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Abstract. In this paper, we present some algorithms for unconstrained convex optimiza-
tion problems. The development and analysis of these methods is carried out in a Banach
space setting. We begin by introducing a general framework for achieving global conver-
gence without Lipschitz conditions on the gradient, as usual in the current literature. This
paper is an extension to Banach spaces to the analysis of the steepest descent method for
convex optimization, most of them in less general spaces.
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1. Introduction

Optimization or minimization problems arise in many areas of modern science and
technology. As examples, let us mention control theory, image processing and seg-
mentation, drag reduction, shape optimization, etc. Here we are particularly inter-
ested in the global convergence of some optimization methods formulated in infinite
dimensional spaces.

Optimization methods are iterative algorithms for finding (global or local) solu-
tions of minimization problems. Usually, we are already satisfied if the method can
be proved to converge to stationary points. These points may than satisfy the first
order necessary optimal conditions.

The steepest descent method is one of the oldest and most widely used approaches
in the literature when solving smooth optimization problems. However, classical re-
sults for an arbitrary objective function are not so robust because the convergence
of the method depends on gradient-like Lipschitz conditions, see [14, 17] (finite
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dimension) and [4, 5, 12, 13, 15] (infinite dimension). We will analyze the conver-
gence of these methods with a stepsize rule for a uniformly convex functional (see
[8, 9, 18, 19]). In fact, not only the Lipschitz constant is not required, but it is also
possible to prove the convergence of the full sequence under the only assumption of
the existence of minimizers (besides convexity of the objective in Hilbert spaces, and
uniform convexity in Banach spaces, as in this case). In the nonconvex case, even for
a Lipschitz continuous objective, it is necessary to assume the existence of cluster
points of the generated sequence, and the only attainable result is their stationarity,
but not the convergence of the full sequence (even assuming the existence of the
cluster points).

In Hilbert spaces, results of this type can be found in [10]. The convergence of
gradient-like methods in Hilbert spaces in the convex but nonsmooth case, where the
direction is taken as the opposite to a subgradient, rather than minus the gradient
can be found in [1]; hence, no line search is possible because subgradient directions
may fail to be descent ones, and therefore the steplengths must be given exoge-
nously. The extension of results in the previous reference to reflexive Banach spaces
was achieved in [2, 3]. The last three papers differ from this document, since they
demand just convexity of the objective function instead of uniform convexity; nev-
ertheless, they use exogenously given steplengths instead of line searches, due to the
nonsmoothness of the objective function.

We refer to [11] for a precise historical background and motivation about the
metrics of a functional gradient. For the historical convergence theorem of steepest
descent algorithm in normed linear spaces, see also [7].

We will start with a common classical situation in which we want to minimize
a Fréchet differentiable functional f defined on a reflexive Banach space. The as-
sumption of uniform convexity guarantees the existence of a global minimizer and
a global convergence towards it, allowing us to be concentrated on the central is-
sues related to the infinite-dimensional setting. The minimization strategy will be
based on a general method of the steepest descent type coupled with a line search.
The advantage of this procedure consists of avoiding regularity assumptions such
as the Lipschitz continuity of the first derivation. After making suitable assump-
tions regarding the well-posedness of the minimization problem, a steepest descent
algorithm in the Banach space is built proving its convergence.

This paper is organized as follows. In Section 2, we start with a fairly general
framework of convex optimization in Banach spaces, introducing some step-size rules.
In Section 3, we present some assumptions regarding the functional to be minimized.
Under these weak assumptions, we formulate an abstract algorithm in Section 4,
introducing the notion of Riesz map and proving its convergence.

2. Convex optimization in Banach space

Let E be a reflexive Banach space and E′ its dual. 〈·, ·〉 will denote the duality
coupling in E ×E′ and E′ ×E′′, respectively, i.e.; 〈x, x′〉 = x′(x), 〈x′, x′′〉 = x′′(x′),
for all x ∈ E, x′ ∈ E, x′′ ∈ E′′.
Let f : E → R be a Fréchet differentiable functional. We consider the following
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minimization problem: Find u ∈ E such that

f(u) = min
v∈E

f(v). (1)

The line search method for solveing (1) generates the following iteration:

uk+1 = uk + αksk, (2)

where uk ∈ E is the current iterative point, sk ∈ E is a search direction, and αk is
a positive step-size.

Definition 1. Given v ∈ E, we call s ∈ E an admissible descent direction for v if
‖s‖ = 1 and 〈f ′(v), s〉 < 0

Once an admissible descent direction is determined, one has to find the minimum
of the functional f along the search direction. In order to ensure that the line search
in fact yields a smaller value of the functional than the initial one, we identify a
possible range of step-sizes that guarantees this descent.

There are a lot of rules for choosing step-size αk (see [12],[13],[14]), in this paper
we take into account the following considerations:

1. Minimization Rule: At each iteration, αk is selected so that

φk(αk) = min
α>0

φk(α), (3)

where φ(α) = f(uk + αsk).

2. Approximate minimization rule: At each iteration, αk is selected so that

αk = min {α : 〈f ′ (uk + αsk) , sk〉 = 0, α > 0} . (4)

3. Goldstein rule: A fixed scalar σ ∈ (0, 1
2 ) is selected, and αk is chosen to satisfy

σ ≤
f (uk + αksk)− f(uk)

αk 〈f ′(uk), sk〉
≤ 1− σ. (5)

4. Wolfe rule: αk is chosen to satisfy simultaneously

f(uk)− f(uk + αksk) ≥ −σαk〈f
′(uk), sk〉 (6)

〈f ′(uk + αksk), sk〉 ≥ β〈f ′(uk), sk〉, (7)

where σ and β are some scalars with σ ∈ (0, 1
2 ) and β ∈ (σ, 1).

5. Strong Wolfe rule: αk is chosen to satisfy (6) and

|〈f ′(uk + αksk), sk〉| ≤ −β〈f ′(uk), sk〉. (8)

6. Armijo rule: Let us define scalars as follows: λk = − 〈f ′(uk),sk〉
‖sk‖2 , β ∈ (0, 1), and

σ ∈ (0, 1
2 ). Then we define αk = βmkλk, where

mk = min
m>0

{f(uk)− f(uk + βmλksk) ≥ −σβmλk 〈f
′(uk), sk〉} . (9)
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3. General assumptions

We start by collecting general definitions and assumptions on the functional f that
will be held throughout the paper.

Definition 2 (see [18]). Let f : E → R ∪ {∞} be an l.s.c, convex function whose
domain is not a singleton. f is uniformly convex at x ∈ domf if there exists δ :
R+ → R+ ∪ {∞} with δ(t) > 0 for t > 0 such that

f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y)−λ(1−λ)δ(‖y−x‖) ∀y ∈ domf, λ ∈ (0, 1)

Assumption 1. The functional f satisfies:

1. The Fréchet-derivative f ′ : E → E′ is uniformly continuous on each bounded
subset of E.

2. f is a uniformly convex functional (or p-elliptic functional), i.e., there exist
C > 0 and p > 1 such that

‖w − v‖pE ≤ C〈f ′(w) − f ′(v), w − v〉 (10)

for all w, v ∈ E.

The second item of Assumption 1 is equivalent to Definition 2 (see [18]). In
the case of E = R

n, the function f(x) = 1
2 〈Ax, x〉 − 〈a, x〉, A = AT satisfies the

second item of Assumption 1 (with p = 2) if and only if the matrix A is positively
defined. For the two-dimensional case, the surface representing f has the form of a
paraboloid whose horizontal sections are ellipses. This explains the elliptic functional
terminology, (i.e., a 2-elliptic functionals case E = R

n). It forms a natural general-
ization of quadratic functionals with a symmetric, positively defined matrix (see [8]).

We recall some consequences of the above assumption:

Lemma 1. Let Assumption 1 be satisfied. Then, the following statements hold.

1. For all w, u ∈ E we have

f(v)− f(u) ≥ 〈f ′(u), v − u〉+
1

Cp
‖u− v‖pE , C > 0, p > 1. (11)

2. f is bounded from below and strictly convex.

3. Let u0 ∈ E be arbitrary. The set Lu0
(f) := {v ∈ E : f(v) ≤ f(u0)} is bounded.

The proof can be found in the appendix or see also [18].

Remark 1. In particular, from Lemma 1 we see that our assumptions are slightly
stronger than convexity, so that under Assumption 1 there exists a unique solution
for the minimization problem (1).
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4. Convergent steepest descent algorithm

The gradient notion of a functional was given by Golomb and Tapia [11] as a rig-
orous generalization of arbitrary normed linear spaces as follows: Given a normed
linear space E with dual E′ and second dual E′′, ζ denotes the natural or canonical
embedding of E into E′′, i.e (ζ(x)(y) = y(x), x ∈ E, y ∈ E′). For all x ∈ E, let

J(x) := {v ∈ E′ : ‖v‖ = ‖x‖, 〈v, x〉 = ‖x‖2}. (12)

The set-valued map J : E → 2E
′

is called the duality map of E. We denote the
duality map of E′ by J ′.

Definition 3. If f : E → R is Fréchet differentiable at x ∈ E, then by the metric
gradient of f at x we mean

▽f(x) = ζ−1J ′f ′(x) ⊆ E. (13)

We call
▽f = ζ−1J ′f ′ : E → 2E (14)

the metric gradient of f .

Note that unlike the derivative, the metric gradient depends on the norm, not
just on the topology of the space. The definition of the gradient of a functional
defined on a normed linear space which in the case of Hilbert space reduces to

f ′(x)(η) = (▽f(x), η), (15)

where (·, ·) is an inner product. When E is not a Hilbert space the above relationship
is no longer obvious. The main distinction between the metric gradient and the
derivative is that ▽f(x) ∈ E , while f ′(x) ∈ E′.

We consider a special operator that, in the case of a Hilbert space, coincides with
the Riesz representation; the name of this operator differs from author to author.

Definition 4. Let E be a normed space and R : E′ → 2E the point-to-set mapping
defined by

R(v) := {x ∈ E : ‖x‖E = 1 〈v, x〉 = ‖v‖E′} , ∀ v ∈ E′.

The set-valued mapping R is called the Riesz map.

Note that if x ∈ R(f), for f ∈ E′, then 〈f, x〉 = sup
v∈E

〈f,v〉
‖v‖

E

.

There exists a relation between the Riesz map and the metric gradient of f ; in fact,
is easy to see that

R(f ′(u)) =
▽f(u)

‖f ′(u)‖E′

∀u ∈ E. (16)
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A relevant remark is about the existence of the Riesz map:

Proposition 1. If E is a reflexive Banach space, then the Riesz map R(f ′(uk)) 6= φ

for all k.

Proof. By proposition 1 in [11], we know that the metric gradient of f is not an
empty subset in E. By (16), we can conclude.

We are now ready to introduce the steepest descent algorithm for solving the
optimization problem (1).

Algorithm 1. Let u0 ∈ E be given. Then, for k = 0, 1, 2, ...., while f ′(uk) 6= 0,

1. choose the search direction as −sk ∈ R(f ′(uk)),

2. determine the step-size αk defined by the line search rule,

3. let uk+1 := uk + αksk.

Remark 2. Note that sk ∈ −R(f ′(uk)) is an admissible descent direction for uk,
because ‖sk‖ = 1 and 〈f ′(uk), sk〉 = −‖f ′(uk)‖E′ < 0.

In what follows, E is a Reflexive Banach space and u is the minimizer in (1).
We start taking into account two results that help us to prove some properties of
convergence.

Lemma 2. Let {uk} be an infinite sequence generated by algorithm 1. If {f(uk)} is
a decreasing sequence, {uk} is a Cauchy sequence and 〈f ′(uk+1), sk〉 ≥ 0, then {uk}
converges strongly for u in E.

Proof. By definition 4, we have

‖f ′(uk)‖E′ = −〈f ′(uk), sk〉 = 〈f ′(uk+1)− f ′(uk), sk〉 − 〈f ′(uk+1), sk〉

≤ ‖f ′(uk+1)− f ′(uk)‖E′‖sk‖E − 〈f ′(uk+1), sk〉

≤ ‖f ′(uk+1)− f ′(uk)‖E′ . (17)

As {f(uk)} is a decreasing sequence, {uk} ∈ Lu0
(f), thus

‖f ′(uk+1)− f ′(uk)‖E′ → 0, (k → ∞)

since Lu0
(f) is bounded by Lemma 1, {uk} is a Cauchy sequence and f ′ is uniformly

continuous in a subset bounded of E by 1 of Assumption 1. By (17),

‖f ′(uk)‖E′ → 0, (k → ∞).

Now using the second item of Assumption 1 and the fact that f ′(u) = 0, we have

‖uk − u‖pE ≤ C 〈f ′(uk), uk − u〉 ≤ C‖f ′(uk)‖E′‖uk − u‖E

so ‖uk − u‖E ≤ (C‖f ′(uk)‖E′)
1

p−1 with p > 1. Therefore,

lim
k→∞

‖uk − u‖E = 0.
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Lemma 3. If there exist σ ∈ (0, 1) such that f(uk) − f(uk+1) ≥ σαk‖f
′(uk)‖E′ ,

then {uk} is a Cauchy sequence.

Proof. By Lemma 1 and Definition 4, we have

1

Cp
‖uk+1 − uk‖

p
E ≤ f(uk+1)− f(uk)− 〈f ′(uk), uk+1 − uk〉

= f(uk+1)− f(uk)− αk 〈f
′(uk), sk〉

= f(uk+1)− f(uk) + αk‖f
′(uk)‖E′

≤
1

σ
{f(uk)− f(uk+1)} − {f(uk)− f(uk+1)}

=

(

1

σ
− 1

)

{f(uk)− f(uk+1)} . (18)

Since {f(uk)} is a decreasing sequence and bounded below, as {f(uk)} is a Cauchy
sequence, then by (18), {uk} is a Cauchy sequence.

Theorem 1. If we choose the step-size αk by the Minimization Rule, then Algorithm
1 generates an infinite sequence {uk} that converges strongly to u in E.

Proof. Let φk : R+ → R be defined by φk(α) = f(uk + αsk). By the Minimization
rule, there exists αk minimizer of φk. On the other hand, φk is a differential function,
since f is Fréchet differentiable, with φ′

k(α) = 〈f ′(uk + αsk), sk〉. Hence,

〈f ′(uk+1), sk〉 = 〈f ′(uk + αksk), sk〉 = φ′
k(αk) = 0. (19)

Now using Lemma 1 and (19), we have

1

Cp
‖uk+1 − uk‖

p
E ≤ f(uk)− f(uk+1)− 〈f ′(uk+1), uk − uk+1〉

= f(uk)− f(uk+1) + 〈f ′(uk+1), αksk〉

= f(uk)− f(uk+1) + αk 〈f
′(uk+1), sk〉

= f(uk)− f(uk+1). (20)

By construction, {f(uk)} is a decreasing sequence and bounded below; thus {f(uk)}
is a Cauchy sequence. Then by (20), {uk} is a Cauchy sequence. Now invoking
Lemma 2, we have that {uk} converges strongly for u in E.

Theorem 2. If we choose the step-size αk by the Approximate minimization rule,
then Algorithm 1 generates an infinite sequence {uk} that converges strongly to u in
E.

Proof. By the Approximate minimization rule, αk is chosen such that

〈f ′(uk+1), sk〉 = 〈f ′(uk + αksk), sk〉 = 0.

Analogically, (20) implies that {uk} is a Cauchy sequence. Note that αk is a critical
point of φk(α) = f(uk+αsk), which is a convex function. Then αk is a minimizer of
φk, thus by construction the same as the minimization rule, {f(uk)} is a decreasing
sequence. Now using Lemma 2, we have that {uk} converges for u in E.
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Theorem 3. If we choose the step-size αk by the Goldstein rule, then Algorithm 1
generates an infinite sequence {uk} that converges strongly to u in E.

Proof. By the Goldstein rule, we have

σ ≤
f(uk+1)− f(uk)

αk(−‖f ′(uk)‖E′)
≤ 1− σ ⇔ σ ≤

f(uk)− f(uk+1)

αk‖f ′(uk)‖E′

≤ 1− σ. (21)

In particular, f(uk)− f(uk+1) ≥ σαk‖f
′(uk)‖E′ , with σ ∈ (0, 1

2 ), by Lemma 3, {uk}
is a Cauchy sequence; hence,

αk = αk‖sk‖E = ‖uk+1 − uk‖E → 0 (k → ∞). (22)

On the other hand, using the mean value theorem, there exists ck ∈ (0, αk), such
that

f(uk+1)− f(uk) = 〈f ′(uk + cksk), αksk〉

by (21),

−〈f ′(uk + cksk), sk〉 =
f(uk)− f(uk+1)

αk

≤ (1− σ) ‖f ′(uk)‖E′ . (23)

By Definition 4 and (23), we have

‖f ′(uk)‖E′ = −〈f ′(uk), sk〉

= 〈f ′(uk + cksk)− f ′(uk), sk〉 − 〈f ′(uk + cksk), sk〉

≤ ‖f ′(uk + cksk)− f ′(uk)‖E′ + (1− σ) ‖f ′(uk)‖E′ .

Therefore,

‖f ′(uk)‖E′ ≤
1

σ
‖f ′(uk + cksk)− f ′(uk)‖E′ . (24)

By construction, {f(uk)} is a decreasing sequence, thus {uk} lies in Lu0
(f), i.e,

f(uk + αksk) = f(uk+1) ≤ f(u0), (25)

Let δ > 0. We claim that

f(uk + cksk) ≤ f(u0) + δ (26)

for k large enough. In fact, by (22), there exist N = N(δ) > 0 such that

|αk − ck| < δ ∀k ≥ N.

Hence
‖uk+1 − [uk + cksk]‖E < δ ∀k ≥ N,

by contininuity of f and (25), we obtain (26). Thus {uk + cksk} lies in Lu0+δ(f) :=
{v ∈ E : f(v) ≤ f(u0) + δ}. As the proof of 3 in Lemma 1 (see Appendix), we can
see that it is a bounded set in E. Now by (22), we have that ck → 0 as k → ∞.
Then

‖f ′(uk + cksk)− f ′(uk)‖E′ → 0 (k → ∞)
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since f ′ is uniformly continuous in a bounded subset of E. By (24), ‖f ′(uk)‖E′ → 0
as k → ∞. Invoking the second item of Assumption 1 and the fact that f ′(u) = 0,
we have

‖uk − u‖
p
E ≤ C 〈f ′(uk), uk − u〉 ≤ C‖f ′(uk)‖E′‖uk − u‖E .

Therefore,

‖uk − u‖E′ ≤ (C‖f ′(uk)‖E′)
1

p−1 → 0 (k → ∞), p > 1.

Theorem 4. If we choose the step-size αk by the Wolfe rule, then Algorithm 1
generates an infinite sequence {uk} that converges strongly to u in E.

Proof. The Wolfe rule takes the form:

f(uk)− f(uk+1) ≥ −σαk 〈f
′(uk), sk〉 = σαk‖f

′(uk)‖E′ (27)

and
−〈f ′(uk+1), sk〉 ≤ −β 〈f ′(uk), sk〉 = β‖f ′(uk)‖E′ , (28)

where σ ∈ (0, 1
2 ), β ∈ (σ, 1). By Definition 4 and (28), we have

‖f ′(uk)‖E′ = −〈f ′(uk), sk〉 = 〈f ′(uk+1)− f ′(uk), sk〉 − 〈f ′(uk+1), sk〉

≤ ‖f ′(uk+1)− f ′(uk)‖E′‖sk‖E + β‖f ′(uk)‖E′

Hence,

‖f ′(uk)‖E′ ≤
1

1− β
‖f ′(uk+1)− f ′(uk)‖E′ . (29)

By construction, {f(uk)} is a decreasing sequence, thus {uk} ∈ Lu0
(f) and by (27)

and Lemma 3, {uk} is a Cauchy sequence, thus

‖f ′(uk+1)− f ′(uk)‖E′ → 0 (k → ∞)

since Lu0
(f) is bounded by Lemma 1 and f ′ is uniformly continuous in the subset

bounded of E by the first item of Assumption 1. Thus, from (29) we get

‖f ′(uk)‖E′ → 0 (k → ∞).

Now using Assumption 1 and the fact that f ′(u) = 0, we have

‖uk − u‖
p

E ≤ C 〈f ′(uk), uk − u〉 ≤ C‖f ′(uk)‖E′‖uk − u‖E ,

so ‖uk − u‖E ≤ (C‖f ′(uk)‖E′)
1

p−1 with p > 1. Therefore,

lim
k→∞

‖uk − u‖E = 0.
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Theorem 5. If we choose the step-size αk by the Strong Wolfe rule, then Algorithm
1 generates an infinite sequence {uk} that converges strongly to u in E.

Proof. The Strong Wolfe rule takes the form (27) and

| 〈f ′(uk+1), sk〉 | ≤ −β 〈f ′(uk), sk〉 = β‖f ′(uk)‖E′ . (30)

Note that by Lemma 3, {uk} is a Cauchy sequence. If 〈f ′(uk+1), sk〉 ≥ 0, we can
invoke Lemma 2. If 〈f ′(uk+1), sk〉 < 0, (30) implies that

β‖f ′(uk)‖E′ ≥ −〈f ′(uk+1), sk〉 ≥ −β‖f ′(uk)‖E′ , (31)

where σ ∈ (0, 1
2 ), β ∈ (σ, 1), which is the case of Theorem 4.

The convergence of the descent method with the Armijo rule needs some extra
requirement about the regularity of f ′:

Theorem 6. If we choose the step-size αk by the Armijo rule and suppose that f ′

is uniformly continuous in E, then Algorithm 1 generates an infinite sequence {uk}
that converges strongly to u in E.

Proof. First, note that the scalars generated by the Armijo rule take the form:

λk = −〈f ′(uk), sk〉 = ‖f ′(uk)‖E′

αk = βmkλk = βmk‖f ′(uk)‖E′ , β ∈ (0, 1)

mk = min
{

m ∈ Z+ : f(uk)− f(uk + βmλksk) ≥ σβmλ2
k

}

, σ ∈ (0,
1

2
). (32)

Thus, (32) implies either

αk = ‖f ′(uk)‖E′ if mk = 0 (33)

or

f(uk)− f

(

uk +
αk

β
sk

)

< σ
αk

β
‖f ′(uk)‖E′ . (34)

Now by (34) and the mean value theorem, there exist ck ∈ (0, αk) such that

〈

f ′

(

uk +
ck

β
sk

)

,
αk

β
sk

〉

= f

(

uk +
αk

β
sk

)

− f(uk).

Thus

−

〈

f ′

(

uk +
ck

β
sk

)

, sk

〉

< σ ‖f ′(uk)‖ (35)

by Definition 4 and (35), we have that

‖f ′(uk)‖E′ = −〈f ′(uk), sk〉

=

〈

f ′

(

uk +
ck

β
sk

)

− f ′(uk), sk

〉

−

〈

f ′

(

uk +
ck

β
sk

)

, sk

〉

≤

∥

∥

∥

∥

f ′

(

uk +
ck

β
sk

)

− f ′(uk)

∥

∥

∥

∥

E′

+ σ‖f ′(uk)‖E′ .
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Thus

‖f ′(uk)‖E′ ≤
1

1− σ

∥

∥

∥

∥

f ′

(

uk +
ck

β
sk

)

− f ′(uk)

∥

∥

∥

∥

E′

σ ∈ (0,
1

2
). (36)

On the other hand, (32) implies that f(uk) − f(uk+1) ≥ σαk‖f
′(uk)‖E′ , by

Lemma 3, we have that {uk} is a Cauchy sequence; i.e.,

αk = αk‖sk‖E = ‖uk+1 − uk‖E → 0 (k → ∞).

Hence, lim
k→∞

ck = 0 since ck ∈ (0, αk). Then by (33) or (34)− (36) and the fact that

f ′ is uniformly continuous in E, we have that

‖f ′(uk)‖E′ → 0 (k → ∞).

Now using the second item of Assumption 1 and the fact that f ′(u) = 0, we have

‖uk − u‖
p

E ≤ C 〈f ′(uk), uk − u〉 ≤ C‖f ′(uk)‖E′‖uk − u‖E

so ‖uk − u‖E ≤ (C‖f ′(uk)‖E′)
1

p−1 with p > 1. Hence,

lim
k→∞

‖uk − u‖E = 0.

5. Conclusions

To conclude, this result does not give any information about a nonrelfexive case,
so we think that a full understanding of convergence properties for more general
Banach spaces is relevant.

6. Appendix

Lemma 1. 1. By the fundamental theorem of Calculus and the second item in
Assumption 1, we have:

f(v)− f(u) =

∫ 1

0

d

dt
f(u+ t(v − u))dt =

∫ 1

0

〈f ′(u+ t(v − u)), v − u〉 dt

= 〈f ′(u), v − u〉+

∫ 1

0

〈f ′(u+ t(v − u))− f ′(u), v − u〉 dt

≥ 〈f ′(u), v − u〉+
1

C

∫ 1

0

1

t
‖t(u− v)‖pE dt

= 〈f ′(u), v − u〉+
1

C

∫ 1

0

tp−1 ‖u− v‖
p

E dt;

hence

f(v)− f(u) ≤ 〈f ′(u), v − u〉+
1

Cp
‖u− v‖pE . (37)
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2. By the above item, we have that

f(v)− f(u) ≥ 〈f ′(u), v − u〉+
1

Cp
‖v − u‖

p
E > 〈f ′(u), v − u〉

for all v 6= u ∈ E ;then f is strictly convex. For boundedness, take u = 0.
Then

f(v) ≥ f(0) + 〈f ′(0), v〉+
1

Cp
‖v‖pE ≥ f(0)− ‖f ′(0)‖E′‖v‖E +

1

Cp
‖v‖pE .

Thus the functional f is coercive. Then there exists a unique solution of (1)
(see Corollary 3.23 in [6]).

3. Take u = 0 in (37), and v ∈ Lu0
. Then

1

Cp
‖v‖pE ≤ f(v)− f(0)− 〈f ′(0), v〉 ≤ |f(u0)|+ |f(0)|+ ‖f ′(0)‖E′‖v‖E .

If ‖v‖E > 1, then, since p > 1, we have that

‖v‖ ≤ (Cp (|f(u0)|+ |f(0)|+ ‖f ′(0)‖E))
1

p−1 = M.

Hence, ‖v‖E ≤ M for all v ∈ Lu0
.
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