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 Delay and number of vehicle stops are important 

indicators that define the level of service of a 

signalized intersection. Therefore, they are usually 

considered for optimizing the traffic signal timing. 

In this study, ANNs are employed to model delay 

and the number of stops estimation at signalized 

intersections. Intersection approach volumes, 

cycle length and left turn lane existence were 

utilized as input variables since they could easily 

be obtained from field surveys. On the other hand, 

the average delay and the number of stops per 

vehicle were used as the output variables for the 

ANNs models. Four-leg intersections were 

examined in this study.  Approach volumes 

including turning volumes are randomly generated 

for each lane of these intersections, then the traffic 

simulation program was run 196 times with each 

generated data. Finally, average delay and the 

number of stops per vehicle were obtained from the 

simulations as outputs. In this study, various 

network architectures were analyzed to get the best 

architecture that provides the best performance. 

The results show that the ANNs model has potential 

to estimate delays and number of vehicle stops.   
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1 Introduction 
 

Many criteria such as delay, number of stops, 

capacity, speed, and degree of saturation, etc. are 

used to determine the level of service (LOS) at an 

intersection.  Among these criteria, delay and number 

of stops are the most important ones because they 

directly show the amount of lost time and fuel 

consumption. Additionally, they are indicators of the 

degree of frustration and discomfort of the drivers. 

Delay and number of vehicle stops are measured to 
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evaluate the performances of an intersection under 

different control, demand and operating conditions. 

Therefore, accurate predictions of delay and vehicle 

stops are important measures of effectiveness 

(MOEs). Delay basically consists of three 

components which are uniform, non-uniform and 

initial queue delay.  

Uniform delay, which assumes perfectly uniform 

arrivals and stable flow, occurs resulting from 

interrupted traffic flow by traffic signals at 

intersections. 
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Whereas non-uniform delay, which assumes non-

uniform arrivals, incorporates effects of random 

arrivals and oversaturated traffic conditions. Initial 

queue delay, on the other hand, accounts for the 

additional delay incurred due to an initial queue. This 

queue is due to the unmet demand from the previous 

time period. If there is no queue at the end of previous 

time period, then initial queue delay is zero. 

Delay at signalized intersections can be estimated by 

either employing analytical models or artificial 

intelligence techniques. To estimate delay at 

signalized intersections, a number of analytical 

models have been proposed and developed based on 

different assumptions of accounting for various 

traffic conditions. Stochastic steady state delay 

models, which were investigated by Webster [1], 

Tanner [2] and Miller [3], and deterministic delay 

models, which were investigated by May and Keller 

[4], Neuberger [5] and Pignataro el al. [6], have been 

commonly used in the estimation of delay at 

signalized intersections for under saturated and 

oversaturated traffic conditions, respectively. 

However, both types of delay models are entirely 

incompatible when degree of saturation is equal to 

1.0. While the first models predict infinite delay, the 

latter models estimate zero delay at this particular 

degree of saturation. In order to provide more 

realistic delay estimations and overcome the 

deficiencies in both models, time-dependent delay 

models have been developed such as by Burrow [7], 

Catling [8], Brilon, Wu [9], Akcelik [10,11], Teply 

[12] and proposed by Highway Capacity Manual [13-

15]. These models are basically a mix of steady state 

and deterministic models utilizing the coordinate 

transformation techniques described by Kimber and 

Hollis [16, 17]. The coordinate transformation 

method is applied to the steady state curve that shifts 

it into a deterministic line by making the steady state 

curve asymptotic to the deterministic line. 

Even though analytical models are more practical to 

estimate delay, they have some deficiencies because 

of the nature of traffic flow. In reality, the demand in 

traffic flow is not stable and changes in time but 

analytical models do not reflect fluctuations in traffic 

stream. Therefore, artificial intelligence techniques 

such as ANN, fuzzy systems and a combination of 

both methods, called ANFIS, have been used for 

delay estimation at signalized intersections [18-20]. 

Besides delay, another performance indicator for a 

signalized intersection is the number of vehicle stops 

since they have an associated cost in terms of fuel 

consumption and wear out on vehicle. It is clear that 

there are two ways for a driver to get stopped at a 

traffic signal. First, the driver can arrive at the red 

interval. Second, the driver arrives at the green light 

and joins back of a queue that has not been serviced 

yet. The second case occurs during the saturated 

green interval.  In other words, the driver has to stop 

unless he arrives during the unsaturated green 

interval. If the signals of the intersections on an 

arterial are well coordinated with each other, a driver 

will arrive at the green interval and will pass through 

the intersections without stopping. On the other hand, 

if intersections are operated with poor signal 

coordination the number of stopped vehicle at the 

intersections will increase. Therefore, stop rate is 

used as a performance measure to evaluate 

coordinated signal systems. 

Stop rate is defined as a ratio between the numbers of 

stopped vehicles to the numbers of served vehicles. 

The probability of stopping P(s), as known stop rate, 

is equal to the proportion of the cycle length occupied 

by the red interval and the saturated green interval 

and it is computed by using Equation 1. The average 

number of stops is obtained when approach volume 

is multiplied to the probability of stopping.  
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In which, g: effective green time (sec), C: cycle 

length (sec), X: the degree of saturation  

In the literature, some analytical vehicle stop models 

have been developed by using queuing and different 

theories. [1, 10, 21-23]. In queuing theory, incurred 

average number of stops by vehicles approaching a 

signalized intersection is calculated by Equation 2. 

This equation gives the exact number of stops and is 

valid only for both uniform and random arrivals for 

under saturated conditions.  
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Where, NQT: number of stops, s: saturation flow 

(vec/h), r: red time (sec), q: arrival flow (veh/h). 

A comprehensive study was performed by Rakha et 

al. to develop an analytical model to estimate the 

number of vehicle stops at oversaturated 

intersections.  In the model, signal timings, approach 

arrival rate, approach saturation flow rate and 

analysis period were used as input variables to 

estimate the number of vehicle stops.  
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As mentioned above, there exist many parametric 

delay models in literature while non-parametric delay 

models have remained comparatively limited. 

Among them, Murat and Baskan [19-20] used a non-

parametric ANN approach to estimate the total delay 

in just one approach of an intersection. However, 

delay occurring in all of the four approaches were 

considered in this study. Therefore, instead of 

accounting for delay in only one approach of the 

intersection, average delays were considered at all of 

the approaches of the intersection as whole. 

Moreover, different from  previous studies, the ANN 

model studied in this paper is a new one that does not 

only consider the delays but also the stop rates, which 

is another essential indicator for assessing the LOS of 

an intersection. 

This paper is organized in the following way. ANN 

is explained in the next section. In section 3, the 

models to estimate delay and the number of stops are 

developed by using methodology given in Section 2. 

The performances of the developed models are 

compared in Section 3.  Finally, the conclusions are 

discussed in Section 4. 

 

2 Artificial neural network model 
 

ANNs are a class of flexible nonlinear models that 

can discover patterns adaptively from the data. 

Theoretically, it is shown that given an appropriate 

number of nonlinear processing units, neural 

networks can learn from experience and can estimate 

any complex functional relationship. Empirically, 

numerous of successful applications have established 

their role for pattern recognition, forecasting, control 

and design [24-27]. ANNs consist of three layers, 

namely, the input, the hidden and the output layers. 

The input layer consists of all input factors. 

Information from the input layer is then processed in 

the course of one or more hidden layers. One or more 

hidden layers act as intermediate layers between the 

input and output layers. The neurons join by 

weighted connections, then, the output vector 

computes in the output layer. An artificial neuron 

whose fundamental element of ANNs incorporates 

weights, summing function, bias, and activation 

function. The structure of an artificial neuron is 

illustrated in Fig.1. An artificial neuron is a basic 

operating unit to constitute an ANN. 

In a neural network, the first important stage is the 

training step in which an input is introduced to the 

network together with the desired outputs. 

 
 
Figure 1. An artificial neuron. 

 

The purpose of the training is to minimize the global 

error level, such as the mean square error (MSE), 

mean absolute percent error (MAPE), and root mean 

square error (RMSE). Artificial neural networks 

typically start out with randomized weights for all 

their neurons. This means that they do not know 

anything and must be trained to solve the particular 

problem for which they are intended. When a 

satisfactory level of performance is reached, the 

training is ended and the network uses these weights 

to make a decision. Multi-layer perception (MLP) 

networks model is usually preferred in engineering 

applications because many learning algorithms might 

be used in MLP. One of the commonly used learning 

algorithms in ANN applications is the back 

propagation algorithm (BP), which is also used in this 

research. The idea of the back propagation algorithm 

is to reduce the errors, which presents the difference 

between the observed and expected results until the 

ANN learns the training data. An activation function 

is a mathematical function used to transform the 

activation level of a neuron into an output signal, and 

to get increased computational power from multiple 

neurons. This function must be a differentiable and 

continuous one. Linear, sigmoid and hyperbolic 

tangent functions are the most common activation 

functions used in the literature. The activation 

function is used as a boundary for the output. These 

boundary levels usually change from zero to one [0, 

1] or from minus one to plus one [-1, +1] according 

to the type of the activation function used. 

 

3 Artificial neural network design 

 

3.1. ANN inputs and outputs  

 

In this study, two different ANN architectures were 

designed to estimate the average delay per vehicle 

(ANN-D) and stop-rate (ANN-S).  The input layers 
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of ANNs given in Fig. 2 were formed by the three 

variables.  

 

 

 
 
Figure 2. ANN architectures used for analysis. 

 
The approach volumes represent the lane volumes (8 

through and if exist 4 left turn lanes totaling 12 lanes), 

left turn lane existence indicates availability of the 

left turn lane (1 if exists, otherwise 0 totaling 4 

inputs) and cycle time is the optimum cycle length for 

the corresponding volumes (total of 1 input). The 

latter was obtained via the Synchro Traffic Analysis 

and Optimization Program with respect to given 

traffic conditions. As a result, the input layer was 

defined as three input variables representing actually 

17 input values.   

ANNs need a qualified and sufficient amount of data 

for training process. For this reason, three types of 

intersections were considered and 196 different 

approach volumes were generated for each 

intersection type as shown in Fig. 3.  

The approach volumes were generated in range from 

100 to 1000 veh/hr, while left and right-turn rates 

were generated from 0% to 50%, randomly. The 

cycle lengths with respect to these volumes including 

left and right turns were optimized by the Synchro 

Traffic Analysis and Optimization Program as 

mentioned earlier. The outputs such as delays, stop 

rates, fuel emissions etc. were obtained from its 

microscopic simulation tool, SimTraffic [28]. 

 

 

 
 

Figure 3. Types of intersections used for analysis. 

 

3.2. ANN architectures 

 

The architecture of ANN has an important role on its 

performance. Therefore, one of the main stages of 

designing an effective ANN architecture is to 

determine the appropriate number of hidden neurons. 

While the sigmoid transfer function was utilized in 

hidden layers, the linear function was utilized in the 

output layer.  In this study, the methodology named 

Best Searcher–ANN (BS-ANN) was developed for 

this study to determine the number of neurons in 

hidden layer. The BS-ANN is a heuristic and 

stepwise technique and has four stages as described   

in Fig. 4.  The BS-ANN works as follows: the first 

step is an iterative stage which generates the 

minimum error matrixes (MENMx) based on pre-

determined search space. The search space consists 

of the minimum and maximum range of number of 

hidden neurons (Nhn).  

Although the ANNs have the same architecture, they 

compute different output values when their 

connection weights are different. Therefore, in 

iterative stage 1 of Fig.4, the ANN is started with the 

minimum number of neurons in search space and it 

runs for “k times” with different random weights, as 

illustrated in Fig 5. 

The “k times” in iterative stage-1 is kept relatively 

lower than the “k times” in iterative stage-2 to 

understand the location of the best performance zone 

(BPZ), quickly in a large space. After this loop 

process, the ANN model which generates minimum 

errors and BS-ANN transfers these errors to 

MENMx. The errors are calculated with the mean 

square error (MSE) given in Eq. 3 as performance 

index.  Subsequently, the Nhn is elevated to (Nhn+1) 

and updated ANN architecture is applied to next 
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cycle. These cycles continue until Nhn reaches the 

maximum number of the Nhn determined by the user. 

Finally, the Nhn with the lowest MSE is selected 

from the MENMx and defined as the best Nhn. 
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in which ti is the observed value, oi is the estimated 

value, and n is the number of data. 

Many studies choose the ANN with the lowest error 

value used in modeling. Although it seems a 

plausible assumption, it is not convenient to every 

situation since ANN’s performance also depends on 

initial weights. Therefore, the best performance zone 

(BPZ) is determined as the second step.  The MSE 

values in MENMx are arranged from the best to 

worst.  The best of pre-determined amount of Nhn are 

transferred to the iterative stage 2. In this study, the 

maximum of three Nhn was considered as an amount 

of the pre-determined ones. 

After the determination of the zones, the BS-

ANN_sub run with k=1000 times.  It should be noted 

that having high k value gives an advantage in search 

of the best performance with different weights, 

training, validation and testing partitions via the same 

Nhn. 

 

3.3. Results 

 

Different cycle lengths varying between 40 and 130 

sec, optimized by Synchro traffic optimization 

program, were utilized for traffic scenarios in this 

research as given in Table 1. The longest cycle length 

is 130 sec determined for only one case. On the other 

hand, 60 second cycle length is the most common one 

determined for hundred cases. It should be noted that 

all different scenarios were simulated for 15 minutes 

preceded by a one-minute pre-processing run that is 

used to initialize the model computations. 

 

 

 
 

Figure 4. The process of Best Searcher–ANN. 

 

 
 

Figure 5. The process of Best Searcher–ANN_Sub. 
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The Synchro was able to generate multiple useful 

outputs such as delay and stops per vehicle.  

 

Table 1. Cycle lengths and frequencies  

Cycle Length (sec.) Frequency 

40 48 

60 100 

65 2 

80 37 

90 9 

130 1 

 

For all scenarios, the average delay (μ) calculated was 

20.74 seconds per vehicle with a standard deviation 

(σ) of 12.25 seconds as shown in Fig. 6. Moreover, 

the numbers of stops per vehicle for each scenario 

were given in Fig.7. As seen from the figure, the 

average number of stops was obtained as 0.74 per 

vehicle with a standard deviation of 0.19. It was seen 

that the standard deviations for both cases were 

relatively high due to a large number of data 

employed in the training stage of the ANNs. 

 

 
 

Figure 6. Obtained delay per vehicle for each  

                scenario. 

 

 
 

Figure 7. The obtained number of stops per vehicle  

                for each scenario. 

 
The BS-ANN run with k= 25 times and defined max 

Nhn = 15 to find the number of the hidden layer 

neurons giving the best ANN architecture. The 

performance of each of the ANN architecture was 

measured in terms of MSE given in Eq.3. As seen 

from Fig. 8,  not only the number of the hidden layer 

neurons increases, but also the error values tended to 

increase for both ANN-D (delay) and ANN-S (the 

number of stops). 

 

 
 

 
 

Figure 8. The best performance zones for ANN-D and  

                ANN-S. 

 

Therefore, the BPZ is utilized instead of the 

maximum Nhn for the zone search. The best 

architecture for ANN-Ds was (17x6x1), and the 

(17x5x1) is very close to the minimum error point in 

the BPZ. On the other hand, the architecture with 

(17x3x1) was out of BPZ. Similarly, for the ANN-S, 

the Nhn of the best ANNs was (17x3x1) but the 

(17x5x1) and (17x6x1) were in the BPZ.  

The ANN estimates and SimTraffic Simulation 

values for delay and the number of stops were 

graphically shown in Fig. 9 and Fig. 10. The training 

process was completed with 105 data using the 

Levenberg-Marquardt back propagation learning 

algorithm. The hidden layer has 6 neurons and they 

used the sigmoid transfer function.  
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Figure 9. R2 values for ANN-D. 

 

 

Figure 10. R2 values for ANN-S. 
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The output layer had one neuron with a linear transfer 

function. All calculated R2 values for ANN-D are 

higher than 0.90 except for the testing which was 0.87 

but it was still high enough to conclude that the ANN-

D was working well. 

The coefficients of determination, R2 for the ANN-S 

were shown in Fig.10. As seen from the Fig.10, all R2 

values of the ANN-S were higher than 0.84. For the 

ANN-S, the number of the data partitions for testing, 

training and validation was the same as used for the 

ANN-D. The R2 value for validation had the highest 

value. The R2 value of 0.84 obtained for testing was 

calculated. 

 

4 Conclusion  
 

Delays and stops experienced at signalized 

intersections have a number of potential negative 

consequences including higher fuel expenses and the 

loss of valuable time. Therefore, the accurate 

estimation of delay and stop rates is an imperative for 

evaluating the performance of signalized 

intersections. Accordingly, this paper aimed to 

predict delay and stop rates per vehicle that can be 

experienced by the most common types of four-leg 

intersections. For this purpose, two different ANN 

models were developed. One of them was to estimate 

the average delay per vehicle, and the other was to 

predict the average number of stops per vehicle. 

Intersection approach volumes, cycle lengths and left 

turn lane existence were used as input variables in 

both ANN models. Different scenarios were studied 

in simulation experiments via traffic simulation and 

optimization program. Simulations results were used 

for training, testing and validation stages. 70% of the 

data was used for training while remaining data were 

employed equally for validation and testing purpose. 

In order to find the best model, performances under 

various ANN architectures were analyzed. The best 

architectures obtained were (17x6x1) for ANN-D and 

(17x3x1) for ANN-S. The R2 values of both ANN-D 

and ANN-S were computed for training, testing, 

validating and all data. It is found that the 

performance of ANN-D was slightly better than that 

of ANN-S according to their calculated R2 values.  

In this study, only the existence of left turn lanes in 

different combinations was considered and their 

effects on the delays and stop rates were estimated by 

the ANNs model. The existence of right turn lanes 

can also positively affect the delay and stop rates 

particularly where right turn rates are high. 

Therefore, future studies can also consider the 

combinations with different sets including right turn 

lanes. The results show that the ANN models have 

potential to estimate delays and number of vehicle 

stops at signalized intersections. The input variables 

utilized in this study (volumes, left turn lane 

existence, and cycle length) can be easily collected 

from the intersections in the field for the real world 

applications. Therefore, the collected data can 

directly be applied to ANN models. Furthermore, 

with these features, ANN models for estimating delay 

and stop rates can offer a great advantage over other 

models. 
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