

Geologia Croatica 68/3 273–283 12 Figs. 3 Tabs. Zagreb 2015

Geologia CroaticaGeologia Croatica
ABSTRACT
Modelling spatial variability and uncertainty is a highly challenging subject in soil- and geosciences. Regression krig-
ing (RK) has several advantages; nevertheless it is not able to model the spatial uncertainty of the target variable. The 
main aim of this study is to present and test a sequential stochastic simulation approach based on regression kriging 
(SSSRK), which can be used to generate alternative and equally probable realizations in order to model the spatial 
variability and uncertainty of the target variable; meanwhile the advantages of the RK technique are retained. The 
SSSRK method was tested in a sub-catchment area of the Lajvér stream, in Southern Hungary for the high resolution 
modelling (i.e. 10 metre grid spacing) of the spatial distribution of soil organic matter (SOM). In the first step, sec-
ondary information was derived according to the soil-forming factors; then the RK system was built up, which pro-
vides the base of SSSRK. 100 realizations were generated, which reproduced the model statistics and honoured the 
input dataset. These realizations provide 100 simulated values for each grid node, which is an appropriate number 
for calculating the cumulative distributions for each grid node. Using these cumulative distributions the following 
maps were derived: the map of the E-type estimation, the corresponding 95% confidence interval width’s map and 
the map of the probability of the event of {SOM < 1.5%}. The latter map is highly informative in soil protection and 
management planning. The resulting model and maps showed that, SSSRK is a valuable technique to model and as-
sess the spatial variability and uncertainty of the target variable. Furthermore, the comparison of RK and SSSRK 
showed that the SSSRK’s E-type estimation and the RK estimation gave almost the same results due to the fairly 
high R2 value of the regression model (R2=0.809), which decreased the smoothing effect.

Keywords: geostatistics, regression kriging, sequential stochastic simulation, spatial uncertainty, soil organic 
matter

1. INTRODUCTION

Modelling the spatial distribution, variability and uncer-
tainty of soil related attribute(s) (e.g. soil organic matter con-
tent, rooting depth, pH, particle size distribution, bulk den-
sity) is a challenging subject in the soil- and geosciences, as 

well as in general environmental research. The resulting 
model(s) can be applied to support various soil and environ-
mental related decisions, such as delineation of contami-
nated or endangered zones, estimation of remediation costs, 
identification areas for fertilization or crop growth and so 
forth. Geostatistics, which can be regarded as a subset of sta-
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fication but they were referred to as “deterministic” and “sto-
chastic” approaches.

The main aim of this study is to present and test a se-
quential stochastic simulation method based on regression 
kriging (SSSRK), which is able to generate alternative and 
equally probable realizations (in order to model the spatial 
uncertainty) with the constraint that they have to reproduce 
the model statistics; meanwhile the advantages of RK are 
retained. SSSRK is presented and tested in a sub-catchment 
area of the Lajvér stream in southern Hungary, where former 
soil (water) erosion research has resulted in particular soil 
sampling and laboratory analysis. The study site is a good 
example from the point of view of soil science because of 
the heterogeneous landscapes, where the various effects of 
soil-forming factors and soil erosion, as well as the various 
land cover types diversify the sub-catchment soil pattern. 
Soil organic matter (SOM) content was chosen as a sample 
variable, being a soil attribute, which has an important role 
due to its multipurpose functionality in the soil- and geo-
sciences, as well as in environmental research. The goal is 
to build up the high resolution model (i.e. 10 metre grid spac-
ing) of the SOM spatial distribution based on SSSRK. The 
resulting model and the derived “maps” are of interest for 
precision agriculture, water erosion and soil protection re-
search, small scale landscape planning and evaluation, inte-
grated catchment management and climate change research 
(sources and sinks for atmospheric carbon dioxide).

2. STUDY SITE

The sub-catchment (area is approximately 1.32 km2) which 
drains into the Lajvér stream is located in the southern part 
of Hungary, in the Szekszárd Hills, near the village of Szálka 
(Fig. 1). The area of interest is covered by loess-like sedi-
ments (DÖVÉNYI, 2010). The annual precipitation is 650 
mm in the study site. The original soil types are Cambisols 
and Luvisols with a loamy soil texture, but there are several 
eroded types of them because of the high relief and the long-
term agricultural land use. Even Regosols can be observed 
in small areas. However, the eroded soil material forms Flu-
visols on the valley bottoms. Land use more or less conforms 
to the relief conditions: approximately 50% of the area (65.2 
hectares) is used as arable land (see Fig. 1), but the steeper 
slopes are covered by meadows and forests. These latter ones 
mean mainly acacia but we can see oak forests on the north-
ern part of the sub-catchment. There are new vineyards on 
the southeastern parts (see Fig. 1).

3. MATERIALS AND METHODS

3.1. Sampling, laboratory measurements and prelimi-
nary data analysis
Former soil (water) erosion research has resulted in a par-
ticular pattern of topsoil (0-10 cm depth) sampling and labo-
ratory analyses including SOM. The database contains 47 
records on SOM content originating from 2 soil profiles and 
45 boreholes (Fig. 1), sampled in 2008-2009.

tistics specialized in analysis and interpretation of geograph-
ically referenced data (GOOVAERTS, 1997), provide a huge 
amount of tools to support these decisions (WEBSTER & 
OLIVER, 2007).

A majority of geographically referenced data (e.g. soil 
attributes) is related to discrete (sampling) points in the geo-
graphic space, which means that we do not have any infor-
mation about these variables at the unvisited locations. How-
ever, an increasing amount of spatially exhaustive secondary 
information (e.g. digital elevation models, satellite images, 
geological maps and land cover maps) is available today with 
increasing spatial and temporal resolution, which can be used 
in combination with geostatistical tools to satisfy certain re-
quirements (e.g. intrinsic hypothesis, second-order or weak 
stationarity), and to improve the estimation or simulation 
models (MINASNY & MCBRATNEY, 2007). Regression 
kriging (RK) is a representative and widely used technique, 
which combines the regression of the target variable on spa-
tially exhaustive secondary information with simple kriging 
of the regression residuals to estimate the value of the target 
variable at an unvisited location (HENGL et al., 2004). RK 
has several advantages in contrast to other kriging methods, 
e.g. it can take spatially exhaustive secondary information 
into account in the estimation process, it can handle the trend 
(or drift), where the trend term means that the local mean 
systematically varies from place to place. Furthermore, RK 
is more flexible than kriging with external drift or cokriging 
methods (SIMBAHAN et al., 2006; ELDEIRY & GARCIA, 
2010; HENGL et al., 2003), which also can take secondary 
information into account in the estimation process. One of 
the main drawbacks of RK is that it is unable to model the 
spatial uncertainty or to provide, for example, the 95% con-
fidence interval for the estimates. According to GOO-
VAERTS (1997), if the intrinsic hypothesis holds, the krig-
ing variance could be used to derive the 95% confidence 
interval for the estimates. Unfortunately, the intrinsic hy-
pothesis is not reasonable to hold in many cases (there is a 
trend, which makes it unacceptable). The main reason why 
RK is widely used for spatial modeling is that it can handle 
the trend (SZATMÁRI & BARTA, 2013).

During past decades, stochastic simulations became 
widespread in the soil- and geosciences to model and assess 
the spatial variability and uncertainty of the target variable(s) 
(GOOVAERTS, 1997; DEUTSCH & JOURNEL, 1998; 
GEIGER, 2006; MALVIĆ, 2008; NOVAK ZELENIKA & 
MALVIĆ, 2011; GEIGER, 2012; MALVIĆ et al., 2012; NO-
VAK ZELENIKA et al., 2012). As opposed to any kind of 
kriging techniques, the main aim of simulation methods is 
to generate alternative and equally probable realizations, 
which reproduce the model statistics (e.g. histogram and var-
iogram model), rather than to minimize the local error vari-
ance Var{Z*(u) – Z(u)}. Hence, simulation methods model 
the “reality” in a certain global (and not local!) sense, which 
give an opportunity to model the spatial uncertainty (GOO-
VAERTS, 1997; DEUTSCH & JOURNEL, 1998; GEIGER, 
2006; MALVIĆ, 2008). Based on this, we can classify the 
geostatistical techniques into two classes: estimation and 
simulation methods. MALVIĆ (2008) also used this classi-
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The topsoil sampling design was planned for modelling 
the soil erosion process (BORCSIK et al., 2011). A stratified 
sampling strategy (supported with geostatistical considera-
tions) was used for this purpose to determine the spatial vari-
ability of the eroded and accumulated soil patterns. The land 
cover (LC) map and the steepness (slope from the digital el-
evation model; see. Fig. 3) of the study area was the basis 
for the stratification. Arable lands are the most seriously af-
fected LC type by soil erosion. Hence, this LC type (includ-
ing the eroded and accumulated soil patterns) had more 
weights in the sampling strategy than forests and meadows, 
because the previous LC types are not affected by this soil 
degradation process (BORCSIK et al., 2011). As a conse-
quence, arable lands (including the eroded and accumulated 
soil patterns, as well as the flat valley bottom) are relatively 
overrepresented; whilst forest and meadows are relatively 
underrepresented. According to WEBSTER & OLIVER 
(2007), geostatistical considerations were applied in the sam-
pling strategy to make sure that the sampling design covered 
the study site uniformly, as far as possible. The soil profiles 
were excavated; their total depth was 140 cm, where the par-
ent material (loess-like sediments) was reached. The topsoil 
layer (0-10 cm depth) of the profiles was sampled. A gouge 
auger was used to excavate the boreholes with an average 
total depth of 120 cm. The total depths of the boreholes were 
determined by the depth of the parent material. The samples 
were collected from the topsoil layer (0-10 cm depth) of the 

boreholes. The soil profiles and the boreholes were used to 
characterize the main soil types, as well as the soil erosion 
process.

The laboratory analyses included the determination of 
SOM, particle size distribution, pH, bulk density, as well as 
the carbonate content (BORCSIK et al., 2011). This study 
has used the SOM measurement data according to the Hun-
garian Standard (MSZ 21470-52:1983), which means that 
SOM content was determined after sulfuric acid digestion in 
the presence of 0.33 mol/dm3 potassium dichromate by spec-
trophotometer (type: Helios-gamma).

Figure 1: The location of the study site in Hungary and its land cover presented with the measured soil organic matter (SOM) data at the sampling points.

Table 1: Summary statistics of the soil organic matter (SOM) data exclud-
ing outliers.

Statistics Value

Mean 1.600

Median 1.531

Std. dev. 0.502

Minimum 0.768

Maximum 3.546

Skewness 0.603

Kurtosis 0.141
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trend component (also referred to as drift or mean, see GOO-
VAERTS [1997]) m(u) and a residual component ε(u):

 ( ) ( ) ( )Z m e= +u u u ,  (Eq. 1)

where the trend component is accounted for by a multiple 
linear regression model, whilst the model residuals represent 
the spatially varying but dependent stochastic component 
with zero mean, normal distribution (see Fig. 2) and covari-
ance structure, which can be modeled with a simple kriging 
technique. Figure 2 presents the schema of RK. Based on 
this, the estimation for Z at an unvisited location u0 is given 
by

 T T
0 0 0(u ) q (z – q )Z = × + ×b l bE  (Eq. 2)

where β is the vector of the regression coefficients, q0 is the 
vector of the secondary information at the unvisited location, 
λ0 is the vector of the simple kriging weights (assigned to 
the regression’s residuals), z is the vector of the observations 
and q is the matrix of the secondary information at the sam-
pling locations. The regression coefficients are estimated by 
the generalized least squares (GLS) method because it is able 
to take the covariance matrix of the residuals into account 
along the estimation process.

3.3. Spatially exhaustive secondary information 
for RK

In case of soil related attribute(s), secondary information can 
be compiled according to the soil-forming factors because 
there is a significant relationship between these factors and 
the soil attribute(s) (PHILLIPS, 1998; MCBRATNEY et al., 
2003; BOCKHEIM & GENNADIYEV, 2010; SZATMÁRI 
et al., 2013; BOCKHEIM et al., 2014). According to BOCK-
HEIM et al. (2014), the soil-forming factors are the follow-
ing: topography, climate, parent material, organisms (i.e. 
vegetation and fauna), the age of the soil and the human in-
tervention, as an anthropogenic factor.

Only one outlier was identified by Box and Whisker plot 
and then it was removed from the raw SOM data. Then sum-
mary statistics were calculated for the filtered SOM data (Ta-
ble 1). Figure 1 presents the spatial distribution of the meas-
ured SOM content values. As it was anticipated, the SOM 
content is much lower in arable lands and vineyards than in 
forests and meadows, due to the long-term and intensive ag-
ricultural activity, as well as the soil erosion effects, which 
cause a higher amount of organic matter mineralization, as 
well as the erosion of the SOM rich topsoil. As a conse-
quence, the study site shows a diversified picture of the SOM 
content’s spatial distribution. These also imply that, the in-
trinsic hypothesis is not reasonable to hold, because there is 
an obtrusive trend (i.e. the local mean systematically varies 
from place to place), which makes several kriging techniques 
(e.g. ordinary kriging, simple kriging) inappropriate. More-
over, the large number of factors (e.g. land cover types, to-
pography, morphometric parameters) and their abrupt 
changes in the geographic space make cokriging and kriging 
with external drift techniques inadequate too, according to 
GOOVAERTS (1997). Alternatively, RK is able to handle 
the trend, as well as it can take numerous secondary infor-
mation into account considering their abrupt changes in ge-
ographic space. Hence, the RK technique is a reasonable 
choice for modeling the SOM content’s spatial distribution 
in the area of interest.

3.2. Theory of regression kriging (RK)

In the last ten years, regression kriging (RK) has been more 
and more popular to estimate the value(s) of the target 
variable(s) at unvisited locations taking spatially exhaustive 
secondary information into account (HENGL et al., 2004; 
SIMBAHAN et al., 2006; GOOVAERTS, 2010, 2011; 
KERRY et al., 2012; SZATMÁRI & BARTA, 2013; SZAT-
MÁRI et al., 2013; PÁSZTOR et al., 2014a, b). RK assumes 
that the random function Z(u) can be deconstructed into a 

Figure 2: The schema of regression kriging.
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Climate and parent material can be regarded as homo-
geneous because of the local aspect of the sub-catchment 
(DÖVÉNYI, 2010). Unfortunately, we do not have any in-
formation about the age of the soils. However, this factor has 
been frequently omitted in soil related spatial modelling, be-
cause it is difficult to characterize well (MCBRATNEY et 
al., 2003).

Spatially exhaustive information on topography can be 
derived from the digital elevation model (DEM) of the study 
area, which was built up with 10 metre resolution. The first 
step in using this secondary information is morphometric 
analysis of DEM. The derived, so called “morphometric” 
parameters’ grids are aimed to characterize the geomorphom-
etry of the surface (MCBRATNEY et al., 2003). The grids 
of the morphometric parameters have the same resolution as 
DEM. Table 2 and Figure 3 summarize the derived param-
eters and their characteristics. Note that there is a significant 
relationship between the derived morphometric parameters, 
thus the “raw” grids of these parameters cannot be used in 
further multiple linear regression analysis because of multi-
collinearity. To avoid this, principal component (PC) analy-
sis was performed to transform the grids of the morphomet-
ric parameters, because the resultant PC grids are orthogonal 
and independent. Hence, their application decreases the ef-
fect of multicollinearity; moreover the resulting PC grids 
preserve the total variation of the morphometric parameters 
(GEIGER, 2007). The PC analysis was carried out in SAGA 
GIS software with its “Spatial and Geostatistics / Principal 
Components” module, which calculates the PC grids from 
the input grids. The resulting PC grids were used in further 
multiple linear regression analysis.

Spatially exhaustive information on organisms (i.e. vege-
tation) and human intervention can be derived from the LC 

map of the study area (Fig. 1). In the present case, the LC 
map was compiled interpreting the products of the official 
aerial photography campaign of Hungary, taken in 2005. As 
opposed to the morphometric parameters, the LC type is a 
categorical variable. For the sake of the application of RK, 
each LC type was converted into an indicator variable (IV). 
Therefore a grid map was generated (with 10 metre resolu-
tion) for each LC type with a value domain showing 1 at the 
locations of the given LC type and showing 0 for all other 
locations. The resulting IVs were used in further multiple 
linear regression analysis.

Figure 3: The maps of the derived morphometric parameters.

Table 2: The derived morphometric parameters and their characteristics.

Morphometric parameters Characteristics

Altitude (meter) The vertical distance between  
the surface and the Baltic Sea level

Slope (%) The rise or fall of the surface in percent

Aspect or Slope  
exposure (degree) The compass direction that a slope faces

Plan curvature  
(dimensionless)

The curvature of the surface  
perpendicular to the slope direction

Profile curvature 
(dimensionless)

The curvature of the surface in the 
direction of the slope

LS (or topographic)  
factor (dimensionless)

Quantified effects of slope and slope 
length on water erosion (WISCHMEIER  
& SMITH, 1978)

Topographic Wetness 
Index (dimensionless)

Quantified control of local topography  
on hydrological processes, and indicator 
of the spatial distribution of soil moisture 
and surface saturation
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3.4. Theory of sequential stochastic simulation 
based on regression kriging (SSSRK)

During previous decades, stochastic simulations became 
wide spread (GOOVAERTS, 1997; DEUTSCH & JOURNEL, 
1998; GEIGER, 2006; MALVIĆ, 2008; NOVAK ZELENIKA 
& MALVIĆ, 2011; GEIGER, 2012; MALVIĆ et al., 2012; 
NOVAK ZELENIKA et al., 2012). These simulations are 
methods in which alternative and equally probable high reso-
lution models of spatial distribution of Z(u) are generated 
(DEUTSCH & JOURNEL, 1998). If the realizations (also re-
ferred to as stochastic images) from them honour the input 
data, then the simulation is called “conditional” (DEUTSCH 
& JOURNEL, 1998).

According to GOOVAERTS (1997), let {Z(uj), j=1,…
,N} be a set of random variables defined at N locations uj 
within the study area. The objective is to generate several 
joint realizations of these N random variables conditional to 
the dataset. The corresponding N-point (or N-variate) con-
ditional cumulative distribution function (ccdf) is:

1 1 1 1( ,..., ; ,..., | ( )) { ( ) ,..., ( ) | ( )}N N N NF z z n P Z z Z z n= ≤ ≤u u u u

(Eq. 3)

However, this N-point ccdf can be written as the pro duct 
of N one-point ccdf: 

1 1

1 1

2 2

1 1

( ,..., ; ,..., | ( )) ( ; | ( 1))
( ; | ( 2)) ...
( ; | ( 1))
( ; | ( ))

N N N N

N N

F z z n F u z n N
F u z n N
F u z n
F u z n

− −

= + − ⋅
+ − ⋅ ⋅

+ ⋅

u u

(Eq. 4)

where the one-point ccdfs are conditional to the dataset and 
all previously simulated values. Based on this, a stochastic 
image can be generated in N successive steps (GOO-
VAERTS, 1997; GEIGER, 2006):

1.  Model the ccdf at the first location u1 conditional to the 
dataset.

2.  Draw a realization from this ccdf, which realization 
becomes a conditioning datum for all subsequent draw-
ings.

3.  Model the ccdf of Z(ui) at the ith location (ui) condi-
tional to the dataset and all (i-1) previously simulated 
values.

4.  Draw a realization from this ccdf, which realization 
becomes a conditioning datum for all subsequent draw-
ings.

5.  Repeat the two previous steps until all N locations are 
visited and each has been given a simulated value.

The resulting set of simulated values represents one rea-
lization of the random function over the N locations. Other 

Figure 4: A schema of sequential stochastic simulation based on regression kriging.
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realizations are obtained by repeating the entire sequential 
process with possibly different random path for each reali-
zation (GOOVAERTS, 1997; GEIGER, 2006).

When secondary information is available, then this in-
formation can be used in the sequential stochastic simulation 
process (GOOVAERTS, 1997; DEUTSCH & JOURNEL, 
1998; MALVIĆ, 2008). As mentioned above, the secondary 
information is related to DEM and the LC map of the pilot 
area. In this study, the RK estimation was used to identify 
the mean of ccdf at any grid node and the simple kriging 
variance of the residuals was used to identify the variance 
of ccdf at any grid node, according to GOOVAERTS (1997) 
and DEUTSCH & JOURNEL (1998). Figure 4 presents the 
schema of SSSRK. The consequence of this practice is that 
the variogram and the histogram of the residuals are repro-
duced by the simulation model. Furthermore, the realizations 
honour the input dataset.

In our work, 100 realizations (according to GOO-
VAERTS [2001] and GEIGER [2006]) were generated by 
the previously detailed SSSRK method. The resulting sto-
chastic images can be used, for example, to map the E-type 
estimation, as well as the corresponding upper and lower 
bound of the confidence interval for each grid node, to as-
sess the spatial uncertainty using the differences between the 
realizations or to solve tasks like “contouring the probability 
of the event of {SOM < 1.5%}” (GEIGER & MUCSI, 2005; 
GEIGER, 2006; MUCSI, et al. 2013).

4. RESULTS AND DISCUSSION

4.1. Results of RK

The generalized least squares (GLS) method was used to es-
timate the regression coefficients for the multiple linear re-
gression model. The response variable was the SOM content, 
whilst the explanatory variables were the PC grids of the 
morphometric parameters and the indicator variables (IV) of 
the LC types. The applied significance level was 0.05 and 
the “stepwise” method was used to select the explanatory 
variables into the regression model. Table 3 summarizes the 
results of the multiple linear regression analysis.

Table 3: Results of the multiple linear regression analysis.

Regression coefficients Sig.

Intercept 1.878 < 2*10-16

Explanatory variables

PC-1 -0.004 3.08*10-02

PC-2 -0.035 1.20*10-08

PC-4 -0.172 1.29*10-05

IV-Forests -0.621 1.63*10-04

IV-Vineyards -0.859 5.33*10-08

IV-Eroded Arables 0.624 3.40*10-05

PC-6 -0.533 1.14*10-02

Determination coefficient (R2) 0.809

model p-value 3.59*10-11

Seven explanatory variables were selected into the mul-
tiple linear regression model by the “stepwise” method (see 
Table 3), where 4 explanatory variables were related to the 
PC grids (i.e. PC-1, PC-2, PC-4 and PC-6), whilst 3 explana-
tory variables were related to the IV grids (i.e. IV-Forests, 
IV-Vineyards and IV-Eroded Arables). In case of the selected 

Figure 5: An experimental variogram and the fitted variogram model of 
the residuals.

Figure 6: A map of the soil organic matter (SOM) content created by re-
gression kriging.
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PC grids, PC-1 relates to the altitude parameter (i.e. the al-
titude morphometric parameter had the highest PC coeffi-
cient in the PC analysis), PC-2 relates to slope, PC-4 repre-
sents the Topographic Wetness Index, whilst PC-6 relates to 
the LS factor. As a consequence, SOM spatial distribution is 
mainly determined by the soil erosion related morphometric 
parameters and the LC types, as was anticipated. The deter-
mination coefficient of the regression model is 0.809 (see 
Table 3), which means that the model explains more than 
80% of the total variability of the SOM data and the remain-
ing approximately 20% have to be modeled with a simple 
kriging system. The regression residuals were derived and 
the corresponding experimental variogram was calculated to 
model their spatial structure (Fig. 5). The experimental var-
iogram was approached with a spherical variogram model 
type with zero nugget, 0.0515 sill (which is approximately 
20% of the total variance, see Table 1), 204 meter range and 
isotropic characteristic (see Fig. 5). The spatial estimation 
by RK was carried out using the multiple linear regression 
model and the fitted variogram model. The RK estimation is 
presented in Fig. 6.

4.2. Results of SSSRK

In this study, 100 equally probable realizations were gener-
ated based on the regression kriging system presented earlier 
and using the SSSRK algorithm. Figure 7 shows three of the 
resulting stochastic images of SSSRK. As we can see in Fig. 
7, there are areas where the stochastic images are not so dif-
ferent (e.g. arable lands), whereas we can find some regions 
(e.g. forests and meadows) where the differences are more 
pronounced.

The experimental variograms of the resulted realizations 
can be derived and they can be compared with the applied 
variogram model, which was used in the SSSRK process 
(Fig. 8). One of our constraints was that SSSRK algorithm 

has to reproduce, through the resulted realizations, the ap-
plied variogram model of the residuals. Figure 8 shows that 
this was achieved.

The 100 realizations provide 100 simulated values for 
each grid node and this number is quite appropriate to cal-
culate the cumulative distribution around an infinitesimally 
small neighbourhood of each grid node (GEIGER, 2006; 
MUCSI et al., 2013). Using these cumulative distributions 
the E-type estimation and the corresponding upper and lower 
boundary of the 95% confidence interval can be calculated 
for each grid node. Moreover, the 95% confidence interval’s 
width also can be derived, which provides a measure of un-
certainty of the SOM estimation, i.e. when this interval width 
is relatively high, then the SOM estimation is more uncer-
tain, according to GEIGER (2006). Figure 9 shows the E-

Figure 7: Three realizations of the sequential stochastic simulation based on regression kriging. Abbreviation: SOM: soil organic matter.

Figure 8: Derived variograms from several realizations and the applied 
variogram model.
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a wider range, than is the case for arable lands. This is in ac-
cordance with the aforementioned statements that the E-type 
estimations are more uncertain in forests and meadows. Fur-
thermore, the transect also indicates that the SOM content is 
much lower in arable lands, than in forests and meadows, 
due to the long-term and intensive agricultural activity, as 
well as the effects of soil erosion, which cause a higher 
amount of organic matter mineralization, as well as the ero-
sion of the SOM rich topsoil. At 140 metres along the 
transect, the range of the simulated values is fairly small, 
which can be attributed to a sampling point, which is pretty 
near that grid node (see Fig. 1). We can conclude that, the 
SSSRK algorithm honours the input dataset, which was the 
other constraint on the SSSRK technique.

In contrast, we can use the calculated cumulative distri-
bution for each grid point to solve tasks like “contouring the 
probability of the event of {SOM < 1.5%}”, according to 
GEIGER (2006). Figure 11 presents that “probability map”, 
which can be directly used in a soil protection and manage-
ment plan of the sub-catchment to delineate areas for SOM 
archiving.

4.3. Comparison of RK estimates with SSSRK’s 
E-type estimates

Numerous authors have compared the results of the estima-
tion and simulation methods in the last decade, such as 
GOOVAERTS (2000), GEIGER (2006), MALVIĆ (2008), 
NOVAK ZELENIKA & MALVIĆ (2011), MALVIĆ et al. 
(2012), NOVAK ZELENIKA et al. (2012) or MUCSI et al. 
(2013). Following this practice, the results of RK and 
SSSRK were compared. If we compare the RK estimation 
(Fig. 6) with the SSSRK’s E-type estimation (Fig. 9.a), then 
we can state that, they are very similar. To test this impres-
sion, a difference map was calculated (Fig. 12), which quan-
tifies the difference between the map of RK estimation and 
SSSRK’s E-type estimation. The range of the difference map 
is [0.068; -0.091] (see Fig. 12), which is fairly small. Based 
on this, we can conclude that the two maps, from the practi-
cal point of view, present the same result. However, we have 
to notice that this similarity may can be attributed to the fact 
that the determination coefficient of the regression model is 
fairly high (R2=0.809), which decreased the smoothing ef-
fect of the RK technique (SZATMÁRI et al., 2013).

5. CONCLUSIONS

In this paper, a sequential stochastic simulation method 
based on regression kriging (SSSRK) was presented and 
tested in a sub-catchment area of the Lajvér stream, in South-
ern Hungary. For this purpose, the soil organic matter (SOM) 
content was chosen because this particular soil property has 
an important role due to its multipurpose applicability.

As it was illustrated in this study, SSSRK (as opposed 
to RK) is able to model the spatial uncertainty of the target 
variable using the generated equally probable realizations 
(which reproduce the model statistics and honour the input 
dataset). It is able to provide a measure of the uncertainty of 

Figure 9: The E-type estimation of the soil organic matter content (a) and 
the corresponding 95% confidence interval width (b) on the basis of 100 
realizations.

type estimation and the corresponding confidence interval 
width. As we can see in Fig. 9b, the E-type estimations are 
more uncertain in forests, vineyards and meadows, than in 
arable lands. It can be attributed to the sampling strategy, 
which underrepresented the former LC types.

A horizontal transect (see Fig. 1) was traced out in the 
northern part of the study site, which intersects the most fre-
quent LC types (arable, meadows and forests). Along the 
transect, the E-type estimation, the upper and lower bound-
ary of the 95% confidence interval and every tenth simulated 
value were plotted (see Fig. 10) in order to analyze how the 
simulated values vary in different LC types. Figure 10 shows 
clearly that the simulated values in forests and meadows have 

a)

b)
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the E-type estimates using the derived confidence interval 
width. Moreover, the calculated cumulative distribution 
around an infinitesimally small neighbourhood of each grid 
node can be used to support various decisions (e.g. identifi-
cation of SOM rich or SOM poor areas). In addition, SSSRK 
retained the main advantages of the RK technique such as 

its flexibility, but it can also handle the trend (or drift) and it 
can take spatially exhaustive secondary information into ac-
count in the simulation process.

In conclusion, SSSRK is a valuable technique to model 
the spatial distribution, variability and uncertainty of the tar-
get variable and to complete RK’s several shortcomings.

Figure 11: A map of the probability of the event of {SOM < 1.5%}.

Figure 10: Horizontal transect of every tenth simulated stochastic image in the northern part of the sub-catchment.

Figure 12: A difference map of the regression kriging estimation and the 
sequential stochastic simulation based on regression kriging’s E-type 
 estimation.
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