THE INFLUENCE OF THE RECONDITIONING BY WELDING PROCESSES ON THE HARDNESS OF CRANKSHAFTS IN THE AUTOMOTIVE INDUSTRY

Received – Prispjelo: 2015-02-17 Accepted – Prihvaćeno: 2015-08-20 Professional Paper – Strukovni rad

One of the aims of our modern society is to reduce the car maintenance costs. The part that most frequently breaks down in the engine block is the crankshaft - in the main journal and crankpin journal areas. This paper presents the effects of welding inert-gas (WIG) and shielded metal arc welding (SMAW) on the hardness of the material in the zones subject to reconditioning, more specifically the hardness values in the deposited material layer, in the fusion line and the heat-affected zone (HAZ).

Key words: welding, WIG, SMAW, reconditioning, hardness, crankshaft

INTRODUCTION

The most important components of the internal combustion engines of automobiles are four separate parts [1]:

- cylinder head cover;
- cylinder head;
- the engine block (the block is also called the crank-
- case or cylinder block);
- oil bath.

The delimitation of the engine block from the cylinder head and the oil bath is made using the cylinder head gasket, respectively the gasket that seals the oil bath. We should remember that, depending on the number and arrangement of the cylinders, the engine block can be made up of two separate parts called lower and upper half-crankcase. From the mechanical point of view, the crankshaft is the most strained part of the engine, since it takes on - through the piston and the connecting rod - the forces resulted from the pressure created in the cylinder. The crankshaft is the part that takes on the forces in the connecting rod, summarizes the mechanical works created in cylinders and transmits the resulting energy to the wheels through the transmission gear and sets in motion some auxiliary systems of the engine .

The elements composing a crankshaft for the engine are, as shown in Figure 1:

- main journals (through these journals the shaft rests on the engine block, in the bearings), crankpin journals (the connecting rods are attached to them);
- webs (they link the main journals to the crankpin journals; they often contain crankshaft counterweights as well);

 crankshaft ends (the flywheel is mounted on one end and the camshaft drive sprocket is mounted on the other end);

The flywheel ensures the regular rotation of the crankshaft for each engine operating cycle. Because the engine torque is not continuous, as it is produced only during the recoil of each cylinder, it is necessary to use a flywheel. The lubricating oil circuit inside the crankshaft is provided through [2]:

- oil ways in the main journals;
- balancing holes in the counterweights;
- oil ways in the crankpin journals.

In the industrial practice concerning the crankshafts used in the automotive industry it was observed that the most frequent defects occur in the main journals and the crankpin journals. If the defects are not identified in time and the respective zones are not repaired, this could lead to pretty significant effects such as breakdown of the car and even worse to the loss of human lives. Considering the rather high price of a new crankshaft and after the strength and economic calculations are made, in most cases the people in charge make the decision to repair the non-conformity zone. Welding is the technological reconditioning process that ensures

Figure 1 Crankshaft Items: 1, 2, 3, 4 – main journals, a, b, c, d, e – crankpin journals; A, B, C, D - counterweights

O. Chivu, D-T. Cicic, C. Rontescu, I-M Vasile, Polytechnic University of Bucharest, Romania.

short repair time but also the convenient quality of the deposited layer. The present paper suggests a technique and technology that can be applied to repair the crank-shafts in the crankpin journals area. It is the prolongation of the investigation of reconditioning by welding of crankshafts [2, 3].

EXPERIMENTAL PROCEDURE

Due to the fact that the brand of the base material was unknown, 5 tests were conducted to determine the chemical composition with the help of the Foundry Master equipment. Following the interpretation of the results it emerged that the base material is a type of cast iron, EN-GJS-600-3 according to DIN EN 1564: 2012 [3, 4], whose chemical composition is presented in Table 1 and the mechanical characteristics are shown in Table 2.

Table 1 The standardized chemical composition of the base material of EN-GJS-600-3 / wt. %

Base Material	С	Si	Mn	Р	S
EN-GJS-600-3	2,5 - 3,6	1,8-2,8	0,3-0,7	≤ 0,08	≤ 0,02

Table 2 Material properties measured on test partsaccording to DIN EN 1563:2012

Material desig- nation	Tensile strength R _m /N/ mm ²	Proof stress R _{p0,2} / N/mm ²	Elongation A / %	Micro- structure
EN-GJS-600-3	600	370	3	Pearlite/ ferrite

Taking into account the intended purpose of the crankshaft, it was decided to use an E10-UM-60-CZ electrode with the diameter of \emptyset 3,25 / mm, and metal rod type \emptyset 3,2 / mm WSG-3GZ-5-T, whose chemical compositions are shown in Table 3 [5].

The electrode brand and the metal rod wire were chosen based on the following criteria:

- the hardness of the welding bead: 59 63 / HRC;
- the obtained structure: austenite with large Cr carbides;
- the resistance to abrasion very good;
- the resistance to temperature $700 / {}^{\circ}C$;
- the resistance to corrosion very good;
- machinability by polishing.

For the experimental part, for both processes, we used an inverter based welding power source (CaddyTIG 2200i - ESAB). The polarities used in this experimental procedure were direct current negative po-

Table 3 The standardized chemical composition of the filler material / %

Filler material	С	Si	Mn	Cr
DIN 8555 - E10-UM-	4,5	0,8	1,6	33
60-CZ				
WSG-3GZ-5-T	0,38	1,0	0,4	5,0

larity (DC-) for WIG and direct current positive polarity (DC+) for SMAW. The values of the main welding parameters were: welding current intensity $I_{s1} = 100 / \text{A}$ (for the marginal layers of the crankpin journals) and $I_{s2} = 140 / \text{A}$ (for the facing of the crankpin journal surface), arc voltage $U_a = 12 - 14 / \text{V}$ for WIG and $U_a = 20 - 24 / \text{V}$ for SMAW.

The reconditioning technology consisted of: [6, 7]:

- visual testing and penetrating liquids testing of the crankpin journals area;
- machining of the surface subject to the depositing process until metallic luster is obtained;
- placing the crankshaft into the device, Figure 2a;
- depositing layers with a width of 3 4 / mm to the area where the crankpin journal intersects with the

Figure 2 The stages of the reconditioning process by shielded metal arc welding, a - placing the crankshaft into the device , b - depositing the layers with a width of 3 – 4 / mm at the intersection point between the crankpin journal and counterweights, c - depositing a layer around the oil way on the crankpin journal; d - depositing a layer by waving counterweights Figure 2b and around the oil way on the crankpin journal, Figure 2c, with the parameters mentioned above for both processes [8 - 10];

- depositing the layer by waving with the mentioned parameters, Figure 2d;
- non-destructive visual and penetrating liquid testing of the deposited areas;
- cutting and machining the samples for the macro and micro-structural examination and the hardness examination;
- retrieving macro-structural and micro-structural images and hardness measurement;

RESULTS

It should be noted that for the validation of the experimental results 2 sets of coded samples were carried out for each of the two processes.

After it obtained the samples, they were subject to non-destructive visual and penetrating liquid testing methods. No nonconformities emerged after the testing. From the obtained reconditioned parts samples were taken in order to be subject to micro-structural and macro-structural examinations and to the hardness HV0.2 testing method. All examinations were performed in an accredited laboratory, LAMET. After the hardness was measured with NAMICON 400 DTS, was obtained the values shown in Table 4 for sample P1 and in Table 5 for sample P2 (for SMAW), in Table 6 for sample P3 and Table 7 for sample P4 (for WIG). It is worth mentioning that the measurement of the hardness was done on 4 directions materialized by 4 diameters that divide the samples into 4 equal parts. Furthermore, for each of the four directions, the hardness values were measured

Table 4 Hardness values for test sample P1 / HV0.2 (SMAW)

_		Direction					
Zone	No.	No. 1	No. 2	No. 3	No. 4		
DL	1	621	534	534	523		
	2	583	560	545	543		
	3	436	489	524	514		
	4	549	530	535	516		
	5	506	529	524	546		
FL	6	726	800	820	812		
	7	801	805	789	790		
	8	831	799	816	820		
	9	793	827	824	818		
	10	826	787	815	818		
HAZ	11	712	689	734	743		
	12	765	723	732	730		
	13	687	716	737	714		
	14	714	745	732	745		
	15	782	727	711	716		
BM	16	284	287	291	299		
	17	265	290	280	287		
	18	295	399	299	278		
	19	268	267	265	296		
	20	206	270	270	278		

in 4 distinct areas, namely: DL - deposited layer; FL - fusion line (mixing zone); HAZ – heat affected zone; BM - base material. The hardness measurement had to be made in four different directions, but also in the four areas in order to be able to analyze the homogeneity of the material from the point of view of its mechanical properties and especially of hardness.

For each of the four measurement areas a hardness measurement was performed in 5 distinct areas so as to allow the determination of a medium hardness of each area.

Table 5 Hardness values for test sample P2 / HV0.2 (SMAW)

_	No.	Direction					
Zone		No. 1	No. 2	No. 3	No. 4		
DL	1	573	479	490	515		
	2	491	475	502	521		
	3	533	502	533	526		
	4	513	526	531	554		
	5	494	480	521	502		
FL	6	720	689	690	701		
	7	677	690	696	714		
	8	682	720	699	721		
	9	633	673	670	705		
	10	745	625	635	709		
HAZ	11	608	667	669	689		
	12	612	662	662	690		
	13	628	663	675	692		
	14	592	665	650	681		
	15	651	612	620	684		
BM	16	383	354	325	333		
	17	344	365	335	345		
	18	382	345	334	325		
	19	368	324	327	327		
	20	354	330	345	334		

Table 6 Hardness values for test sample P3 / HV0.2 (WIG)

	No.	Direction					
Zone		No. 1	No. 2	No. 3	No. 4		
DL	1	426	465	470	500		
	2	468	463	490	503		
	3	455	487	455	510		
	4	471	465	488	498		
	5	526	483	445	499		
FL	6	674	649	700	703		
	7	559	670	688	699		
	8	659	702	694	697		
	9	713	673	654	665		
	10	673	671	701	648		
HAZ	11	367	488	498	478		
	12	467	514	500	480		
	13	439	522	478	499		
	14	471	497	496	487		
	15	462	486	498	465		
BM	16	228	278	280	250		
	17	275	248	238	233		
	18	305	265	235	235		
	19	321	233	239	243		
	20	230	230	240	241		

-	No.	Direction				
Zone		No. 1	No. 2	No. 3	No. 4	
DL	1	504	529	526	514	
	2	577	561	562	523	
	3	570	492	507	514	
	4	504	455	498	499	
	5	522	512	499	499	
FL	6	677	662	664	657	
	7	699	689	675	673	
	8	689	743	679	645	
	9	605	756	685	689	
	10	691	708	699	685	
HAZ	11	674	637	613	620	
	12	678	687	621	619	
	13	579	679	624	621	
	14	549	623	641	631	
	15	596	642	635	623	
BM	16	306	333	306	310	
	17	326	316	327	312	
	18	365	342	345	321	
	19	326	319	313	342	
	20	383	324	321	345	

Table 7 Hardness values for test sample P4 / HV0.2 (WIG)

From the analysis of the data in Tables 4, 5, 6 and 7 it can see that the tendency is similar for all 4 directions and thus the maximum hardness was obtained on the fusion line and the minimum hardness in the base material.

CONCLUSION

Г

From the conducted researched we can draw the following conclusions:

- both welding processes can be applied when reconditioning crankshafts in the automotive industry;
- the hardness values depend on the used reconditioning process and parameters;
- the layer depositing method influences to a significant degree the quality of the deposited layers;
- the analysis of the hardness demonstrates that when using reconditioning by welding are obtained much higher hardness values in the deposited material layer than in the base material layer;

- the layer of deposited material has a much higher hardness value than the base material, and this is beneficial because we get an increase in the resistance to wear of the crankpin of the crankshafts through keeping the tenacity of the base material;
 the maximum hardness values were obtained when
- was used SMAW;
 due to the high hardness values obtained when applying SMAW, certain defects such as cracks may occur during operation.

Acknowledgement

The work has been funded by the Sectoral Operational Programme Human Resources Development 2007 - 2013 of the Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/134398.

REFERENCES

- [1] *** http://www.e-automobile.ro/categorie-motor/20-general/28-bloc-motor.html.
- [2] D. Dobrotă, Structural modifications which appear in the area of welds of welded structures made of ST 52.3 steel, Metalurgija 53 (2014) 2, 179-182.
- [3] O. Chivu, C. Rontescu, D. T. Cicic, G, Bălan, The effects of reconditioning by welding of crankshafts in automotive industry, Metalurgija 55 (2016) 1.
- [4] M.K. Lei, X.P. Zhu, K.W. Xu, B.S. Xu, The Remanufacturing Engineering and Automatic Surface Engineering Technology, Key Engineering Materials 373-374 (2008), 1-10.
- [5] ***Esab Welding Handbook, eighth edition Consumables for manual and automatic welding.
- [6] T. Torims, The application of laser cladding to mechanical component repair, renovation and regeneration, DAAAM International Scientific Book, 2013, 587-608.
- [7] D. T. Cicic, Gh. Solomon, G. Iacobescu, C. Rontescu Method of establishing the optimum technique for reconditioning by welding, taking into account the consumption of filler metals and electrical power, U.P.B. Sci. Bull. Series D, 73 (2011) 1, 85-98.
- [8] Information on http://www.esabna.com.
- [9] Information on http://www.twi-global.com.
- [10] Information on http://www.brazing.com/ techguide/procedures/cast_iron.asp.
- Note: The responsible translator for the English language is Rontescu Aurora Mădălina, Bucharest, Romania