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Abstract 

Alaptide, (S)-8-methyl-6,9-diazaspiro[4.5]decan-7,10-dione, is an original Czech compound; in this paper it 
is used as an excipient. The investigation deals with the affection of the permeation of indomethacin 
through full-thickness pig ear skin using a Franz diffusion cell from the donor vehicle of propylene 
glycol/water (1:1) using nanonized alaptide as a potential transdermal permeation enhancer. Alaptide was 
applied in ratio 1:10 (w/w) related to the amount of indomethacin. Nanonized alaptide showed an 
excellent rapid onset of enhancement effect, already at the 30

th
 minute after application, when the 

permeated amount of indomethacin was 5-fold more than in the formulation without alaptide. The 
enhancement ratio of nanonized alaptide was 5.6, which indicates that alaptide modifies skin structure, 
which results in significantly enhanced permeation at long-term application. 
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Introduction 

Transdermal administration of drugs can be considered as an alternative to conventional pharmaceutical 

dosage forms. Nevertheless, a frequent problem of transdermal drug delivery is insufficient or no 

penetration of active pharmaceutical substances through the skin, and thus various approaches to 

overcoming the skin barrier was to be developed. These approaches can be based on an optimization of a 

drug/vehicle system or modification of stratum corneum (which is the outermost layer of the skin 

responsible for barrier function and formed by corneocytes and an intercellular lipid matrix). Modification 

(i.e. hydration, lipid fluidization and/or disruption) of stratum corneum is possible through: (i) application of 

transdermal chemical permeation enhancers (CPEs); (ii) overall optimization of formulation using non-

hydrophobic excipients; (iii) application of physical enhancement techniques (electrically assisted methods), 

such as iontophoresis, electroporation, acoustic methods, microneedles, etc.) [1−3 and refs. therein]. 

CPEs can be considered as excipients specifically affecting intercellular space between corneocytes or 

modifying corneocytes by hydration or denaturation of keratin. The heterogeneity of molecular structures 

of CPEs limits simple explanation of their action. Several possible mechanisms of action were hypothesized, 

but exact mechanisms have not been elucidated. It is almost certain that CPEs exhibit multiple effects: 
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(i) interact with the intercellular lipid matrix; (ii) interact with proteins (influencing the conformation of 

keratin in corneocytes or proteins in desmosomes); (iii) promote partitioning (influencing the stratum 

corneum nature leads to raising the penetrant concentration gradient and thus increasing the flux, 

i.e. increasing the concentration of the drug in the skin) [1−3 and refs. therein]. 

Alaptide, (S)-8-methyl-6,9-diazaspiro[4.5]decan-7,10-dione, (Figure 1) is an original Czech compound 

prepared by Kasafirek et al. in the 80s of the 20th century [4]. A class of similar compounds was designed as 

analogues of melanocyte-stimulating hormone release-inhibiting factor (MIF-1) [5], i.e. they negatively 

affect the inhibition of the release of melanocyte-stimulating hormone, and thus increase the 

concentration of melanocytes in epidermis. In relation to the effect of alaptide as a potential CPE it is 

important to note that melanocytes significantly influence the creation and function of keratinocytes by 

means of melanosomes [6−8]. During biological assays it was found that alaptide showed significant 

curative effect in different therapeutic areas [5], for example, it reduced the number and the extent of 

gastric ulcers [9,10], increased cell proliferation and epidermal regeneration and significantly accelerated 

regeneration (curing) of skin injuries [5,11]. Although bulk alaptide is absorbed from the gastrointestinal 

tract or permeates through the skin [5,12], nanonized alaptide (NALA) permeates through the skin 

insignificantly [12]. Alaptide is not metabolized and is excreted mostly via urine [13]. Alaptide 

demonstrated very low acute toxicity; no subchronic and chronic toxicity, genotoxic, teratogenic and 

embryotoxic effects were observed [5,14,15]. Alaptide enantiomers do not induce cytochrome P450 (1A1, 

1A2, 1B1) [16]. 

Indomethacin, [1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetic acid, (Figure 1) is a non-

steroidal anti-inflammatory drug (NSAID) with anti-inflammatory, analgesic and antipyretic activity. Its 

pharmacological effect is mediated through inhibition of cyclooxygenase (COX), the enzyme responsible for 

catalysing the rate-limiting step in prostaglandin synthesis via the arachidonic acid pathway. Indomethacin 

inhibits both isoforms COX-1 and COX-2, with greater selectivity for COX-1, which accounts for its increased 

adverse gastric effects relative to other NSAIDs. COX-1 is required for maintaining the protective gastric 

mucosal layer. The analgesic, antipyretic and anti-inflammatory effects of indomethacin occur as a result of 

decreased prostaglandin synthesis. Its antipyretic effects may be due to the action on the hypothalamus, 

resulting in an increased peripheral blood flow, vasodilation and subsequent heat dissipation. Indomethacin 

is commonly commercially available in oral, rectal and topical formulations [17]. 

This follow-up paper to the previous contributions [18−22] is aimed at the investigation of the effect of 

nanonized alaptide as a potential CPE on the permeation of indomethacin substance through the skin. 

 
Figure 1. Structures of (S)-alaptide and indomethacin. 

Experimental 

Preparation of nanonized alaptide 

Alaptide was synthesized by the standard process [23]. All reagents were purchased from Aldrich and 

Merck. The suspension of alaptide (30 g), polyvinylpyrrolidone (30 g) and purified water (240 mL, during 



ADMET & DMPK 3(4) (2015) 345-351 Skin permeation of indomethacin  

doi: 10.5599/admet.3.4.247 347 

milling was diluted by addition of additional 150 mL) was initially mixed for 12 h at ambient temperature 

and then filtered through a mill sieve. The milling procedure was performed using a nanomill NETZSCH 

(Germany) with glass beads (0.3 mm); the rotor speed was 986 rpm; the pump speed was 30 rpm; the 

temperature in the grinding chamber was within 17–20 °C. The rotor speed was increased to 1500 rpm 

after 6 h of milling. The total time of milling was 57.5 h. The content of alaptide in the suspension was 

38.76 g/L (determined by RP-HPLC [24]). The particle size x90 of the prepared nanonized alaptide measured 

by Sympatec NANOPHOX 0138 P (Germany) was 770 nm. 

In vitro transdermal permeation experiments 

Skin samples were obtained from porcine ear. Full-thickness pig ear skin was cut in fragments and stored 

at −20°C until utilized. Skin samples were slowly thawed (at 4 °C overnight and then at ambient 

temperature) before each experiment [25,26]. The penetration enhancing effect of NALA was evaluated in 

vitro, using a vertical Franz diffusion cell (SES – Analytical Systems, Germany) with a donor surface area of 

0.6359 cm2 and a receptor volume of 5.2 mL. The skin was mounted between the donor and receptor 

compartments of the Franz diffusion cell with the epidermal side up. The receptor compartment was filled 

with phosphate buffered saline (pH 7.4) and maintained at 34±0.5 °C [25,27], using a circulating water bath. 

The receptor compartment content was continuously stirred using a magnetic stirring bar. The skin was 

kept in contact with the receptor phase for 0.5 h prior to the experiment. Indomethacin was purchased 

from Sigma; all other reagents were purchased from Merck. The donor samples were prepared by 

dissolving indomethacin (10 mg) and NALA (1 mg of alaptide, i.e. 26 µL of suspension) in propylene glycol 

(0.5 mL). 0.5 mL of water was added to the mixture. This mixture was shaken vigorously and then sonicated 

for 10 minutes at 40 °C, then this stable system (dissolved indomethacin in enhancer emulsion) was applied 

to the skin surface and the donor compartment of the cell was covered by Parafilm®. The control samples 

were prepared in the same manner without NALA. Samples (0.5 mL) of the receptor phase were withdrawn 

at pre-determined time intervals (30, 60, 90, 120, 240, 360, 480, 720 and 1440 min), and the cell was 

refilled with an equivalent amount of fresh buffer solution. A minimum of five determinations was 

performed using skin fragments from a minimum of 2 animals for each composition, and the data was 

expressed as means ± SD. The samples were immediately analysed by HPLC. 

Analysis of samples was performed using an Agilent 1200 series HPLC system, equipped with a diode 

array detection (DAD) system, a quaternary model pump and an automatic injector (Agilent Technologies, 

Germany). Data acquisition was performed using ChemStation chromatography software. A Gemini  

C6-Phenyl 110A 5 μm, 250×4.6 mm (Phenomenex®, USA) chromatographic column was used. The total flow 

of the column was 1.0 mL/min; injection was 10 μL; column temperature was 40 °C; and sample 

temperature was 20 °C. The detection wavelength of 260 nm was chosen, the time of analysis was 5 min. 

A mixture of MeOH (HPLC grade, 49.0%) with formic acid p.a. (0.2 %), acetonitrile (HPLC grade, 50.0 %) and 

H2O (HPLC – Mili-Q Grade, 1.0%) was used as a mobile phase. The retention time (tR) of indomethacin was 

3.1±0.05 min; the limit of detection (LOD) was 0.059 µg/mL; and the limit of quantification (LOQ) was 

0.197 µg/mL. 

As a result of the sampling, the receptor compartment concentration of alaptide was corrected for 

sample removal and replenishment using equation: C'n = Cn (Vt/Vt-Vs) (C'n-1/Cn-1); where C'n = corrected drug 

concentration in the nth sample, Cn = measured drug concentration in the nth sample, C'n-1 = corrected drug 

concentration in the (n-1)th sample, Cn-1 = measured drug concentration in the (n-1)th sample, Vt = total 

volume of receptor solution, Vs = volume of the sample, and C'1 = C1 [28]. The corrected data were 

expressed as the cumulative drug permeation (Qt) per unit of skin surface area using equation: Qt = C'n/A; 
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where A = 0.6359 cm2 in our experiment. From the slope of the linear portion of the curve [29] of the 

dependence the cumulative amount of drug per unit area (Qt [μg]) on time (T [h]), steady-state permeation 

flux (J [μg/h/cm2]) was determined. Similarly, the lag time (Tlag [h]) was determined by extrapolating the 

linear portion of cumulative amount of permeation per unit area (Qt) versus time (T [h]) curve to the 

abscissa [30]. The permeability coefficient (Kp [cm/h]) can be calculated according to Kp = J/Cd; where 

Cd = drug concentration in the donor compartment. It is assumed that under sink conditions, drug 

concentration in the receptor compartment is negligible compared to that in the donor compartment 

[31,32]. The enhancement effect was expressed as an enhancement ratio (ER) that was calculated by the 

formula ER = Jss-x/Jss-k; where Jss-x = steady-state permeation flux with CPE, Jss-k = steady-state permeation 

flux without CPE [33]. All the calculated data are listed in Tables 1 and 2 and illustrated in Figure 2. 

Results and Discussion 

The high toxicity and the frequent occurrence of undesirable/side effects of indomethacin, on the one 

hand, and significant curative action, on the other hand, brought us to an idea to formulate this substance 

with alaptide for its skin permeation enhancement and thus prepare less irritable therapeutic system. 

In vitro skin permeation experiments were performed using static Franz diffusion cells [27] within 24 hours. 

Full-thickness pig ear skin was selected for in vitro evaluation of permeation. This tissue is a suitable in vitro 

model of human skin [34,35], because porcine skin has shown to be histologically and biochemically similar 

to human skin [36]. The permeation of indomethacin through the skin without and with NALA was tested 

from the donor vehicle of propylene glycol/water (1:1). Previous studies have indicated that propylene 

glycol by itself (or a propylene glycol/water system) does not interfere with membranes [37,38]. 

 

Table 1. Cumulative permeated amounts Qt per unit area [μg/cm
2
] of 

indomethacin (IDM) from propylene glycol:water (1:1) without and with 
nanonized alaptide (NALA) as potential CPE achieved in in vitro transdermal 
permeation experiments using Franz diffusion cell. Qt values are expressed as 
mean ± SD (n = 5 experiments). 

Time [h] 
Cumulative permeated amounts Qt per unit area[µg/cm2] 

IDM IDM+NALA 

0.5 0.9±0.2 4.6±0.6 

1.0 1.7±0.3 6.2±0.5 

1.5 2.8±1.0 7.5±0.3 

2.0 5.1±2.0 9.3±0.8 

3.0 7.6±2.2 13.1±2.5 

4.0 10.5±2.5 17.0±2.9 

6.0 15.1±3.3 32.8±3.4 

8.0 18.9±4.6 65.2±3.6 

12.0 32.0±6.2 128.9±6.3 

24.0 83.2±6.5 384.1±5.2 

 

The values obtained from the permeation experiments were expressed as the cumulative permeated 

amount of the drug (Qt [μg]) per unit of skin surface area, see Table 1. Other permeation parameters of 

indomethacin without and with NALA from propylene glycol:water (1:1), steady-state permeation fluxes 
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(J [μg/h/cm2]), lag times (Tlag [h]), permeability coefficients (Kp [cm/h]) and enhancement ratio (ER) are 

mentioned in Table 2. The dependences of the cumulative permeated amount of the drug per unit of skin 

surface area in time are illustrated in Figure 2 that is divided into parts A and B for better lucidity. 

 

Table 2. Permeation parameters of indomethacin (IDM) without and with nanonized 
alaptide (NALA) from propylene glycol:water (1:1): steady-state permeation fluxes (J), 
corresponding lag times (Tlag), permeability coefficients (Kp) and enhancement ratio (ER). All 
values are expressed as mean ± SD (n = 5 experiments). 

Sample J [μg/cm2/h] Tlag [h] Kp×10-3 [cm/h] ER 

IDM 2.9±0.4 1.0±0.6 0.3±0.05 – 

IDM+NALA 16.1±1.2 3.9±0.2 1.6±0.1 5.6±0.4 

  

Figure 2. In vitro profile of cumulative permeated amounts Qt per unit area [μg/cm
2
] in time of indomethacin 

(IDM) alone and after addition of nanonized alaptide (NALA) in ratio 10:1 (IDM:NALA) from propylene 
glycol/water (1:1) system through skin. Qt values are expressed as mean ± SD (n = 5 experiments). 

 

The permeated amount of indomethacin with NALA increased rapidly already at the 30th minute, when it 

reached approx. 5-fold higher values than formulation without NALA, see Table 1. Similarly sharp 

enhancement of transdermal permeation was found, e.g., for permeation of other NSAIDs or antipyretics, 

such as ibuprofen, nimesulide, acetylsalicylic acid or paracetamol [18,19,21]. It can be stated that 

indomethacin without NALA permeated moderately in comparison with indomethacin with added NALA; in 

the whole investigated time range in every time the corresponding Qt values related to the system without 

and with NALA were statistically different from each other, see Figures 2A and 2B. The effectivity of 

alaptide as a potential CPE can also be confirmed by parameters mentioned in Table 2, since significant 

increases of steady-state permeation flux and permeability coefficient (approx. about 5.3) were observed. 

Enhancement ratio calculated from steady-state permeation fluxes is 5.6, which indicates that nanonized 

alaptide enhanced permeation of compounds through the skin. 

On the other hand, an absolutely different effect was observed for the combination of BACTROBAN® 

Leciva with NALA when a significant decrease of permeation (in fact, blockade of permeation) of mupirocin 

from ointment through the skin occurred during the experiment, indicating that mupirocin can act 

curatively only on the surface of the skin [20]. 

Based on the presented results, it can be assumed that the contribution of NALA to the enhanced 

permeation of indomethacin through the skin is significant not only immediately after application but also 

for long-term application. The structure of alaptide can be classified as a hybrid between the derivatives of 
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urea and 2-pyrrolidone, therefore the supposed mechanism of enhancement action can be as follows. As 

an urea-like derivative it can demonstrate moisturizing effect on the stratum corneum [38−40], and, as a  

2-pyrrolidone-like derivative it can exhibit interactions preferentially in the keratin region [39,41]. 

Nevertheless, the exact mechanism of action of alaptide and effects of mutual interactions of 

indomethacin, alaptide and skin are under investigation, for example, using Raman or infrared spectroscopy 

for evaluation of interactions of the formulation and alaptide with the skin structure and using thermal 

methods for understanding of interactions between indomethacin and alaptide. 

Conclusions 

Modification of the permeation of indomethacin through the full-thickness pig ear skin by nanonized 

alaptide was investigated by in vitro screening using the Franz diffusion cell. Nanonized alaptide applied in 

ratio 1:10 related to the amount of indomethacin significantly enhanced the permeation of the drug 

substance from the donor vehicle of propylene glycol/water (1:1) through the skin. The calculated 

parameters, such as steady-state permeation flux and permeability coefficient, confirmed the 

enhancement effect of nanonized alaptide. Overall enhancement ratio ER is 5.6. The permeated amount of 

indomethacin with NALA increased rapidly already at the 30th minute, when it reached more than 5-fold 

higher values than indomethacin without NALA. Thus, it can be summarized that nanonized alaptide can be 

successfully applied as a CPE, because it provided excellent rapid onset of enhancement effect, which is an 

important requirement for chemical permeation enhancers. It is evident that alaptide modifies skin 

structure, which results in significantly enhanced permeation at long-term application. 

Acknowledgements: This study was supported by IGA VFU Brno 302/2015/FaF and by the Technology 
Agency of the Czech Republic TA04010065. 

References 

[1] J. Jampilek, K. Brychtova. Medicinal Research Reviews 32 (2012) 907–947. 

[2] J. Jampilek. Journal of Bioequivalence & Bioavailability 5 (2013) 233–235. 

[3] D. Kaushik, P. Batheja, B. Kilfoyle, V. Rai, B. Michniak-Kohn. Expert Opinion on Drug Delivery 5 
(2008) 517–529. 

[4] E. Kasafirek, J. Vanzura, I. Krejci, J. Krepelka, A. Dlabac, M. Valchar. (United Pharmaceutical Works & 
Research Institute for Pharmacy and Biochemistry), Belg. 897843 (1984) & CS 231227 (1986). 

[5] S. Radl, E. Kasafirek, I. Krejci. Drugs of the Future 15 (1990) 445–447. 

[6] J.A. McGrath, R.A. Eady, F.M. Pope. Rook's Textbook of Dermatology, 7th ed. T. Burns, S. 
Breathnach, N. Cox, C. Griffiths, (Eds)., Blackwell Publishing, Oxford, 2004, pp. 3–7. 

[7] W. James, T. Berger, D. Elston. Andrews' diseases of the skin: Clinical dermatology, 10th ed., 
Saunders-Elsevier, Philadelphia, 2006, pp. 5–6. 

[8] F.M. Watt. BioEssays 8 (1988) 163–167. 

[9] L. Korbova, J. Cizkova, J. Kohout, E. Kasafirek, I. Krejci, J. Vanzura. Journal of Czech Physicians 127 
(1988) 1574-1577. 

[10] L. Korbova, J. Kohout, E. Kasafirek. Gastroenterology and Hepatology 48 (1994) 170-182. 

[11] E. Kasafirek, L. Korbova, J. Kohout, M. Jiraskova, I. Krejci, A. Galatik. (United Pharmaceutical Works 
& Research Institute for Pharmacy and Biochemistry), CS 276270 (1992). 

[12] R. Opatrilova, A. Cernikova, L. Coufalova, J. Dohnal, J. Jampilek. The Scientific World Journal 2013 
(2013), Article ID 787283 (8 pages), http://www.hindawi.com/journals/tswj/2013/787283/. 

[13] R. Lapka. Journal of Pharmacy and Pharmacology 43 (1991) 874-876. 

[14] J. Vanzura, K. Kosar, E. Kasafirek. Toxicology Letters 31 (1986) 189-193. 

[15] K. Kosar, J. Vanzura. Pharmazie 43 (1988) 715-716. 

http://www.hindawi.com/journals/tswj/2013/787283/


ADMET & DMPK 3(4) (2015) 345-351 Skin permeation of indomethacin  

doi: 10.5599/admet.3.4.247 351 

[16] J. Jampilek, R. Opatrilova, A. Rezacova, Z Oktabec, J. Dohnal. (Faculty of Pharmacy, University of 
Veterinary and Pharmaceutical Sciences Brno), WO/2014/019556 A1 (2014). 

[17] Drug Bank – Indomethacin, http://www.drugbank.ca/drugs/DB00328 (October 28, 2015). 

[18] J. Jampilek, R. Opatrilova, L. Coufalova, A. Cernikova, J. Dohnal. (Faculty of Pharmacy, University of 
Veterinary and Pharmaceutical Sciences Brno), WO/2013/020527 A1 (2013). 

[19] J. Jampilek, R. Opatrilova, L. Dvorakova, K. Brychtova, J. Dohnal. (Faculty of Pharmacy, University of 
Veterinary and Pharmaceutical Sciences Brno), CZ 304915 B6 (2014). 

[20] R. Opatrilova, J. Jampilek. ADMET & DMPK 2 (2014), 56–62. 

[21] A. Cernikova, R. Opatrilova, J. Jampilek. Military Medical Science Letters 83 (2014) 34–39, 
http://mmsl.cz/viCMS/soubory/pdf/MMSL_2014_1_6__WWW.pdf. 

[22] A. Cernikova, R. Opatrilova, P. Bobal, J. Jampilek. ADMET & DMPK 2 (2014) 248-253. 

[23] E. Kasafirek, M. Rybak, I. Krejci, A. Sturs, E. Krepela, A. Sedo. Life Science 50 (1992) 187–193. 

[24] M. Dousa, K. Lemr. Journal of Separation Science 34 (2011), 1402–1406. 

[25] OECD Guidelines for the Testing of Chemicals, Section 4, Test No. 428: Skin Absorption: In Vitro 
Method, OECD Publishing, Paris, 2004, http://dx.doi.org/10.1787/9789264071087-en. 

[26] WHO. Environmental Health Criteria (EHC 235) – Dermal Absorption. WHO Press, Geneva, 
Switzerland, 2006, http://www.who.int/ipcs/features/2006/ehc235/en/. 

[27] T.J. Franz. Journal of Investigative Dermatology 64 (1975) 190–195. 

[28] H. Wu, C. Ramachandran, N.D. Weiner, B.J. Roessler. International Journal of Pharmaceutics 220 
(2001) 63–75. 

[29] N. Akhtar, M.U. Rehman, H.M.S. Khan, F. Rasool, T. Saeed, G. Murtaza. Tropical Journal of 
Pharmaceutical Research 10 (2011) 281–288. 

[30] L. Panigrahi, S. Pattnaik, S.K. Ghosal. AAPS PharmSciTech 6 (2005), Article 25, E167–E173. 

[31] C.T. Huang, M.J. Tsai, Y.H. Lin, Y.S. Fu, Y.B. Huang, Y.H. Tsai, P.C. Wu. International Journal of 
Nanomedicine 2013 (2013) 2295–2304. 

[32] Y.S. Rhee, J.G. Choi, E.S. Park, S.C. Chi. International Journal of Pharmaceutics 228 (2001) 161–170. 

[33] S.A. Ibrahim, S.K. Li. Journal of Controlled Release 136 (2009) 117–124. 

[34] U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, J. Lademann. Skin 
Research and Technology 13 (2007) 19–24. 

[35] C. Herkenne, A. Naik, Y.N. Kalia, J. Hadgraft, R.H. Guy. Pharmaceutical Research 23 (2006) 
1850-1856. 

[36] W. Meyer, K. Schwarz, K.T. Neurand. Current Problems in Dermatology 7 (1978) 39–52. 

[37] M.A. Yamane, A.C. Williams, B.W. Barry. Journal of Pharmacy and Pharmacology 47 (1995)  
978–989. 

[38] A.C. Williams, B.W. Barry. International Journal of Pharmaceutics 56 (1989) 43–50. 

[39] A.C. Williams, B.W. Barry. Advanced Drug Delivery Reviews 56 (2004) 603–618. 

[40] H. Trommer, R.H.H. Neubert. Skin Pharmacology and Physiology 19 (2006) 106–121. 

[41] B.W. Barry. Journal of Control Release 6 (1987) 85–97. 

 
 

©2015 by the authors; licensee IAPC, Zagreb, Croatia. This article is an open-access article distributed under the terms and 
conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/)  

http://www.drugbank.ca/drugs/DB00328
http://mmsl.cz/viCMS/soubory/pdf/MMSL_2014_1_6__WWW.pdf
http://dx.doi.org/10.1787/9789264071087-en
http://www.who.int/ipcs/features/2006/ehc235/en/
http://creativecommons.org/licenses/by/3.0/

