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Active distributed storages need to assure both con-
sistency and dynamic data support, in addition to
availability, confidentiality and resiliency. Further, since
storage durability suffers in untrusted and unreliable
environments, it becomes crucial to (a) select the most
reliable set of servers to assure data retrievability and
(b) dynamically identify errant servers and restore the
data to ensure data recoverability. We address the issues
of concurrency, consistency, dynamic data support, data
share repair, and trust management in providing persis-
tent storage and access. The paper focuses primarily on
erasure coded distributed storages (storages employing
erasure coding for data dispersal). Integration of Quorum
based approach using Notification propagation, with a
reliability model based on server trust-reputation forms
the comprehensive design proposed. Treating servers
and their data shares equally at data reconstructions
during data retrievals is rather inadequate in untrusted
environments. The design provides a suitable platform
for use of Soft Decision Decoding to overcome this inad-
equacy. The design has been validated by the simulation,
study, and analysis carried out for Reed Solomon coded
storage with varying levels of resiliency and concurrency.
The proposed design can be suitably adapted in typi-
cal distributed information storages catering to global
networked audience in public, untrusted, and unreliable
operating environments.

Keywords: distributed storage systems, data retriev-
ability, data recoverability, block codes, soft decision
decoding

1. Introduction

Distributed storages operate with a huge user
base, across public networks and no longer
function in trusted and reliable environments
(M. Placek and R. Buyya, 2006). In this regard

there is continuous effort to maintain and as-
sure guarantees to persistent storage and access.
Storage designs evolve to incorporate measures
that circumvent issues introduced by malicious
activities and hybrid failures (crash and non-
crash). It centers primarily on enabling trusted
& reliable servers and correct & consistent data.
A comprehensive design guaranteeing persis-
tent storage and access in untrusted and un-
reliable environments is in focus. The work
primarily focuses on active distributed storage
systems employing erasure coding for data dis-
persal (DSS-D).

The ‘distributed attribute’ of DSS-D (block co-
des – Information Dispersal Algorithm (IDA),
Error Correcting Codes (ECC)&c) offers con-
fidentiality in addition to availability, and re-
siliency for storage and retrieval. To provide
data retrievability, it is generally required that a
minimal set of any k servers be available for re-
construction (M. Rabin, 1989, J. A. Garay et al.,
2000, G. R. Goodson et al., 2004, J. Hendricks
et al., 2007). Further, data may be retrieved
using Hard Decision Decoding (HDD) which
treats the data shares of the k servers equally.

In the presence of interleaved reads and writes,
design for active DSS-D must extend to pre-
serve the same level of write / update of file
F among all storage servers and to return the
same up-to-date version in successive reads of
F. Clearly, with interleaved reads and writes
data retrievability is restricted to k up-to-date
file shares requiring a minimal set of any k up-
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to-date servers. To meet this restriction on the
minimal set of servers and file shares, it is essen-
tial that the design provides for both dynamic
data support and consistency. Further, opera-
tion in untrusted and unreliable environments is
expected and storages invariably endure hybrid
failures (crash and non-crash, malicious activ-
ities). Evidently, the restriction on file shares
for data retrievability becomes more stringent;
k correct and up-to-date file shares are required.
It implies that a minimal set of any k correct
& up-to-date servers need to be judiciously se-
lected at retrievals for reconstruction. Further,
it is rather infeasible to continue retrieving files
by treating servers and their shares equally –
usage of HDD is limited here.

Hybrid failures are a threat, not only to data
correctness but also to the coordination that has
to be achieved among the servers for dynamic
data support and consistency. Data recover-
ability at errant servers (that have suffered loss
of propagation or file share corruption) is cru-
cial for persistent storage & access and storage
durability. Therefore, it is not only mandatory
to identify correct & up-to-date servers at re-
trievals, but it is equally important to restore
file shares at those servers that have suffered
loss of propagation or file share corruptions.

Evidently, addressing the issues of concurrency,
consistency, dynamic data support along with
dynamic identification of errant servers, file
share repair, and trust are central to persistent
storage and access in DSS-D. In this paper,
we address these issues to guarantee retriev-
ability and recoverability for persistent storage
and access at DSS-D. The proposed DSS-D de-
sign is equipped with mechanisms for dynamic
data support, consistency, trust management,
dynamic identification of errant servers, and
correction of their file shares. Integration of
a Quorum based approach using Notification
propagation, with a reliability model based on
server trust-reputation forms the comprehensive
design proposed.

Our contributions in the proposed work for era-
sure coded active storages comprises a suffi-
ciently comprehensive design that:

i. guarantees significant resiliency tomalicious
activities and hybrid failures at storage.

ii. does not compel a rather imperceptive and
equal treatment of servers and their file shares
in unreliable and untrusted environments.

iii. permits reads, writes, and updates to be per-
formed persistently and reliably with only
a marginal increase in the associated com-
plexity.

iv. integrates a reliability model based on server
trust-reputation in providing a platform for
the use of SDD in reconstructions at data
retrievals.

v. permits reliable and persistent access despite
severe defective fractions at storage.

The paper presents a qualitative assessment of
the proposed design examining the probability
of availability of the quorum of servers, the re-
sponse time and the communication overhead
in terms of the number of messages required to
perform reads, writes and updates. The study,
analysis, and validation of the byte oriented
access of the RS code set (255, k) for vary-
ing levels of resiliency and concurrency bring
out the effectiveness of the design in tolerating
severe defective fractions at storage. Signifi-
cantly, the design can be adapted suitably in
typical distributed information stores of organi-
zational data (such as federal, healthcare &c)
that cater to a global networked audience in any
public untrusted and unreliable operating envi-
ronments.

The rest of the paper is organized as follows:
Related work in Section 2 discusses the need
and requirements for persistent access and stor-
age in erasure coded active storages operating
in hybrid failure prone, untrusted environments.
On the onset, Section 3 describes four issues
central to guaranteeing retrievability and recov-
erability for persistent storage and access in
DSS-Ds. Integration of the Quorum based ap-
proach with Notification propagation for sup-
port of dynamic data and consistency is elabo-
rated in detail here. Further, the section de-
scribes reliable handling of reads, writes and
updates and the same for concurrent opera-
tions. The section progresses to explain the in-
tegration of a reliability model based on server
trust-reputation. The proposed Extended Trust
Model explicates the use of ‘Server Trust’ for
interleaved and/or concurrent reads, writes and
updates. Section 4 analytically evaluates the
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design for response time, availability and com-
munication overhead. Further, validation of the
design through the simulation carried out for
byte oriented access with a set of (255, k) RS
codes for varying levels of resiliency and con-
currency is discussed. Interesting observations
that validate availability, persistent access and
storage are listed and discussed. Finally, Sec-
tion 5 concludes the paper highlighting the com-
prehensiveness of the design in enabling the
most appropriate mechanisms to prevent ma-
licious activities and hybrid failures from ob-
structing availability, persistent storage & ac-
cess, and storage durability.

2. Related Works

DSS (Distributed Storage System) operate in
globally networked servicing arena with con-
tinuous efforts to improve collective perfor-
mance. To enable recovery amongst server
errors and failures, DSS typically spread data
across servers with redundancy (K. D. Bowers
et al., 2009, L. Gao et al., 2010). While repli-
cation is used in storages, dispersal techniques
(M. Rabin, 1989, J. A. Garay et al., 2000, G. R.
Goodson et al., 2004, J. Hendricks et al., 2007)
provide a classic alternative in achieving redun-
dancy. Information Dispersal Algorithm (IDA)
(M.Rabin, 1989) fragments data into shares and
disperses them among storage servers, reducing
the level of redundancy needed to achieve ro-
bustness amidst server errors and failures. A
significant line of research has been on the use
of block (erasure) codes (K. D. Bowers et al.,
2009, G. R. Goodson et al., 2004, M. Lillibridge
et al., 2003, C. Wang et al., 2009, A. Juels, and
B. S. Kaliski Jr., 2007, C. Cachin and S. Tes-
saro, 2005, C. Cachin and S. Tessaro, 2006, L.
Pamies-Juarez, F. Oggier and A. Datta, 2013)
to achieve dispersal.

Storages operate with a huge user base, across
public networks and face the challenges of unre-
liability, unpredictability and potentially mali-
cious behavior (M.Placek and R. Buyya, 2006).
They do not limit themselves to providing as-
surance for static files – archival storages; they
expand to provide for file updates – active stor-
ages. Efforts to provide persistent storage and
access in DSSs are directed towards addressing
concurrency, consistency, durability and their

related issues in the presence of data updates
at storage. Research has focused on consis-
tency issues in the presence of Byzantine fail-
ures for erasure coded storage (G. R. Goodson
et al., 2004, C. Cachin and S. Tessaro, 2006).
Although Cachin and Tessaro (2006) ensure
consistent stored information despite Byzantine
faults, they do not address the issues of concur-
rency and versioning. In addition to versioning,
Goodson et al. (2004) also perform file share
repair among the servers. They exploit local
data versioning within the storage nodes to pro-
vide consistency and perform file share repair
by using additional historical fragments fetched
from the servers. RobuSTore (H. Xia and A. A.
Chien, 2007) in an attempt to increase data ac-
cess performances in distributive environments,
combines rateless erasure code with speculative
access. Updates, though not the main focus,
are also considered. With no adversaries as-
sumed in the distributive environment, accesses
to stored data are devoid of correctness issues
here.

Adversary models representing malicious activ-
ities in distributed storage have progressed (K.
M. Martin, 2008) from passive to active and to
mobile adversaries. Significant line of research
has taken into consideration active adversaries
(K. D. Bowers et al., 2009, C. Wang et al., 2009,
J. Kubiatowicz et al., 2000). Focus of research
is on strong (C. Wang et al., 2009) and mobile
adversary as well (K. D. Bowers et al., 2009).
OceanStore (J. Kubiatowicz et al., 2000), pro-
vides for both active and archival storages in
untrusted environment, using repetition coding
for the former and erasure coding for the lat-
ter. A primary tier of replicas cooperate with
one another in a Byzantine agreement proto-
col to choose the final commit order for up-
dates; updates are epidemically communicated
to the secondary tier. HAIL (K. D. Bowers et
al., 2009) addresses the related issues regarding
verification and correction of file shares among
mobile adversaries. It uses a proactive strategy
that cryptographically verifies and reactively re-
allocates file shares to prove that stored files are
intact and retrievable. The protocols here pro-
vide assurance for static files and not for file
updates.

In general, data reconstruction in DSS-D is pos-
sible from any set of k data shares out of the n
dispersed (C. Cachin and S. Tessaro, 2005). In
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storages that operate amongst hybrid failures,
this flexibility of reconstructing the original data
from a minimal possible (k) set of data shares
is linked primarily to the selection of reliable
servers. Clearly, data availability directly de-
pends on the minimal possible (k) set of data
shares from reliable servers. Verification of dis-
persed data among servers can assure the supply
of the minimal data share set for reconstruction.
Integrity checks on remote storage can be done
by clients – playing the role of a verifier (K.
D. Bowers et al., 2009, C. Wang et al., 2009) or
can be enforced within the storage servers them-
selves (J. A. Garay et al., 2000, G. R. Goodson
et al., 2004, J. Hendricks et al., 2007, C. Cachin
and S. Tessaro, 2006). Cryptography based ver-
ification approaches have been used in (M. Lil-
libridge et al., 2003, C. Wang et al., 2009, A.
Juels, and B. S. Kaliski Jr., 2007, C. Cachin and
S. Tessaro, 2005, D. L. G. Filho and P. S. L.
M. Barreto, 2006, M. A. Shah et al., 2007, H.
Krawczyk, 1993) to perform integrity checks.

Clearly, levels of unpredictability and unreli-
ability in the operating environments are not
merely governed by hardware related failures.
Occurrences of malicious activities and non-
crash faults bring in the issues of trust; the oper-
ating environment is no longer the usually more
trusted one, it is rather partially trusted and at
the extreme totally untrusted (M. Placek and
R. Buyya, 2006). Efforts to provide persistent
storage and access should further extend to in-
clude those that circumvent issues introduced
by malicious activities. It centers primarily on
enabling trusted& reliable servers and correct &
consistent data. While trust can be established
via Byznatine protocol (A. Adya et al., 2002,
J. Kubiatowicz, et al., 2000), it can be also es-
tablished based on the reliable information pro-
vided on their behavior by a trusted third party
– not always feasible (F. Gómez Mármol and G.
Martı́nez Pérez , 2010). On the other hand, an
alternative way to establish trust (H. Li and M.
Singhal, 2007) is via Reputation Scheme – re-
warding and penalizing good and bad behavior
(M. Placek and R. Buyya, 2006). Trust / Rep-
utation models have been developed using An-
alytic expressions, Fuzzy Logic, Bayesian Net-
works, Social Networks and Bio-inspired algo-
rithms (A. Boukerche et al., 2007, G. Zacharia
and P. Maes, 2000, C. Huang et al., 2006, S.
Kamvar et al., 2003). A trust-reputation ap-

proach based on the concept of ‘Server Trust’ is
established in (C. K. Shyamala and T. R. Pad-
manabhan, 2014). The work presents a well-
organized scheme for selection of the most reli-
able set of servers to supply reliable data shares
for reconstruction of data based on the trust-
reputation of the servers’ themselves.

It is evident that hybrid failures in storage envi-
ronments restrict reconstruction of the original
data to a set of reliable servers (to serve correct
data shares). This demands that the k file shares
used in decoding be correct; it also implies that
file shares need not be treated equally in decod-
ing. Conventional RS decoding treats all file
shares equally and reconstructs the file using
the well established Hard Decision Decoding
(HDD). For such an approach with DSS-D, ev-
ery storage server – malicious as well as non-
malicious – has to be treated equally; this is
not practical. This requirement is best served
by using a Soft Decision Decoding (SDD) al-
gorithm (B. Yamuna, and T. R. Padmanabhan,
2012) in place of a naı̈ve approach using HDD.
SDD algorithms chalk out an optimal iterative
procedure to identify the correct k file share set
in reconstructing the original data.

File share corruptions are not of the ‘silent
event’ category (K. D. Bowers et al., 2009).
Therefore, provisions for storage correctness
need not necessarily be proactive. Data share
verification and correction at servers follow ev-
ery successful reconstruction, ensuring storage
correctness. This reactive strategy is most ap-
propriate for ensuring correctness at DSS-D.

From all the above, it is evident that active dis-
tributed storages operating in a globally net-
worked servicing arena should incorporatemea-
sures that circumvent issues introduced by ma-
licious activities and hybrid failures. It cen-
ters primarily on dynamically identifying er-
rant servers and restoring the data and enabling
trusted & reliable servers to provide correct &
consistent data. The paper focuses on meet-
ing these requirements for persistent access and
storage in erasure coded active storages operat-
ing in hybrid failure prone, unreliable, and un-
trusted environments. It addresses interleaved
and/or concurrent reads & writes and their re-
lated issues in providing (persistently and reli-
ably) correct & up-to-date data, while ensuring
the same level of writes and correctness at stor-
age.
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3. Proposed Work

A DSS-D with n storage servers guarantees a
successful read of stored file (data) F, with the
availability of a minimal set of any k servers.
Here, at most n − k failures are tolerated im-
plying resiliency level of n − k. Further, a con-
fidentiality level of k is also implied; that is,
no collusion of at most k − 1 storage servers
(among the total of n) can retrieve F. Figure 1
is an overview of data retrieval and restoration
in DSS-D, highlighting the need and the role
played by mechanisms that allow dynamic iden-
tification of errant servers and correction of file
shares in assuring persistent access and storage.

A two-tiered locally centralized architecture (M.
Placek and R. Buyya, 2006) is adopted for the
DSS-D design. T2, the Storage tier, is an
untrusted tier of servers to which the storage
responsibility is entrusted. T1 is the Client-
Servicing tier of high performing, trusted super
nodes, sufficient in number, interacting with
the T2 servers for file read, update and write
−F(r−u−w). DSS-D clients (Service Clients)

have no direct access to the T2 servers; they
contact directly T1 servers for F(r−u−w). For
an (n, k) code dispersal in DSS-D, each of the n
storage servers stores a file share / fragment of
file F. A minimum of k of these file shares is
required to reconstruct a file dispersed among n
storage servers (C. Cachin and S. Tessaro, 2005,
S. Lin and D. J. Costello Jr., 2004). The design
here uses (n = 255, k) Reed Solomon (RS)
code (Lin and D. J. Costello Jr., 2004, S. Peter,
2002, R. H. Morelos-Zaragosa, 2006). How-
ever, it is general enough to be applicable to any
other block code. The byte oriented access of
this code makes it the most logical choice for
DSS-D. Availability, confidentiality, resiliency
levels, and concurrency potential for a set of
(255, k) RS codes are in Table 1.

3.1. DSS-D Design Issues

The issues that arise in guaranteeing retrievabil-
ity and recoverability for persistent access and
storage in DSS-D and the proposedmechanisms
adopted in our design are:
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Figure 1. Overview of data retrieve and restore in DSS-D.
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Code Availability Confidentiality level Resiliency level Concurrency potential

(n/k) k k – 1 n – k n / k

(255, 46) 46 45 209 5.54

(255, 64) 64 63 191 3.98

(255, 110) 110 109 145 2.31

(255, 238) 238 237 17 1.07

Table 1. Attributes and their values for (255, k) code.

1. In active DSS-D storages, data retrievability
requires that a minimal set of any k servers
be available for reconstruction, each with its
own up-to-date file share. An (n, k) code
implicitly offers potential for concurrency,
based on the extent to which n is greater than
k, as given in Table 1. Providing monotonic
reads and sequential consistency with con-
current reads and writes demands preserving
the same level of write at the T2 tier – the
first issue. For this, the proposed design
is augmented with a push-pull mechanism
to preserve the same level of writes at T2.
Using Notification Propagation, file writes
are pushed to the T2 tier; subsequently, the
file shares are pulled by the corresponding
servers. A file write is performed on (k+)
file shares with (k + ) participating T2
servers. Write notification is propagated to
the rest of the non-participating T2 servers
(having the remaining n−(k+) file shares).
Updates are supported at file level; a file
is updated by overwriting its shares at the
servers. Concurrent writes are performed by
serialization of writes (concurrent writes are
not aborted); this enables ordering and ser-
vicing of concurrent write requests on files.

2. In the presence of hybrid failures at T2 tier,
data retrievability demands a minimum of k
up-to-date & correct file shares – the next
issue. The availability of reliable servers – a
minimal set of k reliable servers – is required
for reconstruction. In our design, we adopt
a reliability model based on server trust-
reputation built over the periods of DSS-D
servicing (C. K. Shyamala and T. R. Pad-
manabhan, 2014) to provide a judicious
means for selecting a set (minimal) of k reli-
able servers for file reconstruction. We uti-
lize the trust-reputation approach based on
the concept of ‘Server Trust’ with SDD to
identify the correct k file share set.

3. With concurrent reads and writes, the design
discussed so far is still insufficient to guaran-
tee that a read must always return the last up-
dated file – the third issue. Measures should
be in place to ensure that only the same cor-
rect & up-to-date copy of the file is returned
at every successive file read. For a concur-
rent read with write, the last updated file /
the file not older than the last read should
be returned (old copy of the file is never re-
turned on a read). We exploit the Quorum
based approach to reach a consensus on the
latest updated copy of the file shares. A
file read can be performed with (k + ) file
shares from k reliable servers, only after a
consensus on the latest updated copy of the
file shares is reached in the Quorum.

4. Hybrid failures at T2 tier pose a threat for
storage correctness – the fourth issue. We
adopt a reactive approach towards guaran-
teeing storage correctness. Successful re-
constructions with k reliable servers (pro-
viding k correct & up-to-date file shares)
allow all n file shares to be generated. With
these n file shares, dynamic identification
and correction of incorrect and stale (not
up-to-date) file shares in the T2 tier follow
directly. Thus, data recoverability is guaran-
teed in the design.

We propose a sufficiently comprehensive de-
sign that addresses these four issues central
to guaranteeing retrievability and recoverabil-
ity for persistent storage and access in DSS-Ds.
The design integrates:

i. Notification propagation to preserve the sa-
me levels of writes

ii. Reliabilitymodel based on server trust-repu-
tation for selection of reliable servers

iii. Quorum based approach to reach a consen-
sus on updated file shares



An Integrated Distributed Storage Design Offering Data Retrievability and Recoverability Using. . . 197

The integration makes it possible – with the
highest probability – to supply k correct & up-
to-date file shares during reads; similarly cor-
rect and up-to-date version number for data up-
dates. The design is augmented with a reactive
approach to ensure correctness at the storage
tier.

3.2. Data Updates

Active storages allow updates on data; the chal-
lenge is to assure that a read always returns the
result of the latest completed update. With up-
dates of file F in DSS-D, a read of F should re-
turn only the up-to-date version of F and signif-
icantly, the same up-to-date version of F should
be returned for every successive read of F.

Consistency: It should be always practicable
with a high probability to return the same up-
to-date version of file F, for any two or more

successive reads of F. Consistency guarantees
can be assured if the design supports:

i. consensus on updated version of the data for
reads

ii. propagation of the same level of data on
writes.

3.2.1. Support for Consistency

The unit of operation in F(r−u−w) is (k), the
minimum number of fragments of file F re-
quired to perform an operation of F. Structuring
of server and fragment sets for performing an
F(r−u−w) is illustrated in Figure 2. Servers
are pooled and K-server is formed as in Fig-
ure 3. A file F and each of its fragments have
distinct identification (Figure 5). A new file
write −F(w) – is performed by writing the file
fragments to the responded server set in the
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K-Server set:  K-server = servers 

being the minimum no. of T2 servers that are required to respond for file servicing, and being the 
no. of  T2 servers that may additionally respond to file servicing. 

K-Reliable server set: K-reliable = reliable servers 
being the minimum no. of  reliable T2 servers that are required for file servicing,  and being the 

no. of  reliable T2 servers that may additionally be present for file servicing. 
K-Agreement server set: K-agree = agreeing servers 

being the minimum no. of  servers in K-reliable  that  are required to agree on the highest version 
number of a file , and being the no. of  servers in K-reliable  that may additionally agree on the 
highest version number of a file . 

K-fragment set: K-fragment  = reliable fragment shares 

being the no. of reliable fragment shares in K-agree that are required to be available with the 
ascertained quorum, and  being the no. of reliable fragment shares in K-agree that may additionally 
be available in the quorum. 

Correct fragment set: k-correct = correct fragment shares 
being the no. of correct fragment shares in K-fragment that are required for file reconstruction. 

       Here, 

Figure 2. Structure of server and fragment sets.
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1. Randomly select (  servers. 
2. Transmit client request. 
3. Attempt to form the K-Server set 
If the attempt fails, 

retransmit client request to the other randomly selected servers  
repeat until K-Server set is formed. 

Figure 3. Procedure to identify K-server.

1. Form (responded server set) K-server with that responded to the read request. 
2. Form K-reliable with reliable servers from K-server using STI. 
3. Get a consensus on the highest version no. .  Form K-agree with reliable servers agreeing      
    on  for . 
4. Form K-fragment with reliable fragment shares from K-agree. 
5. Generate k-correct ( correct fragment shares) using – SDD – an iterative reconstruction procedure.  
    Reconstruct the file ( and perform file read. 
6. Generate all  fragment shares using . 
7. For all the servers in {K-server – servers that supplied k-correct}, verify the fragment shares and restore.  

Figure 4. Procedure for quorum formation for F(r).

1. Form (responded server set) K-server with that responded to the write  
    request.  
2. Generate the new version no. (current logical clock (L. Lamport, 1978)) for  
3. Encode and generate the  fragment shares.  
4. Write any fragment shares of in K-server. 

File ID   Fragment  ID   
File tag || Version no. || Server ID Fragment tag || File ID 
Unique file tag || current logical clock 
|| T1 server ID Unique fragment tag || File ID 

 

Figure 5. Procedure for quorum formation for F(w).

 
1. Form (responded server set) K-server with that responded to the update  
    request.  
2. Form K-reliable with reliable servers from K-server using STI. 
3. Get a consensus on the highest version no. .  Form K-agree with reliable  
    servers agreeing on for . 
4. Generate the updated version no. ( ) for the updated  
    file 
5. Encode and generate fragment shares. 
6. Write fragment shares of in K-server. 

Figure 6. Procedure for quorum formation for F(u).

write quorum (Figure 5). Updates on files are
supported at the file level; a file is updated by
overwriting its shares at the servers. An up-
date on F − F(u) – is performed as illustrated

in Figure 6. A consensus is reached on Vh –
the highest version number – of F in the update
quorum. The version number is generated and
the file fragments for the file update are written
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to the responded server set in the quorum. A
file read −F(r) – is performed as illustrated in
Figure 4. A consensus on the latest updated
copy of the file shares is reached in the read
quorum. A reliable fragment set, K-fragment
is formed with K-agree. Using SDD, a cor-
rect fragment set, k-correct is obtained from
K-fragment. The file is reconstructed and all n
fragments are generated facilitating subsequent
verification and correction.

3.2.2. Dynamic Data Support

The same level of write of F among all T2
servers is required in order to enable a read
of F to return the up-to-date version. Dynamic
data support at DSS-D mandates integration of
an appropriate propagation mechanism with the
quorum design discussed above. The challenge
here is to achieve a well-organized coordina-
tion among the client servicing servers and the
servers that share storage responsibility. To
meet this requirement, we take advantage of
Notification Propagation (L. Gao et al., 2010)
to propagate writes of F to the non-participant
T2 servers. Significantly, the integration of the
Quorum based approachwithNotification prop-
agation in our design eliminates the need for the
intersection of reads and writes (D. Agrawal
and A. El Abbadi, 1990) mandatory in the tra-
ditional quorums.

A push technology is employed to push write
(new file write / file update) information to
the non-participant T2 servers. The proposed
propagation scheme propagates notification of
new file writes and file updates to the non-
participants using Instate and Invalidate mes-
sages respectively. Non-participants of a new
file write are a class of servers – instated server
class – that should be informed of the file write.
Non-participants of a file update are a class of
servers – invalidated server class – that should
not only be informed but also be invalidated for
the file update. The push is subsequently fol-
lowed by a pull; the non-participants equipped
with information about the latest write pull the
necessary (pull technology) from T1. Client
initiated file writes and updates are acknowl-
edged when a write is performed in the quorum
for a minimum of k fragments at a minimum
of k servers. Server initiated writes follow file
writes and updates. There are two cases of no-
tification as in Figure 8:

i. Invalidate Through: Notification is sent to
the T2 non-participants and they are invali-
dated on a file update.

ii. Invalidate Suppress: In the case where inval-
idation has been performed in the previous
update of F, the notification is suppressed.

3.3. Reliable Reads and Writes

A new file write is straightforward (Figure 5).
For file update, the quorum based approach of
the design requires a consensus on Vh of F (Fig-
ure 6). The design permits Vh of F to be fetched
from the current T1 (performing the servicing)
on failure to reach a consensus in the quorum
(Figure 8). A read requires a quorum of reliable
servers to agree on Vh of F before proceeding
to reconstruct the file. The design permits file
reads with cases of read hit and varying levels
of read miss (Figure 7). A Read Hit occurs
when the client-servicing T1 is itself the parent
T1 of the requested file. A Read Miss-Level1
occurs when K-agree serves the k-correct for
successful reconstruction. A Read Miss-Level2
occurs if K-agree is not formed or if it is unable

 

Figure 7. Read hit and miss cases.



200 An Integrated Distributed Storage Design Offering Data Retrievability and Recoverability Using. . .

Figure 8. Write-Update notification cases.

to serve the k-correct. It requires the k-correct
to be fetched from the Parent T1 for successful
reconstruction. Clearly, the design permits file
reads, writes, and updates to be performed per-
sistently and reliably; failure occurs only when
K-server cannot be obtained.

3.3.1. Concurrent Reads and Writes

An (n, k) code implicitly offers potential for
concurrency, based on the extent to which n is
greater than k, as given in Table 1. Concurrency
potential in general is given by the quantity n/k,
signifying the capacity of the DSS-D to support
concurrent reads and writes. Distributed repli-

cation refers to the number of k-correct sets of
F, supplied for concurrent reads and updates of
F. This implies that �n/k� such sets are pos-
sible to be formed concurrently at any given
time by the system to service as many reads and
updates. The quantity n − (k �n/k�) signifies
the number of storage server faults and failures
that can be tolerated by the system in satisfying
�n/k� concurrent reads and updates. Further,
in the worst case, there can be a total of n − k
failures in the system and yet enabling it to ser-
vice a single read or update. Typical figures
for a (n = 255, k) scheme are given in Table 2.
The design permits concurrent reads and writes
without conflicts.

3.4. Trust Model

Data retrievability and recoverability guarantees
in DSS-D rely heavily on the selection of reli-
able k servers from the available servers. There
should be a judiciousmeans for selecting amini-
mal set of k reliable servers among the available
servers for file reconstruction. Step 2 in Fig-
ure 4 as well as in Figure 6 requires the reliable
server set to be generated from the respondent
servers. This involves the judicious selection
of the servers. We adopt the reliability model
(C. K. Shyamala and T. R. Padmanabhan, 2014)
based on server trust-reputations built over the
periods of DSS-D servicing, to provide an ap-
propriate judicious selection procedure.

The model is – context specific, multifaceted
and dynamic – comprehensive (Y. Wang and J.
Vassileva, 2003). The basic model meets the
four primary requirements (F. Gómez Mármol
and G. Martı́nez Pérez, 2010) for DSS-D ac-
cess:

A. Prevention of behavioral oscillations along
time

RS code Concurrency potential Distributed replication Resiliency Level

(n, k) n/k �n/k� n − (k �n/k�)
(255, 46) 5.54 5 25

(255, 64) 3.98 3 63

(255, 110) 2.31 2 35

(255, 238) 1.07 1 17

Table 2. Concurrency details for (255, k) code.
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B. Redemption of past malicious servers who
have become benign

C. Prevention of abuse of a good achieved rep-
utation

D. Assurance of reasonable level of participa-
tion for re-entrants.

Cumulative file share submission status in the
past performances of servers forms the metric –
‘Server Trust Index’ (STI). Server STIs are used
for selection of reliable server at data retrievals.
They are refreshed based on the servers’ perfor-
mance in the current servicing by appropriate
reward / punishment.

Update of STIs is given by:

STI − new =
∣∣∣∣ S∗ +  on reward

S∗ − p on punishment (1)

where, S∗ =

n∑
i=n−c

an−iSi

nc
and n, an−i, Si; c + 1

and nc being total number of servicing, weigh-
tage for the performance in ith servicing and STI
at ith servicing, moving average window length
and last c servicing respectively.

In the distributed penalty scheme, penalty for
jth server is:

pj =
(Sj − S0)  nd

nd∑
i=1

Si − S0

(2)

nd, S0,  and Sj being the total number of er-
rant participants in current servicing, least STI
among nd participants, punishment unit and last
STI of the jth server respectively.

The subjective approach in the model treats er-
rant severs in a singular way. It provides a
statistical means of reward & punishment, and
selection of k reliable servers.

3.4.1. Extended Trust Model

The integrated design for active DSS-D extends
the basic trust model to meet the two addi-
tional requirements (F. Gómez Mármol and G.
Martı́nez Pérez, 2010):

E. Different trust-reputation rating based on the
type of servicing

F. Importance of a transaction and its associ-
ated risk influencing subsequent punishment
/ reward.

The ordering of the F(r−u−w) DSS-D servic-
ing in terms of importance and risk is directly
related to the role it plays in verification and data
restoration at the T2 severs. F(r) is treated as
the most important as it guarantees both verifi-
cation and data restoration at the T2 severs. The
F(u) requirement that a consensus be reached
on the highest file version number allows verifi-
cation at this level and not data restoration. The
F(w) requires any set of k servers to perform the
write; it plays no role in verification and restora-
tion and is treated as the least important. The
same ordering applies to the trust-reputation rat-
ing and risk associated with F(r−u−w).

For F(r−u−w) servicing, r,u,w is used in
place of the reward  in (1) and r, u, w in
place of  in (2). The more important the DSS-
D servicing with respect to verification and
restoration, the greater are the associated  and
 . The distributed penalty scheme in (2) varies
the trust-reputation rating for the F(r−u−w)
servicing. A new file write performed on the
respondent server set results in only rewarding
the participants. On a file read or update the
participants are suitably rewarded only on en-
abling consensus of version number and supply
of correct fragments as required; they end up
receiving penalty otherwise. After every ser-
vicing, the T2 servers are updated for their STI
with the awarded reward or penalty using the
extended trust model.

4. Design Evaluation

The DSS-D design is qualitatively evaluated
for response time, availability, and communica-
tion overhead. Concurrent and non-concurrent
modes of simulation for (255, k) codes for vary-
ing degrees of concurrency and resiliency lev-
els are reported and discussed in the subsequent
subsection.
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4.1. Analytical Evaluation

4.1.1. Response Time

A client connects to a T1 server through LAN
connection, and a T1 connects to T1 and T2
servers through WAN connection, with RTTs
of tlan(6 ms RTT) and twan(86 ms RTT) respec-
tively (L. Gao et al., 2010). Let, r be the read
% and 1− r be the write %. If rd is hit and ri is
miss-level1, then miss-level2 is r− rd − ri. The
best case and the worst case average response
times are evaluated and given in Table 3.

4.1.2. Availability

New file write or file update is performed with
the access of at least one T1 along with the quo-
rum. It is rejected when (i) none of the T1s
is available, or (ii) when enough number (k)
of T2s is not available even though a T1 is ac-
cessed. Simultaneously, any k or more T2s not
agreeing on version number does not affect the
resultant file update (Figure 8). Read (Figure 7)
is performed with the access of (i) the parent T1
(hit), or (ii) any one of the non parent T1s along
with the quorum (miss- level1), or (iii) any one
of the non parent T1s along with the availabil-
ity of the parent T1 on an unsuccessful quorum
(miss- level2).

Let, r be the read % and 1−r be the write % and
the number of servers in T1 tier be n1 with p1,
the probability of a T1 server being unavailable
and 1 − p1, the probability of it being avail-
able. Let the number of servers in T2 tier be
n2 with p2, the probability of a T2 server being
unavailable and 1 − p2, the probability of it be-
ing available. Let 1 − pshm be the probability
of a T2 server being non-errant and pshm be the
probability of it being errant. The availability
of F(r−u−w) and its non-availability are given
below in (i) and (ii) respectively:

(i)

(1−pn1
1 )

{
n2−k∑
i=0

n2Ck+i (1−p2)
k+i (p2)n2−k−i

}

+ r
1
n1

+ r

(
1 − 1

n1

) [
n2−k∑
i=0

n2Ck+i(1 − p2)k+i·

·(p2)n2−k−i

{
k+iCk+j

i∑
j=0

(1−pshm)k+j(pshm)j

}]

+r

(
1− 1

n1

)
(1−p1)

(
1−

[
n2−k∑
i=0

n2Ck+i(1−p2)k+i·

(p2)n2−k−i

{
k+iCk+j

i∑
j=0

(1−pshm)k+j(pshm)j

}])

(ii)

(1−r)
{

(pn1
1 ) + (1−pn1

1 )
(

k−1∑
i=0

n2Ci (1−p2)
i (p2)

n2−i
)}

+ rpn1
1 + r(1 − pn1

1 )
k−1∑
i=0

n2Ci (1 − p2)
i (p2)n2−i

+ r(1 − pn1
1 )(p1)

(
1 −

[
n2−k∑
i=0

n2Ck+i (1 − p2)
k+i ·

· (p2)
n2−k−i

{
k+iCk+j

i∑
j=0

(1 − pshm)k+j(pshm)j

}])

Here,

• (1−pn1
1 )

{
n2−k∑
i=0

n2Ck+i(1−p2)k+i(p2)n2−k−i

}
is the probability that at least one T1 and,
simultaneously, any k or more T2s are avail-
able for a write/update.

where,

(1 − p2)k+i(p2)n2−k−i: probability that one
set of k+i T2 alone is available and all others
are not available.
n2Ck+i(1−p2)k+i(p2)n2−k−i: probability that
all possible sets of k+ i T2 are available and,
simultaneously, the others are not available.

(1 − pn1
1 ): probability that at least one T1 is

available (one or more up to n1 T1s avail-

able) and, simultaneously,
n2−k∑
i=0

n2Ck+i(1 −
p2)k+i(p2)n2−k−i: probability that all possi-
ble sets of k or more T2 are available.

• pn1
1 +(1−pn1

1 )
{

k−1∑
i=0

n2Ci(1 − p2)i(p2)n2−i

}
is the probability that none of theT1s is avail-
able or that enough number (k) of T2s are
not available with availability of one or more
T1s for a write/update.

where,

pn1
1 : probability that none of the T1s is avail-

able.

(1 − pn1
1 ): probability that at least one T1 is

available (one or more up to n1 T1s avail-
able), but, k of T2s are not available.
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(1−p2)i(p2)n2−i: probability that only a spe-
cific set of i T2s are available and all others
are not available.
n2Ci(1 − p2)i(p2)n2−i: probability that all
possible sets of i T2s are available and all
others are not available.
k−1∑
i=0

n2Ci(1 − p2)i(p2)n2−i: probability that

the number of T2s available is less than k in
all possible ways.

• 1
n1

+
(

1 − 1
n1

) [
n2−k∑
i=0

n2Ck+i(1 − p2)k+i(p2)n2−k−i·{
k+iCk+j

i∑
j=0

(1 − pshm)k+j(pshm)j

}]
+

(
1 − 1

n1

)

(1 − p1)
(

1 −
[

n2−k∑
i=0

n2Ck+i(1 − p2)k+i(p2)n2−k−i·

·
{

k+iCk+j

i∑
j=0

(1 − pshm)k+j(pshm)j

}])

is the probability that the file is reconstructed
directly from the parent T1 (hit) or indirectly
from the quorum with any one of the non
parent T1s’ access (miss -level1). Further,
in case of unsuccessful attempt at quorum
with a non-parent T1 for read, the file can be
reconstructed by reverting to the parent T1
itself (miss -level2).

where,

n2−k∑
i=0

n2Ck+i(1−p2)k+i(p2)n2−k−i is the prob-

ability that any set of k or more T2 are avail-
able.

Further, for any i in this, the probability
that at least k of the k + i T2s are regular:
k+iCk+j

i∑
j=0

(1 − pshm)k+j(pshm)j.

(
1 − 1

n1

)
(1− p1): probability that at least

one T1 is available (one or more up to n1 T1s
available) along with the parent T1s avail-
ability.

• pn1
1 + (1 − pn1

1 )
k−1∑
i=0

n2Ci(1 − p2)i(p2)n2−i

+ (1 − pn1
1 )(p1)

(
1 −

[
n2−k∑
i=0

n2Ck+i(1 − p2)k+i·

·(p2)n2−k−i

{
k+iCk+j

i∑
j=0

(1 − pshm)k+j(pshm)j

}])

is the probability that there is a no read at a
hit (pn1

1 ) or

at a miss, level1 (1 − pn1
1 )

k−1∑
i=0

n2Ci(1 − p2)i

(p2)n2−i, or

level2 (1 − pn1
1 )(p1)

(
1 −

[n2−k∑
i=0

n2Ck+i(1 −

p2)k+i(p2)n2−k−i
{

k+iCk+j

i∑
j=0

(1−pshm)k+j ·

·(pshm)j
}])

.

4.1.3. Communication Overhead

Let |Qr|, |Qw|, and |Qu| be the size of the read,
write, and update quorum respectively and let
|Qri| be the number of errant T2 servers in the
read quorum. All messages are assumed to be
of equal cost. A read hit costs 2 messages and
a read miss of level1 costs 1 + |Qr|+ |Qri|+ n1
messages, whereas the cost of a read miss of
level2 is 2 + |Qr| + |Qri| + n1 messages. The
cost of a write is 1 + |Qw| + n2 + n1 mes-
sages. The cost of an update with invalidate
suppress is 1 + 2|Qu| + n1 messages, whereas
the cost of an update with invalidate through is
1 + |Qu| + n2 + n1 messages.

Best case average response time

Read hit or Read miss- level 1 + Notification suppress

(rd)[tlan] or (ri)[tlan + 3twan] + (1 − r)[tlan + 3twan]

Worst case average response time

Read miss - level 2 + Notification through

(r − rd − ri)[tlan + 4twan] + (1 − r)[tlan + 4twan]

Table 3. Response Time.

4.2. Simulation and Observations

The basic structure for simulation of archival
DSS-Ds has the key parameters given in Ta-
ble 4. To facilitate both concurrent and non-
concurrent modes of active storages, the key pa-
rameters are augmented with concurrency level
(cl) and resiliency level at cl (kd). These pa-
rameters situate the level of concurrency and the
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Parameter Description Parameter Description

n total no. of servers m no. of sets > 2 for ensuring graded reliability among
the servers based on their STI

k minimal server subset pi(f l) failure probability for the i reliability sets

F failure set for hybrid failures X server’s state set for errant and non-errant states

p(f l) failure probability mtn re-entry interval for maintenance and re-entry

a reliability weights for STI values rl run length

l window length for past STIs

Table 4. Configuration parameters for simulation of archival DSS-Ds.

level of resiliency for each servicing in a run.
For an (n, k) code with concurrency potential of
n/k %, a distributed replication of �n/k�, and a
resiliency level of n− (k�n/k�), cl and kd range
with 1 . . . �n/k� and 1 . . . (n− (k�n/k�))/cl re-
spectively.

The DSS-D with a set of (255, k) codes for vary-
ing levels of concurrency and resiliency lev-
els are analyzed in both concurrent and non-
concurrent modes of servicing. STI updations
in each run of the simulation are associated
with  and p for F(r−u−w) and conform to
(1) and (2) of the extended trust model. Apart
from the obvious encoding / decoding efforts
required to write and read data with k-correct,
levels of complexity vary primarily in file reads
and updates based on the effort expended to-
wards obtaining Vh and k-correct in the quo-
rums. The reads and updates are categorized
(Table 5) based on this variation in the required
effort in the quorums.

A few clarifications on the levels of complex-
ity encountered in file writes, reads and up-
dates (given in Table 5) are in order here. File
reads and writes primarily demand k reliable,
agreeing servers. O(k) complexity signifies
the effort being limited to the first k in the
respective server set; but, with the presence
of defective fractions in this set, the associ-
ated complexity for k increases as its power
– O(kdefective fraction). With greater defective
fractions in this set, the need of an access to
a T1 server further increases the complexity
marginally to O

(
(kdefective fraction) + 1

)
. Sig-

nificantly, the order of complexity is limited to
the maximum of O

(
kdefective fraction

)
itself.

A new file write with any k available servers
is straightforward. It has a complexity of O(k)
and is always Type A. A read hit by default has
O(k) complexity, whereas a read miss varies
in the levels of complexity. A read miss re-
quires k-correct to be obtained from the quo-
rum for F(r). It can be obtained from the
first k in K-reliable with O(k) or from any k
in K-reliable in a read miss-level1 of complex-
ity O

(
kdefective fraction

)
. Failing which, it may

be fetched from the parent T1 in a read miss-
level2 of complexity O

(
(kdefective fraction) + 1

)
.

This results in Type A, B and C categoriza-
tions respectively for file reads (as evident from
Table 5). File updates too vary in the levels
of complexity, irrespective of whether they are
associated with invalidate through or suppress.
Consensus on Vh, may be obtained from the
first k in K-reliable with a complexity of O(k),
or it can be obtained from any k in K-reliable
with a complexity of O(kdefective fraction). Fail-
ing which, it may be fetched from the client-
servicing T1 with only a marginal increase in
complexity of O

(
(kdefective fraction) + 1

)
. This

results in Type A, B and C categorizations re-
spectively for updates (as evident from Table
5).

A detailed simulation in the non-concurrent
mode using STI based server segregation among
hybrid failures has already been reported (C.
K. Shyamala and T. R. Padmanabhan, 2014).
Maintenance schedules (re-entry interval) per-
mit affected servers to re-enter the system af-
ter repair, but a more balanced schedule is re-
quired to permit servicing without interruption
(to guarantee at least k correct severs available
in every run). Variation of service duration with
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F(r-u-w) Complexity at Quorum Remarks

1.Update Vh consensus in K-reliable

Type A O(k) first k in K-reliable

Type B O(kdefective fraction) any k in K-reliable

Type C O
(
(kdefective fraction) + 1

)
not in K-reliable

2. Read k-correct in K-agree

Type A O(k) Client-servicing parent T1 – Read hit /
first k in K-agree – Read miss- Level1

Type B O(kdefective fraction) any k in K-agree– Read miss-Level1

Type C O
(
(kdefective fraction) + 1

)
not in K-agree - Read miss-Level2

3.Write k in K-server

Type A O(k) any k in K-server

Table 5. F(r−u−w) Complexity.

mtn shown in Figure 9 is adopted from (C.
K. Shyamala and T. R. Padmanabhan, 2014);
clearly any mtn of 50 or less permits least k cor-
rect severs to be available in every run, (facil-
itating servicing without interruption) enabling
a well balanced schedule.

Concurrent and non-concurrent modes of sim-
ulation were carried out for (255, k) codes with
an mtn of 50 for varying degrees of concur-
rency and resiliency levels (Table 2). Failure
set (F) and failure probability (p(f l)) defined
hybrid failures (defective fraction), with num-
ber of non-malicious failures less thanmalicious
failures. The effect of defective fractions at
T2 servers on availability (see Section 4.1) and
related complexity in F(r−u−w) were studied
and analyzed.

Consider the DSS-D simulation after the defec-
tive servers have been repaired / replaced as part
of the maintenance activity. Let x be the prob-
ability of defectives at the access; x represents
the absolute defective fraction at every subse-
quent access. Fraction of non-defectives at the
1st access = (1 − x). At the 2nd access a frac-
tion of (1−x) out of the 1st access remains non-
defective; that is, the non-defective fraction at

the second access is (1−x)2. The non-defective
fraction at the ith access is (1 − x)i. The cumu-
lative defective fraction in the mtn successive
accesses until the next maintenance instance is:

mtn∑
i=1

{1 − (1 − x)i} (3)

dno – the average defective fraction during the
interval {1, mtn} is given by:

dno =
1

mtm

mtn∑
i=1

{1−(1−x)i}

=
1

mtm

{
mtn−(1−x)

1−(1−x)mtn

x

}
(4)

Here, dno can be seen to approach 1 as x → 1.
For the specific cases illustrated here, mtn has
been taken as 50. Values of dno (%) computed
for different x (%) values are in Table 6.

Writes being Type A by default do not offer
any additional insight and hence are excluded
in the sequel. Type A servicing fails even with
a single defective server in the first k of the k-
reliable; it is not resilient to malicious activities

x 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2

dno 19.91 34.89 46.27 55.01 61.80 67.15 71.40 74.84

Table 6. dno (%) computed for different x (%) values.
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at T2. Figure 10 depicts the variation of Type A
servicing for F(r−u) for different minimal sets
of k with varying defective fractions. The high-
lighted lines signify the plot based on the simu-
lation found to be essentially of Type A (calling
for lowest effort at the respective quorums). As
long as the minimal set size k is greater than
110, this quantum falls down rapidly, even with
the increase of defective fractions to 20% (d1),
(the point identified by ‘*’). Beyond d1, irre-
spective of the minimal set size, k the quantum
essentially becomes zero, giving way to Types
B and C.
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Figure 9. Variation of service duration with mtn.
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Figure 10. Variation of Type A servicing for varying
minimal set (k) and defective fraction (dno).

Figures 11 and 12 depict the various types
of servicing for non-concurrent and concurrent
modes. They put Type A, B, and C servicing in
the proper perspective for the complete (255, k)
code set, as discussed below.

In the non-concurrent mode (Figure 11a) Type
A servicing drops to zero beyond the range of

dno 0% to 35%, confirming the lack resiliency
beyond this. Type B servicing fails with greater
than n − k defective servers (up till n) in the
k-reliable; it is highly resilient to malicious ac-
tivities at T2. Further, in the mid range of dno
46% to 67% Type B servicing dominates, sub-
sequently it tapers, giving way to ascendancy
of Type C. Increase in percentage of malicious
activities at T2 servers does not obstruct ser-
vicing; persistent access is provided even with
severe defective fractions with Type C servic-
ing. The results signify provision of persistent
and reliable servicing in the proposed DSS-D
design.
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Figure 11a. Code (255, 64) Non-concurrent mode.
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Figure 11b. Code (255, 64) Concurrent mode (2).
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Figure 11c. Code (255, 64) Concurrent mode (3).
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A look at the resiliency offered by the proposed
design for concurrent servicing is revealing. For
(255, 64) code at concurrency level cl = 2 Fig-
ure 11b, TypeA servicing is limited to dno in the
range 0 to 20%, the rise of Type B at 20 % itself
is quite early and extends to 67%, giving way to
TypeC beyond. For cl = 3 Figure 11c, themax-
imum concurrency level for the code, Type C is
present at a very early value dno (20%) itself.
This trend is in contrast to non-concurrent mode
of servicing (Figure 11a), where the dominance
of B and C type services takes over at conspic-
uously higher dno values.

Similar trends with other codes (Figure 12) are
indicative of the consistency of the behaviour.
The results discussed here further emphasise
persistent and reliable servicing in the proposed
DSS-D design for concurrent servicing as well.

The study and analysis carried out for the code
set (255, k) for varying levels of resiliency and
concurrency validate availabilitywith persistent
access and storage in the proposed design.
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Figure 12a. Code (255, 110) Non-concurrent mode.
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Figure 12b. Code (255, 110) Concurrent mode (2).

i. Malicious activities at T2 do not obstruct
availability, persistent access, or storage dura-
bility.

ii. Type A servicing is not resilient to malicious
activities; it fails even with a single defective
server in the first k of the k-reliable. Type
B servicing, on the other hand, is highly re-
silient to malicious activities; it fails with
greater than n − k defective servers (up to
n) in the k-reliable. Even in the presence of
severe defective fractions persistent access
is still guaranteed with Type C servicing.

iii. Types A, B and C in F(r−u−w) are asso-
ciated with an increase in complexity in the
sameorder, independent of the response time
and communication overheads (see Section
4.1).

iv. The verification of T2 tier correctness in the
non-concurrent mode at file reads and up-
dates is equally in attendance in concurrent
modes as well. Reads in addition allowed
restoration of files shares at the participating
errant T2 servers. This reactive strategy at
file reads guarantees persistence at the stor-
age.

v. Supply of k correct & up-to-date file shares
for file reads and similarly correct & up-
to-date version number for file updates is
enabled reliably and persistently.

4.2.1. Comparison with Systematic Coding
Based Schemes at Storage

System security, system availability, data re-
trievability, data recoverability and storage dura-
bility have a direct effect on continual access
guaranteed at storage. Table 7 compares the
proposed scheme with those that employ sys-
tematic coding among untrusted entities at stor-
age for the above listed criteria. The comparison
clearly brings out the effect and control of:

i. data dispersal using non-systematic coding

ii. trusted layer of super servers on persistent
access and storage in untrusted environments
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I. Scheme using systematic form II. Scheme using non-systematic form

A. Security: Resilience to collusion attacks

Code Level Feature:
Encoding

Storage Level Feature:
Server discrimination

Code Level Feature:
Encoding

Storage Level Feature:
Server indiscrimination

Data is encoded as infor-
mation and parity blocks

The n servers are discrim-
inated as k information
servers, storing informa-
tion blocks andm (= n−k)
parity severs, storing par-
ity blocks

Data is encoded as mere
fragment shares

Servers are not discrimi-
nated as information and
parity servers; each server
stores a unique fragment
share

a. Collusion of the k information servers directly yields
the original data

a. Collusion of k servers does not directly yield the
original data

b. Distribution security is limited by mere k server
collusions

b. Distribution security is not limited by mere k server
collusions

B. Availability: Clients servicing despite failed servers

Code Level Feature:
Redundancy

Storage Level Feature:
Fault tolerance

Code Level Feature:
Redundancy

Storage Level Feature:
Fault tolerance

n − k is the measure of re-
dundant information in the
codeword

Redundant servers are
n − k in number; Storage
system availability is lim-
ited to n− k server failures

n − k is the measure of
redundant information in
the codeword

Redundant servers are
n − k in number; Storage
system availability is lim-
ited to n− k server failures

Storage system is rendered unavailable beyond n − k servers failures

II. Scheme without trusted layer II. Scheme with trusted layer
C. Retrievability: Retrieve data despite corruptions/errors at available servers

Code Level Feature:
Error correction capability

Storage Level Feature:
Data retrievability

Code Level Feature:
Error correction capability

Storage Level Feature:
Data retrievability

Code decoding is limited
to either �(n−k)/2� errors
or (n − k) erasures

Retrievability is limited to
either �(n − k)/2� avail-
able but erroneous servers
or (n − k) unavailable
servers

Code decoding is limited
to either �(n−k)/2� errors
or (n − k) erasures

Retrievability is not lim-
ited to �(n − k)/2� avail-
able but erroneous servers;
it is limited to only (n− k)
unavailable servers

a. Data retrievability depends on the availability of k
non-erroneous shares at the available servers

a. Data retrievability is relatively independent of
the availability of k non-erroneous shares at avail-
able servers; On the unavailability of k non-erroneous
shares, correct shares are fetched from the parent
server (trusted layer) that originated the latest write

b. Data retrievability is limited by the unavailability of
k non-erroneous servers

b. Data retrievability is not limited by the unavailability
of k non-erroneous servers

D. Recoverability: Restore servers’ data share errors / corruptions
Code Level Feature:
Error correction capability

Storage Level Feature:
Storage durability

Code Level Feature:
Error correction capability

Storage Level Feature:
Storage durability

Code decoding is limited
to either �(n−k)/2� errors
or (n − k) erasures

Durability is limited to ei-
ther �(n−k)/2� erroneous
servers or (n− k) unavail-
able servers

Code decoding is limited
to either �(n−k)/2� errors
or (n − k) erasures

Durability is not limited
to �(n − k)/2� available
but erroneous servers; it
is limited only to (n − k)
unavailable servers

a. Restoring of shares at erroneous servers depends
on the availability of k non-erroneous shares at the
available servers

a. Restoring of shares at erroneous servers is relatively
independent of the availability of k non-erroneous
shares at the available servers; On unavailability of k
non-erroneous shares, correct shares are fetched from
the parent server (trusted layer) that performed the
latest write

b. There is a very high probability of storage durability
eventually deteriorating

b. There is a relatively less probability of storage
durability eventually deteriorating

Table 7. Comparison with systematic coding based storage schemes.
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5. Conclusion

A comprehensive design for active DSS-D stor-
ages guaranteeing persistent storage and access
in untrusted and unreliable environment is in
focus. Issues of concurrency, consistency, dy-
namic data support, along with dynamic identi-
fication of errant servers, file share repair, and
trust have been addressed to guarantee retriev-
ability and recoverability. The design integrates
notification propagation to preserve the same
levels of updates, reliability model based on
server trust-reputation for selection of reliable
servers, and quorum based approach, to reach a
consensus on up-to-date file shares for file reads
and writes. Significantly, the design does not
compel a rather imperceptive and equal treat-
ment of servers and their file shares in unreliable
and untrusted environments. Modeling server
trust-reputation for use of SDD in erasure coded
distributed storages is a significant contribution.

The design permits reads, writes, and updates
to be performed persistently and reliably, with
only a marginal increase in the associated com-
plexity. Verification of T2 tier correctness in the
non-concurrent mode at file reads and updates
is equally in attendance in concurrent modes as
well. File reads, in addition, allow restoration of
file shares at the participating errant T2 servers.

The design guarantees significant resiliency to
malicious activities and hybrid failures at stor-
age. Malicious activities at T2 do not obstruct
availability, persistent access, or storage dura-
bility. Even in the presence of severe defective
fractions, persistent access is guaranteed with
Type C servicing. The effectiveness of the de-
sign in tolerating severe defective fractions at
storage has been established – forming a signif-
icant contribution of the work. The proposed
design can be suitably adapted in typical dis-
tributed information storages catering to global
networked audience in public, untrusted, and
unreliable operating environments.
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