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 Multitarget tracking in clutter usually involves 

data association. The traditional method to handle 

this problem is to construct a tracking gate for 

predicting the position of the target being tracked, 

which leads to great uncertainties of 

measurements-to-tracks association with the 

unknown class of targets. This paper proposes a 

new tracking gate algorithm for general nonlinear 

systems, where the target class information is 

integrated into our algorithm. Firstly, a joint 

probability density description of the target state 

and target class is given, by which the tracking 

gates for each target class in general nonlinear 

system are developed. Then, a simulation with 

ground formation target tracking is carried out to 

examine our algorithm. Compared with the 

traditional tracking gate, the results demonstrate 

that our algorithm has significantly improved the 

probabilities of the measurements-to-tracks 

association. 

Keywords:  

Target tracking 

Data association 

Tracking gate 

Nonlinear system 

 

 

                                                 
* Corresponding author. Tel. +86 0571 8856 2541; fax: +86 0571 8856 2541 

E-mail address: dlpeng@hdu.edu.cn. 

1 Introduction 
 

In order to solve the problem of maneuvering target 

tracking in clutter, the data association needs to be 

considered. The most commonly used method for 

data association is the tracking gate, by which the 

valid measurements are differentiated with the 

invalid one and passed to following processes. 

Various tracking gate algorithms have been 

investigated for data association [1-3]. For example, 

Bar-Shalom et al. [2] have proved the ellipsoidal 

gate is optimal in the sense of minimal volume for a 

given in-gate probability of target-originated 

measurement with Gaussian assumptions. In 

probabilistic data association filter (PDAF), the 

state estimate and state covariance are updated in 

terms of weighted sum of the valid measurements. 

Therefore, the optimal ellipsoidal gate is a natural 

choice in the PDAF as well as other methods which 

incorporate PDAF with interacting multiple model 

[4, 5]. Apart from those linear tracking systems, 

some effective tracking gate algorithms for 

nonlinear system were proposed in [6-8]. 

In recent years, more and more researchers have 

begun to integrate the target class information into 

tracking process. For example, a Bayesian fusion 

algorithm was used to combine identity for target 

tracking [9]. In [10], the class-dependent kinematic 

model is constructed for simultaneous target 

tracking and classification. This paper studies how 

to integrate the target class or identity information 

into the tracking gate algorithm. 
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2 Related work 
 

Two commonly used gating algorithms are the 

rectangular gate and the ellipsoidal gate. The 

rectangular gate is relatively simple, and is only 

defined by the predicted target position and 

innovation. Compared with the rectangular gate, the 

ellipsoidal gate considers the distribution of target 

measurements, and is suitable for more practical 

applications. 

Let 
1kz  denote the measurement at time k+1; 

1: 1{ , }k kz z z  are the measurement sequences up to 

the time k; 1 1
ˆ

k k k 
 z z  is the measurement 

residual or innovation; 21

1, ki  is a normalizing factor 

and 21

1,1, ||  kiki   is a standard Gaussian variable. A 

rectangular gate in an n-dimensional measurement 

space is denoted by: 

 

},,,1,||:{ 21

1,1,1 niG nkiki

nR

k   z
 

 (1) 

   

where 1, ki  is the ith component of the innovation 

1kν ; n  is called the rectangular gate threshold. 

Since n  is an upper n  quantile of a standard 

Gaussian function, the overall coverage probability 

can be calculated by Bonferroni’s inequality: 
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Assuming that the true measurement conditioned by 

the past observation is a Gaussian variable with a 

probability density function given by: 

 

            ),,;()( 111:11   kkkkkk SzzNzzp   (3) 

 

where kk |1
ˆ

z  is the predicted measurement; 
1kS  is 

the innovation covariance; Symbol N  persumes 

that the random variable is Gaussian distributed 

with the corresponding mean and variance. The 

ellipsoidal gate is given by: 
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where γ is the gate threshold. The random variable:  
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is called the squared normalized innovation which 

is a chi-square distributed random variable with n 

degrees of freedom. Given that coverage probability 

is 1-α, the threshold γ is the upper α quantile of chi-

square distribution )(2 n , satisfying: 
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3 General nonlinear system model 
 

This section discusses how to construct the tracking 

gate for general nonlinear system. If the target 

attribute or the feature information is available, the 

target class can be considered as a discrete random 

variable and presented by a class probability mass 

function: 
 

                ),,( :1kk zicxp              (7) 

  

where 
kx  is state vector; c is one of known target 

classes; },{ :1:1:1

c

k

x

kk zzz   are the measurement 

sequences up to k  from an attribute sensor and a 

kinematic sensor, respectively: 
 

1: 1 2 1: 1 2{ , , , }, { , , , }x x x x c c c c

k k k k z z z z z z z z . 
 (8) 

   

The general nonlinear system can be represented by: 
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and 
  

    ( )i i

k k kh z x w , 
     (10) 

  

where 
if  is the state transition function for class i; 

kv  and kw  are the process noise and measurement 

noise, respectively; ku  is the model input. Let the 

estimated target state at time k be 
kx̂ . Given the 

system model (9) and (10), the state prediction 

conditioned on class at time k+1 is 

 

 

 

 

. 
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  (11) 

The predicted measurement is 

 

       
,

1| 1|
ˆˆ ( )x i i

k k k kh z x
 

  (12) 

   

Note that predicted state and measurement above 

are all conditioned on the target class. If the true 

target class is i, the probability that the kinematic 

measurement 
x

k 1z  at time k+1 falls into the area 

around the predicted measurement of class i and 

should be larger than those of other classes. Let 
i

kG 1 be the tracking gate conditioned on class i at 

time k+1 which is dependent on the predicted 

measurement 
,

1|
ˆx i

k kz  of the class i, the descriptions 

above can be expressed as: 
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       (13) 

Based on the above discussion, the tracking gate we 

have proposed can be presented as: 
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where γi is the threshold of the new tracking gate, 

and ξi is a performance index function. 
 

4 Tracking gate algorithm 
 

Providing system models (9) and (10), the 

distribution of target state estimate conditioned by 

class at initial time is known, denoted as 

0 0( | , )p c ix z , the recursive expressions for state 

prediction density and measurement prediction 

density conditioned by class at subsequent time 

period are given as below. 

Class-conditioned state prediction density is 
   

1 1:
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( , )
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and class-conditioned measurement prediction 

density is 

1 1:

1 1 1 1: 1

( , )
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If 
1 1:( , )x

k kp c i z z  is Gaussian distributed (see 

section 2), the optimal tracking gate for class i is an 

ellipsoidal gate. In a simple case of 
1 1:( , )x

k kp c i z z , 

we can derive an analytic expression, and then find 

the position of the optimal tracking gate. If 

1 1:( , )x

k kp c i z z is complicated, we need other 

numerical methods. 
For any tracking gate, two critical points should be 

considered. One is to make the probability that the 

interested target falls into the gate as high as 

possible. The second is to let the amount that the 

gate contains as small as possible. Here the amount 

means area in terms of 2-dimensional space or 

volume in terms of 3-dimensional space. Generally 

speaking, the probability that the true measurement 

falls into the gate should be guaranteed not less than 

some predefined values (such as 0.95) by adjusting 

the threshold γ. Therefore, the volume of the 

tracking gate determines the performance of the 

gate. If the volume is small enough, the number of 

the clutter and the measurements originated from 

other targets falling in the gate will be reduced 

correspondently. 

Whatever the probability distribution of the actual 

predicted measurement density function 

1 1:( , )x

k kp c i z z  is, for the ideal tracking gate 
1kG 
, 

the probability that measurements fall in the gate 

and the probability that measurements fall out the 

gate, should have the relationship: 
   

.          (17) 

   

The inequality above means that the function values 

for points within the gate should be bigger than 

those of outside the gate. According to this 

relationship, we assume a region exists in an n-

dimensional measurement space: 
   

 1 1 1:: ( | , )x n x i

k k kp c i    z z z           (18) 

   

satisfying the overage probability: 
   

 1 1 1:Pr : ( | , ) 1x n x i

k k kp c i       z z z .   (19) 

 

In most cases, the density function 
1 1:( , )x

k kp c i z z  

does not have an analytic expression due to the 

nature of nonlinear system, so γi cannot be 

evaluated directly. Here, we use the following 

algorithm to estimate γi. 

. 

. 

. 
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1) Draw N  sample points from 
1 1:( , )x

k kp c i z z , 

marked as N
zzz ,,, 21  ; Calculate the function 

values for these samples, i.e.,  gi, such as: 
   

1
1 1:( | , ) | , 1, ,x i

k

i x

k kg p c i i N


 
  

z z
z z ;  (20) 

   

2) Sort the gi satisfying NNNN ggg ,,2,1   ; 

3) Estimate γi using 
NNi g

,ˆ    so that: 

 

     1 1 1 1:
ˆ ˆ( ) { : ( | , ) }i i x n x i

k k k kG p c i      z z z .  (21) 

   

This algorithm only relies on simulation in 

estimating γi, and avoids the numerical integration. 

At the same time, the predicted measurement 

density needs not be normalized, which alleviates 

the computation requirement. 

To determine whether a new observation 
1k



z  in 

time k+1 is falling in the gate, we just need to 

evaluate 
1 1

1 1:( | , ) | x
k k

x

k kg p c i 
 



 
 

z z
z z  and compare it 

with 
i̂ . If ˆig   , we think 

1k



z  is a valid 

measurement. 

If the target motion is Gaussian, we can get the 

Gaussian mixture system. The kinematic process 

and measurement process can be presented as: 
   

1k k k k   x Fx Gu v   (21) 

   

1 1 1k k k   z Hx w ,  (22) 

   

where F  is a state transition matrix, G  is a control 

matrix, H  is a measurement matrix, and 
kv  is 

Gaussian process noise, 
1kw is Gaussian 

measurement noise. The input model 
ku  depends on 

target class at time k, 
   

,i j i

k km M u .   (23) 

   

Define the model transition probability for the i th 

class target: 
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Denote the model probability conditioned on class 

at time k as: 

 , ,

| 1:Pr | ,i j i j

k k k km c i   z   (25) 

   

then the predicted model probability conditioned on 

class is 
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Define a merging probability as: 
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The state predictive density conditioned on class is 
   

( )
, ,

1 1: 1 1 1: 1|

1

( , ) ( | , )
r i

i j i j

k k k k k k k

j
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and the measurement predictive density conditioned 

on class is 
   

( )
, ,

1 1: 1 1 1: 1|

1

( , ) ( , )
r i

x x i j i j

k k k k k k k

j
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According to the Gaussian assumption, the 

measurement predictive density is a Gaussian 

mixture distribution, ie.: 
   

( )
, , ,
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we get the combined position of our tracking gate 
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and its combined covariance 

   
( )
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5 Simulation and analysis 

 

This scenario represents a ground formation target 

tracking problem. It consists of four targets whose 

classes are assumed to be 1, 2, 1 and 2. The targets 

move from left with the speed of 25 m/s and 

separation 200 m as shown in Fig. 1. 
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Figure 1. True formation target tracks. 

 

The true state of the target at time k is 

   

 , , ,k k k k kx x y y x ,  (33) 

   

where 
kx  and 

ky  are the positions of the target and 

kx  and 
ky  are the velocities of the target in the X, Y 

coordinates, respectively. The kinematic part of the 

measurement vector is given by: 

   

      ,k k k  z ,   (34) 

   

where 
k  and 

k  are the position measurements in 

X and Y coordinates. The system model is given by 

(21) and (22). The state transition matrix, the model 

input matrix and the measurement matrix are 

   
2

2

1 0 0 2 0

0 1 0 0 1 0 0 00
, ,

0 0 1 0 0 1 00 2
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T T

T

T T
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F G H
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where the sample time T=1s, process noise 
2~ [0,0.2 ]kv N and measurement noise 
2~ [0,0.1 ]kw N . 

The corresponding model sets with the class 

information are {0,3 , }g g and {0, , }g g  and the 

model transition probability for each set is 

 

                1 2

0.95 0.05 0

0.1 0.8 0.1

0 0.05 0.95

p p

 
 

 
 
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.             (36) 

 

The initial model probabilities defined in iM  are 

assumed to be equal. The detection probability of 

the kinematic sensor is 0.96, and the clutter is 

assumed to be uniformly distributed with the 

average density 0.01 point/km2 over the surveillance 

region. The class of clutter is selected with the 

uniform probability between the two possible 

classes. In order to account for the uncertainty of 

the classifier output, we define a confusion matrix: 

   

0.98 0.02

0.02 0.98
ijc

 
     

 
C ,  (37) 

   

where 
ijc  is the likelihood of the true class being i 

when the classifier output is j. The tracking is based 

on the IMM filter. In the phase of data association, 

we use two kinds of gating technique separately. 

The estimated trajectories are shown in Fig. 2 to Fig. 

4. 
 

 
 

Figure 2. Estimated trajectories via the rectangular 

gate. 
 

 

 

Figure 3. Estimated trajectories via the ellipsoidal 

gate. 
 

 

Figure 4. Estimated trajectories via the class-

conditioned gate. 

 
Fig. 2, 3 and 4 show that the measurements-to-

tracks association using our tracking gate algorithm 

is significantly better than the rectangular gate and 

the ellipsoidal gate. In Fig. 2 and 3, there exist fault 
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associations to some extent because the other two 

gates failed to distinguish the target classes, and 

only used the “distance” between measurements and 

tracks to validate the true target measurement. Table 

1 gives the probabilities that the measurements are 

associated with the correct trajectories for each 

tracking gate. 
 

Table 1. Association probabilities 
 

Tracking Gate 
Association probabilities 

Class 1 Class 2 

Rectangular Gate 53% 61% 

Ellipsoidal Gate 76% 79% 

Class-conditioned Gate 100% 100% 

 

6 Conclusion  
 

In this paper we have developed an algorithm to 

construct tracking gate for general nonlinear 

systems with target class information. Most of 

traditional data association methods only use the 

target kinematic information, whereas the use of the 

target class information is usually left as post-

processing units like target identification or 

recognition. In fact, target class information can 

also be used in data association to yield significant 

improvements to tracking accuracy and association 

purity. Because target motion process is determined 

by target class, the target state at any moment must 

match its corresponding model set. In detail, the 

new tracking gates are constructed by its individual 

target state equation and model input, which 

significantly reduces the errors caused by the 

detection uncertainty and the model input 

uncertainty. 

According to our tracking gate algorithm, target 

kinematic process for each target class can be 

separately expressed. For nonlinear systems, a 

numerical method can be used for constructing the 

gates; For Gaussian mixture systems, we discussed 

the analytic expressions of the gate position and 

covariance. Simulation scenario indicated that our 

tracking gate can better associate measurements 

with the target tracks. 
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