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Abstract 
Polymer electrolyte Membrane (PEM) fuel cell is an electrochemical device producing 
electricity by the reaction of hydrogen and oxygen without combustion. PEM fuel cell 
stack is provided with an appropriate clamping torque to prevent leakage of reactant 
gases and to minimize the contact resistance between gas diffusion media (GDL) and 
bipolar plates. GDL porous structure and gas permeability is directly affected by the 
compaction pressure which, consequently, drastically change the fuel cell performance. 
Various efforts were made to determine the optimal compaction pressure and pressure 
distributions through simulations and experimentation. Lower compaction pressure 
results in increase of contact resistance and also chances of leakage. On the other hand, 
higher compaction pressure decreases the contact resistance but also narrows down the 
diffusion path for mass transfer from gas channels to the catalyst layers, consequently, 
lowering cell performance. The optimal cell performance is related to the gasket 
thickness and compression pressure on GDL. Every stack has a unique assembly pressure 
due to differences in fuel cell components material and stack design. Therefore, there is 
still need to determine the optimal torque value for getting the optimal cell 
performance. This study has been carried out in continuation of development of Air 
breathing PEM fuel cell for small Unmanned Aerial Vehicle (UAV) application. 
Compaction pressure at minimum contact resistance was determined and clamping 
torque value was calculated accordingly. Single cell performance tests were performed 
at five different clamping torque values i.e 0.5, 1.0, 1.5, 2.0 and 2.5 N m, for achieving 
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optimal cell performance. Clamping pressure distribution tests were also performed at 
these torque values to verify uniform pressure distribution at optimal torque value. 
Experimental and theoretical results were compared for making inferences about 
optimal cell performance. A clamping torque value of 1.5 N m was determined 
experimentally to be the best for getting optimal performance as well as uniform 
pressure distribution for this specific fuel cell. 
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1. Introduction 

Due to the growing concerns on the depletion of petroleum based energy resources and 

climate change, fuel cell technologies have received much attention in recent years owing to their 

high efficiencies and low emissions. Fuel cells, which are classified according to the electrolyte 

employed, are electrochemical devices that directly convert chemical energy stored in fuels such 

as hydrogen, to electrical energy. Its efficiency can reach as high as 60 % in electrical energy 

conversion and overall 80 % in co-generation of electrical and thermal energies with more than 

ninety percent reduction in major pollutants [1]. 

The stack design and cell assembly can significantly affect the performance of fuel cells. 

Adequate contact pressure is needed to hold the fuel cell stack components together to prevent 

leaking of the reactants between the layers and minimize the contact resistance between layers. 

The clamping force is equal to the force required to compress the gasket, fuel cell layers, and 

internal force. The assembly pressure affects the characteristics of the contact interfaces between 

components due to thin dimensions and the low mechanical strength of fuel cell layers versus the 

gaskets, bipolar plates, and end plates. The most important goal in the stack design and assembly 

is to achieve appropriate and uniform pressure distribution. If inadequate or non-uniform 

assembly pressure is used, there will be stack sealing problems, such as fuel leakage, internal 

combustion, and unacceptable contact resistance. Too much pressure may damage the fuel cell 

layers, resulting in a broken porous structure and a blockage of the gas diffusion passage. In both 

cases, it will decrease the cell performance as well as stimulating degradation. Every stack has a 

unique assembly pressure due to differences in fuel cell materials and stack design.  

Several studies were carried out to determine optimal clamping force in order to achieve 

optimal fuel cell performance. Bates  et al performed simulation of a single cell and 16-cell fuel cell 

stack at various clamping pressures. They performed experimental testing of clamping pressure 

effects on a 16-cell stack by placing a thin pressure-sensitive film between GDL and bipolar plate. 

They applied clamping pressure using various loads, durations, and two types of GDL resulting in 

detailed 3D plots of stress and deformation [2]. Chang et al. [3] measured the electro-physical 

properties of the gas diffusion layer (GDL) such as porosity, gas permeability, electrical resistance 

and thickness using a special designed test rig under various clamping pressure levels. They 

developed correlations for the gas permeability of the GDL in terms of the clamping pressure. 

Moreover, they also measured contact resistance between the GDL and the bipolar (graphite) 

plate under various clamping pressures. They showed that increasing the clamping pressure 

reduces the interfacial resistance between the bipolar plate and the GDL that enhances the 

electrochemical performance of a PEM fuel cell. On the other hand, at the high clamping pressure 

levels, increasing the clamping pressure not only reduces the Ohmic resistance but also narrows 
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down the diffusion path for mass transfer from gas channels to the catalyst layers [3]. Changes in 

PEM fuel cell performance have been reported as a function of compression pressure resulting 

from torque applied on bolts [4]. Authors used three different types of GDLs and reported that, 

the optimum is related to the gasket thickness and the measured compression pressure on the 

diffusion layer. Wang et al. [5] studied the effect of internal pressure distribution on the perfor-

mance of a PEM fuel cell. They designed a pressurized endplate. They used pressure sensitive films 

to measure the pressure distribution for both conventional and newly designed end plates and 

achieved improved cell performance with newly designed end plate [5]. Zhou et al. [6] studied the 

effect of clamping force on the performance of PEM fuel cell with inter-digitated gas distributors 

considering the interfacial contact resistance, the non-uniform porosity distribution of the gas 

diffusion layer (GDL) and the GDL deformation. They reported that there exists an optimal clamp-

ing force to obtain the highest power density for the PEMFC with the inter-digitated gas distribu-

tors [6]. Finite element analysis (FEA) procedures were established for a PEM single cell with point 

stack assembly method [7]. Yu et al. [8] designed a new asymmetric composite sandwich end plate 

made of carbon fiber reinforced composite and glass fiber reinforced composite with a pre-curva-

ture generated by the residual thermal deformation, which yields the required pressure distribu-

tion in the stack when the end plates are fastened by the clamping device [8]. Liu et al. developed 

a methodology based on FEA model and Monte Carlo simulation to investigate the effect of di-

mensional error of the metallic Bipolar Plate (BPP) on the pressure distribution of gas diffusion 

layer (GDL) [9]. Lin et al. reported the effect of gas diffusion layer compression on the performan-

ce in a proton exchange membrane fuel cell [10]. Zhou et al. reported the effect of non-uniformity 

of the contact pressure distribution on the electrical contact resistance in PEM fuel cells. For a 

given clamping force, the minimum electrical contact resistance is expected by making the 

pressure distribution as uniform as possible [11]. Avasarala et al. [12] studied the effect of surface 

roughness of composite bipolar plates on the contact resistance of a proton exchange membrane 

fuel cell. They observed that most of this contact resistance is governed by electrical properties of 

the interface layer between the contacting surfaces [12]. Wen et al. [13] carried out an experi-

menttal study of clamping effects on the performance of a single proton exchange membrane fuel 

cell and a 10-cell stack. They found that the uniformity of the contact pressure distribution, the 

ohmic resistance and the mass transport limit current, had highly linear correlations with the 

mean contact pressure [13]. Montanini et al. measured the clamping pressure distribution in poly-

mer electrolyte fuel cells using piezo-resistive sensor arrays and digital image correlation techni-

ques [14]. Xing et al. [15] reported a three-dimensional model to investigate the effect of assembly 

clamping pressure on the GDL properties and thus on the performance of PEM fuel cells, and to 

determine the optimum clamping pressures when the cell is operated under different operating 

voltages. They suggested that the optimum clamping pressures increase when the operating 

voltage increases [15]. 

1. 1. Clamping torque calculation theory 

Clamping torque on the bolts can be calculated from the following equation [17]: 

Tt = Fclamp Kb Db / Nb 

Fclamp = Pc A 

where, Tt is the tightening torque in N m, Fclamp is the clamping force in N, Kb is the friction 

coefficient, Db is the bolt nominal diameter in m, and Nb is the number of bolts. Fclamp is a function 

of clamping pressure - Pc and cell active area - A.  Colleen Spiegel et al. [18], also considered other 
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important dimensions for calculating clamping torque i.e. material properties of cell components 

and bolts, geometry of holes, stiffness of the components, stack thickness, and contact resistance 

between BPP and GDL etc. The torque value obtained by these calculations give us range of 

clamping torque to be applied, but still there is need to find optimum torque value which will give 

optimum cell performance. A clamping torque value of 1.2 N m was calculated for our fuel cell 

stack. This study focused experimental procedure for obtaining optimum clamping torque. The 

effects of clamping force can be summarized in the following chart (Figure 1). 
 

 
Figure 1. Effects of increasing assembly pressure 

1. 2. Contact resistance and clamping pressure 

The contact resistance between BPP and GDL can be deduced as measured by various authors 

in literature [19,20]. The governing equation for calculation of contact resistance is given below; 

Rcontact = (Res1 – Res2 – RBPP – RGDL )/ 2 

where, Res1 and Res2 are measured resistances from Setup 1 and Setup 2, respectively as shown in 

the Figure 2. RBPP is the bulk resistance of graphite BPP and RGDL is the bulk resistance of GDL. RBPP 

and RGDL are calculated according to their bulk resistivity. Contact resistance was observed to be 

minimum at a value of 140 N/m2
. 

 

 a b 

 
Figure 2. A schematic diagram of the experimental apparatus used for contact resistance 

measurement: (a) Setup 1 (b) Setup 2 

2. Experimental 

2. 1. Materials, method and assembly 

Graphite bipolar plates with double serpentine flow channels for anode and parallel flow 

channels for cathode side were prepared by machining. Commercially available Nafion 212 
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membrane was used for our fuel cell. Custom made MEAs were prepared with Pt loading of 

0.6 mg cm-2, for both anode and cathode side. Gasket thickness was calculated based on the 

thicknesses of membrane and GDL. Silicon gasket with a thickness of 0.125 mm was used.  

Polymer (PTFE) end plates were used for providing sufficient contact force between the 

components. A total quantity of eight M4×20 bolts was used to clamp the cell components. 

Copper sheets with a thickness of 0.8 mm were used as current collectors. Several MEAs were 

prepared at the same conditions to test designed fuel cell. The active areas of the MEA was 20 cm2 

(10×2 cm). Other components were also prepared as per designed dimensions with acceptable 

properties as defined by Department of energy (DOE). Finally, a single cell was assembled for 

testing at different clamping torque values. 

2. 2. Contact resistance measurement 

Different experimental setups have been used by authors to measure the contact resistance 

[19,20]. We used the similar procedures to measure the contact resistance. BPP specimen was 

inserted between two carbon papers (GDL) and all sand-witched between copper plate current 

collectors. A series of compression pressures from 0.5 to 3 MPa were applied and the correspond-

ing contact resistances were measured. Under each clamping pressure, the contact resistance 

measurements were repeated four times to obtain the average values. 

2. 3. Pressure distribution 

Pressure distribution measurement method as used by several authors [7,13,16] has been 

followed for our experiment. To get the pressure distribution, tests were conducted on our 

hardware with eight bolts at five different applied torque values, from 0.5 to 2.5 N m with an 

increment of 0.5 N m. A rectangular piece of film was cut with the dimensions similar to BPP used 

and was inserted between the membrane electrode assembly (MEA) and gas diffusion layer (GDL). 

Firstly, 0.5 N m torque was applied on each bolt of the cell structure in a certain sequence. After 

approximately five minutes, the bolts were loosened and the film was taken out. Same procedure 

was repeated with other torque values and pressure distribution was observed. 

2. 3. Polarization and power curves 

The experiments were hold at 60 °C while hydrogen and oxygen were purged fully humidified at 

50 °C. The gas flow rates were kept constant, both for the anode and cathode and were 0.2 L min-1 

and 0.4 L min-1, respectively. The MEAs were conditioned before recording data. Polarization 

curves were obtained while decreasing the potential slowly by withdrawing current. Polarization 

data was recorded after six continuous cycles. 

3. Results and discussion 

3. 1. Pressure distribution results 

As the pressure was applied, microcapsules on the pressure sensitive film were broken and a 

color-forming material was released and absorbed on the film. The color (red) intensity of the film 

is directly related to the amount of applied pressure. The greater the pressure, the more intense 

the color. After waiting another five minutes, the fuel cell was opened, and the pressure 

distribution was observable by the color (red) density pattern formed on the film. It is observed 

that pressure distribution was uniform at a clamping torque of 1.5 N m compared to other torque 

values. Figure 3 below, shows the experimental results obtained at 0.5 and 1.5 N m torque values, 

respectively. 
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Figure 3: Pressure distribution results, (a) torque applied 0.5 N m, (b) torque applied 1.5 N m 

3. 2. Single cell performance  

Upon obtaining assembly pressure effects on mass transfer resistance and contact resistance 

above, the overall PEM fuel cell performance was obtained experimentally, as shown in Figure 4.  

a 

  

b 

  
Figure 4. Experimental results: a - polarization at different clamping torque values,  

b - power curves at different torque values. 
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The fuel cell performance lowers at low clamping torque values. As we increase the clamping 

torque, the cell performance increases and again starts decreasing after a certain torque value. 

However, an optimum assembly pressure exists within the lower pressure region. This optimal 

value is the result of the competing effects of contact resistance and mass transfer resistance. 

When the assembly pressure is very low, contact resistance could be high and reverse the effect of 

low mass transfer resistance. Obviously, an assembly pressure near this optimum value is 

preferred. Furthermore, if surface parameters of the BPP change, especially when the surface 

standard deviation becomes larger, the contact resistance tends to be higher. The optimum 

assembly pressure could then shift to a higher level, which can be achieved in practical assembly 

processes. For a lower value of assembly torque (0.5 N m), the compression pressure is not 

sufficient to compress GDL to gasket level and cause fuel leakage as well as a poor contact 

between GDL and bipolar plate. On the other hand, higher assembly torque (2.5 N m) leads to 

smaller porosity, imposing more impedance to gas transfer. Thus, the current density generated 

under the land area is less and has more variation in its distribution resulting in lower cell 

performance. The optimum clamping torque (1.5 N m) is a negotiation between contact resistance 

and mass transfer due to GDL compression giving the best cell performance. Experimental results 

obtained at different clamping torque values are shown in the Figure 4. 

4. Conclusion 

In order to study the effects of assembly pressure on the performance of PEM fuel cells, 

theoretical calculations were made for calculating the clamping torque value. Experimental 

procedures were carried out for obtaining the optimized clamping torque giving optimal 

performance. Fuel cell performance has been observed by polarization and power curves. It has 

been observed that assembly pressure has noteworthy effects on PEM fuel cell performance. In a 

broader view, low assembly pressure causes fuel leakage problems and an increase in contact 

resistance between bipolar plates and GDL, consequently decreasing fuel cell performance. 

Whereas, high assembly pressure increases mass transfer resistance. Current density decreases 

significantly with an increase of assembly pressure. However, by incorporating the competing 

effects of electrical contact resistance, the overall performance first increases and then decreases 

with the increase of assembly pressure. There exists an optimum assembly pressure, in the lower-

pressure region, at which fuel cell performance is optimum.  
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