JURIĆ I., MARIJA ĐIKIĆ, LEVAKOVIĆ F., ŠKRIVANKO I.

TEORIJSKA OSNOVA I EKONOMSKI RAZLOZI ZA PROVOĐENJE HIBRIDIZACIJE U SVINJOGOJSTVU

1. U V O D

Napredak u stočarskoj proizvodnji, općenito, pa i u svinjogojstvu u osnovi se sastoji od a) napretka u izgradnji proizvodnih kapaciteta jedinki i b) maksimalno racionalnog iskorištavanja proizvodnih kapaciteta najekonomičnijim proizvodnim procesom. Osnovni je preduvjet za racionalnu proizvodnju posjedovanje populacije životinja s visokim proizvodnim kapacitetom.

2. EKONOMSKI NAJZNAČAJNIJE OSOBINE U SVINJOGOJSKOJ PROIZVODNJI

Proizvodni potencijal životinja mjeri se s visinom vrijednosti pojedinih osobina, a osnova je stočarskog napretka u povećanju proizvodnih vrijednosti za te osobine.

Ekonomski su najznačajnije osobine u svinjogojskoj proizvodnji:

- 2.1. Dnevni prirast
- 2.2. Konverzija hrane
- 2.3. Broj tovljenika po krmači
- 2.4. Dugovječnost rasplodnih životinja
- 2.5. Kvalitet na liniji klanja

Značenje i veličinu proizvodnih vrijednosti po ovim osobinama prikazat ćemo na proizvodnji od 2,4 milijuna tovljenika.

2.1. Ekonomski efekti promjene u visini dnevnog prirasta

Ako se korištenjem proizvodno vrednijih životinja postigne povećanje dnevnog prirasta za 5 % tada se za 2,4 milijuna tovljenika broj hranidbenih dana tova smanjuje za 14,4 milijuna. To znači da je moguće proizvesti 2,4 milijuna tovljenika u tovilišnim kapacitetima manjim za 123.000 mjesta u jednom turnusu.

Ivan ŠKRIVANKO, dipl. veterinar

Dr Ivan JURIĆ. dipl. inž., Marija DIKIĆ, dipl. inž., FPZ OOUR Institut za stočarstvo i mljekarstvo Franjo LEVAKOVIĆ, dipl. inž. PIK VINKOVCI

2.2. Ekonomski efekti promjene u konverziji hrane

Ako se konverzija hrane smanji za 5 % tada je za proizvodnju 2,4 milijuna tovljenika potrebno 38 milijuna kg hrane manje.

2.3. Ekonomski efekti promjene u broju tovljenika po krmači

Ako se broj tovljenika po krmači povećava za 10 %, tada je potrebno 13.000 komada rasplodnih krmača manje, u populaciji koja će dati 2,4 miljuna tovljenika. Znači da je potrebno manje farmi za toliko grla, a također 12,220.000 kg hrane za potrebe populacije krmača.

2.4. Ekonomski efekti promjene u konstitucijskim karakteristikama

Ako se u odnosu na stado koje daje istu vrijednost jedinki na liniji klanja smanji godišnji remont za 10 % tada se za proizvodnju od 2,4 milijuna tovljenika smanjuje godišnja potreba čak za 17.000 rasplodnih jedinki i 7.140.000 kg manje hrane za othranu nazimica.

2.5. Ekonomski efekti promjene u poboljšanju mesnatosti na liniji klanja

Ako se mesnatost poveća za 5 % tada se na 2,4 milijuna tovljenika godišnje proizvode 3,2 milijuna mesnih jedinica više.

Iznijete vrijednosti povećanja po pojedinim osobinama adekvatne su vrijednosti koje se mogu postići iskorištavanjem heterozisa efekta postupkom hibridizacije. Visina ovih efekata i njihovo ekonomsko značenje zahtijevaju da se razmotri mogućnost iskorištavanja heterozis efekata odnosno mogućnost uvođenja hibridizacije u svinjogojsku proizvodnju.

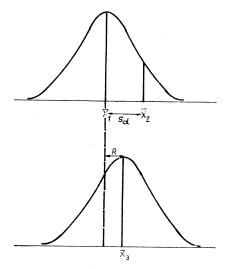
Postavlja se pitanje da li klasična pasminska selekcija na selekcijski diferencijal omogućava iskorištavanje navedenih efekata, te da li je potrebno pristupiti novim metodama oplemenjivanja u svinjogojstvu. Za odgovor na ova prtanja postoje teorijske spoznaje koje iznosimo u slijedećim poglavljima.

3. ODNOS HETEROZISA I KLASIČNE SELEKCIJE

Da bismo dobili odgovor na pitanje da li se heterozis može iskoristiti klasičnom selekcijom na selekcijski diferencijal prvo ćemo objasniti osnove teorije klasične selekcije koju je uveo Lush.

Rezultat selekcije za vrijeme generacijskog intervala jednak je razlici između srednje vrjednost $_i$ generacije roditelja i generacije potomaka, a prikazuje se formulom $R=sd\ h^2$. U ovoj formul $_i$ »sd« je selekcijski diferen

cijal (sd =
$$\frac{\overline{M} + \overline{O}}{-}$$
 — \overline{x}) koji je razlika između srednje vrijednost $_i$ po-


pulacije iz koje se izabiru roditelj_i i srednjih vrijednosti roditelja koji će dat slijedeću generaciju. Druga komponenta koja određuje rezultat selek-

cije je »h²« (h² = 2b ili h² =
$$\frac{4 \ \, \mathring{\circ} \ \, o^2}{\ \, \mathring{\circ} \, o^2 + \ \, \mathring{\circ} \ \, u^2}$$
) nazvanom po Lushu heritabili-

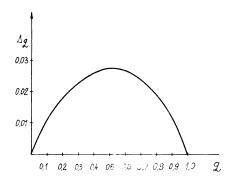
tet. Taj genetički parametar ovisi o karakteru genotipa analizirane osobine, a govori koliki se dio selekcijskog diferencijala prenosi na slijedeću generaciju. Na osnovu poznavanja selekcijskog diferencijala i hertabiliteta moguće je znati promjene u populaciji iz generacije u generaciju što je prikazano na grafikonu 1.

Grafikon 1 — Prikaz odnosa rezultata selekcije (R) i selekcijskog diferencijala (sd) uz $h^2 = 0.46$.

2. Generacija potomaka

Grafikon 1. prikazuje da roditeljska generacija za danu osobinu ima prosječnu vrijednost x_1 . Roditelji čijim će se sparivanjem dobiti slijedeća generacija imaju vrijednost x_2 , pa je selekcijski diferencijal sd = x_2 — x_1 . Rezultat selekcije je razlika x_3 i x_1 a ostvaruje se kao dio selekcijskog diferencijala koji se prenosi na generaciju potomaka i ovisi o visini heritabiliteta. Na osnovu ovih spoznaja moguće je selekcijom povećavati proizvodne vrijednosti na osobinama koje imaju heritabilitet veći od nule. Provedbom selekcije napredak u populaciji u tom sistemu selekcije osigurava se izborom roditelja za slijedeću generaciju s najvišim vrijednostima za određene osobine.

Provedbom naznačenih postupaka mijenja se frekvencija gena u populaciji, a rezultat selekcije je upravo posljedica ove promjene (frekvencije gena). Promjene frekvencije gena objasnio je i izračunao Falconer.

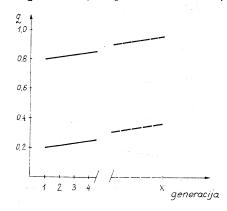

U osnovi opisanį postupak selekcije ima za posljedicu dva tipa promjene frekvencije gena. Svakį od ova dva tipa promjene frekvencije gena ima niz mogućih varijanti, alį završni efekti mogu se podijeliti samo na dva osnovna tipa promjena. Upravo iz različitosti ova dva tipa promjena proizašlo je saznanje da klasična selekcija, odnosno selekcija koja napredak osigurava ostvarenjem selekcionog diferencijala, ne može optimalno iskoristiti mogući genetički potencijal. Ovakvu tvrdnju dokazuje spoznaja o promjeni frekvencije gena.

Učešće nekog gena u populacij, a u odnosu na drugi alel, označava se s q, a njegova promjena s \triangle q.

 Prv_i tip promjena frekvencije gena, imamo kada se za roditelje slijedeće generacije izabiru homozigoti, jer se pomoću homozigotnosti ostvaruje selekcijski diferencijal. U ovom slučaju \triangle q ovisi od selekcijskog pritiska

i od frekvencije q u populaciji (
$$\triangle$$
 q = $\frac{1}{2}$ sq (1—q) $\frac{1}{1-sq}$).

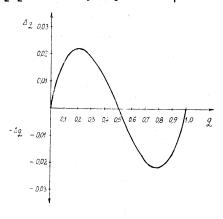
Grafikon 2 — Vrijednost Δ q ovisno o učešću gena q u populaciji, ako je selekcija protivu A_2 , a najviše proizvodne vrijednosti imaju roditelji A_1A_1 uz selekcijski pritisak s=0,2



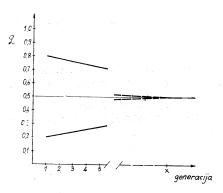
Grafikon dva pokazuje da je visina promjene frekvencije gena po vrijednosti različita, ali uvijek istog predznaka, odnosno, konstantno se mijenja promjena frekvencije u jednom smjeru. U tom slučaju selekcijom na selekcijski diferencijal mogu se postići maksimalni rezultati.

Ako se ovakve promjene promatraju kroz više generacija tada tok promjena ima smjer kretanja kako to pokazuje grafikon broj 3.

Kako je na grafikonu 3 vidljivo, bez obzira koja je frekvencija gena u populaciji, selekcija vod_i populacij_i u kojoj raste učešće optimalno poželjnih genotipova.


Grafikon 3 — Promjena frekvencije gena kroz generacije uz selekciju protivu gena A_2 i selekcijski pritisak od s = 0,2.

Promjene imaju međutim, drugačiji tok ako su proizvodno najvrednije životinje heterozigoti, te se selekcijski diferencijal osigurava eliminacijom homozigotnih jedinki. Tada imamo promjenu frekvencije gena \triangle q


(
$$\triangle q = \frac{pq~(s_1p - s_2q)}{1 - s_1p^2 - s_2q^2}$$
) kako to prikazuje slijedeći grafikon.

Grafikon 4 — Veličina promjene frekvencije gena (\triangle q) u ovisnosti o frekvenciji gena u populaciji uz selekciju protivu genotipova A_1 A_1 i A_2A_2 uz selekcijski pritisak s_1 i $s_2=0,2$

Iz grafikona 4 je vidljivo da izborom heterozigota promjena frekvencije gena ima različiti predznak, a kod stanja populacije $\mathbf{q}=0.5$ do promjene ne dolazi, pa se daljnjom selekcijom ne dobiva napredak u populaciji što pokazuje i slijedeći grafikon.

Grafikon 5 — Promjene frekvencije gena kroz generacije ako se selekcija obavlja protivu A_1A_1 i A_2A_2 a selekcijski diferencijal se ostvaruje izborom A_1A_2 , uz selekcijski pritisak s_1 i $s_2=0,2$

Prikaz na grafikonu pet pokazuje da u populaciji dolazi do frekvencije gena q=0.5 i ova frekvencija se dalje ne mijenja. Najvažnija je posljedica te činjenice da se kod takvog stanja populacije ne mogu iskoristiti heterozis efekti koji su posljedica heterozigotnosti. Teorijski dokaz za ovakvu tvrdnju proizlazi iz činjenice da je heterozis efekt jednak He = Σ dy², a heterozis efekt samo jednog gena He = dy². U situaciji prikazanoj na grafikonu 5 »y« se konstantno smanjuje jer je »y« razlika u frekvenciji gena između dvije linije.

Pojava neterozigota u populaciji određena je odnosom genotirova po formuli $(p+q)^2=1$, a učešće heterozigota u populaciji iznosi 2pq. U slučaju da se sparuju dvije homozogotne linije tada je $2pq=100^{\circ}/_{0}$, a klasična selekcija dovodi do q=0,5 uz daljnji $\triangle q=0$, odnosno klasičnom se selekcijom 2pq u populaciji zadržava na svega $50^{\circ}/_{0}$.

Prema tome, teorijski je razjašnjeno zašto je selekcija kojom se napredak osigurava ostvarivanjem selekcijskog diferencijala ograničena u iskorištavanju heterozis efekata.

Međutim, potrebno je dati i odgovor na pitanje da li se i kada izborom heterozigota osigurava selekcijski diferencijal.

4. GENOMSKA OSNOVA HETEROZISA

Za naše analiziranje problema važna je genomska osnova heterozisa, jer se na ovoj osnovi pojavljuje heterozigot kao proizvodno najvrednija jedinka.

Objašnjenje genetičke osnove heterozisa dao je u studiji literature o heterozisu Bowmana općenito je prihvaćena podjela izvorišta heterozisa načinjena po Mc Key-u.

Prema Mc Key-u genomski heterozis može se podijeliti na a) alelni i b) nealelni.

4.1. Alelni heterozis

Odnos alelnog para gena definira koeficijent K po formuli $K = \frac{2A_1A_2 - A_1A_1 - A_2A_2}{A_1A_1 - A_2A_2} \ . \ Alelni heterozis pojavljuje se kada je K$

veći od jedan, a pojava je nazvana overdommacija. Teoriju overdominacije postavio je još Hull, ali je njezino puno ekonomsko značenje u svinjogojskoj proizvodnji objašnjeno tek otkrivanjem Hal lokusa (Andresen i sur.).

Svi genski parovi koji imaju koeficijent K veći od jedinice daju heterozigote s višom proizvodnom vrijednošću od bilo kojeg homozigota. U tim slučajevima selekcijski diferencijal ostvaruje se ako se za roditelja slijedeće generacije izabiru heterozigoti. Naravno, ovaj postupak vodi prema frekvenciji gena q = 0,5 (što je vidljivo na grafikonu 5) i vrijednost »y« ne može imati optimalnu veličinu. Kako je heterozis efekt genskog para jednak dy², jasno je da se heterozis efekt uvjetovan overdominacijom ne može iskoristiti klasičnom pasminskom selekcijom u smislu formule R = sd h².

4.2. Nealelni heterozis

Pojavu nealelnog heterozisa (transgresivnog) dobio je već Powers stvarajući hibridnu rajčicu. Slijedeća tabela prikazuje jedan od Powersovih rezultata.

Tabela 1 — Hibridna rajčica dobivena rekombinacijom broja i težine plo-

Roditeljska linija ili hibrid	Broj plodova	Težina ploda gr.	Ukupna proizvodnja grama
P ₁ (uvjetno označeno A ₁ A ₁)	4,4	138	607
$\mathbf{F_1}$ (, , $\mathbf{A_1}\mathbf{A_2}$) and $\mathbf{A_2}$	44,5	55	2.428
P_2 (,, A_2A_2	109,1	17	1.868

Tabela pokazuje da je najveće prinose dao hibrid (heterozigot) iako unutar osobina, broj plodova i težine ploda, efekta heterozignosti nema, a za genski odnos unutar alelnog para koeficijent »K« u oba je slučaja manji od jedinice, što znači da se kod nealelnog heterozisa, heterozis efekt javlja kao interakcija nealelnih gena.

Objašnjavajući mogućnost da heterozigot daje najvišu proizvodnu vrijednost Falconer je na posljednjoj konferenciji o populacionoj genetici ovu mogućnost shematski prikazao objašnjavajuć; pojavu broja potomaka kod laboratorijskih životinja.

Shema u smislu Falconerovog prikaza:

Osobina	A ₁ A ₁	Genotip A ₁ A ₂	A_2A_2
 Vrijednost osobine kao pojave Vrijednost osobine kao 	10	8	6
broja pojava u vremenu 3. Ukupna vrijednost osobine	6	8	10.
u vremenu	60	64	60

U shemi je vidljivo da ukupna vrijednost osobine (osobina 3) ima najvišu vrijednost kao heterozigot.

Na shemi je međutim, vidljivo da je gensk $_{\rm i}$ odnos alelnog para promatran na osobinama 1 i 2 takav da daje koeficijent K=0. Za naše razmatranje važno je da se Falconerovim tumačenjem heterozigot s najvišom vrijednošću za neku osobinu (osobina 3) može pojaviti kod svih vrijednosti koeficijenta K. Na primjer ako je K=1, tada shema izgleda ovako:

Osobina		Genotip		
	A ₁ A		A_1A_2	A_2A_2
in 1. Breach as	10	200	10	6
2. 10 (1987)	6.		10	10
3.	60		100	60

Pojava je moguća čak i kada je K manji od nule, što prikazuje slijedeća shema:

Osobina		Genotip			
		A_1A_1	$\hat{A_1}A_2$	A_2A_2	
1.		2,	5	10	
2.	•	10	5	2	
3.		20	25	20	

Mogućnost pojave heterozigota s najvišom proizvodnom vrijednošću na hipotetičnom primjeru ilustrirao je Cöp. Služeći se njegovim načinom prikaza dajemo slijedeći primjer:

Uzmmo da je rast svinja određen s 10 parova gena i da se ti parovi za liniju A označavaju kao:

Ako je prosječan rast linije A 620 grama i ako svaki A-gen jednako pridonosi tom rastu od 620:20 = 31 gram. Za liniju B kod prirasta od 660 grama pod istim uvjetima svaki B-gen dao bi prirast od 33 grama.

Potomci iz sparivanja A i B linije imati će 10 A-gena i 10 B-gena. Na osnovu aditivnosti AB životinje će prirasti: 10x31 + 10x33 = 640 grama. Ali može postojati efekt temeljen i na ovedominaciji uvjetovan interakcijom, recimo četiri alelna genska para u smislu $A_1B_1=5$ pa će sada prirast b.ti na osnovu aditivnost_i i alelnog heterozisa: 10x31+10x33+4x5=660grama. Ako postoj i nealelni heterozis može postojati recimo interakcija A_{2 i} B₅ i A₅ i B₂ po recimo 10 grama pa će sada ukupn_i prirast na osnovu aditivnog dijela genotipa; heterozisa koji potječe od alelnih parova gena i heterozisa od nealnih gena biti: 10x31 + 10x33 + 4x5 + 2x10 = 680 grama.

Za nas je na temelju iznijetog važan slijedeći zaključak: Veća proizvodna vrijednost heterozigota moguća je kod svih odnosa gena; za slučajeve kada je K manji od nule, kada je vrijednost K jednaka nuli, kao i kada je K jedan i veći od jedan. Ako je K veći od jedan, viša proizvodna vrijednost heterozigota manifestira se kao overdominacija, odnosno interakcija alelnih parova gena. Ako je pak, K manji od jedan ili jedan, tada se viša proizvodna vrijednost heterozigota može manifestirati kao posljedica interakcije nealelnih gena.

5. UTVRĐIVANJE VELIČINE HETEROZISA

Izražavanje heerozis efekta kao sume efekta gena He = sigma dy2 postavljeno je na slijedeći način:

Heterozis efekt F₁ generacije jednak je He = M — Mp. Znači da namje potrebno poznavati prosječnu vrijednost roditeljskih generacija Mp i generacije potomaka (M). Teorijski ove vrijednosti postavljene su za određeni genski par tako da je frekvencija jednoga gena označena s »po drugoga s »q«, a vrijednost genotipova s »a« (»—a«) homozigota, a s »d« heterozigota, te je tada vrijednost heterozisa za taj gen slijedeća:

1. Vrijednost jedne roditeljske linije

$$Mp_1 = a (p-q) + 2dpq$$

2. Vrijednost druge roditeljske linije

$$Mq_1 = a [p-y-(q+q) + 2d [(p-y) (q+y)]$$

 $Mq_1 = a (p-y-q-y) + 2d [pq+y (p-q) - y^2]$
 $Mq_1 = 2 d [pq+q (p-q) - y^2 + a (p-q-2y)]$

3. Prosječna vrijednost roditeljskih linija tada je:

$$\frac{a (p-q) + 2dpq + a (p-q-2y) + 2d [pq + y(p-q) - y^2]}{2}$$

$$Mp = \frac{ap - aq + 2dpq + ap - aq - 2ya + 2dpy + 2dy (p-q) + 2d^2y}{2}$$

$$Mp = \frac{2ap - 2aq + 4dpy - 2ya + 2dy (p-q) - 2dy^2}{2}$$

$$Mp = ap - aq + 2dpy - ay + dy (p-q) - dy^2$$

$$Mp = a (p-q-y) + d [2pq + y(p-q) - dy^2]$$

4. Vrijednost F₁ generacije

$$\begin{array}{l} M & = a \; [p \; (p - y)] \; + \; d \; [2pq \; + \; y \; (p - y)] \; - \; a \; [q \; (q \; + \; y)] \\ M & = a \; (p^2 - py) \; - \; a \; (q^2 \; + \; qy) \; + \; d \; [2pq \; + \; y \; (p - q)] \\ M & = a \; (p - q - y) \; + \; d \; [2pq \; + \; y \; (p - q)] \\ & F_1 & & & & \end{array}$$

5. Heterozis efekt jednog genskog para:

He = M — M

$$f_1$$
 f_1 p
He = a (p—q—y) + d [2py + y (p—y)] — a { (p—q—y) + d [2py + y (p—q)] — dy² } = dy²

Prema izvodu znači da je heterozis efekt jednog genskog para jednak dy², a suma efekata svih gena Σ dy².

Andresen i suradnici na svinjama su s poznatim Hal genotipom dobili vrijednosti za Hal lokus dy² = 0,85 am za dužinu zaklanih polovica. Odnosno heterozis efekt ovoga lokusa iznosio je 0,85 cm i jedinke proizvedene sparivanjem homozigotnih životinja imale su duže polovice od prosjeka roditeljskih jedinki za 0,85 cm.

Kako ekonomski najvažnije osobine određuje genotip kojega čini veliki broj genskih parova s različito velikim koeficijentom K, te uz alelnu i nealelnu interakciju, još uvijek naše je saznanje nedovoljno da bi za svaku osobinu te za svaki genski par znali izračunati heterozis efekt na prikazani način. Zato je za praktično računanje heterozis efekata usvojena formula:

$$He = \frac{F_1 - P}{-}$$

$$= \frac{100}{P}$$
 x 100, gdje je He = heterozis efekt izražen postotkom

 F_1 = prosječna vrijednost F_1 generacije

Na osnovi cve formule izračunani su heterozis efekti po pojedinim osobinama te za razne tipove sparivanja linija.

U svinjogojstvu postoje dvije grupe osobina na kojima heterozis ima veliko ekonomsko značenje.

Prvu grupu osobina čine:

- 1. Broj prasadi po leglu i po godini,
- 2. Dužina života rasplodnih jedinki,
- 3. Preživljavanje(% smrtnosti).

Za ovu grupu osobina dobiven_i su rezultati koji pokazuju heterozis efekt od 8 do 15%.

Drugu grupu osobina čine:

- 1. Dnevni prirast,
- 2. Konvezija hrane,
- 3. Mesnatost.

Za ovu grupu

Heterozis efekt za ovu grupu osobina iznosi od 3 do 5%.

Veličina heterozisa za ove dvije grupe osobina toliko je ekonomski značajna da zahtijeva pristupanje iskorištavanju heterozis efekta u svinjogojskoj proizvodnji.

6. SISTEM SPARIVANJA, KOJIM SE OPTIMALNO MOŽE ISKORISTITI HETEROZIS

Heterozis efekt za ekonomske najvažnije osobine u svinjogojstvu ne može se iskoristiti samo u jednoj generaciji. Tako se heterozis efekt_i za dnevni prirast, konverziju hrane i kvaliteta na liniji klanja mogu iskoristiti na tovnom materijalu, a osobine vezane za plodnost te dugi vijek iskorištavanja životinja na roditeljima tovnog materijala. Iz ovih razloga ukupni heterozis efekt dijeli se na tri frakcije i to: individualni heterozis koji se

označava s He¹, heterozis za osobine majke He i heterozis za osobine oca označen s He¹. Zbroj ove tr¡ frakcije ukupni je heterozis, i on se raznim sistemima i programima sparivanja linija iskorištava u raznom postotku. Koliki se dio heteroziza iskorištava pojedinim sistemima sparivanja prikazuje slijedeća tabe a priređena po Cöp-u.

P = prosječna vrijednost roditeljskih generacija.

Tabela 2 — Dio mogućeg iskorištavanja individualnog heterozisa (He¹), heterozisa za osobine majke (He^m) i heterozisa za osobine oca (He⁰) u pojedinim sistemima sparivanja

Sistem sparivanja	1 He'	m He	He
dvolinijski	1		0
trolinijski	1	1	
četverolinijski	1	1	1
izmjenični	2/3	2/3	0
rotacijski — 3 linije	6/7	9/7	0
rotacijski — 4 linije	14/15	14/15	0

Iz prikaza u tabeli 2 vidljivo je da je kompletni heterozis moguće iskoristiti samo sistemom sparivanja četiri linije. Ostali sistemi ili nepotpuno iskorištavaju pojedine frakcije heterozisa ili neke frakcije ne mogu uopće iskoristiti.

Optimalan sistem sparivanja četiriju linija, prikazan kroz četiri generacije daje slijedeća shema:

Shematski prikaz sparivanja četiri linije:

Generacije Sparivanje

Preci pradjedova

Pradjedovi

Djedovi

Roditelji

Iz sheme je moguće zaključiti da se unutar generacije označene kao preci pradjedova (čista linija) obavlja selekcija na kvalitetu linije, te ova populacija osigurava remont za pradjedove, koji se poslije usmjereno sparuju bez daljnje selekcije (ali služe kao materijal na kojem se obavlja procjena uzgojnih vrijednosti čistih linija). Da bi se isplatilo ulagati u stvaranje čistih linija cijeli sistem mora biti takav, da osigurava dovoljno veliko tržište za proizvodnju čistih linija, a to znači plasman jedinki za remont pradjedova.

Ako sistem ne bi osiguravao tržište za iskorištavanje dovoljno velikog broja jedinki čistih linija, tada ukupni rad na stvaranju i unapređivanju linija mora biti fiianciran već stvorenom akumulacijom. Ujedno ako je sistem malen, te se od populacije čistih linija može dalje koristiti samo maleni dio prozvedenog materijala (populacija čistih linija mora biti dovolj-

no velika da se na njoj mogu provoditi potrebne selekcijske metode), tada materijal linija može biti toliko skup da ne može konkurirati klasičnoj selekciji. Problem veličine populacije na kojoj se provodi hibridizacija zato je do posebne važnosti, pa na slijedećoj shemi prikazujemo potreban broj jedinki za optimalni sistem sparivanja (četverolinijski) uz pretpostavku proizvodnje 2,4 milijuna tovljenika.

Broj jedinki potreban za remontiranje pradjedova-godišnje

Broj jedinki pradjedova godišnje potreban za remontiranje roditelja

Broj roditelja

Broj tovljenika

Da bi se normalno odvijala proizvodnja od 2,4 milijuna tovljenika potrebno je godišnje za remont osigurati:

	Linija	Broj jedinki	Postotak
Nerastova	AB	1.875	4,58
Nerastova	C	60	0,15
Krmača	D	3.000	7,33
Krmača	CD	36.000	87,94
Ukupno		40.935	100,00

Podaci pokazuju, da ako se žel_i da cijeli sistem hibridizacije teče normalno, godišnje treba proizvoditi 40.935 naznačenih jedinki za rasplod, a za proizvodnju 2,4 mil. tovljenika. U ukupnoj vrijednosti jedinke CD čine čak oko 88 %, a ostale tek 4.935 jedinki ili oko 12 %.

Iz sheme potrebiog broja jedinki jasno proizlazi da je uvođenje hibridizacije moguće samo uz specijalizaciju unutar svinjogojske proizvodnje. Niti najveće naše farme od 100.000 tovljenika ne mogu bit; uzgojne cjeline jer je i za 2,4 milijuna tovljenika potreban vrlo malen broj jedinki čistih linija (0,1; 5; 3; 150; 0,7; 30; 10; 500 ili ukupno 649).

Prema tome optimalno iskorištavanje heterozis efekata zahtijeva stvaranje sistema u svinjogojskoj proizvodnji unutar kojega će postojati specijalizirane farme.

7. SPECIJALIZACIJA UNUTAR SVINJOGOJSKE PROIZVODNJE KOJU ZAHTIJEVA PROVOĐENJE HIBRIDIZACIJE

Uvođenje hibridizacije zahtijeva podjelu poslova u stvaranju jedinstvenog sistema kojim će se optimalno iskorištavati heterozis efekti. Optimalnu je podjelu moguće obaviti organiziranjem četiri faze rada, koje se prema uvjetima u određenim dijelovima mogu i spajati.

Osnovne četiri faze bile bi:

1. Prva faza

Proizvodnja: AB nerastova

C nerastova

D nazimica

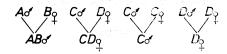
(moguće i CD nazimica)

2. Druga faza:

Proizvodnja: CD nazimica

3. Treća faza:

Proizvodnja ABCD podmlatka za tov (moguće i CD nazimice)


4. Četvrta faza:

Proizvodnja: Tov od 22 do 105 kg

7.1. Prva faza

Reprocentar za proizvodnju linija

Reprocentar bi proizvodio linije prema slijedećoj shemi:

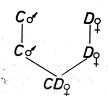
Kako je u šestom poglavlju vidljivo, za proizvodnju 2,4 milijuna tovljenika potrebno je svega 649 jedinki čistih linija. Ovo je još uvijek nedovoljan broj jedinki čistih linija za samostalnu selekciju svih linija. Radi toga reprocentar morat će ući u suradnju s uzgojnom organizacijom s kojom će zajedno moći držati i proizvoditi potreban rasplodni materijal.

Reprocentar će na domaće tržište plasirati slijedeći rasplodni materijal:

Nerastove AB

c

Nazimice CD


D

Reprocentar mora proizvoditi rasplodni materijal takve kvalitete kojom će se moći postići ekonomski efekti naznačeni u drugom poglavlju.

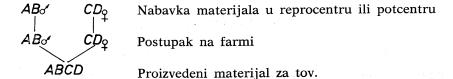
7.2. Druga faza

Potcentri za proizvodnju ženske linije

Osnovni sistem sparivanja u takvom potcentru bi bio:

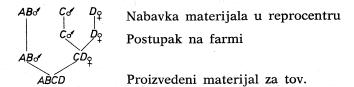
Nabavka materijala od reprocentra

Postupak u rotcentru.

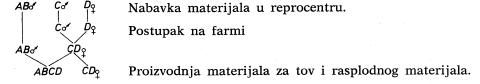

Proizvod za korištenje kod držaoca potcentra ili za plasman na tržište od strane potcentra.

Iz sheme proizlazi da potceitar dobiva djedove (C nerastovi i D krmače), a može na tržište plasirati roditeljsku liniju CD. Ovakav potcentar može biti (i kod nas će vjerojatno to biti češća varijanta) u sastavu postojećih farmi, koje će za vlastite porebe proizvoditi roditeljsku liniju, pa i roditeljsku liniju za tržište. U cijelom sistemu za godišnji redovni remont CD jedinki treba 36.000, što govori da bi uz proizvodnju CD jedinki u reprocentru još oko 5 — 8 organizacija moglo imati potcentre. Prednost CD jedinki na tržištu biti će velika, jer se pomoću nje može proizvesti više prasadi godišnje po krmači; krmača proizvodi uz niski postotak remonta (ne više od 30%), a daje potomstvo koje brzo raste, dobro koristi hranu i ima visoku vrijednost na liniji klanja.

7.3. Treća faza


Proizvodnja materijala za tov

Osnovni sistem sparivanja u ovakvom uzgoju bio bi:



Uz ovu osnovnu varijantu moguće je trećoj fazi pripojiti drugu. Tada bi treća faza imala podvarijante kako to pokazuje slijedeća shema:

Shematski prikaz proizvodnje treće faze s proizvodnjom CD nazimica:

Moguće je da se u okviru treće faze proizvode i CD jedinke za tržište. Tada bi shema sparivanja bila slijedeća:

Prednosti treće faze u ovome sistemu su u tome, što će farme uključene u sistem hibridizacije proizvoditi materijal za tov u rentabilnijem procesu uz veću proizvodnju jedinki po krmači, uz manji broj krmača i uz manje godišnje potrebe nazimica za remont. Proizvedeni će materijal za tov imati visoku kvalitetu, jer će brzo rasti uz dobru konverziju hrane, a postizat će višu cijenu na liniji klanja.

7.4 Četvrta faza

Faza tova od 22 do 105 kg

U ovoj fazi bit će tov rentabilniji radi mogućeg većeg broja turnusa (viši dnevni prirast), manjeg utroška hrane (bolja konverzija) te većeg prihoda (viši kvalitet na liniji klanja). Prema tome tovlišta će biti zainteresirana za nabavku hibridnog podmlatka za tov.

Navedene četiri faze biološke su i tehnološke cjeline, a svaka zahvaljujući iskorištavanju heterozis efekata, proizvodi jedinke čijom će se upotrebom povećavati efikasnost proizvodnje u odnosu na korištenje klasičnih metoda uzgoja u svinjogojstvu.

8. ZAKLJUČCI

Na osnovu iznijetog moguće je donijeti zaključke koji trebaju biti osnova za odluku o uvođenju hibridizacije i izrad_i programa hibridizacije za svinjogojsku proizvodnju.

- 1. Klasična pasminska selekcija na selekcijski diferencijal i križanje pasmina ne omogućava maksimalno iskorištavanje heterozisa.
- 2. Maksimalno visoke proizvodne efekte na ekonomski najznačajnijim osobinama moguće je postići iskorištavanjem heterozisa uvođenjem hibridizacije u svinjogojsku proizvodnju.
- 3. Optimalno iskorištavanje heterozisa moguće je postići metodom četverolinijskog sparivanja.
- 4. Cetverolinijsk_i sistem sparivanja zahtijeva provođenje specijalizacije unutar svinjogojske proizvodnje.

LITERATURA

- Andresen, E., P. Jensen and Patricia Barton-Gade., 1981., The porcine Hal locus: A major locus exhibiting overdominance. Jour. of Anim. Breeding and Genetics vol. 98 (3) 170 — 173.
- 2. Bowman, J. C., 1959., Selection for heterozis: Animal Breeding Abstracts 27, 261 273.
- 3. Cöp, W. A. G., Kruisingen in de varkenshouderij: achtergronden en perspectieven. Publikate A—312 van het Instituut voor, Vecteelkundeg. Onderzock te Zeist.

- 4. Falconer, D. S., 1977.: Introduction to quantitive genetics, Legman
- 5. Falconer, D. S., 1977.: Why are mice the size they are? Proceedings of the international conference on quantitative genetics. The Iowa State University Press/Ames.
- 6. Hull, F. H., 1952.: Recurrat selection and overdominance, Heterozis. Ames. Iowa State College Press.
- 7. Johansson I., 1962.: Genetic Aspects of Dairy Cattle Breeding Oliver and Boyd LTD London.
- 8. Lush J. L. 1945.: Animal Breeding Plans. Iowa State College Press. Ames, Iowa.
- 9. Mc Key J., 1974.: Genetic and evolutionary principles of heterozis. Proc. 7 th Congr. Eucorpia, Budapest.
- 10. Powers L., 1950.: Determining scales and the use of transformatious in studies on weight per locule of tomato fruit. Biometrics, 6. 146 163.