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Introduction
Alpha-amylases (α-1,4-glucan-4-glucanohydrolase; EC 

3.2.1.1) are a family of endoamylases that randomly 
cleave α-1,4-glucosidic linkages in starch and related car-
bohydrates to produce oligosaccharides of diff erent lengths 
and glucose in the α-anomeric form (1–3). α-Amylases 
can be obtained from diff erent sources, including plants, 
animals and microorganisms (4,5). Microbial enzymes are 
generally preferred in several industrial applications due 
to advantages such as wide use, effi  cient production, sta-
bility and cost-eff ectiveness (3,6). Amylases are one of the 
most important families of enzymes used in starch pro-

cessing, brewing and sugar production (7,8), desizing in 
textile industries, in detergent manufacturing processes, 
drugs and pharmaceuticals (2), in fi lling of pores of pa-
per, in removing food and starch stains in dry cleaning 
(9), and production of corn and chocolate syrup (10).

Amylases have been obtained from thermophilic bac-
teria for several years. In recent studies, amylases have 
been studied from thermophilic Bacillus species such as 
Bacillus subtilis (8,11), Bacillus licheniformis (7,12,13), Bacil-
lus amyloliquifaciens (14), Bacillus cereus (2), Bacillus thermo-
oleovorans (15), Anoxybacillus fl avithermus (16), Anoxybacil-
lus amylolyticus (17), Anoxybacillus sp. (3,9,18), Geobacillus 
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Summary

A thermostable and detergent-stable α-amylase from a newly isolated Anoxybacillus 
sp. AH1 was purifi ed and characterized. Maximum enzyme production (1874.8 U/mL) was 
obtained at 24 h of incubation. The amylase was purifi ed by using Sephadex G-75 gel fi ltra-
tion, aft er which an 18-fold increase in specifi c activity and a yield of 9 % were achieved. 
The molecular mass of the purifi ed enzyme was estimated at 85 kDa by sodium dodecyl 
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and tempera-
ture values of the enzyme were 7.0 and 60 °C, respectively. The enzyme was highly stable 
in the presence of 30 % glycerol, retaining 85 % of its original activity at 60 °C within 120 
min. Km and vmax values were 0.102 μmol and 0.929 μmol/min, respectively, using Line-
weaver-Burk plot. The enzyme activity was increased by various detergents, but it was 
signifi cantly inhibited in the presence of urea. Mg2+ and Ca2+ also signifi cantly activated 
α-amylase, while Zn2+, Cu2+ and metal ion chelators ethylenediaminetetraacetic acid 
(EDTA) and 1,10-phenanthroline (phen) greatly inhibited the enzyme activity. α-Amylase 
activity was enhanced by β-mercaptoethanol (β-ME) and dithiothreitol (DTT) to a great 
extent, but inhibited by p-chloromercuribenzoic acid (PCMB). Iodoacetamide (IAA) and 
N-ethylmaleimide (NEM) had a slight, whereas phenylmethylsulfonyl fl uoride (PMSF) 
had a strong inhibitory eff ect on the amylase activity.
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stearothermophilus (19), Geobacillus thermooleovorans (20) and 
Geobacillus sp. (21,22).

There are a few studies regarding purifi cation and char-
acterization of α-amylases in Anoxybacillus species. The 
purpose of this study is to purify and characterize a bio-
technologically important α-amylase, rather stable in sev-
eral detergent formulations, produced by thermophilic 
Anoxybacillus sp. AH1 isolated from Dargeçit hot spring 
in Turkey.

Materials and Methods

Materials
Sephadex G-75, 3,5-dinitrosalicylic acid (DNS), bovine 

serum albumin (BSA), 1,10-phenanthroline (phen), dithi-
othreitol (DTT), p-chlorobenzoic acid (PCMB), N-ethylma-
leimide (NEM), iodoacetamide (IAA), phenyl methane sul-
fonyl fl uoride (PMSF), sodium dodecyl sulphate (SDS), 
Tween 40, Triton X-100 and α-amylase (Type II-A≥1500 U/
mg from Bacillus sp.) were purchased from Sigma (Sig-
ma–Aldrich, St Louis, MO, USA). Ethylenediaminetet-
raacetic acid (EDTA) and β-mercaptoethanol (β-ME) and 
all culture media (nutrient broth) were provided by Merck 
(Darmstadt, Germany). All chemicals were of analytical 
grade.

Bacterial strain and medium
The strain AH1 used in this study was isolated from 

Dargeçit hot spring in Turkey and then identifed and 
characterized by morphological, physiological and bio-
chemical tests and 16S rRNA sequence analysis by Acer et 
al. (23). A volume of 1 mL of culture was inoculated in a 
100-mL Erlenmeyer fl ask containing 25 mL of nutrient 
broth composed of (in g/L): beef extract 10, peptone 10 
and NaCl 5, and incubated overnight at 60 °C for 24 h in a 
shaker. Growth was followed by absorbance measure-
ments at 540 nm. The culture was centrifuged at 8200×g 
and 4 °C for 10 min and the cell-free supernatant was 
used for the estimation of amylolytic enzyme activity.

Genomic DNA extraction, PCR-mediated amplifi ca-
tion of the 16S rDNA and purifi cation of the PCR prod-
ucts were performed as described previously (24,25). The 
1134 nucleotides of the 16S rRNA gene were specifi ed 
(23). A BLAST search (26) was used in order to compare 
these sequences with other Anoxybacillus species that pro-
duce amylolytic enzymes. The 16S rRNA gene sequences 
of the species most closely related to our strain were re-
trieved from the database. The CLC Sequence Viewer v. 
6.0 soft ware package (27) was used for the construction of 
phylogenetic tree.

Enzyme activity assay
The enzyme activity was determined according to 

Bernfeld (28): 50 μL of enzyme solution were added into 
200 μL of soluble starch (Merck) (0.5 %, by mass per vol-
ume) in 0.1 M Tris-HCl buff er, pH=7.0, at 60 °C for 30 min. 
The reaction was stopped by the addition of 0.4 mL of 
3,5-dinitrosalicylic acid (DNS) reagent and the mixture 
was boiled for 5 min. Aft er cooling to room temperature, 

the mixture was diluted with 3.0 mL of distilled water 
and the absorption was then measured at 489 nm. One 
unit of amylase activity was defi ned as the amount of en-
zyme that released 1 μmol of maltose per minute per mL 
under the assay conditions. The protein content in the ex-
tracellular extracts was determined by the method of Low-
ry et al. (29) using bovine serum albumin (BSA) as a stan-
dard in this procedure.

Eff ect of incubation time on bacterial growth and 
α-amylase production

In order to determine the eff ect of incubation time on 
bacterial growth and α-amylase production, 1 mL of the 
isolate was inoculated into 100 mL of nutrient broth and 
the samples were taken every 3 hours over a 72-hour pe-
riod. The growth was determined by measuring the in-
crease in absorbance at 540 nm. Aft er centrifugation, the 
supernatant was used for measuring the enzyme activity.

Purifi cation of α-amylase
The strain AH1 was grown in nutrient broth for 24 h 

and was removed by centrifugation at 8200×g and 4 °C for 
10 min. The supernatant was precipitated using ammoni-
um sulphate to 80 % saturation. The precipitate was then 
dissolved in 0.1 M Tris-HCl buff er (pH=7.0), and dialyzed 
overnight against the same buff er. Gel fi ltration of the 
precipitate was done on a Sephadex G-75 column (1.5 cm 
×30 cm), pre-equilibrated with 0.1 M Tris–HCl, pH=7.0. 
An elution was performed with the same buff er at a fl ow 
rate of 3 mL/min. The enzyme containing fractions was 
collected and concentrated by ultrafi ltration. Protein con-
tent and enzyme activity were determined aft er each step. 
All purifi cation procedures were carried out at 4 °C.

Determination of purifi ed α-amylase molecular mass 
and activity

SDS-PAGE
Sodium dodecyl sulphate-polyacrylamide gel elec-

trophoresis (SDS-PAGE) was carried out for the determi-
nation of purity and molecular mass of the amylase as 
described by Laemmli (30). Samples were heated at 100 
°C for 5 min before electrophoresis. Gels were stained 
with Coomassie Brilliant Blue R250. The molecular mass 
of the enzyme was estimated using molecular mass mark-
ers (catalog number SDS7B2, Sigma): α-2-macroglobulin 
(180 kDa), β-galactosidase (116 kDa), lactoferrin (90 kDa), 
pyruvate kinase (58 kDa), fumarase (48.5 kDa), lactic de-
hydrogenase (36.5 kDa) and triosephosphate isomerase 
(26.6 kDa). For zymography of amylase activity, the na-
tive gel containing 0.2 % soluble starch was used. The gels 
were stained with iodine solution aft er electrophoresis. 
Clear bands indicated the presence of amylase activity. 
The enzyme activity band was compared with commer-
cial α-amylase band (58 kDa) from Bacillus sp.

Eff ect of pH and temperature, and kinetic properties of 
purifi ed enzyme

The eff ect of pH on amylase activity was determined 
at 60 °C for 30 min in diff erent buff ers (0.1 M citric acid 
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buff er, pH=4.0–5.5; sodium phosphate buff er, pH=6.0–6.5; 
Tris-HCl buff er, pH=7.0–9.0; and glycine-NaOH buff er, 
pH=9.5–11.0). The eff ect of temperature on amylase activ-
ity was determined by assaying the enzyme activity in the 
range from 30 to 90 °C for 30 min.

In order to test the thermostability of the purifi ed en-
zyme, the residual enzyme activity was measured aft er 
incubating an aliquot of the enzyme at 60 °C for 20, 40, 60, 
80 and 120 min. The enzyme was also incubated with 30 
% glycerol. Aliquots were withdrawn at desired time in-
tervals and the remaining activity was measured under 
enzyme assay conditions. The non-heated enzyme was 
considered as control (100 %).

Soluble starch was used for determination of Michae-
lis constant (Km) and the rate of reaction (vmax). The en-
zyme was assayed at various soluble starch mass per vol-
ume ratios ranging from 0.5 to 3 % in Tris-HCl buff er. All 
reactions were carried out at 60 °C and pH=7.0 for 30 min. 
Km and vmax values were estimated from the Lineweaver- 
-Burk plot.

Eff ect of diff erent metal ions and chemical reagents
To study the eff ect of diff erent metal ions (Cu2+, Zn2+, 

Ca2+ and Mg2+), chelating agents (EDTA and phen), some 
chemicals (DTT, β-ME, PCMB, PMSF, NEM and IAA), 
various surfactants (SDS, Tween 40, Triton X-100 and com-
mercial detergent) and urea on amylase activity, the puri-
fi ed enzyme was preincubated with all agents for 15 min. 
The remaining activity was calculated using the enzyme 
assay under standard assay conditions. Activity in the ab-
sence of any additives (control) was taken as 100 %. All of 
the used metals were in the chloride form. Divalent met-
als, chelating agents, chemicals, surfactants and urea were 
dissolved in 0.1 M Tris-HCl buff er (pH=7.0), whereas 
PMSF and NEM were dissolved in ethanol, and phen in 
methanol.

Results and Discussion
The comparison of 16S rRNA sequence of the strain 

AH1 with those of the amylase-producing Anoxybacillus 
species showed high similarity with A. fl avithermus (Fig. 
1). The strain AH1 was identifi ed and named Anoxybacil-
lus sp. AH1 [DSMZ (Deutsche Sammlung von Mikroor-
ganismen und Zellkulturen) Deposit Number: 23210, Gen-
 Bank Accession Number: KP172526] (23).

α-Amylase production and purifi cation
The time-dependent amylase production was maxi-

mum (1874 U/mL) at 24 h (Fig. 2). There are several stud-
ies on thermophilic Anoxybacillus species that possess the 
ability to produce amylases (3,9,16,18,31). The steps used 
for the α-amylase extraction from Anoxybacillus sp. AH1 
and purifi cation are shown in Table 1. It can be seen clear-
ly that α-amylase was purifi ed up to 18-fold with a yield 
of 9 % of the pure enzyme.

Fig. 1. 16S rDNA sequence-based phylogenetic neighbour-joining tree showing the phylogenetic relationship of AH1 strain relative 
to other amylase-producing strains of the genus Anoxybacillus. The tree topology was obtained by calculation using the CLC Se-
quence Viewer v. 6 program (27). Bootstrap values (%) from 1000 replicates are shown. Bar indicates 0.1 nucleotide substitutions per 
position

Fig. 2. Time course of bacterial growth and Anoxybacillus sp. 
AH1 amylase production. The cells were incubated at pH=7.0 
and 60 °C for 72 h. The results represent the mean values of 
three experiments, and bars indicate standard deviation. Ab-
sence of bars indicates that errors were smaller than symbols
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SDS-PAGE showed that the molecular mass of the 
α-amylase from Anoxybacillus sp. AH1 determined by 
Commassie staining was around 85 kDa (Fig. 3). Non-de-
naturing PAGE and zymogram analyses also show the 
presence of α-amylase activity. The molecular masses of 
the α-amylases from various bacilli were reported to be 
43, 50, 60.5–86, 91 and 97 kDa from Anoxybacillus beppuen-
sis TSSC-1 (18), Anoxybacillus sp. SK3-4 (32), Bacillus sp. 
A3-15 (4), Bacillus sp. AAH-31 (33) and Geobacillus sp. 
IIPTN (21), respectively.

Infl uence of pH, thermal and kinetic properties of 
purifi ed enzyme

As it can be seen in Fig. 4, the purifi ed enzyme exhi-
bited maximum activity at pH=7.0, and retained amylase 
activity of 80, 88 and 83 % at pH=6.5, 7.5 and 8.0, respecti-
vely. Similar optimum pH value has been reported for 
α-amylase from Anoxybacillus sp. KP1 (9), A. beppuensis 
TSSC-1 (18), Bacillus stearothermophilus (34), Bacillus sp. 
1–3 (35) and Anoxybacillus gonensis A4 (36).

The thermostable starch-digesting amylases are rath-
er important in the process of starch hydrolysis because 
the industrial aplications involving α-amylases operate at 
high temperatures exceeding 50 °C, due to higher reac-

tion rates at these temperatures (35). The purifi ed amylo-
lytic activity was assayed at diff erent temperatures exhib-
iting maximum activity at 60 °C, and displayed 92 and 99 
% of its peak activity at 50 and 55 °C, respectively (Fig. 
5a). In recent studies, the optimum temperature of 60 °C 
has been reported for a few α-amylases from Anoxybacil-
lus species (3,9,32). As shown in Fig. 5b, the enzyme was 
highly stable up to 1 h and retained 93 % of the original 
activity at 60 °C. However, the enzyme activity decreased 

Table 1. Purifi cation steps of α-amylase

Purifi cation step
m(total protein)

mg
Total activity

U
Specifi c activity

U/mg
Purifi cation

(fold)
Yield

%

Crude extract 11.2 17024   1520   1 100
Ammonium sulphate and precipitation/dialysis 0.268 4559.21 17012 11   27
Sephadex G-75 0.055 1488.57 27065 18     9

Fig. 3. Amylase activity determined by: a) SDS-PAGE staining 
with Coomassie Brilliant Blue R250: lane 1=molecular mass 
markers [catalog number SDS7B2, Sigma: α-2-macroglobulin 
(180 kDa), β-galactosidase (116 kDa), lactoferrin (90 kDa), pyru-
vate kinase (58 kDa), fumarase (48.5 kDa), lactic dehydrogenase 
(36.5 kDa), triosephosphate isomerase (26.5 kDa)], lanes 2, 3, 4 
and 5=staining of crude extract and purifi ed amylase (ammoni-
um sulphate precipitation/dialysis and Sephadex G-75), respec-
tively; and b) zymogram: lane 1=commercial α-amylase (58 
kDa); lanes 2, 3 and 4=iodine solution staining of crude extract 
and purifi ed amylase (ammonium sulphate precipitation/dialy-
sis and Sephadex G-75 column), respectively

Fig. 4. Eff ect of pH on the activity of Anoxybacillus sp. AH1 am-
ylase. The values are shown as percentages of the maximum 
enzyme activity observed at pH=7.0 and 60 °C, which is taken 
as 100 %

Fig. 5. Eff ect of: a) temperature on the activity of Anoxybacillus 
sp. AH1 amylase. The values are shown as percentages of the 
maximum enzyme activity observed at 60 °C, which is taken as 
100 %, and b) eff ect of temperature on the stability of Anoxyba-
cillus sp. AH1 amylase. The α-amylase was incubated at 60 °C 
for diff erent time periods (20–120 min). The stability of unheat-
ed crude enzyme was taken as 100 %. The remaining amylolytic 
activity was measured under standard assay conditions
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aft er 1 h, aft er which 30 % glycerol was found to help the 
enzyme stability at 60 °C up to 2 h by retaining 85 % of 
the original activity. The stabilizing eff ect of glycerol on 
thermostability of the enzyme has also been reported in 
previous studies (37,38). The results show that this ther-
mostable enzyme could be a good candidate for the effi  -
cient and quick hydrolysis of starches.

As shown in Fig. 6, kinetic studies of the enzyme 
were carried out using various concentrations of soluble 
starch as substrate under standard assay conditions. 
Using the Lineweaver–Burk plot, the Km and vmax values of 
0.102 μmol and 0.929 μmol/min were obtained, respectively.

Infl uence of diff erent metal ions and chemical reagents
As shown in Table 2, α-amylase was signifi cantly ac-

tivated by Mg2+ (41 % at 8 mM) and Ca2+ (70 % at 8 mM). 
Calcium ion is well known to activate most amylases to a 

great extent. Arikan (4) and Srivastava (39) reported that 
α-amylase activity was enhanced by Ca2+. In addition, 
Rao and Satyanaryana (40) also found that the amylase 
activity was increased in the presence of Mg2+. Stability of 
an enzyme in the presence of metal salts plays a crucial 
role in their industrial application. It is already known 
that most enzymes require the presence of metal ion acti-
vators to express their full catalytic activity (41,42).

In the present study, enzyme activity was greatly in-
hibited by Zn2+ (93 % at 1 mM) and Cu2+ (76 % at 0.5 mM 
and 100 % at 1 mM) as well as by the metal ion chelators 
EDTA (63 % at 10 mM) and phen (22 % at 10 mM). It is 
known that Cu2+ (43,44), Zn2+ and phen (45) have inhibi-
tory eff ects on α-amylase. EDTA generally shows non-
competitive inhibition of amylase activity and a slight in-
hibition in the present study may indicate that it is a 
metalloenzyme (4,46,47).

β-ME and DTT containing SH groups were found to 
enhance α-amylase activity for 64 and 106 %, respectively, 
at 10 mM. However, the enzymatic activity was inhibited 
by PCMB (52 % at 4 mM). This result shows the presence 
of at least one essential cysteine residue in the active site 
of the enzyme, modifi ed by the chemicals. Previous stud-
ies showed that the amylase activity increased in the pres-
ence of β-ME (41,43) and DTT (43). Srivastava (39) found a 
similar inhibition eff ect by PCMB. IAA and NEM had litt -
le eff ect on the enzyme activity. This phenomenon further 
supported the existence of cysteine on the active sites of 
purifi ed amylase. Hsieh et al. (48) also determined that 
IAA and NEM partially inhibited amylase activity. PMSF 
inhibited the enzyme strongly (60 % at 4 mM) (Table 2). 
The inhibition of α-amylase from Anoxybacillus sp. AH1 
by PMSF suggested the importance of the seryl hydroxyl 
group in enzyme catalysis. Arikan (4), Rao and Satyanar-
yana (40), Shafi ei et al. (44) and Tatar (45) also reported 
that the activity of α-amylase was inhibited by PMSF.

Table 2. Eff ect of divalent metal ions, metal ion chelators and chemicals on the activity of purifi ed Anoxybacillus sp. AH1 α-amylase

Divalent metals,
ion chelators

and chemicals

c/mM

0.05 0.1 0.5 1 2 4 8 10

Retained amylase activity /%

Ca2+ – – – 146 152 159 170 –
Mg2+ – – – 109 121 133 141 –
Cu2+ 65 62 24     0 – – – –
Zn2+ 74 32 15     7     0 – – –

EDTA – – –   88   58   57   53   37
phen – –   99   97   87 –   78
DTT – – – 102 118 124 – 206
β-ME – – – 120 121 144 – 164
PMSF – – –   51   50   40 –   37
PCMB – – 86   78   77   48 – –
NEM – – –   89 ND ND ND ND
IAA – – –   81 ND ND ND ND
urea – 84 56   37    9 – – –

–=not tested, ND=not determined. Phen=1,10-p henanthroline, DTT=dithiothreitol, β-ME=β-mercaptoethanol, 
PMSF=phenyilmethylsulfonyl fl uoride, PCMB=p-chloromercuribenzoic acid, NEM=N-methylmaleimide, IAA=iodoacetamide

Fig. 6. Lineweaver–Burk plot for Km and vmax values of the amylase 
in the presence of diff erent concentrations of soluble starch [S]
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As it can be seen in Table 2, the enzyme activity was 
signifi cantly inhibited by urea (91 % at 2 mM), which was 
also confi rmed by other authors (4,41,46). The reason for 
this inhibition is that urea denatures the enzyme (41).

The use of α-amylases in detergent formulations is 
known to present problems because it depends on their 
activity and stability. The enzymes thus need to be stable 
against detergents (49). As it can be seen in Fig. 7, α-amy-
lase activity was increased with the addition of 0.5 % of 

sev eral detergents, SDS (28 %), Tween 40 (38 %), Triton 
X-100 (26 %) and commercial detergent (5 %). The increase 
of enzyme activity is possibly due to the eff ect of the sur-
factant on the folding of substrate moiety as well as an 
increase in the hydrophobic interactions, which play a 
crucial role in the stability of the protein tertiary structure 
and direct interaction with the protein molecule (41). Sha-
fi ei et al. (44), Tatar (45) and Negi and Banerjee (41) repor-
ted that α-amylase showed remarkable stability towards 
0.5 % SDS and 2 % Triton X-100, Tween 80 and Tween 20. 
In this study, the thermostable α-amylase was found to be 
stable against detergents and the α-amylase activity was 
increased by several detergents compared with other stu-
dies, so it may be used as an ingredient in detergent for-
mulations for automatic dishwashers and laundries.

Conclusion
The present study shows that α-amylase from a new-

ly isolated Anoxybacillus sp. AH1 is thermostable and de-
tergent stable. The activity of the enzyme was also in-
creased by metal ions such as calcium and magnesium. It 
is well known that stability of an enzyme in the presence 
of metal salts and in detergents plays a crucial role in 
their industrial application. The eff ect of various inhibi-
tors and chemicals on the amylase activity was also evalu-
ated in the study, which may further clarify the nature of 
the purifi ed enzyme.
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