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Cable oscillations due indirect excitation

An analytical cable oscillation model is formulated for inhomogeneous boundary 
conditions taking into account quadratic and cubic nonlinearities of the system. The 
reduced system is solved by numerical integration and, for the case of external and 
parametric oscillations, by the multiple scales perturbation method. The comparison 
of solutions with numerical model results is based on the finite difference model and 
the predictor-corrector algorithm for time integration of equation systems.
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Oscilacije kabela uslijed indirektne pobude

U radu je formuliran analitički model oscilacija kabela za nehomogene rubne uvjete pri 
čemu su uzete u obzir kvadratne i kubne nelinearnosti sustava. Oblikovan je reducirani 
sustav koji je riješen numeričkom integracijom, te za slučaj prisilnih i parametarskih 
oscilacija perturbacijskom metodom višestrukih skala. Dobivena rješenja uspoređena 
su s rješenjima numeričkog modela pri čemu je korištena metoda konačnih diferencija 
i algoritam prediktor-korektor za vremensku integraciju sustava jednadžbi. 

Ključne riječi:
kabeli, nelinearne oscilacije, metoda višestrukih skala

Wissenschaftlicher Originalbeitrag
Marija Demšić, Verica Raduka

Durch indirekte Anregung bewirkte Kabelschwingungen

In dieser Arbeit wird ein analytisches Model zur Beschreibung von Kabelschwingungen 
bei nicht homogenen Randbedingungen unter Berücksichtigung quadratischer und 
kubischer Nichtlinearitäten aufgestellt. Ein reduziertes System wurde aufgestellt 
und durch numerische Integration gelöst, sowie für den Fall erzwungener und 
parametrischer Schwingungen mittels der Multi-Skalen-Methode betrachtet. 
Die Ergebnisse sind den auf einem numerischen Modell beruhenden Resultaten 
gegenübergestellt, wobei die Finite-Differenzen-Methode und der Prädiktor-
Korrektor-Algorithmus zur Zeitintegration des Gleichungssystems angewandt 
wurden.
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1. Introduction

Thanks to an efficient load transfer, long span cables are often 
used as main load-carrying parts in modern structures (cable 
stayed bridges, cable nets, masts, marine platform cables, etc.). 
In addition to their extensive use in civil engineering, they are 
also utilised in the traffic, mechanical, and electrical engineering 
applications (transmission lines, cableways, mooring lines, etc.). 
The load is transmitted in cables by tensile forces and involves 
a change in geometry and, therefore, cables have a highly 
nonlinear response. While response due to static actions can 
be determined quite well using physical models and numerical 
analyses, the effects of dynamic action are more difficult 
to predict. Long span cables are prone to large amplitude 
oscillations due to their great flexibility, small mass, and low 
damping characteristics. This can result in the loss of usability 
or in serious damage to cables or their anchors [1]. Basic 
dynamic characteristics of cables depend on the initial static 
profile, tension, and cable span. Depending on static profile, a 
distinction can be made between the small-sag and large-sag 
cables, i.e. between parabolic cables and catenaries. Analytic 
solutions for natural frequencies and mode shapes are available 
for small-sag cables because, in this case, the continuous 
formulation is greatly simplified by parabolic approximation, 
while discrete formulations and numerical methods are used 
for large-sag cables [2].
The fundamental dynamics of parabolic cables, which takes into 
account cable stretching and inelastic changes in geometry, was 
clarified by Irvine and Caughey in 1974 [3, 4]. They defined 
frequency spectra and the frequency crossover phenomenon by 
unifying elastic and geometric effects via the so called cable 
parameter λ2 = L(mgLcosj/Hsecj)2/(HsecjLe/EA), also known as 
the Irvine parameter. By introducing the geometric parameter n 
= d/L = mgL/(8Hsec2j) (sag to span ratio) and the cable elasticity 
parameter h = AE/(Hsecj), the cable parameter can be expressed 
as λ2 = 64n2h·L/Le. For cables with a very small self-weight to 
pretension force ratio, the quantity Le=L(1+8v2), is only slightly 
greater than the cable span. Generally, the Irvine parameter λ2 is 
more influenced by cable geometry than by stretching. To 

prevent violation of parabolic assumption of a static profile, the 
sag to span ratio has to be 1/8 or less. Therefore, higher cable 
parameter values are related to materials with a high modulus 
of elasticity. Most cables used in technical applications have 
very small values of parameter λ2. Parameter λ2 strongly 
influences symmetric mode frequencies of parabolic cables. The 
dimensionless frequency value w  is defined by the following 
transcendental equation [4]: 

 (1)

For values λ2 < 4π2, the first symmetric mode shape has no 
internal nodes, while two internal modes appear for λ2>4π2, and 
the associated frequency is greater than the frequency of the 
first asymmetric mode. Changes in symmetric modes frequency 
values can be seen in Figure 1a, which shows a frequencies 
spectrum. It can be noted that the frequency crossover also 
occurs in higher symmetric modes. The asymmetric mode 
frequency values do not depend on the parameter λ2 and their 
dimensionless value is:

,  n = 1, 2, 3 ... (2)

Subsequent research conducted with analytic models of inclined 
cables showed that veering phenomena occur near crossover 
points, as shown in Figure 1b [5, 6]. Inclined cables with a small 
self-weight to tension ratio are more influenced by the static 
profile dissymmetry, which is particularly noticeable in the 
region where the system frequency values are almost equal. 
Hybrid mode shapes are formed in this region, as confirmed by 
experimental and numerical studies [7]. After a further increase 
of the parameter λ2, the frequencies are once again separated, 
and so the crossover never occurs. Outside of the veering region, 
the modes are not "fully" symmetric and asymmetric, although 
they are very similar to them.
Partial differential equations of cable motion include quadratic 
and cubic nonlinearities resulting from initial cable curvature 
and stretching. Solutions to such equations can be determined 
by approximate numerical or approximate analytic methods. 

Figure 1. Cable frequencies spectrum: a) horizontal / highly pretension cables; b) inclined cables
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In the analytic analysis, solutions are often postulated by the 
discretisation w(x,t) = Sqn(t) fn(x), where the displacement field 
is assumed a priori using trial functions fn(x) after which the 
method of weighted residual is applied. In this way, the basic 
differential equation and boundary conditions are reduced to 
the system of ordinary differential equations governing time 
independent functions qn(t). The Galerkin procedure is frequently 
used as a means of implementing the weighted residuals 
method in the analysis of cable dynamics. Linear cable modes 
are commonly used for trial functions because they satisfy 
the fundamental requirement that trial functions need to be 
members of a complete set of functions. Such mathematical 
formulation of cable motion corresponds to the Helmholtz-
Duffing oscillator in the theory of dynamical systems [2]. 
Functions qn(t) can be determined numerically or by applying 
perturbation methods. Perturbation methods like Poincare-
Lindstedt, Krylov-Bogoliubov-Mitropolskii, and the Method 
of Multiple Scales (MMS), are used for obtaining asymptotic 
solutions for a particular domain of system parameters in an 
analytic form. An analytic solution can also be determined using 
the Harmonic Balance Method (HMB) in which the function 
qn(t) is postulated through superposition of harmonic functions 
with unknown coefficients. In addition to being dependent on 
geometric nonlinearity, dynamic responses depend on initial 
conditions in a certain region of parameters. In this region, 
called the hysteresis region, more system response solutions 
are possible. The so-called jumps may occur in the hysteresis 
region, which leads to sudden changes in dynamic response due 
to an increase or decrease in the oscillation amplitude [14].
Dynamic excitation can act directly on cable, or indirectly through 
inhomogeneous boundary conditions, when oscillations are 
caused by support displacements induced by motion of the 
structure. For example, live load, wind load, or earthquake 
action, when applied on a cable stayed bridge, can cause very 
small frequent cable displacements at the connection between 
cables and the deck or pylon. Although this type of dynamic 
cable loading is often called parametric excitation in technical 
and scientific literature, it is more appropriate to refer to it as 
the indirect excitation since periodic displacements of supports 
generate external and/or parametric excitation on the cable.
Cable oscillations caused by external excitation are very often 
treated as a linear phenomenon and, because of a very low 
cable damping, oscillation amplitudes determined in this way 
can have extremely large values. Finite element models and 
simplified analytic models where cables are approximated 
with the taut wire model (only cubic nonlinearities) show that 
the activation of nonlinearities occurs quite quickly at very 
small damping values, which significantly limits the size of the 
oscillation amplitude [8].
The phenomenon of parametric oscillations is increasingly being 
recognised in the engineering practice, and so recommendations 
for the long span cable design provide basic guidelines for 
determination of the parametric resonance parameters domain 
and amplitude values (e.g. cable stays in [1]). In general, the 

parametric oscillation occurs if one of the system parameters, 
such as stiffness, changes during the oscillation, so that the 
excitation appears in the governing differential equation as a 
coefficient of an unknown function [14]. Parametric oscillations 
of cables are caused by tension variations due to longitudinal 
support displacement [1]. Analytic expressions for parametric 
oscillation amplitude values due to longitudinal motion of the 
cable anchorage are determined in paper [9] where a reduced 
cable model is formed. This model neglects cable curvature in 
the initial state and uses the HBM to obtain analytic solutions 
that are verified using the finite element model. The influence 
of vertical support motion on the parametric and external 
resonance, presented in [10], is analysed on nonlinear models of 
a vertical and horizontal cable, and the inclined cable response 
values are determined numerically. In paper [11], the HBM is 
used to determine analytic expressions for the second mode 
external resonance regions due to transverse motion on the 
support, and for the region of parametric resonance generated 
by the longitudinal support motion. An initial profile curvature 
and quadratic nonlinearities are neglected in the mathematical 
model. Though the finite element numerical investigation shows 
that the longitudinal component of the cable support motion 
also causes an external resonance [10], this is not included in 
analytic formulations of the mentioned studies. 
In this paper, the mathematical model of cable oscillations 
that include quadratic and cubic nonlinearities is reduced to a 
finite-degree-of-freedom model using the Galerkin method. 
The asymptotic solution of the one-degree-of-freedom system 
is obtained using the MMS technique. Analytic expressions for 
the resonance regions and amplitude values are derived. The 
local stability analysis of dynamic motion is conducted for the 
obtained solution. The equation of the reduced one-degree-
of-freedom system is also solved by numerical integration in 
the Wolfram Mathematica software. A numerical model with 
the finite difference space discretization is formed to validate 
formulation of dynamic excitation by support motion, and to 
confirm the a priori assumed deformation shape as used in the 
analytic model. The time integration of the ordinary differential 
equations system is carried out by the Wolfram Mathematica in 
which the Predictor-Corrector algorithm is implemented.

2. Equations of motion

The cable is modelled as a one-dimensional linear-elastic continuum 
without the flexural, torsional, and shear rigidity. Assuming the use 
of a highly pretensioned cable, the parabolic assumption shows 
that ds ≈ dx, and so the cable profile shown in Figure 2a for static 
equilibrium can be approximated with the function:

 (3)

where L is the cable span, m is the mass by unit length, j is 
the cable inclination toward the horizontal axis, and H is the 
horizontal component of force [4]. 
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The dynamic configuration of cables is determined by 
superposition of the rigid static profile and relative motion caused 
by cable deformation. The principle of virtual displacements is 
used for the determination of partial differential equations of 
cable motion shown in Figure 2b. Partial derivatives of functions 
with respect to the spatial and temporal coordinates are shown 
with common labels, that is f' = ∂f(x,t)/∂x and f

.
 = ∂f(x,t)/∂t. The 

effect of internal elastic forces on virtual displacements is equal 
to the cable strain energy, and its variation is only due to cable 
stretching:

 (4)

In the above expression, EAe  represents the elastic force of a 
differential segment obeying the Hooks law, while e is the total 
deformation in the dynamic equilibrium position p:

 (5)

Figure 2. Cable model: a) static position; b) dynamic position

in which es is the initial static strain, u(x,t) and w(x,t) are longitudinal 
and transverse components of relative displacement (Figure 3). 
It follows that variation of total strain is:

 (6)

Figure 3. Differential cable segment in local coordinate system

Assuming that longitudinal displacements and static strain are 
small compare to transverse displacements, their higher order 
terms are neglected, and so the virtual work of internal forces is: 

 (7)

The virtual work done by the cable weight is:

 (8)

The virtual work done by inertial forces is given by:
 

(9)

Functions  ( , )ou x t  and  ( , )ow x t  are components of the rigid 
body acceleration, while ( , )u x t and  ( , )w x t  are acceleration 
components due to deformation. Assuming vicious damping, 
the work done by these forces is:

 (10)

According to the principle of virtual displacements, the overall 
work of all forces must vanish:

 (11)

The expressions (7), (8), (9), (10) are substituted in (11) and 
the static equilibrium equations are taken into account. After 
separation of equations by displacement components, and 
using the relation EAes ≈ Hsecj for static force, the following 
Euler equations of motion are obtained:

 (12)

 
(13)

Using the following substitutions, in which ξ is the coefficient of 
relative damping and w  is the dimensionless natural frequency 
of linear mode:

the partial differential equations (12) and (13) and the equation 
(3) are transformed into the dimensionless form:

 (14)

 (15)

 (16)
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In the following analysis, the tilde "~" and "−" signs are omitted 
for simplicity reasons.
In pretensioned steel cables, the speed of propagation of 
longitudinal waves is much greater than that of transverse waves. 
Consequently, the stretching of cable occurs nearly instantaneously 
or quasi-statically on the time scale of transverse motion [1, 
2]. This is a commonly used assumption for the parabolic cable 
analysis in which inertia can be neglected in longitudinal direction, 
while the longitudinal component of motion in the equation (14) 
can be condensed. The assumption that cable stretching depends 
solely on current deformation is also in accordance with parabolic 
approximation. However, the assumption of quasi-static stretching 
is no longer valid if the response involves high-order elastic modes 
which exhibit substantial longitudinal displacements. Therefore, by 
taking into account the assumption of quasi-static cable stretching 
in equation (14), we neglect the inertia and damping:

 (17)

Now, the equation (17) can directly be integrated as follows:

 (18)

Hence, the cable stretching e=e(t) is only a function of the time 
variable. The equation of motion for the transverse direction is 
given by the expression:

 (19)

2.1.  Formulation of dynamic equation for indirect 
dynamic excitation

The function of support motion is harmonic with the frequency Ω 
and amplitudes ΔA and ΔB. Very small amplitudes, capable of causing 
large cable response amplitudes for certain frequencies, are assumed. 
All inertial effects in longitudinal direction are ignored due to the 
assumption that response will not involve elastic modes. Additional 
cable stretching generated by longitudinal displacement is taken into 
account. Boundary conditions in the longitudinal direction are:

 (20)

Taking into account these conditions, the expression (18) is integrated, 
and it follows that stretching can be determined from the equation:

 (21)

For very small sag to span ratio of pretension cables, the 
acceleration distribution ( ),ow x t  in transverse direction along 
the cable length can be approximated by the linear function:

 (22)

To simplify expressions, it can be assumed that the support B is fixed, 
i.e. that ΔB = 0, and the support displacement amplitude A (ΔA = Δ) is 

defined with longitudinal uA = Δu and transverse wA = Δp components. 
Once the support displacement conditions are introduced, the 
equation (19) for the transverse cable oscillation is given by:

 (23)

The equation (23) shows that the longitudinal support displacement 
generates parametric and external excitations, which cause 
transverse cable oscillations. The generation of external excitations 
is due to the curved shape of the system in static position so that, 
in the limit case of the taut wire model, the longitudinal support 
motion causes the parametric excitation only. Unlike the taut wire 
model, this model does not require initial disturbance to initiate 
parametric oscillation. The transverse component of support 
motion generates the external dynamic excitation only. 

3. Analytic model

The Galerkin method for system reduction was used to form the 
analytic model. Low-order models with the one-degree-of-
freedom can be used to highlight basic dynamic features of the 
nonlinear problem [2]. The function w(x,t) is written as follows:

 (24)

In which fn(x) is the function of the n-th linear transverse mode 
shape [4], with the maximum amplitude normalization: 

 (25)

Symmetric and asymmetric mode shapes are defined by the 
first and second functions, respectively. The corresponding 
frequencies are given by equations (1) and (2). After substituting 
expression (24) in equation (23), and after minimizing the residual, 
it follows that the equation of transverse oscillations is:

 (26)

The coefficients in equation (26) are determined by the following 
expressions:

  (27)

 



Građevinar 9/2015

834 GRAĐEVINAR 67 (2015) 9, 829-841

Marija Demšić, Verica Raduka

3.1. Asymptotic solution

By introducing labels for quadratic nonlinearities αn and cubic 
nonlinearities δn, a general differential equation (26) for only one-
degree-of-freedom can be written more compactly as follows:

 (28)

Coefficients for external and parametric excitation amplitudes are:

 (29)

The MMS procedure is used to determine the asymptotic solution 
for equation (28). Perturbation methods are based on forming 
solutions via expansion of functions in which expansion members 
represent a correction of a basic non-perturbed solution. The 
expansion series is formed according to a small perturbation 
parameter e. The first correction is small with respect to the basic 
solution; the second correction is small with respect to the first 
correction, and so on. The ordering is an unbreakable basic rule 
when we conduct perturbation calculations and form asymptotic 
solutions [12]. In this way, the system of equations suitable for 
successive solving is formed through perturbation hierarchy. To 
carry out the procedure, the equation of motion has to be written 
in a dimensionless form, after which a small parameter e is 
selected to form an asymptotic solution. If the small parameter 
suitable for the ranking does not appear explicitly in the 
equation, then the physical system/problem has to be modelled. 
Understanding the physical nature of a nonlinear problem in the 
modelling procedure is of fundamental importance for its correct 
mathematical formulation. The ordering of terms in a differential 
equation can have a decisive influence on the structure of 
the final asymptotic solution, with clear connotations to the 
accuracy and physical relevance [13]. In this case, we can make 
use of an artificial parameter popularly called the bookkeeping 
parameter [14,15]. Such a parameter is used to introduce an 
implicit assumption about the influence of nonlinear coefficients, 
damping, and excitation, on the system’s response [13]. If the 
substitution q = eq , is introduced in a differential equation (28), 
nonlinearities will generate the terms of the order O(e3). In order 
to enable interference of the damping, excitation and nonlinear 
terms at the same level of perturbation hierarchy, the damping 
must be scaled to mn = e2mn and excitation amplitudes to Kn = e2Kn  
and Pn = e3Pn. It should be noted that this scaling is consistent 
with the resonance notation [14]. After the scaling of coefficients, 
the system equation, with the small damping and small excitation 
amplitudes, assumes the following form:

 (30)

After introduction of the small parameter e with which we scale 
space and time coordinates, the differential equation solution 
(30) is assumed as an expansion of functions with multiple 
variables:

 (31)

The parameter e is additionally used to distinguish the motions 
occurring at the "fast" time scale T0 = t, from the motions performed 
at "slower" time scales T1=et, T2=e2t, etc. Changes at higher time 
scales are in fact small corrections of system response caused 
by non-linearity and damping, and by external and parametric 
excitations. It follows that the derivatives according to the 
independent variable t become partial derivatives of Ti variables:

The assumed solution (31) is inserted into the equation (30) 
and only the members of the order of e3 are retained. Then the 
expression members for the same powers of e are equalised:

 (32a)

 (32b)

 (32c)

A general solution of the differential equation (32a) can be 
expressed in the following way: 

 (33)

where A is an unknown complex function while A  is the conjugate 
function. Functions An(T1, T2) and ( )1 2,nA T T  are determined from 
the condition that the solutions qn,2 and qn,3 must be periodic 
functions of the variable T0. After insertion of the solution (33) 
into equation (32b) the following expression is obtained:

 (34)

where c.c. stands for complex conjugate pairs. Terms that 
contain the factor  or  are called secular terms. 
Because of secular terms, the assumed solution (31) cannot 
be periodic and, after a certain period of time, the amplitude 
becomes infinite. Secular members must be eliminated to 
ensure compliance with the perturbation hierarchy, according 
to which the solution qn,2 must be a small correction of the first 
solution. Thus the coefficients of secular terms in equation (34) 
must vanish:

-2i ωn D1An = 0

or:

D1An = 0 (35)

Therefore, the function An does not depend on the variable T1, 
i.e. An = An (T2). The same applies to its complex conjugate, An = An 
(T2). After elimination of secular terms, a particular solution for 
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the second order equation can be determined as follows: 

 (36)

As the system resonance depends on the vicinity of the system 
frequency wn and excitation frequency Ω, the parameter σn 
is introduced as it provide quantitative links between these 
values. The frequency nearness parameter σn is introduced so 
that secular terms can easier be recognised in the third order 
equation. The external or primary resonance occurs when the 
frequency of excitation is equal to one of the natural frequencies 
of the system, while the primary parametric resonance occurs 
when the excitation frequency is equal to twice the value of 
the natural frequency. Thus, depending on the frequency of 
excitation, two resonance cases are considered.

3.1.1. External resonance Ω ≈ wn

At the third level of perturbation hierarchy, the changes along the 
time scale T2=e2t  are analysed and so, to ensure good consistency, 
the parameter σn, which defines the difference in excitation 
frequency and natural cable frequency, is scaled as follows:

Ω = wn + e2σn   (37)

The expression (37) and solutions (33) and (36) are inserted in 
the third order equation (32c) and, together with the condition 
(35), we obtain:

 (38)

The condition for regular and periodic solution is the elimination 
of secular terms from the right side of the equation (38): 

 (39)

Function An can be expressed in the polar form: , and 
, where an and βn are real functions of the variable T2. 

The real and imaginary parts of expression (39) are separated, 
and the label  is introduced. After solving the system 
of equations, modulation equations for the change in amplitude 
an and phase βn are obtained: 

 (40)

The equations (40) can be transformed into an autonomous 
system using the substitution βn = σnT2− gn: 

 (41)

The equations (41) define the change of amplitude and phase of 
the nonlinear response for external resonance. The amplitude 
and phase value for steady motion are determined by inserting 

 in expression (41):

 (42)

Once the phase gn is eliminated, the frequency-amplitude 
equation is defined as follows: 

 (43)

After expanding expression (43), we obtain: 

 (44)

The number of real solutions to this bi-cubic equation depends 
on its discriminant values. If the system discriminant is negative, 
there is only one real solution for 2

na  and, if it is positive, then 
there are three real solutions for 2

na . The region of parameters for 
which multiple real solutions exist is the hysteric region of external 
resonances. Curves that separate these regions are determined by 
the vanishing discriminant, from which follows implicit equations:

 (45)

The point of intersection of the curves is determined by 
parameters values, as shown below:

 (46)

 (47)

The character of equation (42) solutions can easily be examined 
using the local stability analysis, by specifying a small 
disturbance in the vicinity of a steady state, i.e. by setting small 
changes a1 and g1 of the variables an and gn in the vicinity of a 
steady state (a0, g0):

an = a0 + a1

     (48)
gn = go + g1

After substitution in the modulation equations (41), and by 
retaining only linear terms, we have:



Građevinar 9/2015

836 GRAĐEVINAR 67 (2015) 9, 829-841

Marija Demšić, Verica Raduka

 (49)

The stability of motion depends on eigenvalues of the coefficient 
matrix on the right side of expression (49). Hence, the motion is 
unstable for: 

, (50)

while otherwise it is considered stable. The final solution for the 
steady state function and second approximation is: 

 (51)

This solution depends on the powers of coefficients (ean)i, and 
if the amplitude is small, one can set e = 1 and consider an as 
the perturbation parameter [15]. It should be noted that scaled 
coefficients do not change in this case. 

3.1.2. Parametric resonance Ω ≈ 2wn

The primary parametric resonance in the system occurs when 
the excitation frequency is close to the double value of the 
natural system frequency wn, and so the following relation is 
introduced: 

Ω = 2wn + e2σn  (52)

The expression (52), and solutions (33) and (36), are included in 
the third order equation (32c) and, together with the condition 
(35), we obtain: 

 (53)

In order to obtain a regular periodic solution, the coefficients 
that generate secular terms must be eliminated: 

 (54)

By expressing functions An and nA  in polar form, modulation 
equations for the amplitude an and the phase βn of parametric 
oscillations, are determined by:

 (55)

By transforming equations in an autonomous system with the 
substitution 2βn = σnT2 − gn we obtain:

 (56)

The system equilibrium for , is defined with equations:

 (57)

Hence, the explicit expression for the amplitude of parametric 
oscillations is:

 (58)

The expression (58) yields the necessary condition for the size 
of the parametric excitation amplitude: 

 (59)

The region of parametric resonance can be determined from the 
condition >2 0na  as follows:

 (60)

To analyse the stability of solutions (57), small perturbations (a1, 
g1) are set in the vicinity of the equilibrium point (a0, g0). After 
insertion in modulation equations (56), and after retaining only 
linear terms for variables a1 and g1, we obtain:

 (61)

Motion is unstable for:

 (62)

The final solution of function for the steady state of parametric 
oscillations in the second approximation is:

 (63)

4. Numerical model

In the numerical model, spatial derivatives are approximated 
with central differences. The cable is spatially discretized with 
N-1 segments Δx in length, where N is the number of discrete 
nodes. Central differences of w in the spatial derivatives are:

 (64)
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where index i refers to the spatial node (i=1,2,3,…N) while indices 
D1 and D2 are the first and second approximations of spatial 
derivatives of w for the node i. The Simpson’s rule is applied for 
the approximation of integral in equation (21):

 
(65)

where:

 (66)

After the finite difference discretization, the equation system is 
expressed as:

 (67)

The time integration of equations is conducted using the iterative 
Predictor-Corrector algorithm for the time step of Δt=0,002 
[16]. The cable model is discretized with N=53 nodes, which are 
successively numbered, and so the first node corresponding to 
the moving support is i=1, while it is i=53 for the fixed support. 
The transverse displacement of support A is given by the function 
W1=Δp cos(Ω j Δt), where j represents the time integration step.

5. Examples

Dimensionless parameters h and n are selected to fit cable 
parameters of cable stayed bridges. The static deformation of a 
typical stay cable ranges from 0,2 to 0,4 %, while the sag to span 
ratio varies from 0,01 to 0,5 % [17]. These are highly pretensioned 
cables, and so the parabolic approximation that was used to 
derive analytic expressions can be applied in this case as well. The 
parameter chosen for cable stretching is h = 400, and the value of 
n = 0.002 is adopted for the sag-to-span ratio. Therefore, the Irvine 
parameter is λ2 = 0.1024. The relative modal damping of ξ = 0.5 % 
is used for all oscillation modes. Only the lower order oscillations 
will be analysed, i.e. the external resonance of the first and second 

modes, and the parametric resonance of the first mode, for the 
case when there is no interaction between the modes.

5.1. External resonance

The first symmetric mode f1(x) is initially used for system 
reduction. In this case, both support displacements cause 
external excitation since the coefficients h1 and p1 are different 
from zero. Figure 4 shows external resonance regions for 
different longitudinal and transverse support displacement 
relations (Δp and Δu). Different resonance regions that are 
characteristic for a nonlinear system are marked in the left-
side figure. For the values σ1 > σkr, the system’s response 
depends on the excitation parameters only, i.e. the higher 
the frequency and amplitude of the excitation, the larger the 
response amplitude. There are three resonance regions for σ1 

> σkr, and the expression (45) defines boundary curves of the 
hysteresis region. In the region of low-amplitude resonance, the 
linear system provides a good approximation of the oscillation 
amplitude [11]. Above the hysteresis region, there is a region 
of high response amplitudes. If parameters correspond to 
the hysteresis region, the system can have either high or low 
response amplitudes. The final solution will depend on initial 
conditions, i.e. on the response history.
Figures 5, 6, and 7 display steady state amplitude curves as a 
function of the excitation frequency/amplitude. Asymptotic 
solutions obtained by MMS are checked by direct numerical 
integration (NI) of equation (28) using the Wolfram Mathematica 
software. After achieving the steady state response, the 
amplitude of oscillation is determined, and the excitation 
frequency/amplitude is changed. The label ×  marks the 
frequency/amplitude change from lower toward the higher 
values, and the label + designates the change from higher 
to lower values. For the model that is formulated with finite 
differences (FD), once the steady state response is achieved, the 
maximum displacement of the node in mid-span (node 27) is 
taken to be the amplitude caused by external resonance. Empty 
circles represent FD results for homogeneous initial conditions 

Figure 4. External resonance regions for first mode
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(hic), while full circles stand for inhomogeneous initial conditions 
(nic). Initial conditions are set in the vicinity of the equilibrium 
state.
For small values of support motion, the numerical analysis results 
agree very well with the results obtained by MMS. Figure 6 shows 

that a minor deviation can only be noted for larger response/
excitation values. The advantage of the proposed analytic model 
lies in the fact that it does not neglect the curved static profile of 
the cable. This example shows that the longitudinal component 
of support motion also causes external resonance of the first 

Figure 5. Frequency-amplitude curves for constant excitation amplitude

Figure 6. Amplitude curves for constant excitation frequency 

Figure 7. Amplitude curves for simultaneous longitudinal and transverse support displacement
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mode. It can also be noted that, for given cable parameters, 
its amplitude is of same order of magnitude as the response 
amplitude caused by transverse component of support motion.
Figure 7 displays amplitude curves for the simultaneous 
longitudinal and transverse support motion. The total amplitude 
defined by expression (29) is greater than in the previous two 
cases, and hysteresis region shifts toward low values of support 
displacement Δ. Equation (29) also shows that the change 
of sign in one support component causes the change of the 
system resonance region.

For system reduction by the second mode of oscillation, the 
excitation coefficient h2 vanishes because the function f2(x) 
is asymmetric. Accordingly, the second mode oscillation is 
caused by the transverse support motion component only. 
The second mode resonance regions are presented in Figure 8.
In FD model, the amplitude is represented by maximum 
displacement of the node in one quarter of the span (node 14). 
The second mode resonance has smaller amplitudes compared 
to response amplitudes in the case of the first mode resonance, 
because the second mode deformation requires higher energy 
consumption (Figures 9 and 10). Here also a good agreement is 
achieved between numerical and analytic results, especially for 
low excitation/response values.

Figure 10. Amplitude curves for constant excitation frequency

5.2. Parametric resonance

The parametric excitation is caused by the longitudinal support 
displacement only. The region of parameters for which 
parametric oscillations are possible is defined by expressions 
(59) and (60). Boundary curves do not depend on the nonlinear 
coefficient and are analogous to the parametric resonance 
region expressions defined for the linear system derived 
from the Mathieu’s equation. However, the nonlinear system 
response in resonance regions is quite different compared to 
the linear system response.
Three parametric resonance regions displayed in figure 11 are 
defined by expressions (59) and (60). No parametric oscillations 
can occur in the unshaded region, regardless of initial 
conditions. If parameters correspond to the primary region 
of parametric resonance in which response amplitude of the 
linear system is infinite, the nonlinear system amplitudes have 
a final value and, consequently, the limit cycle is reached. After 
the right boundary, there is a hysteresis region of parametric 
oscillation where the system response can be trivial, or it is 
periodic with a high oscillation amplitude. Initial conditions or 
response history determine whether parametric oscillations 
will in fact occur. In the linear system, parametric oscillations 
are not possible for parameter values corresponding to the 
hysteresis region. This is a rare case of nontrivial solution of Figure 9.  Frequency-amplitude curves for constant excitation 

amplitude

Figure 8. External resonance regions for second mode
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nonlinear system in the region in which the response of linear 
system is trivial [14].
Parametric oscillation amplitudes for cables are shown in 
Figures 12 and 13. These figures also show matching results of 
analytic and numerical models.

6. Conclusion

An analytic procedure for modelling cable oscillations due 
to support motion is presented in this paper. The procedure 
is based on the assumption of quasi-static cable stretching, 
and on the concept of composed motion. Besides the cubic 
nonlinearity caused by cable stretching, quadratic nonlinearities 
are also included in the formulation by taking into account 
the function of curved static profile, which is neglected in 
reference papers, and is due to the influence of geometry in the 
equilibrium position. This influence has included in the analytic 
model the occurrence of external transverse oscillations due 
to longitudinal support displacement. Systems that ignore the 
influence of curved geometry include only cubic nonlinearities 
(taut wire), and so longitudinal support displacements cause 
parametric oscillations only. The analysis of the reduced system 
equation shows that the coefficient of external excitation due 
to longitudinal component of support motion vanishes for 
asymmetric trial functions and so, in this case, oscillations occur 
only due to the transverse component of support motion. 
In the selected example, the ratio of system frequencies 
amounts to . Thus, for the excitation frequency of 
Ω ≈ 2w1 ≈ w2 results are shown only when one of the support 
displacement component acts. This allowed us to separately 
study external resonance of the second mode and parametric 
resonance of the first mode. In the case when both components 
are present, simultaneous external and parametric resonance 
conditions are met, and so the nonlinear model, which is defined 
by equation (26), needs to include all excited modes.
The comparison of analytic and numerical results shows a 
very good correspondence of results and a high accuracy 
of asymptotic solutions. The advantage of using the MMS 
procedure is quite obvious, as analytic solutions allow simple 
determination of the response amplitude, and a more 
transparent qualitative analysis of results.
The study shows that even a very small support motion can 
cause large response amplitudes for a particular region of 
excitation and system parameters.

Figure 11. Parametric resonance regions for first mode

Figure 13. Amplitude curves for constant excitation frequency

Figure 12.  Frequency-amplitude curves for constant excitation 
amplitude
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