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Directional Remote Sensing

Tao CHENG – Liuzhou1

ABSTRACT. Concepts of directional remote sensing are put forward based on two-di-
mensional compressive sensing. Very little measured data are required to acquire and 
reconstruct change areas in directional remote sensing. The measured data in one-di-
mensional compressive sensing not only keep the energy of a sparse signal, but also 
inherit the sparse signal’s direction information. However, direction information 
can’t be applied to reconstruction and test of a sparse signal in one-dimensional 
compression sensing. The two-dimensional compressive sensing model is proposed 
based on sparse features of change areas in remote sensing. Moreover, a sparse signal 
reconstruction algorithm (two-step reconstruction method, 2SRM) is proposed based 
on two-dimensional compressive sensing by use of the energy and direction informa-
tion. The theoretical analysis and experimental results show the signal reconstruction 
ability of 2SRM is stronger. SNR (Signal to Noise Ratio) and PSNR (Peak Signal to 
Noise Ratio) of 2SRM increase by 16.57 dB as compared with a single traditional 
reconstruction algorithm at most.

Keywords: directional remote sensing, change detection, two-dimensional compressive 
sensing (2DCS), structure prior information, two-step reconstruction met-
hod (2SRM).

1. Introduction

It’s very difficult to sample change area data directionally because of uncertainty 
and unpredictability of them. Conventional data collecting of entire zone leads to 
repeat work of no change areas so that capital and resource are wasted (Li 2011).

According to the conventional Shannon’s sampling theorem, the sampling rate 
should be more than twice the Nyquist sampling rate. Compressive sensing can 
surpass the limits of sampling theory. The sampling rate is much lower than that 
needed in Shannon’s sampling theorem by exploring the compressibility or the 
sparsity of the signal. (1) is the compressive sensing model. If the signal x is spar-
se, it can be recovered accurately by (1):

 min x y= x
0
s t. . F , (1)
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where x( , , )x xN
T

1  , xRN ; l0 norm of x is || ||x 0 , which is simply the num-
ber of non-zero elements in x; y is the measured data, yRM ; F is a measure-
ment matrix, F∈ ×RM N , M < N; min|| ||x 0  is objective function; y xF  is con-
straint function.

Change areas of remote sensing images are generally very sparse. Hence, compre-
ssive sensing can be used for change detection by virtue of the sparsity hypothesis 
of change areas. The difference between remote sensing images in different tem-
poral phases is the change area in an ideal condition (Cevher et al. 2008).

2. Two-dimensional compressive sensing

Natural images and change areas have good prior information such as spatio-tem-
poral continuity, structure, gradient and correlation. Adjacent columns of an ima-
ge are similar, although grey values change considerably in different zones. Ener-
gies of adjacent column vectors are close and their correlation coefficients are 
close to 1 (Cheng 2014). If prior information is used fully, the accuracy and effi-
ciency of sparse signal reconstruction can be improved and enhanced.

However, current compressive sensing are one-dimensional (Cheng et al. 2013). The 
signal x and the measured data y are one-dimensional, too. A two-dimensional signal 
like an image has to be transformed into a one-dimensional signal in one-dimensional 
compressive sensing. Thus structure priori information of images is destroyed. Hence 
prior information of a two-dimensional signal can barely be used in one-dimensional 
compressive sensing. Only the minimum total variation method (TV) uses the gra-
dient information of an image in its objective function (Rong et al. 2011).

Push broom imaging by a linear array of detectors is main data collection techno-
logy in remote sensing. Hence prior information of images is retained when natu-
ral images are collected based on linear array push-broom mode. Set the length of 
a scanning strip equal to L. If the matrix X ( X ∈ ×RN L ) represents a scanning 
strip, the scan line of a satellite or an aircraft can only acquire a column of X once. 
The compressive sensing model of remote sensing is represented in (2):

 min|| || , [ , ]x Y Xj j L0 1s.t. = ∈F , (2)

where Y∈ ×RM L , xj is a column vector of X, yj is a column vector of Y.

Although remote sensing images Xt1 in temporal t1 and Xt2 in temporal t2 are not 
sparse, change areas DX is sparse, DX = Xt2 – Xt1. The remote sensing image xjt1 
in temporal t1 is acquired by traditional methods; the measured data yjt1 in tem-
poral t1 and yjt2 in temporal t2 are acquired by the compressive sensing method. 
Dxj can be reconstructed by (1), Dyj = yjt2 – yjt1. Then Xt2 = Xt1 + DX.

It has been demonstrated that change area can be reconstructed losslessly by 2 ti-
mes as much as its data based on the difference of unlike temporal CS measurement 
values (Duarte-Carvajalino and Sapiro 2009). The amount of measured data based 
on compressive sensing is almost equal to the amount of the acquired data of dire-
ctional remote sensing based on known change areas. Therefore, the remote sensing 
and change detection method is called directional remote sensing in this paper.
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3. Feature analysis of measured data ΔY, change area ΔX, 
  reconstruction result ΔXR and corresponding transform domain 
  coefficient ΔC and ΔCR based on two-dimensional compressed sensing

Fig. 1 is the difference image of Sardinia island between September 1995 and July 
1996. The remote sensing image represents flooded area around Mulargia Lake of 
Sardinia Island in Italy in July 1996 (International Scientific Data Service Plat-
form 2015). Grey values of black zones are zero in Fig. 1. It’s. The image is DX, 
and its size is 256×351.

Gaussian measurement matrix F in this paper is used, F∈ ×R128 256 . Every  column 
Dxj of DX is reconstructed by OMP [Orthogonal Matching Pursuit (Donoho et al. 
2012)] column by column. DXR is the reconstructed result, as shown in Fig. 2.

The x axis of Fig. 2 and Fig. 3 represents the column number j ( j[ , ]1 351 ) of 
the gray image DX in Fig. 1. DX is a matrix in nature, too. In mathematics, physi-
cs and engineering, a vector has length and direction. A vector is frequently re-
presented by a line segment with a definite direction, or graphically as an arrow, 
connecting an initial point (the origin of a Euclidean space) with a terminal point. 
The length of the vector is the distance between the two points, i.e. the norm of 
the vector. And the direction refers to the direction of displacement from the 

Fig. 1. Difference image of Sardinia island between September 1995 and July 1996.
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initial point to the terminal point (Heinbockel 2001). In signal fields, energy is a 
concept widely used, i.e., square of norm of a vector.

The curves in Fig. 2 (a) represent the energy of every column of DY, DX and DXR, 
and are called energy curves in this paper. The energy of every column of DY, DX 
and DXR in Fig. 2 (a) are normalized in order to contrast with Fig. 2 (b), i.e. all 
columns are divided by || ||maxDy 2 . || ||maxDy 2  is the maximum of all || ||Dy j 2 . The 
curves in Fig. 2 (b) represent the correlation coefficient m of adjacent columns of 
DY, DX and DXR, i.e. the cosine of the included angle between two directions of 
adjacent column vectors. And the curves of Fig. 2 (b) are called direction curves 
in this paper. Fig. 2 (c) is the reconstructed gray image of the change area. Zoom 
processing of Fig. 2 (c) is done in order that the length of Fig 2 (a), (b) and (c) is 
same.

Fig. 2.	 Analysis	curves	of	ΔX,	ΔC,	ΔXR,	ΔCR	and	ΔY	and	gray image. (a) Energy; (b) 
Correlation coefficient between 2 columns; (c) Reconstructed difference image by 
OMP+null.
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3.1. Energy feature analysis of ΔX and ΔY

The curves DX and DY in Fig. 2 (a) are similar because the Gaussian matrix has 
good Restricted isometry property (RIP) and good universality. RIP is shown in 
(3). Therefore, the reconstruction effect of DXR can be judged by use of the energy 
curve analysis of DY and DXR:

( )|| || ( )|| || || || || || (min max1 2 2 2 2− ≤ ≤ = ≤σ λ λK I
T

I I I I
Tx x x xF F F F F FII K)|| || ( )|| ||x x2 21≤ +σ , (3)

where lmin (FI
T FI) and lmax (FI

T FI) denote the minimal and maximal eigenvalues 
of FI

T FI, respectively (Candes and Tao 2005, Dai and Milenkovic 2009). FI con-
sists of the columns of F with indices j    I; And xI is composed of the entries of 
x indexed by j    I. I N⊂{ }1,..., . σK ∈[ , )0 1 .

3.2. Direction feature analysis of ΔX and ΔY

Energy and direction are two basic properties of a vector. Direction information can 
be measured well by the correlation coefficient m between adjacent columns according 
to RCP (Restricted Conformal Property) (Cheng 2014). Measurements can retain 
approximately not only energies but also directions of signals in compressive sensing 
because of RIP and RCP. Gaussian matrix has good Restricted Conformal Property. 
Two curves DX and DY in Fig 2 (b) are almost same. Fig. 2 (b) shows that DY com-
pletely inherits the direction information of DX. Therefore, the reconstruction effect 
of DXR can be scaled by use of the correlation analysis between DY and DXR.

3.3. Energy and direction features analysis of ΔXR

The curves DXR in Fig. 2 (a) and (b) are the experimental results using OMP to 
reconstruct DX. After checking, those zones of the curves DXR and DX outside the 
overlaps are those columns which were reconstructed unsuccessfully. The partial 
curves DXR and DX which are outside the overlaps match badly. Zones outside the 
overlaps in Fig. 2 (b) are more easily recognizable than Fig. 2 (a). The direction 
curve DY is more suitable for testing the reconstruction effect of DXR than the 
energy curve DY in Fig. 2 based on RCP, RIP and the experimental results.

3.4. Energy and direction features analysis of ΔC and ΔCR

The curves DC and DX are same completely in Fig. 2 and Fig. 3, DCR and 
DXR  completely overlap, where DX = YDC and DXR = YDCR. The sparse 
 transform base Y in Fig. 2 and Fig. 3 is discrete cosine transform (DCT). Y is 
an  orthogonal matrix. The orthogonal matrix can preserve the length and di-
rection (i.e. the angle between two vectors) of a vector, ||Dxj||2 = ||Dcj||2 and 
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the jth column and the (j+1)th column of DX, i.e. the correlation coefficient μ.
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4. Reconstruction algorithms of the change area based 
  on two-dimensional compressive sensing

To facilitate the presentation, the zones outside overlaps of the curves of DXR and 
DX are called uncertain areas, otherwise certain areas.

4.1. Combinations of reconstruction algorithms in certain areas 
and uncertain areas

If a signal is sparse enough, the reconstruction effect of l0 algorithms [for example 
OMP, Stagewise orthogonal matching pursuit (StOMP (Donoho et al. 2012)), 

Fig. 3.	 Analysis	curves	of	ΔX,	ΔC,	ΔXR,	ΔCR	and	ΔY	and	gray image. (a) Energy; (b) Corre-
lation coefficient between 2 columns; (c) Reconstructed difference image by OMP+TV.
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Sub space pursuit (SP (Dai and Milenkovic 2009)) and Compressive sampling mat-
ching pursuit (CoSaMP (Needell and Tropp 2009)) etc.] is better than l1 algorit-
hms [for example Basis Pursuit (BP), interior point method, iterative threshold 
method and gradient projection (GPSR) etc.] and TV algorithm. l0 algorithms are 
more suitable to certain areas and can accurately reconstruct certain areas. Altho-
ugh the reconstruction ability of StOMP, SP and CoSaMP is better than OMP, the 
signal’s sparse must be known in advance. It is almost impossible in practice. 
Hence OMP is used to reconstruct certain areas in this paper.

The sparse is high in uncertain areas. Uncertain areas can be regarded as com-
pressible signals. Good reconstruction effect can be obtained by use of l0 or l1 al-
gorithm after transforming uncertain areas by DCT or Discrete Fourier Tran-
sform (DFT). The reconstruction matrix is FY  now. Both DFT and DCT are 
widely used. But DFT contains complex numbers and the complex numbers is not 
easy to display in images. Therefore, DCT is used in this paper.

Although interior point method, iterative threshold method and GPSR are 
 faster than BP, BP has the better reconstruction ability. Hence BP is used in 
this paper. TV algorithm can use the gray gradient to get better reconstruction 
effect for compressible signals than l0 and l1 algorithms. And it’s unnecessary 
to do sparse transformation in TV. Therefore, TV is suitable for compressible 
 signals.

In order to compare reconstruction results of different combinations based on 
reconstruction algorithms, the combinations of reconstruction algorithms in cer-
tain areas and uncertain areas in this paper include OMP+null, OMP+OMP, 
OMP+BP, TV+null and OMP+TV. That on the left of “+” is the reconstruction 
algorithm adopted by certain areas while that on the right of “+” is the recon-
struction algorithm adopted by uncertain areas. “Null” means that the same re-
construction algorithm which is on the left of “+” is adopted in certain areas and 
uncertain areas.

4.2. The criteria to distinguish certain areas and perfect reconstruction 
of a signal

Places where the curves DXR and DY do not tally in Fig. 2 (a) and (b) are uncer-
tain areas. As shown in Fig. 2 (a) and (b), the deviation between direction curves 
DXR and DY in Fig. 2 (b) is clearer and larger than the corresponding energy 
curves DXR and DY in Fig. 2 (a). Hence the deviation of direction curves can be 
taken regard as the criteria to discriminate certain areas and uncertain areas. 
| |/ %µ µ µ

  x y yj j j
− <9  in certain areas of Fig. 2 (b).

FI of uncertain areas is bigger so that its RIP is good. | |/ %µ µ µ
  x y yj j j

− <5  in 
uncertain areas of Fig. 2 (b). 7% between 5% and 9% is an empirical value  after a 
lot of experiments. 7% is taken as the threshold value whether the sparse signal 
was reconstructed successfully in this paper. If the empirical value is  larger, too 
many certain areas would be misjudged as uncertain areas. If the empirical value 
is smaller, too many uncertain areas would be misjudged as certain areas.
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4.3. Two step reconstruction method for 2D Compressive Sensing

According to the above idea, the two-dimensional compressive sensing recon-
struction algorithm is put forward, i.e. two step reconstruction method for 
2D Compressive Sensing (2SRM). First of all, reconstruct every column Dxj of 
the two-dimensional sparse signal DX based on min|| ||D D Dx y xj j j0 s.t. F  
column by column by OMP (or other l0 reconstruction algorithms), and obtain 
DXR. Secondly, divide columns of DXR into certain areas and uncertain areas 
 according to | |/ %µ µ µ

  x y yj j j
− <7 ; Thirdly, reconstruct Dcj column by 

 column by use of OMP (or other l1 reconstruction algorithms) based on 
min|| ||c y cj j j0 s.t. D D= ′FY  or by use of BP (or other l0 reconstruction algo-
rithms) based on min|| ||c y cj j j1 s.t. D D= ′FY . Then calculate D Dx cRj RjY  
to obtain DXR. Or reconstruct every column Dxj of the  two-dimensional sparse 
signal DX based on min|| ||D D Dx y xj TV j js.t. F  column by column by TV to 
obtain DXR. The specific steps are shown in algo rithm 1.

Algorithm 1 (2SRM)
Input: F, DY

Step 1:
1) Reconstruct Dxj of DX column by column by use of OMP (or other l0 algo-

rithms) based on min|| ||D D Dx y xj j j0 s.t. F .
2) If | |/ %µ µ µ

  x y yRj j j
− >7  between neighbor columns of DXR and DY, these 

columns belong to uncertain areas, otherwise on the contrary.

Step 2:
Initialization: J= { j indices corresponding to those columns of indeterminate 
 areas of DX}, jmax corresponding to the last column of DY or DX.
Iteration: At the jth iteration, go through the following steps.
1) If j    J, reconstruct Dcj column by column by use of OMP (or other l0 algo-

rithms) based on min|| ||c y cj j j0 s.t. D D= ′FY  or by use of BP (or other l1 
algorithms) based on min|| ||D D Dc y cj j j1 s.t. = ′FY  and set D Dx cRj RjY ; 
Or reconstruct Dxj column by column by use of TV based on 
min|| ||D D Dx y xj TV j js.t. F .

2) If j  =  jmax, quit the iteration.
Output: The reconstructed signal DXR.

4.4. Experimental results analysis of 2SRM

NR and PSNR of five 2SRM such as OMP+null, OMP+OMP, OMP+BP, TV+nu-
ll and OMP+TV are shown in Table 1. SNR and PSNR of OMP+TV increase by 
16.57 dB compared to OMP+null. Those zones in the two ellipses of Fig. 2 (c) are 
very vague, while those corresponding zones of Fig. 3 (c) are clear. The curves DXR 
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and DX of the former match poorly in Fig. 2 (a) and (b), the curves DXR and DX 
of the latter are almost identical in Fig. 3 (a) and (b).

SNR and PSNR of OMP+OMP decrease by 2.5292 dB as compared with  OMP+BP, 
while OMP+OMP increases by 6.5379 dB as compared with OMP+null. Because 
OMP can completely reconstruct certain areas, so SNR and PSNR of OMP+TV 
increased by about 1.7353 dB as compared with TV+null. The reason that the 
improvement of OMP+TV is more than TV+null lies in certain areas. OMP can 
reconstruct completely certain areas, while TV can’t do. Although the amount of 
columns in certain areas is much more than in uncertain areas, the energy in 
certain areas is much less than in uncertain areas. OMP+TV is the best combi-
nation of all combinations in Table 1. Reconstruction ability of TV is very strong 
in reconstructing the direction information of a signal, as shown in Fig. 3 (b). The 
direction curve DXR tallies well with DX in Fig. 3 (b), while the energy curve DXR 
tallies badly in Fig. 3 (a). The reconstruction effect can be improved if the curve 

DXR in uncertain areas is normalized by D
D

D
Dx

x
x

yRj
Rj

Rj
j=

|| ||
|| ||

2
2  in OMP+TV. 

However, the improvement of SNR and PSNR is little. It is only 0.002 dB. In a 
real remote sensing imaginary and on a large scale, change areas are very sparse, 
i.e. certain areas are much more. Hence SNR and PSNR of Table 1 would be much 
higher.

Table 1. SNR and PSNR of 2SRM with different combinations.

OMP+null OMP+OMP OMP+BP TV+null OMP+TV

SNR (dB) 1.5293 8.0672 10.5964 16.3632 18.0985

PSNR (dB) 17.0691 23.6070 26.1362 31.9031 33.6383

5. Conclusions

The theory and method of directional remote sensing based on two-dimensional 
compressive sensing are proposed. Directional remote sensing can acquire and 
reconstruct change areas by 2-3 times measured data. Meanwhile, the two-dimen-
sional compressive sensing model is put forward. It can keep the two-dimensional 
structure priori information of remote sensing images. And it is suitable for the 
linear array push-broom mode of remote sensing. Moreover, 2SRM based on 
two-dimension compressive sensing is put forward. It can use the energy and di-
rection information of measured data and signals to reconstruct change areas of 
remote sensing. Reconstruction ability of 2SRM is better than that of OMP, BP 
and TV etc. SNR and PSNR of OMP+OMP increase by 6.54 dB as compared with 
OMP+null. SNR and PSNR of OMP+TV increase by 1.74 dB as compared with 
TV+null. SNR and PSNR of OMP+BP increase by 9.07 dB as compared with 
OMP+null. SNR and PSNR of OMP+TV increase by 16.57 dB as compared with 
OMP+null.
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6. Future works

In order to simplify the research object, change detection is only studied under 
the ideal condition. However, real change detection and real remote sensing are 
related to noise/error, radiation correction, geometric correction and other issues. 
The difference image of remote sensing images in different temporal is not ab-
solutely sparse, too. How to further consider the introduction of more practical 
factors is an important work for us to carry out the follow-up in order that the 
experimental analysis is closer to the real situation.
The empirical value 7% which is suitable for OMP and 128×256 Gaussian measu-
rement matrix are adopted in this paper. How to determine the quantitative indi-
ces according to more experimental and theoretical analysis is also the follow-up 
work.
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Usmjereno daljinsko istraživanje

SAŽETAK.	 Koncepti	 usmjerenog	 daljinskog	 istraživanja	 postavljeni	 su	 na	 osnovi	
dvodimenzionalnog	kompresivnog	istraživanja.	Potrebno	je	vrlo	malo	mjernih	poda-
taka	da	bi	se	postigla	i	rekonstruirala	područja	promjena	u	usmjerenom	daljinskom	
istraživanju.	Mjerni	 podaci	 u	 jednodimenzionalnom	 kompresivnom	 istraživanju	 ne	
samo	da	čuvaju	energiju	rasutih	signala	već,	također,	preuzimaju	informacije	o	smje-
ru	rasutog	signala.	Informacija	o	smjeru	se	ipak	ne	može	primijeniti	za	rekonstruk-
ciju	 i	 ispitivanje	 rasutog	 signala	 u	 jednodimenzionalnom	 kompresivnom	 istraživa-
nju.	 Model	 dvodimenzionalnog	 kompresivnog	 istraživanja	 predlaže	 se	 na	 osnovi	
rasutih	 svojstava	 područja	 promjene	 u	 daljinskom	 istraživanju.	Osim	 toga,	 algori-
tam rekonstrukcije rasutog signala (metoda rekonstrukcije u dva koraka, 2SRM) 
predlaže	se	na	osnovi	dvodimenzionalnog	kompresivnog	istraživanja	koristeći	 infor-
macije o energiji i smjeru. Teorijska analiza i eksperimentalni rezultati pokazuju da 
je	sposobnost	rekonstrukcije	signala	primjenom	metode	2SRM	jača.	SNR	(vrijednost	
omjera signala i šuma) i PSNR (vrijednost maksimalnog omjera signala i šuma) 
primjenom	metode	2SRM	povećavaju	se	najviše	za	16,57	dB	u	odnosu	na	pojedinač-
ni tradicionalni algoritam rekonstrukcije.

Ključne	riječi:	usmjereno	 daljinsko	 istraživanje,	 otkrivanje	 promjene,	 dvodimenzio-
nalno	 kompresivno	 istraživanje	 (2DCS),	 struktura	 prije	 informacije,	
metoda rekonstrukcije u dva koraka (2SRM).
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