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Abstract. The paper deals with modelling a specific problem called the Optimal Seating
Arrangement (OSA) as an Integer Linear Program and demonstrated that the problem
can be efficiently solved by combining branch-and-bound and cutting plane methods. OSA
refers to a specific scenario that could possibly happen in a corporative environment, i.e.
when a company endeavors to minimize travel costs when employees travel to an organized
event. Each employee is free to choose the time to travel to and from an event and it depends
on personal reasons. The paper differentiates between using different travel possibilities in
the OSA problem, such as using company assigned or a company owned vehicles, private
vehicles or using public transport, if needed. Also, a user-friendly web application was
made and is available to the public for testing purposes.
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1. Introduction

The following scenario is considered: A company with a large number of employees
wants to organize a visit by their employees to a certain event that lasts for a
predefined number of days. The company is assumed to own a certain number of
vehicles that can be used for this specific purpose. Company vehicles differ in that
they could already have been assigned to particular employees (assigned vehicles),
or they are available for all employees (non-assigned vehicles). We assume that
each vehicle has a certain capacity. Each employee is free to choose the time for
traveling to and from an event depending on personal reasons. Employees may use
their personal vehicles, if no company vehicles are available at the desired time,
or they may use the public transport such as trains, buses or an airplane, if no
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vehicle options are available. We will also assume that employees will ’prefer’ to
use either assigned or non-assigned company vehicles as opposed to private vehicles,
and ’prefer’ private vehicles as opposed to public transport. In addition to this, an
assigned vehicle can only be used by the employee to whom the vehicle is assigned.
The very same condition will be enforced for personal vehicles.

The task is to assign each employee a certain vehicle to and from an event (this
need not be the same vehicle), while satisfying the above set of constraints, such that
the overall cost of assigning a vehicle is minimal (cheapest) in terms of the overall
number of vehicles needed. We refer to this as the Optimal Seating Arrangement
problem.

1.1. Previous work

Note that there is a certain similarity between this problem and the classical combi-
natorial NP-hard problem such as the Set Cover problem (see [13], [2], [8] for more
details) and its variants. In the Set Cover problem, a person is given a set of el-
ements called the universe, and a set of sets where the union is equivalent to the
universe. In our scenario, the elements can be interpreted as employees, whereas
vehicles and public transport as sets. Though the Set Cover problem involves find-
ing a set cover of a universe that uses the fewest number of sets, in OSA we try
to’cover’all employees with the fewest number of vehicles. The set cover problem
with hard capacities (see [1])assumes that a set can only cover a limited number of
its elements and the number of copies of each set is bounded. This generalization
of the classical Set Cover enables better modelling of vehicles as sets, as it would
interpreting vehicle capacity as a set capacity. However, additional constraints of
the OSA problem, such as each employee selecting the time due to personal reasons,
makes this problem significantly different from the Set Cover problem, even in the
presence of hard capacities.

1.2. Our contribution

Based on our knowledge, IN2, a Croatian software company, was the first to em-
phasize the importance of this practical problem. We will formulate the problem as
a non-trivial integer linear program ([10], [9]), while managing to avoid the use of
vehicle-employee assignment variables, which dramatically reduced the dimension of
the problem. As a result, we will demonstrate that the problem can be efficiently
solved in practice on different testbeds with the use of standard methods, such as
the cutting plane [12] and branch and bound methods [11], despite the fact that,
theoretically, it is unclear whether the problem in general is polynomially solvable.
For the empirical test, we used a state-of-the-art mathematical programming solver
GUROBI [7] and output the CPU times. We also tested our algorithm on real-world
instances provided to us by IN2.

To make our algorithm widely usable, we developed a user-friendly web appli-
cation‡, where it was possible to test the behavior of our model based on different
inputs. After logging on, the application allowed the entry of new companies and

‡Application is available on vlab.mathos.hr/∼sjelic/projekt2
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events, including employees and vehicles into a database, and the ability to assign
them to a specified company. After linking a company to an event, the number of
vehicles necessary to transport all employees to an event could be calculated. PHP
script invokes an external C++ file used to implement our model and subsequently
Gurobi was used to solve the problem.

Our paper consists of two main sections. In Section 2, referring to the integer
linear programming model, we provide a formal definition of the Optimal Seating
Arrangement problem. We also explain what the objective function and the set
of linear constraints look like. In Section 3, referring to empirical evaluations, we
conducted different numerical experiments on our algorithm. We completed our
work in Section 4, referring to our conclusions, where we discuss unresolved issues
relating to further research.

2. Integer linear programming model

Let m denote the number of employees, of which the first l are employees to whom
company vehicles have been assigned, and the next q are employees willing to use
their own vehicles, if necessary. We will assume that the employees are given T
different time slots they can choose for travelling to and from an event. Furthermore,
we will assume that there are n vehicles, of which the first l vehicles are assigned,
the next q vehicles are personal, and h = n − l − q denotes the number of non-
assigned company vehicles. We assume that any one employee has at most one
company vehicle assigned to them, and that the jth vehicle, j ≤ l, is assigned to
the jth employee. On the other hand, we also assume that the jth personal vehicle,
l + 1 ≤ j ≤ l + q, corresponds to the jth employee. The capacity of each vehicle is
denoted by cj > 0, for all j ∈ {1, . . . , n}. We can also assume that T vehicles, each
with an infinite capacity, are assigned to each time-slot, representing the possibility
that public transport was used, in case no other alternatives were available. As part
of the input, we define zit, for i ∈ {1, . . . ,m}, t ∈ {1, . . . , T}, to be 1 or 0, depending
whether the ith employee goes to an event at time t or not. Similarly, we define
z′it, depending on whether the ith employee comes back from an event at time t or
not. Note that the non-zero values of zit and z′it, for 1 ≤ i ≤ l + q, imply a time
constraint as to when the assigned or personal vehicle could actually be used to and
from an event, conforming to the requirement that the assigned or personal vehicle
is used only by the employee that is assigned or owns the vehicle. For example, z1,3
implies that Person 1 chooses to travel at Time 3. If a company vehicle has been
assigned to this person, the vehicle may only be used at Time 3. Our model will
adhere to this requirement, as will later described.

The set of 0/1 variables that we will use for our model are defined as follows:

• variables vjt, for j ∈ {1, . . . , n}, t ∈ {1, . . . , T}, indicate whether the jth vehicle
will be used at time t to an event;

• variables v′jt, for j ∈ {1, . . . , n}, t ∈ {1, . . . , T} indicate whether the jth vehicle
will be used at time t from an event;

• variables ai, i ∈ {1, . . . n}, denote whether the ith employee will go to an event
using public transport;
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• variables a′i, i ∈ {1, . . .m}, denote whether the ith employee will return back
from an event using public transport;

We model the problem as the following Integer Linear Program:

α ·
l∑

j=1

T∑
t=1

vjt + β ·
l+q∑

j=l+1

T∑
t=1

vjt + γ ·
n∑

j=l+q+1

T∑
t=1

vjt + δ ·
m∑
i=1

(ai + a′i) → min (1)

subject to:

T∑
t=1

vjt ≤ 1, j ∈ {1, . . . , n} (2)

T∑
t=1

v′jt ≤ 1, j ∈ {1, . . . , n} (3)

vjt −
T∑

k=t+1

v′jk ≤ 0, j ∈ {1, . . . , n}, t ∈ {1, . . . , T − 1} (4)

T∑
t=1

(1− zjt) · vjt = 0, j ∈ {1, . . . , l + q} (5)

T∑
t=1

zjt · vjt ≤
T∑

t=1

z′jt · v′jt, j ∈ {1, . . . , l + q} (6)

n∑
j=1

vjt · cj +
m∑
i=1

zit · ai ≥
m∑
i=1

zit,
m∑
i=1

zit ̸= 0, t ∈ {1, . . . , T} (7)

n∑
j=1

vjk · cj +
m∑
i=1

zit · ai = 0,

m∑
i=1

zit = 0, t ∈ {1, . . . , T} (8)

n∑
j=1

v′jk · cj +
m∑
i=1

z′it · a′i ≥
m∑
i=1

z′it,
m∑
i=1

z′it ̸= 0, t ∈ {1, . . . , T} (9)

n∑
j=1

v′jk · cj +
m∑
i=1

z′it · a′i = 0,

m∑
i=1

z′it = 0, k ∈ {1, . . . , T} (10)

vj,t ∈ {0, 1} j ∈ {1, . . . , n}, t ∈ {1, . . . , T}
v′j,t ∈ {0, 1} j ∈ {1, . . . , n}, t ∈ {1, . . . , T}
ai ∈ {0, 1} i ∈ {1, . . . ,m}
a′i ∈ {0, 1} i ∈ {1, . . . ,m}



Finding an optimal seating arrangement for employees traveling to an event 423

The objective function (1) is composed of four different sums, and each is mul-
tiplied by a certain positive value that we denoted as α, β, γ and δ. The first sum
iterates over the assigned vehicles, the second sums over the personal vehicles while
the third sums over the non-assigned ones. The last sum quantifies the number of
employees that will travel using public transport. Note that by setting different
values for parameters α, β, γ and δ, the objective function can be modelled depend-
ing on how much the person actually ”pays” for the use of an assigned, personal
or non-assigned vehicle, as well as for public transport. We will typically consider
α = γ = 1, i.e. the price for an assigned or non-assigned vehicle does not dif-
fer. Parameters β and δ will be assigned sufficiently large numbers to maintain the
property condition that no personal vehicle or public transport is used if assigned or
non-assigned vehicles are available. In our experiments (as we will later describe in
more detail), we set β = δ = n. Note that for equal values of β and δ, a person will
never use public transport, if a personal vehicle can be used, unless the capacity of
the personal vehicle is equal to one.

Constraints (2) and (3) ensure that each vehicle can be used no more than once,
while constraint (4) ensures that the vehicle, if used for travelling to an event, has
to also come back in one of following time-slots. For example, if vjt1 = 1, i.e. the
jth vehicle is used at time t1, then equation (4) demands that v′jt be set to one,
but only for time t > t1, since there is no sense in the vehicle returning before it
actually headed off to an event. Constraints (5) and (6) ensure that the assigned or
personal vehicle can only be used in specific time-slots, as selected by the employee
that owns the vehicle or to whom the vehicle is assigned. For example, if zi3 = 1
and z′i6 = 1, i.e. the ith employee selects Time 3 for going to and Time 6 for
returning from an event, equality (5) ensures that variable vi3 is the only one that
can be set to 1. On the other hand, inequality (6) demands that for vj3 = 1, it
must hold true that v′j6 = 1 (since z′j6 = 1). Constraints (7), (8), (9), (10) deal
with capacities. Specifically, constraint (7) ensures that for each time-slot t, the
sum of capacities of all vehicles that the ILP will decide to select in addition to
the number of employees who end-up using public transport is at least equivalent
to the overall number of employees traveling at time t. Constraint (8) prevents the
vehicle from being assigned to time-slot t if no employee is actually traveling at time
t. Constraints (9) and (10) ensure the same conditions are true when traveling from
an event.

The above ILP will for each time-slot output the set of vehicles assigned to it
or it will state what employees will be using public transport (variables ai and a′i).
However, for some time-slot t, all employees that are not using public transport still
have to get distributed among vehicles that got assigned to time t. In order to resolve
that final issue we use the following straighforward approach for each time-slot t:
Employees with assigned or personal vehicles, whose vehicles are assigned to t, will
be distributed to their vehicles. The rest of employees will get packed to the rest of
to the vehicles by the arbitrary choice.
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3. Empirical evaluations

We conducted extensive experiments on different test data and used different pa-
rameters for our algorithms. All running times were measured on a quad-core Intel
2.80 MHz i5 CPU with 8GB of RAM.

3.1. Algorithm

There are two practical approaches for solving general integer linear programs: cut-
ting plane methods and variants of the branch and bound method. The most notable
state-of-the-art ILP solvers such as Gurobi [7] or CPLEX [6] implement and combine
both approaches.

The Gurobi was used to solve the problem observed in this paper. The solvers
in the Gurobi Optimizer use the most advanced implementations of the latest al-
gorithms and exploit modern architectures and multi-core processors. Gurobi uses
parallelism in solving problems and multiple CPU cores. Hence, we allowed Gurobi
to use all four CPU cores of our test machine to solve our problem. We can divide
the process in which Gurobi solves ILP problem into two phases: presolving and
solving the ILP problem, which we obtain after presolving. Presolving (also known
as preprocessing techniques) consists of a wide class of methods used for simplifying a
given instance. Simplifying a given instance can significantly reduce the time needed
for solving the problem. Some methods that are used for reducing the size of a given
problem include removal of empty rows and columns (rows and columns with only
zeros), detection and removal of rows dominated by a linear combination of other
rows, and the like. Presolving results in a new reduced problem, and which is solved
by Gurobi with a combination of branch-and-bound and cutting plane methods. To
solve linear programming relaxations, which appear in these two methods, Gurobi
uses the primal-dual simplex.

For test purposes, we used two types of inputs, real-world instances and gen-
erated instances. Our real-world instances were relatively small in size. Hence, to
understand the behavior of our algorithm on larger instances, we generated large
inputs randomly. Company IN2 d.o.o. provided the data for 2007, 2009 and 2011,
which contained information on a number of IN2 employees attending the HROUG§

event, the number of vehicles and distribution of people in the vehicles. The data
also contained information on assigned vehicles, unassigned vehicles and personal
vehicles. We entered the given data into our web application and compared the
obtained results with the initial data. For HROUG 2007, the initial data stated that
17 employees attended the event and that they used 6 separate vehicles. Our algo-
rithm computed that they could have organized the trip using only 5 vehicles. The
data for HROUG 2009 stated that 23 employees attended the event and 8 vehicles
were used. Our model returned the results that they could have organized the trip
using only 6 vehicles whereas the data for HROUG 2011 stated that 33 employees
attended the event and 11 vehicles were used. Our model returned the results that
8 vehicles were enough, i.e. they could have organized the trip using 8 separate
vehicles.

§For more details about HROUG see www.hroug.hr
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Figure 1: Test results: the light gray squares denote the time needed for a presolve phase,
while the dark gray dots denote the total execution time of our algorithm.
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# of people
500 1000 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Init # (rows) 2020 4020 20020 40020 60020 80020 100020 120020 140020 160020 180020 200020

Init # (cols) 4000 8000 40000 80000 120000 160000 200000 240000 280000 320000 360000 400000

Init # ( ̸=0) 19350 38700 193500 387000 580500 774000 967500 1161000 1354500 1548000 1741500 1935000

# after presolve (rows) 468 918 4518 9018 13518 18018 22518 27018 31518 36018 40518 45018

# after presolve (cols) 1001 1962 9331 18363 27378 36378 45378 54378 63378 72378 81378 90378

# after presolve ( ̸=0) 4534 9006 44144 87708 131238 174738 218238 261738 305238 348738 392238 435738

Rows removed 76,83% 77,16% 77,43% 77,47% 77,48% 77,48% 77,49% 77,49% 77,49% 77,49% 77,49% 77,49%

Columns removed 74,98% 75,48% 76,67% 77,05% 77,19% 77,26% 77,31% 77,34% 77,37% 77,38% 77,40% 77,41%

Nonzeros removed 76,57% 76,73% 77,19% 77,34% 77,39% 77,42% 77,44% 77,46% 77,46% 77,47% 77,48% 77,48%

Table 1: The data in the table are given for l=10%, q = 10% and h=10%

As we have already stated, large inputs were randomly generated. For that pur-
pose we defined three new parameters, l, q and h, each one denoting the percentage
of employees with assigned, personal, or non-assigned vehicles, respectively, with
respect to the total number of employees, and generated values zit, z

′
it and cj ran-

domly. We took the precaution that zit1 and z′it2 , for some i, are generated such
that t2 > t1, i.e. the ith employee cannot return before actually heading off to an
event. Figure 1 shows the total execution time and presolve time needed for different
number of employees (x-coordinate) for an event that lasts 5 days. Parameters l, q
and h are specified in graphs, and the lower and the upper bound for capacities are
selected as 2 and 5, respectively.

As one can observe from Figure 1, the computation times are relatively fast and
Gurobi solves our largest instance in less than 200 seconds. Table 1 shows the number
of variables as well as the number of constraints generated for a given number of
people. We also reported the number of non-zero values in the system matrix in
order to show the sparsity of the input matrix. For example, in the first column of
Table 1, there are 2020 rows and 4000 columns, while the number of non-zero entries
is 19350, i.e. only 0.2%. Similar behavior for other input sizes is noticeable. Hence,
not surprisingly Gurobi’s presolve phase reduces the initial input on average from
70% to 80%. This is most likely the main reason why the computation even on large
instances is completed so quickly.

4. Conclusion

This paper suggests modelling the optimal seating arrangement problem as an In-
teger Linear Program. The authors in this paper based on their previous work in
linear optimization (see [3], [4], [5]) have developed an efficient mathematical model
and conducted the necessary experiments. The approach in this paper has been to
combine branch-and-bound and cutting planes methods in order to solve a given
ILP. The empirical evaluations that were conducted showed that it is possible to
computationally handle even large instances of the problem using a combination
of standard branch-and-bound and cutting planes methods. Furthermore, a user-
friendly web application that uses the Integer Programming solver, and run C++
as a subroutine, was implemented.

It still remains unknown whether the problem is NP-hard, which would then
justify ILP formulation of the problem. The authors have left this as an open
problem and something that they would like to work on in the future.
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approximations for guarding 1.5-dimensional terrains. Algorithmica, 60(2), 451–463.
doi:10.1007/s00453-009-9358-4.

[6] IBM ILOG CPLEX (2011). CPLEX Users Manual. Version 12, Release 4.
[7] Gurobi Optimization, Inc. (2013). Gurobi Optimizer Reference Manual.
[8] Johnson, D. S. (1974). Approximation algorithms for combinatorial problems. Journal

of Computer and System Sciences, 9(3), 256–278.
[9] Schrijver, A. (1998). Theory of Linear and Integer Programming. John Wiley and

Sons.
[10] Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimization.

Wiley.
[11] Land, A. H. and Doig, A. G. (1960). An automatic method of solving discrete pro-

gramming problems. Econometrica, 28(3), 497–520.
[12] Marchanda, H., Martinb, A., Weismantelc, R. and Wolseyd, L. (2002). Cutting planes

in integer and mixed integer programming, 123(1-3), 397–446.
[13] Vazirani, V. V. (2001). Approximation Algorithms. Springer-Verlag.


