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Introduction

In biotechnology, fed-batch processes are im-
portant when microorganism cultivation productivi-
ty can be increased by controlled substrate feeding 
rate. Satisfactory realization and performance of 
such processes is usually a challenge for technolo-
gists, who are confronted with new processes, lack 
sufficient experience in fermentation process mod-
eling and/or lack sufficiently advanced equipment. 
One of the problems is the selection of a feeding 
rate profile that could maintain a microbial growth 
trajectory yielding in high product titers. Secondly, 
due to process disturbances, an undesirable, “over-
fed” or too limited microbial growth may occur. 

This may lead to costly batch discard if no adequate 
immediate feeding rate correction by the operator or 
automatic control system takes place.

These processes, if implemented in commercial 
production, especially those in the pharmaceutical 
industry, need to follow strict good manufacturing 
practice (GMP) requirements regarding the fermen-
tation process reproducibility for consistent batch-
to-batch product quality. Moreover, prior to product 
commercialization, validation and potential risk as-
sessment should be conducted for production pro-
cess control1. From these requirements, one could 
state that the process under development should be 
well studied and precisely controlled on the basis of 
available and reliable on-line and off-line data. In 
this case, process automation and implementation 
of advanced knowledge- and model-based ap-

Model Predictive Feeding Rate Control in Conventional 
and Single-use Lab-scale Bioreactors: A Study on Practical Application

O. Grigs,a,b,* V. Galvanauskas,c K. Dubencovs,a,b J. Vanags,d A. Suleiko,a,b T. Berzins,d and L. Kungaa

aLatvian State Institute of Wood Chemistry, Laboratory of Bioprocess 
Engineering, LV-1006 Riga, Latvia
bRiga Technical University, Department of Chemical Engineering, 
Riga LV-1048, Latvia
cKaunas University of Technology, Department of Automation, 
LT-51367 Kaunas, Lithuania
dBiotehniskais Centrs, JSC, LV-1006 Riga, Latvia

A developed solution for fed-batch process modeling and model predictive control 
(MPC), facilitating good manufacturing practice (GMP) based on process elaboration, 
control, and validation, is presented in the paper. The step-by-step evolution of the so-
called “golden batch” optimal biomass growth profile and its control during the process 
is demonstrated. The case study of an advanced fed-batch control was performed on the 
recombinant E. coli BL21 lab-scale (5.4 L) biomass production process using the con-
ventional stirred tank glass reactor. Additionally, a test experiment for control reproduc-
ibility and applicability assessment of the proposed approach was carried out in a sin-
gle-use stirred tank reactor (5.7 L). Four sequentially performed experiments are 
demonstrated as an example for desirable feeding profile evolution for E. coli BL21 
biomass production in a glucose-limited fed-batch process. Under different initial bio-
mass and glucose conditions, as well as for different reference feeding profiles selected 
in the explorative experiments, good tracking quality of preset reference trajectories by 
the MPC system has been demonstrated. Estimated and experimentally measured bio-
mass mean deviations from the preset reference value at the end of the processes were 
4.6 and 3.8 %, respectively. Biomass concentration of 93.6 g L–1 (at 24 h) was reached in 
the most productive run. Better process controllability and safer process run, in terms of 
avoiding culture overfeeding but still maintaining a sufficiently high growth rate, was 
suggested for the process with biomass yield of 79.8 g L–1 (at 24 h). Practical recommen-
dations on the approach application and adaptation for fed-batch cultures of interest are 
provided.

Key words:
fed-batch, process reproducibility, model predictive control, model adaptation, bioreac-
tors, Matlab

*Corresponding author: Oskars Grigs, e-mail: oskars.grigs@edu.rtu.lv

doi: 10.15255/CABEQ.2015.2212

Original scientific paper 
Received: April 13, 2015 

Accepted: February 29, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/33294159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.15255/CABEQ.2015.2212


48 O. GRIGS et al., Model Predictive Feeding Rate Control in Conventional and…, Chem. Biochem. Eng. Q., 30 (1) 47–60 (2016)

proaches could not only facilitate more safe and ro-
bust process control but also more easy validation 
and frequent re-validation procedure, due to mini-
mized dependency on qualified personnel availabil-
ity and potential risks related to the human-factor. 
Therefore, fed-batch processes that are sensitive to 
limiting substrate level require enough sophisticated 
feeding control approaches. At the same time, the 
latter should be relatively easily implementable and 
not too complicated.

While the first digital control units (DCU) for 
fermentation process control were introduced in the 
1960’s, many of the established techniques for fed-
batch fermentation process control that are used to-
day, such as on-line respiratory quotient (RQ) cal-
culation for glucose feed-rate control or on-line 
estimation of biomass and substrate concentrations 
using O2 and CO2 measurements in off-gas, were 
introduced already in the following 20 years2,3. Fur-
ther development of DCU capabilities lead to the 
expansion and the practical implementation of ad-
vanced fed-batch control techniques4,5 such as adap-
tive control, soft sensoring (process models, artifi-
cial neural networks (ANN), principal component 
analysis (PCA)), intelligent control (fuzzy logic, 
ANN, hybrid models), and model predictive control 
(MPC)6 introduced for pilot-scale and industrial ap-
plications7,8,9. On the other hand, these systems are 
not widely accessible due to their specialized and 
non-commercial use, whether developed for the re-
search laboratory or the biotech company. While 
investigating recently available information from 
the companies producing/developing bioprocess 
equipment, besides the common advanced dissolved 
oxygen (pO2) adaptive control by substrate feeding, 
some other advanced fed-batch control examples 
could be found. Infors HT (Switzerland) offers the 
software package Iris 6, capable of feeding rate 
control on the basis of RQ calculations from off-gas 
analysis. New Brunswick/Eppendorf (USA) pre-
sented feed control based on the on-line dissolved 
CO2 sensor data10. The YEWMAC Line Computer 
System (Yokogawa Electric Corporation, Japan) at 
the beginning of the 1990’s was used for model pre-
dictive feeding rate control in the glutathione fer-
mentation to compensate deviation from preset 
(modeled) ethanol concentration7.

MPC has an advantage of relatively easier im-
plementation possibilities as compared to ANN or 
fuzzy logic-based control. In MPC, standard and 
relatively simple process models can be used for 
controlled parameter calculation in real time and in 
the feed forward manner. Model re-identification 
during the process is desirable for MPC, if varying 
process conditions or phases cause significant esti-
mation errors. Re-identification of parameters, such 
as biomass yield (Yxs) and maximal specific sub-

strate consumption rate (σmax), is suggested6. For 
model re-identification, reliable methods should be 
used for on-line or off-line biomass (X), substrate 
(S), and volume (V) estimation. Precision of V esti-
mation has significant influence on biomass and 
substrate modeling results. Here, several methods 
for culture volume on-line estimation can be used, 
for example, reactor direct weighing, using level 
sensors, calculation of volume on the basis of avail-
able information of pumped volumes and modeled 
flows to and from reactor, etc.

For optimal process performance, a feeding 
profile is applied to control the substrate consump-
tion rate near its critical value, thus maintaining 
maximal biomass growth. At the same time, it is 
taken into account that the substrate consumption 
rate should not exceed critical value, at which sig-
nificant synthesis of an inhibitory by-product (e.g., 
acetate) starts. The accumulated concentration of 
acetate could inhibit biomass growth. Therefore, to 
obtain a more suitable process run for safer control, 
a slightly lowered predefined substrate consumption 
rate may be applied, which does not reduce process 
yield significantly11. Model-based process optimiza-
tion is desirable for such cases12.

In this paper, the authors demonstrate a devel-
oped tool for model-based fed-batch control and 
feeding profile selection, implemented in a labora-
tory bioreactor system that is commercially avail-
able for a wide range of users. The developed and 
implemented MPC system was used to track the 
selected reference trajectory of the biomass amount. 
It demonstrated good control performance and re-
duced process variability as compared to the system 
with an open-loop feeding profile control. Practical 
recommendations for desirable feeding profile se-
lection and control utilizing this tool are provided. 
Example of E. coli biomass production process is 
demonstrated. For applicability demonstration, the 
proposed approach is also demonstrated on a labo-
ratory bioreactor of different configuration, belong-
ing to the class of single-use bioreactors.

Materials and methods

Setup overview

The proposed approach was implemented and 
tested in a lab-scale bioreactor system EDF-5.4/BIO-4 
(Biotehniskais Centrs, Riga, Latvia). An additional 
test run using the proposed approach was performed 
on a system consisting of a single-use bioreactor 
(SUB) CellVessel 5.7 (CerCell, Holte, Denmark) 
connected to BIO-4 controller. EDF-5.4/BIO-4 con-
sists of a 5.4 L glass reactor with working volume 
of 2–4 L, two standard Rushton turbines, outlet gas 
condenser, and bioprocess controller BIO-4. Be-
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sides standard measurement and control capabilities 
of temperature, pH, pO2, foam and level, there is a 
possibility to measure O2 and CO2 concentrations in 
off-gas and culture turbidity for process on-line 
analysis and control. The SUB polycarbonate biore-
actor with a total volume of 5.7 L and working vol-
ume of 2–4.5 L has four standard Rushton turbines 
and an outlet gas condenser. Some specifications of 
both the reactors are summarized in Table 1.

Ta b l e  1  – Specifications of EDF-5.4 and CellVessel 5.7 reac-
tors

Characteristic Value 
‘conventional’

Value 
‘SUB’

Vessel material
Glass (borosilicate), 

stainless steel 
(316 L)

Poly-
carbonate

Vessel inner height (m)

Vessel inner diameter (m)

0.32

0.14

0.35

0.15
Turbines (number)

 vessel fill till 1st turbine (L)

 vessel fill till 2nd turbine (L)

 vessel fill till 3rd turbine (L)

 vessel fill till 4th turbine (L)

Turbine blades (number)

Turbine blade area (cm2)

2

0.7

2.0

–

–

6

3.4

4

0.8

1.4

2.1

2.9

6

0.8
Baffles (number)

Baffle height (m)

Baffle width (m)

3

0.28

0.018

3

0.34

0.017

The BIO-4 DCU has 3 digital inputs/outputs, 4 
analog inputs/outputs, and 1 relay input unit (Sie-
mens AG, Germany). The implemented router (To-
sibox, Oulu, Finland) supports RJ-45 10/100 M au-
to-negotiation connection. All Ethernet connections 
are based on OSI 7 layers. Wireless is protected 
with WEP, WPA and WPA2 protection keys. The 
router uses 1024 bit encryption key for connection 
authentication. The PC SCADA – Supervision Con-
trol and Data Acquisition system was connected to 
the DCU through the router via Ethernet link. The 
communication diagram of the control system is 
shown in Fig.  1. Programming in Matlab (Math-
works, Inc.) .m code was used for implementation 
of the proposed MPC control algorithm. The on-line 
data exchange of the process and control variables 
between the MPC control algorithm and SCADA, 
programmed in PcVue (PcVue Solutions, Ltd.), was 
implemented every second (s) through an OPC 
server. The interval of one second was also used for 
process and control variable data exchange between 

SCADA and DCU of the bioreactor. Additional data 
records from the MPC algorithm were written into 
ASCII format text files.

The process contains all the standard measure-
ment/control equipment and controllers, which are 
correctly tuned using, e.g., internal model control 
(IMC) tuning rules, and do not negatively influence 
the performance of the MPC system discussed in 
this paper. The pump for glucose feeding (the feed-
ing rate Fs is the main control variable of MPC) 
contains an internal PID controller for the substrate 
dosing that is set up at the factory, and needs no 
additional tuning, as it follows the set feeding rate 
profile with sufficient precision and quality.

Experimental conditions

The cultivation processes were carried out us-
ing recombinant Escherichia coli BL21. The batch 
cultivation and feeding media solutions used in this 
study were prepared according to R. Bajpai13 where 
the batch solution was saturated by salts, glucose 
5 g L–1, and yeast extract 5 g L–1. The feeding solu-
tion consisted of salts and glucose, where glucose 
concentration was 400 g L–1. 100 mL of overnight 
shake flask pre-culture (14–16 h, optical density 
(OD) was 4.0–4.5) grown in batch media was used 
for inoculating the fermenter. Fermentations were 
started as batch cultures, and continued as fed-batch 
when MPC controller activated feeding to follow 
the predefined reference growth trajectory. The pH 
was controlled at 7.0 ± 0.2 using 30 % sodium hy-
droxide and 20 % sulfuric acid solutions. Tempera-
ture was kept at 37.0 ± 0.2 °C. The pO2 was con-
trolled by increasing stirrer rotation speed to the 
allowed maximum, and then enriching inlet air with 
pure oxygen. Constant air or air/oxygen mixture 
flow of 2.0 g min–1 (air at standard conditions) was 
maintained during all processes. The condenser was 
used for humidity condensing from outlet gases. 
The foam level was controlled by adding antifoam 
A (Sigma). Off-line sample measurements of bio-
mass and glucose were made every 30–60 minutes. 

F i g .  1  – Hardware implementation and communication dia-
gram of the control system
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Cell growth was observed by measurements of the 
OD at wavelength of 560 nm (Jenway, 6300, Essex, 
England). Biomass concentration was calculated by 
multiplying the measured OD by correlation coeffi-
cient of 0.4 determined experimentally in advance. 
Glucose was measured enzymatically (AccuChek 
ACTIVE, Roche, Basel, Switzerland).

Process modeling

Differential mass balance equations (eqs. 1–3) 
for biomass, substrate, and volume modeling in a 
fed-batch process were used. Specific substrate con-
sumption rate (σ) (eq. 4) and specific biomass 
growth rate (µ) (eq. 5) are the state variables of the 
most notable influence on biomass growth model-
ing. For substrate consumption and biomass growth 
modeling, mechanistic terms for substrate (glucose) 
limitation as well as substrate and biomass inhibi-
tion were chosen. Substrate limitation and inhibi-
tion in batch/fed-batch E. coli cultivation processes 
are extensively investigated phenomena, described 
by many authors (e.g., Xu et al.14). The applied bio-
mass inhibition term Kxmax comes from the logistic 
law15. In general, the model applied in this re-
search may be considered a simplified version of the 
detailed model published by Xu et al.14 augmented 
by the term that accounts for biomass inhibition.
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where X – biomass concentration, g L–1; S – glucose 
concentration, g L–1; µ – biomass specific growth 
rate on substrate, h–1; V – culture volume, L; Fs – 
feeding rate of substrate solution, L h–1; Fsmp – sam-
pling rate, L h–1; Sf– glucose concentration in feed, 
g L–1; t – process time, h; Yxs – biomass yield on 
substrate, g g–1; Ks– Monod constant for substrate 
uptake, g L–1; Ki,s– substrate inhibition constant, 
g L–1; Kxmax – biomass inhibition constant, g L–1; 
σ – specific substrate consumption rate, g g–1 h–1; 
σmax – maximal specific substrate consumption rate, 
g g–1 h–1. F = Fs + Fb – Fc – Fe, where Fc – carbon 
loss with the off-gas, L h–1; Fb – alkali addition rate, 
L h–1; Fe – evaporation rate, L h–1.

The modeling procedure is a significant aspect 
for particular method application for fed-batch 
 process control. First of all, the modeled trajecto-
ries of X, S, and V are selected as references. 
These trajectories are followed during MPC pro-
cess control by appropriate correction of the feed-
ing rate profile. Secondly, during the running pro-
cess, the model is used for correction of the 
feeding rate, leading to achievement of a biomass 
growth profile as close as possible to the selected 
reference.

Prior to starting the modeling, some literature 
review should be made on significant model param-
eters Yxs and σmax. If information about the model 
parameters is inconsistent, average initial parameter 
values for Yxs = 0.5 g g–1 and σmax = 1.0 g g–1 h–1 
may be used as an initial guess in the process under 
consideration. In the analyzed process, the sub-
strate inhibition constant (Ki,s) and the biomass inhi-
bition constant (Kxmax) are the parameters of minor 
priority. If the limiting substrate inhibition impact 
or biomass concentration influence on substrate 
consumption/biomass production is not observed 
or it is insignificant under current cultivation 
 conditions, for model simplification, the terms 
K
K s

i s

i s

,

, 
 and 1−











X
Kxmax

 may be excluded from 

the model eq. 4. It was shown that more simple 
models in many  cases lead to comparable process 
optimization results16.

In order to model culture volume, the flows 
into and out of the reactor should be taken into 
 account. For typical processes, these flows consist 
of sampling, evaporation, and carbon loss in off-gas 
rates, as well as alkali, acid, antifoam agent, and 
feeding addition rates. A more detailed expla na-
tion on the equations for mass flow modeling for 
prediction and their parameters can be found in12.

Process modeling was performed in Matlab en-
vironment. For the integration of differential equa-
tions, the standard Matlab ODE solver ode15s (a 
variable-order method for solving stiff differential 
equation systems) was used.

Reference profile selection

In the case of not yet experimentally evalua -
ted/fitted fed-batch model and its parameters, it is 
advisable to initially select a reduced feeding pro-
file, which, in case of insignificant substrate accu-
mulation, could be increased step-by-step and mod-
ified for process productivity improvements. Model 
parameters during this procedure may be identi-
fied by model fitting to currently available experi-
mental data. After model parameter identification 
is performed, the process operator may choose a 
desirable biomass growth profile or growth under 
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a defined specific growth rate, under which the 
model indicates no significant or potentially pro-
ductivity-inhibiting substrate accumulation. The lat-
ter case is discussed in the results section (see sec-
tion Evolution of desirable reference biomass and 
feeding profiles).

Biomass estimation and on-line feed-forward 
process control

For model re-identification and comparison of 
the estimated process biomass (XVest) versus refer-
ence profile (XVref), and performing appropriate 
feeding rate control action, off-line biomass mea-
surement and volume estimates were used. Volume 
estimation was made using calibrated peristaltic 
pump signals of alkali, antifoam and feeding pumps, 
carbon loss based on the off-gas analysis, empirical-
ly evaluated evaporation rate of 1.5 g h–1, and sam-
pling rate of 15 g h–1. Acid addition was not used in 
this particular process.

After the entering of off-line biomass and sugar 
sample concentrations, and subsequent identifica-
tion of Yxs and σmax values, the algorithm calculates 
40 possible feeding rates around the pre-optimized 
profile, and selects the one that gives the closest 
XVest fit to XVref in a one-step-ahead prediction. The 
control horizon interval corresponds to the time 
 between the points in the feeding profile. In the 
 explored experiments, this time was 60–120 min-
utes.

Process control

Optimal feeding rate evolution 
and control approach concept description

The implemented approach refers to the evolu-
tion and control of the so-called “golden-batch” 
biomass growth trajectory, desirable for a particular 
microbial cultivation process (see schematic over-
view in Fig. 2). For the first experiment, the opera-
tor needs to choose the biomass, substrate and vol-
ume profiles to be set as references. To calculate 
such reference profiles by means of a process mod-
el, it is necessary to know the numerical values of 
the model parameters, such as biomass yield from 
substrate (Yxs), maximal substrate consumption rate 
(σmax), (approximately) maximal achievable biomass 
(Xmax). Usually, at the initial stage of fed-batch pro-
cess development, this information is missing or it 
is of limited precision. This information about the 
model parameter values is continuously updated as 
the accumulated experimental database becomes 
more extensive, and the model parameter identifica-
tion can be performed with higher precision.

The authors have developed a process-model-
ing tool (program), which allows modeling the pro-
cess and selecting reference profiles. In the  program, 
the reference profiles for modeled con centrations 
and initial feeding profile were selected. The  process 
productivity (higher biomass amounts achieved) 
may be further increased within the model by in-
creasing the values of particular feeding rate points 
until minimal substrate accumulation appears. And 
vice versa, if significant substrate accumulation is 

F i g .  2  – Essential steps in preparation of the reference profiles and MPC algorithm
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observed in the modeling results, then the appropri-
ate feeding profile points are decreased in order to 
avoid significant substrate accumulation in that par-
ticular phase of the modeled process. The latter ac-
tion may be repeated from process to process until 
maximal biomass or product yields are reached. 
Later, the reference profiles from the most produc-
tive process may be used as “golden-batch” profiles 
for a desirable process run. After selection of the 
modeled reference trajectories and starting the real 
process with MPC (see section Process modelling), 
automatic correction of the selected reference feed-
ing profile takes place in order to follow the process 
biomass reference trajectory XVref.

MPC controller and feeding rate control algorithm

The MPC principle6 implemented in BIO-4 is 
based on feeding rate control to maintain the pro-
cess biomass profile XVproc as close as possible to 
the set reference biomass profile XVref. The refer-
ence profiles of X(t), S(t), and V(t) for each particu-
lar process correspond to the modeled trajectories 
and are evaluated during modeling procedure (see 
section Process modeling). Later in the process, this 
model is fitted to the running experimental data to 
select a feeding rate for the achievement of preset 
reference biomass. The generalized form of the bio-
mass dynamic sub-model directly used in the MPC 
algorithm is shown in eq. 6. The objective of the 
developed MPC system (its cost function) is de-
fined as a tracking problem (see eq. 7) – i.e., mini-
mization of the difference between the reference 
and the predicted biomass amount profiles by means 
of the main control variable (glucose feeding rate) 
variation within the constraints shown in eq. 8.
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 Fs,min ≤ Fs(t) ≤ Fs,max (8)

where J – control cost function, g; X – biomass con-
centration, g L–1; Xpred – predicted biomass concen-
tration, g L–1; Xref – modeled reference biomass con-
centration, g L–1; Vpred – predicted culture volume, 
L; Vref – modeled reference culture volume, L; Fs – 
feeding rate of substrate solution (control variable), 
L h–1; Fs,min – minimal feeding rate of substrate solu-
tion, L h–1; Fs,max – maximal feeding rate of substrate 
solution, L h–1; t – process time, h; t0  – 0, h (start of 
the process); ti – process time at the point i, h; t1 – 

initial time moment for MPC, h; tH – control hori-
zon time, h; Θ – vector of the tunable model param-
eters.

A model of the similar structure and MPC tech-
nique for Chinese hamster ovary (CHO) cell culture 
MPC were applied in research of Aehle et al.17 Ku-
prijanov et al.6 applied MPC for biomass concentra-
tion tracking. Further applications in chemical and 
refinery industrial processes were reported by 
Yüzgec et al.18

In the case investigated, the MPC non-convex 
problem is solved. In general, problems of this type 
are hard to solve and there are no guarantees on the 
exact optimum reached and solving time. Neverthe-
less, the solving time is not a critical issue in the 
case analyzed, as the process model parameter 
re-identification and calculation of the control vari-
able values for the next optimal control horizon 
(that equals to approx. 0.5–1 hour) takes no more 
than 1–2 minutes in total, and does not cause a sig-
nificant delay. The guarantee of reaching optimum 
within the practically required tolerances is limited 
only by the precision of the process model and the 
precision of biomass measurements. The actual de-
viation between the reference value and the mea-
sured value may also be influenced by the error pro-
duced in a particular measurement point.

Taking into account the measurement tech-
niques used, the biomass and glucose measurement 
precision is approx. 5 %. After model parameter 
identification, the residuals of the modeled trajecto-
ries and measured data were uniformly distributed 
around zero-mean, and the modeling RMSD was 
varying at approx. 3–5 % depending on the process 
phase. This led to an unbiased estimation of the 
modeled trajectories with a precision that was com-
parable to the reference measurements and accept-
able from the practical application point of view. 
As the initial reference profile of the control vari-
able (glucose feeding rate) is provided as a result of 
the model-based off-line optimization of the pro-
cess, the MPC calculations involve the correction of 
the control variable value around the reference 
point. This calculation is performed by means of a 
variation around the working point by using a scan-
ning method, because the optimal control variable 
value for the control horizon is well predictable, 
and in practical applications usually varies within 
the range of 20–30 % of the initial reference value.

After model parameter identification (model 
fitting to experimental data), the further routine pro-
cedure for process modeling and reference profile 
selection is addressed to defining the initial process 
conditions (X0, S0 and V0) and selecting a feeding 
profile that will lead to achievement of desirable 
biomass growth and limiting substrate levels. After 
running the modeling program, the modeled refer-
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ence profiles for X(t) and V(t) are written in Matlab 
data file for reading/downloading into the MPC 
control algorithm responsible for feeding rate con-
trol/correction during the process.

In the analyzed case, the feeding profile con-
sisted of 20 points, where linear approximation was 
used for feeding rate interpolation between these 
points. Time intervals between the points were 30, 
60, or 120 minutes, depending on the process phase. 
In the initial process phase, shorter intervals were 
chosen, and at the later phase, the intervals were 
longer. Fed-batch mode start time was calculated 
automatically, on the basis of available off-line bio-
mass measurements and a priori open-loop model-
ing estimates to activate fed-batch mode at the pre-
defined biomass amount of 5 g. In this case, the 
predefined feeding start time of 210 minutes (pro-
cess time) was applied or automatically shifted to 
an earlier or later time, if necessary, depending on 
the actual deviations of the process variables.

Investigation of model parameter sensitivity 
with respect to the optimization objective function 
(for biomass amount control problem) has shown12 
that the most sensitive parameters for this type of 
model are the conversion yields and maximal spe-
cific reaction rates of the main components in-
volved. Therefore, the biomass/glucose conversion 
yield Yxs and the maximal specific glucose con-
sumption rate σmax were selected as the main model 
parameters to be re-identified on-line every time the 
new sample for biomass and glucose measurement 
is evaluated. Every time a new biomass and glucose 
sample is measured and the results are entered into 
the SCADA system (see Fig. 2, 3), the numbers are 
passed over the OPC server into the on-line running 
MPC algorithm. After a defined number of entered 
samples (suggested are 3–5 measurement points), 
the re-identification of the process model parame-
ters (Yxs and σmax) is started. After simulation of the 
current process model, the root-mean-square devia-
tions (RMSD) between the model output and the 

measured biomass and glucose concentrations (ob-
tained right from the beginning of the process until 
the current process time) are calculated. As a final 
modeling quality measure, weighted sum of bio-
mass RMSD and glucose RMSD is calculated. 
During the parameter re-identification, the values of 
two model parameters – biomass/glucose conver-
sion yield Yxs and the maximal specific glucose con-
sumption rate σmax – are re-identified. For this purpo-
se, a standard direct search algorithm (Nelder-Mead 
Simplex, Matlab fminsearch function) was applied. 
The optimization algorithm runs for 200 iterations 
(the number was selected empirically, in order to 
assure necessary precision of re-identified parame-
ters). The calculation takes up to 1–2 minutes de-
pending on the process phase. The re-identified pa-
rameter values are used for further process model 
simulations (including calculation of the optimal 
control action – feeding rate value for the time in-
terval until the next sampling moment) until the 
next sample is taken. Then the re-identification pro-
cedure is repeated, and a new set of re-identified 
model parameters is obtained.

In the analyzed example, the set of Yxs and σmax 
model parameters was identified within the defined 
range (boundaries) in order to obtain the smallest 
possible deviations of the modeled biomass and 
substrate trajectories from the real values at the 
measurement points. The boundaries of their possi-
ble changes should be chosen based on a priori 
knowledge. The boundaries used by the authors 
were as follows: ± 30 % for Yxs, and ± 30 % for σmax. 
The diagram of the implemented MPC system is 
presented in Fig. 4. After a new sample is taken (ap-
prox. every 30–60 min.), the model parameters are 
re-identified on-line using the process model (eqs. 
1–5). After the on-line model identification, a one-
step-ahead prediction of the state variable trajecto-
ries is performed. In this step, a model-based opti-
mization is executed. The aim of the optimization is 
to calculate/correct the control action (feeding rate) 
for the next control horizon in such a way that the 
deviations between the desirable (reference) bio-
mass amount trajectory and the predicted one are 
minimized (eq. 7). The optimization is performed 
every time the off-line measurements of biomass 
and substrate are made and the model parameters 
have been re-identified. For control variable recal-
culation, a simple user-defined algorithm for scan-
ning within the predefined range of Fs was applied. 
In total, every time 100 possible values of Fs within 
the defined control variable range were tested, the 
one leading to the lowest predicted tracking error 
(J) was chosen for implementation in the controller. 
The chosen iteration number assures the precision 
of the control and state variables that is sufficient 
from the practical application point of view.F i g .  3  – Screen-shot from SCADA fed-batch control window
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During optimization, the allowed feed correc-
tion span was ± 10 %. For the cases when predic-
tions state that ± 10 % feed correction could be too 
small to avoid significant substrate accumulation, 
an appropriate feeding rate reduction exceeding 
10 % took place (the latter case is herein after re-
ferred to as possible significant substrate accumula-
tion). Off-line measurements as well as on-line 
modeling data were additionally stored in ASCII 
format files. In order to assure more reliable opera-
tion of the MPC controller, an intelligent filter was 
implemented to exclude faulty data reads from 
SCADA. The fault detection algorithm was based 
on the analysis of the current process variable val-
ues as well as their rates of change.

Results

Evolution of desirable reference biomass 
and feeding profiles

The procedure of the gradual evolution of the 
desirable reference feeding profile was demonstrat-
ed by means of 4 experiments performed one after 
another, where the initially reduced feeding profile 
was set. Later, it was specifically increased and 
modified to obtain a higher biomass yield (see 
Fig. 5, Fig. 7, and Fig. 8). The idea was to initially 
select feeding profile F0, which would lead to bio-
mass exponential growth phase, followed by a 
slowly decreasing biomass specific growth rate (µ). 
In case of possible biomass productivity increase, 
the feeding profile was gradually increased to the 
values that lead to maximum biomass amount, and 
at the same time significant substrate accumulation 
is avoided. By following this procedure in subse-
quent processes, it was possible to obtain increased 
μ in exponential growth phase and a very similar μ 
after exponential growth phase for all processes 
(except the one with significant substrate accumula-
tion) (see Fig. 5).

For selection of the reference profile as well as 
for on-line process modeling in the first experiment 
(EXP-1), the model parameters from a priori 
knowledge14,15,19 were used. Initial values for the 
limitation and inhibition model parameters were 
taken from Xu et al.14; for biomass inhibition pa-
rameter Kx, the initial value was equal to the maxi-
mal biomass concentration achieved in E. coli B 
culture, 86 g L–1, (Lee20). After parameter tuning 
(model fitting to experimental data) in subsequent 
experiments, the parameter values shown in Table 2 
were used in further process modeling. Yxs and σmax 
were additionally re-identified on-line to fit the ac-
tually measured values of biomass and substrate.

Ta b l e  2  – Model parameters (E. coli process)

Parameter Value

Yxs 0.53 g g–1

σmax 1.05 g g–1 h–1

Ks 0.05 g L–1

Ks,i 30 g g–1

Kxmax 97.5 g L–1

Sf 400 g L–1

F i g .  4  – Diagram of the implemented MPC system

F i g .  5  – Modeled specific growth rates resulting from the ref-
erence profiles for EXP-1 – EXP-4
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EXP-1

For this experiment, the initial feeding profile 
Fref = F0 was chosen. In the first experiment, the 
feeding profile, selected in biomass exponential 
growth phase, resulted in biomass specific growth 
rate of 0.20 ± 0.05 h–1. Biomass amount at the pro-
cess end was 157 g.

EXP-2

For the second experiment, the points of initial 
feeding profile (F0) were proportionally increased 
by 35 %, i.e., Fref = 1.35·  F0, to obtain the biomass 
specific growth rate of 0.30 ± 0.05 h–1 in exponen-
tial growth phase. Biomass amount at the process 
end was 225 g.

EXP-3

For the third experiment, the points of the feed-
ing profile from the previous run were increased by 
~40 %, i.e., in total Fref = 1.75·  F0, to obtain the bio-
mass specific growth rate of 0.40 ± 0.10 h–1 in expo-
nential growth phase. Although the model had pre-
dicted some sugar accumulation in the second part 
of the process, it was decided to test the chosen 
feeding strategy. In this case, one could test whether 
the MPC algorithm is able to correct the feeding 
profile to eliminate the critical substrate accumula-
tion. As it was predicted by the model, at 16th pro-
cess hour, glucose accumulation started and the 
feeding profile was significantly reduced. A signifi-
cant mismatch in the biomass profile after 18th pro-
cess hour was observed because significant glucose 
accumulation was avoided, which could potentially 
lead to more inhibited culture growth. At the very 
beginning of significant glucose accumulation 
(16 h, Xproc = 80.6 g L–1, Sproc = 4.6 g L–1), the process 
biomass had gained faster growth compared to the 
model predictions. This could indicate some model 
imprecision in this particular process phase when 
using relatively high feeding rates. Significantly in-
creased Xproc values, as compared to Xref, at process 
time 9–11 h, are assumed as imprecise measure-
ments caused by the operator. Biomass amount at 
the process end was 290 g.

EXP-4

Based on the EXP-3 results, the reference pro-
file from EXP-3 was modified in order to test a 
slightly increased initial feeding profile, and to de-
crease the feeding rate points during the phase in 
which sugar accumulation was predicted by the pro-
cess model. Finally, the feeding profile was select-
ed, according to which no significant sugar accu-
mulation was predicted during the modeled process. 
This feeding profile resulted in a similar growth 

compared to EXP-2, i.e., biomass specific growth 
rate of 0.30 ± 0.05 h–1 in exponential growth phase. 
Biomass amount at the process end was 227 g.

The theoretical estimation of the maximal pro-
ductivity in particular cultivation process may be 
performed by means of a model-based design pro-
cedure similar to that described in the research of 
Galvanauskas et al.12,16, i.e. by applying a realistic 
process model, taking into account the main limit-
ing factors (constraints) of the real process (e.g., 
maximal oxygen transfer rate, maximal allowed 
culture volume, etc.), and performing a model-based 
optimization of the process. As a result, an optimal 
control strategy is obtained that leads to maximiza-
tion of the numerically expressed productivity of 
the process. For the process investigated here, the 
authors have performed this study and have calcu-
lated that the optimal control strategy corresponds 
to the strategy experimentally achieved in EXP-2. 
Despite the higher final biomass amount achieved 
in EXP-3 and EXP-4, from the process controllabil-
ity and product biosynthesis point of view, the ob-
served significant glucose accumulation in EXP-3 
and EXP-4 could potentially lead to significant ace-
tate accumulation, resulting in inhibition of target 
product biosynthesis by E. coli.

Automatic fed-batch start

Due to slightly varying process initial biomass 
(X0) and glucose (S0) concentrations, and the result-
ing sub-optimal process control, the culture growth 
profile will vary as well. Therefore, the fed-batch 
mode initiation time potentially needs to be (auto-
matically) shifted in one or another direction. Simi-
lar X0 and S0 parameters for EXP-1 and EXP-3 (see 
Fig. 6) resulted in the same fed-batch start at the 
process time of 210–212 minutes. Similar initial 
conditions were obtained for EXP-2 and EXP-4. In 
EXP-2 and EXP-4, initial X0 was lower and S0 was 
higher as compared to EXP-1 and EXP-3. Never-
theless, the faster biomass growth led to earlier 
 fed-batch mode initiation at the process time of 
 180–186 minutes. The time points, when the pro-
cess biomass reached the set reference values, are 
indicated with arrows in Fig. 6.

Model predictive feeding profile control

The experimental results are shown in Fig. 7 
and Fig. 8.The estimated biomass amounts and con-
centrations at the process end for experiments EXP-1 
– EXP-4 were 157 g (65.8 g L–1), 225 g (79.8 g L–1), 
290 g (93.2 g L–1), and 227 g (78.5 g L–1), respec-
tively. The estimated biomass (XVend(est)) and experi-
mentally measured (XVend(exp)) differences (dend(est), 
dend(exp)) from the reference profiles (XVref) at the 
process end (24 h) were 4.6 % and 3.8 %, respec-
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tively. Smaller XVest deviations from the reference 
profiles were achieved at 20th process hour, where 
the mean deviation was 3.0 %. This could be ex-
plained by the fact that the model had not precisely 
enough modeled the late biomass stationary growth 
phases. To model this stage with higher precision, a 
more complex process model is required, which 

takes into account potential (by)product (acetate, 
protein, etc.19,21) formation, and biomass physiolog-
ical states (cell starvation, ratio of viable cells, 
etc.5). Obviously, the precision of the selected (mod-
eled) culture volume reference profile has an impact 
on dend(est). Higher numerical value of dend(est) as com-
pared to dend(exp) indicates that biomass estimation 

F i g .  6  – Process initial conditions (X0 and S0) and feeding start times (tstart) (below) for processes EXP-1 – EXP-4. (– –) set (mod-
eled) reference profiles, (+) estimated, (–) applied feeding rate, (↓) indication of time moments when biomass reached set 
references.

F i g .  7  – Biomass amount control results in EXP-1 – EXP-3. (– –) Set (modeled) reference profiles, (+) estimated 
on-line, (▫) off-line glucose, (○) off-line biomass, (–) applied feeding rate.
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quality could be improved by more precise volume 
on-line estimation. Additionally, the results of EXP-4 
suggest that the model parameters used for refer-
ence profile selection were not optimal for the case 
where an excessively increased feeding profile was 
chosen for the exponential growth phase. Taking 
into account the initial conditions (X0 and S0) of the 
EXP-4, the model does not reflect the observed sig-
nificant glucose accumulation at 11th process hour. 
In this case, reduction of the values of model pa-
rameters Yxs and σmax by 5–10 % during the refer-
ence profile selection could lead to a more safe pro-
cess in terms of avoiding significant glucose 
accumulation.

In EXP-1 and EXP-2, significant excess glu-
cose accumulation during fed-batch phase did not 
occur. At the end phase of the process, significant 
glucose accumulation up to 6.39 g L–1 was observed 
in EXP-3. It started at 16th process hour and contin-
ued until the end of the process: 4.61 g L–1 (16 h), 
6.39 g L–1 (17 h), 5.58 g L–1 (18 h), 2.77 g L–1 (19 
h), 2.79 g L–1 (20 h), 2.23 g L–1 (21 h), 2.12 g L–1 
(22 h), and 2.02 g L–1 (24 h). This can be explained 

by a too high reference feeding profile starting from 
the 15th process hour. Moreover, it is highly proba-
ble that the increased/incorrect biomass measure-
ment results until the 12th process hour, when the 
process operator changed, were obtained in EXP-3 
(significantly increased values at process time 9–11 h). 
Despite this fact, the biomass reference profile was 
reached in 2–3 h after more precise sampling events 
had occurred. For EXP-4, the feeding profile inter-
val was reduced accordingly, and slightly increased 
feeding rates for the first part of the reference feed-
ing profile werechosen, in order to test the faster 
growth ability. This resulted in significant glucose 
accumulation only in two sampling time moments 
in the first feeding profile part: 1.04 g L–1 (11 h) and 
1.87 g L–1 (13 h). In the remaining part of the pro-
cess fed-batch phase, the glucose concentration did 
not exceed 0.26 g L–1.

From the Yxs and σmax adaptation results, addi-
tional useful information maybe extracted. If a brief 
overview of biomass production process is made, 
the biomass yield on substrate could become an in-
dicator of how efficient the main carbon source is 

F i g .  8  – Biomass amount control results (EXP-4) and summarized overview of parameter value evolution in ex-
periments EXP-1 – EXP-4. a) (– –) Set (modeled) reference profiles, (+) estimated on-line, (▫) off-line glucose, (○) 
off-line biomass, (–) applied feeding rate b) Comparison of experiments EXP-1 – EXP-4. Lines for biomass, glu-
cose, Yxs and σmax are drawn and interpolated between off-line analytical measurements made every 1–2 h.
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converted into biomass. A higher yield potentially 
indicates that a smaller amount of feed is wasted for 
undesirable byproduct synthesis. Starting from pro-
cess hour 8–9, some correlation between the esti-
mated Yxs trends for explorative experiments (see 
Fig. 8, b) could be observed. It is interesting that the 
highest yield at the end of the process was observed 
in the experiments with the slowest and the fastest 
feed rate profiles, in average 0.57 g g–1 for EXP-1 
and 0.60 g g–1 for EXP-3. A relatively small differ-
ence in the yield between EXP-2 and EXP-4 was 
observed, 0.52 g g–1 and 0.54 g g–1, respectively. 
This correlates well with the biomass at the end of 
the process (231 g and 247 g) taking into account 
that the substrate feed volume (Vs) for these expe-
riments at the end of the process was practically 
the same. The estimation results for σmax show 
that the values have fluctuated within the range of 
1.05 ± 0.2 g g L–1. The variations may be related to 
different substrate limitation conditions within the 
performed experiments.

Test experiment in SUB

For the MPC control approach comparison in 
the reactors of different configuration, a test run in 

a single-use lab bioreactor (see configuration in Ta-
ble 1) was carried out (see Fig. 9 (a) and (b)). For 
this experiment, the same reference profiles as in 
EXP-2 were chosen to maintain culture growth 
without critical glucose accumulation and, at the 
same time, to achieve comparatively high biomass 
yield. Initial biomass and sugar concentrations were 
similar to those in EXP-2. Nevertheless, possibly 
due to different temperature controller PID parame-
ter tuning (until the 6th process hour) in order to 
compensate differences between two reactors 
(mainly because of different material and specific 
area of heat exchange element), frequent tempera-
ture oscillations of 36.8 ± 0.9 °C occurred in the 
initial phase of the process. This most probably led 
to longer (by 3–4 hours) batch lag phase and much 
lower process biomass at this stage. Regardless, the 
culture was able to recover and closely reached the 
reference biomass at 17 h (see Fig. 9, a). The feed-
ing phase started at 210 minutes. Biomass of 212 g 
(78.1 g L–1) was reached at the process end. Bio-
mass estimate (dend(est)) deviation from the pre-set 
reference at the end of the process was 4.3 %. Glu-
cose concentration did not exceed 4.1 g L–1.

F i g .  9  – Biomass amount control results (EXP-5-SUB) in single-use reactor and its comparison with EXP-2. 
a) (– –) Set (modeled) reference profiles, (+) estimated on-line, (▫) off-line glucose, (○) off-line biomass, (–) 
applied feeding rate b) Comparison of experiments EXP-5-SUB and EXP-2. Lines for biomass, glucose, Yxs and 
σmax are drawn and interpolated between off-line analytical measurements made every 1–2 h.
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Conclusions

Gradual model-based evolution of feeding pro-
file and model-predictive control has been demon-
strated on recombinant E. coli BL21 biomass culti-
vation processes in conventional and single-use 
bioreactors. The best match to the reference profiles 
was observed in the processes without significant 
glucose accumulation and in all processes until the 
beginning of biomass stationary growth phase, the 
20th process hour. The reference biomass profile for 
the experiment without significant glucose accumu-
lation, in which biomass of 79.8 g L–1 (225 g) was 
achieved at the end of the process, can be assumed 
as the optimal one for safe and high-yield process 
conduction with the particular equipment used. Es-
timated biomass mean deviation from the pre-set 
references at the end of the processes was 4.6 %. It 
was close to the deviations from the experimentally 
measured one (3.8 %). By means of sequentially 
performed experiments, it was possible to test the 
feeding profiles of different magnitude and shape, 
while maintaining exponential growth with specific 
growth rates of 0.2, 0.3, and 0.4 ± 0.05 h–1. In this 
way, by performing the feeding profile modifica-
tion, the so-called desirable “golden batch” feeding 
profile maybe achieved and selected as a reference 
for the particular process. A successful test experi-
ment was conducted in the single-use laboratory 
bioreactor. Biomass estimate (dend(est)) deviation 
from the pre-set reference at the end of the process 
for this experiment was 4.3 %.

The developed and implemented MPC system 
was used to track the selected reference trajectories 
of the biomass amount. The MPC system demon-
strated good control performance and reduced pro-
cess variability as compared to the system with an 
open-loop feeding profile control. The implemented 
process control and its performance may be addi-
tionally improved. A more specific process model 
adapted for E. coli, for example, taking into account 
by-product (protein, acetate, etc.) synthesis/con-
sumption and information about biomass physiolog-
ical state (cell starvation, ratio of viable cells, etc.), 
may enhance precision of the process modeling and 
biomass on-line estimation. Improved accuracy of 
volume estimation by means of direct weighing of 
solution bottles or reactor may also improve the 
precision of biomass estimation and its subsequent 
control.

The proposed approach has been implemented 
in a commercially available bioreactor system 
(Biotehniskais Centrs, JSC) and is dedicated for a 
wide range of potential users.
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N o m e n c l a t u r e

ANN – Artificial Neural Network
DCU – Digital Control Unit
GMP – Good Manufacturing Process
IMC – Internal Model Control
MPC – Model Predictive Control
OD – Optical Density
OPC – Open Platform Communications
PCA – Principal Component Analysis
PID – Proportional, Integral, and Derivative control
RQ – respiratory quotient
SCADA – Supervisory Control and Data Acquisition
SUB – Single Use Bioreactor
dend(est) – estimated biomass (XVend(est)) mean deviation 

from reference biomass (XVend(ref)) at the end of 
the processes, %

dend(exp) – experimentally measured biomass (XVend(exp)) 
mean deviation from reference biomass (XVend(ref)) 
at the end of the processes, %

Fs – feeding rate of substrate solution, L h–1

Fs_ref – reference feeding rate of substrate solution, L h–1

Fsmp – sampling rate, L h–1

Fc – carbon loss via off-gass, L h–1

Fb – alkali addition rate, L h–1

Fe – evaporation rate, L h–1

F0 – initial feeding profile, L h–1

Ks – Monod constant for substrate uptake, g L–1

Ki,s – substrate inhibition constant, g L–1

Kxmax – biomass inhibition constant, g L–1

S0 – initial glucose concentration at tproc = 0 h, g L–1

S – glucose concentration, g L–1

Sproc – process glucose at time tproc, g L–1

Sf – glucose concentration in feed, g L–1

t, tproc – process time, h
tstart – fed-batch start time, h, min
V – culture volume, L
Vs – fed substrate, L
X0 – initial biomass concentration at tproc = 0 h, g L–1

X – biomass concentration, g L–1

Xproc – process off-line biomass at time tproc, g L–1

XVend(est)  – estimated biomass at the end of the process, g
XVend(exp) – experimentally measured biomass at the end 

  of the process, g
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XVend(ref)  – reference biomass at the end of the process, g
XVproc – biomass off-line estimate at time tproc, g
XVref – set biomass reference profile, g
XVpred – one step ahead predicted biomass, g
Yxs – biomass yield, g g–1

σ – specific substrate consumption rate, g g–1 h–1

σmax – maximal specific substrate consumption rate, 
g g–1 h–1

µs – biomass specific growth rate, L h–1
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