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Some facts about zero divisors of triangular infinite matrices
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Abstract. We are interested in the elements that are zero divisors in T∞(F ) - the ring of
N × N upper triangular matrices over a field F . It is known that a matrix from T∞(F ) is
a left zero divisor if and only if it contains at least one zero on the main diagonal. The
problem when an infinite triangular matrix is a right zero divisor stays unsolved. In the
paper, we give some sufficient conditions for a matrix from T∞(F ) to be a right zero divisor.
We also present some properties of infinite matrices that help us investigate the problem.
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1. Introduction

If A is an algebra, then a ∈ A is called a left or right zero divisor if there exist x ∈ A
such that these two matrices satisfy

ax = 0

or
xa = 0,

respectively.
It can be easily noticed that if a is an n× n matrix over a field, then a is a zero

divisor if and only if it is singular. In particular, a triangular n × n matrix is a
left or right zero divisor if and only if at least one of its coefficients from the main
diagonal is equal to 0. However, if one considers an N × N triangular matrix, the
situation is different. This problem was studied by Suškevič [1]. He proved that
every upper triangular matrix containing at least one zero on the main diagonal
is a left zero divisor. The case when a matrix is a right zero divisor turned out
to be far more complicated. It was proved that if a matrix has only a finite (but
nonzero) number of zero coefficients on the main diagonal, then this matrix is a right
zero divisor. Moreover, some examples of triangular matrices were given having an
infinite number of nonzero coefficients on the main diagonal that are not right zero
divisors.

In this paper, we wish to improve the results of Suškevič. We denote by T∞(F )
the algebra of upper triangular N × N matrices. First, we will prove that every
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infinite triangular matrix a is a conjugate of some sort of a sum of two matrices a1,
a2, where a1 has only zeros on the main diagonal and a2 has no zeros on the main
diagonal. Then we will show that such sum is a zero divisor if and only if a1 is either
a zero divisor or a zero matrix. Thus we will focus on matrices whose first diagonals
contain only zeros. In particular, we will prove the following theorem.

Theorem 1. Let F be a field and let a ∈ T∞(F ). Suppose k is the smallest number
such that the k-th diagonal contains some nonzero coefficients.

1. If k ≥ 1 and the k-th diagonal of a does not contain any zero coefficient, then
a is not a right zero divisor.

2. If the k-th diagonal of a contains a finite but nonzero number of zero coeffi-
cients, then a is a right zero divisor.

2. Results

First, we introduce some notation. The symbol en stands for the n × n identity
matrix and e∞ for the N × N identity matrix. If we deal with an identity matrix
whose dimension does not have a meaning or whose dimension may be finite as well
as infinite, we will simply write e.

By aT we will denote the transpose of a.
If a is a matrix and b is an invertible matrix, then by ab we understand the

conjugate b−1ab.
By NT k

∞(F ) we will understand the subring of all matrices x satisfying condition

∀ i ∈ N ∀ 0 ≤ j ≤ k xi,i+j = 0. (1)

Instead of NT 0
∞(F ), we will write NT∞(F ).

We start with an easy lemma.

Lemma 1. Let F be any field. If a ∈ T∞(F ) is a right zero divisor, then there exists
n ∈ N such that ann = 0.

Proof. Suppose the opposite – that for all n ∈ N we have ann ̸= 0. Assume that
xa = 0. We get now

0 = (xa)ii = xiiaii.

Since aii ̸= 0, we get xii = 0 for all i ∈ N.
Suppose now that for some k ≥ 0 we have proved that the main, first, . . ., the

k-th diagonal of x is equal to 0. Consider the k+1-st diagonal. From (xa)i,i+k+1 = 0
we obtain

0 =
k+1∑
j=0

xi,i+jai+j,i+k+1

=

k∑
j=0

xi,i+jai+j,i+k+1 + xi,i+k+1ai+k+1,i+k+1

= xi,i+k+1ai+k+1,i+k+1,
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so since xi,i+k+1ai+k+1,i+k+1 ̸= 0, we have xi,i+k+1 = 0. Thus, all the diagonals of
x are zero and x = 0. This contradicts the fact that a is a zero divisor.

Now we will concentrate on similarity of matrices. We wrote in the introduction
that we would prove that every triangular matrix is similar to some sort of sum of
two matrices. First, we need to clarify what kind of sum we mean.

Definition 1. Suppose that a is an infinite matrix. Let M be a nonempty subset
of N and let {Im}m∈M be a family of nonempty disjoint subsets of N such that
∪m∈MIm = N. If a satisfies condition

∀m,m′ ∈ M m ̸= m′, i ∈ Im, j ∈ Im′ ⇒ aij = 0,

then we say that a is a generalized direct sum of infinite matrices am (m ∈ M)
defined as follows

(am)ij =

{
aij if i, j ∈ Im

0 otherwise,

and we write a = ⊕m∈M (am).

This definition is based on the definition of a generalized direct sum of finite
matrices given in [2].

Now we will focus on matrices that are similar to generalized direct sums. First,
we will prove a lemma.

Lemma 2. Suppose that F is a field and a is triangular, finite or infinite, matrix
of the form (

a1 b
0 a2

)
,

where either (a1)ii = 0 for all i and (a2)jj ̸= 0 for all j, or (a1)ii ̸= 0 for all i and
(a2)jj = 0 for all j. Then there exists a triangular matrix t of the form

t =

(
e y
0 e

)
such that

at =

(
a1 0
0 a2

)
.

Proof. The equation(
a1 b
0 a2

)(
ek1 y
0 ek2

)
=

(
ek1 y
0 ek2

)(
a1 0
0 a2

)
is equivalent to

a1y − ya2 = −b.

If (a1)ii = 0 and (a2)jj ̸= 0, then we can find the rows of y in a recursive way,
starting from the last one and going up. Note that even in the case when a2 is
infinite, the matrix y consists of a finite number of rows, so this procedure has sense.
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Analogously, if (a1)ii ̸= 0 and (a2)jj = 0, we can find the columns of y starting
from the firstone and moving to the next in each step. Clearly, if a2 is infinite, then
y has an infinite number of columns. However, when evaluating each of them, we
make use of only a finite number of the preceding columns. Therefore, we can find
y from the claim.

Now, using the above lemma, we will prove our theorem about decomposition.

Theorem 2. Let F be a field. For every a ∈ T∞(F ) there exist disjoint sets of
indices I1, I2, I1 ∪ I2 = N and triangular matrices t, a1, a2, such that the following
conditions are fulfilled

at = (a1)I1 ⊕ (a2)I2 ,

for all i ∈ I1 we have (a1)ii = 0, (2)

for all i ∈ I2 we have (a2)ii ̸= 0. (3)

Proof. Let us write a in a block form, i.e.,

a =


a(1) a(12) a(13) · · ·

a(2) a(23)
a(3)

. . .

 .

Without loss of generality, we will assume that for all n ∈ N (a(2n−1))ii = 0 and
(a(2n))jj ̸= 0 for all i, j.

If a has only two blocks on the main block-diagonal, then by Lemma 2, the claim
holds.

Now we will proceed inductively. Suppose that for some n ≥ 1 for al 1 ≤ i ≤ n
we have ai ∈ Tmi(F ) and there exists t(i) of the form

t(i) =



em1 0 0 0 · · · 0 b(1,i) 0
em2 0 0 0 0 0

em3 0 0 b(3,i) 0
em4 0 0 0

. . . 0
...

...

emi−1 b(i−1,i) 0
emi 0

e∞


if i is even

and

t(i) =



em1 0 0 0 · · · 0 0 0

em2 0 0 0 c(2,i) 0
em3 0 0 0 0

em4
0 c(4,i) 0

. . . 0
...

...

emi−1 c(i−1,i) 0
emi 0

e∞


if i is odd
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such that for any 1 ≤ i ≤ n

a
∏i

j=1 t(j) =



a(1) 0 a
(1,3)
i 0 · · · △ ∗

a(2) 0 a
(2,4)
i � ∗

a(3) 0 △ ∗
a(4) � ∗

. . .
... ∗

a(i) ∗
∗


,

where, depending on parity of the i, either △ or � are zero matrices. Note that from
Lemma 2 it follows that for i = 2 such t(i) exists. Now we will prove that it exists
for n+ 1. We will assume that n is even. For the case when n is odd, the inductive
step is analogous.

We know that for all matrices a(j), 1 ≤ j ≤ n, 2 - j, there exist matrices y
(n+1)
j

such that (
a(j) a

(j,n+1)

0 a(n+1)

) emj y
(n+1)
j

0 emn+1


=

(
a(j) 0
0 a(n+1)

)
.

We put then

t(n+1) =



em1 0 0 0 · · · 0 y
(n+1)
1 0

em2 0 0 0 0 0

em3 0 0 y
(n+1)
3 0

em4 0 0 0
. . . 0

... 0

emn y
(n+1)
n 0
emn+1

0
e∞


and have

a
∏n+1

j=1 t(j) =



a(1) 0 a
(1,3)
i 0 · · · △ ∗

a(2) 0 a
(2,4)
i 0 ∗

a(3) 0 △ ∗
a(4) 0 ∗

. . .
... ∗

a(n+1) ∗
∗


.

Define now the sequence of matrices tn ∈ T∞(F ) as follows.

t1 = t(1), tn+1 = tnt
(n+1) for n ≥ 1

Note that from the form of matrices t(i) (1 ≤ i ≤ n) it follows that

(ti+1)kl = (ti)kl for all 1 ≤ k, l ≤
i∑

j=1

mj . (4)
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If a has a finite number, say k, of blocks on the main diagonal, it suffices to put
t = tk. Otherwise, we define t by the rule tij = (tmax(i,j))ij . As (4) is satisfied,
this t is well defined and since we have (at)ij = (atmax(i,j))ij , it fulfills the desired
condition.

Theorem 2 states that we can somehow decompose a triangular matrix. For the
components of this ’decomposition’, the following property holds.

Lemma 3. Let F be a field. If a ∈ T∞(F ) is of the form a = (a1)I1 ⊕(a2)I2 , I1 ̸= 0,
where a1 and a2 satisfy (2) and (3), respectively, and I1, I2 ̸= ∅, then a is a zero
divisor if and only if a1 is either a zero divisor or a zero matrix.

Proof. We will make a proof for the case of a right zero divisor. The case of a left
zero divisor is exactly the same.

Let a = (a1)I1 ⊕ (a2)I2 and suppose that (a1)ii = 0 for all i ∈ I1 and (a2)ii ̸= 0
for all i ∈ I2. Our a is a right zero divisor if and only if there exist x ∈ T∞(F ) such
that

(xa)nm =

m∑
j=n

xnjajm = 0 for all n ≤ m. (5)

Suppose that a is a zero divisor. Then, in particular, (5) is satisfied for the pairs n,
m such that n,m ∈ I1, so as have

0 =
m∑

j=n

xnjajm =
∑

n ≤ j ≤ m
j ∈ I1

xnj · ((a1)I1 ⊕ (0)I2)jm,

there exists a matrix x of the form x = (x1)I1 ⊕ (0)I2 such that xa = 0. Hence, there
exists x1 such that x1a1 = 0, so a1 is a right zero divisor.

Analogously, if for some x1 we have x1a1 = 0, then we put x = (x1)I1 ⊕ (0)I2
and we can easily check that (5) is fulfilled.

As we have proved Theorem 2 and Lemma 3, we will focus on matrices from
NT∞(F ).

Let us introduce the matrix defined as below.

s =


0 1 0 0 · · ·
0 0 1 0
0 0 0 1
...

. . .

 .

One can see that if a ∈ NT∞(F ), then

a =


0 a12 a13 a14 · · ·
0 0 a23 a24
0 0 0 a34
...

. . .

 =


a12 a13 a14 · · ·
0 a23 a24
0 0 a34
...

. . .



0 1 0 0 · · ·
0 0 1 0
0 0 0 1
...

. . .

 .
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Analogously, if a ∈ NT k−1
∞ (F ) (k ≥ 1), then

a =


a1,1+k a1,2+k a1,3+k · · ·

0 a2,2+k a2,3+k

0 0 a3,3+k

...
. . .



0 1 0 0 · · ·
0 0 1 0
0 0 0 1
...

. . .


k

.

Thus, xbsk = 0 if and only if xb = 0. Hence we have

Lemma 4. Let F be a field and let a ∈ NT k−1
∞ (F ) for some k ≥ 1. Then a is a

right zero divisor if and only if b ∈ T∞(F ) defined by the rule a = bsk is a right zero
divisor.

Now it easy to prove the theorem presented in the introduction.

Proof of Theorem 1: From Lemma 4 we know that a is a right zero divisor
if and only if b defined by the rule a = bsk+1 is. Hence, we can assume that
a ∈ T∞(F ) \NT∞(F ). If aii ̸= 0 for all i ∈ N, then by Lemma 1 the matrix a is not
a right zero divisor. Thus, the first claim is proved.

Suppose that aii ̸= 0 for a finite but nonzero number of indices i. From Theorem 2
we know that for some t ∈ T∞(F ) we have at = (a1)I1 ⊕ (a2)I2 , where a1 ∈ NTk(F )
for some k ∈ N. This means that at satisfies the assumptions of Lemma 3. Hence,
at is a right zero divisor and so is a. �

From our considerations we get the following.

Corollary 1. Suppose F is a field and either a ∈ T∞(F ) \ NT∞(F ) or
a ∈ NT k−1

∞ (F ) \ NT k
∞(F ) for some k ∈ N. Assume that a contains only a finite

number of nonzero coefficients on its first nonzero diagonal. If

1. 0 < | {i : aii = 0 ∧ ai+1,i+1 = 0 ∧ ai,i+1 = 0} | < ∞ in the case when
a ∈ T∞(F ) \ NT∞(F ),

2. 0 < | {i : ai,i+k = 0 ∧ ai+1,i+k+1 = 0 ∧ ai,i+k+1 = 0} | < ∞ in the case when
a ∈ NT k−1

∞ (F ) \ NT k
∞(F ),

then a is a right zero divisor.

Proof. By Lemma 4, if a ∈ NT k−1
∞ (F ) \ NT k

∞(F ) we can consider b such that
a = bsk+1. We will assume then that a ∈ T∞(F ) \ NT∞(F ). We know that there
exist t ∈ T∞(F ) such that at = (a1)I1 ⊕ (a2)I2 and a is a right zero divisor if and
only if a1 is. Hence, we will concentrate on a1.

Since a1 ∈ NT∞(F ) \ NT 1
∞(F ), from Theorem 1 it follows that it suffices to

prove that a1 has only a finite number of zeros on the first diagonal.
The coefficients (a1)i,i+1 can be divided into two ,sorts’.

• (a1)i,i+1 = (at)k,k+1 for some k such that k, k + 1 ∈ I1,

• (a1)i,i+1 = (at)kl for some k, l such that l > k + 1.
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Since we have only afinite number of nonzero coefficients on the main diagonal,
we have also a finite number of diagonal blocks (When we say diagonal blocks, we
mean the blocks a(i) from the proof of Theorem 2.). Thus, we also have only a finite
number of ai,i+1 of the second ’sort’. Therefore, we can focus on the first one.

Note that for these entries we have

(a1)i,i+1 = (at)k,k+1 = t−1
kk ak,k+1tk+1,k+1,

so (a1)i,i+1 = 0 if and only if ak,k+1 = 0. Hence, if a has a finite but nonzero
number of coefficients such that akk = ak+1,k+1 = ak,k+1 = 0, then a1 also satisfies
this condition. Then, by Theorem 1, the matrix a1 is a right zero divisor, and by
Lemma 3 so is a.

Figure 1: Diagram of the proposed algorithm

From what we have proved in this paper it follows that if we want to know
whether an infinite triangular matrix is a right zero divisor, we can try to use the
procedure in Figure 1. The matrix a(1) is the matrix satsifying a = a(1)s.

Clearly, this algorithm does not have to finish.

Example 1. Let a be defined as follows.

aij =

{
1 if j = 2i− 1

0 otherwise.

It can be observed that in each step we have | {i : aii = 0} | = ∞ and the procedure
does not finish.
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Let us notice that in this case it can be also observed that a is not a right zero
divisor.

At the end of the paper, we would like to ask the following question.

Problem: Is a ∈ T∞(F ) a right zero divisor if and only if the proposed above
algorithm finishes for this a?
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