-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

RAD HAZU. MATEMATICKE ZNANOSTI
Vol. 19 = 523 (2015): 27-53

REMARK ON REPRESENTATION THEORY OF GENERAL
LINEAR GROUPS OVER A NON-ARCHIMEDEAN LOCAL
DIVISION ALGEBRA

MARKO TADIC

ABSTRACT. In this paper we give a simple (local) proof of two prin-
cipal results about irreducible tempered representations of general linear
groups over a non-archimedean local division algebra A. We give a proof
of the parameterization of the irreducible square integrable representations
of these groups by segments of cuspidal representations, and a proof of the
irreducibility of the tempered parabolic induction. Our proofs are based
on Jacquet modules (and the Geometric Lemma, incorporated in the struc-
ture of a Hopf algebra). We use only some very basic general facts of the
representation theory of reductive p-adic groups (the theory that we use
was completed more then three decades ago, mainly in 1970-es). Of the
specific results for general linear groups over A, basically we use only a very
old result of G. I. Ol’Sanskii, which says that there exist complementary
series starting from Ind(p® p) whenever p is a unitary irreducible cuspidal
representation. In appendix of [11], there is also a simple local proof of
these results, based on a slightly different approach.

1. INTRODUCTION

Let A be a local non-archimedean division algebra. Two major steps in
classifying unitary duals of general linear groups over a local non-archimedean
division algebra A modulo cuspidal representations, were done in [3] by D.
Renard and I. Badulescu, and in [16] by V. Sécherre. The unitarizability of
Speh representations was proved in [3] using global methods (and a simple
form of the trace formula of Arthur!). I. Badulescu has obtained in [4] a local
proof of this fact, simplifying substantially the previous proof of unitarizability
of Speh representations. The irreducibility of the unitary parabolic induction
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1See [1] for more details regarding the trace formula used in the proof of the unitariz-
ability in [3].
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for groups GL(n, A) was proved in [16] using the classification of simple types
for these groups (and relaying on several other very powerful tools). In [11],
E. Lapid and A. Minguez have recently obtained a proof of this fact based on
Jacquet modules. Their proof is significantly simpler then the previous proof
of the irreducibility of the unitary parabolic induction.

A consequence of these two new proofs is that now we have a very simple
and rather elementary solution of the unitarizability problem for the groups
GL(n, A). These new developments also simplify the classification in the case
of the commutative A obtained in [20]. For example, the proof of E. Lapid
and A. Minguez enables avoiding the use of a very important and delicate
result of J. Bernstein from [6] about restrictions of irreducible unitary repre-
sentations of GL(n) over a commutative A, to the mirabolic subgroup. Since
this result does not hold for non-commutative A, E. Lapid and A. Minguez
approach further provides a uniform approach to the commutative and non-
commutative case (making no difference between them, which was the case
before).

The unitarizability that we have discussed above was solved using the
simple basic results of the theory of non-unitary duals of these groups. These
simple basic results in characteristic zero for the setting of the Langlands
classification in the case of non-commutative A were obtained in [22]2. The
methods of the proofs in [22] are very simple. They relay on two results of
[8]. The first is that the square integrable representations of these groups are
parameterized by segments of cuspidal representations. The second one is that
the tempered parabolic induction is irreducible. The proofs of these results in
[8] are based on global methods (and the simple trace formula of P. Deligne and
D. Kazhdan; see [8] for more details). I. Badulescu transferred these results
to the positive characteristics in [2]. His proof is not very simple. It includes
transfer of orbital integrals, trace Paley-Wiener theorem of 1. Bernstein, P.
Deligne and D. Kazhdan, and it uses the close fields to relate the problem
to the characteristic zero. Therefore, again in the background are global
methods and the simple trace formula. A. Minguez and V. Sécherre provided
in [12] a local proof of results of [22], relaying at some point on simple types.
Their paper directs much bigger generality. It address ("banal') modular
representations, which include as special case the representations over the
complex field. Their paper also covers additionally the case of Zelevinsky
classification.

In this paper we give a proof of the parameterization of irreducible square
integrable representations by segments of cuspidal representations, and a proof
of the irreducibility of the tempered parabolic induction. Our paper uses
the general facts of the representation theory of reductive p-adic groups (the

2Such results in the setting of the Zelevinsky classification were proved in the field
case in [24], using the theory of derivatives.
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theory that we use was completed more then three decades ago, mainly in
1970-es). Of the specific results for general linear groups over A, basically
we use only a very old result of G. I. Ol’sanskii from [14]3, which says that
there exist complementary series starting from Ind(p® p) whenever p is a uni-
tary irreducible cuspidal representation. Then the positive reducibility point
determines the character v,, which is used to define the segments*. Using
the Jacquet modules, in this paper we also reprove basic results in [22] (the
proofs of [22] are more based on the properties of the Langlands classification
of the non-unitary dual). The first fact that we prove in this paper is the irre-
ducibility of the representation parabolically induced by a tensor product of
several square integrable representations corresponding to segments. The sec-
ond fact that we prove is the irreducibility of the representation parabolically
induced by a tensor product of two essentially square integrable representa-
tions corresponding to segments which are not linked (i.e. that their union
is not a segment which is different from both of the segments). Now, for
getting the irreducibility of the tempered parabolic induction, it is enough to
prove that all irreducible square integrable representations are coming from
segments. The proof of this fact was done by C. Jantzen in [10] in the case
of commutative A (using Jacquet modules). Since his proof uses some facts
of the Bernstein-Zelevinsky theory, we slightly modify his argument to ap-
ply to the case of general division algebra (since here we cannot relay on the
Bernstein-Zelevinsky theory).

Together with Theorem 4.3 of [17]°, our paper provides also an alternative
approach to some of the most basic results of the Bernstein-Zelevinsky theory
in the setting of the Langlands classification (here A is commutative; see [15]
for more details).

In the appendix of [11] there is a simple local proof not using types of two
results of [8] which we have mentioned above, on which [22] relays. In this
paper we give also such a proof of that two principal results. The proofs in
the appendix of [11] and in this paper have some parts in common, but the
general strategy of the proofs is different (in our paper the square integrability
plays the central role). Another difference is that proofs in the appendix of
[11] are much more concise then the proofs in this paper (the appendix of [11]
covers more general setting). This paper is written in more elementary way,
and it is more self-contained (which contributes to the length of the paper)

3As E. Lapid indicated to us, this result is reproved in [18] in the field case (with a
little bit of additional work; see Proposition in [18]). His proof naturally extends also to
the division algebra case.

4A. Minguez and V. Sécherre in their paper [12] use simple types from [13] instead of
the G. I. Ol'Ssanskii result. The methods (and aims) of the paper of A. Minguez and V.
Sécherre and ours are very different (in our paper the unitarity is crucial, while in their
paper the unitarity does not play a role at all).

5Basically, this theorem tells that Ind(p ® | |Fp) reduces for an irreducible cuspidal
representation p, in the case that A is commutative.
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and we consider that it may be of some interest to have also this approach
available. The paper [11] is very important, and it opens new possibilities
to attack some fundamental problems of the representation theory of p-adic
general linear groups.

The first version of this simple paper was finished in the spring of 2014,
when the author was guest of the Hong Kong University of Science and Tech-
nology, and we are thankful for their kind hospitality. Lengthy discussions
with E. Lapid helped us to make clear some basic topics used in this paper.
I. Badulescu suggested us a number of corrections and modifications, which
make the paper easier to read. Discussions with A. Minguez, A. Moy and G.
Mui¢ during writing of this pretty elementary paper were useful to us. We are
thankful to all of them, and to E. Lapid, C. Mceglin, G. Mui¢, F. Shahidi and
J.-L. Waldspurger for discussions related to the question of uniqueness (up to
a sign) of the reducibility point on the “real axes”, when one induces from a
maximal parabolic subgroup by an irreducible cuspidal representation.

The content of the paper is the following. The second section introduces
notation used in the paper and recalls of some very basic facts that we shall
use later. The irreducibility of a product of irreducible square integrable rep-
resentation corresponding to segments of cuspidal representations is proved
in the third section. In the fourth section of this paper we prove the irre-
ducibility of representation parabolically induced by a tensor product of two
essentially square integrable representations corresponding to segments which
are not linked. In the fifth section we collect some very elementary facts about
Jacquet modules that we need for the sixth section, where we recall of the
Jantzen’s completeness argument for irreducible square integrable represen-
tations. In the seventh section we present determination of the composition
series, based on the Jacquet module methods, of the reducible product of
two irreducible essentially square integrable representations (these compo-
sition series were determined in [22] using the properties of the Langlands
classification).

2. NOTATION AND PRELIMINARY RESULTS

For a reductive p-adic group G, the Grothendieck group R(G) of the
category Algy; (G) of smooth representations of finite length has natural or-
dering < (the cone of positive elements is generated by irreducible represen-
tations). There is mapping from Algs; (G) into R(G) called semi simplifica-
tion, and denoted by s.s.. To simplify notation, we shall write below the fact
s.8.(m) < s.8.(m2) simply as m < 7.

Fix a non-archimedean local algebra A. We shall consider in this paper
admissible representations of groups G,, := GL(n, A) of finite length. We use
in this paper the notation of [22] (most of this notation is an extension of the
notation of J. Bernstein and A. V. Zelevinsky which they were using in their
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earlier papers). We shall recall very briefly of some notation that we shall use
very often. We use the notation x for the parabolic induction from maximal
standard® parabolic subgroups. We shall use the graded positive Hopf algebra
R introduced in the third section of [22] (introduced in the same way as it
was introduced in [24] in the field case). The multiplication in R is defined
using the parabolic induction, while the comulitplication m* is defined using
Jacquet modules with respect to maximal standard parabolic subgroups. The
algebra is commutative (but not cocommutative). All the Jacquet modules
that we shall need in this paper, we shall compute using this Hopf algebra.

We identify characters of A* with that of F'* in usual way (using non-
commutative determinant). Then for two admissible representations m; and
7o holds

(2.1) x(m X ma) = (xm) x (xma).
Denote
v:=|det|Fp,
where det denotes the determinate homomorphism, defined by Dieudonné.

Let p; and po be irreducible cuspidal representations of general linear
groups over a fixed non-archimedean local algebra A. Suppose that p; X po
reduces. Suppose that the central character of p; X ps is unitary. We shall
now consider two possibilities.

The first is when pp is unitary (then ps is also unitary). Now Frobenius
reciprocity implies that p; ® p2 has multiplicity (at least) two in the Jacquet
module of p; X ps. Since this representation has precisely two irreducible
subquotients in the Jacquet modules which are cuspidal, and they are p; ® ps
and ps ® p1, this implies

p1 = p2.

Suppose now that ps is not unitary. Then Casselman square integrabil-
ity criterion (Theorem 6.5.1 of [7]) implies that p; X py has an irreducible
square integrable subquotient. This implies that p; X ps and pf‘ X p;’ have
an irreducible subquotient in common, which further implies that p; = pf or
p1 = p;’ (7t denotes the Hermitian contragredient of 7). The first possibility
is excluded, since p; is not unitary. Thus, the second possibility must hold.

We can write

p1=v"?p,
with p unitary and s € R, s # 0. Interchanging p; and ps if necessary, we can
assume s > (. Observe that now the above condition implies

p2 [ I/—S/Q

p-

6Standard parabolic subgroups are those ones containing the regular upper triangular
matrices. All the Jacquet modules that we shall consider in this paper will be with respect
to standard maximal parabolic subgroups.
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From this (using (2.1)) follows that
pxvp
reduces.

It is well known (and easy to prove) that there exists some ¢ > 0 such
that v'p x v~ tp is irreducible for all 0 < ¢ < e. Further, Theorem 2 of [14]
implies that one can chose 0 < ¢ < € such that v¥p x v=tp is unitarizable
for all 0 < ¢ < € (it is also irreducible for that ¢’s). In other words, we have
complementary series here. Since complementary series cannot go to infinity
(see [21]), we must have reducibility of v'p x v~ !p for some ¢ > 0. Chose
smallest such ¢ > 0 such that v*p x v~tp reduces, and denote it by 5

Recall that Lemma 1.2 of [19]7 implies that above s is unique. It is
determined by p. Therefore, we shall denote it by

Sp-
Observe that now the uniqueness of s, > 0 which gives reducibility, implies®
5, > 0.

We denote
v, =1,

The relation (2.1) implies s, = sy, and further v, = v,,,.
The set of the form

{pvpp,s .., l/f,fp}
will be called a segment (in cuspidal representations), and it will be denoted
by
[0, vy p]-
The representation

k k—1
Vpp XV, pX...Xp,

contains a unique irreducible subrepresentation, which is denoted by

5(lp, vy pl)

(uniqueness of the irreducible subrepresentation follows from the regularity,
i.e. from the fact that all the Jacquet modules of the induced representation
are multiplicity free).

"See also Theorem 1.6 there, and i) of Proposition 4.1 of [9].

8Recall that [8] gives a precise description of s, in terms of the Jacquet-Langlands
correspondence (among others, it implies that it is an integer which divides the rank of
A). The theory of types gives a different description of s, (see section 4 of [16]). We shall
not use any of such additional information in this paper. In this manuscript we shall relay
neither on (simple) trace formula (and global methods), nor on the theory of types.
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Observe that for 0 < i < k — 1 we have

k k—1 i+2 i il i—1

vop X vy ip X x v p x S([vyp, vt pl) X vy
k k—1

SUSP X VST Ip XL X .

PX . XVppXp

From this and the definition of §([p, z/f,f p]) follows

3([p, V:fp]) — V:fp X V:f_lp X ... X l/f,+2p X 5([1/;;), I/Z'Hp]) X l/f,_lp X . XVppXp.
Applying induction, this implies that the minimal non-trivial (standard)
Jacquet module of 6([p, V¥ p]) is

k k—1
VpQV, p&...Q0p.

Further, if 7 is an irreducible representation which has the above represen-
tation in its Jacquet module, then m = §([p, Vf,fp]). This characterization of
representations 6 ([p, Vf,f p]) directly implies the following formula®

k
(2.2) m* (0o, vppD)) = 3 (v e, vl @ 0(lp, vip)):

The square integrability criterion of Casselman!?

representation is essentially square integrable.
For a segment A of cuspidal representations one can easily prove that

now implies that this

3(A)"=0(A),
where A = {j;p € A}. Further, from (2.1) follows
XO(A) = 5(xA),

where xA = {xp;p € A}.

We shall denote

At ={p":pe A},

where p* denotes the Hermitian contragredient of p. We shall say that A
is unitary if A = AT. In this case 6(A) is unitarizable (since it is square
integrable modulo center).

Let o = do([p, l/f,fp]). Then we shall denote s, also by s,, and v, by v,.

Let m and o be a representations of finite length of G,, and G,, respec-
tively, where n > m. Suppose that o is irreducible. We denote by

mt@o’ (ﬂ-)
the sum of all irreducible terms in m*(7) which are of the form 7 ® o (counted
with multiplicities). Analogously we define m}g _ (7).

91n [22], we have obtained this formula in the same way (from (iii) of Proposition 3.1
and (i) of Proposition 2.7 there).
10Gee (6.1) and (6.2) in Section 6.
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3. IRREDUCIBILITY - THE CASE OF SEVERAL UNITARY SEGMENTS

First we have a very well known?!!

LEMMA 3.1. Let A1, Aq, ..., A, be different unitary segments of cuspidal
representations. Then the representation

0(A1) x §(A2) x ... x §(Ay)
s irreducible.

PROOF. Since segments A; are different and unitary, we can enumerate
them in a way that
(3.1)
for 1 < j < n, both ends of A; are not contained in Ay, for any j < k < n.

The commutativity of algebra R implies that it is enough to prove the lemma
for such enumerated segments.
Now the formula for m*(§(A;)) implies that

Mane- (5(A1) X 8(A2) X ... x §(Ay)) = (A1) © 6(Ag) X ... x 5(Ay).

Continuing this procedure with Ag, ..., A,, etc. (in each step delating the
segment with the lowest index) and using the transitivity of Jacquet modules,
we get that the multiplicity of 6(A;) ® 6(A2) ® ... ® §(Ay) in the Jacquet
module of §(A1)x§(Az)x...x§(A,,) is one. Now the unitarizability of (A1) x
§(Az) x ... x d(A,) and the Frobenius reciprocity imply the irreducibility.

O

Let an irreducible representation o of some G, be a subquotient of p; .. .x
pi, where p; are irreducible and cuspidal. Then the multiset (p1,...,p;) is
called the cuspidal support of o. It is denoted by

supp(o).

For each 1 < i < n fix a finite multiset X of irreducible cuspidal represen-
tations of general linear groups over A. Let 7 be a representation of finite
length of some G,,. We denote by

mgupp(xl,uan)(’/T)

the sum'? (counted with multiplicities) of all irreducible terms in the corre-

sponding Jacquet module of 7w which are of the form 7 ® ... ® 7, such that
supp(r;) = X; for all 1 <i < n.

111t is a special case of a result that holds for a general reductive group. For complete-
ness (and since it is very simple), we present the proof for general linear groups here.

12The sum is in the Grothendieck group of the category of finite-length representations
of the corresponding Levi subgroup.
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LEMMA 3.2. Let A be a unitary segment of cuspidal representations. Then
0(A) x...xd0(A)

k—times

is irreducible’.

PROOF. Denote the representation whose irreducibility we want to prove
in the above lemma by 7. Suppose that it is not irreducible. Then we can
write

™ =m D mo,
where m; are non-zero subrepresentations.

Write
A=[vgp,v,“pl
Introduce segments
I = [VZJrlpﬂ VZJrip]a i:]-a"'7k7
A, =THUAUT; = [Vp_a_ip, Vp_‘”'ip], i=1,...,k.

We can consider segments as multisets, and introduce multisets

k k k
X =)'T} X =>Ty X=> A
=1 =1 =1

Suppose that A’ and A" are disjoint segment of cuspidal representations,
such that their union is again a segment of cuspidal representations. Then one
proves easily that §(A’UA") is a subquotient of 6(A’) x §(A”) (for a proof of
this very elementary fact see the very beginning of the proof of Lemma 7.1).
This (together with the commutativity of R) directly implies

§(A1) X oo x 6(Ag) <8(T1) x ... x 8(T) x m x 6(IF) x ... x §(T)).

Since the representation on the left hand side is irreducible by the previous
lemma, we get that

S(A1) X ... x 6(Ag) <6(T1) X ... x 6(Tg) x m x 6(TF) x ... x 6(I)),
for at least one ¢ € {1,2}. Fix some ¢ satisfying this. Then obviously
Mupp(xs,x,x_) (0(A1)x. .. x0(Ay)) <

M ppxs xx ) (0(T1) X oo x 8(Dg) x m x §(0F) x ... x §(T')).
Denote

A=6T1) x...x (k) @m@8(TT) x...x §(TY),
Ay =8T1) x...x8Tk) @m @5TT) x ... x §(TF).

Obviously A £ A; (consider the lengths of both sides).

13 Twisting by a character, one directly sees that the claim of the lemma holds without
assumption that the segment is unitary.
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Using the formula (2.2), one directly checks that
A< m:upp(X+,X,X,)(5(A1) X ... X 5(Ak))14
and
Moy x,x ) 0(T1) X oo x 8(Tx) x i x §(IF) x ... x () = As.

Now the last inequality above implies A < A;. This contradicts to our previous
observation that A £ A;. The proof of the lemma is now complete. O

PRrROPOSITION 3.3. LetT'y,Ts, ..., Ty, be unitary segments of cuspidal rep-
resentations. Then the representation

(T1) x 6(T2) x ... x 6(Ty,)
is irreducible.
PROOF. We can write the multiset (I';,T'2,...,T,) as
(A1, AL Ay Ay A A,

k1 —times ko —times k., —times
where Aq,..., A, are different segments satisfying (3.1). Denote

k;—times
Then the above lemma tells us that these representations are irreducible.
For the proof of the proposition, it is enough to show that m; X ... X m, is
irreducible.
In the same way as in the proof of Lemma 3.1 one gets that

*
My o (T X T X ... X ) =T @2 X ... X Tp.

Continuing this procedure (similarly as in the proof of Lemma 3.1 and using
the transitivity of Jacquet modules), we get that the multiplicity of m; ®
T ® ... QR m, in the Jacquet module of m; X M X ... X m, is one. Again the
unitarizability of m; X mg X ... X m, and the Frobenius reciprocity give the
irreducibility. O

REMARK 3.4. Let p be an irreducible cuspidal representation of some
G.,. In Appendix of [11] (Theorem A.1), there is a simple proof of uniqueness
of the reducibility point s, based on Jacquet modules (without using a non-
elementary analytic argument from [19]). We shall briefly describe idea of
that proof (the proof in [11] is concise; our brief description of a special case
of that proof is longer than the general proof in [11]).

Observe that if we know that there is a reducibility point s, which
is strictly positive (for which we do not need to know that it is unique),
one defines v, using that s,, and then segments of cuspidal representations

14 Actually, we have here equality.
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{p,vpps -, ij p}. Further, one attaches to such segments essentially square
integrable representation as before. Now Lemma 3.2 implies that if there is
strictly positive reducibility, p x p must be irreducible. Therefore, to prove
the uniqueness of s,, it is enough to show that one can not have more then
one strictly positive reducibility point. We shall sketch how to prove that one
can not have reducibility of both v,p x p and vjp x p for some a > 1 (the
case a < 1 reduces to this case interchanging the reducibility point in the
definition of v,). To simplify technicalities, we shall give the argument from
[11] in the case a < 2 (the idea in general case is the same).

Suppose that both v,p x p and vyp X p are reducible, where 1 < a < 2.
Then v,p x p (resp. v§p x p) has unique irreducible subrepresentation, and it
is essentially square integrable. We denote it by 1 (resp. d,). The minimal
non-zero (standard) Jacquet module of this subrepresentation is v,p® p (resp.
2 p). Twisting p by a character, we can reduce the proof to the case
when v7p x d1 has unitary central character (use (2.1)). Observe that vjp x
01 = vgp X vpp X p, and that the right hand representation has a unique
irreducible subrepresentation (since the induced representation is regular).
Denote this irreducible subrepresentation by . Obviously o < vgp x §;1. A
simple consideration of Jacquet modules and Frobenius reciprocity imply that
there exists a non-trivial intertwining d, X vp,p — vyp X v,p X p (we are in the
regular situation). Thus o < §, X vpp.

Consider first the case a = 2. Then 2 and v,p are square integrable
(since they have unitary central characters). Therefore, d2 X v,p has no square
integrable subrepresentations. From the other side, o = §([p, Vﬁp]) < 02 X Vpp,
which is square integrable. This contradiction ends the sketch of the proof in
this case.

Consider now the remaining case a < 2. Denote the minimal non-zero
(standard) Jacquet module of o by r(c), and denote the Jacquet module
of o with respect to the opposite parabolic subgroup by r(¢). The above
estimates 0 < v%p x d1and 0 < dy X v,p imply easily!'® r(o) < Vep @ Vpp ®
p+vpp@v5p®p. Now the Casselman square integrability criterion (see (6.1)
and (6.2)) implies that o is square integrable, which further implies o = o.
Now we shall use the fact that the Jacquet module (with respect to a standard
parabolic subgroup) of the contragredient representation, is the contragredient
of the Jacquet module with respect to the opposite parabolic subgroup of the
representation (see Corollary 4.2.5 of [7] for precise statement). This fact and
o= ot imply r(o) Xr(c™) = (v(o))".

One gets r(o) conjugating r(o) by appropriate element of the Weyl group
(which conjugates the standard parabolic subgroup from which Vgp X Vpp X p
is induced, to the opposite one). This and the above estimate of r(o) give
t(0) < pRu,p@Vip+ p@Vip @ vpp. Therefore, (¥(0))T < pt @ v, pt ®

15This upper estimate has more terms in the case a > 2.
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v, pt + pt @ v pt @ v pt. The fact r(o) = (f(0))" gives a new upper
bound for r(o) (the same as for (r(c))*). These two upper bounds of r(o),
and the condition that the central character of vjp X d; is unitary, directly
imply r(o) = 0. This contradiction completes the sketch of the proof.

4. IRREDUCIBILITY - THE CASE OF TWO NON-LINKED SEGMENTS

DEFINITION 4.1. For a representation m of a finite length we denote

mZottom(ﬂ) = Z T ® pla

where the sum runs over all irreducible ™ @ p’ in m*(m) (counted with multi-
plicities) such that p' is cuspidal.

LEMMA 4.2. Let A1 C Ay be two non-empty segments as above. Then
(S(Al) X (S(Ag)
is irreducible.

PRrOOF. Twisting with a character, we can reduce the proof of the lemma
to the case when 0(A;) is unitary. We shall assume this is the rest of the
proof.

First observe that Proposition 3.3 implies that the claim of the above
lemma holds in the case that §(Az) is also unitary.

We shall prove the remaining cases of the lemma by induction with respect
to the sum of lengths of A; and As. If the sum of the lengths is 2, then we
know that the lemma holds. Therefore, we shall fix two segments whose sum
of lengths is at least three, and suppose that the lemma holds for all the
pairs of segments whose sum of lengths is strictly smaller then the sum of the
lengths of the segments that we have fixed.

It is enough to consider the case Ay # As. We can write

Ay =1[v,"p,v)pl, ne(1/2)Z, n>0,

AQZ[VpinipﬂV;“rp]a n,,n+€(1/2)Z, nffnJrEZa
where
n—n_€Z, n_,ny>n.

Since we have seen that the lemma holds in the case n_ = n, it remains to
prove the lemma when ny < n_ or ny > n_ We shall now prove the lemma
in the case ny < n_. The other case (i.e. n_ < ny) follows in a similar
way, or one can get it also from the case ny < n_ applying the (hermitian)
contragredient.
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Assume ny < n_. Then n < ny implies n < n_. Suppose that §(Aq) x
d(Az) reduces. Observe that

Miottom (6(A1) X 6(A2)) =
(v vipl) x (v, "~ v ) @ "
+ ([, povpp)) < 8([ve " pvp o)) @ v, .
Observe that both representations in this Jacquet module are irreducible by
the inductive assumption. Therefore, 6(A;) x §(Asz) is a length two represen-

tation. Write it in the Grothendieck group as a sum of irreducible represen-
tations

(41) (5(A1) X5(A2)Z7T1 + ma.

Then with a suitable choice of indexes we have

(42) mzottom(ﬂl) - 5([1’5”[’; Vgp]) X 5([V;n7+1p7 V:)L+p]) ® I/pinipa
(4.3) Miortom (T2) = 6([v, " p, 7 pl) X 8([v, " p,vp*p]) @ v, " p.

Consider now the representation

m:=06([v, "p,v;p]) x 8([v, " p, v, pl).
We know by the first part of the proof that this representation is irreducible
(since n # n_). Observe that the formula (2.2) implies
(v, "= povy=pl) = 8wy o, vy pl) x 6([v, " vyt p)).
This implies 7 —

(v ve]) % 61 0, o) x 80 ™ v ) =
3(A1) x 3([vp*p, v pl) x 3(As).
This implies that in R we have
T < 0(A1) X §(Ag) x (5([1/;L++1p, vy~ pl).

Since 7 is irreducible, (4.1) implies

m<m xS v )

or
m < g X 5([1/:}*“;), vy~ pl)-
We shall now show that neither of these two possibilities can happen, which
will complete the proof.
Suppose that the first inequality holds, i.e. = < m x §([vpt ™ p, vy pl).
Now (4.2) implies

M otiom (11 X O([Wp* T p, 0= p)) = 1 x 6([vp+2p, w0 pl) @ v+ thp

+ 6([v, " p,vppl) x 6([v, "o, vt pl) x S+, v pl) @ v p.
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Obviously, in the Jacquet module of 71 x ¢ ([V;,”—|r1 0,y p]) we shall never
have the term which finishes with ... ® v, "p. Since 7 has at least one such
term in its Jacquet module, we have got a contradiction. Therefore, the first
inequality can not happen.

Therefore, the second inequality holds, i.e. 7 < m x 8([vh* ' p,vh p]).
Now (4.3) implies

”nZottom(ﬂ-2 X 5([Vg++1pa V;Iip])) = T2 X 5([V;++2pa V;ylip]) ® V;I++1p

+ (v, " p,wp)) x 6([v, " pvytpl) x 8([vpt vl pl) @ vy .

Obviously, in the Jacquet module of w3 x § ([I/ZHJr1 p,vp " p]) we shall never
have the term which finishes with ... ® v, "~ p. Since 7 has at least one such
term in its Jacquet module, we have got again a contradiction. This completes
the proof. O

We say two segments A; and Ay are linked, if Aj UA, is a segment which
is different from both A; and As. For a segment A, we shall denote by

b(A)
its starting representation. We further denote
A = A\b(A).

PROPOSITION 4.3. Suppose that (non-empty) segments Ay and Ay are
not linked. Then

(S(Al) X (S(Ag)

s irreducible.

Proor. Thanks to the previous lemma, it is enough to prove the propo-
sition in the case A1 N Ay = (). We shall assume this in the proof. We shall
proceed by induction on the sum of the lengths of A; and As. For the sum
equal to two, the proposition obviously holds. We shall fix two segments as in
the proposition, with the sum > 3, and suppose that the proposition holds for
strictly smaller sums. Suppose that the proposition does not hold for these
A1 and A,y. From

Mipottom (0(A1) X 6(A2)) = 6(T A1) X 6(A2) @b(A1) + (A1) X 5(7A2) ®b(Az)

and the inductive assumption we conclude that the induced representation is
of length 2. Denote the irreducible sub quotients by 7 and ms. After possible
renumeration, we have

(44) mZottom(ﬂ-l) = 5(_A1) X 5(A2) ® b(Al)a

(4.5) Mpotiom(T2) = 0(A1) X 0(7 A2) © b(Az).
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From the other side, in the Jacquet module of the induced representation we
have an irreducible subquotient of the form

(4.6) 7@ b(A1) x b(Ay).

The assumption on A; and A, implies that the representation on the right
hand side of the tensor product is irreducible. Denote the unique irreducible
sub quotient of §(A1) x §(Az) which has (4.6) in its Jacquet module by 7.

Then 7 < 7 or 7 < mo. Since 7 has terms of the form ... ® b(A;) and
... ®b(Az) in its Jacquet module, we get contradiction with formula (4.4)
and (4.5). This contradiction completes the proof. O

We know that the representation p x v,p reduces. One directly sees that
this is a multiplicity one representation of length two. One irreducible sub-
quotient is §([p, v,p]). Denote the other irreducible subquotient by

([, vpp))-

For the classification of square integrable representations we shall need
the following simple

LEMMA 4.4. The representation p x 3([p,v,p]) is irreducible'®.
PROOF. One directly computes
m*(px5([p,vpp])) = 1@ p x 3([p, vpp))

(4.7) +p®3([p: vppl) + p® p X Vpp

(4.8) +3([p, vpp]) @ p+p X pRVpp

+p % 3([p; vpp]) @ 1.

Suppose that p x 3([p,v,p]) is reducible. Then from (4.8) we see that there
must be a subquotient 7 of p x 3([p,v,p]) which has 3([p,v,p]) ® p in its
Jacquet module, and this is the whole Jacquet module with respect to the
corresponding parabolic subgroup which gives this Jacquet module (since the
Jacquet module of p x 3([p, v,p]) for that parabolic subgroup has length two).
Now using the transitivity of Jacquet modules, we get from (4.7) that in the
Jacquet module 7 must be p®d([p, v,p]), and this is the whole Jacquet module
for the corresponding parabolic subgroup which gives this Jacquet module.
From this, the Frobenius reciprocity implies

T <= p x 6([p,vppl)-

Now Lemma (4.2) implies m = p x 6([p, v,p]). This is a contradiction, since
the length of the minimal non-zero Jacquet module of 7 is one, while the
length of the minimal non-zero Jacquet module of p x §([p, v,p]) is three. 0O

16 This follows directly applying the involution of Zelevinsky type which preserves the
irreducibility (which is proved by A.-M . Aubert, and by P. Schneider and U. Stuhler).
Nevertheless, we prefer not to use this very powerful result to prove this simple lemma.
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5. ON JACQUET MODULES

LEMMA 5.1. Let w be an irreducible representation which has in its Jacquet
module an irreducible subquotient

a1®...®an®(VZJrlp@V;p@VZp)®ﬁ1®...®ﬁm,

where p is a cuspidal representation of some GL(j, A). Then it has also
a1 ®... Q@ VprpRUp) @B/ O... 0 B

in its Jacquet module.

PRrROOF. By the transitivity of the Jacquet modules, we can reduce this
question to a question of irreducible representation 7’ of GL(3j, A) which has
in its Jacquet module pitlp ® V/i) PR l/zp. Further, changing notation, we can
take that ¢ = 0.

First observation is that 7’ is a subquotient of v,p X p x p. Using the
structure of the Hopf algebra, one directly sees that the multiplicity of v,p ®
p® p in the Jacquet module of the above representation is 2. By Lemma 4.2,
p x 0([p,vpp]) is irreducible (which implies p x §([p, v,p]) = 0([p, vop]) X p).
Further, this representation is also subquotient of v,p x p x p. The multiplicity
of v,p ® p® p in the Jacquet module of p x §([p, v,pp]) is two. This implies
' = p x 6([p,v,p]). Now the Frobenius reciprocity implies that p ® v,p ® p
must be in the Jacquet module of 7’. This implies the lemma. O

LEMMA 5.2. Let w be an irreducible representation which has in its Jacquet
module an irreducible subquotient

1 ®...Qan® VPVt @B ®. .. ® By,
where p is a cuspidal representation of some GL(j, A). Then it has
a1®...®an®(V;+1p®yz+1p®yzp)®ﬁ1 R ... Pm

or
a1®...®an®(V;p®yz+1p®yz+1p)®ﬁ1 R ... Bm
in its Jacquet module.

PRrROOF. Again by the transitivity of the Jacquet modules, we can reduce
this question to a question about irreducible representation n’ of GL(3j, A)
which has in its Jacquet module p'*'p ® v’p ® vitp. Further, changing
notation, we can take again that ¢ = 0.

From Lemma 4.4 we know that 3([p, v,p]) X v,p is an irreducible represen-
tation. This directly implies that p X v,p X v,p is a representation of length
two. Observe that 7' must be one of these two irreducible subquotients. One
writes explicitly the composition series of minimal non-zero Jacquet modules
of these two irreducible subquotients. Exponents of the subquotients of the
representation 0([p, v,p]) X v,p are

(1,0,1),(1,1,0),(1,1,0),
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and for the other one are
(0,1,1),(0,1,1),(1,0,1).

This implies that there must be also exponents (1,1,0) or (0,1,1). From this
follows directly the lemma.

O

REMARK 5.3. Let m be an irreducible representation of some GL(I, A)
and let

PLE ... ®Pi—1 @ (pi ® pit1) @ Pit2 @ ... @ pg
be an irreducible cuspidal subquotient of some standard Jacquet modules of
7. Suppose that the representation

Pi X Pit+1
is irreducible. Then the only irreducible representation which can have in its
Jacquet module p; ® p;11 is p; X pi+1. Observe that this representations has
also p;11 ® p; in its Jacquet module. Now from the transitivity of Jacquet
modules directly follows that
PL® ... @ Pi—1 @ (pit1 @ pi) @ Piy2 @ ... @ pg

is also an irreducible cuspidal subquotient of the same standard Jacquet mod-
ules of .

6. SQUARE INTEGRABLE REPRESENTATIONS
Let 7 be an irreducible representation of some GL(n, A) and let
VplPL@ V02 @ O Vi
be an irreducible cuspidal subquotient of some standard Jacquet modules of
m, where we assume that p; are unitarizable representations of GL(n;, A), and
a; € R (clearly, ny +- - -+ny = n)!7. Now the square integrability criterion of

Casselman (Theorem 6.5.1 of [7]) says that 7 is square integrable if and only
if for all irreducible subquotients as above holds

k
(6.1) > nispa; =0,
=1
and further if we have
J
(6.2) D nispai>0; 1<j<k—1.
=1

I7Tn this case, this Jacquet module is a minimal non-zero Jacquet module of 7, and all
the other irreducible subquotients of this Jacquet module are cuspidal. Conversely, if we
take a minimal non-zero Jacquet module of 7, the all the irreducible subquotients of this
Jacquet module are cuspidal.
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Observe that the formula (2.2) implies that representations §(A) are unita-
rizable in the case that AT = A.

A direct consequence of the above square integrability criterion and the
above remark is the following

COROLLARY 6.1. Let w be an irreducible square integrable representation
of some GL(Il, A) and let
PLRP2®...Q pk
be an irreducible cuspidal subquotient of some standard Jacquet modules of .
Then the set {p1,p2,...,pr} is a segment of irreducible cuspidal representa-

tions'8.

PROOF. We present here a slightly different proof. Suppose that
{p1,p2,---,pr} is not a segment of irreducible cuspidal representations. Then
we can write this set as a disjoint union of two non-empty sets X’ and X"
such that

(6.3) p' x p" is irreducible for all p" € X’ and p" € X".

Take any irreducible quotient ¢ of the Jacquet module which has the represen-
tation p1 ®p2®...® py for a subquotient. Then o = p) ®ph®...® p}, for some
irreducible cuspidal representations p} of groups G;’s, where pi,p5 ..., p}, is
some permutation of pi, pa, ..., pr (see [7] or [24]). The Frobenius reciprocity
implies
T Pl X ph X ... X pl.

Let a1, ..., o, be the subsequence of pf, pj, ..., pj, consisting of all the rep-
resentations which belong to X’. Analogously, let (31,...,3, be the subse-
quence of pi, p5,. .., p). consisting of all the representations which belong to
X". Clearly, 1 <u,v <k (and v+ v = k). Now (6.3) implies

Ty X...Xoy XP1 X...xXBpand ™ B X ... X By X a1 X ... X Q.
(u) (u)

S . (u) . tariz .
Let o; = v}, oy, where z; € R and «; ' is a unitarizable representation
«@
i

of G.,. Analogously, let §; = ygfu)ﬁ](u), where y; € R and ﬂ](u) is a unita-
J
rizable representation of G4;. Then the above two embedding, the Frobenius

reciprocity and the Casselmen square integrability criterion imply

u v
ZC,‘SQEU)$¢ > 0 and Zdjsﬁ;u)yj > 0.

i=1 j=1
This implies Y1, Ci8 (0 Ti + > djsﬂ;u)yj > 0, which contradicts to (6.1)
of the Casselmen square integrability criterion. This contradiction completes
the proof of the corollary. 0

181n the moment, we do not claim that there is no repetitions among representations
P1,P2, ..., pk (this will be proved later)
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Now we can prove the following

PROPOSITION 6.2. Let o be an irreducible square integrable representa-
tion of some GL(l, A). Then there exist a segment A of irreducible cuspidal
representations such that

o=404(A)
and AT = A.

PROOF. The proof bellow is simple modification of [10] (mainly of Lemma
2.2.2 there). By the previous corollary, there exists a unitarizable irreducible
cuspidal representation p and 0 < « < 1 such that the cuspidal support of o
is contained in {z/g‘*zp; z € Z}. We now consider all the irreducible cuspidal
subquotients

VP RVZEPR ... QUgkp
of the minimal standard non-trivial Jacquet module of 0. Among them, fix

an irreducible sub quotient such that (ai,as,...,a) is minimal with respect
to the lexicographical order on R*¥. We know from the square integrability

criterion that
k
Sa=0
i=1
and that all the following inequalities

J
dai>0; 1<j<k-1,
i=1
hold (observe that all the s,, from the Casselman square integrability criterion
are the same (and positive), so we can divide the relations in the criterion by
this constant - we shall use this in the sequel). Denote ¢; = a3.

Let 1 < ¢; < k be the minimal index such that ag, 1 > a1, if such ¢;
exists. If there is no ¢; such that ag, 1 > a1, we take ¢; to be k.

Suppose that ¢; > 1. Then the minimality and the above remark imply
a2 = a; — 1.

Suppose ¢; > 2. Then we cannot have az < a; — 2 (since if this would
be the case, using the above remark we would get a contradiction to the
minimality). Suppose that as > a2 — 2. Then we must have ag = a1 — 1.
Now Lemma 5.1 implies that there exists strictly smaller term (with respect
to the lexicographic ordering) in the Jacquet module of o. This contradiction
implies that as = a3 — 2.

Now we shall prove that in general holds

ai:al—iJrl, 1§z§€1

We prove this by induction. We have seen that this hold if ¢ < 3 and ¢ < /5.
Suppose 3 <1 < ¢1, and that the above claim holds for ¢ <.
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Suppose a;+1 # a1 — I. First, we cannot have a;11 < a3 — [ (since if this
would be the case, using the above remark we would get a contradiction to
the minimality again). Suppose a;+1 = a1 — !+ 1. Now applying Lemma 5.1,
we get a contradiction to the minimality.

Thus,

al—l+2§al+1 gal—l.
Therefore,
aj41=0a1—J
for some j satisfying
1<5j<1l-2.

Now applying the above remark several times, we would get that in the

Jacquet module of o must be a term of the form

V21P®Vgl_1p®- . -®Vgl_j+2p®Vgl_j+lp®(Vgl_jp®l/gl_j_lp®l/gl_jp)®- .

Lemma 5.2 implies that we must have at least one of the additional two repre-
sentations listed in that lemma. The minimality implies that we cannot have
the last representation listed there. Therefore, we must have a representation
of the form

V;“p@”;ll_lp@- . -®Vgl_j+20®l/gl_j+lp®(Vgl_jP®Vgl_jp®Vgl_j_lp)®- .

= yglp®ygl_1p®. . .®1/Zl_j+2p®(1/;1_j+1p®1/21_jp®ygl_jp)®ygl_j_1p®. e
Now Lemma 5.1 implies that we must have a term of the form

Vzlp®ygrlp®. ) .®Vzrj+2p® (1/217jp®V;,“*]'Jrlp@V;)“*jp)®l/zl*j71p®. »
in the Jacquet module of 0. This contradicts to the minimality. Therefore,

we have completed the proof of our claim.
Continuing this procedure, we get that the minimal element is of the form

(vgip® V;1_1p® . ® l/glp) ® (V2p® V;2_1p® ® l/g2p) ®...
QWsp@velp® .. @ukp),

where
1< <<

This implies

1

US(Vglpxygl’lpx...xyglp)x(Vl‘?pxyzzf p><...><1/g2p)><...

X(Verp x w5t p x o x vl p).

Now one can easily show (using the Frobenius reciprocity and the induction
in stages) that there exist irreducible subquotients o; of

Ci ci—1 d;
I/p7p><l/pl pX...Xl/p7p

such that
0301 X...X0s.
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Suppose that some o; # §([v3ip,v5p]). Chose the lowest index i for which
this holds. Then
vyip® V;i71p® ® Vg"p
in not in the Jacquet module of o;, and all the irreducible cuspidal subquo-
tients of ¢ are strictly smaller lexicographically. This would directly produce
an irreducible subquotient strictly smaller then the minimal one. This con-
tradiction implies that o; = §([v% p, v p]) for all indexes 1.
Thus,

(6.4) a<—>(5([1/;l1p,1/;1p]) X ... X (5([1/gsp,1/;3p]).
If s = 1, then the proposition obviously hold. Suppose s > 2. The square
integrability criterion implies
c1+d; > 0.

The (single) equality relation in the square integrability criterion implies that
we can not have

c+d; >0
for all indexes i. Choose the lowest index ¢ such that this is not the case.
Then we know that holds

g <<y
—c1 <di, ..., —¢i—1 <d;i1,
and
di < —C;.

This implies that for 7 < ¢ holds
d; < —¢; < —c; < dj,
which implies d; < d; and ¢; < ¢;. Therefore, the segment [z/gip, vy p| contains
all the segments [ng p, vy p] with j < i. Now Lemma 4.2 and the relation (6.4)
imply
o= d([v,p,vpp]) X ..
Using the Frobenius reciprocity and applying the square integrability crite-

rion, we get ¢; +d; > 0. This obviously contradicts our assumption ¢; +d; < 0.
This contradiction completes the proof. O

Now Propositions 4.3, 6.2 and 3.3'° imply the following

COROLLARY 6.3. The tempered induction for GL(n, A) is irreducible. In
other words, if T1,...,T, are irreducible tempered representations of general
linear groups over A, the 71 X ... X 1y, is irreducible (and tempered). O

nstead of Proposition 3.3, we can use the Harish-Chandra commuting algebra theo-
rem. This theorem and Proposition 4.3 imply that all the generators of the commuting
algebra of a representation parabolically induced by an irreducible square integrable repre-
sentation are scalar operators. This implies the irreducibility of the induced representation.
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7. APPENDIX - THE CASE OF TWO LINKED SEGMENTS

Considerable part of [22] is devoted to the determining of the composition
series of §(A1) x 6(Aq) for linked segments A; and A,. This information is
obtained there using the properties of the Langlands classification. This can
be obtained also using the Jacquet modules (it is a little bit more elementary).
Since we have presented proofs of two key facts of the representation theory
of groups GG, based on Jacquet modules, it is natural to have also the proof of
this important fact based on Jacquet modules. We present such proof below.

Let A1 and Ay be linked segments. We can write them as

Ai:[’/gipalf;nip]; Z.:]-a27
where n;, m; € R. After possible changing of indexes, we shall assume n; <
ng. We shall use the interpretation of the Langlands classification in term of

finite multisets of segments (see [22]). For our purpose, we need only to know
that L(A1, As) denotes the unique irreducible quotient of §(Ag) X §(Aq).

LEMMA 7.1. Suppose
mi+ 1 = no.
Then in the Grothendieck group of the category of representations of finite
length we have

5(A1) X 5(A2) = L(Al, AQ) + 5(A1 @] Ag)
PrROOF. Observe that

S([p", vy p]) = vy p < V;m_lp X ..o xvytp,

([, v pl) x 6([p™ vy pl) =
W2 x vt x o oxvizp) x (vt p X vt T ip X x vt p)

(we use here that m; + 1 = n3). Since the representations on the right hand
sides are isomorphic, and they have the unique irreducible subrepresentations,
we get that (A1 U Ag) < §(Az) x §(Ay). Thus, 6(A; UAy) is a subquotient
of §(A1) x 0(Az) (recall that R is commutative). Therefore, §(A; U Ag) and
L(A1,As) are sub quotients of (A1) x 6(Ag). Obviously, 6(A; U Ay) and
L(A1, As) are not isomorphic (since their Langlands parameters are different).

The lemma will be proved if we show that (A1) x §(Az) has length at
most two. We shall prove the this by induction of the sum of cardinalities of
A; and A,. If the sum is two, then we know this (since the minimal non-
zero (standard) Jacquet module is of length two). Suppose that the sum of
cardinalities of A; and As is > 3, and that the claim holds for lower sums of
cardinalities. Write

Miottom (0(A1) X 8(A2)) = 6(A1) x 0("Az) ® vy2p 4+ 6(7 A1) X 5(A2) @ v p.

The first representation on the right hand side is irreducible by Proposition
4.3.
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If ny = my, then also the second one is obviously irreducible. This implies
that the multiplicity is at most two in the case n1 = m;.

It remains to consider the case If ny < m;. Now the inductive assumption
implies that the second representation on the right hand side has length two.
Therefore, the length of the above Jacquet module is three. Let m be an
irreducible sub quotient of 6(A;) x 6(Az) which has the first representation
on the right hand side in its Jacquet module. Then 7 has an irreducible
representation of the form

LRVt RVPp

in its Jacquet module. Observe that n; +1 < m; = ng — 1, which gives
n1 + 2 < ny. Therefore, z/glp ® z/gzp is irreducible. Now Remark 3.3 implies
that 7 has also an irreducible representation of the form

QU pRVSp

in its Jacquet module. By the transitivity of Jacquet modules, this term must
come from some term of mj,,, .. (6(A1) x §(Az)), and it can not obviously
come from the first representation on the right hand side. Therefore, we
must have in the Jacquet module of 7 also at least one sub quotient of the
second representation on the right hand side. This implies that the length of
0(A1) x 6(Ag) is at most two. The proof of the lemma is now complete. O

We continue with previous linked segments A; and Ay. Decompose A
into two segments

A =6([p" v o)), Ar=6([p"2, 0" pl),

where we take the second segment to be empty set if no = mq + 1. Then
Ay, =A1NAyand Ay UAy = Ay UAg (Ay; and Ay are disjoint). Now
the last lemma implies

(71) 5(A1) X 5(A2) § 5(A1’l) X 5(A17T) X 5(A2),

(72) 5(A1 U AQ) X 5(A1 n Ag) < (S(Al’l) X 5(A1’T) X 5(A2)
LEMMA 7.2. With above notation we have
1. (A1) x0(A2)+5(A1UA) X (A1NAL) L §(A1,1) xI(A1r)X(Ag).
2. 5(A1 U AQ) X 5(A1 n Ag) S (S(Al) X (S(Ag)

ProOF. We prove (1) by induction with respect to no — ny = k (clearly,
k>1).

Suppose that the inequality does not hold for the difference k (i.e. that
the inequality holds). Then obviously
(S(Al) X (S(Ag) + 5(A1 N Ag) X 5(A1 U Ag)) S

5(A1,l) X (S(AL,«) X 5(A2))

mi®u21p(

*

m*®'/§1p(
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Now the formula (2.2) implies
(5(7A1) X 5(A2) ® I/glp+ 5(A1 N AQ) X (5(7(A1 U AQ)) ® l/glp <
5(_A1,l) X (S(Al,.,-) X (S(Ag) ® l/glp.

This obviously implies
(7.3)
(S(_Al) X (S(Ag) + 5(A1 n AQ) X (5(_(A1 U Ag)) S 6(_A1,l) X (S(AL,«) X (S(Ag)

Suppose now £ = 1 and that the inequality does not hold in this case.
Then the above inequality becomes in this case

(S(_Al) X (S(Ag) + 5(A1 N Ag) X (S(_(Al U Ag)) S (5(_A1) X (S(Ag),

which obviously can not hold. Therefore, the inequality holds for k£ = 1.

Fix now k£ > 2, and assume that the inequality does not hold for the
difference k — 1. Observe that then ~A; and Ay are linked, and that for
them the inequality does not hold by the inductive assumption. Suppose
that the inequality holds for the difference k. Now (7.3) and the fact that
7(A1 N AQ) = (7A1) N A, and 7(A1 @] Ag) = (7A1) U A, 1mply

(S(_Al) ><5(A2)+(5(_(A1)0A2) X(S(_(Al)UAQ) S 5(_A1,l) X(S(AL,«) X(S(Ag)

Observe that “A; = (TA1;)UA; , is the decomposition of ~Aj, correspond-
ing the such a decomposition for A;. This contradicts the inductive assump-
tion, and it completes the proof of (1).

Now (2) follows directly from (7.1), (7.2) and (1), using the fact that
(A1 UA2) x 6(A1 N Ay) is irreducible (which follows from Lemma 4.2). 0O

PROPOSITION 7.3. Let Ay and Ay be two linked segments. Then in the
Grothendieck group of the category of representations of finite length we have

(S(Al) X (S(Ag) = L(Al, AQ) + 5(A1 U Ag) X (S(Al N AQ)

PROOF. Observe that by Lemma 7.1, we know that the proposition holds
in the case when A; N Ay = (). Therefore, in the rest of the proof we need to
concentrate to the case when A; N Ay # (). This implies that A; has at least
two elements (and also As).

From the previous lemma, we know that §(A; UAg) x 6(A1NAy) is a sub
quotient of 6(A1) x §(Az). We know also that L(Aq, As) is a subquotient.
Therefore, for the proof of the proposition, it is enough to prove that the
length of §(Aq1) x 6(As) is (at most) two.

The proof goes by induction with respect to card(A; U Ay). For the
cardinality two and three, we have A; N As = (), so the proposition holds in
this case. Suppose that the cardinality of A; U Ay is > 4, and that the claim
holds for strictly smaller cardinalities. Recall
(7.4)

Miottom (6(A1) X 8(A2)) = 8(A1) X (= Az) @ V2 p + (" A1) x 3(As) @ v p.
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Since the subquotient §(A; U Ag) X §(A; N Ag) embeds into 6(A; U Ag) X
vp'lp X ... X vy?p, Frobenius reciprocity implies that this sub quotient has
in its Jacquet module a term of the form ... ® v}2p. Now (7.4) implies that
d(A1 U Az) x §(A1 N Az) must have in its Jacquet module an irreducible
sub quotient of §(A1) x §(TAz2) ® vp2p. We know from Lemma 4.2 that
(A1 UA2) x 0(A1 NAL) Z6(A1NA3) X §(A; UAs). Now in the same way
as above, we conclude that 6(A; UAg) X §(A; N Ag) must have in its Jacquet
module an irreducible sub quotient of 6(~A1) x §(Az2) ® vt p.

We consider now two cases. The first is ny + 1 = ns. In this case, the
inductive assumption and Lemma 4.2 imply that (7.4) has length three. Now
the above analysis of the Jacquet module of 6(A; UAg) x §(A; N Ag) implies
that §(A1) x 6(Az) has the length (at most) two.

It remains to consider the case n; + 2 < ny. Observe that the irre-
ducible subquotient L(Aj,As) imbeds into (A1) x §(Asz) (this is an ele-
mentary property of the Langlands classification). Now in the same was
as above, we conclude that L(Aj,As) must have in its Jacquet module
an irreducible subquotient of 6(A1) x §(TAz) ® vy2p. From (2.2) follows
that (A1) — 6(TA7) x vptp. Now ny +2 < ny and Lemma 4.2 imply
vptp X 8(Ag) = 6(Ag) X vt p. From this follows

L(A1, Ag) = 6(A1)x3(A2) = 6(7 A1) X1 px3(Aa) = 6(7 Ar)x3(Ag)x 1/ p.

Now in the same way as above, we conclude that L(A;, Ay) must have in its
Jacquet module an irreducible subquotient of 6(TA;) x §(Az) ® vt p. Since
by the inductive assumption the length of (7.4) in the case nj +2 < ny is four,
the above observations about Jacquet modules of 6(A; U Ag) x §(A; N Ag)
and L(Aq, Ag) imply that the length of §(A71) x §(Az) is two. This completes
the proof of the proposition. O

Now using the factorization of the long intertwining operator from the
Langlands classification, one gets from the above proposition the composition
series of the generalized principal series (see Theorem 5.3 of [22]).
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Primjedba o teoriji reprezentacija opéih linearnih grupa nad
nearhimedskom lokalnom algebrom s dijeljenjem

Marko Tadié

SAZETAK. U ovom ¢lanku je dan jednostavan (lokalni) dokaz
dva glavna rezultata o ireducibilnim temperiranim reprezentaci-
jama op¢ih linearnih grupa nad nearhimedskom lokalnom alge-
brom s dijeljenjem A. Dan je dokaz parametrizacije ireducibil-
nih kvadratno integrabilnih reprezentacija ovih grupa u termin-
ima segmenata kuspidalnih reprezentacija, te dokaz ireducibil-
nosti temperirane parabolicke indukcije. Ovi dokazi su bazirani
na Jacquetovim modulima (i Geometrijskoj lemi, inkorporiranoj
u strukturi Hopfove algebre). U dokazima se koriste samo vrlo
osnovne opce ¢injenice teorije reprezentacija reduktivnih p-adskih
grupa (teorija koju koristimo je kompletirana prije vise od tri de-
setljeca, preteznu u 1970-im). Od rezultata specificnih za opdée
linearne grupe nad A, koristi se samo jedan vrlo stari rezul-
tat G. I. Ol'Sanskog o egzistenciji komplementarnih serija koje
pocinju reprezentacijom Ind(p ® p) kada je p ireducibilna uni-
tarna kuspidalna reprezentacija. U dodatku ¢lanka [11] je dan
jednostavan lokalni dokaz ovih rezultata, baziran na nesto dru-
gacijem pristupu.
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