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Morphological, biochemical and physiological  
responses of Indian cress (Tropaeolum majus) 
to elevated UV-B radiation

Abstract

Background and Purpose: UV-B radiation is an important environ-
mental factor for many plants with remarkable influence on defence-related 
secondary metabolite biosynthesis. Possible consequences of UV-B radiation 
on plants have been widely reported, but its effect on secondary plant me-
tabolites in ornamental and medicinal plants is poorly understood. The aim 
of the present research was to establish whether it is feasible to cultivate 
Tropaeolum majus under conditions of enhanced UV-B radiation to alter 
the content of total phenolic compounds in leaves and flowers and whether 
UV-B treatment affect plant physiological response. 

Material and Method: An outdoor study was conducted to examine 
the effect of different levels of UV-B radiation on the morphological (spe-
cific leaf area and length of internodes and petiole), biochemical (photo-
synthetic pigments, UV absorbing compounds) and physiological charac-
teristics (photosynthesis, photochemical yield of PSII, transpiration rate, 
water use efficiency) of the widely cultivated annual herb Indian cress ( T. 
majus L.). 

Results and Conclusions: Enhanced UV-B radiation induced in-
creased synthesis of total phenolic compounds in leaves, but not in flowers. 
Photosynthesis and photochemical yield of PSII were mostly unaffected by 
UV-B. Transpiration rate was higher at elevated UV-B levels in the begin-
ning and peak of the season. Specific leaf area and length of internodes and 
petiole were unaffected. UV-B treated specimens of  T. majus possessed en-
hanced amounts of total phenolic compounds, which are important for 
utilisation of  T. majus herbs for human health. Enhanced UV-B treatment 
affected flowering of  T. majus at the end of the growing season, which may 
have an important negative implication for success of this species in elevated 
UV-B radiation environments.

INTRODUCTION

Increasing UV-B radiation, resulting from air pollution-induced ozone 
depletion, has raised awareness of the effects of UV-B on the ecosystem 

(1). In spite of current efforts to restrict the production of ozone-depleting 
substances, thinning of the stratospheric ozone layer, with increased pen-
etration of ultraviolet-B (UV-B) radiation to the earth’s surface, will con-
tinue for decades (2). Recovery of the stratospheric ozone layer to condi-
tions seen in 1979–1992 is not expected until 2040 – 2050 (3). UV-B stress 
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is one of the most important abiotic stress factors and can 
influence almost every aspect of plant physiology and bio-
chemistry (4). Its effects on plants include inhibited growth, 
morphological changes and increased levels of phenolic 
substances (5, 6). The harmful effects of UV-B radiation on 
plants are often a consequence of the production of reactive 
oxygen species (ROS) (7), which eventually result in oxida-
tive stress. The alleviation of oxidative damage caused by 
enhanced UV-B is often correlated with an effective anti-
oxidant system in plants (4). Protective responses against 
enhanced UV-B radiation include increased production of 
UV-B absorbing and protective compounds: flavonoids, 
phenylpropanoids, and carotenoids (8). The UV-B absorb-
ing compounds, particularly carotenoids and phenolic com-
pounds, act as screening pigments (9) thereby are protecting 
the photosynthetic tissues. Multiple functions of flavonoids 
are well known (10, 11). It was shown by Rojas-Lillo et al. 
(12) that in highbush blueberry (Vaccinium corymbosum) 
cultivar Brigitta, manganese and UV-B radiation treatment 
induced an increased concentration of photoprotective 
compounds and thus enhanced resistance to oxidative 
stress.

The potential consequences of UV-B radiation on 
plants have been widely studied, but there is limited un-
derstanding of its effects on secondary plant metabolites 
on plants grown for horticulture, food and medicinal 
properties. Tropaeolum majus (Indian cress), which origi-
nates from the Andes in Bolivia, deserves special attention 
since it is grown widely as a medicinal plant, for human 
food, and as an ornamental plant (13, 14, 15). It has been 
consumed in salad or soup for decades (13). In natural 
medicine, T. majus is used to treat infections of the uri-
nary tract (14). Herbs and flowers of T. majus contain 
high levels of flavonoids, which have apparent beneficial 
effects on human health (15, 16), attributed to their anti-
oxidant activities (17). 

The aim of the present research was to establish wheth-
er it is feasible to cultivate T. majus under conditions of 
enhanced UV-B radiation and whether the content of to-
tal phenolic compounds in leaves and flowers is altered. 
Specifically, it is important to determine whether solar and 
elevated UV-B radiation affect plant performance (pho-
tochemical yield of PSII, photosynthesis, transpiration 
rate, water use efficiency and photosynthetic pigments).

MATERIAL AND METHODS

Culturing of Tropaeolum majus  

T. majus seeds were sown in May in a sandy soil in pots 
(15x15x15 cm) on an outdoor research plot (Botanical 
garden, University of Ljubljana: 320 m above sea level, 
46°35́ N, 14°55́ E). After one month, seedlings were ex-
posed to different treatments. Average monthly tempera-
tures, cumulative monthly precipitation and hours of solar 
radiation during the experiment are indicated in the Table 

1. Samples for the analysis of plants grown under each 
treatment were chosen randomly out of 100 specimens. 
 
Table 1. Average monthly temperatures, cumulative monthly pre-
cipitation and hours of solar radiation during the experiment

Month June July August September

Temperature (ºC ) 21.1 + 3.8 21.3 + 2.0 20.1 + 1.9 15.0 + 3.5

Precipitation (mm) 175.6 127.0 181.2 87.5

Solar radiation (h) 9.9 + 5.0 8.9 + 3.3 7.1 + 3.5 5.9 + 3.8

UV-B supplement system

A UV-B supplement system was designed as described 
by Björn and Teramura (18). (1) Simulation of 17% ozone 
depletion [UV-B(+)] was performed using Q-Panel UV-B 
313 lamps, filtered with cellulose diacetate filters, which 
blocks the UV-C range (wavelengths lower than 280 nm). 
(2) In control plot plants were exposed to the radiation 
produced by Q-Panel UV-B 313 lamps filtered with Mylar 
foil which cuts off wavelengths below about 320 nm (19), 
therefore supplemental UV-A radiation (with potential 
beneficial effects) and natural UV-B radiation were in-
cluded in the treatment. In both treatments (1,2), a panel 
of 12 UV lamps (Q-Panel UV-B 313 lamps) was positioned 
1m above the plants. (3) On the third plot [UV-B(-)], My-
lar foil filter was positioned 80 cm above the plants to re-
duce cca. 60% of natural UV-B and UV-A radiation. Bio-
logically effective UV-B (UV-BBE) doses were calculated 
and adjusted weekly using the program of Björn and Mur-
phy (20), based on the generalized plant action spectrum 
(21). Supplemental UV-B radiation corresponded to 17% 
ozone depletion, that presented  from 35 to 58% increase 
of biologically active radiation  UV-BBE. That meant sup-
plemental doses from 1.16 and 2.16 kJ m–2 d–1 respectively, 
depending on the day of the year (20). The time of the 
exposure was changing with the respect of the time of the 
year. Exposure lasted from June to end of September.

Biochemical analyses

Total chlorophyll (Chl) content and carotenoid con-
tent were determined as reported by Lichtenthaler (22). 
The basic procedure for total phenolic compounds (meth-
anol soluble UV-B and UV-A absorbing compounds) fol-
lowed the method described by Mirecki and Teramura 
(23). UV-absorbing compounds (UV AC) were extracted 
from freshly homogenised plant material (approx. 0.1 g 
DM) with methanol:distilled water:HCl = 79:20:1 (v/v/v). 
Samples were then centrifuged in a top refrigerated ultra-
centrifuge (5,000 Hz, 10 ºC, 10 min) and the extinction 
of supernatants measured in the range from 280–400 nm 
at intervals of 1 nm with UV/VIS Spectrometer System. 
Absorbances from 280–320 nm for UV–B and from 
320–400 nm for UV-A absorbing compounds were inte-
grated and expressed per dry mass (DM) of the sample. 
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Measurements of photosynthesis, 
transpiration rate and photochemical 
yield of PSII

Light-saturated net photosynthesis rate (Pn) was mea-
sured with a portable infrared gas analyser (LI-6200, LI-
COR, Lincoln, NE, USA) and transpiration with a 
porometer (LI-1600, LI-COR, Lincoln, NE, USA). Water 
use efficiency was calculated as the ratio of photosynthe-
sis to transpiration (24).

Photochemical yield of photosystem PSII was deter-
mined by fluorescence measurements. This is a non-intru-
sive method that allows rapid assessment of quantum yield 
of electron flow through PSII. Measurements were carried 
out with a portable fluorometer (OS-500, Opti-Sciences, 
Tyngsboro, MA, USA). The potential quantum yield of 
PSII (Fv/Fm = (Fm–F0)/Fm) quantifies the maximum effi-
ciency of the primary photochemical events in photosyn-
thesis. F0 and Fm are the minimal and maximal chlorophyll 
a fluorescence yields in dark adapted samples, and Fv is the 
variable fluorescence. Fluorescence was excited with a 
saturating beam of “white light” [photosynthetic photon 
flux density (PPFD) = 8 000 µmol m–2 s–1, 0.8 s]. The ef-
fective quantum yield of PSII was measured under saturat-
ing irradiance by providing a saturating pulse of “white 

light” (PPFD = 9 000 µmol m–2 s–1, 0.8 s), using a standard 
60° angle clip. The effective quantum yield of PSII, given 
by formula (Fm’-F)/Fm’= ∆F/Fm’, gives the actual efficiency 
of energy conversion in PSII (25). Fm’ is the maximum 
fluorescence signal of an illuminated leaf after a pulse of 
saturating light and F is the steady state fluorescence (26). 

All gas exchange and fluorescence measurements were 
made each day between 11.00 h and 15.00 h (local time) 
(PPFD ³ 1100 mmol m–2 s–1) at ambient temperature and 
CO2 concentration throughout the experiment.

Morphological analyses

Specific leaf area, lengths of petiola and of internodes 
were recorded for all treated and untreated plants at the 
end of the season.

Statistical analyses

SPSS was used for ANOVA (One-way, and multifac-
tor) analysis. The significance of the differences (p < 0.05) 
was tested with post hoc Least Significant Difference 
(LSD) test after the analysis of variance. When paramet-
ric analysis was not admissible, Kruskal Wallis test was 
applied. 

Table 2: Content of chlorophyll a and b  and carotenoids per dry mass, net photosynthetic rate, transpiration rate, potential and effective quan-
tum yield of PSII, UV-A absorbing compounds in leaves and flowers in Tropaeolum majus under reduced level of UV-B radiation - UV-B(-), 
ambient radiation - control and elevated UV-B radiation - UV-B(+) with time. Mean values ± SD (standard deviation), n = 5.

Months June August September

Treatment

Parameter UV-B(-) Control UV-B(+) UV-B(-) Control UV-B(+) UV-B(-) Control UV-B(+)

Chl a (mg/g DM)   2.58a

 ±0.74
  3.53b

±0.52
  2.11a

±0.71
  5.36a

±0.65
  4.98a

±0.72
  5.35a

±0.62
  5.69a

 ±0.54
  5.77a

 ±0.91
  4.79a

 ±1.01

Chl b (mg/g DM)   1.73a

 ±0.45
  2.29b

 ±0.36
  1.36a

 ±0.45
  3.46a

 ±0.39
  3.22a

 ±0.51
  3.43a

 ±0.44
  3.35a

 ±0.31
  3.41a

 ±0.56
  2.85a

 ±0.65

Car (mg/g DM)   0.70a

 ±0.14
  0.89a

 ±0.09
  0.54a

 ±0.15
  1.11a

 ±0.10
  1.05a

 ±0.12
  1.22a

 ±0.13
  1.44a

 ±0.14
  1.57a

 ±0.22
  1.31a

 ±0.20

Pn (µmol (CO2)/m
2s1)   0.26a

 ±0.12
  0.30a

 ±0.18
  0.50a

 ±0.20
  0.54a

 ±0.14
  0.51a

±0.19
  0.62a

 ±0.14
  0.51a

±0.13
  0.62a

 ±0.09
  0.47a

 ±0.06

Tr (mol (H2O)/m2s1)   0.36a

±0.15
 0.48ab

±0.09
  0.69b

±0.19
  0.25a

 ±0.07 
  0.24a

±0.07
  0.39b

±0.05
  0.12a

 ±0.04
  0.16a

 ±0.02
  0.13a

±0.02

Fv/Fm (rel. units)   0.75a

±0.06
  0.77a

±0.07
  0.81a

±0.02
  0.83a

±0.01
  0.79a

±0.03
  0.81a

±0.05
  0.81a

±0.02
  0.83a

±0.01
  0.83a

±0.01

∆F/Fm’ (rel. units)   0.50a

 ±0.15
  0.43a

 ±0.08
  0.40a

±0.08
  0.50a

 ±0.06
  0.37b

 ±0.05
  0.37b

 ±0.10
  0.46a

 ±0.07
  0.46a

 ±0.05
  0.44a

 ±0.07

UV-A AC - leaves (rel. units/DM)   626a

  ±73
  856b

  ±130
1171b

  ±152
  853a

  ±226
1500b

±310
  950a

  ±98   nm   nm   nm

UV-A AC - flowers (rel. units/DM) 1249a

±116
1161a

 ±426
1196a

 ±374
1990a

±533 nm nm   nm   nm   nm

Legend: chl - chlorophyll, car - carotenoids, Pn - Net photosynthetic rate, Tr - transpiration rate, Fv/Fm - potential quantum yield of PSII, ∆F/Fm’ - ef-
fective quantum yield of PSII, nm – no measurement. Different letters indicate significant difference among values within each sampling at p < 0.05 
confidence level.
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RESULTS AND DISCUSSION

UV-B radiation corresponding to 17% reduction of the 
ozone did not exert any effect on levels of chlorophylls or 
carotenoids in T. majus (Tab. 2). However the chlorophyll 
a and b contents in June were the highest in control treat-
ment that may be related to supplemental UV-A radiation 
that had beneficial effect on DNA photo-repair mecha-
nisms (27). Absence of the effect of UV-B radiation on 
the amount of chlorophylls or carotenoids in other 
months of experiments could be a consequence of the 
rapid growth of the plant, which is also the case in some 
agricultural plants. Little effect of UV-B on chlorophyll 
content was observed in Phaseolus vulgaris (28) or Helian-
thus annuus (29) plants. In the study of Mohammed and 
Tarpley (30), none of the rice cultivars showed changes in 
levels of carotenoids (UV-B screening pigment) with in-
creased UV-B levels. Similar results were observed for 
soybean (Glycine max) exposed to UV-B radiation (8). On 
the other hand, exposure of Prunus dulcis plants to UV-B 
led to a substantial reduction in the content of both Chl 
a and Chl b (31), which reveals possible damage to the 
photosynthetic capacity of the chloroplasts (32). Macker-
ness et al. (5), who studied the effect of UV-B radiation 
on buds of pea, suggested that under UV-B stress, plants 
sacrifice their chloroplasts in order to protect the rest of 
the cell. UV-B radiation might affect the photosynthetic 
pigments, either through inhibition of their synthesis or 
effects on the enzymes involved in the chlorophyll bio-
synthetic pathway (33). 

Levels of UV-B and UV-A absorbing phenolic com-
pounds in leaf increased in response to UV-B radiation 
in T. majus during the period of intensive growth (Fig. 1, 
Tab. 2). The majority of primary producers respond to 
UV-B radiation by producing UV-absorbing compounds 
that provide a protective screen that filters out the UV-B 
(34). An increase in UV-B absorbing compounds accom-

panying an increase in UV-B level was observed for rice 
cultivars (35), St John’s wort (36), common and Tartary 
buckwheat (37), lettuce (38), Gnaphalium luteo-album 
(39), and highbush blueberry leaves (40). 

In another study, Kunz et al. (41) explained that plants 
counteract cell damage by attenuating the UV dose re-
ceived, by accumulating UV-absorbing secondary me-
tabolites that neutralize reactive oxygen species (ROS) 
produced by UV radiation. Likewise, Qaderi et al. (42) 
reported that enhanced UV-B radiation increased the 
amount of UV-B absorbing compounds at epicuticular 
wax. Albert et al. (43) found that plants from high level 
UV-B environments contain more UV-B absorbing com-
pounds than those under lower UV-B treatment. In desert, 
UV radiation stimulated the biosynthesis of UV absorbing 
compounds in annual plants, performing a photoprotec-
tive function (44). Our results suggest that UV-B level 
influences the accumulation of secondary metabolites in 
T. majus and thus, by regulating growth conditions, it is 
possible to influence the concentrations of substances and 
the quality of T. majus herb. Amounts of these substances 
in T. majus are comparable to those in common and Tar-
tary buckwheat (37). Buckwheat species originate from 
high altitude areas and it is well known that they contain 
high levels of UV absorbing compounds (45, 46, 47, 48). 
T. majus originates from the Andes mountains (South 
America), where enhanced UV-B levels are expected. 

The amount of UV absorbing compounds in flowers 
was similar at all UV-B levels.  However, experimental 
plants ceased to flower in September when exposed to 
ambient and enhanced UV-B radiation, although they 
were still in flower under the reduced levels of UV-B ra-
diation (Fig. 2, Tab. 2). These observations indicate the 
sensitivity of flower initiation in T. majus to enhanced and 
even ambient levels of UV-B solar radiation. Enhanced 
UV-B radiation can accelerate or retard the time of flow-
ering (49).

Figure 1. Production of UV-B ab-
sorbing compounds (UV-B AC) in 
leaves of Tropaeolum majus exposed 
to different UV-B treatments. Re-
sults are mean values ± SD (stand-
ard deviation), n = 5. UV-B(-) – re-
duced level of UV-B radiation, 
control – ambient radiation, and 
UV-B(+) – elevated UV-B radia-
tion. Different letters indicate sig-
nificant difference at p < 0.05 con-
fidence level among values within 
each sampling.
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Saile-Mark and Tevini (50) report that enhanced 
UV-B radiation delays the start of flowering in the major-
ity of studied cultivars of Phaseolus vulgaris. The possible 
cause is the effect of UV-B radiation on the biosynthesis 
of gibberellins. 

The efficiency and stability of PSII, the major compo-
nent of the photosynthetic apparatus, was monitored dur-
ing the vegetation season in terms of Fv/Fm. Alteration in 
Fv/Fm implies changes in photochemical conversion effi-
ciency of PSII and, therefore, possible photoinhibition of 
photosynthesis. Under non-stressed conditions, Fv/Fm is 
almost constant (from 0.80 to 0.86) (51). In our experi-
ment, potential and effective quantum yields of PSII did 
not differ between treated and untreated plants, with the 
exception of a negative effect of UV-B radiation on effec-
tive quantum yield of PSII in peak season (August). Mea-
sured values of Fv/Fm ranged from 0.75 to 0.83 and of ∆F/
Fm’ from 0.37 to 0.50 (Tab. 2). Close values of the poten-
tial photochemical efficiency to the theoretical maximum 
indicated an undamaged antenna complex (26). Even 
though the effective yield was lower than the potential 
one (Tab. 2), the high values of potential yield, indicated 
reversible inactivation rather than damage to the reaction 
centre. UV-B radiation has been reported to hit several 
specific targets on the electron transport side of the PSII 
reaction centre, resulting in inefficient use of energy (52). 
Lingakumar et al. (53) stated that UV-B exclusion pro-
moted PSII activity of Vigna unguiculata. On the other 
hand it has been reported that solar UV-B filtering did 
not cause any change in the photochemical efficiency of 
PSII in common buckwheat (54), and in Deschampsia 
antarctica and Colobanthus quitensis (55), indicating that 
the photosynthetic apparatus was not damaged. 

Photosynthesis was unaffected by UV-B radiation 
(Tab. 2). In contrast, Mohammed and Tarpley (30) 
showed that, for most rice cultivars, exposure to enhanced 

UV-B radiation resulted in decreased photosynthetic rate 
compared to plants grown in a UV-B-free environment. 

Transpiration rate increased under UV-B radiation 
treatment at the beginning and peak of the season (Tab. 
2). These results contrast with those for wheat, pea and 
soybean exposed to UV-B (56). The effect of UV-B ra-
diation on stomatal conductivity may be due to a change 
in stomata functioning (57). 

During experiment transpiration rate in general de-
creased from June to September, while photosynthesis 
increased. Water use efficiency (WUE) increased through-
out the season (Fig. 3) and was independent of UV-B 
radiation which is in apparent contrast to results on wheat 
cultivars (Triticum aestivum) (58). In that study authors 
evidence that UV-B radiation decreases WUE in com-
parison to the control. However, some soybean cultivars 
may respond to increased levels of UV-B by increasing 
WUE and this response could be manifested through 
changes in stomatal development and functioning (56).

UV-B did not affect specific leaf area or the length of 
the internodes or petiole in accord with results reported 
in the study on the St John’s Wort (36). Measured values 
of specific leaf in area in T. majus ranged from 0.29 to 
0.33, length of the internodes from 1 to 1.5 cm, and 
length of the petiole from 7.8 to 9.6 cm. However, UV-B 
caused stunting of plant stems in both common and Tar-
tary buckwheat species (37). Ballaré et al. (59) concluded 
that the inhibition of stem elongation in various plants 
induced by UV-B is either a direct consequence of damage 
to proteins or is induced by cellular signals resulting from 
DNA damage or oxidative stress.

There is a strong correlation between the accumulation 
of phenolic compounds and UV-B tolerance. The level of 
DNA damage caused by UV-B radiation was lower in 
plants with accumulated phenolic substances, as in the 

Figure 2. Production of UV-B ab-
sorbing compounds (UV-B AC) in 
flowers of Tropaeolum majus ex-
posed to different UV-B treat-
ments. Results are mean values ± 
SD (standard deviation), n = 5. 
UV-B(-) – reduced level of UV-B 
radiation, control – ambient ra-
diation, and UV-B(+) – elevated 
UV-B radiation. Letters indicate 
that there was no significant differ-
ence (p < 0.05) among values 
within each sampling.
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leaves of barley (60). It is clear that in T. majus, the protec-
tion caused by accumulation of UV absorbing com-
pounds was effective, since photosynthesis, photochemi-
cal efficiency, length of internodes and petiole did not 
differ at three levels of UV-B radiation. The resistance of 
T. majus to UV-B radiation is consistent with the fact that 
it originates from high altitude areas. The absence of ap-
parent photosynthetic and growth damage in the present 
study is not uncommon and parallels results from several 
recent studies on other plant species in which direct dam-
age to plants by UV-B was not found (58). 

Searles et al. (61) summarized 450 reports from 62 
papers regarding the effect of UV-B radiation on plants 
in field-based studies. They also found out that effects of 
UV-B were most apparent for the case of UV-B-absorbing 
compounds with an average increase of approximately 
10% across all studies when comparing the ambient solar 
UV-B control to the treatment. Plant height and leaf mass 
per area showed little or no response to enhanced UV-B. 
Chlorophyll fluorescence and the concentration of pho-
tosynthetic pigments were also not affected. 

Flint et al. (62) reported that both UV-B-exclusion and 
UV-B-supplementation studies on ecosystems have rare-
ly been conducted simultaneously. Such experiments were 
initiated in a dune grassland ecosystem in The Nether-
lands (52.5 °N) (63). Results show that in the UV exclu-
sion experiment, near-ambient UV-B caused some inhibi-
tion of plant growth, but lamp UV-B-supplementation 
had minimal additional effect.

CONCLUSIONS

Biologically effective UV-B doses (UV-BBE) corre-
sponding to 17% reduction of the ozone layer had no 
effect on specific leaf area, the length of internodes or 

petiola, photosynthesis or potential photochemical effi-
ciency of PSII. Such high resistance is probably the con-
sequence of successful acclimation to UV-B radiation in 
the natural environment. UV-B treated specimens of T. 
majus possessed enhanced amounts of total phenolic com-
pounds, which are important for utilisation of T. majus 
herbs for human health. Enhanced UV-B treatment af-
fected flowering of T. majus at the end of the growing 
season, which may have an important negative implica-
tion for success of this species in elevated UV-B radiation 
environments. The flowers of T. majus are the source of 
active substances for the pharmaceutical industry, there-
fore these results also have economic significance. 
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