ELEMENTARY EXAMPLES OF ESSENTIAL PHANTOM MAPPINGS

Sibe Mardešić

Abstract

It is known that essential phantom mappings (of the second kind) between connected CW-complexes do exist. However, it appears that in the literature there are few explicit examples of such mappings. One usually finds descriptions of the domain and the codomain and an existence proof that the set of homotopy classes of mappings from the domain to the codomain is infinite. The purpose of the present paper is to describe some elementary examples of essential phantom mappings. The codomain is the n-sphere $S^{n}, n \geq 2$, and the domain is the telescope T^{n}, associated with the sequence of copies of the canonical mapping $f: S^{n-1} \rightarrow S^{n-1}$ of odd degree $p>1$. There are no essential phantom mappings whose codomain is the 1 -sphere S^{1}.

1. Introduction

1.1. A mapping $h: Z \rightarrow W$ between connected CW-complexes with basepoints $*$ is said to be a phantom mapping (of the second kind, see [9]) provided the restriction $h \mid C$ to any compact subset (equivalently, to any finite subcomplex) $C \subseteq Z$ is homotopic to a constant mapping. Since connected CW-complexes are pathwise connected, there is no loss of generality in requiring that $h \mid C \simeq *$, for all C. Clearly, if a mapping h is homotopic to $*$, it is a phantom mapping. Therefore, of primary interest are phantom mappings, which are not homotopic to $*$, i.e., are essential mappings. It is known that essential phantom mappings do exist [9].

It appears that in the literature there are few explicit examples of essential phantom mappings. One usually finds explicit descriptions of the domain and the codomain and an existence proof that the set of homotopy classes of mappings from the domain to the codomain is infinite.
1.2. Professor Jaka Smrekar of the University of Ljubljana kindly communicated to the author the following proof (here slightly modified) of the existence of essential phantom mappings $h: T^{n} \rightarrow S^{n}, n \geq 2$. Here S^{n} is

[^0]the n-sphere and T^{n} is the telescope, associated with the canonical mapping $f: S^{n-1} \rightarrow S^{n-1}$ of prime degree $p>1$. A detailed description of T^{n} is given in Section 2. It is easy to show that every mapping $h: T^{n} \rightarrow S^{n}$ is a phantom mapping (see Lemma 1 in Section 4). Therefore, in order to construct essential phantom mappings $h: T^{n} \rightarrow S^{n}$, it suffices to construct essential mappings $h: T^{n} \rightarrow S^{n}$.

By a generalization of the Hopf classification theorem, proved by C. H. Dowker (see [2], Theorem 7.5), there is a bijection between the set [P^{n}, S^{n}] of homotopy classes of mappings from an n-dimensional polyhedron P^{n} to S^{n} and the n-th integral cohomology group $H^{n}\left(P^{n} ; \mathbb{Z}\right)$ of that polyhedron. Since $\operatorname{dim} T^{n}=n$, we see that there is a bijection between the sets $\left[T^{n}, S^{n}\right]$ and $H^{n}\left(T^{n} ; \mathbb{Z}\right)$. Therefore, it suffices to show that $H^{n}\left(T^{n} ; \mathbb{Z}\right) \neq 0$. Actually, the latter group is uncountable. Indeed, it is known that $H^{n}\left(T^{n} ; \mathbb{Z}\right) \approx \widehat{\mathbb{Z}}_{p} / \mathbb{Z}$, where $\widehat{\mathbb{Z}}_{p}$ denotes the group of p-adic integers and \mathbb{Z} is naturally embedded in $\widehat{\mathbb{Z}}_{p}$ ([4], Example 3F.9). It is also known that the group $\widehat{\mathbb{Z}}_{p}$ is uncountable ([4], Example 3F.6). Since \mathbb{Z} is countable, $\widehat{\mathbb{Z}}_{p} / \mathbb{Z}$ is also uncountable.
1.3. The following explicit example of an essential phantom mapping $h: Z \rightarrow S^{n}, n \geq 3$, is described in [5] (pp. 83-84) and [9] (pp. 12111212). Let A and B be nonempty complementary sets of primes and let $\phi_{A}: S^{n-1} \rightarrow S_{A}^{n-1}$ and $\phi_{B}: S^{n-1} \rightarrow S_{B}^{n-1}$ be the respective localizations of the ($n-1$)-sphere S^{n-1}. Let $\lambda: S^{n-1} \rightarrow S_{A}^{n-1} \vee S_{B}^{n-1}$ be the composition of two mappings. The first one $S^{n-1} \rightarrow S^{n-1} \vee S^{n-1}$ is the quotient mapping, obtained by collapsing to a point the equator of S^{n-1}. The second one is $\phi_{A} \vee \phi_{B}: S^{n-1} \vee S^{n-1} \rightarrow S_{A}^{n-1} \vee S_{B}^{n-1}$. Let Z be the CWcomplex obtained by attaching the n-cell D^{n} to $S_{A}^{n-1} \vee S_{B}^{n-1}$ via the mapping $\lambda: \partial D^{n} \rightarrow S_{A}^{n-1} \vee S_{B}^{n-1}$. Then the quotient mapping $h: Z \rightarrow S^{n}$, obtained from Z by collapsing $S_{A}^{n-1} \vee S_{B}^{n-1}$ to a point, is an essential phantom mapping $h: Z \rightarrow S^{n}$.

The present paper describes explicitly elementary examples of some essential phantom mappings $h: T^{n} \rightarrow S^{n}, n \geq 2$. There are no essential phantom mappings, whose codomain is $S^{1}[7]$.

2. The telescope T^{n}

2.1. To fix notations we recall the definition of the telescope T^{n}. First consider the 1 -sphere $S^{1}=\{\zeta \in \mathbb{C}:|\zeta|=1\}$ with the basepoint $*=1$. The canonical mapping $f: S^{1} \rightarrow S^{1}$ of degree $p>1$ is defined by $f(\zeta)=\zeta^{p}$, $\zeta \in S^{1}$. Note that $f(*)=*$. In order to define the canonical mapping $f: S^{n-1} \rightarrow S^{n-1}$ of degree $p>1$, for $n>2$, one views the ($n-1$)-sphere S^{n-1} as the (unreduced) $(n-2)$-fold suspension $\Sigma^{n-2}\left(S^{1}\right)$ with basepoint
$* \in S^{1} \subseteq S^{n-1}$. Then $f: S^{n-1} \rightarrow S^{n-1}$ is the $(n-2)$-fold suspension of $f: S^{1} \rightarrow S^{1}$. Note that also in this case $f(*)=*$.

The mapping cylinder M associated with $f: S^{n-1} \rightarrow S^{n-1}$ is obtained from $S^{n-1} \times[0,1]$ by identifying the points $\left(\zeta_{1}, 1\right)$ and $\left(\zeta_{2}, 1\right), \zeta \in S^{n-1}$, whenever $f\left(\zeta_{1}\right)=f\left(\zeta_{2}\right)$. The corresponding quotient mapping will be denoted by $\phi: S^{n-1} \times[0,1] \rightarrow M$. The natural CW-structure of M consists of two 0 -cells, $v^{-}=\phi(*, 0)$ and $v^{+}=\phi(*, 1)$, called the initial and the terminal basepoints of M, of the arc $A=\phi(* \times[0,1])$ as the only 1-cell, called the spine of M, of two $(n-1)$-spheres $B^{-}=\phi\left(S^{n-1} \times 0\right)$ and $B^{+}=\phi\left(S^{n-1} \times 1\right)$, called the initial and the terminal bases of M and of the n-cell $M=\phi\left(S^{(n-1)} \times[0,1]\right)$. Note that M is a connected 2 -dimensional polyhedron.
2.2. The telescope T^{n}, associated with the sequence $S^{n-1} \xrightarrow{f} S^{n-1} \xrightarrow{f}$ $S^{n-1} \rightarrow \ldots$ is obtained from the direct sum $M_{1} \sqcup M_{2} \sqcup \ldots$ of the sequence M_{1}, M_{2}, \ldots of copies of the mapping cylinder M of $f: S^{n-1} \rightarrow S^{n-1}$, by identifying the terminal base of M_{i} with the initial base of $M_{i+1}, i \in \mathbb{N}$. The $(n-1)$-spheres obtained in this way will be denoted by $B_{i}, i=0,1, \ldots$ The mapping cylinders M_{i} and their spines A_{i} are naturally embedded in T^{n}. The two endpoints of A_{i} are denoted by v_{i-1} and v_{i}. Note that $T^{n}=M_{1} \cup M_{2} \cup \ldots$ is a connected 2 -dimensional polyhedron. It has a natural CW-structure, which consists of the points v_{i} as 0 -cells, of the $\operatorname{arcs} A_{i}$ as 1 -cells, of the $(n-1)$-spheres B_{i} as the $(n-1)$-cells and of mapping cylinders M_{i} as the n-cells.

3. The mapping $h: T^{n} \rightarrow S^{n}$

3.1. If in the cylinder $S^{n-1} \times[0,1]$ we collapse $S^{n-1} \times 0$ to a point v^{-} and we collapse $S^{n-1} \times 1$ to a point v^{+}, we obtain the (unreduced) suspension ΣS^{n-1} of S^{n-1} with vertices v^{-}, v^{+}and we obtain the corresponding quotient mapping $\psi: S^{n-1} \times[0,1] \rightarrow \Sigma S^{n-1}$. Note that, whenever $y \in M$ belongs to the terminal base B^{+}of M, then $\phi^{-1}(y) \subseteq S^{n-1} \times 1$ and thus, $\psi\left(\phi^{-1}(y)\right)=$ v^{+}. If $y \in M$ does not belong to B^{+}, then $\phi^{-1}(y)$ is a single point of $S^{n-1} \times$ $[0,1)$ and so is $\psi\left(\phi^{-1}(y)\right)$. Therefore, there is a unique mapping $\chi: M \rightarrow$ $\Sigma S^{n-1}=S^{n}$ such that $\chi \phi=\psi$. Clearly, χ is the quotient mapping, which collapses the initial base of M to v^{-}and collapses the terminal base of M to v^{+}.

We now repeat the described procedure for every mapping cylinder M_{i}, $i \in \mathbb{N}$, of the telescope T^{n}, i.e., we collapse to a point v_{i} each $(n-1)$-sphere B_{i} (including B_{0}) and we consider the corresponding quotient mappings χ_{i}. We obtain a CW-complex $T^{n *}$, called the pinched telescope. We also obtain a quotient mapping $\chi: T^{n} \rightarrow T^{n *}$ such that $\chi \mid M_{i}=\chi_{i}$. Note that χ maps the initial and the terminal bases B_{i-1} and B_{i} of M_{i} to the vertices v_{i-1} and v_{i} of the n-sphere $S_{i}^{n}=\chi_{i}\left(M_{i}\right)$, respectively. The CW-structure of $T^{* n}$
consists of the points v_{0}, v_{1}, \ldots as 0 -cells, of the arcs A_{1}, A_{2}, \ldots as 1 -cells and of the n-spheres S_{i}^{n} as n-cells, $i \in \mathbb{N}$. Notice that $T^{2 *}$ looks like an infinite string-of-beads.
3.2. Our next goal is to define a mapping χ^{\prime} of $T^{n *}$ to the wedge of a sequence of pointed n-spheres, $S=S_{1}^{n} \vee S_{2}^{n} \vee \ldots$. In the proof we need the following fact. Let v^{-}and v^{+}be the vertices of the (unreduced) suspension ΣS^{n-1}, let $* \in S^{n-1}$ be the basepoint of S^{n-1} and let A be the arc $\Sigma(*)$. Then the quotient space $\left(\Sigma S^{n-1}\right) / A$ is an n-sphere S^{n}. If $\chi^{\prime}: \Sigma S^{n-1} \rightarrow S^{n}$ is the corresponding quotient mapping and we denote the point A of $\left(\Sigma S^{n-1}\right) / A$ by $*$, then $\chi^{\prime}(*)=*$.

The assertion is a very special case of well-known facts concerning decompositions of manifolds. If X is a cellular subset of a closed n-manifold N, i.e., X is the intersection of a sequence of n-disks $D_{i} \subseteq N$, where $D_{i+1} \subseteq \operatorname{Int} D_{i}$, $i \in \mathbb{N}$, then the decomposition G_{X} of N, whose only nondegenerate element is X, is a shrinkable upper semicontinuous decomposition ([1], 1, Proposition 4 and 6 , Proposition 2). Moreover, if G is a shrinkable upper semicontinuous decomposition of a compact metric space N, then the corresponding quotient mapping $\pi: N \rightarrow N / G$ is a near-homeomorphism, i.e., it can be approximated by homeomorphisms ($[1], 5$, Theorem 2) and thus, N / G is homeomorphic to N.

In our case, A is a cellular subset of the n-sphere ΣS^{n-1} and thus, $\Sigma S^{n-1} / A$ is also an n-sphere. It is now clear that, by collapsing the union of arcs $A=A_{1} \cup A_{2} \cup \ldots \subseteq T^{n *}$ to a point $*$, one obtains the wedge $S=S_{1}^{n} \vee S_{2}^{n} \vee \ldots$ and a quotient mapping $\chi^{\prime}: T^{n *} \rightarrow S, \chi^{\prime}(*)=*$. Note that the natural CW-structure of S consists of a single 0 -cell $*$, and of a sequence of n-cells $S_{1}^{n}, S_{2}^{n}, \ldots$.

The next mapping considered is the folding map $\chi^{\prime \prime}: S \rightarrow S^{n}$. It maps each summand S_{i}^{n} of S to S^{n} by the identity mapping. Note that $\chi^{\prime \prime}(*)=*$. Finally, we define the desired mapping $h: T^{n} \rightarrow S^{n}$, by putting $h=\chi^{\prime \prime} \chi^{\prime} \chi$. Note that $h(*)=*$.

Theorem 1. If $p>1$ is an odd integer, the mapping $h: T^{n} \rightarrow S^{n}, n \geq 2$, is an essential phantom mapping.

4. Proof of Theorem 1

4.1. We first prove the following lemma.

Lemma 1. Every mapping $k: T^{n} \rightarrow S^{n}$ from the telescope T^{n} to the n-sphere $S^{n}, n \geq 2$, is a phantom mapping.

Proof. It is well known that there is a strong deformation retraction r of M to its terminal base B^{+}. Denote by $r_{i}: M_{i} \rightarrow B_{i}, i \in \mathbb{N}$, the mappings which correspond to r. For $i \leq n$, put $T_{i n}=M_{i} \cup \ldots \cup M_{n}$ and note that
$T_{i n}=M_{i} \cup T_{i+1 n}, i<n$. Also consider the deformation retractions $r_{i n}: T_{i n} \rightarrow$ $T_{i+1 n}$, where $r_{i n} \mid M_{i}=r_{i}$ and $r_{i n} \mid T_{i+1 n}$ is the identity mapping. Note that $T_{n n}=M_{n}$ and put $r_{n n}=r_{n}: M_{n} \rightarrow B_{n}$. Clearly, the composition $r_{1}^{n}=$ $r_{n n} \ldots r_{2 n} r_{1 n}: T_{1 n} \rightarrow B_{n}$ is a strong deformation retraction. In particular, the inclusion $i_{n}: B_{n} \rightarrow T_{1 n}$ has the property that $i_{n} r_{1}^{n}$ is homotopic to the identity mapping on $T_{1 n}$. Therefore, $k \mid T_{1 n} \simeq k i_{n} r_{1}^{n}=\left(k \mid B_{n}\right) r_{1}^{n}$. Now note that every mapping of S^{n-1} to S^{n} is homotopic to the constant mapping $*$. Since B_{n} is an $(n-1)$-sphere, $k \mid B_{n} \simeq *$. However, this implies that also $k \mid T_{1 n} \simeq *$. Now consider a compact subset C of T^{n}. Since $T_{11} \subseteq T_{12} \ldots$ and $T_{11} \cup T_{12} \ldots=T^{n}$, one concludes that there is an $n \in \mathbb{N}$ such that $C \subseteq T_{1 n}$. Consequently, $k \mid T_{1 n} \simeq *$ implies $k \mid C \simeq *$ and k is indeed a phantom mapping.
4.2. In view of Lemma 1 , the proof of Theorem 1 will be completed if we prove the following lemma.

Lemma 2. If $p>1$ is an odd integer, then the mapping $h: T^{n} \rightarrow S^{n}$, $n \geq 2$, is essential, i.e., it is not homotopic to the constant mapping *.

Proof. In proving the assertion, we will use cellular cohomology groups of CW-complexes with coefficients in \mathbb{Z} (see e.g., [6], [10], [4], [3]). The mapping $h: T^{n} \rightarrow S^{n}$ induces a homomorphism $h^{n *}: H^{n}\left(S^{n} ; \mathbb{Z}\right) \rightarrow H^{n}\left(T^{n} ; \mathbb{Z}\right)$. Since homotopic cellular mappings induce equal homomorphisms of cellular cohomology groups (see e.g., [3], Theorem 12.1.9 or [4], p. 201) and the homomorphism $H^{2}\left(Y_{\mu} ; \mathbb{Z}\right) \rightarrow H^{2}\left(T_{i_{\mu}} ; \mathbb{Z}\right)$, induced by the constant mapping $*$, equals 0 , Lemma 2 will be proved if we show that $h^{n *} \neq 0$.

Recall that S^{n} has a CW-structure, which consists of a single 0-cell $*$ and a single n-cell S^{n}. Let a be the cellular n-cochain of S^{n}, which assumes an odd value α at the n-cell S^{n}. Since in S^{n} there are no $(n+1)$-cells, a is a cocycle. The folding mapping $\chi^{\prime \prime}$ associates with a the n-cocycle $\chi^{\prime \prime n}(a)$, which on each n-cell S_{i}^{n} of the cellular chain complex of S assumes the same value α. Furthermore, the mapping χ^{\prime} associates with the n-cocycle $\chi^{\prime \prime n}(a)$ the n-cocycle $\chi^{\prime n} \chi^{\prime \prime n}(a)$, which on each n-cell ΣS_{i}^{1} of the cellular chain complex of $T^{n *}$ assumes the same value α. Finally, the mapping χ associates with the n-cocycle $\chi^{\prime n} \chi^{\prime \prime n}(a)$ the n-cocycle $h^{*}(a)=\chi^{*} \chi^{\prime n} \chi^{\prime n}(a)$, which on each n-cell M_{i} of the cellular chain complex of T^{n} assumes the same value α. Therefore, to complete the proof of Lemma 2, it suffices to show that $h^{n}(a)$ is not the coboundary of some $(n-1)$-cochain of the cellular chain complex of T^{n}.
4.3. The latter assertion is an immediate consequence of the next lemma.

Lemma 3. Let $p>1$ be an odd integer and let a be the n-cochain of the cellular chain complex of T^{n}, which on each n-cell $M_{i}, i \in \mathbb{N}$, of T^{n} assumes the same odd value $\alpha \in \mathbb{Z}$, i.e., $a\left(M_{i}\right)=\alpha$, for all $i \in \mathbb{N}$. Then a is an n-cocycle, which is not a coboundary.

Proof. Consider the telescope T^{n} and assume that there is an $(n-1)$ cochain b such that $\delta b=a$. Since the n-cells of T^{n} are the mapping cylinders M_{i}, we must have $(\delta b)\left(M_{i}\right)=a\left(M_{i}\right)=\alpha$. Note that, for $n>2$, the $(n-1)$ cochain b is a function on the set $\left\{B_{i} \mid i \in \mathbb{N}\right\}$. Put $b\left(B_{i}\right)=\beta_{i}$. If $n=2$, the set of 1-cells also includes the $\operatorname{arcs} A_{i}, i \in \mathbb{N}$. By definition, $(\delta b)\left(M_{i}\right)=$ $b\left(\partial M_{i}\right)$ and thus, $b\left(\partial M_{i}\right)=\alpha$. Since $\partial M_{i}=p B_{i}-B_{i-1}$, one concludes that $b\left(\partial M_{i}\right)=b\left(p B_{i}-B_{i-1}\right)=p \beta_{i}-\beta_{i-1}$. Consequently,

$$
\begin{equation*}
p \beta_{i}-\beta_{i-1}=\alpha, i \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

Subtracting pairs of consecutive equalities (4.1), one sees that
$\beta_{1}-\beta_{0}=p\left(\beta_{2}-\beta_{1}\right), \beta_{2}-\beta_{1}=p\left(\beta_{3}-\beta_{2}\right), \ldots, \beta_{i}-\beta_{i-1}=p\left(\beta_{i+1}-\beta_{i}\right)=\ldots$.
The equalities (4.2) show that

$$
\begin{equation*}
\beta_{1}-\beta_{0}=p\left(\beta_{2}-\beta_{1}\right)=p^{2}\left(\beta_{3}-\beta_{2}\right)=\ldots=p^{i}\left(\beta_{i+1}-\beta_{i}\right)=\ldots \tag{4.3}
\end{equation*}
$$

Since $p>1$, formula (4.3) shows that the integer $\beta_{1}-\beta_{0}$ has arbitrarily large divisors p^{i}. This is possible only when $\beta_{1}-\beta_{0}=0$, i.e., $\beta_{0}=\beta_{1}$. In that case, for $i=1$, (4.1) becomes $\alpha=p \beta_{1}-\beta_{0}=(p-1) \beta_{0}$. Since it was assumed that p is odd, $p-1$ is even and so is $\alpha=(p-1) \beta_{0}$. However, this is in contradiction with the assumption that α is an odd number.

Acknowledgements.

The author wishes to express his thanks to Professor Jaka Smrekar of the University of Ljubljana, for sharing information on phantom mappings and making his Master's thesis available to the author [11].

References

[1] R. J. Daverman, Decompositions of manifolds, Academic Press, New York, 1986.
[2] C. H. Dowker, Mapping theorems for noncompact spaces, Amer. J. Math. 69 (1947), 200-242.
[3] R. Geoghegan, Topological methods in group theory, Springer Science + Business Media, New York, 2008.
[4] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
[5] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.
[6] A. T. Lundell and S. Weingram, The topology of CW-complexes, Van Nostrand, New York, 1969.
[7] S. Mardešić, There are no phantom pairs of mappings to 1-dimensional $C W$ complexes, Bull. Polish Acad. Sci. Math. 55 (2007), 365-371.
[8] S. Mardešić and J. Segal, Shape theory, North-Holland Publishing Co., Amsterdam, 1982.
[9] C. A. McGibbon, Phantom maps, Chapter 25 of Handbook of algebraic topology (ed. I. M. James), North-Holland, Amsterdam, 1995, pp. 1209-1257.
[10] J. R. Munkres, Elements of algebraic topology, Addison-Wesley Publ. Comp., Menlo Park, CA, 1984.
[11] J. Smrekar, On phantom mappings, Master's thesis, University of Ljubljana, Ljubljana, 2002 (in Slovenian).

Elementarni primjeri bitnih fantomskih preslikavanja

Sibe Mardešić

Sažetak. Poznato je da bitna fantomska preslikavanja (druge vrste) između povezanih CW-kompleksa postoje. U literaturi su rijetki eksplicitni primjeri takvih preslikavanja. Obično je dana domena i kodomena preslikavanja te egzistencijski dokaz da je skup klasa homotopije iz domene u kodomenu beskonačan. U ovom radu opisuju se neki elementarni primjeri bitnih fantomskih preslikavanja. Kodomena je n-sfera $S^{n}, n \geq 2$, a domena je teleskop T^{n} pridružen nizu kopija kanonskoga preslikavanja $f: S^{n-1} \rightarrow S^{n-1}$, neparnoga stupnja $p>1$. Nema bitnih fantomskih preslikavanja čija je kodomena 1-sfera S^{1}.

Sibe Mardešić
Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10002 Zagreb, P.O. Box 335, Croatia
E-mail: smardes@math.hr
Received: 13.9.2014.

[^0]: 2010 Mathematics Subject Classification. 55S37.
 Key words and phrases. Homotopy, essential mapping, phantom mapping, telescope.

