0.104). 

Conclusions 

This study provides first evidence that maternal care is associated with DNA methylation of 

an OXTR target sequence in peripheral whole blood. The findings could have implications for 

further elucidation of the epiphenotype of early life stress and for future research investigating 

DNA methylation in human peripheral blood cells. 
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Introduction 

Parental care is crucial for the establishment of mental health for the offspring across life. 

Experiencing poor parental care during childhood increases the risk of abnormal 

psychological and endocrine responses to stress (1, 2), abnormal neuronal functioning (3) and 

mental disorders later in life (4-9). The molecular pathway underlying these associations is 

not yet fully elucidated. Increasing evidence suggests that early adverse experiences, 

especially low maternal care, alter DNA methylation with disadvantageous consequences for 

behavior and health later in life (for a review see 10). 

DNA methylation is an epigenetic mechanism, by which a methyl-group usually binds 

to a cytosine followed by a guanine (CpG). This process regulates the accessibility of the 

DNA for the transcription machinery. Increased DNA methylation of promoter or exon 

regions often results in a less accessible DNA architecture with reduced mRNA expression 

(for a review see 11). Several rodent studies found aberrant DNA methylation of stress-related 

candidate genes in brain tissue of offspring reared in potentially stressful environments. The 

adverse environment commonly applied in these studies include low caring mothers or 

maternal separation (12-18). Recent human studies on epigenetic consequences of early life 

stress suggest similar processes: McGowan et al. (19, 20) found increased DNA methylation 

of the glucocorticoid receptor (NR3C1) and the ribosomal RNA gene in post-mortem brain 

tissue of suicide victims who experienced childhood abuse. Later, they extended their results 

on multiple promoter regions in hippocampal neurons of suicide victims who experienced 

childhood trauma (21). A few studies investigated DNA methylation in human peripheral 

blood after early life adversities and reported similar findings, including changes in DNA 

methylation after early life stress: i) Childhood sexual abuse and childhood maltreatment or -

adversity predicted increased leukocyte DNA methylation of a target sequence in the 

NR3C1(22-24); ii) In CD3 T-cells, DNA methylation of several genes involved in the immune 
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system were either hyper- or hypomethylated in young adults who experienced parental 

adversities during childhood. Furthermore, the same study reported a negative association 

between maternal reports of warmth and affection towards their child and offspring DNA 

methylation of the NR3C1 (25); iii) Brain-derived neurotrophic factor (BDNF) DNA 

methylation was positively associated with the number of childhood trauma in a sample of 

borderline personality patients (26). Taken together, these studies suggest that early life 

adversities are associated with long-term changes in DNA methylation of stress-associated 

genes, possibly with consequences for mental health later in life. Thus, investigating 

additional stress-related candidate genes could extend our understanding of an epiphenotype 

of early life stress. 

In our study, we chose the oxytocin receptor (OXTR) as a first candidate gene, because 

i) oxytocin signaling modulates the stress response by interacting with the hypothalamic-

pituitary-adrenal (HPA) axis and sympathetic nervous system to dampen the stress-response 

(27-30) and ii) plays a crucial role in mother-child bonding (31) and a wide range of 

additional maternal behaviors (32, 33). Furthermore, the oxytocin system seems to be 

sensitive to stress experiences: i) Adult women suffering from early life adversities such as 

abuse had decreased oxytocin levels in cerebrospinal fluid (34); ii) men who experienced 

early parental separation showed reduced oxytocin sensitivity in adulthood (35) and iii) a 

previous study by our group indicated that DNA methylation of an OXTR target sequence was 

sensitive to acute psychosocial stress (36). Furthermore, a recent fMRI study suggests that 

OXTR DNA methylation in the periphery could have a functional relevance for social 

cognition and behavior (37). Finally, Kumsta and colleagues suggested to examine DNA 

methylation of genes involved in the oxytocin pathway after early life adversities, since 

epigenetic regulation of the oxytocin system might mediate the association between early 

adverse experiences and socio-behavioral outcomes (38). 
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BDNF, our second candidate gene, encodes for a neuronal growth factor involved in neuronal 

development and plasticity (39, 40) and in neuro-protective functions (41). Some of these 

BDNF-related functions were shown to be affected by early maternal care (42-45). Several 

immune cells, including peripheral human T and B cells, secrete bioactive BDNF and thereby 

support neuronal survival (41). Animal studies found altered BDNF levels in the rodent 

central nervous system and in the periphery of rhesus macaques after early life stress (46-48). 

Furthermore, central BDNF mRNA and -protein levels were increased in rat offspring raised 

by high compared to those raised by low caring mothers (45, 49). Epigenetic studies in 

rodents have shown that early life stress resulted in a higher methylation status of BDNF in 

neuronal tissue (16, 50), a result confirmed in an animal model of posttraumatic stress 

disorder (51). In addition, several human studies reported a negative association between 

psychopathology and peripheral BDNF concentration (52-55), suggesting that BDNF 

expression in the periphery is related to mental health. Finally, results from clinical studies 

suggest an involvement of increased BDNF DNA methylation in the etiology of stress-related 

mental disorders in humans (56-58). 

Based on these findings, the aim of this study was to examine an association between 

maternal care during childhood and DNA methylation in the OXTR and BDNF in human 

peripheral blood. Therefore, we compared DNA methylation in two target sequences in OXTR 

(referred to as OXTR1 and OXTR2) and one target sequence in BDNF between adults reporting 

high versus low maternal care during childhood and adolescence. Because DNA methylation 

was shown to be blood cell type specific for certain loci – which could affect the 

interpretation of DNA methylation measured in whole blood cells (59)  – and early life 

adversities are associated with changes in blood cell distribution (60), we estimated the effect 

of relative blood cell count as a potential mediator in the association between maternal care 

and DNA methylation. As both, increases and decreases in DNA methylation were reported 
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after early life stress in previous studies (for instance 25), we tested our hypotheses that 

maternal care during childhood and adolescence is associated with changes in DNA 

methylation of OXTR and BNDF in either direction. 

 

Methods and Materials 

Participants and Procedure 

The sample of this cross-sectional study consisted of 89 adults. They were selected from an 

ad-hoc sample comprising 709 university students, who were recruited after a preliminary 

screening conducted at the University of Basel in 2007. All participants completed the 

Parental Bonding Instrument (PBI) (61) and gave written informed consent. Those 

participants who scored below a cut-off of 27 or above 33 on the subscale maternal care of the 

PBI were invited to a personal appointment. All appointments took place at the facilities of 

the University of Basel, Switzerland, from late 2007 to early 2008. Participants arrived fasting 

at the laboratory between 0800h and 0900h. After written informed consent was obtained, a 

study nurse took two blood samples of 2.7ml each, from brachial vein, at room temperature 

using EDTA Monovette (Sarstedt, Nümbrecht) for DNA extraction and blood cell count. 

Thereafter, participants completed questionnaires on sociodemographic data. The study was 

approved by the local ethics committee Basel (Ethikkommission beider Basel, EKBB) and 

was carried out in accordance with the latest version of the declaration of Helsinki. 

Blood samples of four participants could not be analyzed due to lack of blood material 

and thus these participants were excluded from all subsequent analyses. The participants’ 

characteristics are depicted in table 1 and a flow chart of study participation is given in figure 

1. The resulting sample consisted of 85 participants: 45 reported low, 40 high maternal care. 

Women (n=67) and men (n=18) were about equally distributed between the maternal care 
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groups (χ2(1)=0.612, p=0.594). Age ranged from 19 to 66 years with a mean age of 27.5 years 

(SD=8.4). 
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Figure 1. Flow Chart of study partcipants included in data analysis (N=85). 
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Table 1. Group characteristics for participants reporting low or high 

maternal care on the Parental Bonding Instrument (PBI). Displayed are 

means (M) and 95% confidence intervalls (95% – CI). 

 Low maternal care  High maternal care 

  M 95% – CI   M 95% – CI 

Age (years)* 30.3 27.3 - 33.2 

 

24.3 22.7 - 25.9 

Sum score on PBI 16.5 14.7 - 18.2 

 

35.1 34.9 - 35.3 

      Blood cell count 

     Lymphocytes (%) 33.5 31.2 - 35.9 

 

31.7 29.6 - 33.9 

Neutrophils (%)2 58.3 55.6 - 61.0 

 

60.4 57.6 - 63.1 

Mixed1 (%)2 11.1 6.7 - 15.5   7.9 6.5 - 9.3 

1 monocytes, eosinophils and basophlis; 2 missing values: n=2  

Abbreviations: PBI: Parental Bonding Instrument; M: Mean; CI: 

Confidence Interval 

* significant group difference with p<0.05 

 

Maternal Care 

Parenting was assessed using the PBI (61) measuring parental bonding until the age of 16 

retrospectively on the two subscales “care” (12 items) and “overprotection” (13 items). 

Psychometric studies suggested a satisfactory validity and reliability (62) and indicated a high 

stability over a 20 year period (63). Participants responded on a 4-point Likert scale to which 

extent different statements about perceived maternal behavior applied (0 = not true; 3 = very 

true). High scores on the two PBI subscales indicate high care or high levels of 

overprotection, respectively. We focused on the dimension of maternal care and recruited 
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participants when scoring below a cut-off of 27 or above a cut-off of 33 on the respective 

subscale in a preliminary screening. We chose this subscale due to earlier studies identifying 

maternal care as a strong risk factor for later mental health (5) and due to previous 

experiments investigating animal models of maternal care (17, 64). Furthermore, a similar 

recruitment strategy was successfully applied in a previous study on maternal care in humans 

(65). For all analyses, participants were stratified into a high and a low maternal care group 

according to recruitment strategy. 

 

Blood and DNA Methylation Analysis  

DNA was extracted from whole blood using Puregene (Qiagen, Venlo) according to the 

manufacturer’s protocol. Samples were stored at  –80°C for subsequent DNA methylation 

analysis. 540ng of genomic DNA was treated with sodium bisulfite using the EZ-96 DNA 

MethylationTM Kit (Zymo Research, Irvine, USA) according to the manufacturer’s standard 

protocol. Bisulfite PCR amplification of one target sequence in BDNF and two target 

sequences in OXTR (OXTR1, OXTR2) was conducted using Hot Star Taq DNA polymerase 

(Qiagen, UK). The OXTR1 target sequence is located in the protein-coding region of OXTR 

exon III; the OXTR2 target sequence partly covers the non-coding and protein-coding regions 

of OXTR exon III. Both target sequences were designed to cover the OXTR CpG island – a 

region with a high density of CpG sites – comprising exons I to III, which was previously 

described to be associated with transcriptional regulation (66). The BDNF target sequence 

around the 3’-end of BDNF exon VI is situated mainly within a CpG island that covers BDNF 

exons V, Vh, and VI (67). BDNF exon VI is expressed in the non-neuronal tissue of the 

periphery (67). PCR products were prepared according to the manufacturer’s instructions for 

quantitative DNA methylation analysis using EpiTYPER 1.0 (Sequenom Inc., San Diego, 

USA). For each run, a fully methylated positive control (New England BioLabs® Inc.) and a 
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blank control (distilled water) were included. The assays for the amplicons were designed 

using the Sequenom EpiDesigner software (for target sequences see supplementary 

information S1). 

We analyzed blood cell count using Sysmex PocH-100iTM. As only leukocytes have a 

nucleus containing DNA compared to other blood cells (red blood cells, platelets), we 

considered the relative number of leukocytes as potential mediators in the association between 

maternal care and DNA methylation, more specifically percentage of lymphocytes (small 

leukocytes), neutrophil granulocytes (large leukocytes) or mixed cell types, consisting of 

monocytes, eosinophils and basophils (middle sized leukocytes). 

 

Statistical analysis 

The resolution of EpiTYPER yielded CpG units consisting of one to six individual CpG sites: 

11 CpG units for OXTR1, 28 CpG units for OXTR2 and 12 CpG units for BDNF. Two CpG 

units in OXTR1, one CpG unit in OXTR2 and one CpG unit in BDNF could not be measured 

due to upper or lower detection limits of Sequenom EpiTYPER. CpG units with > 20% 

missing data were excluded, which left 8 CpG units for OXTR1, 27 CpG units for OXTR2 and 

10 CpG units for BDNF for statistical analysis. All CpG methylation values were compared 

with the values of the fully methylated positive control: if the value of the sample exceeded 

the value of the positive control, the value was set missing. All blank controls were negative. 

We identified suspicious samples by setting outlier values as missing data (≥3 standard-

deviations from mean methylation of the respective CpG unit). By conducting missing values 

analyses separately for each gene, participants with >20% missing data were identified and 

excluded from the statistical analyses of the respective gene (OXTR1: n=2; OXTR2: n=1; 

BDNF: n=1). Methylation values of OXTR2 and BDNF were ln-transformed to meet 
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assumptions of normality (tMethylation = ln (5%meC methylation + 0.02)+4). The 

distribution of untransformed data for each CpG is shown in figure 2. 
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Figure 2. Box plots showing the distribution of untransformed DNA methylation 

(%5meC) of the BDNF, OXTR1 and OXTR2 target sequences by high and low 

maternal care groups. CpG units yielded by Sequenom EpiTYPER are numbered 

consecutively. Black lines: median, box: percentiles 25 – 75, whiskers: percentiles 

2.5 – 97.5, dots: outliers. 

Abbreviations: BDNF: brain-derived neurotrophic factor gene; OXTR: oxytocin 

receptor gene. 

 

In OXTR1, CpG unit 3 and 4 had identical DNA methylation values. In OXTR2, DNA 

methylation values were identical for CpG unit 3 and 11, and for CpG unit 12, 14 and 21. 

Repeated values of the duplicate and triplicate CpG units had to be excluded in order to 
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perform the mixed model analyses. We used a covariance pattern model (68), a type of mixed 

model, to analyze associations between maternal care and DNA methylation for each target 

sequence separately. In covariance pattern models, the covariances among the repeated 

measures are modeled directly. The choice of the specific covariance pattern was based on the 

best model fit as indicated by the Akaike Information Criterion (AIC) and was “unstructured” 

for all target sequences (i.e. all variances and covariances were estimated independently). 

We were particularly interested in the association of maternal care and DNA 

methylation of the target sequences, given repeated measures of CpGs and controlling for 

batch number, sex and age. These variables were included in all analyses due to their 

previously described associations with DNA methylation and parental care (69-72). 

Therefore, our main model contained maternal care, age, sex and batch number as predictors 

and CpG unit as repeated measure variable. Effects were tested using Chi-square tests, that is 

by comparing the fits of nested models including or excluding maternal care group, sex, and 

age. 

In subsequent analyses, we investigated relative amount of blood cell type as a potential 

mediator, using a multilevel mediation model as suggested by Preacher and collegues (73). 

Thereby, we only examined those blood cell types that were significantly associated with 

DNA methylation of the respective target sequence (identified using the mixed model 

described above). 

Data preparation and data check were conducted using IBM SPSS 20. Covariance 

pattern models were analyzed using R, version 2.15.2 (74), including the package lme4 (75). 

Mediation models were calculated using the software Mplus6 (76). An alpha level of <0.05 

was considered significant. DNA methylation values are presented as percent of 5’ cytosine 

methylation (%5meC). 
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Results 

In OXTR2, we found higher DNA methylation in the low compared to the high maternal care 

group (χ2(1)=4.48; p=0.035) (table 2). Mean DNA methylation values and magnitude of 

change in DNA methylation between the maternal care groups for each CpG unit, as well as 

corresponding standard errors (SE) are shown in supplementary table 1 (S2). Additionally, we 

found a sex difference with men having lower DNA methylation in OXTR2 compared to 

women (χ2(1)=10.4; p= 0.001) but no association of DNA methylation with age (χ2(1)=0.105; 

p=0.746). In the mediation model, we examined relative number of lymphocytes as a 

potential mediator in the association between maternal care and DNA methylation of OXTR2, 

as this blood cell type proved to be strongest associated with DNA methylation 

(χ2(1)=22.444; p< 0.001) compared to the other blood cell types. The indirect effect of 

maternal care on OXTR2 DNA methylation via relative number of lymphocytes was thereby 

not significant (estimate=–0.014; SE=0.009; p=0.104), nor was the direct effect (estimate=–

0.028; SE=0.016; p=0.086). 

In OXTR1, DNA methylation did not differ between maternal care groups (χ2(1)=0.010; 

p=0.920). We found no effects for sex (χ2(1)=1.113; p=0.291) or age (χ2(1)=0.189; p=0.664). 

In BDNF, DNA methylation did not differ between maternal care groups (χ2(1)=3.648; 

p=0.056). We also found no effects for age (χ2(1)=2.111; p= 0.146) and sex (χ2(1)=0.945; 

p=0.331). 
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Table 2. Results obtained from mixed model analysis for each target sequence. 

Estimated effects maternal care group include the values for estimated parameter 

effects of maternal care on DNA methylation and standarderrors (SE). χ2 and p-

values refer to the improvement in model fit, if the respective predictor (high care 

versus low care) was included in the model.  Additionally, number of participants (N) 

and number of observations are shown. All models included sex, age and batch 

number as covariates. DNA methylation values for OXTR2 and BNDF were 

transformed using natural logarithm transformation 

 

Maternal care group   Modell characteristics 

  Value1 SE   χ2 p-value N Observations 

OXTR1 -0.374 3.617 

 

0.010 0.920 83 577 

OXTR2 -0.035 0.015 

 

4.447 0.035 81 1885 

BDNF -0.051 0.025 

 

3.648 0.056 78 764 

1 Value corresponds to the difference in average DNA methylation between the low 

and high maternal care group, whereby low maternal care represents the reference 

group 

Abbreviations: OXTR: oxytocin receptor; BDNF: brain-derived neurotrophic factor; 

SE: standard error 

 

Discussion 

We examined DNA methylation of two stress-related candidate genes – two target sequences 

in OXTR and one target sequence in BDNF – in peripheral blood of adults reporting high or 

low maternal care during childhood and adolescence. We found that low maternal care was 

associated with higher whole blood DNA methylation of the OXTR2 target sequence 
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compared to high maternal care. We did not find any indication that this association between 

maternal care and OXTR2 DNA methylation was mediated by blood cell count. We did not 

find any maternal care-related differences in DNA methylation in OXTR1 or BDNF. 

Higher DNA methylation in the OXTR2 target sequence in subjects reporting low 

compared to those reporting high maternal care provides evidence for epigenetic changes 

related to early adverse experiences. Since the oxytocin system is involved in the dampening 

of the stress response (27-30), we speculate that a low maternal care-related increase in DNA 

methylation of the OXTR could provide a molecular mechanism contributing to the higher 

stress-reactivity (1, 2) and the increased risk to develop a mental disorders later in life, which 

is often observed after insufficient experience of parental care (4-6, 9). Similar studies in 

neuronal tissue (i.e. in human post-mortem brain tissue or animal models) could translate our 

results to oxytocin signaling in the brain or give information about tissue-specificity of 

experience-related changes in OXTR DNA methylation. This could have implications for the 

understanding of central processes associated with early life experiences and oxytocin-related 

behaviors (77-80). The indirect and direct effect from the mediation model were both non-

significant (with p values around 0.1) suggesting that relative number of lymphocytes is 

neither a mediator in the association between maternal care and DNA methylation 

of OXTR2 nor does maternal care simply have a direct impact on DNA methylation, despite a 

significant total effect. This finding stresses the need to scrutinize potential mediators further, 

using a greater sample. Finally, it seems that changes in DNA methylation in the OXTR is 

target sequence specific, as we did not find any maternal care-related differences in OXTR1. 

Whether these specific target sequences exhibit distinctive functional characteristics should be 

investigated in future studies. 

Low maternal care did not predict DNA methylation of OXTR1 or BDNF. In a previous 

study by our group, DNA methylation changes were related to acute psychosocial stress in the 
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same assessed OXTR1 target sequence (36), which was independent from stress-related 

changes in blood cell composition. Therefore, we hypothesize that DNA methylation in this 

target sequence could be more sensitive to acute psychosocial stress as compared to early life 

stress. In BDNF, we did neither observe any differences between the high and low maternal 

care group, nor dynamic changes in DNA methylation after acute psychosocial stress in the 

previous study investigating the identical BDNF target sequence (36). Whether DNA 

methylation in this BDNF target sequence measured in human peripheral blood cells is 

sensitive to other psychosocial stress experiences or environmental factors should be 

addressed in future studies. Taken together, findings from this and other studies imply that 

changes in DNA methylation are stressor- and target sequence specific, even within the same 

gene. 

Finally, we found higher OXTR2 DNA methylation in women compared to men. 

However, whether DNA methylation in the examined target sequence exhibits a functional 

relevance with regard to sex differences has to be elucidated in future studies. 

Although the purpose of this study was not to analyze specific CpG units individually, 

we would additionally like to point out the strong DNA methylation difference between the 

maternal care groups in CpG unit 10 of BDNF (figure 2), which is located at an mRNA 

polymerase 2 binding site and could therefore have direct functional consequences for BDNF 

transcription (81, 82). Future studies could investigate this particular candidate CpG unit in 

more detail. 

In sum, previous studies have indicated epigenetic alterations by early life stress in 

several stress-related genes across the whole genome in animal and human studies. In this 

study, we extended these findings to altered DNA methylation in an OXTR target sequence 

measured in human peripheral blood cells. Several questions should be addressed in future 

studies: i) is DNA methylation in this target sequence associated with peripheral OXTR 
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mRNA levels, and ii) what is the specific functional relevance of this sequence with special 

regard to maternal care? 

This study has several strengths. First, this is the first study investigating changes in 

DNA methylation of BDNF and OXTR in the human periphery of subjects experiencing low 

maternal care compared to high maternal care. Second, we considered blood cell count as a 

potential mediator in the association between maternal care and DNA methylation. Third, due 

to the inclusion of two candidate genes and two different target sequences within one of the 

genes, the findings suggest that maternal care-related differences in DNA methylation may be 

target sequence specific, even within the same gene. Last, since the present data are 

hierarchical, with CpG units nested within genes, the use of covariance pattern models 

appears to represent a valuable extension to simpler models in which methylation values are 

first aggregated across CpGs and then analyzed using standard models like ANOVA or 

ANCOVA, which do not consider the internal consistency of CpG units. Indeed, our results 

suggest that CpG units exhibited different variances and covariances. 

This study has the following limitations: First, due to the cross-sectional nature of the 

study, differences in DNA methylation between high and low maternal care cannot be 

interpreted causally. Second, an adverse maternal environment often comes with additional 

potentially stressful environmental factors, which could be linked to changes in DNA 

methylation. Third, the primary care person is not necessarily the child’s mother. Therefore, 

future studies should also investigate care provided by fathers or other primary care persons. 

Fourth, maternal care was assessed retrospectively and the association between age and 

ratings of maternal care could indicate a bias. Fifth, BDNF and OXTR DNA methylation was 

measured in peripheral blood and findings cannot be translated into neuronal or other tissue 

types, although there is evidence that DNA methylation of some genes might be correlated 

across tissue (83). Sixth, the method applied to measure DNA methylation cannot distinguish 
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between DNA methylation and DNA hydroxymethylation, which is another cytosine 

modification with potentially regulatory functions (84). However, this modification is more 

abundant in neuronal cells and embryonic stem cells, as compared to other tissues (85, 86). 

Seventh, the sample was derived from an ad-hoc student sample and might not be 

representative of the general population. Last, mediation analyses should be replicated in a 

study with a greater sample size, as our data set produced instable results (i.e. we found only a 

trend for the direct effect of maternal care on OXTR2 DNA methylation in the mediation 

models). Additionally, a further benefit for future studies with respect to the statistical 

analysis of this type of data could be the use of multilevel structural equation models 

explicitly taking measurement error into account (73). 

In conclusion, DNA methylation in one OXTR target sequence was increased in 

peripheral blood of adults reporting low compared to those reporting high maternal care 

during childhood and adolescence. These results could improve the biological understanding 

of how maternal care influences the epiphenotype in humans. 
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Supplemental information S1 

Target primer sequences 

OXTR1: (chromosome 3, nt 8809275-8809534) 

CTGGTCAAGTACTTGCAGGTGGTGGGCATGTTCGCCTCCACCTACCTGCTGCTGCT

CATGTCCCTGGACCGCTGCCTGGCCATCTGCCAGCCGCTGCGCTCGCTGCGCCGC

CGCACCGACCGCCTGGCAGTGCTCGCCACGTGGCTCGGCTGCCTGGTGGCCAGCG

CGCCGCAGGTGCACATCTTCTCTCTGCGCGAGGTGGCTGACGGCGTCTTCGACTG

CTGGGCCGTCTTCATCCAGCCCTGGGGACCCAAGGCCTA 

OXTR2: (chromosome 3, nt 8809510-8809993) 

GTGGAGTCTCCAGGAGTGGAGCCCCGGGCGCCCCTACACCCTCCGACACGCCGG

ATCCGGCCCAGCCGCGCCAAGCCGTAAAGGGCTCGAAGGCCGGGGCGCACCGCT

GCCGCCAGGGTCATGGAGGGCGCGCTCGCAGCCAACTGGAGCGCCGAGGCAGCC

AACGCCAGCGCCGCGCCGCCGGGGGCCGAGGGCAACCGCACCGCCGGACCCCCG

CGGCGCAACGAGGCCCTGGCGCGCGTGGAGGTGGCGGTGCTGTGTCTCATCCTGC

TCCTGGCGCTGAGCGGGAACGCGTGTGTGCTGCTGGCGCTGCGCACCACACGCCA

GAAGCACTCGCGCCTCTTCTTCTTCATGAAGCACCTAAGCATCGCCGACCTGGTG

GTGGCAGTGTTTCAGGTGCTGCCGCAGTTGCTGTGGGACATCACCTTCCGCTTCTA

CGGGCCCGACCTGCTGTGCCGCCTGGTCAAGTACTTGCAGGTGGTGG 

BDNF: (chromosome 11, nt 27721543-27721857) 

GGGGGAGAAAACTCCCCAAGAGTAACTCCAAATCGTCCCTTCTACCGGAGGGGA
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GGAAAGAAGGAGACTGGCCTCGTCCCACAACTTTGGGGTGGGGGATCCCCCAGT

CAACTCTCTCCCGCGGACGGGCAGCTCCTGCACCAAGCCCCATTCCCAGCGCTTG

CCTACCTCGGGGTCCACACAAACCTCACGGGTCCCCGGCGGCGGAGTCACATCGT

GGTTCCGATTCTGGCTCCAGCGCCCAGCCCCGGTCCCCGTCGCGGTGCTGCTCCC

CGCCGGCCCCACAGCAGCGGTGGGTGTCTCATTAAAGCCCCC 
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Supplemental information S2 

Supplemental	
   table	
   1.	
  Mean	
  DNA	
  methylation	
   values	
   and	
   standard	
   errors	
   (SE)	
   for	
   all	
  
participants	
   and	
   differences	
   between	
   the	
   maternal	
   care	
   groups	
   (low	
   -­‐	
   high	
   maternal	
  
care).	
   The	
   final	
   column	
   shows	
   the	
   CpG	
   sites	
   corresponding	
   the	
   anaylzed	
   CpG	
   units	
  
yielded	
  by	
  Sequenom	
  EpiTYPER.	
  

	
   	
  
Methylation	
  (%5meC)	
  

	
  

Difference	
  Methylation	
  
(%5meC)	
  

	
  
Gene	
   G	
  unit	
   Mean	
   SE	
   	
  	
  

Mean	
  
Difference	
  

SE	
  of	
  Mean	
  
Difference	
  

Corresponding	
  
CpG	
  sites	
  

OXTR1	
   1	
   5.11	
   0.256	
  
	
  

0.649	
   0.511	
   1	
  

	
  
2	
   7.61	
   0.254	
  

	
  
-­‐0.117	
   0.512	
   2	
  

	
  
3	
   19.75	
   0.497	
  

	
  
0.525	
   0.999	
   10,	
  11	
  

	
  
4	
   23.83	
   0.541	
  

	
  
0.114	
   1.090	
   14	
  to	
  16	
  

	
  
5	
   10.85	
   0.491	
  

	
  
0.202	
   0.988	
   17	
  to	
  18	
  

	
  
6	
   14.04	
   0.489	
  

	
  
0.120	
   0.985	
   19	
  to	
  21	
  

	
  
7	
   11.37	
   0.487	
  

	
  
0.866	
   0.977	
   22	
  

	
   	
   	
   	
   	
   	
   	
   	
  OXTR2	
   1	
   5.90	
   0.838	
  
	
  

1.957	
   1.679	
   1,	
  2	
  

	
  
2	
   3.91	
   0.455	
  

	
  
-­‐0.163	
   0.919	
   3	
  

	
  
3	
   7.36	
   0.613	
  

	
  
0.724	
   1.234	
   4,	
  5	
  

	
  
4	
   7.46	
   0.857	
  

	
  
0.257	
   1.729	
   6	
  

	
  
5	
   3.78	
   0.412	
  

	
  
0.375	
   0.829	
   7,	
  8	
  

	
  
6	
   12.07	
   1.399	
  

	
  
2.220	
   2.813	
   9	
  

	
  
7	
   0.70	
   0.148	
  

	
  
0.191	
   0.297	
   10	
  

	
  
8	
   5.60	
   0.198	
  

	
  
0.346	
   0.397	
   11,	
  12	
  

	
  
9	
   2.33	
   0.484	
  

	
  
-­‐0.897	
   0.973	
   13,	
  14	
  

	
  
10	
   2.16	
   0.160	
  

	
  
0.098	
   0.322	
   15	
  to	
  17	
  

	
  
11	
   4.77	
   0.824	
  

	
  
2.074	
   1.650	
   20	
  

	
  
12	
   16.27	
   0.354	
  

	
  
0.512	
   0.712	
   21	
  to	
  26	
  

	
  
13	
   1.63	
   0.185	
  

	
  
0.195	
   0.373	
   28,	
  29	
  

	
  
14	
   3.38	
   0.302	
  

	
  
-­‐0.201	
   0.608	
   30	
  to	
  32	
  

	
  
15	
   4.43	
   0.275	
  

	
  
0.036	
   0.555	
   34	
  to	
  36	
  

	
  
16	
   6.08	
   0.226	
  

	
  
0.349	
   0.455	
   37	
  

	
  
17	
   3.16	
   0.167	
  

	
  
0.352	
   0.335	
   38	
  

	
  
18	
   3.91	
   0.572	
  

	
  
0.571	
   1.153	
   39	
  

	
  
19	
   7.05	
   0.907	
  

	
  
1.648	
   1.826	
   45,	
  46	
  

	
  
20	
   31.41	
   2.426	
  

	
  
3.935	
   4.877	
   47,	
  48	
  

	
  
21	
   7.16	
   0.537	
  

	
  
-­‐2.011	
   1.059	
   49	
  

	
  
22	
   5.67	
   0.322	
  

	
  
0.017	
   0.649	
   50	
  

	
  
23	
   6.83	
   0.649	
  

	
  
2.278	
   1.283	
   51,	
  52	
  

	
  
24	
   6.59	
   0.301	
  

	
  
0.918	
   0.597	
   53	
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Supplemental	
   table	
   1	
   (continuation).	
   Mean	
   DNA	
   methylation	
   values	
   and	
   standard	
  
errors	
  (SE)	
  for	
  all	
  participants	
  and	
  differences	
  between	
  the	
  maternal	
  care	
  groups	
  (low	
  -­‐	
  
high	
  maternal	
  care).	
  The	
  final	
  column	
  shows	
  the	
  CpG	
  sites	
  corresponding	
  the	
  anaylzed	
  
CpG	
  units	
  yielded	
  by	
  Sequenom	
  EpiTYPER.	
  

	
   	
   Methylation	
  (%5meC)	
   	
  
Difference	
  Methylation	
  

(%5meC)	
   	
  

Gene	
  
CpG	
  
unit	
   Mean	
   SE	
   	
  	
  

Mean	
  
Difference	
  

SE	
  of	
  Mean	
  
Difference	
  

Corresponding	
  
CpG	
  sites	
  

BDNF	
   3	
   14.19	
   0.969	
  
	
  

1.632	
   1.943	
   4,	
  5	
  

	
  
4	
   3.37	
   0.584	
  

	
  
1.497	
   1.163	
   6	
  

	
  
5	
   3.00	
   0.239	
  

	
  
0.667	
   0.476	
   7	
  

	
  
6	
   3.92	
   0.136	
  

	
  
0.004	
   0.274	
   8	
  

	
  
7	
   4.10	
   0.200	
  

	
  
-­‐0.528	
   0.399	
   9	
  to	
  12	
  

	
  
8	
   9.69	
   0.326	
  

	
  
-­‐0.343	
   0.654	
   13	
  to	
  14	
  

	
  
9	
   9.63	
   0.614	
  

	
  
2.021	
   1.214	
   15	
  

	
  	
   10	
   15.43	
   2.020	
   	
  	
   11.289	
   3.853	
   22	
  
Abbreviations:	
  SE:	
  Standard	
  error;	
  %5meC:	
  Percent	
  5'	
  methyl-­‐cytosine	
  methylation;	
  
OXTR:	
  oxytocin	
  receptor	
  gene;	
  BDNF:	
  brain-­‐derived	
  neurotrophic	
  factor	
  gene	
  	
  
	
  

	
  



	
  

 

Appendix C: 

 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Dynamic Changes in DNA Methylation of Stress-
Associated Genes (OXTR, BDNF) after Acute 

Psychosocial Stress 

Published in Translational Psychiatry 

	
  



Dynamic changes in DNA methylation of
stress-associated genes (OXTR, BDNF ) after acute
psychosocial stress

E Unternaehrer1,6, P Luers2,6, J Mill3, E Dempster3, AH Meyer4, S Staehli1,2, R Lieb1, DH Hellhammer2 and G Meinlschmidt1,5

Environmentally induced epigenetic alterations are related to mental health. We investigated quantitative DNA methylation status
before and after an acute psychosocial stressor in two stress-related genes: oxytocin receptor (OXTR) and brain-derived
neurotrophic factor (BDNF ). The cross sectional study took place at the Division of Theoretical and Clinical Psychobiology,
University of Trier, Germany and was conducted from February to August 2009. We included 83 participants aged 61–67 years.
Thereof, 76 participants completed the full study procedure consisting of blood sampling before (pre-stress), 10 min after
(post-stress) and 90 min after (follow-up) the Trier social stress test. We assessed quantitative DNA methylation of whole-blood
cells using Sequenom EpiTYPER. Methylation status differed between sampling times in one target sequence of OXTR
(Po0.001): methylation increased from pre- to post-stress (P¼ 0.009) and decreased from post-stress to follow-up (Po0.001).
This decrease was also found in a second target sequence of OXTR (P¼ 0.034), where it lost statistical significance when blood
cell count was statistically controlled. We did not detect any time-associated differences in methylation status of the examined
BDNF region. The results suggest a dynamic regulation of DNA methylation in OXTR—which may in part reflect changes in blood
cell composition—but not BDNF after acute psychosocial stress. This may enhance the understanding of how psychosocial
events alter DNA methylation and could provide new insights into the etiology of mental disorders.
Translational Psychiatry (2012) 2, e150; doi:10.1038/tp.2012.77; published online 14 August 2012

Introduction

DNA methylation is an epigenetic mechanism related to
mental and physical health and disease.1–4 Aberrant DNA
methylation has been implicated in the etiology of various
mental disorders including, depression,5–9 psychotic disor-
ders,10–15 post-traumatic stress disorder,16,17 autism,18,19

eating disorders20,21 and substance dependence (for review
see22), but also has an important role in the pathology of
physical illnesses, such as cancer.23 Thereby DNA methyla-
tion provides a biological basis for gene–environment
interactions relevant to mental health24: animal and human
studies have found that early life experiences can alter DNA
methylation and affect gene expression and behavior.25–32

Similarly, experiences later in life can modify the epigen-
ome.33,34 However, changes in DNA methylation immediately
after adverse experiences, such as acute psychosocial
stress, have not yet been investigated. Insight into how acute
psychosocial stress affects DNA methylation may further
elucidate our understanding of etiological mechanisms in
mental health. Therefore, we investigated DNA methylation
of two stress-related candidate genes—oxytocin receptor

(OXTR)35 and brain-derived neurotrophic factor (BDNF)35,36—
before and after an acute psychosocial stressor.

We included the OXTR because the oxytocin system
interacts with the hypothalamic-pituitary-adrenal axis35,37–40

and cardiovascular stress reactivity.41,42 To the best of our
knowledge, there have been no studies investigating methyl-
ation of OXTR with reference to stress in humans or animals.
A study on patients suffering from autism spectrum disorder
revealed aberrant DNA methylation in an OXTR region in
peripheral mononuclear blood cells; similar results were found
for brain tissue.43

BDNF, the second candidate gene, encodes a neuronal
growth factor involved in neuronal development, cell differ-
entiation and synaptic plasticity.44,45 In addition to its pivotal
role in the central nervous system, BDNF is also expressed
in the periphery where it shows neuro-protective action.46

Peripheral BDNF concentration is decreased in various
stress-related mental disorders47 including depression48 and
post-traumatic stress disorder.49 Previous work has also
shown that early life- and chronic stress resulted in a higher
methylation status of Bdnf,32 and a decrease in Bdnf mRNA
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and BDNF protein levels in several rodent brain areas.32,50–54

Animal studies have examined dynamic changes in DNA
methylation of Bdnf associated with memory, learning
and physical activity,55–57 but not following a psychosocial
stressor.

The aim of this study was to investigate dynamic changes
in DNA methylation in stress-related genes after an acute
psychosocial stressor.

Materials and methods

Participants and procedure. The sample of this cross-
sectional study consisted of 76 adults. All participants under-
went three sequential study parts:

In the first study part (2006–2007), we contacted Trier
inhabitants born between 1942 and 1947. This population
experienced war adversities early in life and was chosen as
the overall goal of the initial project was to assess long-term
consequences of early adversities. Of 2117 contacted adults,
365 completed psychological and medical questionnaires. In
the second study part (2007–2008), we invited participants
from the first study part for a psychological interview. Thereby,
exclusion criteria were medical conditions potentially interfer-
ing with planned biological measures: impaired general health
status, signs of acute infection, untreated hypertension (blood
pressure 4160/95 mm Hg during unstimulated conditions) or
diabetes mellitus, intake of glucocorticoid-, immunosuppres-
sive-, anti-depressant- or antidiabetic-medication, current
therapy for a mental disorder and previous participation in a
study applying the Trier social stress test (TSST).58,59 We
invited 274 persons, of whom 179 completed the interview.
The third study part (2009) consisted of a laboratory session
at the Division of Theoretical and Clinical Psychobiology,
University of Trier, Germany. Those participants of the second
study part who did not suffer from clinically relevant symptoms
of depression (assessed by the German Version of the Center
for Epidemiological Studies Depression Scale60) and did not
meet the above-described exclusion criteria were invited
for the third study part. Of the 127 invited participants, 83
took part in the third study part. Blood samples of seven
participants did not contain enough blood for analysis and had
to be excluded from the statistical analyses. Thus the final
sample consisted of 76 adults—43 women and 33 men—aged
between 61 and 67 years (mean age: 64.11 years; s.d.: 1.65
years). Participants gave written informed consent in accor-
dance with the Declaration of Helsinki and received financial
compensation. The Chamber of Physicians (Landesärztekammer
Rheinland-Pfalz, Germany) approved the study protocol.

For the laboratory session of the third study wave, we
requested participants to abstain from heavy sports and
alcohol the evening before and on the day of testing. In
addition, they were asked to have a regular meal on the testing
day and to avoid eating and drinking 2 hours before arriving at
the laboratory. Upon arrival, we acquainted the participants
with the staff and informed them about the general proce-
dures. A study physician undertook a medical examination
and placed a peripheral venous catheter into the antecubital
vein of the nondominant arm for multiple blood draws. A study
assistant then conducted two memory tests before starting

with the TSST, which took place in a remote room, equipped
with a standing microphone and a video camera in front of two
desks. The TSST consisted of a 3-min anticipation period
and a 10-min test period, during which the participants had
to undergo a fictitious job interview and perform mental
arithmetics in front of one male and one female expert, trained
in behavioral observation techniques, as well as in abstaining
from giving any positive or negative social cues. The experts
were of about the same age as the participants themselves,
wore white doctor coats and used stop watches in order to
check time. Study participants were informed that they would
be video- and speech-taped during the whole test period for
later evaluation of his or her performance and behavior. After
the TSST, we accompanied the participants back to a study
room, where they were asked to complete two additional
memory tests and to fill in several questionnaires. The whole
study session took 3.5 h.

Blood sampling, pre-analytics and blood cell count. At
each blood sample collection, a study physician drew 5.5-ml
blood from a peripheral venous catheter (Vasofix safety,
Braun Melsungen AG, 18G, Melsungen, Germany) in EDTA-
coated S-Monovettes (Sarstedt, Nuembrecht, Germany). Blood
was taken 1 min before the TSST (pre-stress sampling), 10 min
after the TSST (post-stress sampling) and 90 min after
the TSST (follow-up sampling). To avoid acute orthostatic
influences on pre-stress blood analyses, we asked persons
to stand up and remain standing 10 min before the TSST until
we collected the pre-stress blood sample.

EDTA samples collected for later blood counts were stored
without centrifugation in a refrigerator until the end of the testing
session. We delivered these samples to an external labora-
tory (SynLab Trier, Trier, Germany) the same day. Complete
blood cell counts were obtained using an automated haematology
analyzer (Sysmex XE2100i, Norderstedt, Germany).

Immediately after collection, EDTA samples for DNA
methylation analysis were put on ice and centrifuged within
5 min (4000 rpm at þ 6 1C for 10 min) before freezing
at –80 1C. The QIAamp DNA Blood Midi (Qiagen, Hilden,
Germany) was used to extract DNA, following the manufac-
turer’s protocol. Samples were stored at # 20 1C for subse-
quent DNA methylation analysis.

DNA methylation analysis. Genomic DNA (540 ng) was
treated with sodium bisulfite using the EZ-96 DNA Methyla-
tion Kit (Zymo Research, CA, USA) according to the
manufacturers’ standard protocol. Bisulfite PCR amplification
of two target sequences in OXTR (OXTR1, OXTR2) and one
target sequence in BDNF was conducted using Hot Star Taq
DNA polymerase (Qiagen). The OXTR1 target sequence is
located in the protein-coding region of OXTR exon III; the
OXTR2 target sequence partly covers the noncoding and
protein-coding promoter regions of OXTR exon III. Both
target sequences were designed to cover the OXTR
promoter region and the CpG island comprising exons
I–III.61 The BDNF target sequence around the 30 end of
BDNF exon VI is situated mainly within a CpG island that
covers BDNF exons V, Vh and VI.62 BDNF exon VI is
frequently expressed especially in non-neuronal tissue of the
periphery.62 PCR products were prepared according to the
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manufacturer’s standard protocol for quantitative DNA
methylation analysis using EpiTYPER 1.0 (Sequenom, CA,
USA). For each run, a fully methylated positive control (New
England BioLabs) and a blank control (distilled water) were
included. The assays for the amplicons were designed using
the Sequenom EpiDesigner software (for target sequences
see Supplementary information).

Statistical analysis. The resolution of EpiTYPER yielded
CpG units consisting of 1–6 individual CpG sites: 11 CpG
units for OXTR1, 28 CpG units for OXTR2 and 12 CpG units
for BDNF. Two CpG units in OXTR1, one CpG unit in OXTR2

and one CpG unit in BDNF could not be measured because
of upper and lower detection limits of Sequenom EpiTYPER.
CpG units with 420% missing data were excluded, which left
eight CpGs units for OXTR1, 27 for OXTR2 and 10 for BDNF
for statistical analyses. All sample CpG methylation values
were compared with the values of the fully methylated
positive control: If the value of the sample exceeded the
value of the positive control, the value was set as missing
data. All blank controls were negative. We identified sus-
picious samples by setting outlier values as missing data
(X3 s.d.’s from mean methylation of the respective CpG
unit). By conducting missing analyses separately for each
gene, samples with 420% missing data were identified and
excluded from the statistical analyses of the respective
gene. Methylation values (OXTR2 and BDNF) were log-
transformed to meet assumptions of normality and homo-
scedasticity. We analyzed time-associated changes in mean
DNA methylation (averaged across CpG units) using multi-
level models.63 The three hierarchical levels were subjects,
CpGs within subjects, and time within CpGs within subjects.
Methylation values were allowed to vary across time for
individual CpGs within subjects as this improved model fit. In
a first step, we examined overall effects of sampling time and
analyzed differences between the three sampling time points
using post-hoc contrasts. In a second step, we tested the
same overall effect of sampling time while including blood
cell counts as covariates.64 In both models, we included
the identities of the bisulfite conversion plates and the

Sequenom plates as covariates to negate laboratory batch
effects. As we did not find any gender differences in DNA
methylation, we did not include gender as potential con-
founder in the final models. We considered an alpha level of
o0.05 as significant. All analyses were conducted using
SPSS 20. DNA methylation values are presented as percent
of cytosine methylation (%5MeC).

Results

Estimated means from the multilevel model of methylation
(%5MeC) averaged across all CpG units of a target sequence
and descriptive values of blood cell count are shown in
Table 1.

Methylation of OXTR1. We found an overall effect for
sampling time on OXTR1 mean methylation status. All post-
hoc contrasts between sampling times were significant, with
the greatest difference in mean methylation between post-
stress and follow-up (Figure 1a, Table 2). Moreover, seven
of eight individual CpG units within OXTR1 revealed
significant time effects (Figure 1b). Notably, when adjusting
for blood cell counts, the overall effect of sampling time on
OXTR1 methylation averaged across CpG units remained
significant. However, of the three post-hoc contrasts, the
one between pre-stress and post-stress was no longer
significant.

Methylation of OXTR2. We found a trend effect for sampling
time in OXTR2. Post-hoc contrast analyses indicated a
difference in OXTR2 mean methylation between post-stress
and follow-up (Figure 2a, Table 2). Time effects were signi-
ficant in two of 27 CpG units (Figure 2b). After adjustment for
blood cell count, the overall effect for sampling time remained
nonsignificant; the contrast between post-stress and follow-up
was no longer significant.

Methylation of BDNF (Figure 3, Table 2). The analysis
revealed no overall effect for sampling time on BDNF
mean methylation and no post-hoc contrast was significant

Table 1 Estimated means and 95% confidence intervals (CI) from the multilevel model of methylation (%5MeC) averaged across CpG units of each target sequence
and descriptive values of blood cell count for each sampling time (pre-stress, post-stress and follow-up)

Sampling time

Pre-stress Post-stress Follow-up

M 95% CI M 95% CI M 95% CI

Methylation (%5MeC)
OXTR1 17.64 16.48#18.81 18.02 16.85# 19.19 16.98 15.79# 18.16
OXTR2

a 5 4.67#5.35 5.06 4.73# 5.42 4.76 4.42# 5.11
BDNF a 6.61 6.10#7.15 6.56 6.05# 7.10 6.31 5.80# 6.84

Blood cell count
Leukocytesb 6.53 6.25#6.80 7.01 6.69# 7.32 6.74 6.41# 7.06
Lymphocytesc 30.59 28.98#32.21 32.61 30.85# 34.36 26.74 25.09# 28.40
Monocytesc 8 7.57#8.43 8.24 7.75# 8.74 7.54 7.06# 8.01
Granulocytesc 62.12 60.63#63.60 59.60 58.05# 61.16 65.45 63.55# 67.34

Abbreviations: BDNF, brain-derived neurotrophic factor; 95% CI, 95% confidence interval; M, mean; OXTR, oxytocin receptor.
aEstimates were re-transformed from natural logarithm to %5MeC; bNumber$103/ml; c% of leukocytes.
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(Figure 3a, Table 2). However, analysis of individual CpG
units revealed a significant time effect in 1 of 10 CpG units
(Figure 3b). The inclusion of blood cell count as covariates
did not change these results.

Discussion

The aim of this study was to investigate immediate changes
in DNA methylation in stress-related genes after acute

Figure 1 (a) Estimated mean DNA methylation level (%5MeC) in OXTR1

amplicons averaged across CpGs at pre-stress, post-stress, and 90 min follow-up
stress assessments. Error bars are s.e. of the estimated mean. (b) Differences in
individual CpG mean methylation (%5MeC) from pre-stress to post-stress and from
pre-stress to follow-up. All estimates obtained from the unadjusted model. *Po0.05.

Table 2 Overall effects of sampling time on mean methylation of OXTR1, OXTR2
a and BDNF a without and with adjustment for blood cell count as covariates; post-hoc

contrasts between sampling times pre-stress, post-stress and follow-up. Results based on multilevel analysis

Main effects Contrasts Number of observations

df b F p C1 C2 C3 N
p p p

OXTR1

Overall model 2; 802 25.84 o0.001 0.009 o0.001 o0.001 600
Adjusted for blood cell count 2; 1133 10.70 o0.001 0.278 o0.001 o0.001 600

OXTR2
a

Overall model 2; 2998 2.46 0.086 0.672 0.034 0.099 2045
Adjusted for blood cell count 2; 1368 1.92 0.146 0.536 0.058 0.137 2044

BDNF a

Overall model 2; 1098 1.31 0.271 0.780 0.184 0.139 747
Adjusted for blood cell count 2; 1523 0.87 0.418 0.536 0.518 0.191 737

Abbreviations: BDNF, brain-derived neurotrophic factor; C1, contrast pre-stress versus post-stress; C2, contrast post-stress versus 90 min after stress; C3, contrast
pre-stress versus 90 min after stress; OXTR, oxytocin receptor.
aNatural logarithm transformed; bNumerator; denominator.

Figure 2 (a) Estimated mean DNA methylation level (%5MeC) in OXTR2

amplicons averaged across CpGs at pre-stress, post-stress and 90 min follow-up
stress assessments. Error bars are s.e. of the estimated mean. (b) Differences in
individual CpG mean methylation (%5MeC) from pre-stress to post-stress and from
pre-stress to follow-up. All estimates obtained from the unadjusted model. *Po0.05.
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psychosocial stress. We found stress-associated DNA methy-
lation changes in one of two OXTR target sequences but not
in the assessed target sequence of BDNF, suggesting a
considerable variation in the sensitivity of short-term DNA
methylation responses among different stress-related genes.
For OXTR1, we found an increase in DNA methylation from
pre-stress to post-stress and a decrease from post-stress to
follow-up. In OXTR2, methylation decreased from post-stress
to follow-up only. Notably, in OXTR1 the time-associated
changes, as well as the difference from post-stress to follow-
up, remained significant even after controlling for blood
cell count. The changes from pre-stress to post-stress in
OXTR1 and from post-stress to follow-up in OXTR2 may have
been secondary to stress-associated changes in blood cell
composition.65

Although (i) methylation increase in OXTR is associated
with decreased OXTR expression61 and (ii) the oxytocin
system antagonizes the short-term stress response,37,41

methylation increase from pre- to post-stress in OXTR1 could
constitute a part of the immediate stress response, which
relies on rapid autonomic sympathetic activation to mobilize
resources and increase performance.66 After the stressor had
passed, DNA methylation of the OXTR not only receded back
to pre-stress baseline, but also fell below pre-stress levels.
This could indicate an overcompensating mechanism in

OXTR methylation after acute psychosocial stress, allowing
for an upregulation of the oxytocin system as a middle-term
physiological buffer of the acute stress response. Previous
studies have shown that the oxytocin system has an essential
role in the regulation of blood pressure and volume, heart rate
and cardiovascular homeostasis, as well as in the cardiovas-
cular response to stress.42,67,68 Therefore, a decrease in
DNA methylation of the OXTR and the subsequent increase
in expression43 may indeed be a potential mechanism to
support physiological recovery after acute stress on an
epigenetic level.

Regarding BDNF, our results suggest that in the periphery,
DNA methylation in BDNF remains stable after a short and
non-recurring psychosocial stressor. Previous studies found
lifelong and transgenerational perpetuation of changes in
BDNF methylation after early-life adversity.32 Fuchikami
et al.69 recently suggested DNA methylation of BDNF in
peripheral blood as a diagnostic biomarker of major depres-
sion. These results and our finding implicate that BDNF
methylation has a long-term, rather than a short-term, role in
stress adaptation.

This study has several strengths: First, the TSST is a highly
established and robust standardized protocol to induce
psychosocial stress and a robust hypothalamic-pituitary-
adrenal axis activation.70 Various biological markers of acute
stress have been investigated in relation to the TSST. Here we
extend previous findings, by adding DNA methylation
changes in OXTR as an additional biomarker of acute
psychosocial stress, especially from post-stress to 90 min
after the stressor. Second, we included blood cell count as a
time-varying covariate into the analyses to ensure that DNA
methylation changes were not the result of alterations in blood
cell composition in response to stress.64 Indeed, our results
highlight the necessity to consider blood cell count in the
analyses while investigating DNA methylation in the periph-
ery. Third, DNA methylation was not only assessed at pre-
and post-stress, but also after a time interval of 90 min,
which provided insight into methylation changes after stress
recovery. Fourth, the focus on not only one, but on multiple
genes (OXTR and BDNF) and target sequences revealed
remarkable specificity of the short-term DNA methylation
response of individual stress-related genes.

Several limitations of this study should also be noted: First,
we measured DNA methylation in peripheral blood, which
does not allow us to directly draw conclusions about proces-
ses in the central nervous system. To what degree DNA
methylation in the periphery corresponds to DNA methylation
in the brain remains to be elucidated, although some studies
suggest certain consistency across tissues.43,71,72 Second,
we did not apply an unstressed control group and can
therefore not completely exclude that DNA methylation
changes were due to factors unrelated to the psychosocial
stress experience. Third, we analyzed DNA methylation
changes after acute psychosocial stress in a study population
with high likelihood of early experiences of war-related
adversities, who may have been sensitized to stress. As a
consequence, study subjects might have been especially
susceptible to changes in OXTR DNA methylation after acute
psychosocial stress. Therefore, generalizability of our results
to populations without early adversities may be limited.

Figure 3 (a) Estimated mean DNA methylation level (%5MeC) in BDNF
amplicons averaged across CpGs at pre-stress, post-stress and 90 min follow-up
stress assessments. Error bars are s.e. of the estimated mean. (b) Differences
in individual CpG mean methylation (%5MeC) from pre-stress to post-stress and
from pre-stress to follow-up. All estimates obtained from the unadjusted model.
*Po0.05.
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Fourth, it should be noted that differences in mean DNA
methylation between time points were small, and the
functional effects of such modest alterations are not known.
In this context, however, the following should be considered:
(i) We did not compare different study groups, but assessed
changes in DNA methylation over time within the same indivi-
duals. Therefore mean values in methylation are not indepen-
dent of each other and differences are expected to be smaller
in contrast to between-group comparison. (ii) Changes in
DNA methylation were larger for several individual CpG units
than for averaged target sequences (Figures 1–3). (iii) The
absolute change of 1% in methylation of OXTR1 (%5MeC)
from post-stress to follow-up represents a relative change
of 5–6%. (iv) DNA methylation changes may accumulate and
increase in magnitude in case of repeated psychosocial stress
experience.

Future studies should replicate our findings for OXTR and
BDNF, but also include additional stress-related candidate
genes. Furthermore, we suggest shortening blood-sampling
intervals to identify the time point of greatest DNA methylation
changes. In addition, future studies could assess DNA methy-
lation not only after different stressors, but also after positive
experiences to determine whether DNA methylation is
sensitive not only to aversive but also to positive psychosocial
experiences. Moreover, subjects from other populations (such
as cohorts without increased likelihood of early adversities)
should be studied to scrutinize the generalizability of our
results. Finally, future studies should assess DNA methylation
after repeated psychosocial experiences to elucidate possible
long-term modifications in DNA methylation. Identifying
and studying short- and long-term effects of psychosocial
experiences—which for example could reverse aberrant DNA
methylation—could become an important goal in the devel-
opment of new treatment approaches.

Conclusion

To the best of our knowledge, this is the first study in humans
investigating dynamic short-term changes in DNA methylation
related to a specific life event, namely a psychosocial stressor.
We found different DNA methylation states in the OXTR when
comparing pre-stress, post-stress and 90-min follow-up
stress measurement. These findings contribute to the under-
standing of epigenetic mechanisms in general, but may
also have clinical significance in the future: We found that
psychosocial experiences are linked to immediate epigenetic
modifications in a sample of subjects with early adverse
experiences. This could have clinical implications regarding
the etiology of mental and stress-related disorders, as well as
of general medical conditions.
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DNA Methylation Analysis 

The aim of Appendix D is to document the methods applied to measure DNA methylation in 

whole blood samples. While sample collection and DNA extraction differed between studies, 

DNA methylation analysis was performed identically for all three studies reported here. 

Blood samples were collected in cord blood at birth or from brachial vein (study 2 and 3). 

Blood was frozen at –20°C until DNA extraction, which was performed using different 

standardized protocols for DNA extraction from whole blood: (1) prenatal stress: Gentra 

Puregene Cell Kit (Qiagen, Hilden, Germany); (2) low maternal care: Puregene (Qiagen, 

Venlo, The Netherlands); (3) acute psychosocial stress: QIAamp DNA Blood Midi (Qiagen, 

Hilden, Germany). Extracted DNA was frozen at –20°C and sent to the labs of Prof. Jonathan 

Mill at the King’s College in London. DNA was i) bisulfite converted, ii) amplified by 

bisulfite PCR and iii) DNA methylation was quantified using Sequenom EpiTYPER. The 

following sections are aimed at documenting the three steps. 

 

Bisulfite Conversion 

All DNA samples were diluted to obtain 50µl of DNA solutions with concentration of 12ng 

DNA per µl. Dilutions were prepared in 96-well plates. Subsequently, DNA was treated with 

sodium-bisulfite, which converts unmethylated cytosine into uracil, while methylated cytosine 

is “protected” against this substitution. We applied the EZ-96 DNA methylation (ZYMO 

research, CA, USA) standard protocol (table D1). In each run, we included one well 

containing a negative control (destilled water) and one well containing a fully methylated 

positive control. 
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Table D1 
Protocol for Bisulfite Conversion using EZ-96 DNA Methylation Kit (ZYMO Research)   
Step Quantity Reagent/Material Process   
Preparation Day 1: Preparation 

 
1 Bottle CT Conversion Reagent 

 
 

7.5ml H2O mix @ room temp with vortex 
 

 
2.1ml M-Dilution Buffer 10 minutes 

 Protocol Day 1 
1 5ul M-Dilution Buffer 96-well plate 

   45ul DNA sample add, mix, close 
 2     incubate at 37°C    

      15 minutes 
 3 100ul CT-Conversion Reagent add, mix, close with alu lid 
 

     4 96-Well plate incubate on heat block   
      over night 

 Protocol Day 2: Preparation 

 
1 Bottle M-Wash Buffer 

    144ml 100% Ethanol Add, mix 
 Protocol Day 2 

5 96-Well plate put on ice  
       10 minutes 
 6 400ul M-Binding Buffer silicon-A binding plate on collection 
 7 150ul DNA sample add, mix (pipette) 
 8 96-Well plate centrifuge at 2000g for 5 minutes   

      empty collection plate and dry 
 9 500ul M-Wash Buffer centrifuge at 2000g for 5 minutes   

      empty collection plate and dry 
 10 200ul M-Desulphonation Buffer add 
 

   
incubate at room temp. 

 
   

20 minutes 
       centrifuge at max 5 minutes 
 11-a 500ul M-Wash Buffer centrifuge at 2000g for 5 minutes   

   
empty collection plate and dry 

 11-b 500ul M-Wash Buffer centrifuge at 2000g for 10 minutes   
      empty collection plate and dry 

 12 96-Well Silicon-A Binding Plate put on elution plate   
12-a 25ul M-Elution Buffer add, centrifuge at 2000g for 3 minutes 

 12-b 25ul M-Elution Buffer add, centrifuge at 2000g for 3 minutes 
 13 96-Well Elution plate put on ice    

 

For each run, four test samples of bisulfite converted DNA (single stranded) were measured 

using NanoDrop (Thermo Scientific, Wilmington, USA). 
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Bisulfite PCR 

2.5µl of bisulfite converted DNA was pipetted into a 96-well plates and mixed with 7.5 µl 

matrix mix solution (table 2). Selected target sequences (OXTR1: chromosome 3, nt 8809275-

8809534; OXTR2: chromosome 3, nt 8809510-8809993; BDNF:	
   chromosome	
   11,	
   nt	
  

27721543-­‐27721857) were amplified using bisulfite polymerase chain reaction (PCR, 

Qiagen Hotstart Taq Polymerase). During this process, nucleotides containing uracil become 

thymine, which can be detected in DNA sequencing and compared to the template sequence. 

Tagged primers were the following: 

 

BDNF left:  aggaagagagGGGGGAGAAAATTTTTTAAGAGTAA 

BDNF right:  cagtaatacgactcactatagggagaaggctAAAAACTTTAATAAAACACCCACC 

OXTR1 left:  aggaagagagTTGGTTAAGTATTTGTAGGTGGTGG 

OXTR1 right:  cagtaatacgactcactatagggagaaggctTAAACCTTAAATCCCCAAAACTAAA 

OXTR2 left: aggaagagagGTGGAGTTTTTAGGAGTGGAGTTT 

OXTR2 right: cagtaatacgactcactatagggagaaggctCCACCACCTACAAATACTTAACCAA 
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Table D2 
Recipes for Matrix Solution and Instructions for Bisulfite PCR 
Reagent BDNF OXTR1 OXTR2 
H2O (µl/sample) 5.0 5.2 5.2 
PCR-Buffer (µl/sample) 1.0 1.0 1.0 
dNTPs (µl/sample) 0.2 0.2 0.2 
MgCl2  (µl/sample) 0.2 - - 
Primer F (µl/sample) 0.5 0.5 0.5 
Primer R (µl/sample) 0.5 0.5 0.5 
H-Taq (µl/sample) 0.1 0.1 0.1 

    
PCR program duration       
15:00 minutes (Start) 95°C 95°C 95°C 
00:30 Minutes 95°C 95°C 95°C 
00:30 Minutes 56°C 56°C 57°C 
01:00 Minutes 72°C 72°C 72°C 
Repeats 44 44 44 
10:00 Minutes (Finish) 72°C 72°C 72°C 
Notes. PCR=Polymerase chain reaction; dNTP=deoxyribonucleoside triphosphate; 
F=forward, R=reverse, H-Taq=Hotstart Taq Polymerase; BDNF=brain-derived 
neurotrophic factor; OXTR=oxytocin receptor 

PCR products (4 µl) were checked by gel-electrophoresis using orange-G (2 µl) (Sigma-

Aldrich Co., St. Louis, U.S.A.) on bromide containing 1.5% agarose gel. Bisulfite treated 

DNA samples (4 µl) were mixed with orange-G (2 µl). The PCR run was considered 

successful if i) the PCR product accumulated nicely in a thin stripe; ii) PCR products were 

more distinct than primer-dimers; and iii) the negative controls (distilled water) was not 

contaminated (no signal). Figure D1 shows an example of a successful and an unsuccessful 

PCR run. 

 

 

 

 

 

Figure 1. Results from gel-electrophoresis. An example of an A) unsuccessful and an B) 

successful PCR run. 

A)	
   B)	
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Sequenom EpiTYPER 

DNA methylation was quantified using the standard protocol for Sequenom EpiTYPER, 

which applies base-specific cleavage and Matrix-Assisted Laser Desorption/Ionization Time-

of-Flight Mass Spectrometry (MALDI-TOF MS). This method detects differences in signal 

intensity between masse signals derived from methylated versus non-methylated DNA 

(EpiTYPER 1.0 Software User’s Guide).  

There is no single CpG resolution of Sequenom EpiTYPER, but some CpGs are 

combined into CpG units (table D3). Often, CpG units containing a high number of CpG sites 

could not be analyzed due to high or low detection limits. Furthermore, DNA methylation 

values with more than 20% missing data were excluded from the analysis. Samples with > 

50% missing data or outlier methylation values (> 3 standard deviations from mean DNA 

methylation values of respective CpG unit) were repeated. 

Table D3  
Gene-Specific CpG Units with Corresponding CpG Sites 

Gene CpG unit 
Corresponding 

CpG sites Gene CpG unit 
Corresponding 

CpG sites 
OXTR1 1 1 OXTR2 1 1, 2 

 
2 2 

 
2 3 

 
3 10, 11 

 
3 4, 5 

 
4 14 to 16 

 
4 6 

 
5 17 to 18 

 
5 7, 8 

 
6 19 to 21 

 
6 9 

 
7 22 

 
7 10 

    
8 11, 12 

BDNF 1 1 
 

9 13, 14 

 
2 3 

 
10 15 to 17 

 
3 4, 5 

 
11 20 

 
4 6 

 
12 21 to 26 

 
5 7 

 
13 28, 29 

 
6 8 

 
14 30 to 32 

 
7 9 to 12 

 
15 34 to 36 

 
8 13 to 14 

 
16 37 

 
9 15 

 
17 38 

 
10 22 

 
18 39 

    
19 45, 46 

    
20 47, 48 

    
21 49 

    
22 50 

    
23 51, 52 

   
  24 53 

Notes. BDNF=brain-derived neurotrophic factor; OXTR=oxytocin receptor; 
CpG=cytosine-guanine dinucleotide 
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